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Abstract 

Advances in electron microscopy allow for structure determination of large biological machines 

at increasingly higher resolutions. A key step in this process is fitting component structures into 

the electron microscopy-derived density map of their assembly. Comparative modeling can 

contribute by providing atomic models of the components, via fold assignment, sequence-

structure alignment, model building, and model assessment. All four stages of comparative 

modeling can also benefit from consideration of the density map. In this chapter, we describe 

numerous types of modeling problems restrained by a density map and available protocols for 

finding solutions. In particular we provide detailed instructions for density map-guided modeling 

using Integrative Modeling Platform (IMP), MODELLER, and UCSF Chimera. 
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1.    Introduction 
Structural description of macromolecular complexes is required for studying their assembly, 

function, and evolution (1, 2). Although numerous assembly structures have been determined by 

X-ray crystallography (3) and NMR spectroscopy (4, 5), these techniques are not always 

applicable. Recent advances established electron microscopy (EM) as a central technique for 

studying the structures of macromolecular assemblies in different functional states in vitro and in 

vivo. EM approaches include electron crystallography, single-particle EM, and electron 

tomography (6-8). EM generally produces a three-dimensional (3D) grid specifying the observed 

electron density of the system (i.e., the density map). The resolution of this map is typically better 

than 25 Å, and can be as high as approximately 4 Å for highly symmetric structures (9, 10). In 

most cases, however, the resolution of a density map is insufficient to provide a full atomic 

description of a protein complex. To this end, computational integration of atomic resolution 

structures with EM density maps is essential. In particular, the resolution of the density map is 

often adequate for accurate rigid fitting of atomic structures of the subunits into the density map, 

resulting in an atomic model of the entire assembly (11-22). Given sufficient resolution, flexible 

fitting can be used to further refine the model by fitting into the density map while maintaining 

correct stereochemistry (23-27).  

A key requirement for such density-guided structural modeling techniques is the availability of 

atomic resolution structures of the assembly components. However, these structures are 

frequently not available from X-ray crystallography or NMR spectroscopy. Fortunately, it may be 

possible to construct useful component models by comparative (homology) modeling. 

Comparative modeling techniques are routinely used to model the structure of a given protein 

sequence (target) based primarily on its alignment to one or more proteins of known structure 

(templates) (28-30). The target structure is predicted by identifying one or more related proteins 



of known structure, aligning the target sequence to the template structures, building a model, and 

assessing it. Comparative modeling approaches have become frequently applicable in part due to 

the success of structural genomics initiatives that aim to solve representative structures of most 

protein families by X-ray crystallography or NMR spectroscopy, such that most of the remaining 

proteins can be modeled with useful accuracy based on their similarity to a known structure. In 

fact, at least two orders of magnitude more sequences can be modeled by comparative modeling 

than have been determined by experiment (31). Therefore, methods for improving fitting into a 

density map by considering errors in comparative models have been developed (19, 32, 33). 

Moreover, the availability of a density map opens a possibility of improving the corresponding 

comparative model, by helping with fold assignment, sequence-structure alignment, model 

building, and model assessment (14, 20, 22, 34). 

 In this chapter, we describe various types of density-guided modeling problems and available 

solutions within Integrative Modeling Platform (IMP) (35), MODELLER (28), and UCSF 

Chimera visualization software (36). This description is followed by a Notes section that 

highlights several practical issues in density-guided modeling. 

2. Materials 

To follow the examples, IMP, MODELLER, Chimera, and a set of input files are required. The 

IMP software can be downloaded from http://salilab.org/imp/download.html, MODELLER from 

http://salilab.org/modeller, and Chimera from http://www.cgl.ucsf.edu/chimera. All programs are 

available in a binary form for most common machine types and operating systems. IMP can also 

be rebuilt from the source code. The example files are found in biological_systems/groel 

directory in IMP. 

