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Models of macromolecular assemblies are essential for a mechanistic des-
cription of cellular processes. Such models are increasingly obtained by
fitting atomic-resolution structures of components into a density map of the
whole assembly. Yet, current density-fitting techniques are frequently insuf-
ficient for an unambiguous determination of the positions and orientations
of all components. Here, we describe MultiFit, a method used for simul-
taneously fitting atomic structures of components into their assembly
density map at resolutions as low as 25 A. The component positions and
orientations are optimized with respect to a scoring function that includes
the quality-of-fit of components in the map, the protrusion of components
from the map envelope, and the shape complementarity between pairs of
components. The scoring function is optimized by our exact inference
optimizer DOMINO (Discrete Optimization of Multiple INteracting Objects)
that efficiently finds the global minimum in a discrete sampling space.
MultiFit was benchmarked on seven assemblies of known structure, con-
sisting of up to seven proteins each. The input atomic structures of the
components were obtained from the Protein Data Bank, as well as by
comparative modeling based on a 16-99% sequence identity to a template
structure. A near-native configuration was usually found as the top-scoring
model. Therefore, MultiFit can provide initial configurations for further
refinement of many multicomponent assembly structures described by
electron microscopy.

© 2009 Elsevier Ltd. All rights reserved.
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Introduction

Structural description of macromolecular assem-
blies is essential for a mechanistic understanding of

the cell.' The scope of the problem is revealed by
protein interaction studies: The yeast cell contains
approximately 800 dlstmct core complexes of 4.9
proteins, on average,” most of whlch have not yet
been structurally characterized.” The human pro-
teome is likely to have an order of magnitude
more distinct assemblies than the yeast cell.
Therefore, there are thousands of biologically
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relevant assemblies whose structures still need to
be determined.

Structural determination of macromolecular
assemblies is a major challenge in structural biology.
X-ray crystallography can provide structures of
stable assemblies at atomic resolution.* However,
there are many other assemblies that are refractory
to crystallographic determination. A low-resolution
structure of these assemblies can be determined by
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cryo-electron microscopy (cryoEM).” The resolution
usually ranges from 4 A, where the backbone of the
protein can be traced, to 30 A, where only the outer
envelope of the assembly is visible.®

The 1ncreas1ng numbers of atomic and cryoEM
data sets”® have stimulated the development of
computational techniques for fitting atomic struc-
tures of assembly components into a cryoEM density
map of the whole assembly. The result is a pseudo-
atomic model of the assembly that can reveal
significant insights into its structure, dynamics,
function, and evolution.” "

Here, we focus on determining the positions and
orientations (i.e., placements) of multiple atomic com-
ponent models within the assembly density. When the
structure of a homologous assembly (template) is
available, the placements of the components can be
computed by fitting the template into the target
assembly density, superposing the target compo-
nent models on the corresponding template com-
ponents, and refining the model.'*1> Alternatively,
the component positions can be determined experi-
mentally by protein-labeling methods relymg, for
example, on gold-labeled antibodies.'® However,
when only a cryoEM map and component structures
are available, a general method for solving the
configuration problem is not yet available.

A sequential method for fitting multiple compo-
nents into an assembly map has been described.'”
The method starts by fitting of the largest compo-
nent into the map, followed by iterative fitting of the
largest remaining component into the unoccupied
density until all components have been fitted. The
fitting of a component into a given map can be per-
formed manually using interactive visualization
tools.'® More desirably, automated fitting methods
that assess the placement of a component by a fit
between the component and a segmented® or com-
plete density of the assembly can also be used; the fit
is optimized over the translational and rotational
degrees of freedom of a rigid component relative to
the map ? The sequential method is applicable if the
remaining components can be unambiguously fitted
into the unoccupied densities. Unfortunately, this
condition is generally not satisfied, especially when
the resolution is low, the number of components is
large, and component models are inaccurate.”” For
example, sequential fitting is not expected to work for
the 19S proteasome with 20 component proteins,*' for
the mammalian ribosome for which 30 of 80 proteins
are not present in known archaeal or bacterial
ribosomes,'* or for the ryanodine receptor isoform 1
for which some domains are poorly modeled while no
template is available for others.”

Here, we describe a method named MultiFit for
determining the configuration of multiple high-
resolution component structures based on the
quality-of-fit of each component into the density
map, the protrusion of each component from the
map envelope, and the shape complementarity bet-
ween pairs of components. The combination of these
terms reduces the ambiguity of the final solution,
compared to using any individual term on its own.

The task of sampling the configuration space is
challenging because the placement of a component
depends on the placement of other components.
MultiFit tackles this combinatorial challenge by
reformulating the problem as an inferential optimi-
zation over a discrete sampling space. In outline, a
discrete set of possible placements for each compo-
nent is first generated independently of other com-
ponents. Next, the globally optimal combination of
placements with respect to a scoring function is
found by a combination of branch-and-bound search
and the DOMINO (Discrete Optimization of Multi-
ple INteracting Objects) inferential optimizer. The
relative translations and orientations of pairs of
components in the best-ranking configurations are
then refined; specifically, a refined discrete sampling
space is generated by pairwise geometrical docking
between interacting components, and the optimal
refined combination of placements is again found
using DOMINO. We successfully validated the
method on a simulated benchmark of six assemblies
consisting of up to seven proteins each. In addition,
for a more realistic test, we determined the config-
uration of four domains in the subunit of GroES-
ADP7-GroEL-ATP7 chaperonin from Escherichia coli
based on an experimentally determined map at a
resolution of 23.5 A.*> A near-native configuration
scored best in four test cases, third best in two cases,
and fourth best in the remaining case.

Below, we begin with a detailed description of
general combinatorial optimization by DOMINO,
followed by a formal definition of the component
configuration problem and the MultiFit algorithm
for a solution using DOMINO (Theory). We then
demonstrate the performance of MultiFit on bench-
mark cases (Results). Finally, we discuss the implica-
tions of MultiFit and DOMINO for the structural
characterization of large assemblies (Discussion).

