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Abstract

A protein structure model generally needs to be evaluated to assess whether or not it has the correct fold.
To improve fold assessment, four types of a residue-level statistical potential were optimized, including
distance-dependent, contact, �/� dihedral angle, and accessible surface statistical potentials. Approxi-
mately 10,000 test models with the correct and incorrect folds were built by automated comparative
modeling of protein sequences of known structure. The criterion used to discriminate between the correct
and incorrect models was the Z-score of the model energy. The performance of a Z-score was determined
as a function of many variables in the derivation and use of the corresponding statistical potential. The
performance was measured by the fractions of the correctly and incorrectly assessed test models. The most
discriminating combination of any one of the four tested potentials is the sum of the normalized distance-
dependent and accessible surface potentials. The distance-dependent potential that is optimal for assessing
models of all sizes uses both C� and C� atoms as interaction centers, distinguishes between all 20 standard
residue types, has the distance range of 30 Å, and is derived and used by taking into account the sequence
separation of the interacting atom pairs. The terms for the sequentially local interactions are significantly
less informative than those for the sequentially nonlocal interactions. The accessible surface potential that
is optimal for assessing models of all sizes uses C� atoms as interaction centers and distinguishes between
all 20 standard residue types. The performance of the tested statistical potentials is not likely to improve
significantly with an increase in the number of known protein structures used in their derivation. The
parameters of fold assessment whose optimal values vary significantly with model size include the size of
the known protein structures used to derive the potential and the distance range of the accessible surface
potential. Fold assessment by statistical potentials is most difficult for the very small models. This difficulty
presents a challenge to fold assessment in large-scale comparative modeling, which produces many small
and incomplete models. The results described in this study provide a basis for an optimal use of statistical
potentials in fold assessment.
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tials; large scale protein structure modeling

Usefulness of a protein structure model depends on its ac-
curacy (Baker and Sali 2001). Thus, it is necessary to esti-
mate accuracy of a three-dimensional (3D) model before it
is used. The assessment must generally begin with predict-

ing whether or not the model has at least the correct fold.
Such coarse assessment may then be followed by an evalu-
ation of model’s detailed features, such as loops and
sidechains. The fold has to be assessed almost invariably for
all of the models predicted by ab initio methods (Jones
1997; Ortiz et al. 1999; Xia et al. 2000; Bonneau and
Baker 2001; Pillardy et al. 2001) and threading of sequences
into structures (Bowie et al. 1991; Godzik et al. 1992; Jones
et al. 1992; Sippl and Weitckus 1992; Torda 1997). In ad-
dition, fold assessment is frequently also needed for models
calculated by comparative modeling (Browne et al. 1969;
Blundell et al. 1987; Martı́-Renom et al. 2000). Compara-
tive or homology modeling builds a model for a protein
sequence (target) on the basis of its alignment to known
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related protein structures (templates). It consists of fold as-
signment, target-template alignment, model building, and
model assessment. Comparative modeling based on <30%
sequence identity between the target and the template is
common; more than half of all known protein sequences
that are detectably related to known protein structures cur-
rently share <30% sequence identity with the closest tem-
plate structure (Pieper et al. 2002). In this low range of
sequence similarity, comparative models frequently have an
incorrect fold because they are built on an incorrect tem-
plate structure or a substantially incorrect alignment with
the correct template structure. Objective fold assessment is
especially important in large-scale, automated comparative
modeling of whole genomes in which no user intervention is
possible (Martı́-Renom et al. 2000). In automated modeling,
accurate fold assessment increases the number of the vali-
dated models because it identifies the models with the cor-
rect fold that are based on statistically insignificant se-
quence similarity to known protein structures. Fold assess-
ment also increases the average accuracy of the validated
models because it weeds out the models with an incorrect
fold that are based on statistically significant sequence simi-
larity to unrelated structures or to incorrectly aligned related
structures.

A large variety of criteria have been used by the methods
for assessing protein structure models. These criteria in-
clude deviation from standard bond lengths, bond angles,
and dihedral angles (Vriend 1990; Engh and Huber 1991;
Morris et al. 1992; Laskowski et al. 1993, 1998) residue or
atom packing density (Gregoret and Cohen 1991), molecu-
lar mechanics energy functions (Novotny et al. 1984, 1988;
Petrey and Honig 2000), distribution of residues between
the solvent accessible and buried positions (Bryant and Am-
zel 1987; Huang et al. 1995), atomic and residue solvation
energy (Eisenberg and McLachlan 1986; Baumann et al.
1989; Chiche et al. 1990; Still et al. 1990; Vila et al. 1991;
Holm and Sander 1992: Koehl and Delarue 1994; Schaefer
et al. 1998; Vorobjev et al. 1998; Cramer and Truhlar 1999;
Dominy and Brooks, III 1999; Lazaridis and Karplus 1999;
Rapp and Friesner 1999; Gatchell et al. 2000; Kollman et al.
2000; Lee et al. 2000; Petrey and Honig 2000; Wang and
Kollman 2000; Zhang et al. 2001), spatial distribution of
charged groups (Bryant and Lawrence 1991), distribution of
atom–atom distances (Colovos and Yeates 1993), main-
chain hydrogen bonding (Laskowski et al. 1993), residue
environments (Lüthy et al. 1992; Topham et al. 1994), se-
quence similarity to related known structures (Sánchez and
Sali 1998; Jones 1999), similarity between the secondary
structure assignment from the model and secondary struc-
ture prediction from the sequence (Jones 1999), atomic vol-
ume deviation (Pontius et al. 1996), residue–residue contact
area difference (Abagyan and Totrov 1997), occluded sur-
face of residues (Pattabiraman et al. 1995), and a large
variety of knowledge-based potentials of mean force or sta-

tistical potentials (Hendlich et al. 1990; Casari and Sippl
1992; Colovos and Yeates 1993; Bauer and Beyer 1994;
Kocher et al. 1994; Rooman and Wodak 1995; Jernigan and
Bahar 1996; Jones and Thornton 1996; Park and Levitt
1996; Moult 1997; Park et al. 1997; Vajda et al. 1997;
Furuichi and Koehl 1998; Melo and Feytmans 1998; Roo-
man and Gilis 1998; Betancourt and Thirumalai 1999; Ro-
jnuckarin and Subramaniam 1999; Lazaridis and Karplus
2000; Tobi and Elber 2000; Tobi et al. 2000; Vendruscolo
et al. 2000a). The statistical potentials are generally the
single most informative criterion for distinguishing between
the models with the correct and incorrect folds, although
model assessment may be augmented by simultaneous use
of several model features (Jones 1999a, Sánchez and Sali
1999). Statistical potentials are derived from known protein
structures and quantify the observed preference of the dif-
ferent residue or atom types to be exposed to the solvent, or
to interact with each other in a pairwise or higher order
fashion. In addition to assessing of experimentally deter-
mined and theoretically predicted protein structures, the sta-
tistical potentials have been used in a variety of other ap-
plications, including the ab initio protein structure predic-
tion (Sun 1993; Bowie and Eisenberg 1994; O’Donoghue
and Nilges 1997; Chiu and Goldstein 2000; Tobi and Elber
2000), fold recognition or threading (Jones et al. 1992;
Maiorov and Crippen 1992; Sippl and Weitckus 1992; Bry-
ant and Lawrence 1993; Ouzounis et al. 1993; Huang et al
1995; DeBolt and Skolnick 1996; Miyazawa and Jernigan
1996, 2000; Reva et al 1997; Jones 1999b; Kolinski et al.
1999; Panchenko et al. 2000; Skolnick et al. 2000), detec-
tion of native-like protein conformations (Hendlich et al.
1990; Casari and Sippl 1992; Bauer and Beyer 1994;
Samudrala and Moult 1998; Simons et al. 1999; Gatchell et
al 2000; Vendruscolo et al. 2000b), and prediction of pro-
tein stability (Gilis and Rooman 1996, 1997).

