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Abstract

We describe an automated method for the modeling of point mutations in protein structures. The protein
is represented by all non-hydrogen atoms. The scoring function consists of several types of physical
potential energy terms and homology-derived restraints. The optimization method implements a
combination of conjugate gradient minimization and molecular dynamics with simulated annealing.
The testing set consists of 717 pairs of known protein structures differing by a single mutation. Twelve
variations of the scoring function were tested in three different environments of the mutated residue. The
best-performing protocol optimizes all the atoms of the mutated residue, with respect to a scoring
function that includes molecular mechanics energy terms for bond distances, angles, dihedral angles,
peptide bond planarity, and non-bonded atomic contacts represented by Lennard-Jones potential,
dihedral angle restraints derived from the aligned homologous structure, and a statistical potential for
non-bonded atomic interactions extracted from a large set of known protein structures. The current
method compares favorably with other tested approaches, especially when predicting long and flexible
side-chains. In addition to the thoroughness of the conformational search, sampled degrees of freedom,
and the scoring function type, the accuracy of the method was also evaluated as a function of the
flexibility of the mutated side-chain, the relative volume change of the mutated residue, and its residue
type. The results suggest that further improvement is likely to be achieved by concentrating on the
improvement of the scoring function, in addition to or instead of increasing the variety of sampled
conformations.

Keywords: point mutation; protein structure; comparative modeling

Residue type differences at a single position in a protein
are important consequences of genetic variation among
the individuals (Strausberg et al. 2003). Point mutations
in a protein sequence may result in a change or loss of the

native structure, which in turn may cause a change or loss
of function, and ultimately yields different phenotypes. In
addition to the natural variations among the individuals,
researchers frequently introduce single amino acid resi-
due replacements by site-directed mutagenesis in the
laboratory to explore structural and functional features
of proteins. For example, site-directed mutagenesis is
often applied to study functional specificity (Wu et al.
1999), structure stability (Matthews 1995), kinetics and
mechanism of protein folding (Ladurner and Fersht
1997), oligomerization (Chattopadhyay et al. 2006), and
the stability of protein complexes (Otzen and Fersht
1999). Site-directed mutagenesis is also used to introduce
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binding sites for heavy atoms in preparation for X-ray
crystallographic experiments and other markers, such as
spin labels, for various spectroscopic experiments (Perozo
et al. 1999).

Experimental exploration of different positions in a
protein structure with various residue types is a time-
consuming and expensive process. Such an exploration is
generally facilitated by three-dimensional (3D) modeling
of side-chain mutations (Dunbrack and Karplus 1993;
Vasquez 1996; Koehl and Delarue 1997; Levitt et al.
1997; Xiang and Honig 2001). While the modeling of a
single side chain in a given atomic environment seems to
be one of the easiest of all protein structure prediction
problems, it is still not solved (Fiser 2004). Seemingly
insignificant change of a side-chain may lead to a
significant change or loss of protein function (Wu et al.
1999). This observation implies that side-chain confor-
mation prediction is useful only if it is highly accurate,
which makes it a challenging problem.

Two simplifications are frequently applied in the
modeling of side-chain conformations. First, amino acid
residue replacements often leave the backbone confor-
mation almost unchanged (Chothia and Lesk 1986). As a
consequence, many algorithms fix the backbone during
the search for the best side-chain conformations. Second,
it was observed that most side-chains in high-resolution
crystallographic structures can be represented by a
limited number of conformers that comply with stereo-
chemical and energetic constraints (Janin and Wodak
1978). This observation motivated Ponder and Richards
to develop the first library of side-chain rotamers for the
17 types of residues with dihedral angle degrees of
freedom in their side-chains, based on 10 high-resolution
protein structures determined by X-ray crystallography
(Ponder and Richards 1987). Subsequently, a number of
additional libraries have been derived (Tuffery et al.
1991; Dunbrack and Karplus 1993; Dunbrack and Cohen
1997; Mendes et al. 1999; Xiang and Honig 2001).

Rotamers on a fixed backbone are often used when all
the side chains need to be modeled on a given backbone.
This approach overcomes the combinatorial explosion
associated with a full conformational search of many side
chains and is applied by some comparative modeling
(Blundell et al. 1987) and protein design approaches
(Desjarlais and Handel 1999). In addition, it has been
shown that the accuracy of side-chain modeling on a
fixed backbone decreases rapidly when the backbone
errors are >0.5Å (Chung and Subbiah 1996). Fortunately,
these two approximations may be unnecessary in the
modeling of a single-point mutation that in general does
not trigger changes in many dihedral angles (Xiang and
Honig 2001).