3. Methods 

Selecting a protocol for density-guided structural modeling depends on the resolution of the 



density map and the available atomic information. Interpretation of the density map usually 

begins by identifying the different structural units (e.g., entire protein chains, domains, secondary 

structure elements, or nucleic acids) by means of segmentation techniques (6, 37). Independently, 

the availability of atomic structures of the components is determined; when necessary, 

comparative models are built (29, 38), if a template can be found. Then, an appropriate 

integrative modeling protocol is selected (Figure 1). 

We describe in detail the modeling of the bacterial molecular chaperone GroEL (39 , 40, 41). 

GroEL promotes protein folding in bacterial cells in conjunction with its lid-like co-chaperonin 

protein complex GroES. GroEL is composed of two heptameric rings of identical 57 kDa 

subunits stacked back-to-back. The GroEL structure was extensively studied by X-ray 

crystallography (42-44) and EM (45-48) across different species, and thus provides a good 

illustration of approaches that integrate EM data into assembly modeling (49). 

The inputs for the GroEL example (Figure 2) are the sequence of the E. coli GroEL chaperone 

monomeric unit (UniProt id: P0A6F5, file: data/ sequences /groel_ecoli.ali) and an EM density 

map of the naked groEL at 11.5 Å resolution (45) (EMDB id: 1081, file: data/em_maps/groel-

11.5A.mrc) consisting of 14 subunits. We start by searching for known structures homologous to 

the GroEL monomeric unit (Sections 3.1 and 3.2) and independently segment the density map 

(Section 3.3). We then use the density map to assess the choice of the template(s) (Section 3.4). 

Next, we build a comparative model of the GroEL monomeric unit based on the selected 

template(s) (Sections 3.5 and 3.6) and model the entire GroEL complex by simultaneously fitting 

14 rigid copies of the monomer model into the complete density map (Section 3.7). Finally, we 

improve the accuracy of the model by refining it to better fit into its density map (Section 3.8).  

3.1.  Template identification 

Template identification is achieved by scanning the sequence of a monomeric unit of the GroEL 

against a library of sequences for the known protein structures in the Protein Data Bank (PDB) 



(www.pdb.org, (50)). We use the profile.build() command of MODELLER. The profile.build() 

algorithm uses a local dynamic programming procedure to identify templates with sequences 

related to the target. In the simplest case, profile.build() takes as input the target sequence (file: 

data/sequences/groel_ecoli.ali) and a database of sequences with known structures (file: 

data/datasets/pdb_95.pir), and returns a set of statistically significant alignments (file: 

build_profile.prf). The script and further details can be found in file 

scripts/script1_build_profile.py and Note 1. 

3.2.  Template(s) selection by sequence 

Selection of candidate template(s) from known structures found to be homologous to the target is 

generally a subjective process. Frequently, the selected template(s) share the highest sequence 

identity to the target. However, additional assessment may be used; in Section 3.4, we 

demonstrate the use of an EM density map for selecting the most appropriate templates. 

The output file build_profile.prf (see Note 2) identifies 13 potential templates, all with high 

confidence according to their E-values, some covering the entire target sequence and others only 

parts of it. We remove structures matching only a fraction of the target sequence (PDB codes: 

1dk7A, 1kidA, 1la1A, and 1srvA), as there is a sufficient number of templates with high 

confidence covering the entire sequence. To analyze the relationships between the 9 remaining 

structures, we use the alignment.compare_structures() command in MODELLER to assess 

structural and sequence similarity between the structures. This command compares the structures 

according to the alignment constructed by the malign3d() command and produces a clustering 

tree from the input matrix of pairwise Cα root mean standard deviation (RMSD) distances, 

helping to visualize differences among the template candidates. The script and further details can 

be found in file script2_compare_templates.py and Notes 2-3. 



