An Intensity-based Post-processing Tool for 3D Instance
Segmentation of Organelles in Soft X-ray Tomograms

Angdi Li*?3, Shuning Zhang'?:3, Valentina Loconte'?, Yan Liu'2, Axel Ekman®7,
Garth J. Thompson!, Andrej Sali®, Raymond C. Stevens>5? Kate White®", Jitin
Singla*”, Liping Sun®?"

1 iHuman Institute, ShanghaiTech University, Shanghai 201210, China

2 School of Life Science and Technology, ShanghaiTech University, Shanghai 201210,
China

3 University of Chinese Academy of Sciences, Beijing 100049, China

4 Department of Biosciences and Bioengineering, Indian Institute of Technology
Roorkee, Roorkee, Uttarakhand 247667, India

5 Department of Biological Sciences, Bridge Institute, University of Southern California,
Los Angeles, CA 90089, USA

6 Department of Anatomy, University of California San Francisco, San Francisco, CA
94143, USA

7 Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley
National Laboratory, Berkeley, CA 94720, USA

8 California Institute for Quantitative Biosciences, Department of Bioengineering and
Therapeutic Sciences, Department of Pharmaceutical Chemistry, University of
California, San Francisco, San Francisco, CA 94158, USA

9 Department of Chemistry, Bridge Institute, University of Southern California, Los
Angeles, CA 90089, USA

*Kate White: katewhit@Qusc.edu
*Jitin Singla: jsingla@bt.iitr.ac.in
*Liping Sun: sunlp@shanghaitech.edu.cn

Abstract

Investigating the 3D structures and rearrangements of organelles within a single cell
is critical for better characterizing cellular function. Imaging approaches such as soft
X-ray tomography have been widely applied to reveal a complex subcellular organization
involving multiple inter-organelle interactions. However, 3D segmentation of organelle
instances has been challenging despite its importance in organelle characterization. Here
we propose an intensity-based post-processing tool to identify and separate organelle
instances. Our tool separates sphere-like (insulin vesicle) and columnar-shaped organelle
instances (mitochondrion) based on the intensity of raw tomograms, semantic segmenta-
tion masks, and organelle morphology. We validate our tool using synthetic tomograms
of organelles and experimental tomograms of pancreatic S-cells to separate insulin vesicle
and mitochondria instances. As compared to the commonly used connected regions
labeling, watershed, and watershed + Gaussian filter methods, our tool results in im-
proved accuracy in identifying organelles in the synthetic tomograms and an improved
description of organelle structures in S-cell tomograms. In addition, under different
experimental treatment conditions, significant changes in volumes and intensities of
both insulin vesicle and mitochondrion are observed in our instance results, revealing
their potential roles in maintaining normal S-cell function. Our tool is expected to
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be applicable for improving the instance segmentation of other images obtained from
different cell types using multiple imaging modalities.

Introduction

Subcellular architectures including organelle volume, distribution, locations, and inter-
actions reflect various information regarding the cell state. For example, mitochondria
change their localization to meet the corresponding cellular energy demands [1]. More-
over, rearrangements of insulin vesicles in pancreatic S-cells under different treatments
reveal potential impacts in stimulating insulin secretion [2]. Furthermore, the relative
localizations of insulin vesicles and mitochondria network point out the role of inter-
organelle interactions during insulin secretion [3](in press). Thus, characterization of
rearrangements of subcellular structures will facilitate our understanding of cell structure
and function.

Recently a non-invasive 3D imaging technique known as soft X-ray tomography
(SXT) has been developed to describe and quantify subcellular reorganization processes
comprehensively [5H10]. SXT is capable of investigating the cellular architecture of
intact cells in a near-to-native, hydrated, and vitrified state [11], exploiting the cells’
natural contrast at the ”"water window” (284-583 eV photon energy) [4], where the
X-ray beam is absorbed by carbon-rich and nitrogen-rich components. For example,
SXT has been used to image the mitochondria volume ratio under antifungal peptoids
treatment in C.albicans cells [12]. In a recent study, White et al. applied SXT to generate
three-dimensional reconstructions of whole pancreatic S-cells, illustrating the organelle
locations and interactions [2].