In this study, we analyze the effect of the many variables
that define the derivation and the use of statistical potentials
for discriminating between comparative models with correct
and incorrect folds. The tested statistical potentials include
distance-dependent, contact, accessible surface and main-
chain dihedral angle potentials. The test models with the
correct and incorrect folds for proteins of known structure
were constructed to be representative of the models ob-
tained from genome-wide comparative modeling calcula-
tions, which produce many small, incomplete, and inaccu-
rate models. The criterion used to discriminate between the
correct and incorrect models was the Z-score of the model
energy. The performance of a given potential was quantified
by two tests, the fraction of the correctly assessed test mod-
els and the receiver operating characteristic curve.

We begin the Results and Discussion section by charac-
terizing the models used to test various statistical potentials.
We continue by describing the performance of the indi-
vidual and combined potential types. We conclude by sum-
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marizing the main lessons learned from the study. In the
Materials and Methods section, we describe the derivation
of the test models and define all of the tested statistical
potentials, as well as the criteria used to assess their perfor-
mance.

Results and Discussion

Test models

A large set of models is necessary to assess the performance
of the statistical potentials in discriminating between the
good and bad comparative models. Large sets of good and
bad comparative models for proteins of known structure
were generated by MODPIPE (Materials and Methods). A
good model has the correct fold and is based on a substan-
tially correct alignment; it has >30% of its C� atoms mod-
eled with an error of less than 3.5 Å. On the other hand, a
bad model has an incorrect fold or is built on the correct fold
using a poor alignment; it has <15% of its C� atoms mod-
eled correctly.

Distributions of several features of the good and bad
models are compared in Figure 1. By construction, good
models are based on a match with an alignment score higher
than 22 nats (Altschul 1998), whereas the bad models are
based on matches from 15 to 20 nats. As a result, most of
the bad models are based on <30% sequence identity to the
template structure, whereas most of the good models are
based on <40% sequence identity (Fig. 1A,B). Most of the
good and bad models are shorter than 200 residues (Fig.
1C,D). Because a local sequence alignment program was
used to generate the alignments needed for modeling, many
good and bad models cover only a fraction of the modeled
chain. Good models, in general, cover a larger fraction of
the modeled chain relative to the bad models (Fig. 1E,F).
Most of the good models contain whole domains, whereas
most of the bad models correspond to a fraction of a domain
only (Fig. 1G,H). Most of the good models have a high
percentage of their C� atoms modeled correctly (Fig. 1I,J).

When MODPIPE is applied to whole genomes, distribu-
tions of model length and percentage sequence identity are
similar to those in Figures 1A–D (Sánchez and Sali 1998).
Thus, the current test set of models is probably a good
benchmark for the performance of statistical potentials in
the assessment of models from genome-wide comparative
modeling.

The jack-knife procedure to derive and test the potentials
was not used. In other words, the potentials were assessed
by using test models, some of which had actual structures of
their sequences and of their homologs in the set of known
structures from which the potentials were derived. There are
four reasons for this apparent lack of statistical rigor.

First, 210 different statistical potentials were calculated
and ∼10,000 models were assessed with each potential.

Thus, it was impractical in terms of the CPU time to recal-
culate each potential for each model assessment. The price
for assessing many potentials under many conditions was
paid by omitting the jack-knife aspect of the evaluation.

Second, the bias in the evaluation is expected to be small
or insignificant, because models with significant errors, not
the actual structures, were used for testing.

Third, the main aim was to find an optimal potential for
model assessment, not to determine the absolute perfor-

Fig. 1. Properties of the good (left) and bad models (right). (A,B) Percent-
age sequence identity between the target and the template. (C,D) Model
length. (E,F) Target chain coverage (the fraction of the target chain resi-
dues that were modeled). (G,H) Template domain coverage (the fraction of
the template domain residues that were aligned to the target chain). The
domain coverage was calculated using the domain definitions in the CATH
database (Orengo et al. 1997). (I,J) Structural overlap between the target
model and the actual target structure expressed as percentage of the equiva-
lent C� atoms (Materials and Methods).
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mance of the tested potentials. This aim requires only that
the relative performances of the potentials be assessed reli-
ably. The relative performance is expected to be a more
robust feature of the learning and test sets of models than
the absolute performance.

And finally, it is not certain, even conceptually, that rig-
orous testing of a method should not rely on structures
similar to those from which the potentials were derived. In
practice, the statistical potentials are to be used to assess
comparative models that by construction are similar to
known protein structures. All of the known protein struc-
tures are legitimate sources for the statistical potential used
in practical model assessment, including those known struc-
tures that happen to be related to the assessed model. Thus,
it might be that an evaluation of a fold assessment method
for comparative modeling that does not eliminate the ho-
mologs between the learning and test sets is more accurate
even in the absolute sense than an evaluation that does
eliminate the overlap. This argument does not apply to
evaluating model assessment for the ab initio protein struc-
ture prediction.

Distance-dependent potentials

Distance-dependent potentials are the most used statistical
potentials for fold recognition (Jones et al. 1992; Sippl and
Weitckus 1992), protein structure assessment (Sippl 1993;
Melo and Feytmans 1998; Jones 1999b), and ab initio pro-
tein structure prediction (Jones 1997; Xia et al, 2000). In
this study, the distance-dependent potentials were derived
as described earlier (Sippl 1993; Melo and Feytmans 1998)
(Materials and Methods). The critical parameters that define
a distance-dependent potential include the range, the reso-
lution (bin size), and the types of the interaction centers.
Thus, we explored the effect of varying these parameters on
the ability of the distance-dependent potential to discrimi-
nate between the good and bad models.

