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An understanding of the various states available to a polypeptide chain is important for a description
of the protein folding process. We use a 16-monomer chain on a two-dimensional square lattice to
model a protein. This makes it possible to enumerate all self-avoiding conformations from which
any equilibrium thermodynamic quantity can be calculated. By varying the external conditions of
temperature and average attraction, we construct a phase diagram for the model protein. It is found
to have an extended coil state, a homopolymer-like disorganized globule state, and an organized
frozen globule state that corresponds to the lowest energy (native) conformation. The exact model

results agree well with analytical heteropolymer theory.

A full understanding of protein folding requires a char-
acterization of the phase space accessible to a polypeptide
chain.! Although much is known about the neighborhood of
the native state from experimental and theoretical studies,?
less information exists concerning the nonnative portion of
the conformation space. Both theory® and experiment* sug-
gest that the space is complex and that there are several
states. Two regimes which clearly exist are the random coil
and native states; the former consists of a very large number
of rapidly interconverting configurations, while the latter
fluctuates only in the neighborhood of a single unique fold.
In addition, there appears to exist a homopolymer-like
globule,® where the polypeptide chain is relatively compact,
but fluctuates between a large number of collapsed
configurations.” Many proteins also show evidence for a
state, often referred to as a “molten globule,”® where the
backbone has attributes of the native structure, but the
sidechains are still free to rotate. It has been suggested’ ™
that the transition from the molten globule to the state with
tightly packed sidechains is the first-order (‘“‘all-or-none’’)
transition observed in the protein folding process. In this
view, the denatured protein encompasses a state with a rela-
tively well-defined backbone conformation (molten globule),
a collapsed disorganized homopolymer-like state (globule),
and the extended random coil state. An understanding of the
character and stability of these non-native states, as well as
the transitions between them, is important for a complete
description of the process of protein folding and
unfolding."1°

A theory developed for a heteropolymer (bead) model of
a protein® (see a review in Ref. 1) has shown that such a
chain with sufficiently high heterogeneity can have a com-
plex phase diagram with a coil, random globule (this is the
same as a homopolymer globule when the multitude of dif-
ferent structures are equally probable) and a “frozen” state
where only a few (for selected sequences, only one'') con-
formations are stable. It is the heterogeneity of an amino acid
sequence, which allows for the existence of a frozen state,
that differentiates a polypeptide chain from a simple ho-
mopolymer. The results obtained from this heteropolymer
model are in accord with spin glass theory'? and with phe-
nomenological models of such chains.'® The frozen state is
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characterized by a temperature T, below which there is a
transition and the chain acquires a unique structure. It is
likely that the resulting frozen state represents an organized
molten globule rather than the true native state because of
the lack of sidechains. An important prediction of the theory
is that the “folding temperature” T, is different from the
“compactization temperature” Tg , at which the chain makes
the transition from the extended random coil state to the
homopolymer-like globule state.

To examine the phase space of proteins in more detail,
lattice models can be used. The protein is represented as a
string of beads whose positions are restricted to a selected
lattice. Some aspects of the thermodynamics of the frozen
state predicted by heteropolymer theory have been tested by
the full enumeration of all compact self-avoiding conforma-
tions for a 27-mer on a 3 by 3 by 3 fragment of a cubic
lattice."! Although useful information about the folding ki-
netics has been obtained,'*!> the total number of configura-
tions, noncompact and compact, is so large that all the non-
native configurations cannot be enumerated. To investigate
the full configuration space, we introduce an even simpler
model. The system used is a 16-mer on a two-dimensional
(2D) square lattice.'® The total number of conformations of
such a chain is 802 075. This includes all noncompact and
compact self-avoiding conformations that are not equivalent
by symmetry.'® Although 2D lattices may have limits in their
applicability to three-dimensional behavior,' they are suffi-
cient for the present problem because it has been shown
theoretically'” that 2D chains exhibit compactization, as well
as freezing, transitions. Furthermore, when exhaustive enu-
meration was previously applied to the study of the native-
denatured transition,'®?° such a freezing transition was ob-
served. In spite of its simplicity, the 2D model has the
advantage that a wide range of parameters can be scanned,
allowing construction of a detailed phase diagram. This is the
subject of the present study.

