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1 INTRODUCTION

Functional characterization of a protein sequence is one of the most fre-
quent problems in biology. This task is usually facilitated by an accurate
three-dimensional (3D) structure of the studied protein. A three-dimen-
sional structure of natural proteins is guided by two distinct sets of princi-
ples operating on vastly different time scales: the laws of physics and the
theory of evolution. Each of the two sets of principles that apply to the
natural protein sequences gave rise to a class of protein structure prediction
methods (Fig. 1) (Baker and Sali, 2001; Fiser et al., 2002).

The first approach, de novo or ab initio methods, predict the structure
from sequence alone, without relying on similarity at the fold level between
the modeled sequence and any of the known structures (Bonneau, Baker,
2001). The de novo methods assume that the native structure corresponds to
the global free-energy minimum accessible during the lifespan of the protein
and attempt to find this minimum by an exploration of many conceivable
protein conformations. The two key components of de novo methods are
the procedure for efficiently carrying out the conformational search and the
free-energy function used for evaluating possible conformations.

The second class of methods, including threading (Domingues et al.,
2000) and comparative modeling (Blundell et al., 1987; Marti-Renom et al.,
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Figure 1 De novo structure prediction and comparative protein structure model-
ing. Proteins obey two distinct sets of principles, the laws of physics and the theory of
evolution, each giving rise to the corresponding variety of protein structure predic-
tion methods. (From Fiser et al., 2002.)

2000), rely on detectable similarity spanning most of the modeled sequence
and at least one known structure. When the structure of one protein in the
family has been determined by experiment, the other members of the family
can be modeled based on their alignment to the known structure.
Comparative, or homology, protein structure modeling builds a three-
dimensional model for a protein of unknown structure (the target) based on
one or more related proteins of known structure (the templates) (Blundell et
al., 1987; Greer, 1981; Johnson et al., 1994; Sali, Blundell, 1993; Sali, 1995;
Sanchez, Sali, 1997a; Marti-Renom et al., 2000; Fiser et al., 2001; Fiser et
al., 2002; Sanchez, Sali, 2000; Fiser, Sali, 2002). The necessary conditions for
calculating a useful model are (1) detectable similarity between the target
sequence and the template structures and (2) availability of a correct align-
ment between them. The comparative approach to protein structure predic-
tion is possible because a small change in the protein sequence usually
results in a small change in its 3D structure (Chothia, Lesk, 1986). It is
also facilitated by the fact that 3D structure of proteins from the same
family is more conserved than their primary sequences (Lesk, Chothia,
1980). Therefore, if similarity between two proteins is detectable at the
sequence level, structural similarity can usually be assumed. Moreover, pro-
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teins that share low or even nondetectable sequence similarity many times
also have similar structures. Despite progress in ab initio protein structure
prediction (Bonneau, Baker, 2001), comparative modeling remains the only
method that can reliably predict the 3D structure of a protein with an
accuracy comparable to a low-resolution experimentally determined struc-
ture (Marti-Renom et al., 2000).

All current comparative modeling methods consist of five sequential
steps (Fig. 2). The first step is to search for proteins with known 3D struc-
tures that are related to the target sequence. The second step is to pick those
structures that will be used as templates. The third step is to align their
sequences with the target sequence. The fourth step is to build the model
for the target sequence given its alignment with the template structures. The
last step is to evaluate the model using a variety of criteria. If necessary,
template selection, alignment, and model building can be repeated until a
satisfactory model is obtained.

Currently, the probability of finding related proteins of known struc-
ture for a sequence picked randomly from an organism’s genome ranges
approximately from 30% to 65%, depending on which genome is examined
(Kelley et al., 2000; Sanchez, Sali, 1998; Teichmann et al., 1999; Pieper et al.,
2002). Approximately 57% of all known sequences have at least one domain
that is detectably related to at least one protein of known structure (Pieper
et al.,, 2002). Since the number of known protein sequences is approximately
1,200,000 (Benson et al., 2002; Bairoch, Apweiler, 2000), comparative mod-
eling can be applied to domains in approximately 600,000 proteins. This
number is an order of magnitude larger than the number of experimentally
determined protein structures deposited in the Protein Data Bank (PDB)
(~ 15,000) (Westbrook et al., 2002). Furthermore, the usefulness of com-
parative modeling is steadily increasing because the number of different
structural folds that proteins adopt is limited (Chothia, 1992: Lo et al.,
2000; Holm, Sander, 1997; Bray et al., 2000) and because the number of
experimentally determined novel structures is increasing. This trend is
accentuated by the recently initiated structural genomics project that aims
to determine at least one structure for most protein families (Burley et al.,
1999). It is conceivable that this aim will be substantially achieved in less
than 10 years, making comparative modeling applicable to most protein
sequences (Vitkup et al., 2001).

There are several computer programs and Web servers that automate
the comparative modeling process. The first Web server for automated
comparative modeling was the Swiss-Model server (http://www.expasy.ch/
swissmod/), followed by CPHModels (http://www.cbs.dtu.dk/services/
CPHmodels/), SDSC1 (http://cl.sdsc.edu/hm.html), FAMS (http://
physchem.pharm kitasato-u.ac.jp/FAMS/fams.html), and  ModWeb
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Figure 2 Steps in comparative protein structure modeling. See text for a descrip-
tion of each step. (From Fiser et al., 2001.)
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(http://guitar.rockefeller.edu/modweb). These servers accept a sequence
from a user and return an all-atom comparative model when possible. In
addition to modeling a given sequence, ModWeb is capable of returning
comparative models for all sequences in the TTEMBL database that are
detectably related to an input, user-provided structure. While the Web ser-
vers are convenient and useful, the best results in the difficult or unusual
modeling cases, such as problematic alignments, modeling of loops, exis-
tence of multiple conformational states, and modeling of ligand binding, are
still obtained by nonautomated, expert use of the various modelin g tools. A
number of resources useful in comparative modeling are listed in Table 1.

This chapter begins with a description of all the steps in comparative
modeling, fold assignment, template selection, sequence-structure align-
ment, model building, and model assessment. We conclude by describing
errors in comparative models and sample applications of comparative mod-
eling to individual proteins and to whole genomes. We emphasize our own
work and experience, although we have profited greatly from the contribu-
tions of many others, cited in the list of references.

2 STEPS IN COMPARATIVE MODELING

2.1 Searching for Structures Related to the Target
Sequence

Comparative modeling usually starts by searching the PDB (Westbrook et
al., 2002) of known protein structures using the target sequence as the query.
This search is generally done by comparing the target sequence with the
sequence of each of the structures in the database.

There are three main classes of protein comparison methods that are
useful in fold identification. The first class compares the target sequence
with each of the database sequences independently, using pairwise
sequence-sequence comparison (Apostolico, Giancarlo, 1998). The perfor-
mance of these methods in sequence searching (Pearson, 2000; Pearson,
1995) and fold assignments has been evaluated exhaustively (Brenner et
al., 1998). The most popular programs in the class include FASTA
(Pearson, 2000) and BLAST (Altschul et al., 1997).

The second class of methods relies on multiple sequence comparisons
to improve greatly the sensitivity of the search (Henikoff et al., 2000; Krogh
et al., 1994; Gribskov, Veretnik, 1996; Altschul et al., 1997; Jaroszewski et
al., 1998). The most well known program in this class is PSI-BLAST
(Altschul et al., 1997). Another, similar approach that appears to perform
even slightly better than PSI-BLAST has been implemented in the program
PDB-BLAST (Jaroszewski et al., 1998). PDB-BLAST begins by finding all



172

Fiser and Sali

Table 1 Programs and Servers Useful for Comparative Protein Structure

Modeling

Databases

NCBI www.ncbi.nlm.nih.gov/

PDB www.rcsb.org/

MSD www.rcsb.org/databases.html

CATH www.biochem.ucl.ac.uk/bsm/cath/

TrEMBL srs.ebi.ac.uk/

Scop scop.mrc-lmb.cam.ac.uk/scop/

Presage presage.stanford.edu

ModBase guitar.rockefeller.edu/modbase/

GeneCensus bioinfo.mbb.yale.edu/genome

GeneBank www.ncbi.nlm.nih.gov.Genbank/GenbankSearch.html
PSI www.structuralgenomics.org

Template Search, fold assignment

PDB-Blast bioinformatics.burnham-inst.org/pdb_blast
BLAST www.ncbi.nlm.nih.gov/BLAST/

FastA www.ebi.ac.uk/fasta33

DALI www2.ebi.ac.uk/dali/

PhD, TOPITS www.embl-heidelberg.de/predictprotein/predictprotein/htmi
THREADER bioinf.cs.ucl.ac.uk/threader/

123D 123d.nciferf.gov

UCLA-DOE fold.doe-mbi.ucla.edu

PROFIT lore.came.sbg.ac.at/

MATCHMAKER www.tripos.com/software/mm.html

3D-PSSM www.sbg.bio.ic.ac.uk/~3dppsm

BIOINBGU www.cs.bgu.ac.il/~bioinbgu/

FUGUE www.cryst.bioc.cam.ac.uk/~fugue

LOOPP ser-loopp.tc.cornell.edu/loopp.html

FASS bioinformatics.burnham-inst.org/FFAS/index.html
SAM-T99/T98 www.cse.ucsc.edu/research/compbio/sam.html
Comparative modeling

3D-JIGSAW www.bmm.icnet.uk/servers/3digsaw/

CPH-Models www.cbs.dtu.dk/services/CPHmodels/
COMPOSER www-cryst.bioc.cam.ac.uk/

FAMS physchem.pharm kitasato-u.ac.jp/FAMS/fams.html
Modeller guitar.rockefeller.edu/modeller/modeller/html
PrISM honiglab.cpmc.columbia.edu/

SWISS-MODEL
SDSC1

WHAT IF

ICM

SCWRL

www.expasy.ch/swissmod/SWISS-MODEL.html
cl.sdsc.edu.hm. html

www.combi.kun.nl/whatif/

www.molsoft.com/
www.fcce.edu/research/labs/dunbrack/scwrl/
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Table 1 Continued

InsightIT www.accelrys.com
SYBYL www.tripos.com

Model evaluation

PROCHECK www.biochem.ucl.ac.uk/~roman/procheck/procheck.html
WHATCHECK www.cmbi.kun.nl/gv/servers/ WIWWWI/

Prosall www.came.sbg.ac.at

BIOTECH biotech.embl-ebi.ac.uk:8400/

VERIFY3D www.doe.mbi.ucla.edu/Services. Verify_3D/

ERRAT www.doe-mbi.ucla.edu/Services/Errat.html

ANOLEA guitar.rockefeller.edu/~fmelo/anolea/anolea.html

AQUA urchin.bmrb.wisc.edu/~jurgen/Aqua/server/

SQUID www.yorvic.york.ac.uk/~oldfield/squid

PROVE www.ucmb.ulb.ac.be/UCMB/PROVE/

An up-to-date version of this table can be found on the Web at http://
guitar.rockefeller.edu/bioinformatics_resources.shtml.

sequences in a sequence database that are clearly related to the target and
easily aligned with it. The multiple alignment of these sequences is the target
sequence profile. Similar profiles are also constructed for all potential tem-
plate structures. The templates are then found by comparing the target
sequence profile with each of the template sequence profiles, using a local
dynamic programming method that relies on the common BLOSUMS62
residue substitution matrix (Henikoff, Henikoff, 2000). These more sensitive
fold identification techniques based on sequence profiles are especially useful
for finding structural relationships when sequence identity between the tar-
get and the template drops below 25%.

