Chapter 8

Virtual Ligand Screening Against Comparative
Protein Structure Models

Hao Fan, John J. Irwin, and Andrej Sali

Abstract

Virtual ligand screening uses computation to discover new ligands of a protein by screening one or more
of its structural models against a database of potential ligands. Comparative protein structure modeling
extends the applicability of virtual screening beyond the atomic structures determined by X-ray crystal-
lography or NMR spectroscopy. Here, we describe an integrated modeling and docking protocol,
combining comparative modeling by MODELLER and virtual ligand screening by DOCK.
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1. Introduction

Structure-based methods have been widely used in the design and
discovery of protein ligands (1—4). Given the structure of a bind-
ing site on a receptor protein, its ligands can be predicted among a
large library of small molecules by virtual screening (1, 5-11):
Each library molecule is docked into the binding site, then scored
and ranked by a scoring function. High-ranking molecules can be
selected for testing in the laboratory. Virtual screening methods
can significantly reduce the number of compounds to be tested,
thus increasing the efficiency of ligand discovery (12-16).

Many protein structures are relatively flexible, and can adopt
different conformations when binding to different ligands. Dock-
ing a ligand to a protein structure with current methods is most
likely to be successful when the shape of the binding site resembles
that found in the protein-ligand complex. Therefore, the protein
structure for docking is best determined in complex with a ligand
that is similar to the ligand being docked, by X-ray crystallography
or NMR spectroscopy. Induced fit and differences between pro-
tein conformations bound to different ligands limit the utility of

Riccardo Baron (ed.), Computational Drug Discovery and Design, Methods in Molecular Biology, vol. 819,
DOI 10.1007/978-1-61779-465-0_8, © Springer Science+Business Media, LLC 2012

105



106

H. Fan et al.

the unbound (apo) structure and even complex (holo) structures
obtained for dissimilar ligands. The problem of the protein con-
formational heterogeneity is especially difficult to surmount in
virtual screening, which involves docking of many different
ligands, each one of which may in principle bind to a different
protein conformation (17).

An even greater challenge is that many interesting receptors
have no experimentally determined structures at all, especially in
the early phases of ligand discovery. During the last 7 years, the
number of experimentally determined protein structures depos-
ited in the Protein Data Bank (PDB) increased from 23,096
to 67,421 (November 2010) (18). In contrast, over the same
period, the number of sequences in the Universal Protein
Resource (UniProt) increased from 1.2 million to 12.8 million
(19). This rapidly growing gap between the sequence and struc-
ture databases can be bridged by protein structure prediction
(20), including comparative modeling, threading, and de novo
methods. Comparative protein structure modeling constructs a
three-dimensional model of a given target protein sequence based
on its similarity to one or more known structures (templates).
Despite progress in de novo prediction (21, 22), comparative
modeling remains the most reliable method that can sometimes
predict the structure of a protein with accuracy comparable to a
low-resolution, experimentally determined structure (23).

Comparative modeling benefits from structural genomics (24).
In particular, the Protein Structure Initiative (PSI) aims to deter-
mine representative atomic structures of most major protein families
by X-ray crystallography or NMR spectroscopy, so that most of the
remaining protein sequences can be characterized by comparative
modeling (http: /www.nigms.nih.gov/Initiatives /PS1 /) (25, 26).
Currently, the fraction of sequences in a genome for whose domains
comparative models can be obtained varies from approximately 20%
to 75%, increasing the number of structurally characterized protein
sequences by two orders of magnitude relative to the entries in the
PDB (27). Therefore, comparative models in principle greatly
extend the applicability of virtual screening, compared to using
only the experimentally determined structures (28).

Comparative models have in fact been used in virtual screening
to detect novel ligands for many protein targets (28), including
G-protein coupled receptors (GPCR) (29—41), protein kinases
(42—45), nuclear hormone receptors, and a number of different
enzymes (14, 15, 46-57). The relative utility of comparative
models versus experimentally determined structures has been
assessed (17, 29, 42, 43, 58-60). Although the X-ray structure
of a ligand-bound target often provides the highest enrichment
for known ligands, comparative models yield better enrichment
than random selection and sometimes performs comparably to
the holo X-ray structure. Recently, we assessed our automated


http://www.nigms.nih.gov/Initiatives/PSI/
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|
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|

Database prioritization
(Ligand enrichment) (3.2.3)

Fig. 1. The automated modeling and docking pipeline. Numbers in parentheses indicate
the corresponding section in the text.

modeling and docking pipeline (17) based on MODELLER (61)
for comparative modeling and DOCK (62, 63) for virtual screen-
ing. We demonstrated that when multiple target models are calcu-
lated, each one based on a different template, the “consensus”
enrichment for multiple models is better or comparable to the
enrichment for the apo and holo X-ray structures in 70% and 47%
cases, respectively; the consensus enrichment is calculated by com-
bining the docking results of multiple structures — for each
docked compound, the best docking score across all structures
was used for ranking the compound — thus, the ranking relied
on optimizing the protein conformation as well as protein-ligand
complementarity. Another similar criterion for ligand ranking was
also described (64).