Range

To test the effect of the distance cutoff on the ability of a
distance-dependent potential to discriminate between the
good and bad models, we derived several potentials by vary-
ing only their range from 7 to 50 Å (Fig. 2). The perfor-
mance of the potential increases with the distance range,
depending on the size of the evaluated model. For models
larger than 100 residues, the discrimination plateaus at 30
Å. This result is in agreement with prior observations that
optimal fold recognition was achieved by distance-depen-
dent potentials cut at 30 Å (Sippl and Jaritz 1994; Furuichi
and Koehl 1998). For smaller models, however, this cutoff
is ∼20 Å. It is easier to discriminate between the good and
bad models for large models than for short models. Thus,
the size of a model should be taken into account when
designing a model assessment method.

Resolution

The resolution of an atomic distance-dependent potential
has to be sufficiently high to allow for accurate representa-
tion of the different atom type pairs (Melo and Feytmans
1997). In contrast, potentials at the residue level that use
only C� atoms, C� atoms or sidechain centers to describe an
interaction should require lower resolution for optimal per-
formance. To explore how the resolution influences the per-
formance of a potential, several statistical potentials were
derived with bin sizes ranging from 0.1 to 10 Å (Fig. 3).
There is a slight improvement in the discriminating power
of a potential at a higher resolution for the medium size and
large models. In contrast, the small models exhibit a larger

Fig. 2. Performance of the distance-dependent potential as a function of its
range. The percentage of the correctly predicted cases for the optimal
Z-score cutoff (Materials and Methods). The performance is shown sepa-
rately for the four sets with 100 good and 100 bad test models each
(100/100 sets) (Materials and Methods): The very small models (�), the
small models (�), the medium size models (�), and the large models (�).
The performance on the 400/400 test model set is indicated by the broken
line. The potentials were calculated as specified in Table 1, except for the
varying distance range.

Fig. 3. Performance of the distance-dependent potential as a function of its
resolution (bin size). The potentials were calculated as specified in Table
1, except for the varying bin size. See the legend to Fig. 2 for information
about the different test model sets represented by the different symbols.
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improvement in the performance upon increase in resolu-
tion. These results suggest that a resolution higher than 2 Å
should be used with residue-level potentials. Most of the
distance-dependent potentials described in the literature are
within this range of resolution (Sippl 1990; Jones et al.
1992; Lemer et al. 1995; DeBolt and Skolnick 1996; Park
and Levitt 1996; Park et al. 1997).

Interaction centers

Traditionally, residue-based statistical potentials are cal-
culated using only C� atoms, C� atoms, both C� and C�

atoms, or centers of the selected mainchain and sidechain
atoms (Lemer et al. 1995). In this work, we use only the
mainchain and C� atoms because only a low-resolution rep-
resentation of protein structure was expected to be sufficient
for the main aim, a coarse fold assessment. In addition, the
potentials using only the mainchain and C� atoms have the
advantage that the energy Z-score can be calculated rapidly
for a large set of sequences with a given structure, because
there is no need to rebuild the sidechain atoms. This, in turn,
made it possible to explore many potentials under many
conditions.

To assess the performance of the distance-dependent po-
tentials with different types of interaction centers, 25 po-

tentials for several combinations of the mainchain (N, C�,
C, O) and C� atoms were calculated (Fig. 4). The best single
atom interaction centers are the C� atoms. A probable rea-
son is that the C� atom contains more information about the
orientation of the sidechain than any mainchain atom. In
contrast, the carbonyl carbon and oxygen atoms have the
lowest performances, suggesting that these atoms carry the
least amount of information about the sidechain interac-
tions. Using more than one atom per residue slightly im-
proves the performance of the potential. The statistical po-
tentials involving only (C�, C�) (Sippl 1993) and (N, O, C�)
(Jones et al. 1992) perform slightly better than the potentials
for all the mainchain atoms. The interaction centers for the
potentials in Figure 4 are the individual atoms. These po-
tentials performed better than the potentials involving the
centers of the selected atoms (data not shown). Thus, the use
of the mainchain centers is an unnecessary approximation
that leads to a loss of information and to reduced discrimi-
nation between the good and bad models by a potential.
Apparently, this is not the case when the sidechain centers
are used in comparison with the C� and C� potentials
(Kocher et al. 1994). In this work, however, statistical po-
tentials using sidechain centers of any kind were not as-
sessed because a large-scale calculation of the energy Z-
scores with such potentials is impractical.

Fig. 4. Performance of the distance-dependent potential as a function of its interaction centers. The atom types whose coordinates were
used as the interaction centers are listed on the x-axes. The potentials were calculated as specified in Table 1 except for the varying
interaction centers and the potential range of 15 Å. The results for the four 100/100 test sets with models of increasing size are indicated
by bars of increasing darkness; the results for the 400/400 set of test models are indicated by the black bars.
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Sequence separation
Residues that are close in sequence are restrained to be

close in space due to the covalent connectivity between the
adjacent residues. Therefore, sequentially local interactions
should not be mixed with the sequentially nonlocal interac-
tions when calculating a potential. This distinction should
also help to benefit from the specific patterns of interaction
in the regular local structures such as �-helices, �-strands,
and �-turns. Generally, a potential is extracted and used
with the same specification of sequence separation k (Ma-
terials and Methods) (Hendlich et al. 1990; Jones et al.
1992; Sippl 1993; Kocher et al. 1994; Park and Levitt 1996;
Park et al. 1997; Reva et al. 1997; Rojnuckarin and Subra-
maniam 1999). However, it is possible to extract a potential
only for the nonlocal non-bonded interactions (Melo and
Feytmans 1998) and then use it for all of the nonbonded
interactions. This approach turned out to be optimal for the
ab initio modeling of loops in protein structures (Fiser et al.
2000). Thus, we derived and tested local (2 < k � 8) and
nonlocal (k � 9) nonbonded potentials separately (Fig. 5).

The best discrimination between the good and bad mod-
els is achieved when the local and nonlocal interactions are
assessed by potentials derived from the local and nonlocal
interactions, respectively (Fig. 5A). The potentials derived
from and used to assess only the nonlocal interactions gen-
erally perform well, except for the very small models (Fig.
5B). This failure was expected because the number of non-
local interactions in the very small models is low. Except for
the very small models, the nonlocal interactions are more
informative than local interactions in all of the tested dis-
tance ranges (Fig. 5B,C). An assessment of both local and
nonlocal interactions by a potential that was derived only
from the nonlocal interactions (Fig. 5D) is better than an
assessment of the local (Fig. 5C) or nonlocal (Fig. 5B)
interactions on their own.