The third class of methods relies on pairwise comparison of a protein
sequence and a protein structure; that is, structural information is used for
one of the two proteins that are being compared, and the target sequence is
matched against a library of 3D profiles or threaded through a library of 3D
folds. These methods are also called fold assignment, threading, or 3D
template matching (Johnson, Overington, 1993; Bowie et al., 1991; D.T
Jones et al., 1992; Godzik, 1996; Sippl, 1995). They are reviewed in D.T.
Jones, 1997; Smith et al., 1997; and Torda, 1997, and evaluated in
Domingues et al., 2000. These methods are especially useful when sequence
profiles are not possible to construct because there are not enough known
sequences that are clearly related to the target or potential templates.

What similarity between the target and template sequences is needed
to have a chance of obtaining a useful comparative model? The answer
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depends on the question that is asked of a model. In general, the usefulness
of a template should be assessed by evaluation of the corresponding 3D
model based on a given template, using methods described later. This
approach is optimal because the evaluation of a 3D model is generally
more sensitive and robust than the evaluation of an alignment (Sanchez,
Sali, 1998). A good starting point for template searches are the many data-
base search servers on the Web (Table 1).

2.2 Selecting Templates

Once a list of potential templates is obtained using searching methods, it is
necessary to select one or more templates that are appropriate for the par-
ticular modeling problem. Several factors need to be taken into account
when selecting a template.

The quality of a template increases with its overall sequence similarity
to the target and decreases with the number and length of gaps in the
alignment. The simplest template selection rule is to select the structure
with the highest sequence similarity to the modeled sequence.

The family of proteins that includes the target and the templates can
frequently be organized into subfamilies. The construction of a multiple
alignment and a phylogenetic tree (Retief, 2000; Felsenstein, 1981) can
help in selecting the template from the subfamily that is closest to the target
sequence.

The similarity between the “environment™ of the template and the
environment in which the target needs to be modeled should also be con-
sidered. The term environment is used here in a broad sense, including every-
thing that is not the protein itself (e.g., solvent, pH, ligands, quaternary
interactions). If possible, a template bound to the same or similar ligands
as the modeled sequence should generally be used.

The quality of the experimentally determined structure is another
important factor in template selection. The resolution and R-factor of a
crystallographic structure and the number of restraints per residue for an
NMR structure are indicative of the accuracy of the structure. For instance,
if two templates have comparable sequence similarity to the target, the one
determined at the highest resolution should generally be used.

The criteria for selecting templates also depend on the purpose of a
comparative model. For example, if a protein-ligand model is to be con-
structed, the choice of the template that contains a similar ligand is prob-
ably more important than the resolution of the template. On the other
hand, if the model is to be used to analyze the geometry of the active site
of an enzyme, it may be preferable to use a high-resolution template
structure.
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It is not necessary to select only one template. In fact, the use of several
templates generally increases the model accuracy. One strength of the com-
parative modeling program MODELLER (Sali, Blundell, 1993) is that it can
combine information from multiple template structures, in two ways. First,
multiple template structures may be aligned with different domains of the
target, with little overlap between them, in which case the modeling proce-
dure can construct a homology-based model of the whole target sequence.
Second, the template structures may be aligned with the same part of the
target, in which case the modeling procedure is likely to automatically build
the model on the locally best template (Sanchez, Sali, 1997b; Sali et al., 1995).
In general, it is frequently beneficial to include in the modeling process all the
templates that differ substantially from each other, if they share approxi-
mately the same overall similarity to the target sequence.

An elaborate way to select suitable templates is to generate and
evaluate models for each candidate template structure and/or their com-
binations. The optimized all-atom models are evaluated by an energy or
scoring function, such as the Z-score of PROSA (Sippl, 1993). The
PROSA Z-score of a model is a measure of compatibility between its
sequence and its structure. Ideally, the Z-score of the model should be
comparable to the Z-score of the template. The PROSA Z-score is fre-
quently sufficiently accurate to identify one of the most accurate of the
generated models (Wu et al., 2000). This trial-and-error approach can be
viewed as limited threading (i.e., the target sequence is threaded through
similar template structures).

2.3 Aligning the Target Sequence with One or More
Structures

To build a model, all comparative modeling programs depend on a list of
assumed structural equivalences between the target and template residues.
This list is defined by an alignment of the target and template sequences.
Although many template search methods will produce such an alignment, it
is usually not the optimal target—template alignment in the more difficult
alignment cases (e.g., at less than 30% sequence identity). Search methods
tend to be tuned for the detection of remote relationships, not for optimal
alignment. Therefore, once the templates are selected, an alignment method
should be used to align them with the target sequence.

The alignment is relatively simple to obtain when the target-template
sequence identity is above 40%. In most such cases, an accurate alignment
can be calculated automatically using standard sequence—sequence align-
ment methods. If the target-template sequence identity is lower than
40%, the alignment generally has gaps and needs manual intervention to
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minimize the number of misaligned residues. In these low-sequence identity
cases, the alignment accuracy is the most important factor affecting the
quality of the resulting model. Alignments can be improved by including
structural information from the template. For example, gaps should be
avoided in secondary structure elements, in buried regions, or between two
residues that are far apart in space. Some alignment methods take such
criteria into account (Sanchez, Sali, 1998; Jennings et al., 2001; Blake,
Cohen, 2001; Shi et al., 2001). It is important to inspect and edit the align-
ment in view of the template structure, especially if the target—template
sequence identity is low. A misalignment by only one residue position will
result in an error of approximately 4A in the model because the current
modeling methods generally cannot recover from errors in the alignment.
When multiple templates are selected, a good strategy is to superpose
them with each other first, to obtain a multiple structure-based alignment. In
the next step, the target sequence is aligned with this multiple structure—based
alignment. Another improvement is to calculate the target and template
sequence profiles, by aligning them with all sequences from a nonredundant
sequence database that are sufficiently similar to the target and template
sequences, respectively, so that they can be aligned without significant errors
(e.g., better than 40% sequence identity). The final target-template align-
ment is then obtained by aligning the two profiles, not the template and
target sequences alone. The use of multiple structures and multiple sequences
benefits from the evolutionary and structural information about the tem-
plates as well as evolutionary information about the target sequence, and
often produces a better alignment for modeling than the pairwise sequence
alignment methods (Sauder et al., 2000; Jaroszewski et al., 2000).

2.4 Model Building
2.41 Modeling by Assembly of Rigid Bodies

The first and still widely used approach in comparative modeling is to
assemble a model from a small number of rigid bodies obtained from the
aligned protein structures (Greer, 1990; Blundell et al., 1987; Browne et al.,
1969). The approach is based on the natural dissection of the protein struc-
ture into conserved core regions, variable loops that connect them, and side
chains that decorate the backbone. For example, the following semiauto-
mated procedure is implemented in the computer program COMPOSER
(Sutcliffe et al., 1987). First, the template structures are selected and super-
posed. Second, the “framework™ is calculated by averaging the coordinates
of the C, atoms of structurally conserved regions in the template structures.
Third, the mainchain atoms of each core region in the target model are
obtained by superposing on the framework the core segment from the tem-
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plate whose sequence is closest to the target. Fourth, the loops are generated
by scanning a database of all known protein structures to identify the
structurally variable regions that fit the anchor core regions and have a
compatible sequence (Topham et al., 1993). Fifth, the side chains are mod-
eled based on their intrinsic conformational preferences and on the confor-
mation of the equivalent side chains in the template structures (Sutcliffe et
al., 1987). And finally, the stereochemistry of the model is improved by
either a restrained energy minimization or a molecular dynamics refinement.
The accuracy of a model can be somewhat increased when more than one
template structure is used to construct the framework and when the tem-
plates are averaged into the framework using weights corresponding to their
sequence similarities to the target sequence (Srinivasan, Blundell, 1993). For
example, differences between the model and X-ray structures may be slightly
smaller than the differences between the X-ray structures of the modeled
protein and the homologs used to build the model. Possible future improve-
ments of modeling by rigid-body assembly include incorporation of rigid-
body shifts, such as the relative shifts in the packing of a-helices and B-
sheets (Reddy, Blundell, 1993; Nagarajaram et al., 1999).

2.4.2 Modeling by Segment Matching or Coordinate Reconstruction

The basis of modeling by coordinate reconstruction is the finding that
most hexapeptide segments of protein structure can be clustered into
only 100 structurally different classes (Unger et al., 1989; Bystroff,
Baker, 1998). Thus, comparative models can be constructed by using a
subset of atomic positions from template structures as “guiding” positions
and by identifying and assembling short, all-atom segments that fit these
guiding positions. The guiding positions usually correspond to the Cu
atoms of the segments that are conserved in the alignment between the
template structure and the target sequence. The all-atom segments that fit
the guiding positions can be obtained either by scanning all the known
protein structures, including those that are not related to the sequence
being modeled (Claessens et al., 1989; Holm, Sander, 1991), or by a con-
formational search restrained by an energy function (Bruccoleri, Karplus,
1990; van Gelder et al., 1994). For example, a general method for model-
ing by segment matching is guided by the positions of some atoms (usually
Ca atoms) to find the matching segments in the representative database of
all known protein structures (Levitt, 1992). This method can construct
both main-chain and side chain atoms and can also model gaps. It is
implemented in the program SegMod. Even some side-chain modeling
methods (Chinea et al., 1995) and the class of loop construction methods
based on finding suitable fragments in the database of known structures



178 Fiser and Sali

(Jones, Thirup, 1986) can be seen as segment matching or coordinate
reconstruction methods.

