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A protein sequence with at least 40% identity to a known structure can
now be modelled automatically, with an accuracy approaching that of
a low-resolution X-ray structure or a medium-resolution nuclear magnetic
resonance structure. In general, these models have good stereochemistry and
an overall structural accuracy that is as high as the similarity between the
template and the actual structure being predicted. As a result, the number
of sequences that can be modelled is an order of magnitude larger than
the number of experimentally determined protein structures. In addition,
evaluation techniques are available that can estimate errors in different regions
of the model. Thus, the number of applications where homology modelling
is proving useful is growing rapidly.
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Introduction

Comparative or homology protein modelling uses
experimentally determined protein structures (templates)
to predict the conformation of another protein with
a similar amino acid sequence (target) [1-5,6%,7*—9°].
Comparative modelling is possible because a small
change in the sequence usually results in a small change
in the three-dimensional structure [10-14,15%,16¢].
Although considerable progress has been made in ab initio
structure prediction [17%,18°,19,20%,21%], comparative
modelling remains the only modelling method that can
provide models with a root mean square (rms) error
lower than 2 A. In general, the best comparative tech-
niques can produce models with good stereochemistry
and overall structural accuracy that is as high as the
similarity between the template and the actual target
structure. Thus, the comparative method can result in
models with a main-chain rms error as low as 1A
for 90% of the main-chain residues, if a sequence
is at least 40% identical to one or more of the
templates [22¢,23]. In this range of sequence similarity,
the alignment is mostly straightforward to construct,
few gaps exist and structural differences between the
proteins are usually limited to loops and side chains.
When sequence identity is between 30% and 40%, the
structural differences become larger, and the gaps in the
alignment are more frequent and longer. As a result,
the main-chain rms error rises to ~1.5A for ~80% of
the residues. The rest of the residues are modelled with
large errors because the methods generally cannot model
structural distortions and rigid body shifts, and they
cannot recover from misalignments. In such situations,
model evaluation methods can be used to identify
the inaccurately modelled regions of a protein. When
sequence identity drops below 30%, the main problem

becomes the identification of related templates and their
alignment with the sequence to be modelled.

Despite these limitations, comparative modelling is
useful because about one-third of known sequences
appear to be related to at least one known structure
[24,25%¢]. Because only ~2000 of the about 100000
known protein sequences have had their structures
determined experimentally, the number of sequences
that can be modelled relatively accurately is an order
of magnitude larger than the number of experimen-
tally determined protein structures. Furthermore, the
usefulness of comparative modelling is steadily increasing
because genome projects are producing more sequences
and because novel protein folds are being determined
experimentally.

In the early eighties, manual comparative modelling
[26,27] was facilitated by the manipulations of protein
molecules on the graphics terminal [3,28], which
was made possible by computer programs such as
FRODO [29]. This approach was later improved by the
introduction of largely automated modelling algorithms
that could use several known structures to model the
unknown member of the family [30,31]. This group
of methods is based on the assembly of the model
from a few core regions, and loops and side chains,
which are obtained from dissected related structures
[1,3,28]. Another group of comparative methods relies
on the approximate positions of conserved atoms from
the templates to calculate the coordinates of other atoms,
using a database of short segments of protein structure,
energy or geometry rules, or some combination of
these criteria [32-35]. A third group of comparative
methods is based on the satisfaction of spatial restraints
obtained from the alignment of the target sequence with
homologous templates of known structure [2,36,37].

Abbreviations
NMR—nuclear magnetic resonance; rms—root mean square; WWW—World-Wide Web.
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And a final group of methods, which is not covered
in this review, consists of recognition of the native
fold by threading a target sequence through each fold
in a database of all known folds [38,39]. This can
be seen as a first step towards modelling sequences
that are only distantly related to the known protein
structures [40-50,51¢,52¢,53]. In addition to methods for
modelling the whole fold, numerous other techniques
for prediction of loops and side chains on a given
framework have also been described. These methods can
often be used in combination with each other and with
comparative modelling techniques.