3.3.  Density map segmentation   

Interpretable structural features depend on the resolution of the map and their size. At low 

resolutions (20-25 Å), the overall shape of the assembly and boundaries of sub-complexes or 

large proteins can be detected. As the resolution improves, boundaries of smaller proteins or 

domains can be identified (51-53). At a medium resolution (6-10 Å), secondary structure 

elements are apparent (37). At a higher resolution, backbone tracing and even side chain 

conformation may be possible to define (54). Segmentation is in many cases performed in a semi-

manually manner using visualization tools such as Chimera (21), Amira (http://www.amira.com), 

Gorgon (http://gorgon.wustl.edu), and Sculptor (http://sculptor.biomachina.org).  Notably, a 

watershed segmentation procedure has been integrated into Chimera (52); secondary structures 

segmentation and annotation can be performed via the Gorgon visualization software. 

Here, we apply a Gaussian mixture model-based segmentation of the density map into 14 regions 

using the IMP.multifit.density2anchors program (55). The resulting segmented regions 

correspond to the density regions occupied by the subunits. A complete list of commands and 

further details can be found in file script3_density_segmentation.py and Notes 4-5. 

3.4.  Template selection by fitting to a density map 

The density map of the target can aid the process of template selection, by assessing the optimal 

overlap between a template structure and the density map (14, 19, 20, 34, 56). Such assessment is 

particularly useful when the templates do not share high sequence similarity with the target or 

when the conformations of the target and template structures differ (Section 3.6). We score the 9 

remaining candidate templates by fitting each of them into the density map and reporting the EM 

quality-of-fit score (see Note 6) (25). The score ranges from 0 to 1, with 0 indicting a perfect fit. 

Here, the density map is a segmented region corresponding to a monomeric subunit of the GroEL 

complex density map (file: groel_subunit_11.mrc). 

Fitting of a component structure into the density map usually optimizes a similarity score between 



the component and the density map (e.g., the cross-correlation coefficient) as a function of the 

component’s translation and rotation relative to the density map (rigid fitting) (49, 57). IMP 

provides four different methods for performing rigid fitting, based on: (i) anchor points matching 

by geometric hashing (IMP.multifit.anchor_points_based_rigid_fitting()) (55), (ii) fast Fourier 

transform (58) (IMP.multifit.fft_based_rigid_fitting()), (iii) principal component analysis (PCA) 

(55) (IMP.multifit.pca_based_rigid_fitting()), and (iv) local Monte Carlo/conjugate gradient 

search (25) (IMP.em.local_rigid_fitting()). Here, we read the profile output into IMP and fit each 

of the candidate templates into the density map, employing the PCA-based fitting , followed by a 

local fitting (see Notes 8-9). The resulting quality-of-fit scores range from 0.18 to 0.33, indicating 

that despite the high sequence identity of the target sequence to some of the structures (60% for 

1sjpA; 63% for 1we3A), the target structure is in a different conformational state than the 

templates. Interestingly, some templates with high quality-of-fit scores had lower sequence 

identity than templates with high sequence identity (e.g., 3kfeA with 27% sequence identity and 

EM quality-of-fit of 0.3 versus 1we3A with 63% sequence identity and EM quality-of-fit of 

0.32), illustrating the potential utility of a density map for improving comparative models. To 

exemplify advanced flexible fitting techniques, we chose 1iokA as the template. The script and 

further details can be found in file scripts/script4_score_templates_by_cc.py, Notes 6-9, and 

Figures 2,3. 

3.5.  Template alignment 

Once template(s) have been selected, the next step of a comparative modeling procedure is 

aligning the chosen template(s) to the target sequence. Here, sequence-structure alignments are 

calculated using the align2d() command of MODELLER (59). Although align2d() relies on a 

global dynamic programming algorithm (60), it is different from standard sequence-sequence 

alignment methods because it incorporates structural information from the template when 

constructing the alignment. This goal is achieved through a variable gap penalty function that 



tends to place gaps in solvent exposed and curved regions, outside secondary structure segments, 

and between two positions that are close in space (61). The resulting alignment is written into the 

file groel-1iokA.ali in the PIR format. The script and further details can be found in file 

scripts/script5_template_alignment.py. 