Known structures for calculating potentials

Two main aspects of the known protein structures used to
derive distance-dependent statistical potentials were ex-
plored, i.e., their number and their size. The number of

Fig. 5. Performance of the distance-dependent potential as a function of its range and sequence separation. (A) Potentials were derived
from and used for assessing both the local (2 < k � 8) and nonlocal (k � 9) interactions. (B) Potentials were derived from and used
for assessing only the nonlocal interactions. (C) Potentials were derived from and used for assessing only the local interactions. (D)
Potentials were derived from the nonlocal interactions, but used to assess both the local and nonlocal interactions, irrespective of their
k. See the legend to Fig. 2 for additional information about the potentials and the different test model sets represented by the different
symbols.
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nonredundant structures in the PDB is limited and some
types of interactions may not be sampled densely. Thus, it is
important to assess how the performance of a statistical
potential depends on the number of protein structures that
were used to derive it. To address this question, distance-
dependent potentials were derived from 10 sets of known
structures containing from 50 to 500 structures (Fig. 6).
Discrimination between the good and bad models generally
increases with the number of structures used to derive the
potential, which is in agreement with previous observations
(Sippl and Jaritz 1994; Furuichi and Koehl 1998). However,
the improvement of the performance of the potentials upon
a 10-fold increase in the number of known structures is
small, especially for the medium size and large models,
which is consistent with the lack of impact of the database
size on the contact potentials (Miyazawa and Jernigan
1996).

The second aspect considered in this study was depen-
dence of model assessment on the size of the known struc-
tures used to extract the potential. This exploration was
motivated by the previous observations, (1) that statistical
potentials depend on the size of the known structures used
in their derivation (Sippl 1993; Thomas and Dill 1996; Fu-
ruichi and Koehl 1998), although there is some discussion
about the generality of this dependence (Bahar and Jernigan
1997), (2) that model size is informative in model evalua-
tion (Sánchez and Sali 1998; Jones 1999b), and (3) that the
energy Z-score of a native structure depends strongly on its
size (Sippl 1993). Performance of the distance-dependent
statistical potential was explored here as a function of the
size of the known structures used to derive the potential, its
distance range, and size of the assessed models (Fig. 7). For
the small and medium size models, discrimination between
the good and bad models does not depend significantly on

the size of the known structures used to extract the potential
(Fig. 7B,C). For the very small and large models, it is better
to use potentials derived from similarly sized known struc-
tures (Fig. 7A,D). For the very small models, this trend
becomes weaker when the distance range of the potential
increases beyond 15 Å (Fig. 7A). For the large models, the
worst discrimination is observed for a potential extracted
from the small structures only, especially when the distance
range is larger than 15 Å (Fig. 7D), because only a few
distant residue–residue contacts occur in small models, thus
resulting in highly unfavorable energy values for the distant
residue pairs. As such pairs occur frequently in large struc-
tures, large models are assessed as unfavorable solely be-
cause of their size, not because of their errors. For discrimi-
nating between the good and bad models of all sizes, the
best performance was achieved by a potential that was de-
rived from known structures of all sizes (Fig. 7E) at all
tested distance ranges.

Residue types

In addition to the standard 20 residue types, two residue
type definitions were used to calculate a distance-dependent
potential, the Wang and Wang residue type group definition
that clusters the 20 standard residue types into five groups
(Wang and Wang 1999) and the HP model that clusters the
20 standard residue types into two groups according to their
hydrophobicity (Huang et al. 1995). For the 400/400 test
model set, the fraction of the correctly predicted cases for
the distance-dependent potentials using 20 residue types,
the HP model, and the Wang and Wang residue type groups
were 92.1%, 88.5%, and 84.8%, respectively. Thus, a de-
crease in the number of residue type groups reduces the
discrimination between the good and bad models by the
potential.

Subsets of test models

We also compared the predictive power of the distance-
dependent statistical potentials by assessing the different
subsets of the good and bad models (Materials and Meth-
ods). The predictive power of the potentials does not depend
strongly on the number of hetatoms (Materials and Meth-
ods), the number of chains, or the percentage sequence iden-
tity between the modeled sequences and the templates used
to build the assessed models (data not shown). Of the model
features tested here, only the size of a model has a major
impact on the predictive power of the potentials (see above).
Discrimination is more difficult for the small models than it
is for the large models. It is tempting to speculate that a
model tends to be small when it covers only a fraction of the
modeled chain and that the reason for a relatively poor
assessment of a small model is its incompleteness; evalua-
tion of a model of an incomplete protein domain is clearly
difficult because the environment of the modeled protein
fragment is missing. However, the average coverage of the

Fig. 6. Performance of the distance-dependent potential as a function of
the number of known protein structures used to extract the potential. The
potentials were calculated from the 10 sets containing from 50 to 500
known structures (Materials and Methods), as specified in Table 1, except
for the potential range of 15 Å. See the legend to Fig. 2 for the different test
model sets represented by the different symbols.
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target chain by the correctly assessed models is approxi-
mately independent of the model size (data not shown).
Thus, the main reason for poor performance in the case of
small models is the relatively small number of interactions
that are available for discriminating between the good and
bad small models. This interpretation is consistent with the
previously observed dependence of the Z-score on the size
of a model (Sippl 1993). The major challenge in model
evaluation remains the assessment of small models.

Contact potentials

The contact potentials are the simplest description of pair-
wise interactions. They are similar to the distance-depen-
dent potentials, except that they have only two values, the
energy of interaction below a contact distance cutoff and
zero above it (Miyazawa and Jernigan 1985; DeBolt and
Skolnick 1996; Park and Levitt 1996; Park et al. 1997).

Range

Several contact potentials with different distance ranges
were calculated and tested (Fig. 8). Similarly to the dis-
tance-dependent potentials, discrimination is easier for the
large models than it is for the small models. In contrast to
the distance-dependent potentials, there is a clear optimal
distance range for discriminating between the good and bad
models. The optimal distance range of the contact potential
increases with the size of the assessed model. Optimal dis-
tance values are ∼9 Å for the very short models, 11 Å for the
small models, 13 Å for the medium size models, and 15 Å
for the large models. Thus, contact potentials are less con-
venient than the distance-dependent potentials for discrimi-
nating between the good and bad models, because different
contact potentials need to be used to have an optimal dis-
crimination over all model sizes. Performance of the opti-
mal contact potential is comparable with that observed for
the distance-dependent potentials only in the case of the

Fig. 7. Performance of the distance-dependent potential as a function of its range and the size of the known structures used to calculate
the potential. Four sets of known protein structures were used to extract the potentials: small (<100 residues; �), medium (100–200
residues; �), large (>200 residues; �), and all (the sma-med-large set; broken line) (Materials and Methods). Model assessment by
these potentials was evaluated separately for the four 100/100 very small (A), small (B), medium size (C), and large model test sets
(D), as well as for the combined 400/400 test set (E) (Materials and Methods). The potentials were calculated as specified in Table 1.
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large models. For the smaller models (<200 residues), the
contact potentials are inferior to the distance-dependent po-
tentials. As a result, no further calculations with the contact
potentials were performed in this study.

Dihedral angle potentials

Statistical backbone dihedral angle potentials were de-
scribed previously (Kocher et al. 1994; Gilis and Rooman
1997, 2001). In the current study, the �/� dihedral angle
potentials for each of the 20 standard residue types (Mate-
rials and Methods) did not separate well between the good
and bad models, in comparison with the distance-dependent
statistical potentials. For example, the fraction of the cor-
rectly predicted cases is 67%, 73%, 74%, 84%, and 70% for
the four 100/100 very small, small, medium size, and large
model sets, and the 400/400 test set, respectively. One of the
reasons may be that the relative content of the residues with
the native backbone dihedral angles in the bad models is
significantly larger than that of the native nonbonded con-
tacts. In other words, the difference between the bad and
good models in terms of the backbone dihedral angles may
be significantly smaller than the difference in terms of the
residue–residue contacts. Because of the poor performance,
no further calculations were carried out with the dihedral
angle potentials.