The modeling and docking protocol is carried out in seven
sequential steps (Fig. 1). Steps 14 correspond to comparative
modeling: (1) template search finds known structures (templates)
related to the sequence to be modeled (target), (2) target-template
alignment aligns the target sequence with the templates, (3) model
construction computes multiple target models based on the input
alignment, (4) model selection identifies the best-scoring model.
Steps 5—7 correspond to virtual screening: (5) binding site prepara-
tion involves creating input files for generating spheres and scoring
grids used in docking, (6) database screening docks database mole-
cules into the binding site, and (7) database prioritization scores and



108 H. Fan et al.

ranks the docking poses of the database molecules. Comparative
modeling is carried out by program MODELLER that implements
comparative modeling by satisfaction of spatial restraints derived
from the target-template alignment, atomic statistical potentials,
and the CHARMM molecular mechanics force field (61). The
spatial restraints are combined into an objective function that is
optimized by a combination of conjugate gradients and molecular
dynamics with simulated annealing; this model-building procedure
is formally similar to structure determination by NMR spectroscopy.
Virtual screening is performed by the DOCK suite of programs
(63, 65,66). DOCK uses a negative image of the receptor — spheres
that fill the receptor site — to describe the space into which docked
molecules should fit. Docking poses are generated by matching the
atoms of a small molecule with the centers of the spheres. The
generated poses are evaluated using a grid-based approach in
which interactions between the docked molecules and the receptor
are precomputed at each grid point.

2. Materials

2.1. Software
for Comparative
Modeling

2.2. Database
for Comparative
Modeling

2.3. Software
for Virtual Screening

1. The MODELLER 9v8 program can be downloaded from
http: /salilab.org/modeller/.

2. A typical operation in MODELLER consists of (1) preparing
an input Python script, (2) ensuring that all required files
(e.g., files specifying sequences, structures, alignments) exist,
(3) executing the input script by typing’” mod9v8 input-script-
name’, and (4) analyzing the output and log files. A tutorial
for the use of MODELLER 9v4 or newer is available at
http: //salilab.org/modeller /tutorial /.

1. Sequence database (UniProt90) contains all sequences from
UniProt (clustered at 90% to remove redundancy), and can be
downloaded from http:/salilab.org/modeller,/supplemental.
html.

2. Template sequence database (pdball) contains the sequence
for each protein structure in PDB, and can be downloaded
from http: //salilab.org/modeller /supplemental.html.

1. DOCK 3.5.54 (62, 63) is available under the UCSF DOCK
license  http://dock.compbio.ucst.edu/Online_Licensing/
dock_license_application.html (see Note 1). Documentation
for DOCK 3.5 is provided at http://wiki.bkslab.org/index.
php/Image:Dock3_5refman.pdf.


http://salilab.org/modeller/
http://salilab.org/modeller/
http://salilab.org/modeller/tutorial/
http://salilab.org/modeller/tutorial/
http://salilab.org/modeller/supplemental.html
http://salilab.org/modeller/supplemental.html
http://salilab.org/modeller/supplemental.html
http://salilab.org/modeller/supplemental.html
http://salilab.org/modeller/supplemental.html
http://dock.compbio.ucsf.edu/Online_Licensing/dock_license_application.html
http://dock.compbio.ucsf.edu/Online_Licensing/dock_license_application.html
http://dock.compbio.ucsf.edu/Online_Licensing/dock_license_application.html
http://wiki.bkslab.org/index.php/Image:Dock3_5refman.pdf
http://wiki.bkslab.org/index.php/Image:Dock3_5refman.pdf
http://wiki.bkslab.org/index.php/Image:Dock3_5refman.pdf
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2. Third party applications. DMS is a program that calculates the
solvent-accessible molecular surface of the protein binding
site (67), and can be downloaded at http:/www.cgl.ucsf.
edu/Overview/ftp/dms.shar. SYBYL is a commercial molec-
ular modeling program that can build and manipulate mole-
cules (68). In our study, SYBYL is used to add hydrogen
atoms to polar atoms in a protein receptor (in the PDB
format) that contains only non-hydrogen atoms; it can be
downloaded  from  http:/tripos.com/index.php?famil-
y=modules,General. DownloadPortal,Home. Delphi is a pro-
gram that computes numerical solutions of the Poisson-
Boltzmann equation for molecules of arbitrary shape and
charge distribution (69); a request for access to this program
can be made at http:/luna.bioc.columbia.edu/honiglab/
software /cgi-bin/software.pl?input=DelPhi.

2.4. Docking 1. The Directory of Useful Decoys (DUD) is a docking database

Database of Small designed to help test docking algorithms by providing chal-

Molecules lenging decoys (70). DUD contains a total of 2,950 com-
pounds that bind to a total of 40 targets; in addition, for each
ligand, it also contains 36 “decoys” with similar physical prop-
erties (e.g., molecular weight, calculated LogP) but dissimilar
chemical topology. DUD can be downloaded from http:/
dud.docking.org,/12 /.