Segmentation is an important step in identifying and analyzing the organization of
specific organelles throughout the 3D volume of the SXT tomograms. The identification of
organelles in SXT data is mainly based on two features: their morphology (e.g. spherical
or elongated) and density of bioorganic components which are intrinsically connected
with their molecular composition. Segmentation methods include manual segmentation,
traditional algorithm segmentation like watershed, and auto-segmentation based on
machine learning. To this date, the most commonly used approach is to manually segment
SXT tomograms using software such as Amira-Avizo (ThermoFisher Scientific) |13],
Chimera [14], Fiji [15], MITK [16]. Watershed method [17] is a traditional segmentation
algorithm that relies on mathematical morphology from topological theory, dividing the
spatially adjacent voxels with similar values into one label. Auto-segmentation methods
train neural networks by using existing segmentation masks to predict segmentation
masks on raw images. For example, Ekamn et al. takes advantage of Convolution
Neural Networks (CNNs) and annotation database to generate organelle segmentation
masks on Chromochloris zofingiensis cell [18]. However, despite that many efforts are
made on SXT organelle segmentation [17|19}20], especially several auto-segmentation
methods [21,/22], current methods provide information of organelles, but not individual
organelle instances.

Here we developed and applied an intensity-based post-processing tool to refine the
segmented masks by separating organelle instances. We use SXT tomograms of pancreatic
[B-cells as a case study to characterize subcellular structures, for example, insulin vesicles
and mitochondria. Our tool is based on the intensity of raw SXT tomograms, semantic
segmentation mask, and prior knowledge of the organelle morphology. We first validate
our method on a synthetic benchmark and compare the segmented instances with
commonly used methods: connected regions labeling, watershed, and watershed +
Gaussian filter methods. Then, we apply it to separate insulin vesicle and mitochondria
instances from SXT tomograms of §-cells, and analyze organelle volumes and intensities
under different conditions as well as the biological implications.
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Materials and methods

Input data

Input data includes 24 soft X-ray tomograms and two manually segmented semantic
masks (insulin vesicle and mitochondrion) for each tomogram. The tomograms are
collected after 30 min treatment under three conditions, namely, 0 mM glucose (no
external stimuli), 25 mM glucose, 25 mM glucose + 10 nM exendin-4 (Ex-4, a glucagon-like
peptide-1 receptor agonist that enhances glucose-stimulated insulin secretion). For each
condition, eight tomograms are collected. Experimental details for different treatment
conditions can be found in White et al. [2]. The resolution of each tomogram is approx.
[500,500,500] voxels, with each voxel having a sampling size of [35 nm, 35 nm, 35 nm]. The
intensity in each voxel numerically equals to Linear Absorption Coefficient (LAC) [23]
value on the current region. LAC value reflects the molecular densities of each voxel in
the tomogram [U+FFOC] which is quantified by the Beer-Lambert’s law [24].

Synthetic benchmark

Organelles are often in contact with each other in a crowded cellular environment,
raising the difficulty of recognizing individual instances of organelles. To evaluate the
accuracy of our tool in separating organelles, we establish two synthetic benchmarks
to identify individual insulin vesicle and mitochondrion. For each type of organelle, we
first manually select approx. 100 organelle instances that appear disconnected from all
24 semantic masks of this organelle. Then we construct ten synthetic datasets, each by
attaching 5 randomly selected instances out of the 100 organelle instances in random
positions. Each synthetic dataset includes a synthetic tomogram, a synthetic semantic
mask, and a synthetic instance mask (groundtruth).

Watershed method

Watershed is a region-based segmentation method based on the mathematical morphology
[25]. Tt decomposes a tomogram into several catchment basins by representing voxels
with higher intensities as "hills” and darker voxels as ”valleys”. One major limitation
of watershed method is the ”over-segmentation” of noisy tomograms [26]. With the
application of a Gaussian filter to denoise the tomogram, the performance of watershed
method has seen some degrees of improvement [27].

Results

We first describe the workflow of our intensity-based post-processing tool. We illustrate
our approach using synthetic tomograms and (-cell tomograms. In both cases, the
performance of our method is better than the commonly used methods of connected
regions labeling [28], watershed, and watershed + Gaussian filter. Moreover, we charac-
terize intensity and volume for the segmented insulin vesicle and mitochondria instances
from B-cell tomograms, collected under three conditions: 0 mM glucose, 25 mM glucose,
25 mM glucose + 10 nM Ex-4; This analysis provides extra information for the subcellular
structural variances under different treatments.