2.4.3 Modeling by Satisfaction of Spatial Restraints

The methods in this class begin by generating many constraints or restraints
on the structure of the target sequence, using its alignment to related protein
structures as a guide. The procedure is conceptually similar to that used in
determination of protein structures from NMR-derived restraints. The
restraints are generally obtained by assuming that the corresponding dis-
tances between aligned residues in the template and the target structures are
similar. These homology-derived restraints are usually supplemented by
stereochemical restraints on bond lengths, bond angles, dihedral angles,
and nonbonded atom-atom contacts that are obtained from a molecular
mechanics force field. The model is then derived by minimizing the viola-
tions of all the restraints. This can be achieved by either distance geometry
or real-space optimization. For example, an elegant distance geometry
approach constructs all-atom models from lower and upper bounds on
distances and dihedral angles (Havel, Snow, 1991). Lower and upper bounds
on Ce—Ca and main-chain—side-chain distances, hydrogen bonds, and con-
served dihedral angles were derived for E. coli flavodoxin from four other
flavodoxins; bounds were calculated for all distances and dihedral angles
that had equivalent atoms in the template structures. The allowed range of
values of a distance or a dihedral angle depended on the degree of structural
variability at the corresponding position in the template structures. Distance
geometry was used to obtain an ensemble of approximate 3D models, which
were then exhaustively refined by restrained molecular dynamics with simu-
lated annealing in water.

2.4.4 Modeling by Satisfaction of Spatial Restraints in the
MODELLER Program

We now describe our own approach in more detail (Sali et al., 1990; Sali,
Blundell, 1993; Fiser et al., 2000; Sali, Overington, 1994) (Fig. 3). The
approach was developed to use as many different types of data about
the target sequence as possible. It is implemented in the computer program
MODELLER (Table 1). The comparative modeling procedure begins with
an alignment of the target sequence with related known 3D structures. The
output, obtained without any user intervention, is a 3D model for the
target sequence containing all main-chain and side-chain non-hydrogen
atoms.

In the first step of model building, distance and dihedral angle
restraints on the target sequence are derived from its alignment with tem-
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Figure 3 Comparative protein structure modeling by satisfaction of spatial
restraints as implemented in MODELLER. First, spatial restraints are extracted
from the input alignment, general spatial preferences found in known protein struc-
tures, and a molecular mechanics force field. Second, all the restraints are combined
into an objective function that is optimized to obtain the final model.

plate 3D structures. The form of these restraints was obtained from a sta-
tistical analysis of the relationships between similar protein structures. The
analysis relied on a database of 105 family alignments that included 416
proteins of known 3D structure (Sali, Overington, 1994). By scanning the
database of alignments, tables quantifying various correlations were
obtained, such as the correlations between two equivalent Ca—Ca distances
or between equivalent main-chain dihedral angles from two related proteins
(Sali, Blundell, 1993). These relationships are expressed as conditional prob-
ability density functions (pdf’s) and can be used directly as spatial restraints.
For example, probabilities for different values of the main-chain dihedral
angles are calculated from the type of a residue considered, from main-chain
conformation of an equivalent residue, and from sequence similarity
between the two proteins. Another example is the pdf for a certain Ca—
Ca distance given equivalent distances in two related protein structures.
An important feature of the method is that the forms of spatial restraints
were obtained empirically, from a database of protein structure alignments.
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In the second step, the spatial restraints and the CHARMM22 force-
field terms enforcing proper stereochemistry (MacKerell Jr. et al.,, 1998;
Brooks III et al., 1983) are combined into an objective function. The general
form of the objective function is similar to that in molecular dynamics pro-
grams, such as CHARMM22 (Brooks III et al., 1983). The objective function
depends on the Cartesian coordinates of the atoms (3D points) that form the
modeled molecules. For a 10,000-atom system, there can be on the order of
200,000 restraints. The functional form of each term is simple; it includes a
quadratic function, harmonic lower and upper bounds, cosine, a weighted
sum of a few Gaussian functions, Coulomb’s law, Lennard—Jones potential,
and cubic splines. The geometric features presently include a distance, an
angle, a dihedral angle, a pair of dihedral angles between two, three, four,
and eight atoms, respectively, the shortest distance in the set of distances,
solvent accessibility in ;\2, and atom density, expressed as the number of
atoms around the central atom. Some restraints can be used to restrain
pseudo-atoms, such as the gravity center of several atoms.

Finally, the model is obtained by optimizing the objective function in
Cartesian space. The optimization is carried out by the use of the variable
target function method (Braun, Go, 1985), employing methods of conjugate
gradients and molecular dynamics with simulated annealing (Clore et al.,
1986). Several slightly different models can be calculated by varying the
initial structure, and the variability among these models can be used to
estimate the lower bound on the errors in the corresponding regions of
the fold.

Because the modeling by satisfaction of spatial restraints can use many
different types of information about the target sequence, it is perhaps the
most promising of all comparative modeling techniques. One of the
strengths of modeling by satisfaction of spatial restraints is that constraints
or restraints derived from a number of different sources can easily be added
to the homology-derived restraints. For example, restraints could be pro-
vided by rules for secondary structure packing (Cohen, Kuntz, 1989), ana-
lyses of hydrophobicity (Aszodi, Taylor, 1994) and correlated mutations
(Taylor, Hatrick, 1994), empirical potentials of mean force (Sippl, 1990),
nuclear magnetic resonance (NMR) experiments (Sutcliffe et al., 1992),
cross-linking experiments, fluorescence spectroscopy, image reconstruction
in electron microscopy, site-directed mutagenesis (Boissel et al., 1993), intui-
tion, efc. In this way, a comparative model, especially in the difficult cases,
could be improved by making it consistent with available experimental data
and/or with more general knowledge about protein structure.

Accuracies of the various model building methods are relatively simi-
lar when used optimally (Marti-Renom et al., 2002). Other factors, such as
template selection and alignment accuracy, usually have a larger impact on
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the model accuracy, especially for models based on less than 40% sequence
identity to the templates. However, it is important that a modeling method
allow a degree of flexibility and automation to obtain better models more
casily and rapidly. For example, a method should allow for an easy recal-
culation of a model when a change is made in the alignment; it should be
straightforward to calculate models based on several templates; and the
method should provide tools for incorporation of prior knowledge about
the target (e.g., cross-linking restraints, predicted secondary structure) and
allow ab initio modeling of insertions (e.g., loops), which can be crucial for
annotation of function. Loop modeling is an especially important aspect of
comparative modeling in the range from 30% to 50% sequence identity. In
this range of overall similarity, loops among the homologs vary, while the
core regions are still relatively conserved and aligned accurately. Next, we
review loop modeling.

245 Loop Modeling

In comparative modeling, target sequences often have inserted residues
relative to the template structures or have regions that are structurally dif-
ferent from the corresponding regions in the templates. Thus, no structural
information about these inserted segments can be extracted from the tem-
plate structures. These regions frequently correspond to surface loops.
Loops often play an important role in defining the functional specificity
of a given protein framework, forming the active and binding sites. The
accuracy of loop modeling is a major factor determining the usefulness of
comparative models in applications such as ligand docking. Loop modeling
can be seen as a mini-protein-folding problem because the correct confor-
mation of a given segment of a polypeptide chain has to be calculated
mainly from the sequence of the segment itself. However, loops are generally
too short to provide sufficient information about their local fold. Even
identical decapeptides in different proteins do not always have the same
conformation (Kabsch, Sander, 1984; Mezei, 1998). Some additional
restraints are provided by the core anchor regions that span the loop and
by the structure of the rest of a protein that cradles the loop. Although many
loop-modeling methods have been described, it is still not possible to model
correctly and with high confidence loops longer than approximately eight
residues (Fiser et al., 2000).

There are two main classes of loop-modeling methods: (1) the data-
base search approaches, where a segment that fits on the anchor core regions
is found in a database of all known protein structures (T.A. Jones, Thirup,
1986; Chothia, Lesk, 1987); (2) the conformational search approaches
(Moult, James, 1986; Bruccoleri, Karplus, 1987; Shenkin et al., 1987).
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There are also methods that combine these two approaches (van Vlijmen,
Karplus, 1997; Deane, Blundell, 2001).

The database search approach to loop modeling is accurate and effi-
cient when a database of specific loops is created to address the modeling of
the same class of loops, such as g-hairpins (Sibanda et al., 1989), or loops on
a specific fold, such as the hypervariable regions in the immunoglobulin fold
(Chothia et al., 1989; Chothia, Lesk, 1987). For example, an analysis of the
hypervariable immunoglobulin regions resulted in a series of rules that
allowed a very high accuracy of loop prediction in other members of the
family. These rules were based on the small number of conformations for
each loop and on the dependence of the loop conformation on its length and
certain key residues. There are attempts to classify loop conformations into
more general categories, thus extending the applicability of the database
search approach to more cases (Rufino et al., 1997; Oliva et al., 1997,
Ring et al., 1992). However, the database methods are limited by the fact
that the number of possible conformations increases exponentially with the
length of a loop. As a result, only loops up to four to seven residues long
have most of their conceivable conformations present in the database of
known protein structures (Fidelis et al., 1994; Lessel, Schomburg, 1994).
Even according to the more optimistic estimate, approximately 30% and
60% of all the possible eight- and nine-residue loop conformations, respec-
tively, are missing from the database (Fidelis et al., 1994). This is made even
worse by the requirement for an overlap of at least one residue between the
database fragment and the anchor core regions, which means that the mod-
eling of a five-residue insertion requires at least a seven-residue fragment
from the database (Claessens et al., 1989). Despite the rapid growth of the
database of known structures, there is no possibility to cover most of the
conformations of a nine-residue segment in the foreseeable future. On the
other hand, most of the insertions in a family of homologous proteins are
shorter than 1012 residues (Fiser et al., 2000).