3. Method

3.1. Comparative
Modeling of Protein
Structures

3.1.1. Template Search

The automated modeling and docking pipeline will be illustrated
with one example taken from our benchmark study (17), adeno-
sine deaminase (ADA, EC 3.5.4.4). ADA is a metalloenzyme in
whose binding pocket one catalytic zinc ion is coordinated by
three histidine residues and one aspartic acid residue (71, 72).
The bovine ADA has been co-crystalized with a non-nucleoside
inhibitor (PDB code 1INDW). The DUD database was screened
against comparative models and the ligand-bound (holo) crystal
structure of the bovine ADA, to compare the utility of compara-
tive models and holo crystal structures for virtual screening.

First, a file with the bovine ADA sequence in the MODELLER
“PIR” format is prepared (Fig. 2; see Note 2). Then the ADA
sequence is scanned against all sequences in the PDB (stored in file
“pdball”) to identify suitable templates, with the MODELLER
“profile.build” routine (Fig. 3; see Note 3). In this example, one
holo structure (PDB code 1UIO) (73) with 85% sequence iden-
tity to the target and one apo structure (PDB code 2AMX) (74)


http://www.cgl.ucsf.edu/Overview/ftp/dms.shar
http://www.cgl.ucsf.edu/Overview/ftp/dms.shar
http://www.cgl.ucsf.edu/Overview/ftp/dms.shar
http://tripos.com/index.php?family=modules,General.DownloadPortal,Home
http://tripos.com/index.php?family=modules,General.DownloadPortal,Home
http://tripos.com/index.php?family=modules,General.DownloadPortal,Home
http://tripos.com/index.php?family=modules,General.DownloadPortal,Home
http://luna.bioc.columbia.edu/honiglab/software/cgi-bin/software.pl?input=DelPhi
http://luna.bioc.columbia.edu/honiglab/software/cgi-bin/software.pl?input=DelPhi
http://luna.bioc.columbia.edu/honiglab/software/cgi-bin/software.pl?input=DelPhi
http://luna.bioc.columbia.edu/honiglab/software/cgi-bin/software.pl?input=DelPhi
http://dud.docking.org/r2/
http://dud.docking.org/r2/
http://dud.docking.org/r2/
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>P1;ADA

sequence:ADA:::::::-1.00:-1.00
TPAFDKPKVELHVHLDGAIKPETILYYGKRRGIALPADTPEELQNIIGMDKPLTLPDFLAKFDYYMPAIAGCRDA
IKRIAYEFVEMKAKDGVVYVEVRYSPHLLANSKVEPIPWNQAEGDLTPDEVVSLVNQGLQEGERDFGVKVRSILC
CMRHQPSWSSEVVELCKKYREQTVVAIDLAGDETIEGSSLFPGHVQAYAEAVKSGVHRTVHAGEVGSANVVKEAV
DTLKTERLGHGYHTLEDTTLYNRLRQENMHFEICPWSSYLTGAWKPDTEHAVIRFKNDQVNYSLNTDDPLIFKST
LDTDYQMTKKDMGFTEEEFKRLNINAAKSSFLPEDEKKELLDLLYKAYR/ . *

Fig. 2. File “ADA.ali” in the “PIR” format. This file specifies the target sequence. See the MODELLER manual for the
detailed description of the format.

from modeller import *
log.verbose()
env = environ()

#-- Read in the template sequence database

sdb = sequence_db(env)

sdb.read(seq_database_file='pdball.pir', seq_database_format='PIR’,
chains_list="ALL")

#-- Write the sequence database in binary form
sdb.write(seq_database_file="pdball.bin', seq_database_format="BINARY",
chains_list='ALL'")

#-- Now, read in the binary database
sdb.read(seq_database_file='pdball.bin', seq_database_format="BINARY",
chains_list="ALL")

#-- Read in the target sequence/alignment
aln = alignment(env)
aln.append(file="ada.ali’, alignment_format="PIR’, align_codes="ADA")

#-- Convert the input sequence/alignment into profile format
prf = aln.to_profile()

#-- Scan sequence database to pick up homologous sequences

prf.build(sdb, matrix_offset=-450, rr_file='${LIB}/blosum62.sim.mat',
gap_penalties_1d=(-500, -50), n_prof_iterations=5,
check_profile=False, max_aln_evalue=0.01, gaps_in_target=False)

#-- Write out the profile
prf.write(file="search_templates.prf', profile_format="TEXT")

#-- Convert the profile to alignment
aln = prf.to_alignment()

#-- Write out the alignment
aln.write(file="search_templates.ali', alignment_format="PIR")

Fig. 3. File “search_templates.py.” This script searches for potential template structures
in a database of nonredundant PDB sequences.

with 27% sequence identity are selected as templates (see Note 4),
to be used independently for calculating two models of ADA.