This review is organized in terms of the main stages
that are shared by all comparative modelling methods.
The first step is always to align the target sequence
with all the related proteins whose three-dimensional
structures are known. In the second step, the alignment
and the structures are used to build a model for
the target sequence. The main difference between the
comparative methods is in how the alignment is used to
get the three-dimensional model. In the third step, the
model is evaluated and, if necessary, the alignment and
model building are repeated until a satisfactory model
is obtained. For each of the three steps, 1 first provide a
brief historical overview and then describe in more detail
the latest developments published since 1993.

Finding and aligning template structures with
the target sequence

The first task in comparative modelling is to identify all
protein structures related to the target sequence, some of
which will be used as templates. This is greatly facilitated
by databases of protein sequences and structures and
software for scanning those databases (for reviews, see
[6°,9%,54¢,55-57]). At present, the probability is ~30%
that a sequence picked randomly from a sequence
database has at least 25% sequence identity to at least one
known structure [25**].

The target sequence can be searched against sequence
databases, such as Protein Identification Resource (PIR)
[58], GENBANK [59], SWISS-PROT [60], or EMBO
nucleotide sequences database [61], and/or structure
databases such as the Brookhaven Protein Databank [62]
and SCOP [63°]. The most popular programs, including
FASTA [64] and BLAST [65], compare the target
sequence with each sequence in a database. Program
MODELLER (see below), which implements all the stages
in comparative modelling [5], can also automatically
search for proteins with known three-dimensional struc-
ture that are related to a given sequence. The sensitivity
of the search can be improved if the target sequence
is aligned against sequence templates constructed from
multiply aligned sequences [66,67°,68,69].

Additional sensitivity in detecting remote relationships
is gained when structural information about potential
homologues is used. Typically, the target sequence is
matched against a library of three-dimensional profiles

or threaded through a library of three-dimensional
folds [45-47,55,70,71*]. These more sensitive fold
identification techniques are especially useful for find-
ing significant structural relationships when sequence
identity drops below 30%.

Once all the structures related to the target sequence
are identified, the second task is to prepare a multiple
alignment of the target sequence with all the potential
template structures. The alignment can frequently be
improved if other sequences from the same family are
also aligned at the same time. This additional effort is
often useful because the quality of the alignment is the
single most important factor determining the accuracy
of the three-dimensional model. In principle, most
sequence-alignment and structure-comparison methods
can be used, but in practice it is frequently necessary to
edit manually the positions of insertions and deletions to
ensure that they occur in a reasonable structural context
(e.g. not in the middle of a helix). Comparison methods
are not reviewed here (for reviews, see [6°*,54*,56,72]).
Although profile matching and threading techniques are
relatively successful in identifying related folds, they
appear to be somewhat less successful in generating
correct alignments. This limits the use of alignments
from threading because comparative modelling cannot,
at present, recover from an incorrect alignment. At
30% sequence identity, the fraction of correctly aligned
residues is ~80%, but this number drops sharply with
further decrease in sequence similarity [73]. This implies
that reasonable homology models can be obtained only
for sequences that have more than 30% identity to at
least one known structure. With such a high similarity,
the potential template structures can be almost always
identified and aligned using the simplest sequence based
searches and alignment techniques. Sequence identity of
at least 30% almost guarantees that two chains longer
than 50 residues will have related three-dimensional
structures [12].

The power of the databases to address various questions
is greatly enhanced when relationships between the
proteins are established. Several collections of alignments
of protein structures have been published that facilitate
both the development and the use of comparative
modelling techniques [74-78,79¢].

Once a multiple alignment is constructed, a matrix of
pairwise sequence identities is usually calculated and
employed to construct a phyletic tree that expresses
the relationships among the proteins in the family [80].
All significantly different structures in the cluster that
contains the target sequence are usually used as templates
in subsequent model building [81]. Some methods allow
short segments of known structure, such as loops [32],
to be added to the alignment at this stage [5].

Model building

Modelling by assembly of rigid bodies
The first approach used for comparative modelling was
to assemble a model from a small number of rigid
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bodies obtained from the aligned protein structures
[1,3,26-28,30,31,82-85]. For example, in the computer
program COMPOSER [30,31], three types of rigid body
are used to build the model. Each individual rigid
body of the model is selected as the best rigid body
from the corresponding set of all possible rigid bodies.
These sets are the following: first, for a conserved
core region, the equivalent segments of contiguous
main-chain atoms from homologous structures; second,
for a loop, the equivalent loops from homologous
proteins and loops satisfying certain geometric criteria
from other structures; and finally, for a side chain, the
equivalent side chains from homologous structures, as
well as the most likely side-chain conformations found
in proteins in general. These rigid bodies are assembled
on the framework, which is defined as the average Cg
atoms in the conserved regions of the fold.