Accessible surface potentials

Accessible surface potentials depend on an approximate
measure of the residue burial or exposure to the solvent.
Accessible surface potentials complement the distance-
dependent potentials (Jones et al. 1992; Sippl 1993; Kocher

et al. 1994; O’Donoghue and Nilges 1997; Melo and Feyt-
mans 1998; Jones 1999b). Thus, the accessible surface
potentials were assessed here on their own and in combi-
nation with other statistical potentials. In this study, the
accessible surface potentials were derived as described ear-
lier (Sippl 1993; Melo and Feytmans 1998) (Materials and
Methods).

Distance and burial ranges

Two different ranges exist for the accessible surface po-
tentials used in this study, the distance range and the burial
range. The distance range is the radius of the sphere sur-
rounding a residue. The burial range is the maximal number
of residues observed in the sphere around a residue and
corresponds to the minimal solvent exposure. The optimal
values for these two ranges were expected to be dependent
on each other.

Several accessible surface potentials with varying dis-
tance range and a constant burial range were calculated and
assessed (Fig. 9). For models larger than 50 residues, good
discrimination is achieved over all of the tested distance
ranges. The correct prediction rate is approximately con-
stant for potentials with distance ranges from 7 to 15 Å. On
the other hand, for the very small models, the rate of the
correctly assessed models steadily decreases with the dis-
tance range of the potential. Thus, if a single accessible
surface potential with good performance over the whole
range of protein sizes is required, the distance range should
be small (e.g., <9 Å). Whereas a larger distance range re-
sults in a small improvement for models larger than 50
residues, it strongly worsens the performance for the very
small models.

Accessible surface statistical potentials with a variety of
burial ranges were also calculated and evaluated (Fig. 10).

Fig. 8. Performance of the contact potential as a function of its contact
distance. The interaction centers were the C� atoms. All the contacts with
k � 2 were considered. The reference state used to calculate the potentials
was other residues (Materials and Methods). The potentials were extracted
from the sma-med-lar set of known protein structures. See the legend to
Fig. 2 for the different test model sets represented by the different symbols.

Fig. 9. Performance of the accessible surface potential as a function of its
distance range (sphere radius). The potentials were calculated as specified
in Table 2, except for the burial range of 200 atoms and the varying sphere
radius. See the legend to Fig. 2 for the different test model sets represented
by the different symbols.
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The performance of the accessible surface potentials as
a function of the burial range is described by an asymp-
totic curve. These curves reach their maxima at the burial
range that depends on the size of the assessed models. For
the very small, small, medium size, and large models, the
smallest burial range required to reach the maximum dis-
crimination is ∼12, 15, 18, and 18 atoms, respectively. Thus,
contrary to the distance range, there is a single optimal
burial range for assessing models spanning all sizes (i.e., 18
atoms).

Resolution

Several accessible surface potentials with fixed distance
and burial ranges but variable burial resolution were calcu-
lated (Fig. 11). The performance of the accessible surface
potential depends strongly on its resolution, in contrast to
that for the distance-dependent potentials (Fig. 3). This de-
pendency varies with the size of the assessed models. For all
model sizes, the potential performs best at the high end of
the resolution spectrum. The performance falls sharply
above a threshold that depends on the model size. The
threshold is 5, 8, 13, and 15 atoms for the very small, small,
medium size, and large models, respectively.

Interaction centers

The dependence of the performance of the accessible sur-
face potentials on the different interaction centers (Fig. 12)
is similar to that of the distance-dependent potentials (Fig.
4). The highest discrimination is obtained for the potential
that uses the C� atoms to define the residue accessibility. As
pointed out above, it appears that the C� atoms retain more
information about the direction of the sidechain and thus
better describe residue accessibility than any other single
atom type.

Sizes of assessed model and known structures for
calculating potentials

Model assessment by accessible surface potentials was
evaluated as a function of the size of the assessed model and
the size of the known protein structures used to calculate the
potential (Fig. 13). The discriminative ability of a potential
increases with the size of the assessed model, similarly to
the distance-dependent statistical potentials. The perfor-
mance is worst for the very small models, presumably for
the same reasons as in the case of the distance-dependent
potentials. The size of the known structures used to derive
the potential influences its discriminant power slightly. As-
sessment of a model is best by a potential that was derived
from known structures of the same size, especially for the
very small models.

Fig. 10. Performance of the accessible surface potential as a function of its
burial range. The potentials were calculated as specified in Table 2, except
for the varying burial range. See the legend to Fig. 2 for the different test
model sets represented by the different symbols.

Fig. 11. Performance of the accessible surface potential as a function of its
resolution (bin size). The potentials were calculated as specified in Table
2, except for the burial range of 30 atoms and the varying bin size. See the
legend to Fig. 2 for the different test model sets represented by the different
symbols.

Fig. 12. Performance of the accessible surface potential as a function of its
interaction centers. The potentials were calculated as specified in Table 2,
except for the distance range of 10 Å and the varying interaction centers.
See the legend to Fig. 4 for the different test model sets represented by the
different bar shades.
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Residue types

The ability of an accessible surface potential to assess
models was tested as a function of the three residue-type
classifications described above. For the 400/400 test model
set, the fraction of the correctly predicted cases for the
accessible surface potentials using the 20 standard residue
types, the Wang and Wang residue type groups (Wang and
Wang 1999), and the HP model (Huang et al. 1995) were
87.5%, 83.8%, and 84.1%, respectively. As for the distance-
dependent potential, there is a loss of information when the
20 standard residue types are classified into a smaller num-
ber of groups, which can be avoided by using the 20 stan-
dard residue types.

Combined potential

A combination of potentials that evaluate different aspects
of a model (e.g., residue solvent accessibility and residue–

residue contacts) performs better than the single potentials
on their own (Sippl 1993; Kocher et al. 1994). Two specific
potentials were combined (Materials and Methods) and
tested (Fig. 14), the optimal distance-dependent potential
(Table 1) and the optimal accessible surface potential (Table
2). On the 3375/6270 test set of models, the distance-de-
pendent potential performed better than the accessible sur-
face potential, but worse than the combined potential. The
specificity and sensitivity of any of the three potentials for
the very small models is poor. The difficulty of assessing
the very small models is a major hurdle for an improvement
of the overall performance. For the medium size and large
models, the potentials have low rates of false positives and
false negatives (Fig. 14). For example, at the maximum rate
of the correct prediction, the fractions of the false positives
and false negatives for assessment by the combined poten-
tial are 8.9% and 8.5%, respectively. If the structure space
reference were used for the calculation of the Z-score in-

Fig. 13. Performance of the accessible surface potential as a function of its burial range and the size of the known structures used to
calculate the potential. Four sets of known protein structures were used to extract the potentials: small (<100 residues; �), medium
(100–200 residues; �), large (>200 residues; �), and all (the sma-med-large set; broken line) (Materials and Methods). Model
assessment by these potentials was evaluated separately for the four 100/100 very small (A), small (B), medium size (C), and large
model test sets (D), as well as for the combined 400/400 test set (E) (Materials and Methods). The potentials were calculated as
specified in Table 2.