To overcome the limitations of the database search methods, confor-
mational search methods were developed (Moult, James, 1986; Bruccoleri,
Karplus, 1987). There are many such methods, exploiting different protein
representations, objective function terms, and optimization or enumeration
algorithms. The search algorithms include the minimum perturbation
method (Fine et al.,, 1986), molecular dynamics simulations (Bruccoleri,
Karplus, 1990; van Vlijmen, Karplus, 1997), genetic algorithms (Ring,
Cohen, 1993), Monte Carlo and simulated annealing (Abagyan, Totrov,
1994; Collura et al., 1993; Higo et al., 1992), multiple-copy simultaneous
search (Zheng et al., 1993; Zheng et al., 1994), self-consistent field optimiza-
tion (Koehl, Delarue, 1995), and an enumeration based on graph theory
(Samudrala, Moult, 1998).
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The loop-modeling module in MODELLER implements the optimiza-
tion-based approach (Fiser et al., 2000; Fiser et al., 2002). The main reasons
are the generality and conceptual simplicity of energy minimization, as well
as the limitations on the database approach imposed by a relatively small
number of known protein structures (Fidelis et al., 1994). Loop prediction
by optimization is applicable to simultaneous modeling of several loops and
loops interacting with ligands, which is not straightforward for the database
search approaches. Loop optimization in MODELLER relies on conjugate
gradients and molecular dynamics with simulated annealing. The pseudo-
energy function is a sum of many terms, including some terms from the
CHARMM-22 molecular mechanics force field (MacKerell Jr. et al.,
1998) and spatial restraints based on distributions of distances (Sippl,
1990) and dihedral angles in known protein structures. The method was
tested on a large number of loops of known structure, both in the native
and near-native environments. In the case of five-residue loops in the correct
environments, the average error was 0.6 A as measured by local superposi-
tion of the loop main-chain atoms alone. For eight- -residue loops in the
correct environments, 90% of the loops hag less than 2-A main-chain
RMS error, with an average of less than 1.2 A. Even 12-residue loops are
modeled with useful accuracy in 30% of the cases. To simulate comparative
modeling problems, the loop-modeling procedure was evaluated by predict-
ing loops of known structure in only approximately correct environments.
Such environments were obtained by distorting the anchor regions, corre-
sponding to the three residues at either end of the loop, and all the atoms
within 10 A of the native loop conformation for up to 2-3 A by molecular
dynamics simulations. When the RMSD distortion of the environment
atoms is 2.5 A, the average loop prediction error increases by 180%, 25%
and 3% for 4-, 8- and 12-residue loops, respectively. It is no longer too
optimistic to expect useful models for loops as long as 12 residues, if the
environment of the loop is at least approximately correct. It is possible to
estimate whether or not a given loop prediction is correct, based on the
structural variability of the independently derived lowest-energy loop con-
formations. Typically, the loop prediction corresponds to the lowest-energy
conformation out of the 500 independent optimizations. The algorithm
allows straightforward incorporation of additional spatial restraints, includ-
ing those provided by template fragments, disulfide bonds, and ligand bind-
ing sites.

2.5 Evaluating a Model

After a model is built, it is important to check it for possible errors. The
quality of a model can be predicted approximately from the sequence simi-
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larity between the target and the template (Figs. 2, 5, 7). Sequence identity
above 30% is a relatively good predictor of the expected accuracy of a
model. However, other factors, including the environment, can strongly
influence the accuracy of a model. For instance, some calcium-binding pro-
teins undergo large conformational changes when bound to calcium. If a
calcium-free template is used to model the calcium-bound state of a target, it
is likely that the model will be incorrect irrespective of the target-template
similarity. This estimate also applies to determination of protein structure
by experiment; a structure must be determined in the functionally mean-
ingful environment. If the target-template sequence identity falls below
30%, the sequence identity becomes significantly less reliable as a measure
of expected accuracy of a single model. The reason is that below 30%
sequence identity, models are often obtained that deviate significantly, in
both directions, from the average accuracy. It is in such cases that model
evaluation methods are most informative.

Two types of evaluation can be carried out. “Internal” evaluation of
self-consistency checks whether or not a model satisfies the restraints used to
calculate it. “External” evaluation relies on information that was not used in
the calculation of the model (Luthy et al., 1992; Sippl, 1993).

Assessment of a model’s stereochemistry (e.g., bonds, bond angles,
dihedral angles, and nonbonded atom-atom distances) with programs
such as PROCHECK (Laskowski et al., 1993) and WHATCHECK
(Hooft et al., 1996) is an example of internal evaluation. Although errors
in stereochemistry are rare and less informative than errors detected by
methods for external evaluation, a cluster of stereochemical errors may
indicate that the corresponding region also contains other larger errors
(e.g., alignment errors).

When the model is based on less than ~30% sequence identity to the
template, the first purpose of the external evaluation is to test whether or not
a correct template was used. This test is especially important when the
alignment is only marginally significant or several alternative templates
with different folds are to be evaluated. A complication is that at low simi-
larities the alignment generally contains many errors, making it difficult to
distinguish between an incorrect template on one hand and an incorrect
alignment with a correct template on the other hand. It is generally possible
to recognize a correct template only if the alignment is at least approxi-
mately correct. This complication can sometimes be overcome by testing
models from several alternative alignments for each template. One way to
predict whether or not a template is correct is to compare the PROSA Z-
score (Sippl, 1993) for the model and the template structure(s). Since the Z-
score of a model is a measure of compatibility between its sequence and
structure, the model Z-score should be comparable to that of the template.
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However, this evaluation does not always work. For example, a well-mod-
eled part of a domain is likely to have a bad Z-score because some interac-
tions that stabilize the fold are not present in the model. Correct models for
some membrane proteins and small disulfide-rich proteins also tend to be
evaluated incorrectly, apparently because these structures have distributions
of residue accessibility and residue-residue distances that are different from
those for the larger globular domains, which were the source of the PROSA
statistical potential function.

The second, more detailed kind of external evaluation is the prediction
of unreliable regions in the model. One way to approach this problem is to
calculate a “pseudo-energy” profile of a model, such as that produced by
PROSA (Sippl, 1995). The profile reports the energy for each position in the
model. Peaks in the profile frequently correspond to errors in the model.
There are several pitfalls in the use of energy profiles for local error detec-
tion. For example, a region can be identified as unreliable only because it
interacts with an incorrectly modeled region; there are also more fundamen-
tal problems (Fiser et al., 2000).

Finally, a model should be consistent with experimental observations,
such as site-directed mutagenesis, cross-linking data, and ligand binding.

It is frequently difficult to select best templates or to calculate a good
alignment. One way of improving a comparative model in such cases is to
proceed with an iteration consisting of template selection, alignment, and
model building, guided by model assessment. This iteration can be repeated
until no improvement in the model is detected (Guenther et al., 1997;
Sanchez, Sali, 1997b).

3 ERRORS IN COMPARATIVE MODELS

The overall accuracy of comparative models spans a wide range (Figs. 5, 7).
At the low end of the spectrum are the low-resolution models, whose only
essentially correct feature is their fold. At the high end of the spectrum are
the models with an accuracy comparable to medium resolution crystallo-
graphic structures (Baker, Sali, 2001; Marti-Renom et al., 2000). Even low-
resolution models are often useful for addressing biological questions,
because function can many times be predicted from only coarse structural
features of a model.

The errors in comparative models can be divided into five categories
(Fig. 4): (1) errors in sidechain packing; (2) distortions or shifts of a region
that is aligned correctly with the template structures; (3) distortions or shifts
of a region that does not have an equivalent segment in any of the template
structures; (4) distortions or shifts of a region that is aligned incorrectly with
the template structures; (5) a misfolded structure resulting from using an
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Figure 4 Errors in comparative protein structure modeling. (a) Errors in side-chain
packing. The Trp 109 residue in the crystal structure of mouse cellular retinoic acid—
binding protein I (thin line) is compared with its model (thick line) and with the
template mouse adipocyte lipid-binding protein (broken line). (b) Distortions and
shifts in correctly aligned regions. A region in the crystal structure of mouse cellular
retinoic acid-binding protein I is compared with its model and with the template
fatty acid-binding protein using the same representation as in panel a. (c) Errors in
regions without a template. The Ca trace of the 112-117 loop is shown for the X-ray
structure of human eosinophil neurotoxin (thin line), its model (thick line), and the
template ribonuclease A structure (residues 111-117; broken line). (d) Errors due to
misalignments. The N-terminal region in the crystal structure of human eosinophil
neurotoxin (thin line) is compared with its model (thick line). The corresponding
region of the alignment with the template ribonuclease A is shown. The black lines
show correct equivalences, that is, residues whose Ca atoms are within 5 A of each
other in the optimal least squares superposition of the two X-ray structures. The “a”
characters in the bottom line indicate helical residues. (e) Errors due to an incorrect
template. The X-ray structure of o-trichosanthin (thin line) is compared with its
model (thick line), which was calculated using indole-3-glycerophosphate synthase
as the template. (From Fiser et al., 2001.)



Comparative Protein Structure Modeling 187

incorrect template. Significant methodological improvements are needed to
address all of these errors.

Errors 3-5 are relatively infrequent when sequences with more than
40% identity to the templates are modeled. For example, in such a case,
approximately 90% of the main-chain atoms are likely to be modeled with
an rms error of about 1 A. In this range of sequence similarity, the align-
ment is mostly straightforward to construct, there are not many gaps, and
structural differences between the proteins are usually limited to loops and
side chains. When sequence identity is between 30% and 40%, the structural
differences become larger, and the gaps in the alignment are more frequent
and longer. As a result, the mainchain RMS error rises to about 1.5 A for
about 80% of residues. The rest of the residues are modeled with large
errors because the methods generally fail to model structural distortions
and rigid-body shifts and are unable to recover from misalignments.
Below 40% sequence identity, misalignments and insertions in the target
sequence become the major problems. When sequence identity drops
below 30%, the main problem becomes the identification of related tem-
plates and their alignment with the sequence to be modeled (Figs. 5, 7). In
general, it can be expected that about 20% of residues will be misaligned,
and consequently incorrectly modeled with an error larger than 3 A, at this
level of sequence similarity (Johnson, Overington, 1993). These misalign-
ments are a serious impediment to comparative modeling because it appears
that presently at least one-half of all related protein pairs are related at less
than 30% sequence identity (Rost, 1999; Sanchez, Sali, 1998).