Theory

Combinatorial optimization by DOMINO

DOMINO applies a divide-and-conquer approach
to efficiently find solutions with the globally optimal
score within a discrete sampling space (Fig. 1).***
The idea is to decompose the set of variables into
relatively uncoupled but potentially overlapping
subsets that can be sampled independently of each
other, and then to efficiently gather the subset solu-
tions into the global minimum. The strength of this
approach derives from the decomposition proce-
dure that helps reduce the size of the search space
from exponential in the number of components in
the whole system to exponential in the number of
components in the largest subset. Next, we describe
DOMINOQO's application to the minimization of a
scoring function F corresponding to a sum of single-
body terms {«;} and pairwise terms {p; ;}:
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Fig. 1. DOMINO outline. (1) The DOMINO optimizer is illustrated with the scoring function F of 8 variables {y;}
composed of a sum between 3 single-body terms {«;} and 11 pairwise terms {$;;}. The scoring function is encoded in the
graphical model G. (2) (I) Decomposition of the graphical model results in a junction tree T.?#25 The graphical model is
first triangulated; a graph is triangulated if there are no cycles with more than three edges without a chord (a chord is an
edge connecting two nonadjacent nodes in a cycle). The triangulation procedure adds edges (dotted lines) to the graphical
model until no cycle is chordless. The triangulated graphical model is then converted into a complete subset graph. The
nodes of the complete subset graph are maximum cliques in the triangulated graphical model (gray circles); a maximum
clique is a subgraph whose nodes are connected directly to each other and are not all part of another clique. The weight of
an edge in the complete subset graph is the number of shared variables between the adjacent subsets, as indicated; edges
of weight zero are not shown. Next, the junction tree is the maximum spanning tree of the complete subset graph; a
maximal spanning tree of a graph spans all of the nodes without cycles, using a subset of the original edges with the
maximal sum of their weights. (I) The sampling space of each variable is discretized. (III) Finally, the globally optimal
solution of F is gathered from enumerated subset states by passing messages between subset nodes. The numbers on the
edges indicate a valid sequence of message passing.

where {y;} are the variables being optimized (e.g., in
MultiFit, these variables are the positions and
orientations of the components). The scoring func-
tion F is represented by a graphical model G=(V,E).
The graphical model G of the scoring function F is a
graph whose nodes V correspond to the variables
{yi}, and edges E connect pairs of nodes. The weight
of a node corresponding to y; is ;, and the weight of
an edge between nodes corresponding to y; and y; is
p;;- Thus, the scoring function F is the sum of all
node and edge weights.

The problem of finding the minimum of the
scoring function F is equivalent to the maximum a
posteriori problem in a graphical model. This
problem is known to be NP-hard (nondeterministic
polynomial—time hard) for an arbitrary graph G;*°
NP-hard is a class of decision, search, and optimiza-
tion problems whose computing time increases at
least exponentially with the number of optimized
variables. When a graphical model has, at most, one
path between any two given nodes (i.e., it does
not contain cycles and thus is a singly connected
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graphical model or a tree), it can be eff1c1ently opti-
mized by the belief-propagation algorithm.”’
Unfortunately, the belief-propagation algorithm is
not guaranteed to converge into the globally optimal
solution for graphs with cycles, such as the graphical
models used for the MultiFit application. Therefore,
to ensure that we find the global minimum of G effi-
ciently, we apply a divide-and-conquer approach.
First, the variables to be optimized are decomposed

into smaller relatively uncoupled but potentially
overlapping subsets, using a junction tree construc-
tion algorithm (the decomposition step). Second, a
discrete sampling space is generated for each variable
(the variable sampling step; e.g., by uniform sam-
pling). Third, the discrete states of the individual
subsets are constructed and gathered into the globally
optimal solution, using the belief-propagation algo-
rithm (the gathering step). Graph theory provides

Input

- 4&"' ,.;; r‘i\g"
R

pr1 prz ARPCH
38%, 5.1A 48%, 2.5A  16%, 6,1A
3

ARPC2 ARPC3  ARPC4  ARPC5
L 29%,21.4A  99%, 0.4A 29%,14.3A 94%, 5.5A

q@ Arp2/3 a;éembly density map

r1. Construction of anchor graph‘

Y

Coarse-grained sampling

(3. Optimization

3.1 Branch-and-bound

(2. Discretization

junction tree

3.2 For each selected mapping

Component
junction tree

@@  46@ ey, @G
—_— :
006 ©6000as

L Complete mappings
@ @ @

Partial mappings

For each of the top 20 ranking models

Y

Fine-grained sampling

~

1 4. Discretization 5. Optimization

Component
junction tree

Output

Fig. 2 (legend on next page)



184

Component Configuration on a CryoEM Map

efficient algorithms for decomposition (i.e., junction
tree construction) and gathering (i.e., belief propaga-
tion). Next, we elaborate on each of the three steps.

In the decomposition step, the graphical model G is
converted into a tree T whose nodes U are potentially
overlapping subsets of variables {y;} (Fig. 1). Impor-
tantly, for any two nonadjacent subsets in T that share
some variables, the subsets that connect them must
also contain these variables (i.e., T is a junction tree).
For any junction tree, it is possible to gather the
discrete states of individual subsets into the globally
optimal solution using the belief-propagation algo-
rithm. For maximum efficiency, we aim toward
decomposing the graphical model into the junction
tree such that the size of the largest subset is minimal,
which is an NP-hard problem. We use the minimum-
degree method that was shown empirically to result
in smallest subsets for sparse graphical models.”

In the variable sampling step, a discrete set of
values for each variable is created. The details of this
discretization may depend on the scoring function F.
Most generally, uniform sampling over a relevant
range of values can be used. A potentially better
possibility is to use the union of the local minima of
scoring functions spanned by the variables in the
subsets containing the discretized variable.