Recently, Srinivasan and Blundell [23] have extensively
evaluated comparative modelling by rigid body assembly.
They found that the accuracy of a model can be
somewhat increased when more than one template
structure is used to construct the framework and when
the templates are averaged into the framework using
weights corresponding to their sequence similarities to
the target sequence. For example, differences between
the modelled and X-ray structures of the modelled
protein may be slightly smaller than the differences
between the X-ray structures of the modelled protein
and the homologues used to build the model. Possible
future improvements of modelling by rigid body
assembly include incorporation of rigid body shifts, such
as the relative shifts in the packing of a-helices [86].

Peitsch and Jongeneel [87] described an automated
approach to homology modelling, similar to that of
Blundell and co-workers [30,86]. They applied their
approach to model the CD40 ligand [87].

Kajihara et al. [85] constructed a three-dimensional
model of bovine pancreatic B-trypsin from four parts
corresponding to each of its exons. These four building
blocks were obtained as the most similar regions
found in four other serine proteases with known
three-dimensional structure. The model was then refined
by molecular dynamics simulation. In agreement with
[23], it was shown that this ‘chimaera’ approach is better
than using only a single template structure.

Modelling by segment matching or coordinate
reconstruction

The build-up procedure constructs the three-dimen-
sional model by assembling short segments of the
structure. The segments were originally generated and
assembled according to the energetic criteria [88].
The use of this idea in comparative modelling was
facilitated by the finding that only ~100 different
hexamers can be joined together to cover 99% of the
residues in proteins [33]. This paved the way to a
new approach to comparative modelling, in which a
subset of atomic positions in the template is used to

identify short segments in all known protein structures
that fit on the guiding positions. The short segments
are then assembled into the complete model. For
example, Claessens ef al. [34] developed a method
for modelling the backbone with ‘spare parts’, short
segments of varying length from other structures that
were identified by matching the guiding C positions.
Other similar backbone reconstruction procedures have
been described [89-91]. A more general segment match
modelling by Levitt [35] is guided by the positions of
some atoms (usually C, atoms) to find the matching
segments in the representative database of all known
protein structures. This method can construct both
side-chain and main-chain atoms, and it can also model
insertions and deletions.

Many methods for constructing coordinates of missing
atoms from the positions of guiding atoms rely on
geometric or energetic criteria and possibly on a
conformational search, instead of depending on a
database of segments [92-96,97¢]. Usually, the guiding
positions are Cg atoms of a subset of residues, and either
main-chain or full-atom models are constructed. These
methods can be applied to comparative modelling when
homologous structures are used as the source of the
guiding positions and when combined with the loop and
side-chain construction algorithms [89,90,98].

Even the class of loop construction methods based on
finding suitable fragments in the database of known
structures [32] can be seen as a segment matching or
coordinate reconstruction method. The same is true for
some side-chain modelling methods [99°].

Payne [96] used Cy coordinates to reconstruct complete
backbone coordinates and side-chain directions. A
potential of mean force, derived from a database of
protein structures was employed to orient the peptide
groups around axes connecting successive Cy atoms.
Because terms of the scoring function were local in
nature, a dynamic programming procedure could be used
for optimization.

Van Gelder et al. [97¢] have presented a new method to
build a complete protein structure from Cg coordinates.
The first step in this approach is to generate an
approximate backbone using geometrical criteria only.
In the second step, the backbone is refined and
side chains are positioned using exhaustive molecular
dynamics simulation. These authors used the method
to generate full-atom models of two proteins from their
low-resolution C traces.

Modelling by satisfaction of spatial restraints

It is important to distinguish between constraints and
restraints. Constraints restrict a spatial feature, such as a
distance between two atoms, to a particular single value,
whereas restraints allow a wider range of values, possibly
with varying probabilities.