It has been pointed out that a comparative model is frequently more
distant from the actual target structure than the closest template structure
used to calculate the model (Martin et al., 1997). However, at least for some
modeling methods, this is only the case when there are errors in the tem-
plate-target alignment used for modeling, and when the correct structure-
based template-target alignment is used for comparing the template with the
actual target structure (Sanchez, Sali, 1997b). In contrast, the model is gen-
erally closer to the target structure than any of the templates if the modelin g
target—template alignment is used in evaluating the similarity between the
actual target structure and the template (Sanchez, Sali, 1997b). When more
than one template is used for modeling, it is sometimes possible to obtain a
model that is significantly closer to the target structure than any of the
templates (Sanchez, Sali, 1997b). This improvement occurs because the
model tends to inherit the best regions from each template. Therefore,
using a model is generally better than using the template structure, even
when the alignment is incorrect, because the actual target structure and,
therefore, the correct template—target alignment are not available in prac-
tical modeling applications (Fig. 5).
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Figure 5 Average model accuracy as a function of sequence identity. As the
sequence identity between the target sequence and the template structure decreases,
the average structural similarity between the template and the target also decreases
(dotted line, triangles). Structural overlap is defined as the fraction of equivalent Ca
atoms. For the comparison of the model with the actual structure (filled circles), two
C, atoms were considered equivalent if they belonged to the same residue and were
within 3.5 A of each other after least squares superposition of all Ca atoms by the
ALIGN3D command in MODELLER. For comparison of the template structure
with the actual target structure (triangles), two Cor atoms were considered equivalent
if they were within 3.5 A of each other after alignment and rigid-body superposition.
At high sequence identities, the models are close to the templates and therefore also
close to the experimental target structure (solid line, filled circles). At low sequence
identities, errors in the target-template alignment become more frequent and the
structural similarity of the model with the experimental target structure falls below
the target—template structural similarity. The difference between the model and the
actual target structure is a combination of the target—template differences (light area)
and the alignment errors (dark area). The figure was constructed by calculating 3993
comparative models based on single templates of varying similarity to the targets. All
targets had known (experimentally determined) structures, and therefore the com-
parison of the models and templates with the experimental structures was possible.
(From Sanchez, Sali, 1998.)

To put the errors in comparative models into perspective, we list
the differences among structures of the same protein that have been
determined experimentally (Fig. 6). The 1-A accuracy of main-chain
atom positions corresponds to X-ray structures defined at a low resolu-
tion of about 2.5 A and with an R-factor of about 25% (Ohlendorf,
1994), as well as to medium-resolution NMR structures determined from
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Figure 6 Accuracy of comparative models as compared to low-resolution crystal-
lographic structure determination and medium-resolution NMR structure determi-
nation. Upper left panel: Comparison of homologous structures that share ~ 40%
sequence identity. Upper right panel: 20 conformations of ileal lipid-binding protein
that satisfy the NMR restraints equally well. Lower left panel: Comparison of two
independently determined X-ray structures of interleukin 18. Lower right panel:
Comparison of the X-ray and NMR structures of erabutoxin. (From Fiser et al.,
2001.)
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10 interproton distance restraints per residue (Clore et al., 1993).
Similarly, differences between the highly refined X-ray and NMR struc-
tures of the same protein also tend to be about 1 A (Clore et al., 1993).
Changes in the environment (e.g., oligomeric state, crystal packing, sol-
vent, ligands) can also have a significant effect on the structure (Faber,
Matthews, 1990). Overall, comparative models based on templates with
more than 40% identity are almost as good as medium-resolution
experimental structures, simply because the proteins at this level of
similarity are likely to be as similar to each other as are the structures
for the same protein determined by different experimental techniques
under different conditions. However, the caveat in comparative protein
modeling is that some regions, mainly loops and side chains, may have
larger errors.

A way to test protein structure modeling methods, including compara-
tive modeling, is provided by the biannual meetings on critical assessment of
techniques for protein structure prediction (CASP) (Moult et al., 1995;
Zemla et al., 2001; Marti-Renom et al., 2002). Protein modelers are chal-
lenged to model sequences with unknown 3D structure and to submit their
models to the organizers before the meeting. At the same time, the 3D
structures of the prediction targets are being determined by X-ray crystal-
lography or NMR methods. They become available only after the models
are calculated and submitted. Thus, a bona fide evaluation of protein struc-
ture modeling methods is possible. Large-scale, continuous, and automated
complements to this experiment are implemented in two web servers, Live
Bench (Bujnicki et al., 2001) and EVA (Eyrich et al., 2001).

4 APPLICATIONS OF COMPARATIVE MODELING
4.1 Modeling of Individual Proteins

Comparative modeling is often an efficient way to obtain useful information
about the proteins of interest. For example, comparative models can be
helpful in designing mutants to test hypotheses about the protein’s function
(Vernal et al., 2002; Wu et al., 1999a), identifying active and binding sites
(Sheng et al., 1996), searching for, designing, and improving ligands for a
given binding site (Ring et al., 1993), modeling substrate specificity (Xu et
al., 1996), predicting antigenic epitopes (Sali et al., 1993), simulating pro-
tein—protein docking (Vakser, 1995), inferring function from calculated elec-
trostatic potential around the protein (Matsumoto et al., 1995), facilitating
molecular replacement in X-ray structure determination (Howell et al.,
1992), refining models based on NMR constraints (Modi et al., 1996;
Barrientos et al., 2001), testing and improving a sequence-structure align-
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ment (Wolf et al, 1998), confirming a remote structural relationship
(Guenther et al., 1997; Wu et al., 2000), and rationalizing known experi-
mental observations (Fig. 7). For a lengthy review of comparative modeling
applications see Johnson et al., 1994,

Fortunately, a 3D model does not have to be absolutely perfect to be
helpful in biology, as demonstrated by the applications just listed. The type
of a question that can be addressed with a particular model does depend on
its accuracy.

At the low end of the accuracy spectrum, there are models that are
based on less than 25% sequence identity and have sometimes less than 50%
of their Cor atoms within 3.5 A of their correct positions. However, such
models still have the correct fold, and even knowing only the fold of a protein
is frequently sufficient to predict its approximate biochemical function. More
specifically, only nine out of 80 fold families known in 1994 contained pro-
teins (domains) that were not in the same functional class, although 32% of
all protein structures belonged to one of the nine superfolds (Orengo et al.,
1997). Models in this low range of accuracy combined with model evaluation
can be used for confirming or rejecting a match between remotely related
proteins (Sanchez, Sali, 1997b; Sanchez, Sali, 1998).

In the middle of the accuracy spectrum are the models based on
approximately 35% sequence identity, corresponding to 85% of the C
atoms modeled within 3.5 A of their correct positions. Fortunately, the
active and binding sites are frequently more conserved than the rest of the
fold and are thus modeled more accurately (Sanchez, Sali, 1998). In general,
medium-resolution models frequently allow a refinement of the functional
prediction based on sequence alone because ligand binding is most directly
determined by the structure of the binding site rather than its sequence. It is
frequently possible to correctly predict important features of the target
protein that do not occur in the template structure. For example, the loca-
tion of a binding site can be predicted from clusters of charged residues
(Matsumoto et al., 1995), and the size of a ligand may be predicted from
the volume of the binding site cleft (Xu et al., 1996). Medium-resolution
models can also be used to construct site-directed mutants with altered or
destroyed binding capacity, which in turn could test hypotheses about the
sequence-structure—function relationships. Other problems that can be
addressed with medium-resolution comparative models include designing
proteins that have compact structures without long tails, loops, and exposed
hydrophobic residues for better crystallization and designing proteins with
added disulfide bonds for extra stability.

The high end of the accuracy spectrum corresponds to models based
on 50% sequence identity or more. The average accuracy of these models
approaches that of low-resolution X-ray structures (3A resolution) or med-
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Figure 7 Accuracy of comparative models and their applications. The vertical axis
indicates the different ranges of applicability of comparative protein structure mod-
eling, the corresponding accuracy of protein structure models, and their sample
applications. In panels A-C, typical overall accuracy of a comparative model
(right) is indicated by a comparison of a model with an actual structure (left). (A)
The complex between docosahexaenoic fatty acid (violet) and brain lipid-binding
protein (right), modeled based on its 62% sequence identity to the crystallographic
structure of adipocyte lipid-binding protein (PDB code 1ADL). (From Xu et al.,
1996.) A number of fatty acids were ranked for their affinity to brain lipid-binding
protein consistently with site-directed mutagenesis and affinity chromatography
experiments, even though the ligand specificity profile of this protein is different
from that of the template structure. (B) A putative proteoglycan-binding patch
was identified on a medium-accuracy comparative model of mouse mast cell protease
7 (right), modeled based on its 39% sequence identity to the crystallographic struc-
ture of bovine pancreatic trypsin (2PTN) that does not bind proteoglycans. (From
Matsumoto et al., 1995.) The prediction was confirmed by site-directed mutagenesis
and heparin-affinity chromatography experiments. (C) A molecular model of the
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lum-resolution NMR structures (10 distance restraints per residue)
(Sanchez, Sali, 1997b). The alignments on which these models are based
generally contain almost no errors. In addition to the already listed applica-
tions, high-quality models can be used for docking of small ligands (Ring et
al., 1993) or whole proteins onto a given protein (Totrov, Abagyan, 1994;
Vakser, 1995).

We now describe two applications of comparative modeling in more
detail: (1) modeling of substrate specificity aided by a high-accuracy model
and (2) substantiating a remote relationship between two proteins aided by a
low-accuracy model.

Example 1: Modeling of Substrate Specificity. Brain lipid-binding
protein (BLBP) is a member of the family of fatty acid-binding proteins
that was isolated from brain (Xu et al., 1996). The problem was to find
out which one of the many fatty acids known to bind to fatty acid—
binding proteins in general is the likely physiological ligand of BLBP.
To address this problem, comparative models of BLBP complexed with
many fatty acids were calculated by relying on the structures of the adi-
pocyte lipid-binding protein and muscle fatty acid-binding protein, in
complex with their ligands. The models were evaluated by binding and
site-directed mutagenesis experiments (Xu et al., 1996). The model of
BLBP indicated that its binding cavity was just large enough to accom-
modate docosahexaenoic acid (DHA) (Fig. 8). Because DHA filled the
BLBP-binding cavity completely, it was unlikely that BLBP would bind
a larger ligand. Thus, DHA was the ligand predicted to have the highest
affinity for BLBP. The prediction was confirmed by the measurement of
binding affinities for many fatty acids. It turned out that the BLBP-
DHA interaction was the strongest fatty acid—protein interaction known
to date. The binding affinities of the ligands correlated with the surface
areas buried by the protein-ligand interactions, as calculated from the
corresponding models, and explained why DHA had the highest affinity.
This case illustrates how a comparative model provides new information
that cannot be deduced directly from the template structures despite
their high, 60% sequence identity to BLBP. The two templates have
smaller binding sites and consequently different patterns of binding affi-

whole yeast ribosome (right) was calculated by fitting atomic rRNA and protein
models into the electron density of the 80S ribosomal particle, obtained by electron
microscopy at 15-A resolution. (From Spahn et al., 2001.) Most of the models for 40
out of the 75 ribosomal proteins were based on approx1mately 30% sequence identity
to their template structures.
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Figure 8 Modeling of the substrate specificity of the brain lipid-binding protein.
The fatty acid ligand is shown in the CPK representation. The small spheres in the
ligand-binding cavity are water molecules. Left panel, the model of the BLBP—oleic
acid complex. Right panel, the model of the BLBP—docosahexaenoic acid complex.
(From Xu et al., 1996.)

nities for the same set of ligands. The study also illustrated how new infor-
mation is obtained relative to the target—template alignment even when the
similarity between the target and the template sequences is high. The vo-
lumes and contact surfaces can be calculated only from a 3D model.