3.1.2. Target-Template For each target-template pair (i.e., ADA-1UIO and ADA-2AMX),
Alignment the target and template sequences are scanned against all sequences
in UniProt90 independently with the “profile.build” routine,
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>P1;ADA

sequence:ADA:1::+350::::-1.00:-1.00
TPAFDKPKVELHVHLDGAIKPETILYYGKRRGIALPADTPEELQNIIGMDKPLTLPDFLAK----FDYYMPAIAG
CRDAIKRIAYEFVEMKAKDGVVYVEVRYSPHLLANSKVEPIPWNQAEGDLTPDEVVSLVNQGLQEGERDFGVKVR
SILCCMR---HQPSWSSEVVELCKKYREQTVVAIDLAGDETIEGSSLFPGHVQAYAEAVKSGVHRTVHAGE---V
GSANVVKEAVDTLKTERLGHGYHTLEDTTLYNRLRQENMHFEICPWSSYLTGAWKPDTEHAVIRFKNDQVNYSLN
TDDPLIFKSTLDTDYQMTKKDMGFTEEEFKRLNINAAKSSFLPEDEKKELLDLLYKAYR/ . *

>P1;2AMX

structure:2AMX:38::365::::-1.00:-1.00

—————— PKVELHCHLDLTFSAEFFLKWARKYNLQPNMSDDEILDHYLFTKEGKSLAEFIRKAISVSDLYRD----
-YDFIEDLAKWAVIEKYKEGVVLMEFRYSPTFVSSSY-------—---- GLDVELIHKAFIKGIKNATELLNNKIH

VALICISDTGHAAASTIKHSGDFAIKHKHD-FVGFDHGGRE-ID- - - -LKDHKDVYHSVRDHGLHLTVHAGEDATL
PNLNTLYTAINILNVERIGHGIRVSESDELIELVKKKDILLEVCPISNLLLNNVKSMDTHPIRKLYDAGVKVSVN
SDDPGMFLSNINDNYEKLYTIHLNFTLEEFMIMNNWAFEKSFVSDDVKSELKALYF----/ . %

Fig. 4. File “align.ali” in the “PIR” format. The file specifies the alignment between the sequences of ADA and 2AMX (A chain).

from modeller import *
from modeller.automodel import *

env = environ()
env.io.hetatm = True

a = automodel(env, alnfile="align.ali',
knowns="2AMX', sequence="ADA")

a.starting_model = 1
a.ending_model = 500
a.make()

Fig. 5. File “build_model.py.” The script generates 500 models of ADA based on 2AMX
with “automodel” routine.

resulting in the target profile and the template profile, respectively.
Next, the target profile is aligned against the template profile with
the “profile.scan” routine (a sample script is given at http: //salilab.
org/modeller /examples /commands/ppscan.py). The resulting
alignment is presented in Fig. 4, for the 2AMX template
(see Note 5; the ADA-1UIO alignment is not shown).

3.1.3. Model Construction Once the target-template alignment is generated, MODELLER
calculates 500 models of the target completely automatically, using
its “automodel” routine (Fig. 5; see Note 6). The best model
(defined in Subheading 3.1.4) is then subjected to a refinement
of binding site loops (see Note 7) with the “loopmodel” routine
(Fig. 6). All three binding site loops were optimized simulta-
neously, resulting in 2,500 conformations of ADA (see Note 8).


http://salilab.org/modeller/examples/commands/ppscan.py
http://salilab.org/modeller/examples/commands/ppscan.py
http://salilab.org/modeller/examples/commands/ppscan.py
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3.1.4. Model Selection

3.2. Virtual Screening
Against Comparative
Models

3.2.1. Binding Site
Preparation

from modeller import *
from modeller.automodel import *

env = environ()
env.io.hetatm = True

#-- Create a new class based on 'loopmodel' to define loop regions
class myloop(loopmodel):
def select_loop_atoms(self):
return selection(self.residue_range('66:A', '74:A"),
self.residue_range('107:A', '121:A"),
self.residue_range('182:A', '192:A")

m = myloop(env,
inimodel="ADA.B99990047.pdb',
sequence='"ada-loop")

m.loop.starting_model = 1

m.loop.ending_model = 2500

m.make()

Fig. 6. File “loop_model.py.” Input script file that generates 2,500 models with the
“loopmodel” routine.

When multiple models are calculated for the target based on a
single template (by “automodel,” and “loopmodel,” if there are
binding site loops), it is practical to select the model or a subset of
models that are judged to be most suitable for subsequent dock-
ing calculations (see Note 9). In this example, for each template,
we select the model with optimized loops that has the lowest value
of the MODELLER objective function (ada-loop.BL16340001.
pdb for 2AMX), which is reported in the second line of the model
file (see Note 10). The most suitable model can also be selected by
the Discrete Optimized Protein Energy (DOPE) (75), which is
calculated using the “assess_dope” routine (see Note 11).

As described in the previous section, a single comparative model
of bovine ADA is selected from models calculated based on the
2AMX template. Another model is selected from models based on
the 1UIO template. The DUD database is then screened against
each of the two models independently. We will only describe the
docking to the ADA model based on 2AMX.