Earlier methods for side-chain modeling often put less
emphasis on the energy or scoring function. The function

was usually greatly simplified and consisted of the
empirical rotamer preferences and simple repulsion terms
for non-bonded contacts (Dunbrack and Karplus 1993).
Nevertheless, these approaches have been justified by
their performance. For example, a method based on a
rotamer library compared favorably with that based on a
molecular mechanics force field (Cregut et al. 1994).
More recent and efficient methods are also based on
rotamer libraries, albeit some of these methods radically
expand the rotamer library size, up to as many as
approximately 50,000 rotamer states (Xiang and Honig
2001; Canutescu et al. 2003; Peterson et al. 2004). In
contrast, much attention has been paid to the optimization
procedure. The various approaches include Monte Carlo
simulation (Eisenmenger et al. 1993; Jain et al. 2006),
simulated annealing (Lee and Levitt 1991), a combination
of Monte Carlo and simulated annealing (Holm and
Sander 1992), the dead-end elimination theorem (Lasters
and Desmet 1993; Looger and Hellinga 2001), genetic
algorithms (Tuffery et al. 1991), neural network with
simulated annealing (Hwang and Liao 1995), mean field
optimization (Koehl and Delarue 1994), and combinato-
rial searches (Dunbrack and Karplus 1993; Bower et al.
1997; Petrella et al. 1998).

Several recent papers focused on the testing of more
sophisticated potential functions for conformational
search (Petrella et al. 1998; Jacobson et al. 2002) and
development of new scoring functions for side-chain
modeling (Liang and Grishin 2002), reporting improved
accuracy compared to earlier studies. In retrospect, one
reason for relative success of the early simplified energy
models may be a surprisingly small role of entropy in
determining side-chain conformational preferences (Hu
and Kuhlman 2006). Most recent methods rely on all-
atom molecular mechanics force fields in addition to
rotamer preferences (Jain et al. 2006; Zhang and Duan
2006). Both of these approaches applied a cooperative
rearrangement of atoms where groups of side-chain atoms
were deleted from a side chain in a particular region and
then regrown with the generation of trial positions to
achieve a more continuous sampling of rotamer space and
a smoother potential surface. Estimates of the accuracy of
side-chain modeling techniques vary substantially, par-
tially caused by inaccuracies in the experimentally deter-
mined structures (Shapovalov and Dunbrack 2007).

In this paper, we describe a method for the modeling of
point mutations in the context of several different types of
a fixed environment provided by the rest of the protein
structure. We approach this task through its three aspects:
a representation of the modeled system, a scoring func-
tion that depends on the conformation of the system, and
an optimization procedure for finding good scoring
conformations of the system. The modeling protocol
is tested on a set of 717 side-chain mutations that have
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been defined by X-ray crystallography. We show that
the best-performing scoring function takes advantage of
homology-derived dihedral angle restraints. In contrast,
homology-derived distance restraints overconstrain the
model and lead to a decrease in the prediction accuracy.
Optimally, all atoms of the mutated residue, including
its main-chain atoms, need to be optimized in the search
for the most accurate prediction. The performance of the
prediction method is explored as a function of sampling,
residue type, relative change in the occupied volume,
side-chain flexibility, and self-consistency. The most
influential terms in the scoring function are discussed.

Results and Discussion

We focused on the search for the best-performing scoring
function for modeling point mutations in proteins. Even
for the modeling of loops, which is usually a larger
optimization problem than the modeling of a single
residue, it was demonstrated that the hurdle to a more
accurate prediction is a more accurate scoring function,
not a more thorough sampling (Fiser et al. 2000, 2002).
Another advantage of focusing on the scoring function is
that it helps toward understanding the importance of the
different determinants of protein structure. During the
search for a well performing scoring function, we
explored three components: (1) internal energy as cap-
tured by the terms from the CHARMM-22 molecular
mechanics force field (MacKerell et al. 1998), (2) non-
bonded energy terms, and (3) statistical preferences that
restrain dihedral angles and distances as implied by
known protein structures in general (i.e., statistical

potentials) or by similar structures only (i.e., homology-
derived restraints). The scoring function was optimized
using a protocol that combines conjugate gradient mini-
mization and molecular dynamics simulation with simu-
lated annealing (Fig. 1). In this section, we discuss the
results, separately for exposed and buried residues.

We also explored the choice of the environment that
needs to be fixed for the optimization to achieve the most
accurate prediction. First, we assumed that the backbone
largely remains unchanged by a mutation and modeled
the new side chain on a fixed backbone. However, it has
already been shown that the lack of backbone flexibility
limits the prediction accuracy (Desjarlais and Handel
1999), so in a second approach we optimized the whole
residue. It has also been shown for some mutations that
their environment adapts to the volume changes (Liu et al.
2000). Therefore, in a third approach, we also optimized
the environment of the mutated side chain.