Workflow

Our post-processing tool is an improved blob detection method which functions by
integrating information including intensity of the raw tomogram, semantic segmentation
mask of the organelle, and prior knowledge of the organelle morphology (see Fig . The
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organelle morphology used here are: sphere-like shapes (i.e., insulin vesicles) [29] and
columnar shapes (i.e., mitochondria) [2,|30H32]. Other typical mitochondrial shapes,
such as loop and vase, which are more often seen under carbonyl cyanide m-chlorophenyl
hydrazine (CCCP) exposure, are not considered here [32]. The source code of our
tool is available at: https://github.com/Salilab-SH/post_processing_tool_for_
instance_segmentation_on_SXT.

Fig 1. Workflow of the post-processing tool to separate insulin vesicle and
mitochondria instances. Orange arrows indicate steps to separate insulin vesicle
instances, while green arrows indicate steps to separate mitochondria instances. All
steps are processed in 3D spaces.

e Step 1: Separate disconnected organelles: Initially, we separate disconnected
organelle regions on semantic masks into clusters of organelles. Each cluster contains
one or many organelle instances. The next steps segregate each disconnected
organelle cluster into individual organelle instances.

e Step 2: Denoise soft X-ray tomograms: For each organelle cluster in the
semantic mask, a rectangular box is cropped from the corresponding region in
raw SXT tomograms. The box contains all voxels of the organelle cluster plus
two additional layers of voxels along each edge of the box. This region is denoised
using Gaussian filters. The Gaussian filter function [33] is

22 2 2
= Le—i” = (1)
2o
Here we apply a [3,3,3] Gaussian kernel to the raw tomogram. x,y,z are the
relative coordinates to the kernel center. To maximally reserve useful information
and reduce noise from the raw tomogram, we apply ten filters with ¢ ranging from
1 to 10 with 1 increment resulting in ten denoised tomograms for each organelle
cluster . o values smaller than 1 or larger than 10 fail to provide reasonable

intensity variations.

e Step 3: Find local maxima points as centers of candidate blobs: Local

maxima points are voxels whose intensity values are larger than surrounding voxels.

For each organelle cluster, we apply a [3,3,3] local maxima kernel and collect local
maxima points from all ten denoised tomograms as centers of candidate blobs.

e Step 4: Screen candidate blobs: To increase the computing efficiency, centers
of candidate blobs determined in step 3 are filtered out if the corresponding voxels
are not located in the semantic mask.

e Step 5: Estimate radius for candidate blobs: First, we fit a number of
spheres with different radius r centered at the center of each candidate blob. The
minimum radius 7,4, is 1.5 voxels, a threshold to restrict the minimal size of a
blob. Whereas the maximum radius r,,,, is half of the diagonal length of the
rectangular box determined in step 2, to include all the possible radii for the
candidate blob. For each radius, the overlapping ratio is calculated between each
sphere and the semantic mask by:

T € [Tminy Tmax (2)
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Vin(r) is the volume of the semantic mask containing voxels whose distance to the
center of the candidate blob is smaller than r, V,(r) is the volume of a sphere with
a radius of r. With the radius increases from 7,,;, t0 74z, the overlapping ratio
a, decreases from 1 to 0 —B). The calculation starts from r,,;, and ends
when the overlapping ratio reaches 0.8, a manually adjusted threshold. The sphere

used here is only to estimate the blob radius, not to represent the final blob shape.

Step 6: Rank and screen non-overlapping blobs: All candidate blobs are
ranked based on the intensity of the center voxels in raw tomograms, determined
in step 3. Then, we take a greedy strategy to screen non-overlapping blobs: 1) we
first select the highest-ranked candidate blob; 2) we go through the rank list of
the candidate blobs and select it if its distance to each previously selected blob is
larger than the radius of the previously selected blob; 3) after screening all the
candidate blobs, the final list of selected blobs will go through the following steps
to obtain individual organelle instances. An example of filtered blobs is shown in

ST Figl.