Prepare input files for the automated docking pipeline. The file
containing the ADA model based on 2AMX is renamed to “rec.
pdb,” followed by (1) removing all lines that do not contain
coordinates of non-hydrogen atoms; (2) replacing “HETATM”
in the line containing the coordinates of the zinc ion by
“ATOM?”; and (3) removing all chain identifiers (see Note 12).
Next, the file “xtal-lig.pdb” is created, containing the binding site
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3.2.2. Database Screening

3.2.3. Database
Prioritization

specification in the same format as that of “rec.pdb”. In this
example, the ligand observed in the holo crystal structure of the
target is given in “xtal-lig.pdb”; this ligand is transferred into the
model by superposing the crystal structure on the model using
the binding site residues (see Note 13).

Automated spheves and  scoving grids gemeration. First,
the environment variable “DOCK_BASE” is defined to be the
“dockenv” directory of the DOCK 3.5.54 installation. Second,
file “Maketile” from “dockenv/scripts/” is copied to the current
working directory, which also contains the “rec.pdb” and “xtal-
lig.pdb” files. Third, file “.useligsph” is generated. Finally, com-
mand “make” is executed to generate the spheres and scoring
grids (see Note 14).

The DUD database contains 2950 annotated ligands and 95,316
decoys for 40 diverse targets (70); the DUD database is stored
in 801 DOCK 3.5 hierarchy database files (DUD 2006 version)
(63). Eight hundred and one sub-directories corresponding to
the 801 hierarchy database files are created. In each sub-
directory, two files are required for docking. One is file
“INDOCK” that contains the input parameters for DOCK
3.5.54 (Fig. 7) (see Note 15). Another file, “split_database_in-
dex,” contains the location and name of the corresponding
database file. In file “INDOCK,” “split_database_index” is
given as the value for the parameter with the keyword “ligan-
d_atom_file.” Docking is performed by running the DOCK
executable “dockenv/bin/Linux/dock” in each sub-directory.
Two output files are produced: (1) the compressed file “test.
eell.gz” contains the docking poses of database molecules in
the extended PDB format and (2) the compressed file “OUT-
DOCK.gz” contains the docking scores for the database mole-
cules as well as the input file names and parameter values.

First, the conformations of database molecules are filtered for steric
complementarity using the DOCK contact score. The conformations

# INPUT

#

mode search

receptor sphere file ../sph/match2.sph
ligand atom file split database index
#

# MATCHING

#

distance tolerance
ligand binsize
ligand overlap
receptor_binsize
receptor_overlap

[cNoNoNoN
wWwhwpbwu

Fig. 7. A section of file “INDOCK” containing some input parameters for DOCK 3.5.54.
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mol# id_num matched nscored nhvy nconfs part.fcn Time

E id_num shape elect + vdW + polsol + apolsol = Total
106 C03814312 773 145642 18 4536 662.0 0.24

E C03814312 121 -16.44 -18.51 7.06 4.77 -23.12
107 C03814313 825 98854 19 405 136.4 0.21

E C03814313 134 -50.06 -17.63 15.69 5.54 -46.46
108 C03814313 825 101057 19 405 144.9 0.21

E C03814313 122 -48.88 -16.30 15.19 5.19 -44.80

Fig. 8. A section of file “OUTDOCK.gz” containing docking scores of two DUD molecules.

that do not clash with the receptor are then scored by the DOCK
energy function (the DOCK contact score is not included):
Escore = Evaw + Eelec + AGlig <1>

desolv?’

where E, 4w is the van der Waals component of the receptor-ligand
interaction energy based on the AMBER united-atom force field,
Egec is the electrostatic potential calculated by DelPhi, and

AGgfsolv is the ligand desolvation penalty computed by solvmap,
as described in Subheading 3.2.2. For each ligand conformation,
the total energy and all the individual energy terms are written out
to file “OUTDOCK.gz” (Fig. 8; see Note 16). The single confor-
mation with the best total energy is saved in file “test.cell.gz” as
the docking pose of the database molecule. The docking pose of
one ADA ligand—1-deazaadenosine (PubChem ID: 159738,
ZINC ID: C03814313)—is shown in Fig. 11b. After the virtual
screening, the best total energy of each database molecule and the
corresponding molecule ID are extracted from the “OUTDOCK.
gz” files in all sub-directories. The molecules in the docking
database are ranked by their total energies. The top 500 ranked
molecules are then inspected visually. Molecules forming favorable
interactions with the receptor (e.g., a docking pose is similar to
the binding mode found in crystal structures of proteins in the
same family) can be chosen for subsequent experimental testing.

In this benchmark example, we can quantify the accuracy of
modeling and docking by computing the enrichment for the
known ADA ligands among the top scoring ligands:

(ligandsclcctcd/ Mubsct)
(ligandtotal/ Motal) ’

where ligand, is the number of known ligands in a database
containing Ny compounds and ligandgejecreq 1 the number of
ligands found in a given subset of Nypser compounds. EFgpset
reflects the ability of virtual screening to find true positives among
the decoys in the database compared to a random selection.
An enrichment curve is obtained by plotting the percentage of
actual ligands found (y-axis) within the top ranked subset of all
database compounds (x-axis on logarithmic scale). To measure the
enrichment independently of the arbitrary value of N, pger, We also