The side-chain prediction approach is analyzed on a
test set of experimentally solved 717 side-chain muta-
tions. The accuracy of the method is compared to that of
SCWRL (version 2.9) (Bower et al. 1997). SCRWL is
available, widely used, and one of the existing programs
for side-chain modeling, the most accurate.

Best-performing scoring functions

Different methods were applied for two subsets of
mutations, buried and exposed. This subdivision by
solvent accessibility of the mutation type corresponds to
different prediction problems. In the case of buried
residues, a side chain has to adapt its conformation to
fit the local packing, even if that induces a conforma-
tional strain in the side chain itself. In contrast, at the
exposed position, a side chain can in principle adopt
several conformations due to a less restraining environ-
ment. Five-hundred and thirty-one of 726 mutations were
classified as buried with 30% or less relative solvent
accessibility. Thirty-six alternative protocols have been
compared by measuring the percentage of correctly
predicted x1, x2, and x1 + 2 dihedral angles for the mutated
residue in the model and in the actual structure. The
accuracy of predicted x1 dihedral angles of the buried
residues is similar for the 12 tested scoring functions and
does not depend significantly on the type of the environ-
ment (Fig. 2A ).The best result, 76.3% (s ¼ 3.5%) of
correct x1 angles, was achieved by optimizing only the
mutated side chains with respect to the scoring function
consisting of the Lennard-Jones potential with the full set
of restraints (Full-LJ, protocol 5) including homology-
derived and statistically calculated restraints. By evaluat-
ing x1 only, it is not possible to discriminate among the
few best approaches, because the differences between
the accuracies are comparable to standard deviations

Figure 1. Optimization of a side chain. The scoring function (thick line

and left Y-axis) is shown as a function of progress during optimization. The

optimization starts with a conjugate gradient minimization, followed by a

molecular dynamics optimization, using simulated annealing protocol

(temperature is shown in the thin line and right Y-axis), and finished with

a conjugate gradient minimization again. Two cycles of such an optimi-

zation are carried out: first, considering only interactions between the

atoms of the mutated residue (residue only); and second, also including the

interactions with the environment (with environment).

Feyfant et al.
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(typically, ;3.5%). For x2 (Fig. 2B) and x1 + 2 (Fig. 2C),
the differences become more significant, clearly favoring
one particular protocol (StlibH-LJ, protocol 6). This
protocol relies on a combination of stereochemical
restraints with the Lennard-Jones potential as well as
the dihedral angle restraints from many known protein
structures (phi, psi, and omega) and the template structure
(chi_i). This scoring function clearly outperforms others
by at least 10% (accuracy is 67.7% 6 4.2% for x2 and
58.4% 6 4.0% for x1 + 2).

The differences between the accuracies of the best-
scoring functions are less accentuated in case of exposed
residues, but the most accurate protocol still depends on
optimizing the whole residue with respect to the StlibH-
LJ scoring function (Fig. 3A–C). The accuracy for x1,
x2, and x1 + 2 is 74.2%, 63.6%, and 51.4%, respectively.
These results are only a few percentage points worse than
those for buried residues. It is expected that the exposed
residues are more difficult to predict than the buried

residues because of their less restraining environment. In
the present study, this expectation is confirmed, but the
differences are somewhat smaller than reported before
(Dunbrack and Karplus 1994): The differences between
the accuracies of x1, x2, and x1 + 2 predictions for the
buried and exposed residues are 1.9%, 4.3%, and 7.0%,
respectively.

As described in Materials and Methods, we used non-
hydrogen atom representation of our system. However,
the Lennard-Jones non-bonded terms were originally
parameterized using the all-atom representation that
includes hydrogen atoms. Therefore, for the scoring
functions that employed the Lennard-Jones terms, we
tested the all-atom representation as well. The prediction
accuracies did not change significantly (data not shown).