The energy function was chosen to be of the same form
as that used for the 3D lattice studies;'"'*'" i.e., the energy
of a conformation m is

© 1994 American Institute of Physics



Dinner et al.: Phase diagram of a model protein

1445

TABLE 1. The {B;;} values of the two Gaussian sequences used in the computations. Since the matrices are symmetric, only half of each is shown; the first
Gaussian sequence is above the diagonal, and the second is below. Due to the constraints of the square lattice, only odd contact orders (j—i) are possible.
There is no interaction between residues adjacent in sequence or between a residue and itself.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 -0.4923 1.0474 -0.5436 1.1895 -2.1095 -0.7512 -0.0469

2 1.3830 . -1.2977 -0.1408 0.0940 0.9985 -1.8114

3 -0.1705 1.1223 -0.3847 -0.2865 0.3283 -1.0435

4 1.9063 -1.0519 0.5629 0.3252 -0.5998 1.7539

5 -0.9914 -0.2118 1.1253 1.8313 0.0326 0.3624

6 -0.8975 -0.9801 -1.6053 0.4711 0.0228 0.3899

7 -0.6782 -0.3037 0.2471 -1.3267 -1.4820 -0.3501

8 0.0770 -0.0625 -0.0651 -0.1171 -0.2125 -0.5015

9 1.1379 . 0.2209 -1.0613 0.0594 0.6888 -0.2472
10 1.6883 -0.6560 1.5177 -0.4063 0.5166 1.1651
11 0.0821 -0.9717 -0.8259 1.3644 -0.2958 -1.,7203
12 -0.6494 -0.3041 1.3921 0.8901 0.6439 -0.0592
13 0.5539 -0.8744 -1.779%0 1.3071 -1.5915 0.3877

14 0.8742 -0.7576 -0.9366 0.3860 0.8944 ) 0.2272

15 -0.6158 -0.2275 0.7045 0.3967 =-0.7950 0.6108

16 0.2781 -0.2991 -1.5168 -0.8012 0.1926 -1.1363 -0.3228

N N where summation in the numerator and denominator is taken
E,=B,>, A(r"- ri)+ ¥ BA(r]'—r]), (1) over all M conformations and C,, is the number of contacts
i>] i>j in conformation m with energy E,, . Similarly,

where N is the total number of monomeric units, By, is the
average interaction between monomers, and B; ; 1s the inho-
mogeneous part of the interaction energy that depends on the
type of monomer i and j. The Kronecker delta function
[A(r7—r)=1 if monomers i and j are lattice neighbors and
0 otherwise] reflects the short-range nature of the model po-
tential; only nearest-neighbor (in space) interactions are in-
cluded. A given sequence is characterized by the set {B;;}
associated with it. Two models are employed for the B;;
values. In the first, B;;’s are independent random values with
a Gaussian distribution'"'*!3

1 B},
P = 0| -3

where B is the standard deviation which determines the het-
erogeneity of the chain, and the mean of B;; is taken to be 0
since the average interaction is included in B. This model
potential is exactly that used in the theoretical analysis men-
tioned above.® The second model is a “two-letter” random
sequence of A- and B-type monomers. For computation, we
used two Gaussian-distributed {B;;} with B=1.0 (Table I).
The sample AB sequence used was chosen from 100 ran-
domly generated sequences of that type; its sequence and
interaction matrix are described in the legend to Fig. 1. A
similar two-letter code has been used previously in both
lattice'® and analytical models®' with A and B representing
hydrophobic and hydrophilic amino acids, for example.