In the final step (gathering step), the HUGIN ver-
sion of the belief-propagation algorithm®” is applied
to the junction tree T to find the global minimum
of F (Fig. 1). The computational complexity of the
HUGIN algorithm is O(| U | L*), where s is the size of
the largest subset of T, and L is the number of values
of a variable v;.

The belief-propagation algorithm is based on pass-
ing messages between the nodes (i.e., subsets of
variables) of the junction tree. A subset is allowed to
send a message to a neighbor subset if it has received
messages from all of its remaining neighbor subsets.

Thus, propagation of messages is initiated in subsets
connected only to a single subset (i.e., the leaf
subsets) and proceeds to the neighboring subsets
until some subset receives messages from all of its
neighbors (i.e., the root subset). The content of a
message to a target subset is a vector of the minimal
values of the partial scoring function F over the
variables in all previously visited subsets and the
target subset, for each combination of values of the
remaining variables in the target subset; a partial
scoring function over a subset of variables includes
only those terms of F that involve these variables.
Messages from the root subset are then sent back to
the other subsets, completing the message-passing
process when the leave subsets receive back the
messages from the root subset. For messages from
the root subset, the partial scoring function is the
scoring function F (because all subsets have been
already visited), and thus each subset that received a
message from all other subsets can infer the values
of its variables in the global minimum. The
efficiency of message passing derives from enumer-
ating combinations of values for only those variables
that are shared between different subsets.

MultiFit: Simultaneous fitting of multiple
components into a density map of their
assembly

The goal is to find the positions and orientations
(i.e., placements) of components (e.g., subcom-
plexes, proteins, domains, and secondary structure
segments), represented at atomic resolution, within
a cryoEM density map of their assembly. We express
this structure characterization challenge as a combi-
natorial optimization problem. Next, we outline a
representation of the modeled system, a scoring
function, and an optimization algorithm.

Fig. 2. MultiFit outline. The MultiFit algorithm is illustrated using an assembly between models of Rpb1 (red), Rpb2
(yellow), ARPC1 (light green), ARPC2 (blue), ARPC3 (gray), ARPC4 (dark green), and ARPCS5 (purple) (PDB entry 1tyq).
The component-template sequence identities and C* RMSDs are indicated. The input to MultiFit is the assembly density
map (gray mesh) and the atomic structures of the individual components (top left). The output is a ranked list of assembly
models that optimize the MultiFit scoring function (one model is shown on the bottom right). (1) The anchor points (the
seven labeled nodes) are constructed for the input density map by k-cluster; the nine gray edges indicate pairs of anchor
points that are sufficiently close to allow components placed in their vicinity to interact with each other. (2) The sampling
space of component placements is discretized by fitting each of the seven components around each of the seven anchor
points (regions) and by selecting a number of top-ranking placements for each component in each region; the small
colored spheres indicate placement centroids. (3) The optimal combination of component placements is found by
optimizing the scoring function S for each mapping of components to anchor points using DOMINO. (3.1) For efficiency,
we replace the enumeration by a branch-and-bound procedure that eliminates some of the mappings and makes use of
partial results. In the branch stage, we first decompose the anchor graph into an anchor junction tree using DOMINO's
decomposition algorithm (Fig. 1). The top 60% mappings of components to anchor points for each subset of anchor points
(partial mappings) are found and stored by iterating over all possible partial mappings; the color of the circle indicates
which component is mapped to the anchor point. The partial mappings are scored by partial scoring function S, including
only the terms involving the mapped components. Complete mappings consistent with the stored partial mappings are
generated efficiently with a hashing procedure (not described). (3.2) Next, for each of these complete mappings, the
optimal combination of placements for the seven components is found by DOMINO; the color of the solid circles in the
component junction tree indicates the component mapped to the corresponding anchor point in the anchor junction tree.
The molecular model shown has a mapping score of 0 and a rank of 10th. (4) The 20 top-scoring coarse models are further
refined. A refined sampling space is generated for each coarse configuration by docking pairs of its interacting
components and by selecting only those placements that are approximately consistent with the initial coarse
configuration. (5) DOMINO is applied again to find the optimal combination of placements for the seven components;
the molecular model shown has a mapping score of 0 and a rank of 4th.
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Representation

The assembly density map is represented by a
three-dimensional grid in which every voxel is
assigned an estimated density value. The compo-
nents are represented by their atoms and remain rigid
throughout the entire optimization process (Fig. 2).

Scoring

We evaluate potential configurations based on the
quality-of-fit of individual components into the den-
sity map, the protrusion of each component from the
map envelope, and the shape complementarity
between pairs of components.

Optimization

The component configuration that optimizes the
scoring function is identified by a combinatorial
optimization protocol consisting of three stages: (i)
anchor graph construction, (i) coarse-grained sam-
pling, and (iii) fine-grained sampling (Fig. 2). In anchor
graph construction, the density map is discretized into
regions, and the connectivity between them is
calculated. In coarse-grained sampling, the sampling
space is first discretized by fitting each of the
components into each of the map regions and selecting
a number of top-ranking placements for each compo-
nent in each region. Next, a branch-and-bound search
through all mappings of components to regions
combined with DOMINO finds 20 top-scoring config-
urations. In fine-grained sampling, each of these top
configurations is refined by DOMINO; a refined
sampling space is generated for each coarse config-
uration by docking pairs of its interacting components
and selecting only those placements that are approxi-
mately consistent with the initial coarse configuration.

Scoring function for MultiFit
The score of placements of N components® in an
assembly density map is:

Z{‘Pl

¢@1(x;) is the quality-of-fit of x; into the assembly
density map D. In the extreme case, the configura-
tion that optimizes }; ¢;(x;) may occupy only the
highest-density region in the assembly density map.
To overcome this problem, we add two geometric
terms (@2 and ¢3) to the scoring function. The
component protrusion term @5 (x;) scores how well x;
is placed inside the density envelope. The interac-
tion term @3(x;x;) scores the pairwise shape com-
plementarity between the structures x; and x;.

