
An Intensity-based Post-processing Tool for 3D Instance
Segmentation of Organelles in Soft X-ray Tomograms

Angdi Li1,2,3, Shuning Zhang1,2,3, Valentina Loconte1,2, Yan Liu1,2, Axel Ekman6,7,
Garth J. Thompson1, Andrej Sali8, Raymond C. Stevens1,2,5,9, Kate White9,*, Jitin
Singla4,*, Liping Sun1,2,*

1 iHuman Institute, ShanghaiTech University, Shanghai 201210, China
2 School of Life Science and Technology, ShanghaiTech University, Shanghai 201210,
China
3 University of Chinese Academy of Sciences, Beijing 100049, China
4 Department of Biosciences and Bioengineering, Indian Institute of Technology
Roorkee, Roorkee, Uttarakhand 247667, India
5 Department of Biological Sciences, Bridge Institute, University of Southern California,
Los Angeles, CA 90089, USA
6 Department of Anatomy, University of California San Francisco, San Francisco, CA
94143, USA
7 Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley
National Laboratory, Berkeley, CA 94720, USA
8 California Institute for Quantitative Biosciences, Department of Bioengineering and
Therapeutic Sciences, Department of Pharmaceutical Chemistry, University of
California, San Francisco, San Francisco, CA 94158, USA
9 Department of Chemistry, Bridge Institute, University of Southern California, Los
Angeles, CA 90089, USA

*Kate White: katewhit@usc.edu
*Jitin Singla: jsingla@bt.iitr.ac.in
*Liping Sun: sunlp@shanghaitech.edu.cn

Abstract

Investigating the 3D structures and rearrangements of organelles within a single cell
is critical for better characterizing cellular function. Imaging approaches such as soft
X-ray tomography have been widely applied to reveal a complex subcellular organization
involving multiple inter-organelle interactions. However, 3D segmentation of organelle
instances has been challenging despite its importance in organelle characterization. Here
we propose an intensity-based post-processing tool to identify and separate organelle
instances. Our tool separates sphere-like (insulin vesicle) and columnar-shaped organelle
instances (mitochondrion) based on the intensity of raw tomograms, semantic segmenta-
tion masks, and organelle morphology. We validate our tool using synthetic tomograms
of organelles and experimental tomograms of pancreatic β-cells to separate insulin vesicle
and mitochondria instances. As compared to the commonly used connected regions
labeling, watershed, and watershed + Gaussian filter methods, our tool results in im-
proved accuracy in identifying organelles in the synthetic tomograms and an improved
description of organelle structures in β-cell tomograms. In addition, under different
experimental treatment conditions, significant changes in volumes and intensities of
both insulin vesicle and mitochondrion are observed in our instance results, revealing
their potential roles in maintaining normal β-cell function. Our tool is expected to
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be applicable for improving the instance segmentation of other images obtained from
different cell types using multiple imaging modalities.

Introduction 1

Subcellular architectures including organelle volume, distribution, locations, and inter- 2

actions reflect various information regarding the cell state. For example, mitochondria 3

change their localization to meet the corresponding cellular energy demands [1]. More- 4

over, rearrangements of insulin vesicles in pancreatic β-cells under different treatments 5

reveal potential impacts in stimulating insulin secretion [2]. Furthermore, the relative 6

localizations of insulin vesicles and mitochondria network point out the role of inter- 7

organelle interactions during insulin secretion [3](in press). Thus, characterization of 8

rearrangements of subcellular structures will facilitate our understanding of cell structure 9

and function. 10

Recently a non-invasive 3D imaging technique known as soft X-ray tomography 11

(SXT) has been developed to describe and quantify subcellular reorganization processes 12

comprehensively [5–10]. SXT is capable of investigating the cellular architecture of 13

intact cells in a near-to-native, hydrated, and vitrified state [11], exploiting the cells’ 14

natural contrast at the ”water window” (284-583 eV photon energy) [4], where the 15

X-ray beam is absorbed by carbon-rich and nitrogen-rich components. For example, 16

SXT has been used to image the mitochondria volume ratio under antifungal peptoids 17

treatment in C.albicans cells [12]. In a recent study, White et al. applied SXT to generate 18

three-dimensional reconstructions of whole pancreatic β-cells, illustrating the organelle 19

locations and interactions [2]. 20

Segmentation is an important step in identifying and analyzing the organization of 21

specific organelles throughout the 3D volume of the SXT tomograms. The identification of 22

organelles in SXT data is mainly based on two features: their morphology (e.g. spherical 23

or elongated) and density of bioorganic components which are intrinsically connected 24

with their molecular composition. Segmentation methods include manual segmentation, 25

traditional algorithm segmentation like watershed, and auto-segmentation based on 26

machine learning. To this date, the most commonly used approach is to manually segment 27