Any equilibrium thermodynamic quantity for a given se-
quence can be determined for this model by performing the
appropriate average over all conformations. Here we con-
sider the quantities (N,) the thermally averaged number of
contacts, which is related to the density, and (Q) the ther-
mally averaged overlap of all pairs of conformations. The
brackets denote Boltzmann averaging at a given temperature.
Thus, the expression for (N} is

SMC, o~ EnlkT
{Nc)=_‘_2,i-‘—g kT
m

2

©)

S wOmn expl —(E,,+E,)/kT]

(Q>= (zMe—EMIkT)Q » (4)
where
N
Qn=2 A(rP—=rP)A(r}=r})/ oo
i>j

is the normalized “overlap” function which shows how
many contacts in a structure m coincide with the contacts in
another structure n. C;7, is the number of contacts in the
more compact of the two structures; as a result, 0<Q,,, <1
and @,,,=1 only for structures with the same contacts. This
can be true for the identical structure (Q,,,) or for two dif-
ferent structures with less than the maximum number of con-
tacts. In particular, two structures, both with zero contacts,
have Q,,,=1. The quantity (Q) acts as an order parameter
which is related to the number of thermodynamically stable
configurations. When only the global energy minimum is
thermodynamically stable, its probability at temperature 7 is
approximately one, while all other structures have negligible
probabilities; it follows from Eq. (4) that {(Q)=~1. On the
other hand, when the chain is disordered (i.e., many dissimi-
lar configurations have roughly equal probabilities at tem-
perature T), the average is not dominated by one structure
and (Q)<1 ({(Q)=~0.2 since random overlaps prevent {Q)
from reaching zero). The quantity {N_) was calculated with
all conformations, while (Q) was calculated with only the
1000 lowest energy structures because it is proportional to a
product of Boltzmann probabilities, so that only those con-
tribute significantly. Calculations with 5000 structures did
not change the numerical results.

We consider the behavior of the system as a function of
the temperature 7' and the homopolymeric interaction energy
By, which acts to control the overall compactness of the
chain. Although the analytical study varied B rather than T,
the effective width of the Gaussian interaction distribution

can be scaled with either [Egs. (2)—(4)]. However, the use of
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FIG. 1. Phase diagram for a two-letter sequence (a) (N} and (b) {@). {@)=1.0 for all T with B;=1.0 because the 1000 lowest energy structures all have
zero contacts, so that Q,,,,= 1. (N,) increases as T increases at By=1.0 because it is calculated with all structures, and more compact structures generally
have higher energy for positive By . (¢c) Superposition of (N_) (dashed) and {Q) (solid) at By=—2.0. (d) Construction of a phase diagram with the following
cutoffs: frozen is (Q)>0.7 and (N,)>6.0; globule is {@)=0.7 and (N.)>6.0; coil is (@)=0.7 and (N_.)=<6.0. Note the triple point at
(By,T)=(0.25,0.15). The interaction matrix for this sequence is B,,=—1, B,5;=0, and Byz=0, and the sequence is BBABBAABBAABABAA.

T allows direct comparison with proteins, which have fixed
sequences. The variation in {Q) and (N,} with B, and T is
shown in Figs. 1(a), 1(b), 2(a), 2(b), 3(a), and 3(b), respec-
tively, for three different sequences. As shown in Figs. 1(c),
2(c), and 3(c), {N_) has a higher transition temperature than
(Q) in all cases, so that there exists a regime in which the
molecule has lost its unique backbone structure, but is still
compact; i.e., the freezing transition occurs at a lower tem-
perature T, than the disordered globule transition T'g . This is
because loss of unique structure, characterized by a decrease
in {Q), involves a much sharper transition than the loss of
compactness, characterized by a decrease in (N ). Due to the
difference in T, and T, there exist three distinct states of
the molecule which are stable under different external con-
ditions. They are an extended coil state (C), a compact dis-
organized globule state (G), and a frozen globule state with
a unique structure (F). Comparing (a) and (b) of each figure,
we see that there is a region (C), where both (N_) and (Q)
are large (T<Tg,T,); a region (G), where (N_) is large,
while (Q) is small (Tg<T<T,); and a region (F), where
both (N,) and {Q) are small (T>Tg,T.). To make this
precise, we show the boundaries of the three regions for
reasonable, though arbitrary, criteria on the limits of (N,_)

and (Q) [Figs. 1(d), 2(d) and 3(d)]. The existence of three
phases, the general features of the phase boundaries, and the
presence of a triple point agree well with the phase diagram
predicted by the analytical model.> The two primary differ-
ences are the existence of the coil state for B;<<0 and the
leveling of the temperature of the globule-frozen boundary at
very low B,. These differences are a result of the shortness
of the chains, which allows individual sequence features to
play a more important role than expected for infinite chains.