In this work, interactions of the protein with the solvent
are not treated explicitly. However, there is an implicit
partial consideration of solvation through the statistical
pair potential. It is reasonable to expect that additional

Figure 2. The average accuracy of modeling mutated residues in buried locations is shown as the fraction of correctly predicted x1, x2,

and x1 + 2 dihedral angles, on panels A, B, and C, respectively. Standard deviations of average accuracies are indicated. Twelve different

scoring functions are shown on each panel for three different environments: (1) dark bars: all atoms of the mutated residue and all the

atoms within 4.5 Å of the residue; (2) gray bars: all atoms of the mutated residue; and (3) white bars: only the side-chain atoms of the

mutated residue. The components of the 12 scoring functions are detailed in Table 1. The horizontal line corresponds to the average

SCRWL prediction accuracy.
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terms responsible for solvation free energy would
improve the prediction accuracy, especially for the
exposed side chains. Therefore, we used a generalized
Born implicit solvation potential to calculate the electro-
static solvation free energy in combination with a non-
polar hydration free energy estimator (GBSA) (Gallicchio
and Levy 2004). The latter model combines an estimator
of the solute-solvent van der Waals interaction and a
surface area term corresponding to cavity formation. In
one approach, our best-performing point mutation mod-
eling protocol first generated 10 conformations that were
then ranked by the solvation term. In another approach,
the GBSA term was added to the scoring function to
obtain the single best-scoring conformation. The solva-
tion term dominates the scoring function. In both
approaches, we observed a similar decrease in accuracy,
sometimes statistically significant. The accuracy for
buried (exposed) x1, x2, and x1 + 2 side-chain dihedral
angles is 62.9% (61.4%), 47.2% (47.8%), and 32.9%
(37.5%), respectively. For x4 of a few long side chains,
the accuracy was 42.9% (60%), corresponding to a minor,
statistically insignificant improvement. We conclude that
the current combination of the GBSA term, template-

dependent restraints, statistical and van der Waals poten-
tials does not improve the modeling of single-point
mutations with our current sampling protocol. However,
the modest improvement of the conformations of exposed
long side chains indicates that further work in this
direction may be warranted.

Accuracy as a function of conformational sampling

Each point mutation modeling corresponds to a set of
several independent optimizations. The final model was
selected as the one with the lowest scoring function value.
We explored the question of how many final conforma-
tions needed to be generated to obtain the highest possi-
ble accuracy for a given scoring function. One-hundred
models were built for each side chain, using our best
prediction protocol. Figure 4 shows only the first 20
sampled models for buried and exposed mutations,
respectively. The accuracy did not improve with the
increase in sampling beyond building 10 models. This
suggests that our conformational sampling of the tested
scoring functions is essentially exhaustive. Therefore,
further improvement can be expected by concentrating

Figure 3. The same as Figure 2 but for mutations of exposed residues.

Feyfant et al.
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on the improvement of the scoring function and not by
extending the conformational sampling. However, a
further perfection in the scoring scheme would allow
one to select and accurately model larger environments of
a point mutation with the possibility of a better capturing
packing rearrangement and in turn delivering more
accurate side-chain conformations.

Most influential terms in the scoring function

As described in Materials and Methods, there are three
main components of the scoring function: (1) CHARMM
terms responsible for the local stereochemistry, (2) terms
describing non-bonded interactions, and (3) spatial
restraints on dihedral angles and distances derived from
the template (‘‘homology-derived restraints’’) or from
many known structures (‘‘statistical potentials’’). The
CHARMM terms were included in all tested versions of
the scoring function, while we varied the other two in our
testing. It is difficult to draw a sharp conclusion about the
accuracy of the applied non-bonded energy terms. The
Lennard-Jones and soft sphere repulsive potentials per-
form quite similarly, the former being slightly more
accurate. The combination of a statistical and soft sphere
repulsive potential, which proved to be the most accurate
choice for loop modeling (Fiser et al. 2000), seems to be
the least accurate in the modeling of side chains,
especially for x1 and x1 + 2 (Figs. 2A–C, 3A–C).

In contrast to the non-bonded terms, a clear pattern
emerges for the spatial restraints. Exclusion of all the
spatial restraints (i.e., homology-derived distance and
dihedral angle restraints; and dihedral angle restraints
from many known structures) leads to a decrease of
accuracy irrespectively of the non-bonded terms and the
optimized set of atoms. If at least one type of the spatial
restraints are included in the scoring function (e.g.,
restraints on dihedral angles derived from many known
structures), approximately the highest achieved level of

accuracy is obtained. Further adding the template-derived
dihedral angle restraints improves the accuracy by <2%,
resulting in the most accurate scoring function (StlibH-
LJ) using the full residue representation. Adding homol-
ogy-derived distance restraints seems to overconstrain the
mutated residue and its structural environment, leading to
lower prediction accuracies.

Role of the environment

Protein structure can adapt to a mutation by rearranging
the spatial environment of the mutated residue; some-
times, only the backbone shifts slightly. For less densely
packed neighborhoods, it is also possible that a mutation
fits without causing any shifts or distortions. Accordingly,
three different environment selections were explored for
our optimizations: (1) only mutated side-chain atoms, (2)
the whole mutated residue, and (3) the mutated residue
and all atoms within 4.5 Å of any of the atoms of the
original residue.