EFsubsct = <2>
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100 1

801
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40

20+
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% of ranked database

% of known ligands found

Fig. 9. The enrichment curve for virtual screening of the DUD database against the ADA
model based on 2AMX. The ligand enrichment is quantified by the logAUC of 40.3.

calculated the area under the curve (logAUC) of the enrichment
plot:

1
log,,100/4

100 (.
ligandgybser Niubset
<3 (i (110w 322) )

7 total

log AUC =

where 4 is arbitrarily set to 0.1. A random selection (ligandsejected/
ligandoral = Nsubset/ Nrotal) Of compounds from the mixture of
true positives and decoys yields a logAUC of 14.5. A mediocre
selection that picks twice as many ligands at any Ngpser as a
random selection has logAUC of 24.5 (ligandeiecred/ligand oral
=2x Mubsct/Motal; I\]subset/l\]total < 05> A hlghly accurate
enrichment that produces 10 times as many ligands than the
random selection has logAUC of 47.7 (ligandelecred/ligand oral
=10 x I\Tsubsct/z\rtotal; I\Tsubsct/z\rtota.l < 01) In this Cxample> the
ADA model based on 2AMX yielded the logAUC of 40.3 (Fig. 9).
When multiple structures are available (either models or experi-
mental structures), consensus enrichment can be calculated
(Introduction).

4. Notes

1. The DOCK 3.5.54 source distribution contains four items:
the “dock”, the “dockenv” and the “test” directories, as well
as the “README” file. The DOCK source code and
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executable are in the “dock” directory. Scripts used in the
automated docking pipeline are in the “dockenv” directory.
The binary executable “dock” in “dockenv/bin/Linux/” is
used in the docking calculations.

. The target protein sometimes contains modified residues,

such as carboxylated lysine (KCX) and selenomethionine
(MSE). These modified residues need to be replaced by stan-
dard residues with similar physical and chemical properties (e.
g., KCX by glutamic acid and MSE by methionine).

. MODELLER script for template search.

The environ routine initializes the environment for the mod-
eling run, by creating a new environment object, called env.
Almost all MODELLER scripts require this step, because the
new environment object is needed to build most other useful
objects.

The sequence_db routine creates a sequence database
object sdb that is used to contain large databases of protein
sequences.

The sdb.read and sdb.write routines read and write a
database of sequences, respectively, in the PIR, FASTA, or
BINARY format.

The second call to the sdb.read routine reads the binary
format file for faster execution.

The alignment(env) routine creates a new “alignment”
object (aln). The aln.append routine reads the target sequence
ADA from the file ada.ali, and converts it to a profile object
(prf).

The prf.build routine scans the target profile (prf) against
the sequence database (sdb). Matching sequences from the
database are added to the profile.

. In general, a sequence identity value above ~25% indicates a

potential template, unless the alignment is too short (i.e.,
<100 residues). A better measure of the alignment signifi-
cance is the E-value of the alignment (the lower E-value, the
better; a conservative cut-off is 0.001). Besides the sequence
similarity, template structures can also be chosen on the basis
of other criteria, such as the accuracy of the structures (e.g.,
resolution of X-ray structures), conservation of active-site
residues, and presence of bound ligands.

. Different alignment methods vary in terms of the scoring

function that is being optimized. When the target-template
sequence identity is above 30—40%, different methods tend to
produce very similar alignments. When similarity decreases,
different methods tend to produce widely varying alignments.
An accurate alignment is indicated when different methods,
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such as MUSCLE (76), CLUSTALW (77) and T-coftee (78),
produce similar alignments.

6. Model building with the “automodel” routine.

In the input script build_model.py (Fig. 5), an automodel
object is first created, specifying the alignment file (“align.
ali”), the target (ADA), and the template (2AMX). The mod-
els are calculated by the “make” routine. Five hundred models
for ADA are written out in the PDB format to files called
ADA.B9990[0001-0500].pdb.

Ligands, ions, and cofactors in the template structures are
copied to the target models and treated as rigid bodies, using
the “BLK” functionality of MODELLER.

Models are computed by optimizing the MODELLER
objective function in the Cartesian space. The optimization
begins by the variable target function approach, deploying
the conjugate gradients method, followed by a refinement by
molecular dynamics with simulated annealing. The default
optimization protocol can be adjusted (a sample script is
given at http:/salilab.org/modeller /examples /automo
del/model-changeopt.py).

7. The binding site loops are defined as those binding site resi-
dues in the vicinity of the binding site that were not aligned to
the template structure. The binding site residues may be
chosen based on the prior experimental information (e.g.,
mutagenesis data) and/or sequence conservation within a
family of homologous proteins. In this study, binding site
residues are defined as the residues with more than one non-
hydrogen atom within 10 A of any ligand atom in the target
structure. Thus, three insertions in the ADA-2AMX align-
ment are defined as binding site loops (neighboring residues
within two positions of each insertions are also included)
(Fig. 4).