The ability of the chain to collapse to a globule and have
a unique native state even when By>0 is due to the hetero-
geneity of the chain. We show the ground states at different
By, for the three sequences in Figs. 4, 5, and 6, respectively.
For the Gaussian sequences, as B, increases, some contacts
become positive (repulsive) before others, resulting in a
gradual relative increase in the stability of more open struc-
tures. At sufficiently high By, all contacts are repulsive and
the ground state consists of the 116 579 structures with zero
contacts. This decrease in the density of the native state also
occurs with the two-letter sequence; BB (hydrophilic) and
AB contacts both become repulsive when B,>0, while AA
(hydrophobic) contacts are repulsive only for B,>1. How-
ever, unlike the Gaussian sequences, all AA interactions in
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FIG. 2. The same as Fig. 1 for a Gaussian sequence. The triple point for this sequence occurs at (B,,T)=(—0.25,0.75).

the two letter sequences have the same energy regardless of
the positions of the monomers in the primary sequence. As a
result, the degeneracy of the two-letter sequence can come
from rearrangements of contacts in addition to rearrange-
ments of segments without contacts. This results in a higher
degree of degeneracy in the two-letter sequences for the
ground states that are not maximally compact.

The shape of the frozen section of the phase diagram is
dependent on the size of the plateau in {Q(T)) for a given
B, [Figs. 1(a), 2(a), and 3(a)]. The transition temperature of
(Q(T)) is dictated by the stability of the ground state relative
to the rest of the ensemble. To show this, we present the
difference in energy of the ground and first excited states
(AE|y) as a function of B, for these sequences; these values
are in the captions of Figs. 4, 5, and 6. The quantity AE, is
closely related to the Boltzmann probability of the native
state [po(7)], but is temperature independent. As one in-
creases B, AE |, may change for three reasons—the ground
state may change, the first excited state may change, or the
two structures may have a different number of contacts,
causing only the energy gap to change (Figs. 4, 5, and 6). We
find that AE,, decreases as B, increases for all three se-
quences, resulting in a decrease in the temperature range for
which formation of the ground state is thermodynamically
favorable at higher B,,. This lowering of the transition tem-
perature for ((Q(B,)) accounts for the shape of the frozen
section of the pnase diagram [Figs. 1(d), 2(d), and 3(d)].

Because AE,(B,) does not change in the same manner for
all sequences, different sequences can exhibit qualitatively
different configuration space behavior. The first Gaussian se-
quence has a large separation between the global energy
minimum and the first excited state when B, is negative
(encouraging maximal compactness), while the second se-
quence has a very small energy difference between these two
states. This results in a different dependence of {(Q(T)) on
the other system parameters [Figs. 2(b), 2(c), 3(b), and 3(c)].
The first sequence exhibits a plateau in (Q(7)) at low T due
to the large relative stability of the global energy minimum
with respect to the rest of the ensemble, while the second
does not. From detailed folding studies of a 27 bead model in
3D," these variations among phase diagrams are likely to
reflect differences in the ability of a sequence to fold. Tem-
peratures which would thermodynamically strongly favor
formation of the native state would be too low to allow es-
cape from local minima for the second Gaussian sequence,
but the first such sequence is expected to fold. Calculations
of AE |, as well as po(T) and the entropy of the system for
100 two-letter sequences suggest that a similar variation of
the phase diagram is expected among two-letter sequences.
Thus, while there are differences between individual se-
quences, the Gaussian and two-letter models have the same
overall behavior. This is important because the two types of
distributions are so different, that if corresponding results are
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FIG. 3. The same as Fig. 1 for another Gaussian sequence. The triple point for this sequence occurs at (By,7)=(0.25,0.25).

obtained for the two of them, they can be expected to be
rather general.