S(xq, - + @y (x;)} + Z% (x,,xj)

<]

Quality-of-fit term

The fit of a given structure x; into the assembly
density map D is usually assessed by a cross-
correlation measure between the densities of x; and
the assembly.>* Here, we use the “normalized

f1tt1ng score” C as implemented in Mod-EM (Eq. (2)
in Topf et al.*>'); the density of x; is simulated at the
same resolution as the assembly density map D,
using the uniform-sphere model. However, C is
insufficient for comparing placements of different
components because small domains have a better
chance of higher cross-correlation with the map.’
Thus, we calculate the quality-of-fit of a component
into a map by expressing C as a Z-score (C—m)/s,
where m and s are, respectively, the mean and
standard deviation of a reference distribution of C.
The reference distribution is generated by optimally
fitting randomly selected, similarly sized protein
structures into simulated maps of randomly selected,
similarly sized protein structures (F. Davis, M. S.
Madhusudan, N. Eswar, A. Sali, and M. Topf,
unpublished results).

Interaction term

The pairwise shape complementarity score bet-
ween main-chain atoms of the structures x; and x; is
calculated as the weighted sum of a reward for
interaction surfaces and a penalty for steric clashes
between the components.333* Specifically, the
reward is the total number of surface atom pairs of
x;and x; within a distance cutoff, and the penalty is a
weighted sum of all clashing pairs of atoms of x; and
x;. To speed the calculation of the reward, we first
classify atoms as buried or exposed by placing each
component structure on a grid and dividing the grid
into a surface and four core shells according to the
closest distance from the molecular surface (the sur-
face shell contains all grid points that are, at most
half of the map resolution away from the surface).”
The reward is calculated by indexing the surface
atoms of x; in a geometric hash table,?>3¢ querying
the hash table for each surface atom of x;, and
summing the number of hits to get the reward. To
calculate the steric clash penalty, we determine the
accessibility of each atom of x; (and x;) using the grid
of x; (x;). If an atom 1r1 x; (x;) is located within the
surface (k=0) or the k™ core shell of x;j (x;), we add
(k+1)x27 to the penalty. The sum of the penalty score
of x; with respect to x; and the penalty score of x; with
respect to x; is divided by 2 to obtain the steric clash
penalty. Due to fitting and modeling errors, the correct
configuration of components might include some
minor clashes between interacting components.
These clashes are not significantly penalized because
of the thickness of the surface shell and because of the
evaluation of the favorable and penalty terms using
only main-chain atoms. The choice of shell thickness
and weight of the penalty score was chosen by trial
and error.

Component protrusion

The protrusion of a component from the assembly
envelope is defined to be the negative value of the
shape complementarity score between the component
surface and the assembly envelope. The assembly
envelope is calculated by representing each density
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voxel above a threshold as an atom and calculating
the Connolly surface” of this collection of atoms.

Optimization for MultiFit

Construction of anchor graph

The centroids of L approximately equally sized
regions of density voxels are calculated from the
density map D using a k-means clustering™® (k-
cluster) that is similar to the QVOL procedure of
Situs;®” a density voxel belongs to the region with the
closest centroid. When L equals N, and the compo-
nents are of similar sizes, the centroids of the regions
correspond approximately to the centroids of the N
assembly components. These points are the nodes of
the anchor graph. We then calculate the connectivity
between the anchor points (i.e., the edges of the
anchor graph); a pair of anchor points (a;4)) is
connected if their regions are in contact.

Discretization step in coarse-grained sampling

We construct a discrete sampling space of
component placements, represented by a set of M’
placements (by default, 50) for each of the N
components in each of the L regions. Thus, each
set of placements for all components in region i (A;)
contains M=M’'N “local” placements around its
anchor point a,. Here, we set L to N, although L can
also be larger than N.

In detail, for each component j, the discrete sam-
pling space is constructed as follows. Placements
around each anchor point 4; are sampled by opti-
mizing the normalized fitting score C in a cube
surrounding the anchor point (the edge length of the
cube is half the resolution of the map). This
optimization is performed by Mod-EM,3! starting
with a random starting orientation of the component
centered at the anchor point. Next, the sampled
placements for all anchor points are clustered based
on their pairwise C* RMSD values: The highest
scored placement (by C) initiates the first cluster and
is its pivot. The closest remaining placement either is
joined with the first cluster for which its C* RMSD
with the cluster’s pivot is less than the threshold (half
the resolution of the map) or initiates its own cluster
otherwise. The process is repeated with the best-
scoring nonclustered placement until all placements
have been clustered. The best-scoring placement
from each cluster is assigned to the set of placements
Aij correspondmg to the closest anchor point a;; each
anchor point is assigned, at most, M’ placements.

Optimization step in coarse-grained sampling

We find the optimal combination of placements of
components by optimizing the scoring function S
within the discrete sampling space constructed in
the previous step. The global minimum of S is the
minimum of the optimal solutions for each of the L!/
N! mappings of components to anchor points I1=
{m}, where T is a function that maps a component j

to an anchor point i (i=m{j}); formally, we solve
Mg, 11 M (x, . xy) |7} S(X15...,Xn), Where x; are
placements of component j in the set Ag (), as
constrained by mapping .

Naively, this optimization could be achieved by a
nested double loop in which the outer loop consists
of enumerating the mappings and the inner loop
consists of applying DOMINO to the scoring
function S constrained by the given mapping.
However, enumerating over all possible mappings
becomes computationally expensive as the number
of components increases. To improve the efficiency
of MultiFit, we replace the enumeration by a branch-
and-bound procedure that eliminates some of the
mappings and makes use of partial results (Fig. 2).

The scoring function F optimized by DOMINO for
each mapping (mingy,, ) mg S(X1, ..., xn)) is a
simplified S that does hot contain uninformative
interaction terms @3 corresponding to physically
noninteracting components (Fig. 2); specifically, we
eliminate interaction terms between pairs of compo-
nents that are mapped to unconnected anchor points.
Importantly, it is this simplification that results in a
relatively “sparse” graphical model G, thus allowing
it to be optimized efficiently by DOMINO.