Example 2: Detection of Remote Relationships. Genes coding for
the core histones H2a, H2b, H3, and H4 of Giardia lamblia were se-
quenced (Wu et al., 1999b). The derived amino acid sequences of all four
histones were similar to their homologs in other eukaryotes, although they
were among the most divergent members of this protein family. Compara-
tive protein structure modeling combined with energy evaluation (Sippl,
1993) of the resulting models indicated that the G. lamblia core histones
individually and together can assume the same three-dimensional struc-
tures that were established by X-ray crystallography for Xenopus laevis
histones and the nucleosome core particle (Wu et al., 2000) (Fig. 9). Since
G. lamblia represents one of the earliest eukaryotes in many different mo-
lecular trees, the structure of its histones is potentially of relevance to un-
derstanding histone evolution. Our studies concluded that the G. lamblia
histones do not represent an intermediate stage between archaeal and eu-
karyotic histones.
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Figure9 Substantiating the fold similarity of remotely related proteins by compara-
tive modeling and assessment of the model energy. Comparative protein structure
models of the Giardia lamblia core histones, based on the known structures of the
Xenopus histones. The models and their evaluations indicate that the sequences of the
G. lamblia histones are consistent with the structure of the corresponding Xenopus
histones, with the exception of their terminal extension. (From Wu et al., 2000.)
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4.2 Automated, Large-Scale Comparative Modeling

In a few years, the genome projects will have provided us with the amino
acid sequences of millions of proteins—the catalysts, inhibitors, messengers,
receptors, transporters, and building blocks of the living organisms. The full
potential of the genome projects will be realized only once we assign and
understand the function of these new proteins. This understanding will be
facilitated by structural information for all or almost all proteins. Much of
the structural information will be provided by structural genomics (Sali,
1998; Burley et al., 1999; Vitkup et al., 2001), a large-scale determination
of protein structures by X-ray crystallography and nuclear magnetic reso-
nance spectroscopy, combined efficiently with accurate, automated, and
large-scale comparative protein structure modeling techniques (Sanchez et
al., 2000a). Given limitations of the current modeling techniques, it seems
reasonable to require models based on at least 30% sequence identity, cor-
responding to one experimentally determined structure per sequence family
rather than fold family. It was estimated that the structures of representa-
tives of approximately 16,000 sequence domain families need to be deter-
mined to provide comparative models based on at least 30% sequence
identity for 90% of the protein sequences (Vitkup et al., 2001).

To enable large-scale comparative modeling needed for structural
genomics, the steps of comparative modeling are being assembled into a
completely automated pipeline (Sanchez, Sali, 1998). Since many computer
programs for performing each of the operations in comparative modeling
already exist, it may seem trivial to construct a pipeline that completely
automates the whole process. In fact, it is not easy to do so in a robust
manner. For a good reasons, most of the tasks in modeling of individual
proteins, including template selection, alignment, and model evaluation, are
typically performed with significant human intervention. This semiauto-
mated modeling allows the use of the best tool for a particular problem at
hand and consideration of many different sources of information that are
difficult to take into account entirely automatically. Because large-scale
modeling can be performed only in a completely automated manner, the
main challenge is to build an automated and robust pipeline that approaches
the performance of a human expert as much as possible.

Domains in approximately 57% of the 1,200,000 known protein
sequences were modeled with MODELLER and deposited into a compre-
hensive database of comparative models, ModBase (http://guitar.rockefel-
ler.edu/modbase/) (Sanchez et al., 2000b; Pieper et al., 2002; Sanchez, Sali,
1998). While the current number of modeled proteins may look impressive,
usually only one domain per protein is modeled (on the average, proteins
have slightly more than two domains), and two-thirds of the models are
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based on less than 30% sequence identity to the closest template. The Web
interface to ModBase allows flexible querying for fold assignments,
sequence-structure alignments, models, and model assessments of interest.
An integrated sequence/structure viewer, ModView, allows inspection and
analysis of the query results (Ilyin, Sali, 2002). ModBase will be increasingly
interlinked with other applications and databases such that structures and
other types of information can easily be used for functional annotation.

Large-scale comparative modeling opens new opportunities for tack-
ling existing problems by virtue of providing many protein models from
many genomes. One example is the selection of a target protein for which
a drug needs to be developed. A good choice is a protein that is likely to
have high ligand specificity; specificity is important because specific drugs
are less likely to be toxic. Large-scale modeling facilitates imposing the
specificity filter in target selection by enabling a structural comparison of
the ligand binding sites of many proteins, either human or from other
organisms. Such comparisons may make it possible to select rationally the
target whose binding site is structurally most different from the binding sites
of all the other proteins that may potentially react with the same drug. For
example, when a human pathogenic organism needs to be inhibited, it may
be possible to select as the target that pathogen’s protein that is structurally
most different from all the human homologs. Alternatively, when a human
metabolic pathway needs to be regulated, the target identification could
focus on that particular protein in the pathway that has the binding site
most dissimilar from its human homologs.

ACKNOWLEDGEMENTS

We are grateful to the members of our group for many discussions about
protein structure prediction. Research was supported by NIH/NIGMS R01
GM54762, NIH/NIGMS P50 GM62529, Merck Genome Research Award,
and the Mathers Fund Award. Andras Fiser was a Burroughs Wellcome
Fund Postdoctoral Fellow and is a Charles Revson Foundation
Postdoctoral Fellow. Andrej Sali is an Irma T. Hirschl Trust Career
Scientist. This perspective is based partly on previous papers (Fiser et al.,
2001; Fiser, Sali, 2002; Fiser et al., 2002; Baker, Sali, 2001; Marti-Renom et
al., 2000).

REFERENCES

Abagyan R, Totrov M. 1994. Biased probability Monte Carlo conformational
searches and electrostatic calculations for peptides and proteins. J Mol Biol
235:983-1002.



198 Fiser and Sali

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ.
1997. Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Res 25:3389-3402.

Apostolico A, Giancarlo R. 1998. Sequence alignment in molecular biology. J
Comput Biol 5:173-196.

Aszodi A, Taylor WR. 1994. Secondary structure formation in model polypeptide
chains. Protein Eng 7:633-644.

Bairoch A, Apweiler R. 2000. The SWISS-PROT protein sequence database and its
supplement TTEMBL in 2000. Nucleic Acids Res 28:45-48.

Baker D, Sali A. 2001. Protein structure prediction and structural genomics. Science,
in press.

Barrientos LG, Campos-Olivas R, Louis JM, Fiser A, Sali A, Gronenborn AM.
2001. 1H, 13C, 15N resonance assignments and fold verification of a circular
permuted variant of the potent HIV-inactivating protein cyanovirin-N. J
Biomol NMR 19:289-290.

Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Rapp BA, Wheeler DL. 2002.
GenBank. Nucleic Acids Res 30:17-20.

Blake JD, Cohen FE. 2001. Pairwise sequence alignment below the twilight zone. J
Mol Biol 307:721-735.

Blundell TL, Sibanda BL, Sternberg MJ, Thornton JM. 1987. Knowledge-based
prediction of protein structures and the design of novel molecules. Nature
326:347-352.

Boissel JP, Lee WR, Presnell SR, Cohen FE, Bunn HF. 1993. Erythropoietin struc-
ture-function relationships. Mutant proteins that test a model of tertiary struc-
ture. J Biol Chem 268:15983-15993.

Bonneau R, Baker D. 2001. Ab initio protein structure prediction: progress and
prospects. Annu Rev Biophys Biomol Struct 30:173-189.

Bowie JU, Luthy R, Eisenberg D. 1991. A method to identify protein sequences that
fold into a known three-dimensional structure. Science 253:164—170.

Braun W, Go N. 1985. Calculation of protein conformations by proton—proton
distance constraints. A new efficient algorithm. J Mol Biol 186:611-626.

Bray JE, Todd AE, Pearl FM, Thornton JM, Orengo CA. 2000. The CATH
Dictionary of Homologous Superfamilies (DHS): a consensus approach for iden-
tifying distant structural homologues. Protein Eng 13:153-165.

Brenner SE, Chothia C, Hubbard TJ. 1998. Assessing sequence comparison methods
with reliable structurally identified distant evolutionary relationships. Proc Natl
Acad Sci USA 95:6073-6078.

Brooks CL III, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M.
1983. CHARMM: A program for macromolecular energy minimization and
dynamics calculations. J Comp Chem 4:187-217.

Browne WIJ, North ACT, Phillips DC, Brew K, Vanaman TC, Hill RC. 1969. A
possible three-dimensional structure of bovine lactalbumin based on that of hen’s
egg-white lysosyme. J Mol Biol 42:65-86.

Bruccoleri RE, Karplus M. 1987. Prediction of the folding of short polypeptide
segments by uniform conformational sampling. Biopolymers 26:137-168.



Comparative Protein Structure Modeling 199

Bruccoleri RE, Karplus M. 1990. Conformational sampling using high-temperature
molecular dynamics. Biopolymers 29:1847-1862.

Bujnicki JM, Elofsson, Fischer D, Rychlewski L. 2001. Livebench-1: Continuous
benchmarking of protein structure prediction servers. Protein Sci 10:352-361.
Burley SK, Almo SC, Bonanno JB, Capel M, Chance MR, Gaasterland T, Lin D,
Sali A, Studier FW, Swaminathan S. 1999. Structural genomics: beyond the

human genome project. Nat Genet 23:151-157.

Bystroff C, Baker D. 1998. Prediction of local structure in proteins using a library of
sequence-structure motifs. J Mol Biol 281:565-577.

Chinea G, Padron G, Hooft RW, Sander C, Vriend G. 1995. The use of position-
specific rotamers in model building by homology. Proteins 23:415-421.

Chothia C. 1992. One thousand families for the molecular biologist. Nature 357:543—
544.

Chothia C, Lesk AM. 1986. The relation between the divergence of sequence and
structure in proteins. EMBO J 5:823-826.

Chothia C, Lesk AM. 1987. Canonical structures for the hypervariable regions of
immunoglobulins. J Mol Biol 196:901-917.

Chothia C, Lesk AM, Tramontano A, Levitt M, Smith-Gill SJ, Air G, Sheriff S,
Padlan EA, Davies D, Tulip WR. 1989. Conformations of immunoglobulin
hypervariable regions. Nature 342:877-883.