Step 7: Locate reference vector for columnar organelle: We identify an
individual mitochondria instance and its overall orientation using three blobs that
are approximately aligned in a straight line (defined by the absolute value of
the cosine of an adjacent angle, details in below). Using these three blobs as
nucleation points, we grow mitochondria instance by adding nearby blobs. This
process repeats until all the blobs are classified in mitochondria instances. We
represent the overall orientation of each mitochondria instance with a reference
vector ‘_/}e ¢. To locate this reference vector, we first generate a candidate reference
vector for each blob B;. We identify two nearest blobs B} and B? and compute

two vectors ﬁ& and ﬁ& , pointing from the center of blob B; to the center of
blobs B} and B2, respectively. Then we calculate an adjacent angle Oaqj between
these two vectors. Each blob thus has one corresponding adjacent angle. Now, if
|cos(0aa;)| > cos(30°) (i.e. the angle is within the region [0°, 30°] or [150°, 180°]),
the sum (when 6,4; € [0°, 90°]) or subtraction (when 644 € [90°, 180°]) of these
two vectors is thus a candidate reference vector ‘75@ f generated from center of
blob B;:
VB _ -BzﬁB + szB Baqj € [0°,90°]
erel EﬁBi - ﬁ Baq; € [90°,180°]

Among all the candidate reference vectors, the one with the maximum value of
|cos(Baq;)| is assigned as ‘Zef.

As the reference vector has three blobs associated with it, these three blobs are
assigned as one mitochondria instance label (S2 FiglC-D). They act as nucleation
of a single mitochondria instance. Then we proceed to step 8 to include proximal
blobs to the instance label assigned here. We iterate between step 7 and 8 to
generate as many instance labels as possible. Once we reach a point where no new
reference vector can be located, either due to the number of blobs being smaller
than three or the absolute value of the cosine of the adjacent angle smaller than
cos(30°), we proceed to step 9 to cluster blobs with K-Means.

Step 8: Include proximal blobs with similar vectors: We further expand
the instance label generated in step 7 to include proximal blobs. For blobs not
assigned to any instance labels, testing vectors are defined between the blob center
and the blobs in the most recent instance label generated in step 7. Then we
compute the angle between the testing vectors and the reference vector. The blob
is then classified as part of the organelle instance label if any of the testing vectors
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satisfies the following two conditions: i) the absolute value of the cosine of the
angle between the testing vector and the reference vector |cos(6;_rcf)| > cos(30°);
ii) the length of the testing vector is shorter than the sum of the diameter of the
two blobs in the testing vector —F). Each time the organelle instance label
is updated when adding a new blob. All non-assigned blobs proceed through the

above classification again until no more blobs can be included in the instance label.

Then we proceed to step 7 to find a new reference vector and initiate another
instance label.

e Step 9: Cluster blobs with K-Means: The remaining blobs not classified to
any mitochondria instance label are clustered based on their coordinates by the
K-Means clustering method [34]. K value is optimized according to the Elbow
method [35]. Mitochondria instances without a reference vector are mostly of short
length, close to an ellipsoidal morphology, which can be sufficiently represented by
a few blobs. Thus, a K-Means clustering method can classify them. An example
of K-Means clustering is shown in [S3 FigD.

e Step 10: Translate information into scoring for ranking blobs: So far,
the instance labels have been generated based on blobs. But not all voxels in the
semantic mask are included inside the blobs. A scoring function is computed for
all voxels to determine if a voxel belongs to a specific blob. The function is defined
as the distance between a voxel and a blob center divided by the radius of that
blob. For each voxel, all blobs are ranked by the computed voxel scores.

e Step 11: Classify voxels to blobs: Each voxel has multiple scores associated
with it, one for each blob. The voxels from the semantic mask are assigned to the
blob with the lowest score.

e Step 12: Classify blobs to instance: Finally, all voxels in a blob are assigned
with the organelle instance label of that blob.

Post-processing on a sphere-like organelle

The workflow to obtain instances of sphere-like organelle is indicated by the orange
arrows in Fig[I} We use insulin vesicles as an example. With the input information
including soft X-ray tomograms, insulin vesicle semantic segmentation masks, and the
sphere-like morphology of insulin vesicle, we proceed through step 1 to step 6, then step
10 to step 12 to obtain insulin vesicle instance masks. For the sphere-like organelle, the
instance label is the blob label.