Discretization step in fine-grained sampling

We construct a refined discrete sampling space
for a coarse conﬁguratlon found in coarse-grained
sampling (xl, ,X%). The refined set of placements of
component j is first initialized with the placements
in Az, as found in coarse-grained sampling. We
then enrich this set of placements by sampling the
binding of component j to neighboring components
mﬂvmm.HHCHDOCKy’A,HHCHDOCKpK»
duced binding mode of component j to component

w(xj) is added to the refined set of placements of
component j if (i) the dlstance between the centroid
of x; and the centroid of x, is below half of the
resolution of the map and (ii) x; is consistent with
the density map boundaries [i.e., if @(x;) is below a
predefined threshold]. Finally, the refined set of
placements of component j is reranked by the
quality-of-fit score and clustered according to C*
RMSD (as described above).

Optimization step in fine-grained sampling

The optimal combination of component placements
is found by DOMINO by optimizing the scoring
function S within the refined discrete sampling space.

Results

Benchmark with simulated maps

Benchmark

We tested MultiFit on a benchmark of six
simulated test cases. The assembly density maps
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were simulated at 20 A resolution using the
PDB2VOL program of Situs*® with voxel size of
3 A. The input atomic structures of the components
included native structures from the Protein Data
Bank (PDB*'), as well as models calculated by
comparative modeling using MODELLER-9v37{42
based on related template structures with sequence
identity ranging from 16% to 99%. The accuracy of
the individual comparative models is quantified
using C* RMSD and native overlap to the corre-
sponding native structure. Native overlap (NO3.5)
measures the percentage of C* atoms of the model
that are within 3.5 A from the corresponding C“
atoms in the native structure. The native overlap
was calculated by superposing the model on the
corresponding native structure using rigid-body
least-squares minimization, as implemented in the
model.superpose command of MODELLER-9v3.

We use three scores to quantify the accuracy of
modeled configurations at different levels of resolu-
tion. First, the mapping score is the number of
substitutions needed to convert the assessed map-
ping of components to anchor points into the native
mapping of components to anchor points (the
Hamming distance); the native mapping has a
mapping score of 0. Second, the configuration score
is the fraction of the components positioned correctly;
we define a component as positioned correctly if the
distance between its centroid and the corresponding
reference centroid is smaller than half of the map
resolution. Third, the assembly placement score is the
average of its component placement scores, each of
which is composed of a distance and an angle to the
reference placement; the distance is calculated
between the centroids of the placements, and the
angle is the axis angle of the rotation matrix between
the two placements.* Because the components are
kept rigid throughout the optimization process, the
reference components used in the assessment of an
assembly model are the component models super-
posed on the corresponding components in the native
assembly (i.e., the reference placement). We chose not
to use the C* RMSD measure to assess assembly
models because the significance of C* RMSD values
depends strongly on the number of assembly
components and their sizes.**

(best-scoring
placement score)

Optimization

Fine-grained sampling

Discretization
(best placement
score, fitting rank)°
(44,12), 4
(2.4, 30), 39
(3.6, 20), 101
9.1, 25), 5
(1.2,23),5
(11.8, 46), 36
6.7,117), 61

d

(7.3,179)

Optimization
(best-scoring
placement score)
(2.5, 30)
(12.1, 115)
(19.9,172)
(3.9, 163)
(23.0,177)
(6.7,117)

Coarse-grained sampling

Discretization
(best placement
score, fitting rank)°
(4.4,12), 22
(2.4,30), 32
(3.6, 20), 42
(14.9, 52), 38
(12, 23), 31
(1.1, 84), 1
(6.7, 117), 50

NO3.5 (%)°
74
93
52
88

C* RMSD (A)°
5.1

Component modeling

% Sequence ID?
40
48

Determining the configuration of Arp2/3

To illustrate MultiFit, we first describe in detail a
challenging application to Arp2/3 (Table 1, Figs. 2
and 3). The Arp2/3 complex of seven proteins is
crucial for regulating the initiation of actin poly-
merization and the organization of the resulting
filaments.*> A density map was simulated from the
Arp2/3 crystal structure with ATP and Ca** (PDB
entry 1TYQ™). The atomic structures of the Arp2/3
components (proteins) were modeled using tem-
plates with sequence identity ranging from 16% to

residue range)
2q1nB, 4-370
InwkA, 140-334
lerjC, 342-708
1u2vF, 3-168
2p9nE, 2-173
1u2vD, 137-279
2p9nG, 11-150

Template (PDB entry,

, 1-274
E, 1-169
F, 3-186

G, 11-150
placement score and rank of the best placement, calculated by C* RMSD to the reference. The placements were ranked by the normalized fitting score C.

C* RMSD and native overlap NO3.5 between the modeled component superposed on its native structure.
The placement score of the placement found in the top-ranking assembly configuration.

C, 5-361

? The percentage of sequence identity between the template and the component, as calculated from their alignment used for comparative modeling.

P The
¢ The

d

Table 1. Determining the configuration of the Arp2/3 assembly

Rpb2, B, 143-349

ARPC1
ARPC2
ARPC3
ARPC4

Rpb1, A, 4-408
ARPC5

Component
(name, chain,
residue range)

+http:/ /salilab.org/modeller
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Fig. 3. MultiFit results for Arp2/3. (a) An assessment of the final model with a mapping score of 0. The model has the
fourth smallest value of the scoring function S (the fourth model in (b)). The modeled (color) and reference placements
(gray) of the individual components are compared (Results); the corresponding placement scores are indicated below
each comparison. (b) Five top-ranked models for Arp2/3. The atomic representations of the models are displayed on the
top row. The bottom row shows the centroid and the rotation axis for each component; the corresponding rank, mapping
score, configuration score, and assembly placement score are indicated below each model.