Srinivasan ef al. [36] described a three-dimensional
model of bungarotoxin that was obtained through the
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use of distance geometry to satisfy main-chain distance
constraints extracted from the cobratoxin structure
and a low-resolution structure of bungarotoxin. A
general method for modelling by optimization of spatial
restraints obtained from the alignment of the target se-
quence with homologous templates of known structure
was proposed by Sali and Blundell [2,100]. An elegant
distance geometry approach for constructing all-atom
models from lower and upper bounds on distances and
dihedral angles was described in detail by Havel and
Snow [37]. Other methods based on satisfaction of
main-chain distance restraints by molecular dynamics
were reported by Fujiyoshi-Yoneda et al. [101] and
Engh et al. [102]. A protein backbone has also been
modelled by satisfying Cy—C¢ contacts predicted by a
neural network that relied on an alignment between the
target sequence and a template structure [103].

Recently, Havel [104] has extended the earlier approach
of Havel and Snow [37]. Lower and upper bounds
on Cy—C, distances, main-chain—side-chain distances,
hydrogen bonds, and conserved dihedral angles were
derived for Escherichia coli flavodoxin from four other
flavodoxins; bounds were calculated for all distances and
dihedral angles that had equivalent atoms in the template
structures. The permitted range of values of a distance
or a dihedral angle depended on the degree of structural
variability at the corresponding position in the template
structures. Distance geometry was used to obtain an
ensemble of approximate three-dimensional models,
which were then exhaustively refined by restrained
molecular dynamics with simulated annealing in water.

Comparative modelling by optimization of a potential
function constructed from a sequence alignment with
related structures was described by Snow [105]. His
model consists of Cg atoms that are restrained by a
form of a Lennard—Jones potential. The position of the
minimum of each Lennard—Jones term corresponds to a
weighted average of equivalent distances in homologous
structures and the depth of the minimum is inversely
proportional to the variability among these distances.
The ‘energy’ is minimized by a simulated-annealing
procedure in the angle and dihedral angle space, followed
by a conjugate gradients refinement in the Cartesian
space. The method is tested by modelling rubredoxin on
the basis of four other rubredoxin structures.

The method developed by Srinivasan et al. [106] uses a
single template structure to obtain distance constraints
on the target sequence. As in [37], constraints are
derived for all pairs of atoms that have equivalent
pairs in the template structure. Distance constraints
are satisfied by a distance geometry program and a
subsequent energy refinement. When the template and
target sequences are similar, the target structure is also
very similar to the template structure. Subsequently,
the method has been improved by relaxing distance
constraints on the target sequence outside the manually
delineated structurally conserved regions [107¢]. This
relaxation facilitates three-dimensional embedding and
energy minimization, and increases the rms between

the template and the model, but it does not appear to
increase the accuracy of the model beyond the similarity
between the template and the actual structure of the
target [107°].

Brocklehurst and Perham [108] have described an
automated method for constructing a three-dimensional
model of a sequence that is aligned with related
structures. This method optimizes a relatively small
number of spatial restraints that are judged to be
important for the fold and/or function and thus more
likely to be conserved in the family of proteins.
These restraints act upon main-chain hydrogen bonds,
attractive van der Waals contacts, and main-chain and
side-chain dihedral angles. The optimization relies on
the program X-PLOR [109] and consists of molecular
dynamics with simulated annealing. The method has
been applied to two domains from the dehydrogenase
family.