In addition, templates and their alignments to the target sequence can be explored using UCSF 

Chimera. Chimera uses BLAST to search the PDB for potential templates, which are displayed in 

the Multalign Viewer tool (Figure 4, top) (62). The Viewer allows for alignment editing, for 

example to remove gaps within an element of regular secondary structure in the template, which 

frequently contribute to model error. Additional sequences can be added to the alignment, either 

by typing or extracting from other structures in Chimera. 

3.6.  Modeling building and assessment 

We perform automated comparative model building using the automodel() command in 

MODELLER, generating 10 comparative models based on the input target-template alignment 

(file: scripts/script6_model_building_and_assessment.py). Comparison between these 10 models 

reveals structural differences (Cα RMSD between pairs of models range from 4.6 Å to 8.2 Å, 

file:scripts/script7_pairwise_rmsd.py). To select the most accurate model, we assess the quality 

of the models according to the normalized Discrete Optimized Protein Energy (zDOPE, see Note 

10) (63), TSVMod (64), and the EM quality-of-fit (25) scores. We remove the c-terminus region 

of each model (residues 524 to 548) prior to the assessment procedure, as it was not covered by 

the template. The first assessment measure is the normalized DOPE score (MODELLER 

command assess_normalized_dope()); a value of less than -1 indicates that the distribution of 

atom pair distances in the model resembles that found in a large sample of known protein 

structures. The model with the minimum zDOPE score value is model 1 (score of 0.19). 

However, none of the truncated models got a zDOPE score lower than -0.06, despite the 

relatively low zDOPE score of the template (-0.6), indicating inaccuracies in the modeling 



procedure and/or an unusually unfavorable zDOPE score value of the (correct) template structure 

(see Note 11). The second assessment measure is the TSVMod score that predicts the native 

overlap (defined as the fraction of Cα atoms within 3.5 Å of the native structure) of a comparative 

model in the absence of a solved structure using support vector machine learning (64) 

(http://modbase.compbio.ucsf.edu/evaluation). The predicted Cα RMSD errors are between 5.3 

and 8.6 Å for the full models and 3.4 to 3.9 for the truncated models (file: 

tsvmod.server.results.txt). The third assessment measure is the EM quality-of-fit score that 

measures the fit of a model to the density map. All 10 truncated models got comparable scores 

around 0.2. As according to these criteria all models are of comparable accuracy, we selected 

model 1 as the starting model for refinement because it scored the best according to zDOPE and 

EM quality-of-fit scores. A complete list of commands and further details can be found in 

scripts/script6_model_building_and_assessment.py, scripts/script7_pairwise_rmsd.py ,and Notes 

10-11. 

Alternatively, MODELLER can be called from within Chimera, either as a process run on the 

user’s computer or as a process run remotely via a web service. From the Chimera-MODELLER 

interface, the user can choose the target sequence, template structure(s), and specify advanced 

options, e.g. number of output models (Figure 4, middle left). If the user chooses to run 

MODELER locally, the MODELLER script file generated by Chimera is accessible and 

customizable. The MODELLER modeling process is run in the background and can be monitored 

via Chimera’s task manager. For the single chain of GroEL, it took about 20 minutes running via 

the web service to generate 10 models. When the results become available, the models are 

displayed in Chimera and their scores shown in a table (Figure 4, bottom left).  The results table 

lists the GA341 (65), zDOPE and DOPE scores. Clicking the Fetch Scores option, triggers a call 

to TSVMod for calculating estimated RMSD and overlaps.  