Melo et al.

440 Protein Science, vol. 11



stead of the sequence space reference, the performance
would be better by approximately two percentage points
(Fig. 15). Many different combinations of potentials, in-
cluding varying weighing of the distance-dependent, con-
tact, �/� dihedral angle, and accessible surface potentials,
were tested, but none of them performed better than the sum

of the normalized distance-dependent and accessible surface
potentials (data not shown).

Conclusions

Four types of a residue-level statistical potential were opti-
mized for fold assessment in large-scale genome-wide com-

Fig. 14. Performance of the optimal distance-dependent, accessible surface, and combined statistical potentials. The performance is
described by the ROC curves, which plot the fraction of false negatives (F.N.) as a function of the fraction of false positives (F.P.)
(Materials and Methods). The lower the curve, the better the discrimination between the good and bad models. The ROC curves for
the accessible surface potential (�), the distance dependent potential (�), and the combined potential (broken line) are plotted. (A) The
443/1922 test set of the very small models, (B) the 1103/2600 test set of the small models, (C) the 1126/1412 test set of the medium
size models, and (D) the 703/336 test set of the large models. (E) The performance of the potentials is also evaluated by the 3375/6270
set of all good and bad models.
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parative modeling. These potentials included distance-de-
pendent, contact, �/� dihedral angle, and accessible sur-
face statistical potentials. The following main conclusions
were reached:

1. For an instructive optimization of fold assessment by
statistical potentials, the test set of models must be rep-
resentative of the models to be assessed by the new
method. The test set of models used here is believed to
be representative of the models from large-scale com-
parative modeling (Fig. 1).

2. The energy Z-score obtained by randomizing the order of
residues in the tested sequence, while keeping the struc-
ture constant, is almost as good as that obtained by ran-
domizing the structure, while keeping the sequence con-
stant (Fig. 15).

3. The most discriminating combination of any one of the
four tested potentials is that of the distance-dependent
and accessible surface potentials (Fig. 14). The distance-
dependent potential is more informative than the contact
potential, and the �/� dihedral angle potential has small
discriminative power.

4. The distance-dependent potential that is optimal for as-
sessing models of all sizes uses both C� and C� atoms as
interaction centers, distinguishes between all 20 standard
residue types, has the distance range of 30 Å, resolution
of 0.5 Å, and is derived and used by taking into account
the sequence separation of the interacting atom pairs
(Table 1, Fig. 14). The terms for the sequentially local
interactions (k � 8) are significantly less informative
than those for the nonlocal interactions (Fig. 5).

5. The accessible surface potential that is optimal for as-
sessing models of all sizes used C� atoms as interaction
centers, distinguishes between all 20 standard residue
types, and has the burial range of 40 atoms (Table 2, Fig.
14). The optimal distance range depends on the model

size, with 9Å resulting in the best performance averaged
over all model sizes.

6. The performance of the tested statistical potentials is not
likely to improve significantly with a further increase in
the number of known protein structures used in their
derivation (Fig. 6).

7. Model size should be taken into account as explicitly as
possible when assessing the fold of a model. The param-
eters of fold assessment whose optimal values vary sig-
nificantly with model size include the size of the known
protein structures used to derive the potential and the
distance range of the accessible surface potential (Figs.
7, 9, 13).

8. Fold assessment by statistical potentials is most difficult
for the very small models (Fig. 14). Small models are
difficult to assess because of the relatively small number
of pairwise interactions by which they are judged, not
because of their incompleteness. This difficulty presents
an important challenge to fold assessment in large-scale
comparative modeling, which produces many small
models.

9. Attributes of a model other than an energy Z-score may
have to be used to improve fold assessments. Such at-
tributes may include model size, fraction of a domain
modeled, the significance score of the modeling align-
ment, and the energy Z-score of the closest template
structure.

The results described in this study provide a basis for an
optimal use of statistical potentials in fold assessment. They
also indicate future directions for the development of more
sensitive fold assessment for large-scale comparative mod-
eling (e.g., Conclusions 7 and 9).

Table 2. The optimized accessible surface statistical potential

Parameter Value

interaction centers C�

residue type classification 20 standard residue types
distance range 9 Å
burial range 40 atoms
resolution 2 atoms
sequence separation k, derivation k � 1
reference state other atoms
sequence separation k, use k � 1

The listed parameters are optimal for all sizes of the tested models, except
for the quoted distance range, which corresponds to the optimal average
performance over the 400/400 test set of models of all sizes. The potential
was calculated from the sma-med-lar set of known protein structures, un-
less specified otherwise. The optimal performance for a given model size
is obtained by deriving the potential only from the known structures of
similar size, and by varying the distance range according to Fig. 9.

Table 1. The optimized distance-dependent statistical potential

Parameter Value

interaction centers C� and C�

residue type classification 20 standard residue types
range 30 Å
resolution 0.50 Å
sequence separation k, derivation 3, 4, 5, 6, 7, 8, �9
reference state other atoms
sequence separation k, use 3, 4, 5, 6, 7, 8, �9

The listed parameters are optimal for all sizes of the tested models. The
potential was calculated from the sma-med-lar set of known protein struc-
tures, unless specified otherwise. The optimal performance for a given
model size is obtained by deriving the potential only from the known
structures of similar size.
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Materials and Methods

Test models

To evaluate the usefulness of the statistical potentials for fold
assessment, large sets of good and bad protein structure models
were needed. The two sets of models were calculated by large-
scale comparative modeling (Sánchez and Sali 1998) of the protein
chains representative of the Protein Data Bank (PDB) of known
protein structures (Berman et al. 2000). The models were classified
as good or bad depending on their structural similarity to the actual
structure of the target protein. All of the models are available at
http://guitar.rockefeller.edu.

Models with the correct fold (good models)

The good models were built on the basis of the correct templates
and mostly correct alignments between the target sequences and
the template structures. The models were obtained by applying
MODPIPE to 1085 chains representative of the PDB (Sánchez and
Sali 1998). These representative sequences corresponded to the
protein chains in PDB that shared <30% sequence identity or were
>30 residues different in size. The templates for comparative mod-
eling by MODPIPE were 1637 PDB chains with <80% identity to
each other or more than 30 residue difference in length. Each target
sequence was aligned separately with each one of the 1637 known
structures by use of the program ALIGN that implements local
sequence alignment by dynamic programming (Altschul 1998).
Only the target-template alignments with a significance score
higher than 22 nats (corresponding approximately to the PSI-
BLAST E-value of 10−4) were used, resulting in 3993 models.
Models with <30% structural overlap with the actual experimen-
tally determined structure were eliminated. Structural overlap was
defined as the fraction of the equivalent C� atoms upon least-
squares superposition of the two structures with the 3.5 Å cutoff.
This procedure also removed models based on correct templates
that had a poor alignment and models based on templates that had
large domain or rigid body movements with respect to the target
structure. The final set contained 3375 good models.