I now focus on the modelling approach of Sali and
Blundell [2,5,22%,79+,100,110%). The question addressed
is “What is the most probable structure for a certain
sequence given its alignment with related structures?’
Our approach follows from the method for comparison
of protein structures implemented in the program
COMPARER [100,111] and was developed to use as
many different types of data about the target sequence
as possible. It is implemented in the computer program
MODELLER (which is available by anonymous ftp
from tammy.harvard.edu:pub/modeller and also as part
of QUANTA [MSI, Burlington, Massachusetts, USA;
E-mail: jeollins@msi.com]). The input to the program is
an alignment of the target sequence with related known
three-dimensional structures. The output, obtained
without any user intervention, is a three-dimensional
model for the target sequence containing all main-chain
and side-chain heavy atoms. First, MODELLER derives
many distance and dihedral angle restraints on the
target sequence from its alignment with template
three-dimensional structures. Spatial restraints on the
target sequence are obtained from the statistical analysis
of the relationships between various features of protein
structure. A database of 105 family alignments, including
416 proteins with known three-dimensional structures,
was constructed [79¢] to obtain the tables quantifying
the relationships, such as those between two equivalent
Cq—Cq distances, or between equivalent main-chain
dihedral angles from two related proteins. These re-
lationships were expressed as conditional probability
distributions and can be used directly as spatial restraints.
For example, probabilities for different values of the
main-chain dihedral angles are calculated from the type
of a residue considered, from main-chain conformation
of an equivalent residue, and from sequence similarity
between the two proteins, An important difference
from the other methods discussed in this section
is that the spatial restraints are obtained empirically
from a database and are not guessed. Next, the
homology-derived restraints and energy terms enforcing
proper stereochemistry [112] are combined into an
objective function. Finally, the model is obtained by
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optimizing the objective function in Cartesian space.
This optimization is carried out using the variable
target function method [113], employing methods
of conjugate gradients and molecular dynamics with
simulated annealing. Several slightly different models can
be calculated by varying the initial structure.

One of the strengths of modelling by satisfaction of spa-
tial restraints is that constraints or restraints derived from
a number of different sources could easily be added to
the homology-derived restraints. For example, restraints
can be provided by rules for secondary-structure packing
[86,114—116], analyses of hydrophobicity [117,118¢] and
correlated mutations [119,120], empirical potentials of
mean force [121], nuclear magnetic resonance (NMR)
experiments [122,123°], cross-linking experiments, flu-
orescence spectroscopy, image reconstruction in electron
microscopy, site-directed mutagenesis [124], intuition,
et cetera. In this way, a homology model, especially
in the difficult cases, could be improved by making it
consistent with available experimental data and/or with
more general knowledge about protein structure.

Modelling of loops

Loops can be calculated by searching a structure
database for segments that fit on fixed endpoints [32],
by conformational search with an optional energy
minimization [125-127], or by a combination of
these approaches [128,129]. Many different implemen-
tations of the basic techniques have been described
[32,125-137,138°*,139-144,145%,146,147°,148,149].

Collura and colleagues [141,142] used Monte Carlo
and simulated-annealing algorithms to optimize a united
atom energy function for a loop that spans given anchor
regions. The energy function consists of non-bonded
atomic interactions and a harmonic potential applied
to terminal residues to force the loop closure. The
degrees of freedom include only the main-chain and
side-chain dihedral angles, excluding the @ dihedral
angle. The optimization started from a completely
extended conformation. For loops seven residues long,
the average rms error was 1 A for main-chain atoms and
2.3 A for all heavy atoms.

Rao and Teeter [139], who also relied on a united
atom model, optimized the energy of a single turn by
a molecular dynamics procedure, as implemented in
both AMBER [150] and X-PLOR [139]. An incorrect
starting conformation changed into approximately cor-
rect conformation, as seen in the refined X-ray structure.
It was shown that, in contrast to the original model, the
predicted turn conformation refined with the X-ray data
in fewer cycles, without any manual intervention, and
with better refinement statistics.

Zheng et al. [144] described a new method for loop
closure that started with all bonds scaled so that a random
starting confirmation fitted on the anchor regions. The
loop was then relaxed to its standard geometry. The
predictions were enhanced by taking into account the
protein environment of the loop. The method has been

combined with multiple copy sampling to increase its
efficiency by up to a factor of five [145°]. It has also
been demonstrated that the variability in the predicted
loop conformations can be used to estimate the accuracy
of the models. In further development, the technique has
been applied to model more than one loop at the same
time [151°]. As a result, more accurate predictions were
invariably obtained. The rms errors for 5-7 residue loops
ranged from 0.6-1.7 A for backbone atoms.

Srinivasan and Blundell [23] have described a collar
extension idea for modelling loops. This relies on an
equivalent loop from a homologue that differs by one
or two residues in length. The equivalent part is copied
from the template to the target and the remaining short
gap is modelled by the database search approach, as
described above [32].

Topham et al. [136] improved selection of the correct
loop from an ensemble of candidate loops that already
fit relatively well on the two anchor regions. This
was achieved using three-dimensional profiles; candidate
loops were ranked by a scoring function based on three-
dimensional profiles that evaluated the compatibility
between each residue in the target sequence and the
environment implied by the structure of a candidate
loop. The criteria included in the three-dimensional
profiles were main-chain conformation, solvent acces-
sibility, hydrogen bonding, disulphide bonding, and
cis-peptide conformation.