3.7.  Multiple fitting into a density map 

So far we have modeled the structure of the monomeric unit. However, the density map was 

determined for the entire complex. As a template of the entire complex is not known (for the 

purpose of this example), we model the whole assembly by fitting 14 copies of the monomeric 

unit model into the map. We use the symmetric version of the MultiFit program designed to 

efficiently sample ring complexes. We first split the density into two rings long the Z axis (file: 

scripts/script8_split_density.py). We then run MultiFit separately for each ring (file: 

scripts/script9_symmetric_multiple_fitting.py). The procedure outputs a list of assembly models 

ranked by their EM quality-of-fit score (files: multifit.top.output and multifit.bottom.output, see 

Note 13). The two top ranking models, one from each ring (files: model.top.0.pdb and 

model.bottom.0.pdb), are joined to create a complete model of the assembly with an EM quality-

of-fit score of 0.08.  A complete list of commands and further details can be found in 

scripts/script8_split_map.py, scripts/script9_symmetric_multiple_fitting.py, and Notes 12-13. 

Alternatively, MultiFit can be called from within Chimera, either as process run on the user’s 

computer or run remotely via a web service. From the Chimera-MultiFit interface, user can 

choose the monomeric unit model, EM density map and specify the map resolution.  When 

MultiFit finishes its calculation in the background, the solutions are displayed and their geometric 

complementarity scores and EM quality-of-fit scores are shown in a table.  

3.8.  Flexible fitting into a density map 

The comparative model generated for the monomeric subunit of GroEL complex is in a different 

conformational state than the one determined by EM, as indicated by the EM quality-of-fit score 

(0.2). Conformational differences between a comparative model and its density map can originate 

from different conditions (e.g., crystallization versus freezing) under which the isolated 

components and assembly structures were determined, as well as errors in modeling methods 

(such as mis-assignment of secondary structure elements and their shifts in space caused by 



target-template misalignment). Flexible fitting can help by refining the conformation of the 

component, together with its position and orientation. Here, we use the FlexEM method in 

MODELLER (25) for refining the model to better fit its density. The procedure first adjusts the 

positions and orientations of its secondary structure segments followed by a full atomic 

refinement. The increased accuracy of the model is reflected by the EM quality-of-fit score that 

improved from 0.43 to 0.36. A complete list of commands and further details can be found in file 

scripts/script10_flexible_fitting.py and Notes 14-15. 

4. Conclusions 

EM techniques are becoming increasingly useful for structural characterization of 

macromolecular assemblies (66). In most cases, however, the resolution of a density map is 

insufficient to provide a complete atomic description of a protein complex with high confidence. 

To this end, computational integration of atomic resolution structures with EM density maps is 

essential. Here, we demonstrate how MODELLER, IMP and Chimera can be used for modeling 

structures of such assemblies by a combination of homology modeling, fitting, and refinement 

techniques. These steps are now combined within the Chimera software allowing the user to 

visualize and control the modeling process. We expect such integrative modeling protocols to 

become increasingly useful and facilitate maximizing the coverage, accuracy, resolution and 

efficiency of the structural characterization of macromolecular assemblies. 

 

5. Notes 

1. Below we provide a detailed description of script1_build_profile.py: 

• log.verbose() sets the amount of information that is written out to the log file. 



• environ() initializes the 'environment' for the current modeling procedure, by creating a new 

environ object, called env. Almost all MODELLER scripts require this step, as the environ() 

object is needed to build most other objects. 

• sequence_db() creates a sequence database object, calling it sdb, which is used to contain large 

databases of protein sequences. 

• sdb.read() reads a text file ,containing non-redundant PDB sequences, into the sdb database. 

The input options to this command specify the name of the database 

(seq_database_file:’pdb_95.pir’), the format (seq_database_format=‘pir’), whether to read all 

sequences from the file (chains_list=’all’), upper and lower bounds for the lengths of the 

sequences to be read (minmax_db_seq_len=(30,4000)), and whether to remove non-standard 

residues from the sequences (clean_sequences=True). 

• sdb.write() writes a binary machine-independent file (seq_database_format=’binary’) with the 

specified name (seq_database_file:’pdb_95.bin’), containing all sequences read in the previous 

step. 

• The second call to sdb.read() reads the binary format file back in for faster execution. 

• alignment() creates a new 'alignment' object (aln). 