Claessens M, Van Cutsem E, Lasters I, Wodak S. 1989. Modelling the polypeptide
backbone with “spare parts” from known protein structures. Protein Eng 2:335-
345.

Clore GM, Brunger AT, Karplus M, Gronenborn AM. 1986. Application of
molecular dynamics with interproton distance restraints to three-dimensional
protein structure determination. A model study of crambin. J Mol Biol
191:523-551.

Clore GM, Robien MA, Gronenborn AM. 1993, Exploring the limits of precision
and accuracy of protein structures determined by nuclear magnetic resonance
spectroscopy. J Mol Biol 231:82-102.

Cohen FE, Kuntz ID. 1989. Tertiary structure prediction. In: Fasman GD, ed.
Prediction of Protein Structure and the Principles of Protein Conformations.
New York: Plenum Press, pp 647-705.

Collura V, Higo J, Garnier J. 1993. Modeling of protein loops by simulated anneal-
ing. Protein Sci 2:1502-1510.

Deane CM, Blundell TL. 2001. CODA: a combined algorithm for predicting the
structurally variable regions of protein models. Protein Sci 10:599-612.

Domingues FS, Lackner P, Andreeva A, Sippl MJ. 2000. Structure-based evaluation
of sequence comparison and fold recognition alignment accuracy. J Mol Biol
297:1003-1013.

Eyrich V, Marti-Renom MA, Przybylski D, Fiser A, Pazos F, Valencia A, Sali A,
Rost B. 2000. EVA: continuous automatic evaluation of protein structure predic-
tion servers. Bioinformatics, 17:1242—1243.

Faber HR, Matthews BW. 1990. A mutant T4 lysozyme displays five different crystal
conformations. Nature 348:263-266.



200 Fiser and Sali

Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood
approach. J Mol Evol 17:368-376.

Fidelis K, Stern PS, Bacon D, Moult J. 1994. Comparison of systematic search and
database methods for constructing segments of protein structure. Protein Eng
7:953-960.

Fine RM, Wang H, Shenkin PS, Yarmush DL, Levinthal C. 1986. Predicting anti-
body hypervariable loop conformations. II: Minimization and molecular
dynamics studies of MCPC603 from many randomly generated loop conforma-
tions. Proteins 1:342-362.

Fiser A., Sali, A. Modeller: generation and refinement of homology models.
Methods Enzymol, in press 2002.

Fiser A, Do RK, 8Sali A. 2000. Modeling of loops in protein structures. Protein Sci
9:1753-1773.

Fiser A, Sanchez R, Melo F, Sali A. 2001. Comparative protein structure model-
ing. In: Watanabe M, Roux B, MacKerell AD, Jr, Becker O, eds.
Computational Biochemistry and Biophysics. New York: Marcel Dekker. pp
275-312.

Fiser A, Feig M, Brooks CL, III, Sali A. 2002. Evolution and Physics in
Comparative Protein Structure Modeling. Acc Chem Res 35:413-421.

Godzik A. 1996. Knowledge-based potentials for protein folding: what can we learn
from known protein structures? Structure 4:363-366.

Greer J. 1981. Comparative model-building of the mammalian serine proteases. J
Mol Biol 153:1027-1042.

Greer J. 1990. Comparative modeling methods: application to the family of the
mammalian serine proteases. Proteins 7:317-334,

Gribskov M, Veretnik S. 1996. Identification of sequence pattern with profile ana-
lysis. Methods Enzymol 266:198-212.

Guenther B, Onrust R, Sali A, O’Donnell M, Kuriyan J. 1997. Crystal structure of
the é-subunit of the clamp-loader complex of E. coli DNA polymerase III. Cell
91:335-345.

Havel TF, Snow ME. 1991. A new method for building protein conformations
from sequence alignments with homologues of known structure. J Mol Biol
217:1-7.

Henikoff S, Henikoff JG. 2000. Amino acid substitution matrices. Adv Protein Chem
54:73-97.

Henikoff JG, Pietrokovski S, McCallum CM, Henikoff S. 2000. Blocks-based meth-
ods for detecting protein homology. Electrophoresis 21:1700-1706.

Higo J, Collura V, Garnier J. 1992, Development of an extended simulated annealing
method: application to the modeling of complementary determining regions of
immunoglobulins. Biopolymers 32:33-43.

Holm L, Sander C. 1991. Database algorithm for generating protein backbone and
side-chain coordinates from a C alpha trace application to model building and
detection of coordinate errors. J Mol Biol 218:183-194.

Holm L, Sander C. 1997. Dali/FSSP classification of three-dimensional protein folds.
Nucleic Acids Res 25:231-234.



Comparative Protein Structure Modeling 201

Hooft RW, Vriend G, Sander C, Abola EE. 1996. Errors in protein structures.
Nature 381:272.

Howell PL, Almo SC, Parsons MR, Hajdu J, Petsko GA. 1992. Structure determi-
nation of turkey egg-white lysozyme using Laue diffraction data. Acta Crystallogr
B 48 (Pt 2):200-207.

Ilyin V, Sali, A. Modview. Bioinformatics, in press, 2002.

Jaroszewski L, Rychlewski L, Zhang B, Godzik A. 1998. Fold prediction by a
hierarchy of sequence, threading, and modeling methods. Protein Sci 7:1431—
1440.

Jaroszewski L, Rychlewski L, Godzik A. 2000. Improving the quality of twilight-
zone alignments. Protein Sci 9:1487-1496.

Jennings AJ, Edge CM, Sternberg MJ. 2001. An approach to improving multiple
alignments of protein sequences using predicted secondary structure. Protein Eng
14:227-231.

Johnson MS, Overington JP. 1993. A structural basis for sequence comparisons. An
evaluation of scoring methodologies. J Mol Biol 233:716-738.

Johnson MS, Srinivasan N, Sowdhamini R, Blundell TL. 1994, Knowledge-based
protein modelling. CRC Crit Rev Biochem Mol Biol 29:1-68.

Jones DT. 1997. Progress in protein structure prediction. Curr Opin Struct Biol
7:377-387.

Jones DT, Taylor WR, Thornton JM. 1992. A new approach to protein fold recog-
nition. Nature 358:86-89.

Jones TA, Thirup S. 1986. Using known substructures in protein model building and
crystallography. EMBO J 5:819-822,

Kabsch W, Sander C. 1984. On the use of sequence homologies to predict protein
structure: identical pentapeptides can have completely different conformations,
Proc Natl Acad Sci USA 81:1075-1078.

Kelley LA, MacCallum RM, Sternberg MJ. 2000. Enhanced genome
annotation using structural profiles in the program 3D-PSSM. J Mol Biol
299:499-520.

Koehl P, Delarue M. 1995. A self-consistent mean field approach to simultaneous
gap closure and side-chain positioning in homology modeling. Nat Struct Biol
2:163-170.

Krogh A, Brown M, Mian IS, Sjolander K, Haussler D. 1994. Hidden Markov
models in computational biology. Applications to protein modelling. J Mol
Biol 235:1501-1531.

Laskowski RA, Moss DS, Thornton JM. 1993. Main-chain bond lengths and bond
angles in protein structures. J Mol Biol 231:1049—1067.

Lesk AM, Chothia C. 1980. How different amino acid sequences determine similar
protein structures: the structure and evolutionary dynamics of the globins. J Mol
Biol 136:225-270.

Lessel U, Schomburg D. 1994. Similarities between protein 3-D structures. Protein
Eng 7:1175-1187.

Levitt M. 1992. Accurate modeling of protein conformation by automatic segment
matching. J Mol Biol 226:507-533.



202 Fiser and Sali

Lo CL, Ailey B, Hubbard TJ, Brenner SE, Murzin AG, Chothia C. 2000.
SCOP: a structural classification of proteins database. Nucleic Acids Res
28:257-259.

Luthy R, Bowie JU, Eisenberg D. 1992. Assessment of protein models with three-
dimensional profiles. Nature 356:83-85.

MacKerell AD Jr., Bashford D, Bellott M, Dunbrack RL, Jr., Evanseck JD, Field
MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Muczera
K, Lau FTK, Mattos C, Michnik S, Nguyen DT, Ngo T, Prodhom B, reiher WE,
ITI, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M,
Wiorkiewicz-Kuczera J, Yin D, Karplus M. 1998. All-atom empirical potential
for molecular modleing and dynamics studies of proteins. J Phys Chem B
102:3586-3616.

Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A. 2000.
Comparative protein structure modeling of genes and genomes. Annu Rev
Biophys Biomol Struct 29:291-325.

Marti-Renom MA, Madhusudhan MS, Fiser A, Rost B, Sali A. 2002. Reliability of
assessment of protein structure prediction methods. Structure 10:435-440.

Martin AC, MacArthur MW, Thornton JM. 1997. Assessment of comparative mod-
eling in CASP2. Proteins Suppl 1:14-28.

Matsumoto R, Sali A, Ghildyal N, Karplus M, Stevens RL. 1995. Packaging of
proteases and proteoglycans in the granules of mast cells and other hematopoietic
cells. A cluster of histidines on mouse mast cell protease 7 regulates its binding to
heparin serglycin proteoglycans. J Biol Chem 270:19524-19531.

Mezei M. 1998. Chameleon sequences in the PDB. Protein Eng 11:411-414,

Modi S, Paine MJ, Sutcliffe MJ, Lian LY, Primrose WU, Wolf CR, Roberts GC.
1996. A model for human cytochrome P450 2D6 based on homology modeling
and NMR studies of substrate binding. Biochemistry 35:4540-4550.

Moult J, James MN. 1986. An algorithm for determining the conformation of poly-
peptide segments in proteins by systematic search. Proteins 1:146—163.

Moult J, Pedersen JT, Judson R, Fidelis K. 1995. A large-scale experiment to assess
protein structure prediction methods. Proteins 23:ii-iv.

Nagarajaram HA, Reddy BV, Blundell TL. 1999. Analysis and prediction of inter-
strand packing distances between beta-sheets of globular proteins. Protein Eng
12:1055-1062.

Ohlendorf DH. Accuracy of refined protein structures. Comparison of four indepen-
dently refined models of human interleukin 1 beta. Acta Crystallogr D Biol
Crystallogr D50:808-812. 1994.

Oliva B, Bates PA, Querol E, Aviles FX, Sternberg MJ. 1997. An automated classi-
fication of the structure of protein loops. J Mol Biol 266:814-830.

Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM. 1997.
CATH—a hierarchic classification of protein domain structures. Structure
5:1093-1108.

Pearson WR. 1995. Comparison of methods for searching protein sequence data-
bases. Protein Sci 4:1145-1160.