SXT tomograms using software such as Amira-Avizo (ThermoFisher Scientific) [13], 28

Chimera [14], Fiji [15], MITK [16]. Watershed method [17] is a traditional segmentation 29

algorithm that relies on mathematical morphology from topological theory, dividing the 30

spatially adjacent voxels with similar values into one label. Auto-segmentation methods 31

train neural networks by using existing segmentation masks to predict segmentation 32

masks on raw images. For example, Ekamn et al. takes advantage of Convolution 33

Neural Networks (CNNs) and annotation database to generate organelle segmentation 34

masks on Chromochloris zofingiensis cell [18]. However, despite that many efforts are 35

made on SXT organelle segmentation [17,19,20], especially several auto-segmentation 36

methods [21, 22], current methods provide information of organelles, but not individual 37

organelle instances. 38

Here we developed and applied an intensity-based post-processing tool to refine the 39

segmented masks by separating organelle instances. We use SXT tomograms of pancreatic 40

β-cells as a case study to characterize subcellular structures, for example, insulin vesicles 41

and mitochondria. Our tool is based on the intensity of raw SXT tomograms, semantic 42

segmentation mask, and prior knowledge of the organelle morphology. We first validate 43

our method on a synthetic benchmark and compare the segmented instances with 44

commonly used methods: connected regions labeling, watershed, and watershed + 45

Gaussian filter methods. Then, we apply it to separate insulin vesicle and mitochondria 46

instances from SXT tomograms of β-cells, and analyze organelle volumes and intensities 47

under different conditions as well as the biological implications. 48
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Materials and methods 49

Input data 50

Input data includes 24 soft X-ray tomograms and two manually segmented semantic 51

masks (insulin vesicle and mitochondrion) for each tomogram. The tomograms are 52

collected after 30min treatment under three conditions, namely, 0mM glucose (no 53

external stimuli), 25mM glucose, 25mM glucose+ 10 nM exendin-4 (Ex-4, a glucagon-like 54

peptide-1 receptor agonist that enhances glucose-stimulated insulin secretion). For each 55

condition, eight tomograms are collected. Experimental details for different treatment 56

conditions can be found in White et al. [2]. The resolution of each tomogram is approx. 57

[500,500,500] voxels, with each voxel having a sampling size of [35 nm, 35 nm, 35 nm]. The 58

intensity in each voxel numerically equals to Linear Absorption Coefficient (LAC) [23] 59

value on the current region. LAC value reflects the molecular densities of each voxel in 60

the tomogram[U+FF0C] which is quantified by the Beer-Lambert’s law [24]. 61

Synthetic benchmark 62

Organelles are often in contact with each other in a crowded cellular environment, 63

raising the difficulty of recognizing individual instances of organelles. To evaluate the 64

accuracy of our tool in separating organelles, we establish two synthetic benchmarks 65

to identify individual insulin vesicle and mitochondrion. For each type of organelle, we 66

first manually select approx. 100 organelle instances that appear disconnected from all 67

24 semantic masks of this organelle. Then we construct ten synthetic datasets, each by 68

attaching 5 randomly selected instances out of the 100 organelle instances in random 69

positions. Each synthetic dataset includes a synthetic tomogram, a synthetic semantic 70

mask, and a synthetic instance mask (groundtruth). 71

Watershed method 72

Watershed is a region-based segmentation method based on the mathematical morphology 73

[25]. It decomposes a tomogram into several catchment basins by representing voxels 74

with higher intensities as ”hills” and darker voxels as ”valleys”. One major limitation 75

of watershed method is the ”over-segmentation” of noisy tomograms [26]. With the 76

application of a Gaussian filter to denoise the tomogram, the performance of watershed 77

method has seen some degrees of improvement [27]. 78

Results 79

We first describe the workflow of our intensity-based post-processing tool. We illustrate 80

our approach using synthetic tomograms and β-cell tomograms. In both cases, the 81

performance of our method is better than the commonly used methods of connected 82

regions labeling [28], watershed, and watershed + Gaussian filter. Moreover, we charac- 83

terize intensity and volume for the segmented insulin vesicle and mitochondria instances 84

from β-cell tomograms, collected under three conditions: 0mM glucose, 25mM glucose, 85