• aln.append() reads the target sequence groel from the file groel.ali and aln.to_profile() converts 

it to a profile object (prf). Profiles contain similar information as alignments, but are more 

compact and better suited for sequence database searching. 

• prf.build() searches the sequence database (sdb) using the target profile stored in the prf object 

as the query. Several options, such as the parameters for the alignment algorithm (matrix_offset, 

rr_file, gap_penalties etc.), are specified to override the default settings. max_aln_evalue 

specifies the threshold value to use when reporting statistically significant alignments. 



• prf.write() writes a new profile containing the target sequence and its homologs into the 

specified output file (file:build_profile.prf). 

• The profile is converted back to the standard alignment format and written out using aln.write(). 

2. The results of the build_profile() command are stored in the output file 

output/build_profile.prf. The first six lines of this file list the input parameters used to create the 

alignments between the identified templates and the target sequence. Subsequent lines contain 

several columns of data, one for each template. For the purposes of this example, the relevant 

columns are (i) the second column, containing the PDB code of the related template sequences; 

(ii) the tenth column, indicating length of the matched alignment between the GroEL subunit and 

the template; (iii) the eleventh column, containing the percentage sequence identity of the 

alignment; and (iv) the twelfth column, containing E-values for the statistical significance of the 

alignments. 

3. After a list of all related protein structures and their alignments with the target sequence 

has been obtained, template structures are usually prioritized depending on the purpose of the 

comparative model. Template structures may be chosen based purely on the target-template 

sequence identity or a combination of several other criteria, such as the experimental accuracy of 

the structures (resolution of x-ray structures, number of restraints per residue for NMR 

structures), conservation of active-site residues, holo-structures that have bound ligands of 

interest, and fit to other experimental data such as density maps and small angle X-ray scattering 

curves (67). 

4. A segmentation of the EM density map is performed by an adaptation of the Gaussian 

mixture model (GMM) clustering technique (55, 68). Geometrically, an assembly of globular 

proteins can be viewed as a spatial configuration of ellipsoidal components. Each such 

component can be approximated by a 3D Gaussian, represented by a 3D mean (i.e., its centroid) 

and a 3D variance (i.e., the square lengths of its principal axes). Thus, a segmentation of an 



assembly density that corresponds to its molecular configuration can be formulated as finding the 

most likely linear combination of Gaussian components from which the assembly density was 

sampled. 

5. The script script3_density_segmentation.py sets a call to the 

IMP.multifit.density2anchors program; for more options, call the executable directly. 

density2anchors requires specifying of the number of Gaussians (K). It is recommended to set K 

to the number of proteins (domains) of the assembly for segmenting a low-resolution (an 

intermediate resolution) density map, however different Ks should be tested. To visually inspect 

of segmentation results, add the seg option to density2anchors run; with this option 

density2anchors writes each segment into a separate MRC file and provides a 

load_configurations.cmd script to load all segments into Chimera.  

6. The EM quality-of-fit of a probe (ρP) to its density (ρEM) is defined as 1 minus the cross-

correlation coefficient (CCF) between them. Specifically, CCF is defined as: 
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N

∑ . The values of the EM quality-of-fit score range 

from 0 to 1, where 0 indicates a perfect fit. 

7. Below we highlight key commands in script4_score_templates_by_cc.py : 

• First few lines parse the build_profile.prf file and extract the names of the templates. 

• IMP.em.read_map() reads the density map. The command gets as input a density map 

filename and an appropriate reader, which is in this case a MRCReaderWriter. IMP supports 

MRC, Xplor, Spider, and EM formats. 



• The resolution of the density map is not saved in the map, and needs to be set using the 

set_resolution() command. 

• IMP.Model() initializes an IMP model, which is going to store all templates. 

• IMP.atom.read_pdb() reads the structure of the template. The function requires a file in 

PDB format, and a model object that is going to store the molecule. In addition, the function can 

get as input a Selector that specify which atom types are should be read (eg CAlphaPDBSelector 

and NonWaterPDBSelector). 