The most accurate results were achieved if we consid-
ered the full residue in the optimization. Both in case of
buried and exposed residues optimizing the environment
of the mutation generally results in a less accurate
prediction (Figs. 2, 3). An exclusion of homology-derived
restraints on dihedral angles and distances results in a
significant decrease in prediction accuracy. The more
homology-derived restraints are added to the scoring
function, the higher is the absolute accuracy and the
smaller are the differences between protocols optimizing
different environments.

For the exposed residues, the accuracy of the protocol
generally does not depend as strongly on the selected
environment as it does for the buried residues. One
possible explanation is that the environment plays a
smaller role in restraining the modeled side chain. Nev-
ertheless, the pattern remains the same as that for the
buried residues.

The cutoff distance for defining the environment was
increased from 4.5 Å to 6 Å, and 8 Å, but no improve-
ment in the accuracy was observed (data not shown).

Accuracy as a function of volume change and B-factor

It is reasonable to expect the residue mutations that
significantly alter the volume will have a more pro-
nounced effect on the rest of the structure. We inves-
tigated this hypothesis from the viewpoint of prediction
accuracy. Three situations were distinguished: A mutation
does not change significantly the volume; a mutation
decreases the volume by replacing a given residue with
a smaller one; and a mutation increases the volume by
replacing a residue with a larger one. We quantified
changes as significant if the relative residue volume

Figure 4. Accuracy as a function of sampling, for the buried and exposed

mutations.
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change is larger or smaller than 103 Å. This cutoff
classifies the mutations in our benchmark into three
equally populated groups. Figure 5 shows the correlation
between the volume change and the accuracy of the
prediction and confirms that, for both buried and exposed
mutations, predictions are more accurate when the vol-
ume does not change significantly. This observation may
provide a rule of thumb to estimate the accuracy of a
given prediction.

We also explored the question of whether or not side-
chain flexibility influences the prediction accuracy. Side-
chain flexibility was quantified by the crystallographic
B-factor. B-factors cannot be compared directly between
different PDB files. Therefore, we calculated a B-factor
Z-score of a mutated residue as ([B � A]/S), where B is
the B-factor of the mutated residue, A is the average
B-factor of all residues, and S is the standard deviation of
all residue B-factors. No statistically significant dependence
of prediction accuracy on the mutated residue B-factor Z-
score was observed (data not shown). However, a recent
detailed study that analyzed accuracies of side-chain con-

formations using original diffraction maps argues that accu-
racy of side-chain resolution is a critical factor in properly
assessing prediction results (Shapovalov and Dunbrack
2007). The lack of a similar conclusion in our survey
may just underline the unreliability of B-factors in structure
files.

Accuracy of prediction as a function of residue type

The residue type itself is expected to be an important
predictor of prediction accuracy, partly because the
available conformational space varies with the residue
type. For example, proline has a much more restricted
conformational flexibility than leucine. It may also be
informative to characterize the accuracy for classes of
substitutions, such as replacing a polar residue in the core
of the protein or an exposed hydrophobic residue.

For a buried mutation, the larger residues, especially
the aromatic ones, are predicted accurately whereas other
residues, including proline, seem to be less well modeled
(Fig. 6). For the exposed residues, the difference in
accuracy between the different residue types is smaller,
and significant differences can be observed only between
the particularly large aromatic residues and the remaining
types (not shown). The fact that buried, large residues are
predicted more accurately than small ones is consistent
with the fact that a buried neighborhood is more restrain-
ing than a flexible, exposed neighborhood.

The small number of test cases for most residue types
in the benchmark of 717 point mutations precludes a
reliable evaluation of the dependence of prediction
accuracy on the mutant residue type.

Predicting the error in the model

What is the probability that the best-scoring model is
correct? Or, how does one detect an error in the predicted
structure? We examined the possibility that the accuracy
is correlated with the fraction of independent optimiza-
tions resulting in conformations similar to the best-
scoring prediction. For each of the 717 mutations in the
benchmark, we plotted the frequency of the most fre-
quently occurring conformation among the 10 best-scoring
conformations (Fig. 7). In general, the majority of the 10
best-scoring models have the same conformation, whether
or not it is correct. When the relative frequency of the most
populated conformation is >50%, there is a tendency that
this conformation is correct. However, the trend is weak
and may not be useful for predicting the accuracy of the
prediction.

The high relative frequency of the incorrect predictions
among the best-scoring solutions again suggests that the
method is limited by the scoring function and not the
sampling.

Figure 5. Accuracy as a function of relative volume change of mutations.