25mM glucose+ 10 nM Ex-4; This analysis provides extra information for the subcellular 86

structural variances under different treatments. 87

Workflow 88

Our post-processing tool is an improved blob detection method which functions by 89

integrating information including intensity of the raw tomogram, semantic segmentation 90

mask of the organelle, and prior knowledge of the organelle morphology (see Fig 1). The 91
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organelle morphology used here are: sphere-like shapes (i.e., insulin vesicles) [29] and 92

columnar shapes (i.e., mitochondria) [2, 30–32]. Other typical mitochondrial shapes, 93

such as loop and vase, which are more often seen under carbonyl cyanide m-chlorophenyl 94

hydrazine (CCCP) exposure, are not considered here [32]. The source code of our 95

tool is available at: https://github.com/SaliLab-SH/post_processing_tool_for_ 96

instance_segmentation_on_SXT. 97

Fig 1. Workflow of the post-processing tool to separate insulin vesicle and
mitochondria instances. Orange arrows indicate steps to separate insulin vesicle
instances, while green arrows indicate steps to separate mitochondria instances. All
steps are processed in 3D spaces.

• Step 1: Separate disconnected organelles: Initially, we separate disconnected 98

organelle regions on semantic masks into clusters of organelles. Each cluster contains 99

one or many organelle instances. The next steps segregate each disconnected 100

organelle cluster into individual organelle instances. 101

• Step 2: Denoise soft X-ray tomograms: For each organelle cluster in the 102

semantic mask, a rectangular box is cropped from the corresponding region in 103

raw SXT tomograms. The box contains all voxels of the organelle cluster plus 104

two additional layers of voxels along each edge of the box. This region is denoised 105

using Gaussian filters. The Gaussian filter function [33] is 106

Gσ =
1

2πσ
e−

x2+y2+z2

2σ2 (1)

Here we apply a [3,3,3] Gaussian kernel to the raw tomogram. x, y, z are the 107

relative coordinates to the kernel center. To maximally reserve useful information 108

and reduce noise from the raw tomogram, we apply ten filters with σ ranging from 109

1 to 10 with 1 increment resulting in ten denoised tomograms for each organelle 110

cluster (S1 Fig). σ values smaller than 1 or larger than 10 fail to provide reasonable 111

intensity variations. 112

113

• Step 3: Find local maxima points as centers of candidate blobs: Local 114

maxima points are voxels whose intensity values are larger than surrounding voxels. 115

For each organelle cluster, we apply a [3,3,3] local maxima kernel and collect local 116

maxima points from all ten denoised tomograms as centers of candidate blobs. 117

• Step 4: Screen candidate blobs: To increase the computing efficiency, centers 118

of candidate blobs determined in step 3 are filtered out if the corresponding voxels 119

are not located in the semantic mask. 120

• Step 5: Estimate radius for candidate blobs: First, we fit a number of 121

spheres with different radius r centered at the center of each candidate blob. The 122

minimum radius rmin is 1.5 voxels, a threshold to restrict the minimal size of a 123

blob. Whereas the maximum radius rmax is half of the diagonal length of the 124

rectangular box determined in step 2, to include all the possible radii for the 125

candidate blob. For each radius, the overlapping ratio is calculated between each 126

sphere and the semantic mask by: 127

ar =
Vm(r)

Vs(r)
, r ∈ [rmin, rmax] (2)
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Vm(r) is the volume of the semantic mask containing voxels whose distance to the 128

center of the candidate blob is smaller than r, Vs(r) is the volume of a sphere with 129

a radius of r. With the radius increases from rmin to rmax, the overlapping ratio 130

ar decreases from 1 to 0 (S2 FigA-B). The calculation starts from rmin and ends 131

when the overlapping ratio reaches 0.8, a manually adjusted threshold. The sphere 132

used here is only to estimate the blob radius, not to represent the final blob shape. 133

• Step 6: Rank and screen non-overlapping blobs: All candidate blobs are 134

ranked based on the intensity of the center voxels in raw tomograms, determined 135

in step 3. Then, we take a greedy strategy to screen non-overlapping blobs: 1) we 136

first select the highest-ranked candidate blob; 2) we go through the rank list of 137

the candidate blobs and select it if its distance to each previously selected blob is 138

larger than the radius of the previously selected blob; 3) after screening all the 139

candidate blobs, the final list of selected blobs will go through the following steps 140

to obtain individual organelle instances. An example of filtered blobs is shown in 141