Post-processing on a columnar-shaped organelle

The workflow to obtain instances of columnar-shaped organelle is indicated by the green
arrows in Fig We use mitochondria as an example. With the input information
including soft X-ray tomograms, mitochondria semantic segmentation masks, and the
columnar morphology of this mitochondrion, we proceed through step 1 to step 12 to
obtain mitochondria instance mask. For the columnar-shaped organelle, the instance
label might be one or several blobs.

Validation

We apply our post-processing tool on synthetic tomograms (Materials and methods:
Synthetic benchmark) to quantify the accuracy of the resulting organelle instances. We
compare instances masks computed from our tool, connected regions labeling, Watershed
methods (Materials and methods: Watershed Method), and watershed + Gaussian
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filter on insulin vesicles and mitochondria, respectively. The commonly used evaluation
metric, Average Precision (AP) [36] is used here to measure the accuracy under different
Intersection over Unions (IoUs, representing the similarity between the ground-truth
and the predictions of individual organelle instances). We calculate the mean AP (mAP,
AP@[.5:.95], obtained by averaging AP from AP50 to AP95 with 5% IoU increments)
and AP in instance recognition under three different IoUs: 50% (AP50), 70% (AP70)
and 90% (AP90), as listed in Table[l] To intuitively visualize the instance results, we
plot the instance masks computed by three methods on one of the test datasets for
each organelle type (Each dataset includes one synthetic tomogram and one semantic
organelle mask): insulin vesicle (Fig[2A-E) and mitochondrion (Fig[2F-J).

As for insulin vesicle instance, 93.8% in mAP is obtained using our tool, whereas
85.0% in mAP is obtained using watershed + Gaussian filter and even lower mAPs
using the other two methods. With an IoU threshold of 90%, our tool still results in
88.9%, whereas watershed + Gaussian filter shows only 29.9%. For example, one insulin
vesicle instance (green, Fig ) is correctly separated using our tool (grey, Fig )
However, it is recognized as two instances using watershed + Gaussian filter (pink and
brown, Fig ) due to the insignificant difference in the intensity between the edge of
this insulin vesicle and the background (Fig ) Such uneven intensities are common in
SXT, which might result from the uneven distribution of chemical components inside
the insulin vesicle, or biases during SXT data collection [6].

Mitochondria instances (0.0% - 49.9% in mAP) are generally more difficult to separate
than insulin vesicle instances (1.0% - 93.8% in mAP) for two reasons: 1) contacts between
mitochondria increase the difficulty in classifying blobs at the edges (e.g., dark blue and
green in Fig , light blue and grey in Fig ); 2) overall low intensity of a mitochondrion
leads to inaccurate blob detection (Fig ) Importantly, our tool still improves the
accuracy of mitochondria instance results (49.9% in mAP) compared to the other three
methods (35.4% or less in mAP). Thus, our post-processing tool provides a significantly
improved accuracy than other commonly used instance separation methods by integrating
prior knowledge of organelle morphology: the sphere-like shape of insulin vesicle and
columnar-shaped of mitochondrion.

Table 1. Instance mask AP on test datasets.
|  Organelle | mAP(%) AP50(%) AP70(%) AP90(%)

post-processing tool 93.8 98.5 96.1 88.9
connected regions labeling insulin vesicle 1.0 10.0 0.0 0.0
watershed instance 42.6 53.9 48.1 29.9

watershed + Gaussian filter (o = 1) 85.0 91.8 86.8 79.3
post-processing tool 49.9 68.3 53.4 36.5
connected regions labeling mitochondrion 0.0 0.0 0.0 0.0
watershed instance 9.23 13.8 11.3 2.33

watershed + Gaussian filter (o0 = 1) 35.4 46.4 40.9 18.7

All entries are average results from 10 test datasets.