99%: the C* RMSD error for these models varied
from 0.4 A to 21.4 A, and their native overlap varied
between 38% and 100%; we intentionally used
inaccurate comparative models to benchmark the
robustness of our method with respect to errors in
the component conformations.

In the final output of MultiFit, the near-native
model with an assembly placement score of (7.1 A,
25°) was ranked 4th among all the sampled
configurations. In coarse-grained sampling, this
model was ranked 10th, with a configuration score
of 4/7 and an assembly placement score of (10.8 A,
136°). The centroids of the individual components
were positioned in the vicinity of their native
centroids; however, the orientations of some com-
ponents were incorrect, resulting in steric clashes
between components. In fine-grained sampling, the

20 top-scoring models were refined. The refinement
procedure was able to resolve many of the clashes in
the model, which in turn improved its global score,
resulting into the final rank of 4th. Next, we
elaborate on the individual steps of the optimization
protocol.

In anchor graph construction, we computed seven
anchor points from the density map. The average
distance between the anchor points and the cen-
troids of the corresponding reference components
was 7.2 A. We then identified pairs of anchor points
that are sufficiently close to allow components
placed in their vicinity to interact with each other.
The procedure pruned 12 of the possible 21 pairs
(i.e., 7-6/2). The remaining 9 pairs allowed identi-
fication of 9 of the 12 native contacts between the 7
components.
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In the discretization step of coarse-grained
sampling, we fitted each component into the
neighborhood of each anchor point using Mod-
EM. We assessed the accuracy of the discretization
by the placement score of the best placement of
each component (i.e., the placement with the lowest
C* RMSD Correspondmg to the reference). These
best placement scores ranged from (2.5 A, 30°) to
(23.0 A, 177°). As expected, as the model accuracy
measured by C* RMSD and native overlap
decreases, so does the rank of the best placement.
The most accurate placement was ranked within
the top 50 solutions for each component by the
normalized fitting score C.

In the optimization step of coarse-grained sam-
pling, we first represented the scoring function as a
graphical model. The globally optimal component
configuration was then found by a branch-and-
bound search, in conjunction with the DOMINO
optimizer. We utilized DOMINO for decomposing
the simplified graphical model into an anchor
junction tree of subsets of anchor points. The anchor
junction tree contained four subsets of 2, 3, 3, and 3
anchor points. The branch-and-bound procedure
resulted in 486 complete mappings for the 7
components (out of 7!=5040 possible mappings).
For each of these 486 mappings, the optimal
placements of the 7 components were inferred by
the gathering algorithm of DOMINO. A configura-
tion with a mapping score of 0, a configuration score
of 4/7, and an assembly placement score of (10.8 A,
136°) was ranked 10th. The total running time with
precomputed scoring terms was approximately
70 min on a single central processing unit; it takes
approximately 2 h to precompute the scoring
function terms.

This prediction demonstrates some of the benefits
of and problems associated with coarse-grained
sampling. For example, an accurate placement of
Rpb2 and ARPC5 could not have been obtained
solely based on the quality-of-fit due to nonnative
conformations of their models (Table 1). Never-
theless, global optimization of the scoring function
for the entire assembly did result in the correct
placement for these two components. However,
global optimization can also make a prediction less
accurate. For example, ARPC4 was placed inaccu-
rately because of the need for shape complementar-
ity with inaccurately modeled neighbors Rpbl,
ARPC1, ARPC2, and ARPC5. Such problems can
be partly resolved by finer discretization of the
sampling space (i.e., the fine-grained sampling; see
the text below), in addition to flexible fitting (not
attempted here).

In fine-grained sampling of a given model, we
repopulated the sampling space for the correspond-
ing complete mapping with pairwise docking
solutions between the interacting components.
Specifically, we enriched the set of placements by
sampling binding modes of a component to the
correspondmg placed components of its neighbor-
ing anchor points using PATCHDOCK. > We then
ran DOMINO again to find the optimally refined

configuration. The assembly placement score of the
refined configuration is (7.1 A, 25°), which clearly
demonstrates improvement in the accuracy of the
relative orientations. For example, the placement
accuracy of ARPC4 improved from (23.0 A, 177°) to
(11.8 A, 46°). The 1mproved placement was ranked
only 499th in the pairwise docking between ARPC4
and ARPC1. However, global optimization relying
on restraints derived from coarse-grained sampling
(i.e., shape complementarity between interacting
components and protrusion from the map envelope)
resulted in this placement occurring in the best-
scoring assembly configuration.

To validate the contribution of the shape com-
plementarity score, we optimized a scoring function
lacking this term (¢3; in the scoring function S;
Theory). The top-ranking configuration had a
mapping score of 3, a configuration score of 3/7,
and an assembly placement score of (42.5 A, 94°). A
model with a mapping score of 0 was not found in
the top 50 solutions. This comparison demonstrates
the positive contribution of the shape complemen-
tarity score to the accuracy of the generated
assembly models.

Benchmark

To assess MultiFit more comprehensively than is
possible by a single example, we also applied it to a
benchmark that included five additional simulated
test cases. In all six simulated tests, a model with a
mapping score of 0 was found within the top four
solutions (Table 2); in fact, the model with the
mapping score of 0 was the best-scoring model in all
cases for which the structures of the individual
components were modeled based on templates with
sequence identities higher than 60%. The assembly
placement score of the model with the mapping
score of 0 ranged between (2.6 A, 4°)and (7.1 A, 25°)
These results demonstrate the utility of MultiFit in
predicting the configuration of atomic components
in a low-resolution density map of their assembly:.
Next, we report the benchmark results at each of the
five steps of the algorithm.

In anchor graph construction, the average dis-
tance between the predicted anchor point and the
centroid of the corresponding reference component
in the near-native configuration was between 4 A
and 7 A.

In the discretization step of coarse-grained
sampling, a near-native configuration was sam-
pled within the discrete sampling space in all test
cases. However, this configuration was not neces-
sarily ranked highly according to our scoring
function due to steric clashes between interacting
components.