S1 FigL. 142

• Step 7: Locate reference vector for columnar organelle: We identify an
individual mitochondria instance and its overall orientation using three blobs that
are approximately aligned in a straight line (defined by the absolute value of
the cosine of an adjacent angle, details in below). Using these three blobs as
nucleation points, we grow mitochondria instance by adding nearby blobs. This
process repeats until all the blobs are classified in mitochondria instances. We
represent the overall orientation of each mitochondria instance with a reference
vector V⃗ref . To locate this reference vector, we first generate a candidate reference
vector for each blob Bi. We identify two nearest blobs B1

i and B2
i and compute

two vectors
−−−→
BiB

1
i and

−−−→
BiB

2
i , pointing from the center of blob Bi to the center of

blobs B1
i and B2

i , respectively. Then we calculate an adjacent angle θadj between
these two vectors. Each blob thus has one corresponding adjacent angle. Now, if
|cos(θadj)| > cos(30◦) (i.e. the angle is within the region [0◦, 30◦] or [150◦, 180◦]),
the sum (when θadj ∈ [0◦, 90◦]) or subtraction (when θadj ∈ [90◦, 180◦]) of these

two vectors is thus a candidate reference vector V⃗ Bi

cref generated from center of
blob Bi:

V⃗ Bi

cref =

{ −−−→
BiB

1
i +

−−−→
BiB

2
i θadj ∈ [0◦, 90◦]

−−−→
BiB

1
i −

−−−→
BiB

2
i θadj ∈ [90◦, 180◦]

Among all the candidate reference vectors, the one with the maximum value of 143

|cos(θadj)| is assigned as V⃗ref . 144

As the reference vector has three blobs associated with it, these three blobs are 145

assigned as one mitochondria instance label (S2 FigC-D). They act as nucleation 146

of a single mitochondria instance. Then we proceed to step 8 to include proximal 147

blobs to the instance label assigned here. We iterate between step 7 and 8 to 148

generate as many instance labels as possible. Once we reach a point where no new 149

reference vector can be located, either due to the number of blobs being smaller 150

than three or the absolute value of the cosine of the adjacent angle smaller than 151

cos(30◦), we proceed to step 9 to cluster blobs with K-Means. 152

• Step 8: Include proximal blobs with similar vectors: We further expand 153

the instance label generated in step 7 to include proximal blobs. For blobs not 154

assigned to any instance labels, testing vectors are defined between the blob center 155

and the blobs in the most recent instance label generated in step 7. Then we 156

compute the angle between the testing vectors and the reference vector. The blob 157

is then classified as part of the organelle instance label if any of the testing vectors 158
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satisfies the following two conditions: i) the absolute value of the cosine of the 159

angle between the testing vector and the reference vector |cos(θt ref )| > cos(30◦); 160

ii) the length of the testing vector is shorter than the sum of the diameter of the 161

two blobs in the testing vector (S2 FigE-F). Each time the organelle instance label 162

is updated when adding a new blob. All non-assigned blobs proceed through the 163

above classification again until no more blobs can be included in the instance label. 164

Then we proceed to step 7 to find a new reference vector and initiate another 165

instance label. 166

• Step 9: Cluster blobs with K-Means: The remaining blobs not classified to 167

any mitochondria instance label are clustered based on their coordinates by the 168

K-Means clustering method [34]. K value is optimized according to the Elbow 169

method [35]. Mitochondria instances without a reference vector are mostly of short 170

length, close to an ellipsoidal morphology, which can be sufficiently represented by 171

a few blobs. Thus, a K-Means clustering method can classify them. An example 172

of K-Means clustering is shown in S3 FigD. 173

• Step 10: Translate information into scoring for ranking blobs: So far, 174

the instance labels have been generated based on blobs. But not all voxels in the 175

semantic mask are included inside the blobs. A scoring function is computed for 176

all voxels to determine if a voxel belongs to a specific blob. The function is defined 177

as the distance between a voxel and a blob center divided by the radius of that 178

blob. For each voxel, all blobs are ranked by the computed voxel scores. 179

• Step 11: Classify voxels to blobs: Each voxel has multiple scores associated 180

with it, one for each blob. The voxels from the semantic mask are assigned to the 181

blob with the lowest score. 182

• Step 12: Classify blobs to instance: Finally, all voxels in a blob are assigned 183

with the organelle instance label of that blob. 184

Post-processing on a sphere-like organelle 185

The workflow to obtain instances of sphere-like organelle is indicated by the orange 186

arrows in Fig 1. We use insulin vesicles as an example. With the input information 187

including soft X-ray tomograms, insulin vesicle semantic segmentation masks, and the 188

sphere-like morphology of insulin vesicle, we proceed through step 1 to step 6, then step 189