Application

Insulin vesicles and mitochondria are organelles that play essential roles in insulin
secretion. A single insulin vesicle refers to an insulin-containing dense-core secretory
vesicle, which works as a cargo container to store, transport and secrete insulin [37]. A
mitochondrion is a single mitochondrial unit which plays a role in providing ATP and
triggering the plasma membrane depolarization during insulin secretion [55]. Here we
apply our method on SXT tomograms of pancreatic S-cells and corresponding insulin
vesicles and mitochondria masks (Materials and methods: Input data) (FigBA-D). We
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Fig 2. Separation results of mentioned methods on synthetic benchmarks. A)
Synthetic tomogram of one insulin vesicle test dataset. Dark to light represents
intensity from low to high. B) The groundtruth of insulin vesicle instance label,
containing 5 instances. C) Results from post-processing tool, including 5 instances. D)
Results from connected regions labeling method, including 1 instance. E) Results from
watershed method, including 7 instances. Each color in images represents one insulin
vesicle instance. F) Synthetic tomogram of one mitochondrion test dataset. Dark to
light represents intensity from low to high. G) The groundtruth of mitochondria
instance label, containing 5 instances. H) Results from post-processing tool, including 4
instances. I) Results from connected regions labeling method, including 1 instance.
Each color in images represents one mitochondria instance. J) Results from watershed +
Gaussian filter method, including 17 instances.

first analyze the volume and intensity of individual organelles, and compare results
from our tool with commonly used methods: connected regions labeling, watershed, and
watershed + Gaussian filter method, as shown in Fig BE-H and . Then, based
on the intensity and volume for both insulin vesicle and mitochondria instances from
our method, we investigate the impacts of glucose stimulation and Ex-4 on organelles in
three conditions, as shown in Fig[4 and

We find that for insulin vesicles, the instance intensity distribution is similar between
our method and the connected regions labeling method, but has wider ranges in the
watershed and watershed 4+ Gaussian filter methods (Fig[BE). In addition, the instance
volume distribution is condensed from our method as compared with connected region
labeling method, but is in the lower volume region as shown in the watershed and
watershed + Gaussian filter methods, as shown in Fig[BF. Such distributions from the
watershed and watershed + Gaussian filter methods are largely due to over-segmentation
of instances. For the identification of mitochondrion, the distribution of a single mito-
chondrion’s intensity slightly shifts to low intensity region (Fig ) as compared with
connected regions labeling. In contrast, the intensity distributions from watershed and
watershed + Gaussian filter methods shift to even lower intensity regions. The volume
of mitochondria instances shows similar trends as insulin vesicle instances: volume
distribution is slightly condensed from our method (Fig[3H) compared with the con-
nected regions labeling method, while the distributions from watershed and watershed +
Gaussian filter methods are in lower volume regions. According to previous studies, the
mean intensity of insulin vesicle instances in a cell ranges from 0.39 to 0.43 [2], while
the average intensity of the whole mitochondria network is approximately 0.34 [2]. Our
tool and connected regions labeling produce organelle instances which lie within the
experimentally determined ranges, compared to Watershed and Watershed + Gaussian
filer methods. The diameter of an insulin vesicle is approximately 200 nm [39-41], whose
volume equals to 170 voxels in our tool results. The volume of mitochondrion ranges
from 300 to 7500 voxels according to the baffle model [42]. Moreover, our tool produces
organelle instances whose volumes agree well with the experimentally determined volume
range compared to the other three methods. Such accordance in the organelle intensity
and volumes further validates the performance of our tool.

Fig 3. Results from post-processing tool on 5-cell tomograms. The A) insulin
vesicle semantic mask is processed into B) insulin vesicle instances mask, while the C)
mitochondrion semantic mask is processed into D) mitochondria instances mask. Each
color represents one organelle instance. E-H). Comparison of instance intensity and
volume distribution from four mentioned methods in example datasets. AU: Arbitrary
unit.
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Based on our method, we are able to detect the variance of individual organelles
under different conditions to investigate the impacts of glucose stimulation and Ex-
4 on the organelle, as shown in Fig [l Results of intensity, volume, and number of
organelle instances for each dataset are listed in For the glucose stimulation,
compared with 0 mM glucose condition, insulin vesicle instances have increased intensity
but decreased volume under 25 mM glucose condition. Previous studies have reported
an insulin vesicle maturation process to form both small and large vesicles with different
condensation levels of the content [43]. Thus, we suggest that glucose stimulation
triggers (-cell to generate more small vesicles during the vesicle maturation. In addition,
mitochondrion has increased intensity and volume with wider volume distribution under
25 mM glucose condition. A previous study noted increased heterogeneity of mitochondria
under stimulation and diseased states [44], which resulted in larger variances in volume
distribution. As for Ex-4, insulin vesicle instance intensity under 25 mM glucose + 10 nM
Ex-4 condition is higher than the other two conditions, while the instance volume is
higher than 25 mM glucose but lower than 0 mM glucose. Moreover, we observe that
mitochondria instance intensity under 25 mM glucose + 10nM Ex-4 condition is higher
than the other two conditions, while the instance volume is higher than the 0 mM glucose
condition, but has no difference compared to the 25 mM glucose condition. Ex-4 has
been reported to enhance glucose-stimulated insulin secretion [45], but how Ex-4 affects
the organelle molecular density during insulin secretion is still not clear. Our study
provides extra morphological insights regarding the behavior of single insulin vesicle
and mitochondria instances under different stimulation conditions; however, further
biochemical studies are required to understand the priorities of single insulin vesicle and
mitochondrion, as well as the interplay between individual organelles.