The overall behavior of the phase diagram is dependent
primarily on the stability of the ground state relative to the
remaining part of the conformational ensemble. However,
irregularities exhibited by individual sequences arise from
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FIG. 4. The nondegenerate native state of the two-letter sequence for B;<0.
Monomers are colored according to type with A (white) and B (gray).
(By,AEp)={(—5.0,2.0),(—4.0,2.0),(—3.0,2.0),(—2.0,2.0),(— 1.0,
1.0)}; only one conformation is shown because the ground state remains
constant over this By interval in spite of the change of its energetic separa-
tion from the rest of the conformational ensemble. For B;=0.0, the ground
state is 12-fold degenerate and includes the conformation shown. At
Bp=1.0, the ground state includes all zero contact structures (116 579-fold
degeneracy).

excited states with low energies. For example, in Fig. 3(c),
there is a kink in {Q(T)); this results from two structures in
the lower part of the energy spectrum which are almost de-
generate and thus become thermodynamically important at
the same temperature. Another irregularity exhibited by two
sequences is the depression in (N_} at low T for By=1 in
Figs. 2(a) and 3(a). Here, the lowest energy structure has one
contact, so that (N.)=1.0 at T=0. At low T>0, zero con-
tact structures play a very significant role in the average, so
that (N,) decreases with a small increase in T; however, at
even higher temperatures, more compact structures with high
energies decrease the weight of the completely open struc-
tures, thereby increasing {N_.). While such features of the
phase diagram illustrate the importance of nonground state
structures in the model, they depend on the details of the
sequence. Thus, their general implications may be limited.
In the diagram for all three sequences, there is a triple
point where the three phases coexist. This means that there
are conditions (low T and high B,), where the molecule can
make a direct transition from the coil to the frozen state. This
transition comes from a transformation in the ground state
due to the change in B, (Figs. 4-6). For example, the coil to
frozen state (C to F) transition of the two-letter sequence
takes place in the region in which the ground state gradually
goes from a five-fold degenerate state with seven contacts to
a maximally compact conformation (nine contacts for
B,<<0). Likewise, the two Gaussian sequences experience C
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FIG. 5. Ground state of the first Gaussian sequence. (a) The nondegenerate
native state for By<1.0. (B,,AE;0)={(—5.04.81), (—4.0,4.81),
(—3.0,4.04), (—2.0,3.04), (—1.0,2.04), (0.0,1.04)}; only one conformation is
shown because the ground state remains constant over this By interval in
spite of the change of its energetic separation from the rest of the confor-
mational ensemble. (b) The nondegenerate native state for By,=1.0,
AE;;=0.04. (c) The 314-fold degenerate ground state for By=2.0 (related
to each other by noncontacting tail moves). At B;>2.0, the ground state
includes all zero contact structures.

to F transitions when their ground states go from five- to
nine-contact and three- to seven-contact structures, respec-
tively. The change of ground state to a maximally compact
structure in the second Gaussian sequence can be seen in the
phase diagram from the depression in the globule to frozen
(G to F) boundary at By=—3.0 [Figs. 3(d) and 6]. The
noncompact and degenerate nature of the ground (F) state
for cases where a direct C to F transition occurs suggests that
it is not of great physical interest.

To look at the agreement between the present results and
the mean-field theory of heteropolymers, we compare the
Gaussian sequence phase diagrams [Figs. 2(d) and 3(d)] with
the one derived in Ref. 3. Because the latter was plotted in

the variables B, and B, which are more appropriate for stud-
ies using ensembles of sequences, we recalculate the theo-
retical phase diagram in the variables employed in the
present work, B and T (Fig. 7). The line delineating the G to
F boundary is determined by the equation

T =B VP(BD'TC) (5)
C 2kflny

where p is the average number of nonlocal contacts per
monomer and 7y is the number of conformations per
monomer.'"** The dependence of p on B, and T can be
found using the Flory—Huggins approximation, which has
been adopted previously to study coil-globule transitions.”®
The equilibrium value of p is that which minimizes the free
energy, which takes the following form in this approxima-
tion:

s s S =
F_BeﬂNp+T(z“2) 1—2_2 In 1_2_2 , (6)