In the optimization step of coarse-grained
sampling, a model with a mapping score of 0 was
found in the top 10 solutions in all test cases; in four
of the six cases, it was the best-scoring solution. The
assembly placement score of the model with a
mapping score of 0 ranged from (2.6 A, 4°) to (10.8 A,
136°). The prediction accuracy depended on the
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£ component accuracy (Table 2). As the accuracy of
v 2 the component models is decreased, the rank of the
£188| | . correct configuration and its placement score also
£l g % 28 ¥ &g % become worse. The benchmark shows that coarse-
glESl92 & S&T| 2 grained sampling is able to determine component
g gh =Y = w positions quite accurately, but frequently fails to
g e E result in accurate relative orientations. The main
S g reason is the coarseness of the discrete sampling
sl £ space, as demonstrated by the Arp2/3 and 1z5s
% = examples. In the latter case, we obtained the near-
S - @ — g native assembly [i.e., (5.9 A, 113°)] with the native
5 components and a less accurate configuration [i.e.,
’g = (7.7 A, 92°)] with distorted components.
w2 g In the discretization step of fine-grained sampling,
ElsE | & the PATCHDOCK docking program® was able to
g‘ g E §§ ) @@5 g sample near-native interaction modes between pairs
g E Sles © QWw| B of components. However, these interactions were
BlESde & TSE] £ generally not ranked highly by PATCHDOCK. For
s O% § example, in the 1z5s case with distorted compo-
¥ 2 nents, the most accurate docking prediction of
% & ¢ ‘é chains C and D against chain A ranked 405th and
Ol o Li = 138th, respectively.
S|lm— ° gl g2 In the optimization step of fine-grained sampling,
& 25 the refined models were at least as accurate as the
e 2z 5 most accurate models generated in coarse-grained
= gg = ggg —é é sampling, sometimes much more so. In particular, the
SElTd I S4T7[S¢ accuracy of the relative orientations between pairs of
S % 8= © 228|g8 interacting components improved. For example, in
ZElgs B g2 8§ g the 1z5s case with distorted components, the assem-
& - | s bly placement score improved from (7.7 A, 92°) to
ol ié (6. 4 A, 62°). The refmegl model poptamed pl.acements
223 =& __o|5¢ derived from the docking prediction of chains C and
S1n522 2 225 gg D against chain A. These placements were ranked
2|2 MEEEGEEE IR 405th and 138th by PATCHDOCK; reweighing the
gl pee = cse=| 23 placements by the normalized fitting score C
2l gl22 2 222 % £ increased their ranks to 78th and 43rd, respectively.
§ = E o In the end, DOMINO correctly selected these place-
. 8 ments for the final best-scoring configuration.
52 2 Sagz|f% : . .
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Su82 & 28228 map
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SN = 2.5 To test the method in a realistic setting, we
3 i benchmarked it again by modeling the component
w2 e 2 2 - g configuration for an assembly with an experimen-
5 8 EEZ Z SgZ| B8 tally determined cryoEM map.
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N IR .
Z g é 2 2 =28 HERE GroEL-GroES domains
© £ £ E} GroEL-GroES is a chaperonin that aids protein
3 g g g folding in E. coli. GroEL consists of two back-to-back
2% EET rings of seven identical subunits, each of which
2 2 g7 |zTE i contains three domains (i.e., the equatorial, inter-
2 2R P | =°s mediate, and apical domains). GroES is a ring of
gl 2, 2. 3558 |EE¢ seven identical single-domain proteins that cap
4 o| B3RP REL | EET GroEL. We applied MultiFit to model the config-
g QIS8T S LT e 28 uration of the four domains in an interacting pair of
E M~ J X=X = E E E g P
5 OB Er %'—% S5 go08 the GroEL and GroES subunits. Atomic coordinates
é § OSESE S *;: TEL %D:goj for the four domains were obtained from a crystal
ol =l = E 5 é’ éq é ==&l 2z & structure of the GroEL-ADP-GroES complex (ADP
o2l £ =3 slEZgo| g2 é state; PDB entry 1laon®). The corresponding density
S8 3 §*§ & :2) <28 % :f : was segmented from a cryoEM map of the bacterial
Hl<l <l0Ux & A<< GroES-ADP7-GroEL-ATP7 chaperonin determined
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at 23.5 A resolution (ATP state; EMDB ID 1046%).
The crystal structure of the ADP state was fitted to
the density (as one rigid body) and used as reference
for assessment. The main structural differences
between the ATP and ADP states are the downward
rotation of the intermediate domain and the counter-
clockwise twist of the apical domain.*

The configuration with a mapping score 0 was
ranked third, with an assembly placement score of
(13.9 A, 160°). A sampling space of approximately 14
million combinations was searched within 16 min of
central processing unit time. The fine-grained
sampling was able to generate a more accurate
model with an assembly placement score of (11.0 A,
84°). We note in passing that fitting all 49 domains
(i.e., 3x7x2+7) into the density of both rings would
presumably benefit from the added information in
the subunit-subunit interactions within and across
rings; however, to test MultiFit in a more challen-
ging setting, we deliberately modeled only a single
symmetry unit consisting of three GroEL domains
and one GroES domain.

Discussion

We described MultiFit, a computational method
used for determining the positions and orientations
(i-e., placements) of multiple atomic components in
a cryoEM density map of their assembly. The
problem is formulated in terms of combinatorial
optimization, solved by our inferential optimizer
DOMINO that guarantees the finding of the global
minimum within a given discrete sampling space.
The input is a density map and a set of atomic
components that are kept rigid throughout the
optimization process. For a given configuration of
components, the scoring function measures the
quality-of-fit of the atomic structures in the map,
the protrusion from the map envelope, and the
shape complementarity between pairs of compo-
nents. The optimization process consists of coarse-
grained and fine-grained sampling stages. Each
sampling stage starts with a discretization step
achieved, respectively, by fitting and docking,
followed by an optimization step that relies on
DOMINO. Both DOMINO and MultiFit are avail-
able as part of Integrative Modeling Platformj.***’

Accurate MultiFit predictions for seven test cases
demonstrated its utility (Table 2). Specifically, our
benchmark demonstrated the utility of MultiFit in
predicting the configuration of components with
known folds within a density map at resolutions
between 20 A and 23.5 A; the average assembly
placement score for the near-native configurations
was (5.3 A, 38°). MultiFit was able to determine the
assembly configuration even in cases where the
fitting scores were ambiguous. Examples include
Arp2/3 (Table 1) and the 1z5s test case with
distorted components (Table 2).