Fig 4. Analysis of insulin vesicle and mitochondria instances variance among
conditions. Three conditions: 0 mM glucose, 25 mM glucose, 25 mM glucose + 10 nM
Ex-4. Significance analysis are conveyed on Mann-whitney. *: p < 1.07%4. AU: Arbitrary
unit.

Discussion

Segmentation is a critical step to identify a specific organelle from soft X-ray tomograms.
However, current methods hardly satisfy our demands to obtain accurate organelle
instances from tomograms. Thus, we propose a post-processing tool by integrating
organelle intensities from SXT tomograms, organelle locations from semantic masks, and
organelle morphology from prior knowledge. Specifically, our tool first identifies blobs in
soft X-ray tomograms by finding the intensity local maxima points, then screens blobs
by filtering with organelle semantic mask, third classifies those blobs to each organelle
instance based on prior knowledge of organelle morphology.

In SXT tomograms, organelles like insulin vesicles, mitochondria, lipid droplets, and
the nucleus have a higher LAC value (molecular density) than the cytosol surroundings.
This feature allows for the identification of organelles by considering their LAC values
and morphology [8l/46]. Our method identifies intensity local maxima points to separate
organelle position directly from raw tomograms, improving our ability to distinguish
individual organelles. In addition, our tool incorporates the prior knowledge of organelle
morphology, making it possible to separate sphere-like organelle insulin vesicles and
columnar-shaped organelle mitochondrion. For example, by using this tool, we can
identify individual insulin vesicles that would often be segmented as one cluster in
previous segmentation approaches, e.g. connected regions labeling. Given recent reports
of insulin vesicle in contacts with other organelles [3] (in press) and increasing discussions
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on the relevance of inter-organelle contacts in cell biology [47H50], methods to accurately
separate specific organelles will promote our understanding of such complex relationships.
Another example is that we are able to identify individual mitochondrion using our tool,
which is of grand challenge in previous segmentation approaches due to the columnar
shape. Previous studies |2}/3,/50] have elegantly shown the complex mitochondria network
but were not able to accurately distinguish between individual mitochondrion. Our
approach will enable a detailed separation and characterization of individual mitochondria
to better characterize how the organelle rearranges in health and disease. This approach
will be beneficial for analyzing new data to compare the effects of disease states and
drug treatments, specifically, the fragmentation of mitochondria network in diabetic
B-cells [51] and glucagon-like peptide (GLP)-1 treatment on S-cells [52].

However, there are still opportunities to further improve our tool. First, user bias
when manually segmenting semantic masks cannot be eliminated from the process.
The final instance results will include mislabeled organelles from the semantic masks.
Segmentation from multi-raters (multiple users identifying organelles) or using machine
learning models will likely reduce such user bias. Second, prior knowledge of organelle
morphology affects the accuracy of the final results. The representations of insulin
vesicle in sphere-like shape and mitochondrion in columnar-shaped are based on current
descriptions of from experiments [29,42]. As separation methods develop, cases where
insulin vesicles or mitochondria not existing in this specific morphology should be
considered. Third, separation of organelles with more complex shapes, for example
endoplasmic reticulum (ER) [53], remain a difficult task. To accurately separate the
ER or Golgi body, new separation methods with a combination of different types of
shapes are required. Fourth, the current implementation of our tool is time-consuming
when calculating instance labels due to loops and iterations in the algorithm. Further
improvements in algorithms are expected to improve the efficiency.