where B.z=B,— B is the effective interaction energy cor-
rected for heteropolymeric effects,’ Z is the average coordi-
nation number of the lattice (in our example of a 16-mer on
a square lattice, Z=3), and p/(Z—2) is the fraction of sites
occupied by monomers. Using the value of p obtained from
minimization of Eq. (6) with y=2.6 (which takes into ac-
count excluded volume) and B= 1, we numerically solve Eq.
(5) for T, which is the G to F boundary of Fig. 7. We define
the other phase boundary (C to G) as a line of effective ®
points (Tg) at which the coefficient of the term linear in p in
the small p expansion of Eq. (6) vanishes

kTe

Bo=Bt3z—2) =

0. (7
The resulting T'g(B,) line is the coil to globule boundary in
Fig. 7. The 16-mer phase diagrams [Figs. 2(d) and 3(d)]
presented in this study are in clear qualitative agreement with
the analytical theory (Fig. 7).

While this relatively simple model of a short chain on a
2D lattice exhibits rich behavior and has three distinct states,
determination of the kinetic consequences of the phase dia-
gram would require a separate investigation. From the form
of the phase diagram, the C to G transition is likely to pre-
cede the G to F transition, particularly for compact native
states. The slow smooth decrease in (N_.) with temperature
[Figs. 1(c), 2(c), and 3(c)] suggests that there is no signifi-
cant barrier between low and high densities, resulting in a
quick collapse. On the other hand, although a 16-mer is too
short to provide clear proof that intermediate Q’s are un-
stable, the rapid decrease in (Q(T)) [Figs. 1(c), 2(c), and
3(c)] is consistent with the analytical prediction that there is
a high free energy barrier between the G and F states. Such
a kinetic scheme would imply that the disordered globule
may be a real kinetic intermediate in the process of folding.
This interpretation 1is consistent with both Kinetic
experiments’ and simulations of folding with a 3D
model.'"*" In the latter, a rapid compactization to the disor-
dered globule is followed by a relatively slow search to find
the native state within the set of compact conformations.
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ground state of the
(By,AE | )={(—5.0,0.68),(—4.0,0.68),(—3.0,0.09)}; only one conformation is shown because the ground state remains constant over this B, interval
in spite of the change of its energetic separation from the rest of the conformational ensemble. (b) The nondegenerate native state for —2.0<B,<<0.0.
(By,AE()={(—2.0,0.02),(—1.0,0.02)}. (c) The nondegenerate native state for B;=0.0, AE,;=0.02. (d) The sevenfold degenerate ground state for
By=1.0 (related to each other by noncontacting tail moves). At B> 1.0, the ground state includes all zero contact structures.

second  Gaussian

Although the present results are clearly of interest for
heteropolymer theory in 2D, the applicability to 3D systems,
including proteins, has to be assessed. The replica mean-field
theory of heteropolymers®!” predicts that the properties of
the frozen phase will have a strong dependence on spatial
dimensionality. This dependence arises primarily from differ-
ences in the degree of structural dissimilarity between
minima. This energy-structure relationship has a direct bear-
ing on the kinetics of folding, and we believe that kinetic
conclusions drawn from 2D models may have limited valid-
ity for 3D. Furthermore, numeric details (e.g., transition
points) may be quite different in 2D and 3D. Consequently,

Globule

FIG. 7. Phase diagram calculated from the results of the replica mean-field
theory of heteropolymers (Ref. 3). See the text for the method of derivation.

sequence. (a) The
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(d)

native  state  for

nondegenerate

By<—2.0.

the thermodynamic analysis given in this paper has only
qualitative significance for general systems.

One limitation in comparison with proteins is that the
simplicity of the model prevents explicit consideration of the
role of secondary structure formation. While this has been
shown to be important in experimental studies,”>*° the intro-
duction of such details in this model might introduce
artifacts.”” Also, the lack of sidechains makes it unclear to
what experimentally observed state the frozen globule corre-
sponds. It is tempting to identify it with the molten globule
(MG) state’?®?? because it has been argued that the MG state
can be obtained from the native one by destruction of the
sidechain tight packing with little distortion of the
backbone.'® In spite of its shortcomings, the simple model
provides useful information concerning the phase space of a
protein-like heteropolymer. In particular, it makes possible
an exhaustive enumeration of all configurations which would
be impossible in a more complete description of a protein.
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