10 to step 12 to obtain insulin vesicle instance masks. For the sphere-like organelle, the 190

instance label is the blob label. 191

Post-processing on a columnar-shaped organelle 192

The workflow to obtain instances of columnar-shaped organelle is indicated by the green 193

arrows in Fig 1. We use mitochondria as an example. With the input information 194

including soft X-ray tomograms, mitochondria semantic segmentation masks, and the 195

columnar morphology of this mitochondrion, we proceed through step 1 to step 12 to 196

obtain mitochondria instance mask. For the columnar-shaped organelle, the instance 197

label might be one or several blobs. 198

Validation 199

We apply our post-processing tool on synthetic tomograms (Materials and methods: 200

Synthetic benchmark) to quantify the accuracy of the resulting organelle instances. We 201

compare instances masks computed from our tool, connected regions labeling, Watershed 202

methods (Materials and methods: Watershed Method), and watershed + Gaussian 203
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filter on insulin vesicles and mitochondria, respectively. The commonly used evaluation 204

metric, Average Precision (AP) [36] is used here to measure the accuracy under different 205

Intersection over Unions (IoUs, representing the similarity between the ground-truth 206

and the predictions of individual organelle instances). We calculate the mean AP (mAP, 207

AP@[.5:.95], obtained by averaging AP from AP50 to AP95 with 5% IoU increments) 208

and AP in instance recognition under three different IoUs: 50% (AP50), 70% (AP70) 209

and 90% (AP90), as listed in Table 1. To intuitively visualize the instance results, we 210

plot the instance masks computed by three methods on one of the test datasets for 211

each organelle type (Each dataset includes one synthetic tomogram and one semantic 212

organelle mask): insulin vesicle (Fig 2A-E) and mitochondrion (Fig 2F-J). 213

As for insulin vesicle instance, 93.8% in mAP is obtained using our tool, whereas 214

85.0% in mAP is obtained using watershed + Gaussian filter and even lower mAPs 215

using the other two methods. With an IoU threshold of 90%, our tool still results in 216

88.9%, whereas watershed + Gaussian filter shows only 29.9%. For example, one insulin 217

vesicle instance (green, Fig 2B) is correctly separated using our tool (grey, Fig 2C). 218

However, it is recognized as two instances using watershed + Gaussian filter (pink and 219

brown, Fig 2E) due to the insignificant difference in the intensity between the edge of 220

this insulin vesicle and the background (Fig 2A). Such uneven intensities are common in 221

SXT, which might result from the uneven distribution of chemical components inside 222

the insulin vesicle, or biases during SXT data collection [6]. 223

Mitochondria instances (0.0% - 49.9% in mAP) are generally more difficult to separate 224

than insulin vesicle instances (1.0% - 93.8% in mAP) for two reasons: 1) contacts between 225

mitochondria increase the difficulty in classifying blobs at the edges (e.g., dark blue and 226

green in Fig 2H, light blue and grey in Fig 2J); 2) overall low intensity of a mitochondrion 227

leads to inaccurate blob detection (Fig 2F). Importantly, our tool still improves the 228

accuracy of mitochondria instance results (49.9% in mAP) compared to the other three 229

methods (35.4% or less in mAP). Thus, our post-processing tool provides a significantly 230

improved accuracy than other commonly used instance separation methods by integrating 231

prior knowledge of organelle morphology: the sphere-like shape of insulin vesicle and 232

columnar-shaped of mitochondrion. 233

Table 1. Instance mask AP on test datasets.

Organelle mAP(%) AP50(%) AP70(%) AP90(%)

post-processing tool 93.8 98.5 96.1 88.9
connected regions labeling insulin vesicle 1.0 10.0 0.0 0.0

watershed instance 42.6 53.9 48.1 29.9
watershed + Gaussian filter (σ = 1) 85.0 91.8 86.8 79.3

post-processing tool 49.9 68.3 53.4 36.5
connected regions labeling mitochondrion 0.0 0.0 0.0 0.0

watershed instance 9.23 13.8 11.3 2.33
watershed + Gaussian filter (σ = 1) 35.4 46.4 40.9 18.7

All entries are average results from 10 test datasets.