• IMP.atom.setup_as_rigid_body() sets the molecule to a rigid body. The function returns a 

IMP.core.RigidBody decorator. To learn more on the decorator concept in IMP see 

http://salilab.org/imp.  

• The rigid fitting procedure is performed in two stages. First, coarse fits are explored using 

the IMP.multifit.pca_based_rigid_fitting() command. These fits are then refined by a local Monte 

Carlo/conjugate gradient (MC/CG) minimization using the IMP.em.local_rigid_fitting() 

command. 

• We write the fitted templates using the IMP.atom.write_pdb() command. Notice that we 

used IMP.core.transform() to transform the rigid body to its fitted position prior to the writing 

command. 

8. The IMP.multifit.pca_based_rigid_fitting() command fits a protein to its density map by 

aligning their principal components. The principle components of the density are calculated 

according to all voxels above a density threshold (specified by the user) while the principle 

components of the density map are calculated according to all atoms. The function returns a list 

of fits. Each fit is represented by a transformations and a quality-of-fit score. 

9. The IMP.em.local_rigid_fitting() command locally refines the current fit of a rigid body 

in a density map by a local MC/CG sampling. At each MC iteration of the rigid body is randomly 



locally transformed followed by a CG minimization. The user can specify the number of MC 

iterations and the maximum number of CG steps allowed at each iteration. 

10. The DOPE score is a pairwise atomic distance statistical potential that assesses atomic 

distances in a model relative to those observed in many known protein structures. The DOPE 

potential was derived by comparing the distance statistics from a non-redundant PDB subset of 

1,472 high-resolution protein structures with the distance distribution function of the reference 

state. By default, the DOPE score is not included in the model building routine, and thus can be 

used as an independent assessment of the accuracy of the output models. In its normalized version 

(zDOPE), a score below -1.0 indicates a relatively accurate model, with more than 80% of its Cα 

atoms within 3.5 Å of their correct positions. However, it might be that the template does not 

follow a typical shapes found in the PDB, which will result in a high zDOPE for the 

experimentally determined template. Thus, it is advised to compare the zDOPE profiles of both 

target and template. 

11. The 10 models of the groEL subunit based of 1iok template achieve low zDOPE score 

(i.e. all models achieved a zDOPE score higher than 0). Visual inspection of the generated models 

revels that the c-terminal fragment of the subunit was not covered by the alignment and thus not 

modeled. After removing this fragment from the models the zDOPE score dropped below 0.  

12. MultiFit (55, 69) is a method for modeling the structure of a multi-subunit complex by 

simultaneously optimizing the fit of the model into its EM density map and the shape 

complementarity between its interacting subunits (http://www.salilab.org/MultiFit). It has been 

shown that the accuracy of both scoring terms is sensitive to errors in comparative modeling (19, 

70). Thus, if the target(s) share high sequence identity to their template(s), it is advised to model 

the assembly based on the template structure(s) and then superpose the target models structure on 

the corresponding templates. For example, here the accuracy of the subunit homology models 

were low (as indicated by zDOPE and TSVMod), especially in the loop regions. Thus, we run 

MultiFit with the template as input and then replaced by template with the subunit model using a 



series of transformations commands. A refinement procedure (such as FlexEM) should be next 

used to fix clashes and improve the fit to the density. 

13. Below we highlight key commands in script9_symmetric_multiple_fitting.py: 

• runMSPoints.pl is a perl script for generating Connolly surface (71)  from the subunit to 

be fitted. 

• build_cn_multifit_params.py generated the parameters file being using by MultiFit. The 

script initialize the algorithm parameters with its defaults. The user can manually adjust these 

parameters to allow for an enhanced sampling. Example for one such parameter is the 

pca_matching_threshold parameter. MultiFit filters out ring complexes whose pca dimensions do 

not match the ones of the density map. The acceptable match size is set by the 

pca_matching_threshold parameter with default value of ¾ of the EM density map resolution. 