8. Loop optimization with the “loopmodel” routine. In the input
script “loop_model.py” (Fig. 6), the best-scoring model gen-
erated by “automodel” (ADA.B99990047 .pdb) is used as the
starting conformation, thus defining the loop environment.
Loop regions defined by the “select_loop_atoms” routine are
randomized, followed by optimization with a combination of
conjugate gradients and molecular dynamics with simulated
annealing. Two thousand five hundred models are written out
in the PDB format to files called ada-loop.BL[0001-2500]
0001.pdb. Calculating multiple loop models allows for better
conformational sampling of the unaligned regions. Typically,
for a single 8-residue loop, 50-500 independent optimiza-
tions are recommended (79).


http://salilab.org/modeller/examples/automodel/model-changeopt.py
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9.

10.

11.

12.

13.

14.

Most proteins are flexible, often adopting different conforma-
tions when binding to different ligands. Besides the single
best model, it might be helpful to select several sub-optimal
models that are structurally diverse (e.g., selecting the best
model from each conformational cluster of models). When no
target ligand is known, the docking database can be screened
against each of these representative models independently,
followed by combining the screening results. However,
when some target ligands are already known, the best single
model could be selected based on its ability to rank these
known ligands most highly in virtual screening.

The MODELLER objective function is a measure of how well
the model satisfies the input spatial restraints. Lower values of
the objective function indicate a better fit with the restraints.
Models (of the same sequence) can only be ranked by the
same objective function, consisting of the same restraints,
usually derived from the same alignment.

The DOPE is an atomic distance-dependent statistical potential
based on a physical reference state that accounts for the finite
size and spherical shape of proteins (75). By default, the DOPE
score is not included in the model building routine, and thus
can be used as an independent assessment of the accuracy of
the output models. DOPE considers the positions of all
non-hydrogen atoms, with lower scores corresponding to
models that are predicted to be more accurate. A sample script
for generating a DOPE score is given at http:/salilab.org/
modeller/examples/assessment/assess_dope.py.

All lines in “rec.pdb” should start with “ATOM.” If the
receptor contains a cofactor that has not been defined in the
DOCK force field, a dictionary of parameters needs to be
provided for the cofactor. “Structural” water molecules in
the receptor should be renamed as “TIP”.

The binding site can be specified either using a modeled
ligand or residues surrounding the binding pocket. In the
latter case, at least three binding site residues should be
defined in the file “xtal-lig.pdb”; the center of mass of these
residues defines the center of the binding pocket.

Eleven tasks are accomplished by “make” (Fig. 10). (1) Copies
of file “filt.params” (the input file for program FILT) as well as
the “sph” and “grids” directories (containing input files and
parameter files for sphere and scoring grids generation, respec-
tively) are copied from directory “dockenv/scripts/”. (2) Pro-
gram FILT located in “dockenv,/bin/Linux” is used to identify
binding site residues that are within 10 A of any atom in the file
“xtal-lig.pdb”. The result is stored in file “rec.site”. (3) Given
the receptor coordinates in “rec.pdb” and the binding site


http://salilab.org/modeller/examples/assessment/assess_dope.py
http://salilab.org/modeller/examples/assessment/assess_dope.py
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receptor structure (rec.pdb) |

FILT 1
| binding site residues (rec.site) |<—I binding site information (xtal-lig.pdb) |
SYBYL pws |
[ binding site surface (rec.ms) | PDBTOSPH
SPHGEN |
protonated receptor receptor-based spheres ligand-based spheres
(rec.crg) (sph) (match.sph)
makesphere1.pl makesphere2.pl
DelPhi spheres matching spheres
(match1.sph) (match2.sph)
DELPHI l makebox.pl l rec.pdb
electrostatic interaction (rec+sph.phi) | I grids box (box) |
DISTMAP l CHEMGRID 1 SOLVMAP
contact score vdW interaction ligand desolvation
(distmap) (chem.vdw) (solvmap)

Fig. 10. Schematic description of the automated preparation of receptor binding site, including sphere and scoring grids

generation.

definition in “rec.site”, the solvent-accessible molecular surface
of the receptor binding site is calculated by the program DMS.
The result is written in the file “rec.ms”. (4) The program
SYBYL is used to add hydrogens on polar atoms to the receptor.
The atomic coordinates of the protonated receptor are written
to the file “grids/rec.crg”. All lines that do not contain atomic
coordinates are removed manually; all lines in “rec.crg” should
start with “ATOM?. (5) The program pdbtosph in “dockenv/
bin/Linux” is used to derive spheres from atom positions in
“xtal-lig.pdb”. The ligand-based spheres are stored in the file
“sph/match.sph”. (6) Spheres in contact with the binding site
surface are generated by the script “rec.ms” relying on the
program sphgen (80) in “dockenv/bin/Linux”. These recep-
tor-based spheres are stored in the file “sph/sph”. (7) Two perl
scripts “makespheresl.pl” and “makespheres2.pl” in “dock-
env/scripts” are used to generate spheres for the binding site
electrostatic potential calculation with DelPhi (DelPhi spheres,
named as “matchl.sph”) and the spheres required for orienting
database molecules in the binding site (matching spheres,
named “match2.sph”), respectively. For both scripts, the
ligand-based spheres “match.sph”, receptor-based spheres
“sph”, and the protonated receptor “rec.crg” need to be
provided as input files. DelPhi spheres occupy a greater volume
than the matching spheres (Fig. 11a). Spheres that are exposed
to bulk water should be removed by hand. (8) The perl script
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Fig. 11. (a) The matching spheres (dark grey) and DelPhi spheres (light grey) generated
for the binding site of the ADA model (cartoon) based on 2AMX. (b) The docking pose
(stick) and the 2D structure of one ADA ligand—1-deazaadenosine (PubChem ID:
159738, ZINC ID: C03814313)—as well as the matching spheres (light grey).