Application 234

Insulin vesicles and mitochondria are organelles that play essential roles in insulin 235

secretion. A single insulin vesicle refers to an insulin-containing dense-core secretory 236

vesicle, which works as a cargo container to store, transport and secrete insulin [37]. A 237

mitochondrion is a single mitochondrial unit which plays a role in providing ATP and 238

triggering the plasma membrane depolarization during insulin secretion [55]. Here we 239

apply our method on SXT tomograms of pancreatic β-cells and corresponding insulin 240

vesicles and mitochondria masks (Materials and methods: Input data) (Fig 3A-D). We 241
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Fig 2. Separation results of mentioned methods on synthetic benchmarks. A)
Synthetic tomogram of one insulin vesicle test dataset. Dark to light represents
intensity from low to high. B) The groundtruth of insulin vesicle instance label,
containing 5 instances. C) Results from post-processing tool, including 5 instances. D)
Results from connected regions labeling method, including 1 instance. E) Results from
watershed method, including 7 instances. Each color in images represents one insulin
vesicle instance. F) Synthetic tomogram of one mitochondrion test dataset. Dark to
light represents intensity from low to high. G) The groundtruth of mitochondria
instance label, containing 5 instances. H) Results from post-processing tool, including 4
instances. I) Results from connected regions labeling method, including 1 instance.
Each color in images represents one mitochondria instance. J) Results from watershed +
Gaussian filter method, including 17 instances.

first analyze the volume and intensity of individual organelles, and compare results 242

from our tool with commonly used methods: connected regions labeling, watershed, and 243

watershed + Gaussian filter method, as shown in Fig 3E-H and S1 Table . Then, based 244

on the intensity and volume for both insulin vesicle and mitochondria instances from 245

our method, we investigate the impacts of glucose stimulation and Ex-4 on organelles in 246

three conditions, as shown in Fig 4 and S2 Table. 247

We find that for insulin vesicles, the instance intensity distribution is similar between 248

our method and the connected regions labeling method, but has wider ranges in the 249

watershed and watershed + Gaussian filter methods (Fig 3E). In addition, the instance 250

volume distribution is condensed from our method as compared with connected region 251

labeling method, but is in the lower volume region as shown in the watershed and 252

watershed + Gaussian filter methods, as shown in Fig 3F. Such distributions from the 253

watershed and watershed + Gaussian filter methods are largely due to over-segmentation 254

of instances. For the identification of mitochondrion, the distribution of a single mito- 255

chondrion’s intensity slightly shifts to low intensity region (Fig 3G) as compared with 256

connected regions labeling. In contrast, the intensity distributions from watershed and 257

watershed + Gaussian filter methods shift to even lower intensity regions. The volume 258

of mitochondria instances shows similar trends as insulin vesicle instances: volume 259

distribution is slightly condensed from our method (Fig 3H) compared with the con- 260

nected regions labeling method, while the distributions from watershed and watershed + 261

Gaussian filter methods are in lower volume regions. According to previous studies, the 262

mean intensity of insulin vesicle instances in a cell ranges from 0.39 to 0.43 [2], while 263

the average intensity of the whole mitochondria network is approximately 0.34 [2]. Our 264

tool and connected regions labeling produce organelle instances which lie within the 265

experimentally determined ranges, compared to Watershed and Watershed + Gaussian 266

filer methods. The diameter of an insulin vesicle is approximately 200 nm [39–41], whose 267

volume equals to 170 voxels in our tool results. The volume of mitochondrion ranges 268

from 300 to 7500 voxels according to the baffle model [42]. Moreover, our tool produces 269

organelle instances whose volumes agree well with the experimentally determined volume 270

range compared to the other three methods. Such accordance in the organelle intensity 271

and volumes further validates the performance of our tool. 272

Fig 3. Results from post-processing tool on β-cell tomograms. The A) insulin
vesicle semantic mask is processed into B) insulin vesicle instances mask, while the C)
mitochondrion semantic mask is processed into D) mitochondria instances mask. Each
color represents one organelle instance. E-H). Comparison of instance intensity and
volume distribution from four mentioned methods in example datasets. AU: Arbitrary
unit.
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Based on our method, we are able to detect the variance of individual organelles 273

under different conditions to investigate the impacts of glucose stimulation and Ex- 274

4 on the organelle, as shown in Fig 4. Results of intensity, volume, and number of 275

organelle instances for each dataset are listed in S3 Table. For the glucose stimulation, 276

compared with 0mM glucose condition, insulin vesicle instances have increased intensity 277

but decreased volume under 25mM glucose condition. Previous studies have reported 278

an insulin vesicle maturation process to form both small and large vesicles with different 279

condensation levels of the content [43]. Thus, we suggest that glucose stimulation 280

triggers β-cell to generate more small vesicles during the vesicle maturation. In addition, 281

mitochondrion has increased intensity and volume with wider volume distribution under 282

25mM glucose condition. A previous study noted increased heterogeneity of mitochondria 283

under stimulation and diseased states [44], which resulted in larger variances in volume 284

distribution. As for Ex-4, insulin vesicle instance intensity under 25mM glucose+ 10 nM 285