I http://salilab.org/imp

Next, we discuss (i) the benefits of simultaneous
multiple component fitting, (ii) inaccuracies result-
ing from the discrete sampling space, and (iii) broad
utility of combinatorial optimization.

Benefits of simultaneous fitting

Most methods for modeling assemblies in the
context of a cryoEM map rely on a segmented
assembly map and/or a model of the whole
assembly. In the absence of such information,
sampling the configuration space is computationally
challenging, as the placement of each component
may depend on the placements of other compo-
nents. For example, the configuration of the Arp2/3
assembly with modeled components could not have
been solved by iteratively fitting the largest remain-
ing component in the unoccupied region using Mod-
EM.*' Moreover, the configuration cannot be mod-
eled accurately without the component protrusion
and the interaction terms in the scoring function
used by MultiFit. However, by considering the
placements of all components simultaneously, the
protrusion of a component from the assembly
envelope, and the shape complementary between
the interacting components, we were able to
determine the assembly configuration with an
assembly placement score of (7.1 A, 25°).

Inaccuracies resulting from discrete sampling
space

MultiFit prediction will be accurate when a near-
native configuration exists in the discrete sampling
space and corresponds to the global minimum of the
scoring function. These two conditions depend, in
turn, on the accuracy of the atomic models of the
individual components and the choice of anchor
points. Next, we elaborate on these two dependencies.

Accuracy of component models

The atomic models of the individual components
might be inaccurate due to modelmg errors, induced
fit, and conformational selection.”” As the accuracy of
the component models decreases, the discretized
sampling space (either by fitting or by docking) is
less likely to contain near-native placements (i.e., the
sampling problem), and the global minimum is less
likely to correspond to the most accurate sampled
configuration (i.e., the scoring problem). In other
words, these errors may affect the accuracy of the
predicted assembly configuration due to scoring and
sampling inaccuracies. One such example is the pair
of 1z5s test cases (Table 2): The inputs to the first test
case were the native components and the assembly
density. The discretization steps of coarse-grained
and fine-grained samplings resulted in near-native
placements, and the top-ranked configuration
detected by DOMINO had a relatively accurate
assembly placement score of (5.0 A, 67°). The inputs
to the second test case were models with an average
C* RMSD error of 6.3 A. The discrete sampling spaces
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generated in the coarse-grained and fine-grained
samplings contained less accurate placements. As a
result, the utility of the scoring terms (especially the
protrusion from the map envelope and the shape
complementarity) decreased. The assembly place-
ment score of the final assembly model with distorted
component models was significantly worse (6.4 A,
62°) than the assembly placement score of the
assembly model with the native components. More
accurate assembly models may be obtained by using a
shape complementarity score that is less sensitive to
component model errors and/or by an explicit
treatment of the component conformations. To this
end, techniques might be adopted from ﬂex1ble fitting
of a component into a density map**”" and from
flexible molecular docking.”*>

Accuracy of anchor points

Given the k-cluster algorithm, the utility of the
anchor points is affected by the variances in the size
and shape of the components (data not shown). The
utility of the anchor points is also affected by the
resolution of the map (data not shown). To obtain a
discrete sampling space that contains a near-native
configuration, we sample candidate placements of
each component in the neighborhood of each anchor
point. However, there are many assemblies for
which the variation in component sizes is too large
for reasonable neighborhood sizes. We intend to
improve the utility of anchor point calculation by
considering com5ponent sizes and density map
segmentation.

Combinatorial optimization in structural biology

Modeling challenges in structural biology can
generally be expressed as optimization problems.*®
These optimization problems often fall mto a general
class of NP-complete problems (Theory).”® Combi-
natorial optimization is a type of optimization in
which the set of feasible solutions is discrete, and the
goal is to find the best possible solution within this
discrete set. Combinatorial optimizers have been
suggested for Varlous modehng tasks such as side-
chain packmg, ° threading,”® ab initio RNA
folding,®” and prediction of quaternary structures
of multiprotein complexes.®’ These methods can, in
principle, be reformulated as a combinatorial opti-
mization of a scoring function represented by a
graphical model, benefiting from graph theory
techniques.”**” Such a formulation has already
been proposed for the side-chain packing problem.>’

Our DOMINO method can, in principle, be applied
to many problems in structural modeling, from low-
resolution assembly modeling to side-chain refine-
ment. Its strength derives from the junction tree
algorithm that helps reduce the size of the search
space from exponential in the number of components
in the whole system to exponential in the number of
components in the largest subset. More specifically,
the computational complexity is O(1U|L%), where |
Ul is the number of subsets in the junction tree, L is

the size of the largest subset, and s is the number of
discrete values of a single variable in the graphical
model. Fortunately, at the granularity level used in
MultiFit's application to protein assemblies in our
benchmark, the theoretical complexity of the junction
tree algorithm has not been a limiting factor. Never-
theless, in other applications that involve a dense
graphical model of the scoring function and exten-
sively sampled variable values, incomplete sampling
of a discrete space may have to be accepted.

In conclusion, MultiFit and DOMINO can help
bridge the gap between the atomic structures of the
individual proteins and the cryoEM maps of their
assemblies. In particular, they can provide initial
configurations for further refinement of many
multicomponent assembly structures described by
electron microscopy.*251/62,63
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