“makebox.pl” in “dockenv/scripts” is used to determine the
location and dimensions of the region in which the scoring grids
will be calculated. This region should enclose the volume that
the ligands are likely to occupy (described by “match2.sph”).
The resulting rectangular box is written out in the file “grids/
box”. (9) The contact score is a summation of the number of
non-hydrogen atom contacts between a database molecule and
the receptor (a contact is any intermolecular distance smaller
than 4.5 A), providing an assessment of shape complementar-
ity. The program distmap (66) in “dockenv,/bin/Linux” pro-
duces the grids for contact scoring. Three files are required for
distmap, including the input file “INDIST”, the protonated
receptor “rec.crg”, and the volume of the grids “box”. The
contact grid is produced in the file “grids /distmap” by running
the command “distmap”. (10) The DOCK’s force field score is
the van der Waals interaction energy. The parameters are taken
from the AMBER united-atom force field (81). The program
chemgrid (66) in “dockenv,/bin /Linux” produces the grids for
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15.

force field scoring. The force field grid is written into the file
“grids/chem.vdw” by running the command “chemgrid”. All
receptor residues and atoms need to be defined in the parameter
files “grids/prot.table.ambcrg.ambH” and “grids/vdw.parms.
amb.mindock”, respectively. (11) The electrostatic potential
grid is generated by DelPhi (69). The receptor coordinates in
“rec.crg” and the Delphi spheres in “matchl.sph” are com-
bined into the file “grids/rec+sph.crg”. The DelPhi map is
calculated using a relative dielectric constant of 2 for the volume
defined by the receptor atoms and the spheres in the binding
site, and a relative dielectric constant of 78 for the external
solvent environment. The DelPhi grid is written to the file
“grids/rec+sph.phi” by running the command “./delphi.
com>delphi.log” in the “grids” directory. All receptor residues
and atoms need to be defined in the parameter file “grids/amb.
crg.oxt”. (12) The solvent occlusion grid is calculated by the
program solvmap, for subsequent calculation of the ligand
desolvation penalty (82). Three files are required for solvmap,
including the input file “INSOLV”, the protonated receptor
“rec.crg”, and the volume of the grids “box”. The solvent
occlusion grid is written into the file “grids/solvmap” by run-
ning the command “solvmap”. The grid file “grids/solvmap”
should not contain any blank lines.

Several examples of file “INDOCK” are provided in the
directory “dockenv/scripts /calibrate /”. A detailed description
of the parameters used in INDOCK can be found in the manual
of DOCK 3.5. Here, we describe several parameters that are
often modified to achieve an optimal docking performance
(Fig. 7). The parameter “mode” should be specified as
“search”. In the “search” mode, DOCK generates positions
and orientations for each molecule in the database (virtual
screening). The parameter “receptor_sphere_file” specifies the
file that contains the matching spheres for ligand orientation in
the binding site. Matching spheres can be manually scaled or
relocated to achieve satisfying sampling in the desired region (e.
g., catalytic residues suggested by experiments). During dock-
ing, sets of atoms from database molecules match sets of match-
ing spheres, if all the internal distances match within a tolerance
value in Angstroms specified by the parameter “distance_toler-
ance” (65). The choice of the tolerance value depends on the
reliability of the matching sphere sizes and positions, which in
turn is determined by the accuracy of the binding site confor-
mation. We suggest a tolerance value of 1.5 A when docking to
comparative models. The sampling of the ligand positions and
orientations is controlled by four parameters, including
“ligand_binsize”,  “ligand_overlap”, “receptor_binsize”,
and “receptor_overlap” (65). “ligand_binsize” and “recep-
tor_binsize” define the width of the bins containing ligand
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atoms and matching spheres, respectively. “ligand_overlap”
and “receptor_overlap” define the overlap between the bins
of ligand atoms and matching spheres, respectively. The
increase of either the width of bins or the overlap between
bins will result in more atoms/spheres in each bin. As a conse-
quence, a greater number of matches will be found. Extensive
sampling is achieved by setting the bin size for both ligand and
receptor to 0.4 A, and the overlap to 0.3 A.

16. As shown in Fig. 8, for each conformation of a database

molecule, two lines are written out in the file “OUTDOCK.
gz”. The scoring results are written in the second line starting
with the letter “E”, followed by the molecule identifier, con-
tact score, electrostatic score, van der Waals score, polar solva-
tion correction, apolar solvation correction, and total energy.
The total energy is a sum of contact score, electrostatic score,
van der Waals score, polar solvation correction, and apolar
solvation correction.
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