Ex-4 condition is higher than the other two conditions, while the instance volume is 286

higher than 25mM glucose but lower than 0mM glucose. Moreover, we observe that 287

mitochondria instance intensity under 25mM glucose+10 nM Ex-4 condition is higher 288

than the other two conditions, while the instance volume is higher than the 0mM glucose 289

condition, but has no difference compared to the 25mM glucose condition. Ex-4 has 290

been reported to enhance glucose-stimulated insulin secretion [45], but how Ex-4 affects 291

the organelle molecular density during insulin secretion is still not clear. Our study 292

provides extra morphological insights regarding the behavior of single insulin vesicle 293

and mitochondria instances under different stimulation conditions; however, further 294

biochemical studies are required to understand the priorities of single insulin vesicle and 295

mitochondrion, as well as the interplay between individual organelles. 296

Fig 4. Analysis of insulin vesicle and mitochondria instances variance among
conditions. Three conditions: 0mM glucose, 25mM glucose, 25mM glucose+ 10 nM
Ex-4. Significance analysis are conveyed on Mann-whitney. *: p ≤ 1.0−4. AU: Arbitrary
unit.

Discussion 297

Segmentation is a critical step to identify a specific organelle from soft X-ray tomograms. 298

However, current methods hardly satisfy our demands to obtain accurate organelle 299

instances from tomograms. Thus, we propose a post-processing tool by integrating 300

organelle intensities from SXT tomograms, organelle locations from semantic masks, and 301

organelle morphology from prior knowledge. Specifically, our tool first identifies blobs in 302

soft X-ray tomograms by finding the intensity local maxima points, then screens blobs 303

by filtering with organelle semantic mask, third classifies those blobs to each organelle 304

instance based on prior knowledge of organelle morphology. 305

In SXT tomograms, organelles like insulin vesicles, mitochondria, lipid droplets, and 306

the nucleus have a higher LAC value (molecular density) than the cytosol surroundings. 307

This feature allows for the identification of organelles by considering their LAC values 308

and morphology [8, 46]. Our method identifies intensity local maxima points to separate 309

organelle position directly from raw tomograms, improving our ability to distinguish 310

individual organelles. In addition, our tool incorporates the prior knowledge of organelle 311

morphology, making it possible to separate sphere-like organelle insulin vesicles and 312

columnar-shaped organelle mitochondrion. For example, by using this tool, we can 313

identify individual insulin vesicles that would often be segmented as one cluster in 314

previous segmentation approaches, e.g. connected regions labeling. Given recent reports 315

of insulin vesicle in contacts with other organelles [3] (in press) and increasing discussions 316

May 17, 2022 9/16



on the relevance of inter-organelle contacts in cell biology [47–50], methods to accurately 317

separate specific organelles will promote our understanding of such complex relationships. 318

Another example is that we are able to identify individual mitochondrion using our tool, 319

which is of grand challenge in previous segmentation approaches due to the columnar 320

shape. Previous studies [2,3,50] have elegantly shown the complex mitochondria network 321

but were not able to accurately distinguish between individual mitochondrion. Our 322

approach will enable a detailed separation and characterization of individual mitochondria 323

to better characterize how the organelle rearranges in health and disease. This approach 324

will be beneficial for analyzing new data to compare the effects of disease states and 325

drug treatments, specifically, the fragmentation of mitochondria network in diabetic 326

β-cells [51] and glucagon-like peptide (GLP)-1 treatment on β-cells [52]. 327

However, there are still opportunities to further improve our tool. First, user bias 328

when manually segmenting semantic masks cannot be eliminated from the process. 329

The final instance results will include mislabeled organelles from the semantic masks. 330

Segmentation from multi-raters (multiple users identifying organelles) or using machine 331

learning models will likely reduce such user bias. Second, prior knowledge of organelle 332

morphology affects the accuracy of the final results. The representations of insulin 333

vesicle in sphere-like shape and mitochondrion in columnar-shaped are based on current 334

descriptions of from experiments [29,42]. As separation methods develop, cases where 335

insulin vesicles or mitochondria not existing in this specific morphology should be 336

considered. Third, separation of organelles with more complex shapes, for example 337

endoplasmic reticulum (ER) [53], remain a difficult task. To accurately separate the 338