• symmetric_multifit is the executable that runs MultiFit given the parameters file. The user 

can control the number of output models by the –n option. The results are written into a text file 

consisting, among others, of the following three key fields: (i) The transformation used to build a 

symmetric complex is written to the dock rotation and dock translation fields, (ii) The 

transformation used to fit the ring into the density is written to the fit rotation and fit translation 

fields, and (iii) The cross correlation score (one minus the EM quality of fit score) is written to 

the fitting score field. 

14. A FlexEM refinement procedure is composed of two stages. In the CG stage, the 

positions and orientations of predefined rigid bodies are resolved via a MC/CG minimization; the 

rigid bodies usually correspond to secondary structure elements. In the MD stage, positions of all 

atoms are resolved via a fully atomistic molecular dynamics minimization. A FlexEM tutorial can 

be found at http://sailab.org/Flex-EM. 

15. Below we highlight key commands in script10_flexible_fitting.py: 



• Input parameters should be set: (i) input_pdb_file, the name of the comparative model 

file, already rigidly fitted to the density,  (ii) em_map_file map, the name of the density map file, 

(iii) apix, the density map voxel size, and (iv) res, the resolution of the density map. 

• The optimization procedure is controlled by few parameters: (i) rigid_filename, the name 

of the file holding the definition of the rigid bodies (see file rigid_sses.txt for the format), (ii) 

optimization, which optimization stage to run (CG or MD), (iii) num_of_runs, the number of 

models to produce, and (iv) initial_dir, the initial number for the output directories.  

• This MD optimization stage is controlled by md_parameters (ie, temperatures and 

number of steps for the simulated annealing algorithm).  

• The md_return parameter controls the output model reported as final for each run 

(final_mdcg.pdb). The model can be either the last one sampled (FINAL) or the best scoring one 

(OPTIMAL).  

• In our example model #2 got the lowest EM-quality-of-fit score. 
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Legends to figures 

Figure 1 

A flowchart illustrating the steps for modeling a protein complex by comparative modeling and 

density map fitting. 

Figure 2 

The steps of EM guided modeling as applied to the GroEL example. (Segmentation) The density 

map at 11.5 Å resolution is segmented into 14 regions corresponding to the regions occupied by 

the individual monomers of the assembly. The segments are shows in alternating shades of gray; 

(Fold detection) Candidate templates are found by scanning the GroEL subunit sequence against 

the sequences of PDB structures and fitting each of them to the density map. Four of the 

templates (1we3A, 3kfbA, 1iokA, 1a6dA), the sequence identity to the target and the fit into the 

density map of each of them are shown. The selected template is highlighted in green;  (Template 

alignment & model building) Sequence alignment between the target and the selected sequence is 

generated using a variable gap penalty method. Ten models are constructed and the best model is 

chosen using the zDOPE, TSVmod, and quality-of-fit scores. A zDOPE profile for the selected 

model and a superposition of the selected model (green) to the reference structure (gray) are 

shown; (Multiple fitting) 14 copies of the target model as simultaneously fitted into the density 



using the MultiFit method. A model of the complete assembly as generated by MultiFit is shown 

in green; (Flexible fitting) FlexEM is used to refine the one of the complex subunits to fit the 

density map. The starting and refined models (green) superposed on the reference structure are 

shown. 

Figure 3 

The Python script used for scoring templates by their fit to a segment of a density map. 

Figure 4 

The Chimera – MODELLER interface. The sequence alignment is displayed in Chimera's 

Multalign Viewer tool  (top). In the dialog for running MODELLER (middle left), one of the 

sequences in the alignment is designated as the target (sequence: P0A6F5), and at least one 

structure (associated with another sequence in the alignment) is designated as the template 

(strucutre: 1iok). Structure information is shown to help guide the choice of template. After the 

run, the resulting models are listed along with various model scores from MODELLER in a table 

(bottom left) and their structures are loaded into Chimera. In this example, the main Chimera 

window (right) shows the template as an outline and one of the model structures as a ribbon 

colored by error profile. 
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