Relative volume change is classified into three groups: volume decrease,

neutral, or volume increase. At least a 1000 Å3 relative volume change is

required upon mutation to qualify for a decreased or increased class,

otherwise the mutation is deemed as neutral.
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Comparing method accuracy to that of SCWRL

The performance of our best side-chain modeling proto-
col (StlibH-LJ) and using full residues for optimization
was compared to that of SCWRL (Bower et al. 1997).
SCRWL is widely accepted as one of the most accurate
methods. SCWRL relies on a rotamer library and places
side chains on a fixed backbone. SCRWL results are
shown in Figures 2A–C and 3A–C. For x1, the accuracies
of SCWRL and our protocol are comparable; the differ-
ences between accuracies are approximately as large as
the standard deviations. SCWRL achieved the x1 accu-
racy of 74.4% (6 2.92%) and 69.9% (6 6.07%) for
buried and exposed mutations, respectively, whereas
StlibH-LJ performs at 73.8% and 74.2%. For x2,
SCRWL’s accuracy is 44.6% (6 4.03%) and 51.4% (6
7.31%) for buried and exposed mutations, respectively,
whereas our protocol performs somewhat better at 67.9%
and 63.8%. For x1 + 2, SCRWL’s accuracy is 37.5% (6
3.89%) and 40.6% (6 6.43%) for buried and exposed,
mutations, respectively, compared to our higher accura-
cies of 57.6% and 51.4%. We note in fairness that
SCRWL was designed for predicting all side chains in a
structure at the same time and was presumably not
optimized for predicting single-point mutations.

Side-chain prediction accuracy, particularly for the
exposed residues, strongly depends on the crystal envi-
ronment of proteins (Jacobson et al. 2002). One-hundred

and forty-nine of the 717 protein pairs in our benchmark
were crystallized in different unit cells. The prediction
accuracy for x1 dihedral angles of buried residues drops
to 69% when the unit cells of the native and mutant
proteins are different and increases to 75% when they are
the same. As expected, this difference becomes more
accentuated for the exposed mutations, where the x1 pre-
diction accuracy changes to 62% and 79% for different
and identical unit cells, respectively. These data confirm
the observations of Jacobson and colleagues (2002) and

Figure 6. Accuracy of prediction as a function of the residue type. Standard deviations of averages are indicated. For Phe and Trp,

only a few mutations occurred and they were all predicted correctly.

Figure 7. Distribution of the top 10 best-scoring conformations, which are

identical to single best-scoring prediction. The plot is shown separately

for the correct and incorrect best-scoring predictions.
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highlight the need to assess different prediction methods
by the same benchmark, as was done here.

Materials and Methods

The method for the modeling of a point mutation in a given
environment is described here by specifying its three main
components: (1) the representation of a protein, (2) the
restraints that define the scoring or ‘‘energy’’ function, and
(3) the method for optimizing the energy function. The
modeling method is entirely automated and is implemented
in the program MODELLER-8 (Sali and Blundell 1993)
(http://salilab.org/modeller/).

Representation

Two different protein representations are applied: (1) Only
the non-hydrogen atoms are used for scoring functions
without the Lennard-Jones terms; and (2) all atoms,
including all hydrogen atoms, are used for scoring functions
with the Lennard-Jones terms. No explicit solvent mole-
cules or ligands are included in general, although they
could be added in special cases. The degrees of freedom in
model optimization are the Cartesian coordinates of the
atoms to be optimized. The atoms of the optimized residues
‘‘feel’’ the rest of the environment, but this ‘‘environment’’
does not move during the optimization procedure.

Environment of a point mutation

We investigated the optimal environment of a point muta-
tion for modeling by testing three plausible selections of
the optimized atoms: (1) only the atoms of the mutated
side chain; (2) all atoms of the mutated residue, including
its main-chain atoms; and (3) all atoms of the mutated res-
idue and all other atoms within 4.5 Å of any of the atoms
of the mutated residue.

Scoring function

The tested scoring functions for the modeling of point
mutations are the sum of three major types of terms: (1)
potential energy terms enforcing proper stereochemistry,
(2) non-bonded energy terms, and (3) spatial restraints that
express statistical preferences of distances, angles, and
dihedral angles defined by the main-chain and side-chain
atoms, depending either on the known protein structures in
general or only on the template structure (Sali and Blundell
1993; Sali and Overington 1994; Fiser et al. 2000).

First, the internal energy terms that describe the stereo-
chemical features are captured from the CHARMM
molecular mechanics force field, Fstereo (MacKerell et al.
1998). Four terms were employed, restraining the length of
the covalent bonds, the angles, the dihedral angles, and the

planarity of the peptide bond. When statistical preferences
of dihedral angles are used, the dihedral angle terms from
the force field are omitted.