Comparative Protein Structure Modeling 203

Pearson WR. 2000. Flexible sequence similarity searching with the FASTA3 pro-
gram package. Methods Mol Biol 132:185-219,

Pieper U, Eswar N, Ilyin VA, Stuart A, Sali A. 2002. ModBase, a database of
annotated comparative protein structure models. Nucleic Acids Res
30:255-259.

Reddy BV, Blundell TL. 1993. Packing of secondary structural elements in proteins.
Analysis and prediction of interhelix distances. J Mol Biol 233:464-479.

Retief JD. 2000. Phylogenetic analysis using PHYLIP. Methods Mol Biol 132:243—
258.

Ring CS, Cohen FE. 1993. Modeling protein structures: construction and their
applications. FASEB J 7:783-790.

Ring CS, Kneller DG, Langridge R, Cohen FE. 1992, Taxonomy and conforma-
tional analysis of loops in proteins. J Mol Biol 224:685-699.

Ring C8, Sun E, McKerrow JH, Lee GK, Rosenthal PJ , Kuntz ID, Cohen FE. 1993.
Structure-based inhibitor design by using protein models for the development of
antiparasitic agents. Proc Natl Acad Sci USA 90:3583-3587.

Rost B. 1999. Twilight zone of protein sequence alignments. Protein Eng 12:85-94.

Rufino SD, Donate LE, Canard LH, Blundell TL. 1997, Predicting the conforma-
tional class of short and medium-size loops connecting regular secondary struc-
tures: application to comparative modelling. J Mol Biol 267:352-367.

Sali A. 1995. Modeling mutations and homologous proteins. Curr Opin Biotechnol
6:437-451.

Sali A. 1998. 100,000 protein structures for the biologist. Nat Struct Biol 5:1029-
1032.

Sali A, Blundell TL. 1993. Comparative protein modeling by satisfaction of spatial
restraints. J Mol Biol 234:779-815.

Sali A, Overington JP. 1994. Derivation of rules for comparative protein modeling
from a database of protein structure alignments. Protein Sci 3:1582—1596.

Sali A, Overington JP, Johnson MS, Blundell TL. 1990. From comparisons of pro-
tein sequences and structures to protein modelling and design. Trends Biochem
Sci 15:235-240.

Sali A, Matsumoto R, McNeil HP, Karplus M, Stevens RL. 1993. Three-dimen-
sional models of four mouse mast cell chymases. Identification of proteoglycan
binding regions and protease-specific antigenic epitopes. J Biol Chem 268:9023—
9034.

Sali A, Potterton L, Yuan F, van Vlijmen H, Karplus M. 1995. Evaluation of
comparative protein modeling by MODELLER. Proteins 23:318-326.

Samudrala R, Moult J. 1998. A graph-theoretic algorithm for comparative modeling
of protein structure. J Mol Biol 279:287-302.

Sanchez R, Sali A. 1997a. Advances in comparative protein-structure modeling. Curr
Opin Struct Biol 7:206-214.

Sanchez R, Sali A. 1997b. Evaluation of comparative protein structure modeling by
MODELLER-3. Proteins Suppl 1:50-58.

Sanchez R, Sali A. 1998. Large-scale protein structure modeling of the
Saccharomyces cerevisiae genome. Proc Natl Acad Sci USA 95:13597-13602.



204 Fiser and Sali

Sanchez R, Sali A. 2000. Comparative protein structure modeling. Introduction and
practical examples with modeller. Methods Mol Biol 143:97-129.

Sanchez R, Pieper U, Melo F, Eswar N, Marti-Renom MA, Madhusudhan MS,
Mirkovic N, Sali A. 2000a. Protein structure modeling for structural genomics.
Nat Struct Biol 7 Suppl:986-990.

Sanchez R, Pieper U, Mirkovic N, de Bakker PI, Wittenstein E, Sali A. 2000b.
MODBASE, a database of annotated comparative protein structure models.
Nucleic Acids Res 28:250-253.

Sauder JM, Arthur JW, Dunbrack RL, Jr. 2000. Large-scale comparison of
protein sequence alignment algorithms with structure alignments. Proteins
40:6-22.

Sheng Y, Sali A, Herzog H, Lahnstein J, Krilis SA. 1996. Site-directed mutagenesis
of recombinant human beta 2-glycoprotein I identifies a cluster of lysine residues
that are critical for phospholipid binding and anti-cardiolipin antibody activity. J
Immunol 157:3744-3751.

Shenkin PS, Yarmush DL, Fine RM, Wang HJ, Levinthal C. 1987. Predicting anti-
body hypervariable loop conformation. I. Ensembles of random conformations
for ringlike structures. Biopolymers 26:2053-2085.

Shi J, Blundell TL, Mizuguchi K. 2001. FUGUE: sequence-structure homology
recognition using environment-specific substitution tables and structure-depen-
dent gap penalties. J] Mol Biol 310:243-257.

Sibanda BL, Blundell TL, Thornton JM. 1989. Conformation of beta-hairpins in
protein structures. A systematic classification with applications to modelling by
homology, electron density fitting and protein engineering. J Mol Biol 206:759—
777.

Sippl MJ. 1990. Calculation of conformational ensembles from potentials of mean
force. An approach to the knowledge-based prediction of local structures in
globular proteins. J Mol Biol 213:859-883.

Sippl MJ. 1993. Recognition of errors in three-dimensional structures of proteins.
Proteins 17:355-362.

Sippl MJ. 1995. Knowledge-based potentials for proteins. Curr Opin Struct Biol
5:229-235.

Smith TF, Lo CL, Bienkowska J, Gaitatzes C, Rogers RG, JIr, Lathrop R. 1997.
Current limitations to protein threading approaches. J Comput Biol 4:217-
225.

Spahn CM, Beckmann R, Eswar N, Penczek PA, Sali A, Blobel G, Frank J. 2001.
Structure of the 808 ribosome from Saccharomyces cerevisice—tRNA-ribosome
and subunit-subunit interactions. Cell 107:373-386.

Srinivasan N, Blundell TL. 1993. An evaluation of the performance of an automated
procedure for comparative modeling of protein tertiary structure. Protein Eng
6:501-512.

Sutcliffe MJ, Haneef I, Carney D, Blundell TL. 1987. Knowledge-based model-
ling of homologous proteins. Part I: Three-dimensional frameworks derived
from the simultaneous superposition of multiple structures. Protein Eng 1:377-
384.



Comparative Protein Structure Modeling 205

Sutcliffe MJ, Dobson CM, Oswald RE. 1992. Solution structure of neuronal bun-
garotoxin determined by two-dimensional NMR spectroscopy: calculation of
tertiary structure using systematic homologous model building, dynamical simu-
lated annealing, and restrained molecular dynamics. Biochemistry 31:2962—
2970.

Taylor WR, Hatrick K. 1994. Compensating changes in protein multiple sequence
alignments. Protein Eng 7:341-348,

Teichmann SA, Chothia C, Gerstein M. 1999. Advances in structural genomics. Curr
Opin Struct Biol 9:390-399.

Topham CM, McLeod A, Eisenmenger F, Overington JP, Johnson MS, Blundell TL.
1993. Fragment ranking in modelling of protein structure. Conformationally
constrained environmental amino acid substitution tables. J Mol Biol 229:194—
220.

Torda AE. 1997. Perspectives in protein-fold recognition. Curr Opin Struct Biol
7:200-205.

Totrov M, Abagyan R. 1994, Detailed ab initio prediction of lysozyme-antibody
complex with 1.6A accuracy. Nat Struct Biol 1:259-263.

Unger R, Harel D, Wherland S, Sussman JL. 1989. A 3D building blocks approach
to analyzing and predicting structure of proteins. Proteins 5:355-373.

Vakser IA. 1995, Protein docking for low-resolution structures. Protein Eng 8:371-
377.

van Gelder CW, Leusen FJ, Leunissen JA, Noordik JH. 1994. A molecular dynamics
approach for the generation of complete protein structures from limited coordi-
nate data. Proteins &:174-185.

van Vlijmen HW, Karplus M. 1997. PDB-based protein loop prediction: parameters
for selection and methods for optimization. J Mol Biol 267:975-1001.

Vernal J, Fiser A, Sali A, Muller M, Jose CJ, Nowicki C. 2002. Probing the speci-
ficity of a trypanosomal aromatic alpha-hydroxy acid dehydrogenase by site-
directed mutagenesis. Biochem Biophys Res Commun 293:633-639.

Vitkup D, Melamud E, Moult J, Sander C. 2001. Completeness in structural geno-
mics. Nat Struct Biol 8:559-566.

Westbrook J, Feng Z, Jain S, Bhat TN, Thanki N, Ravichandran V, Gilliland GL,
Bluhm W, Weissig H, Greer DS, Bourne PE, Berman HM. 2002. The Protein
Data Bank: unifying the archive. Nucleic Acids Res 30:245-248.

Wolf E, Vassilev A, Makino Y, Sali A, Nakatani Y. Burley SK. 1998. Crystal
structure of a GCNS5-related N-acetyltransferase: Serratia marcescens aminogly-
coside 3-N-acetyltransferase. Cell 94:439-449.

Wu G, Fiser A, ter Kuile B, Sali A, Muller M. 1999a, Convergent evolution of
Trichomonas vaginalis lactate dehydrogenase from malate dehydrogenase. Proc
Natl Acad Sci USA 96:6285-6290.

Wu G, Fiser A, ter Kuile B, Sali A, Muller M. 1999, Convergent evolution of
Trichomonas vaginalis lactate dehydrogenase from malate dehydrogenase. Proc
Natl Acad Sci USA 96:6285-6290.

Wu G, McArthur AG, Fiser A, Sali A, Sogin ML, Miiller M. 2000. Core histones of
the amitochondriate protist, Giardia lamblia. Mol Biol Evol 17:1156-1163.



206 Fiser and Sali

Xu LZ, Sanchez R, Sali A, Heintz N. 1996. Ligand specificity of brain lipid—-binding
protein. J Biol Chem 271:24711-24719.

Zemla A, Venclovas, Moult J, Fidelis K. 2001. Processing and evaluation of predic-
tions in CASP4. Proteins 45 Suppl 5:13-21.

Zheng Q, Rosenfeld R, Vajda S, DeLisi C. 1993. Determining protein loop confor-
mation using scaling-relaxation techniques. Protein Sci 2:1242-1248.

Zheng Q, Rosenfeld R, DeLisi C, Kyle DJ. 1994. Multiple copy sampling in protein
loop modeling: computational efficiency and sensitivity to dihedral angle pertur-
bations. Protein Sci 3:493-506.