ER or Golgi body, new separation methods with a combination of different types of 339

shapes are required. Fourth, the current implementation of our tool is time-consuming 340

when calculating instance labels due to loops and iterations in the algorithm. Further 341

improvements in algorithms are expected to improve the efficiency. 342

The validation of our approach in this manuscript reveals the potential to uncover 343

new details on how cellular organization changes during specific cellular states or under 344

specific drug treatments. Further use of this approach to investigate insulin vesicle 345

organization will provide new insights into the functional maturation of insulin vesicles. 346

It is understood that insulin vesicles exist in multiple functional pools such as the readily 347

releasable pool (located near plasma membrane) and the reserve pool (located in the 348

interior of the cell) [54]. Our results of insulin vesicle instances can be further exploited 349

to investigate the reorganization of distinct pools during insulin secretion. In addition, 350

mitochondria are activated [55] and driven to energy-consuming sites within cells [56] 351

during the glucose-stimulated insulin secretion. Analysis of the individual mitochondrion 352

obtained here will enable a more detailed investigation of the mitochondria localization. 353

This will also allow for a more in-depth quantification of mitochondria organization 354

depending on their location, inter-organelle contacts, and cellular states. 355

Conclusion 356

In this paper, we proposed an intensity-based post-processing tool for separating organelle 357

instances. Our tool incorporates information from soft X-ray tomograms, semantic masks, 358

and prior knowledge of organelle morphology. We apply our tool on β-cells as a case 359

study. Using this post-processing tool, we are able to separate sphere-like organelles, e.g., 360

insulin vesicle instances, and columnar-shaped organelles, e.g., mitochondria instances. 361

Results on synthetic benchmarks indicate that our tool has higher accuracy for analyzing 362

both insulin vesicle and mitochondria instances than the commonly used separation 363

methods such as connected regions labeling [28], watershed, and watershed + Gaussian 364

filter [17]. In addition, we compare the instance results from all three methods on β-cell 365

soft X-ray tomograms. We investigate the difference of instance intensity and volume 366
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on insulin vesicle and mitochondrion respectively. The results from our tool agree well 367

with previous studies [39–42]. Moreover, with higher recognition accuracy, our tool 368

reveals the significant variance of the volume and intensity of both insulin vesicle and 369

mitochondria instances under different treatments, providing a more detailed description 370

of the subcellular structures, which will is expected to facilitate future mechanistic 371

studies of β-cells. Our tool can be further extended to separate other organelles in 372

different cells, collected using multi-mode imaging techniques. Furthermore, our tool 373

providing detailed descriptions of organelle will contribute to the efforts to increase 374

precision and quality for whole-cell modeling [57–59]. 375
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Supporting information 376

S1 Fig Filtered tomograms generated from an example tomogram applied
with Gaussian filters with σ ranging from 1 to 10 with 1 increment. A-K)
show the same slice of the example tomogram. The example tomogram is a region from
β-cell dataset 822 4, including a cluster of organelles. Yellow in tomograms represents
high intensity on that voxel, while dark purple represents the background. L) shows the
corresponding semantic mask with blobs. Every red circle represents the center of a
blob. Yellow in semantic mask L and raw tomogram K represent organelle label while
dark purple represents the background.

S2 Fig Sketch of details from workflow. A) Example of fitting a sphere to an
insulin vesicle. The full line represents the shape of the vesicle; the dotted line
represents the fitted sphere on the vesicle. B) The evolution of overlapping ratio ar
along the fitted sphere radius. C) Calculation of the vectors from blob 2 towards its
neighboring two blobs. D) The reference vector selected based on blob 2, marked green.
Meanwhile, the three blobs are included in the same instance label. E) Generation of
vectors from blob 4 to included blobs and compare the distance d and angle α. F) Blob
4 included in the instance label.

S3 Fig An example tomogram of a cluster of mitochondria. An example
tomogram from β-cell dataset 822 4 shows a cluster of mitochondria with all blobs. A-D
show the same slice of the 3D example tomogram. Each red circle is a 2D projection of
the corresponding blob center from 3D spaces. A) Overview of all blobs on the
mitochondrion cluster. B) One mitochondria instance label with five blobs generated
from step 7 and step 8. C) Another mitochondria instance label with four blobs
generated from step 7 and step 8. D) Last mitochondria instance label generated by
K-Means clustering in step 9. The yellow circle represents the center of K-Means
clustering for the three blobs. White in tomograms represents voxels with high intensity,
while black represents background.

S1 Table Comparison of intensity and volume of insulin vesicle and
mitochondria instances from four mentioned methods in example datasets.

S2 Table Comparison of intensity and volume of insulin vesicle and
mitochondria instances in three conditions.

S3 Table Intensity, volume and instance number of insulin vesicle and
mitochondria instance from all datasets.
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