Second, for the non-bonded terms, Fnon-bonded, three
alternative functions were tested: (1) the Lennard-Jones
terms from the CHARMM-22 force field (MacKerell et al.
1998), (2) ‘‘soft sphere repulsion’’ modeled by a harmonic
lower bound (Equation 22 in Sali and Blundell 1993),
and (3) a combination of the soft sphere repulsion with an
atomistic, distance-dependent statistical potential of mean
force (‘‘statistical potential’’), (Equations 1 and 4 in Fiser
et al. 2000), (Sippl 1990; Melo and Feytmans 1998).

Third, main-chain and side-chain dihedral angles were
also restrained by statistical preferences extracted from
known protein structures in general (Fstat). Restraints on the
main-chain dihedral angles f and c depend on the residue
type and correspond to the natural logarithm of the prob-
ability density of f and c dihedral angles in a set of high-
resolution protein structures, ln[pm(f,c/R)] (Fiser et al.
2000). Similar restraints are also applied to the v main-
chain dihedral angle, ln[ps(v/R)], and all side-chain
dihedral angles xi (up to four per residue), ln[ps(xi/R)]
(Sali and Blundell 1993; Sali and Overington 1994; Fiser
et al. 2000).

Finally, the main-chain and side-chain dihedral angles
(Equations 25 and 26 in Sali and Blundell 1993) as well
as distance restraints between Ca–Ca and N–O atoms
(Equations 23 and 24 in Sali and Blundell 1993) were
restrained by the template structure. These homology-
derived restraints bias the target model toward the
template structure.

Twelve combinations of the various components of the
scoring function were explored in the three environments,
resulting in 36 different protocols (Table 1). Twelve of these
36 protocols were tested with both the all-atom and non-
hydrogen atom representations, while the remaining proto-
cols used only the non-hydrogen atom representation.

Optimization of the scoring function

We used the same optimization protocol that was applied to
the prediction of loops in protein structures (Fiser et al.
2000). One prediction consists of optimizing independently
a number of randomized initial structures and picking as the
final model the conformation that has the lowest value of
the scoring function. A good compromise between effi-
ciency and performance is achieved by 10 independent
optimizations (Results and Discussion).

An individual optimization begins by generating start-
ing coordinates for the atoms whose positions need to be
optimized: (1) The selected atoms are built in their ideal
positions based on the remaining atoms and the internal
coordinates in the CHARMM-22 residue topology
library; (2) these coordinates with locally ideal geometry
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are randomized by adding a random number distributed
uniformly from �5 to 5 Å.

The procedure for optimizing a single initial confor-
mation begins with a conjugate gradients minimization,
continues with molecular dynamics with simulated
annealing, and finishes by conjugate gradients again
(Fig. 1). The first conjugate gradients phase is designed
to relax the system and consists of five successive
minimizations of up to 200 steps each, gradually increas-
ing the scaling factors for the non-bonded restraints from
0, 0.01, 0.1, 0.5, to 1.0, respectively. In this phase, the
atoms are allowed to pass near each other without having
to surmount large energy barriers. This stage is followed
by a relatively rapid heating up of the system consisting
of 200 4 fs steps of ‘‘molecular dynamics’’ at 150°K,
250°K, 400°K, 700°K, and 1000°K. The heating stage is
followed by the main optimization stage that consists of
gradual cooling by molecular dynamics of 600 4 fs steps
at 1000°K, 800°K, 600°K, 500°K, 400°K, and 300°K.
Finally, the optimization is completed by a conjugate
gradients minimization consisting of up to 1000 steps.
There are, in fact, two cycles of the conjugate gradients,
molecular dynamics with simulated annealing, and con-
jugate gradients phases: In the first cycle, only those non-
bonded atom pairs are considered that contain the set of
atoms selected for optimization (i.e., the side chain does
not ‘‘feel’’ its environment). In the second cycle, the atom
pairs that contain up to one environment atom are also
included in the energy function (i.e., the side chain does
‘‘feel’’ its environment).

Test set

Pairs of protein structures that differ by a single
residue type and were solved by X-ray crystallography
at resolution of 2.0 Å

´
or better were extracted from

PDB (Berman et al. 2000). Point mutations were not
considered if these happened within two positions of
either termini of the sequences. The test set contained 431
pairs of protein structures. Excluding side chains without
dihedral angles and considering the modeling of each one
of the members in a pair based on the other member, the
test set was comprised of 717 test cases for the modeling
of point mutations.

Assessment of prediction accuracy

Following the usual convention, the accuracy of the
protocols was assessed by the percentage of the correct
x1 and x2 dihedral angles, as well as the correct pairs
(x1 + 2) of these angles for the side chain of the mutated
residue. A dihedral angle was defined to be correct if it
was within 40° of the corresponding angle in the crys-
tallographic structure of the modeled protein (Dunbrack
and Karplus 1993; Jacobson et al. 2002).