Models with an incorrect fold (bad models)

The bad models were built on the basis of a template with an
incorrect fold, a template structure with large rigid body shifts, or

an incorrect alignment with the correct template. The models were
obtained as described above, except that only the target-template
alignments with the significance score between 15 and 20 nats
were used; this procedure resulted in 7669 models for the 1085
representative chains. Models with >15% structure overlap with
the actual target structure were eliminated. The final set contained
6270 bad models.

Subsets of models

The test set of models containing all of the 3375 good and 6270
bad models is termed the 3375/6270 test set. To analyze the dis-
crimination between the good and bad models by the statistical
potentials, the good and bad models were grouped into several
subsets on the basis of a variety of criteria. Four 100/100 test sets
were created, each one of which contained randomly selected 100
good and 100 bad models of defined size, very-small models (<50
residues), small models (50–100 residues), medium size models
(100–200 residues), and large models (> 200 residues). Another
test set, the 400/400 set, was created by combining all four 100/
100 sets.

All of the good and bad models were also subdivided into the
following test sets: very-small models (443/1922), small models
(1103/2600), medium size models (1126/1412), and large models
(703/336); models based on templates with <40 atoms in nonstand-
ard residue types but water (hetatoms) (2393/5371) and other mod-
els (982/899); models based on templates without other chains in
the same PDB file (1055/2891) and other models (2320/3379);
models based on sequence identity of <30% (890/3722) and other
models (2485/2548); models based on sequence identity of <30%
and sequence length of >100 residues (614/1578), and models
based on sequence identity of >30% and sequence length of more
than 100 residues (1188/142).

Known structures for calculating potentials

Protein structures that were solved by X-ray crystallography at a
resolution higher than 2.5 Å, with >50 residues, without duplicated
or missing atoms and without chain breaks were extracted from the
September 1999 version of PDB. Representative structures were
selected such that they shared <30% sequence identity with each
other or were >30 residues different in length, resulting in the

Fig. 15. Performance of the sequence space (�) and structure space (�) references for the calculation of the energy Z-scores. The
predictive power is assessed for the 3375/6270 test model set. The statistical potentials and the polyprotein implemented in the program
PROSAII were used (Sippl 1993). (A) Distance dependent potential. (B) Accessible surface potential. (C) The combined potential.
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sma-med-lar set with 760 chains. To assess the dependence of the
statistical potentials on the size of the structures from which they
were extracted, three subsets of the sma-med-lar set that contained
only chains of a certain size were created, the small subset con-
taining protein chains with <100 residues (229 chains), the me-
dium subset containing chains with 100–200 residues (232), and
the large subset containing chains with >200 residues (299). To
assess the dependence of the statistical potentials on the number of
structures from which they were extracted, 10 subsets of the sma-
med-lar set were generated randomly, containing 50, 100, 150,
200, 250, 300, 350, 400, 450, and 500 chains. To evaluate the
effect of the interactions of a chain with other subunits in a com-
plex, two subsets of the sma-med-lar set were generated, the mon
subset containing structures from the PDB files with single chains
(273 chains) and the mul set containing chains from the PDB files
with more than one chain (225); PDB files with single chains but
with a crystal symmetry operator to generate additional chains in
the crystal unit cell were excluded. All the PDB sets are available
at http://guitar.rockefeller.edu.

Statistical potentials

A total of 210 statistical potentials were calculated by varying the
following features that define their functional form as follows: (1)
type of an interaction center (e.g., individual atoms, gravity centers
of several atoms); (2) residue and atom type classification; (3) type
of potential (e.g., accessible surface potential, distance-dependent
potential); (4) maximum range; (5) bin size for frequency histo-
grams obtained from known structures; (6) for two-residue poten-
tials, sequence separation of residues used to extract the frequency
histograms; (7) reference state used to calculate the accessible
surface statistical potentials; (8) sequence separation used to cal-
culate the total energy of a model; and (9) set of known protein
structures used to extract the frequency histograms. The distinction
between features (6) and (8) needs an explanation. A statistical pair
potential extracted only from the sequentially nonlocal interactions
in the known protein structures (Melo and Feytmans 1998),
supplemented by stereochemical restraints, is optimal for describ-
ing both the local and nonlocal nonbonded interactions in the
modeling of loops (Fiser et al. 2000). Thus, optimizations of the
calculation and use of a statistical potential should be done inde-
pendently from each other. Next, all of the statistical potentials
tested in this study are defined in detail.

Distance-dependent statistical potential

The distance-dependent, nonbonded statistical potentials were cal-
culated as described (Sippl 1993; Melo and Feytmans 1997):

Ek
ij�l� = RT ln �1 + Mijk�� − RT ln �1 + Mijk�

f k
ij �l�

f k
xx �l�

�. (1)

Mijk is the number of occurrences for the interaction center type
pair ij separated by k residues in sequence (i.e., k � |I − J|, where
I and J are the residue indices of interaction center types i and j,
respectively):

Mijk = �
l=1

n

f �i, j, k, l�. (2)

n is the number of classes of distances. � is the weight given to
each observation. � � 1/50 was used (Sippl 1990), so that with 50

observations f ij
k(l) and f xx

k (l) have equal weights for the calculation
of Eij

k(l). f ij
k(l) is the relative frequency of occurrence for the in-

teraction center type pair ij at sequence separation k in the class of
distance l.

f k
ij�l� =

f �i, j, k, l�

Mijk
. (3)

f xx
k (l) is the relative frequency of occurrence for all the interaction

center type pairs at sequence separation k in the class of distance l:

f k
xx�l� =

�
i=1

r

�
j=1

r

f �i, j, k, l�

�
i=1

r

�
j=1

r

�
k=1

m

f �i, j, k, l�

(4)

in which r is the number of different interaction center types and
m is the number of classes for the sequence separation. The tem-
perature T was set to 293 K, corresponding to RT of 0.582 kcal/
mole, where R is the gas constant.

Contact statistical potential

Contact potentials were calculated similarly to the distance-depen-
dent potentials, except for using a single bin with a size equivalent
to the range of the potential and considering as equivalent all the
interactions between interaction centers with the sequence separa-
tion k � 2.