The validation of our approach in this manuscript reveals the potential to uncover
new details on how cellular organization changes during specific cellular states or under
specific drug treatments. Further use of this approach to investigate insulin vesicle
organization will provide new insights into the functional maturation of insulin vesicles.
It is understood that insulin vesicles exist in multiple functional pools such as the readily
releasable pool (located near plasma membrane) and the reserve pool (located in the
interior of the cell) [54]. Our results of insulin vesicle instances can be further exploited
to investigate the reorganization of distinct pools during insulin secretion. In addition,
mitochondria are activated [55] and driven to energy-consuming sites within cells [56]
during the glucose-stimulated insulin secretion. Analysis of the individual mitochondrion

obtained here will enable a more detailed investigation of the mitochondria localization.

This will also allow for a more in-depth quantification of mitochondria organization
depending on their location, inter-organelle contacts, and cellular states.

Conclusion

In this paper, we proposed an intensity-based post-processing tool for separating organelle
instances. Our tool incorporates information from soft X-ray tomograms, semantic masks,
and prior knowledge of organelle morphology. We apply our tool on S-cells as a case
study. Using this post-processing tool, we are able to separate sphere-like organelles, e.g.,
insulin vesicle instances, and columnar-shaped organelles, e.g., mitochondria instances.
Results on synthetic benchmarks indicate that our tool has higher accuracy for analyzing
both insulin vesicle and mitochondria instances than the commonly used separation
methods such as connected regions labeling 28], watershed, and watershed + Gaussian
filter [17]. In addition, we compare the instance results from all three methods on 5-cell
soft X-ray tomograms. We investigate the difference of instance intensity and volume
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on insulin vesicle and mitochondrion respectively. The results from our tool agree well
with previous studies [39+42]. Moreover, with higher recognition accuracy, our tool
reveals the significant variance of the volume and intensity of both insulin vesicle and
mitochondria instances under different treatments, providing a more detailed description
of the subcellular structures, which will is expected to facilitate future mechanistic
studies of S-cells. Our tool can be further extended to separate other organelles in
different cells, collected using multi-mode imaging techniques. Furthermore, our tool
providing detailed descriptions of organelle will contribute to the efforts to increase
precision and quality for whole-cell modeling [57H59].
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Supporting information

S1 Fig Filtered tomograms generated from an example tomogram applied
with Gaussian filters with o ranging from 1 to 10 with 1 increment. A-K)
show the same slice of the example tomogram. The example tomogram is a region from
[B-cell dataset 822 4, including a cluster of organelles. Yellow in tomograms represents
high intensity on that voxel, while dark purple represents the background. L) shows the
corresponding semantic mask with blobs. Every red circle represents the center of a
blob. Yellow in semantic mask L and raw tomogram K represent organelle label while
dark purple represents the background.

S2 Fig Sketch of details from workflow. A) Example of fitting a sphere to an
insulin vesicle. The full line represents the shape of the vesicle; the dotted line
represents the fitted sphere on the vesicle. B) The evolution of overlapping ratio a,
along the fitted sphere radius. C) Calculation of the vectors from blob 2 towards its
neighboring two blobs. D) The reference vector selected based on blob 2, marked green.
Meanwhile, the three blobs are included in the same instance label. E) Generation of
vectors from blob 4 to included blobs and compare the distance d and angle a. F) Blob
4 included in the instance label.

S3 Fig An example tomogram of a cluster of mitochondria. An example
tomogram from S-cell dataset 822_4 shows a cluster of mitochondria with all blobs. A-D
show the same slice of the 3D example tomogram. Each red circle is a 2D projection of
the corresponding blob center from 3D spaces. A) Overview of all blobs on the
mitochondrion cluster. B) One mitochondria instance label with five blobs generated
from step 7 and step 8. C) Another mitochondria instance label with four blobs
generated from step 7 and step 8. D) Last mitochondria instance label generated by
K-Means clustering in step 9. The yellow circle represents the center of K-Means
clustering for the three blobs. White in tomograms represents voxels with high intensity,
while black represents background.

S1 Table Comparison of intensity and volume of insulin vesicle and
mitochondria instances from four mentioned methods in example datasets.

S2 Table Comparison of intensity and volume of insulin vesicle and
mitochondria instances in three conditions.

S3 Table Intensity, volume and instance number of insulin vesicle and
mitochondria instance from all datasets.
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