Solvent accessibility

The solvent accessibility of a residue was calculated as
implemented in MODELLER (Sali and Blundell 1993).
The fractional surface area was obtained by dividing the
contact area of a given residue by the standard contact
area of the corresponding residue type X in the extended
tripeptide Gly–X–Gly. Each residue with a fractional
surface area of 30% or less was considered as buried.

Discussion

We described a method to model point mutations in protein
structures. Our most accurate scoring function captures the
internal energy that describes local stereochemical features
through CHARMM force field terms, restraining the length

Table 1. Summary of the different combinations of scoring function terms explored for side-chain modeling

Fstereo Fnon-bonded Fstat Notation Protocol #

Stereochemical restraints from

CHARMM 22 potential force field

Distance-dependent statistical potential (Stat) Full homology Full-Stat 1

StlibH StlibH-Stat 2

Stlib Stlib-Stat 3

None Stereo-Stat 4

Lennard-Jones (LJ) Full homology Full-LJ 5

StlibH StlibH-LJ 6

Stlib Stlib-LJ 7

None Stereo-LJ 8

Lower bound harmonic potential

(Soft sphere¼SP)

Full homology Full-Stat 9

StlibH StlibH-Stat 10

Stlib Stlib-Stat 11

None Stereo-Stat 12

Each of the 12 combinations was tested in three possible environments, resulting in 36 tested protocols (Materials and Methods). ‘‘Stlib’’ refers to standard
side-chain rotamer library. ‘‘StlibH’’ indicates Stlib as combined with dihedral angle restraints that are derived from the equivalent residue in the template
structure. ‘‘Full homology’’ refers to a combination of StlibH and homology-derived distance restraints.
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of the covalent bonds, the angles, the dihedral angles, and
the planarity of the peptide bond. The scoring function
employs Lennard-Jones potential for non-bonded terms
and combines homology-derived spatial restraints on dihe-
dral angles from the template with statistical preferences
observed in many representative structures. The highest
accuracy is obtained if the full residue is considered for
optimization. The algorithm consists of 10 independent
optimizations. The procedure for optimizing a single initial
conformation begins with a conjugate gradients minimiza-
tion, continues with molecular dynamics with simulated
annealing, and finishes by conjugate gradients again. There
are two cycles of the conjugate gradients: molecular
dynamics with simulated annealing, and conjugate gra-
dients phases. In the first cycle, only those non-bonded
atom pairs are considered that contain the set of atoms
selected for optimization. In the second cycle, the atom
pairs that contain up to one environment atom are also
included in the energy function.

The prediction accuracies for the buried (and exposed)
mutations are 76.3% (74.2%) for x1, 67.7% (63.6%) for
x2, and 58.4% (51.4%) for x1 + 2, respectively.

The main difference between the different tested scor-
ing functions was in the homology-derived terms. We
attempted to incorporate terms in the scoring function
that depend on the wild-type residue conformation and
interactions between the mutated residue and its environ-
ment. In contrast to comparative modeling of whole
structures, the modeling of a mutation is restrained by
the environment of the mutated residue. Consequently if
the environment is not modeled appropriately (e.g., when
homology-derived distance restraints are strictly enfor-
cing template-based conformations), modeling of the
mutation is less accurate (Figs. 2, 3). As a result the
highest success was achieved if the template-dependent
dihedral angle preferences were used in combination of
general statistical preferences while avoiding homology-
derived distance restraints between the mutated side chain
and its environment.

For the tested scoring functions and the sampling
scheme, it is optimal to refine the whole mutated residue,
but not any additional atoms in its environment. This
result is consistent with the observation that the neigh-
borhoods of most point mutations are essentially not
distorted by the mutation (main-chain RMSD <0.4 Å).
Therefore, refining the environment merely increases the
demands on the scoring function to identify the correct
conformation among many more decoys. More accurate
modeling of a flexible environment may require both a
more accurate scoring function and a more thorough
sampling scheme.

Our most accurate protocol produces similar best-
scoring conformations, even when they are incorrect.
This observation suggests that the sampling is sufficient,

but the scoring function cannot always identify the
correct structure as the best-scoring one.

The prediction accuracy depends on the relative vol-
ume change during mutation. Neutral volume changes
can be predicted most accurately, while a significant
increase or decrease of the occupied volume upon muta-
tion makes thorough sampling more difficult. Particularly
difficult is the prediction of those mutations that increase
significantly the volume (by >1000 Å3).
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