Accessible surface statistical potential

The accessible surface potentials were calculated as described
(Sippl 1993; Melo and Feytmans 1998). The accessible surface of
an interaction center is defined as the number of interaction centers
within a sphere around the central interaction center; the radius of
the sphere is the distance range of the potential. In the case of a
known multimeric structure, the neighbor counts were performed
only for the interaction centers belonging to the representative
chain, but all of the other chains in the PDB file were included in
the calculation. From these distributions, the statistical potential
was calculated as follows:

E i�r� = RT ln �1 + Mi�� − RT ln �1 + Mi�
f i�r�

f ref
i �r�

�. (5)

Mi is the frequency of the interaction center type i in all the burial
classes:

Mi = �
r=1

R

f �i, r�, (6)

where R is the number of the burial classes and � represents the
weight given to each observation (usually � � 1/50). f i(r) is the
relative frequency of occurrence of the interaction center type i in
the burial class r:

f i�r� =
f �i, r�

Mi
. (7)

f i
ref (r) is the reference state. Two different reference states were

tested. The first one represents the overall relative frequency of
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occurrence of the interaction center type i in the burial class r,
assuming that the interaction centers are distributed homoge-
neously over the distance range of the potential. This reference
corresponds to an interaction center having no preference for any
of the different accessibility states and it can be expressed as:

f ref
i �r� =

�Mi

R �
Mi

=
1

R
. (8)

Thus, in this case, f i
ref (r) is a constant that depends on the number

of burial classes defined for the potential. The second reference
state was equivalent to that used for the distance-dependent po-
tentials. Here, f i

ref (r) is the relative frequency of occurrence for all
the interaction centers in the burial class r:

f ref
i �r� =

�
i=1

n

f �i, r�

�
i=1

n

�
r=1

R

f �i, r�

, (9)

in which n is the number of interaction center types.

�/� dihedral angle statistical potential

The �/� dihedral angle potentials were obtained for each of the 20
residue types for each of the five areas of the Ramachandran map
(Ramachandran et al. 1963). The Ramachandran maps were ex-
tracted from a representative set of 1000 protein structures
(217,807 residues) that shared <60% sequence identity to each
other or had >30-residue length difference, and were determined
by X-ray crystallography at a resolution of 2.3 Å or better (Fiser et
al. 2000). The Ramachandran plot spanned by the � and � dihe-
dral angles was divided into 5° × 5° bins. The frequency of resi-
dues in each bin was obtained separately for each of the 20 stan-
dard residue types. The �/� dihedral angle statistical potential
was defined as:

E�,� �i� = RT ln �1 + Mi�� − RT ln �1 + Mi�
f�� �i�

f ��
x �, (10)

in which � represents the weight given to each observation (usu-
ally, � � 1/100). Mi is the number of observations for residue type
i in all of the dihedral angle classes:

Mi = �
�=1

n

�
�=1

n

f �i, �, �� . (11)

n is the number of the dihedral angle bins (i.e., 72). f�� (i) is the
relative frequency of occurrence of residue type i with dihedral
angles � and �:

f�� �i� =
f �i, �, ��

�
�=1

n

�
�=1

f �i, �, ��

. (12)

f x
�� is the reference distribution that corresponds to the relative

frequency of occurrence for all residue types with dihedral angles
� and �:
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�=1
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�
�=1

n

f �i, �, ��

, (13)

in which r is the number of residue types (the 20 standard residue
types were used).

Energy

For distance-dependent potentials, the energy of a protein structure
model is a sum of the individual terms over all interaction center
pairs i and j, sequence separations k, and distance classes l:

Em = �
i�j,k,l

E �i, j, k, l�. (14)

For contact potentials, the energy was calculated similarly. For
accessible surface and �/� dihedral angle statistical potentials, the
energy of the protein is equal to the sum of the terms for all of the
residues. In addition, the combined energy was defined as the sum
of the normalized energies (e.g., the normalized distance-depen-
dent and accessible surface energies). The normalization was
achieved by dividing the energy of a certain type (e.g., distance-
dependent energy) by the standard deviation of its individual
terms.

Energy Z-score

Before an energy was used to discriminate between the good and
bad models, it was transformed into a Z-score of energy (Sippl
1993):

Z =
Em − 	r

�r
, (15)

in which Em is the energy of the model, µr and �r are the average
and standard deviation of the reference energy distribution, respec-
tively. Two different reference energy distributions were calcu-
lated and compared. The first approach involved randomization of
the order of amino acid residues in the tested model (sequence
space reference). This procedure was repeated 200 times, gener-
ating 200 models with the same conformation, but different se-
quences. By construction, the residue composition of these random
sequences was identical to that of the original sequence. The en-
ergies of the random-sequence models were then used to obtain the
average and standard deviation of the reference energy distribu-
tion. The second derivation of the reference energy distribution
keeps the original sequence, but changes its conformation (struc-
ture space reference). The sequence was threaded thousands of
times through a set of nonredundant native protein folds (Sippl
1993). This collection of conformations was then used to obtain
the average and standard deviation of the energy for the calculation
of the Z-score.

The performances of the Z-scores calculated by the two methods
were similar, as measured by the receiver operating characteristic
curve (see below; Fig. 15). The two reference frames were com-
pared only for the PROSAII statistical distance-dependent, acces-
sible surface and combined potentials (Sippl 1993). The perfor-
mances of the two reference frames are similar. For the distance-
dependent potentials, the sequence space reference was slightly
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better than the structure space reference. For the accessible surface
potentials, the opposite was the case. For the combined potential,
the structure space reference performed slightly better than the
sequence space reference. However, for all subsequent calcula-
tions, the sequence space reference was used because it is signifi-
cantly more efficient in terms of the CPU time than the structure
space reference.

The fraction of the correctly predicted cases

The fractions of false positives (FP) and false negatives (FN) are
defined as:

FP =
B

B + D
, FN =

C

A + C
, (16)

in which A is the number of true positives (good models predicted
as good), B is the number of false positives (good models predicted
as bad), C is the number of false negatives (bad models predicted
as good), and D is the number of true negatives (bad models
predicted as bad). The fraction of the correctly predicted cases or
the correct classification rate at the optimal value of the Z-score
cutoff was used to assess the performance of a given statistical
potential in fold assessment as follows:

CP =
A� + D�

A� + B� + C� + D�
, (17)

in which the prime is used to indicate the corresponding values at
the Z-score cutoff that results in the maximal correct classification
rate.

Receiver operating characteristic curves

Receiver operating characteristic (ROC) curves (Theodoridis and
Koutroumbas 1999) were also used to assess the statistical poten-
tials. An ROC plot is obtained by plotting the false negatives
fraction (1–sensitivity) against the corresponding false positives
fraction (1–specificity) for all cutoffs on the Z-score.

The area under the ROC curve represents the probability of
incorrect classification over the whole range of cutoffs. This area
is usually taken to be an important index because it provides a
single measure of overall accuracy that is not dependent upon a
particular feature threshold. The area under the curve ranges from
0.0 to 0.5. If it is 0.5, the scores for the good and bad models do
not differ (no discriminating power), whereas a value of 0.0 indi-
cates no overlap between the two sets of models (perfect discrimi-
nation).
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