Fidelis et al. [138**] have compared database and
conformational search methods for loop modelling.
They show that little correlation exists between the
similarity in the anchor and loop regions of two
segments and that the database of segments is sparse
for segments longer than eight residues. The systematic
search procedure can generate almost all structures of
short segments in proteins and is thus the preferred
method for modelling loops.

A new type of method, based on the self-consistent
field approximation that was previously applied to
side-chain modelling [152¢¢], has been described by
Koehl and Delarue [153¢*]. The method uses a database
search scheme to generate possible main-chain fragments
for modelling loops [32] and a rotamer library to
define possible side-chain conformations [154]. It then
iteratively refines the probabilities that the backbone
and side chain of each residue correspond to database
fragment j and rotamer k, respectively. Each residue
experiences the average of all possible environments. The
energy function includes only van der Waals terms, but
can clearly be extended to include other terms, such
as hydrogen bonds and solvation. The method usually
converges to a single answer very close to one of the
template structures. The self-consistent field method
can be seen as the way to select one of the segments
with which the target sequence is aligned. In principle,
the method could be used to model whole structures.

Sudarsanam et al. [147*] have described a method for
modelling loops on a given framework. Of the order
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of 10000 loop conformations are generated for each
loop. Starting from the amino terminus of the loop,
conformations are generated by assigning randomly
selected pairs of @;1, ¥; for each dimer, using standard
geometry and frans peptide configuration. The predicted
loop is the conformation that maximally satisfies the loop
closure condition and does not have any atom-atom
overlaps. Additional filters, such as disulphide bonds, can
easily be imposed on the construction of the loops.

The conformational properties of tight two-residue
B-turns have been examined by analyzing 3899 examples
in 205 protein chains [155°] and by empirical energy
function calculations [156°]. It was shown that the
conformation of such turns is determined by the twist
of the B-sheet and a local electrostatic effect, and that
the conformation can be modelled well when the rest
of the protein and crystal water molecules are included
in the calculations [156*]. Borchert et al. [149] modelled
a seven-residue loop in a monomeric triosephosphate
isomerase fold using program ICM, a general tool for
conformational search in the dihedral angle space guided
by a detailed energy function [157**]. The predicted
loop had an rms of only 1.2A for the 28 main-chain
atoms. These successes are in agreement with the analysis
of Fidelis ef al. [138°*], who showed that loops shorter
than seven residues can often be modelled correctly. This
is probably the result of a relatively small number of loop
conformations consistent with given anchor regions.
Database search methods do not work well for loops
longer than eight residues because the database is not
likely to contain an example of a loop being modelled
and because the correlation between the similarity of the
anchor and loop regions is very weak [140], so that even
if the correct conformation were in the database, it could
not be easily identified. Possible reasons for failure of
conformational search methods to model loops longer
than eight residues include insufficient accuracy of the
energy function, inadequate sampling of the phase space,
and failure to include enough of the loop environment in
the optimization. Fortunately, few insertions in a family
of homologous proteins are longer than eight residues
[14,158,159].

Modelling of side chains

As for loops, side-chain conformation has been predicted
from similar structures, from proteins in general, and
from steric or energy considerations [31,83,98,99°,154,
160-169,170°,171,172,173*-176°,177,178,179°*,180°—
182*]. The geometry of disulphide bridges has been
modelled from disulphide bridges in protein structures in
general [183-187,188%] and from equivalent disulphide
bridges in related structures [79*]. For information
on modelling the stability and conformation of point
mutations by free energy perturbation simulations, the
reader is referred elsewhere [189-192].

Dunbrack and Karplus [169] have developed a back-
bone-dependent rotamer library for amino acid side
chains, using it to construct side-chain conformations
from main-chain coordinates. They found significant

correlations between side-chain dihedral angle proba-
bilities and backbone ®, W values. These correlations
go beyond the dependence of side-chain conformation
on the secondary structure [164]. This automated
method first places the side chains according to the
rotamer library, and then removes steric clashes by
energy minimization. It is also demonstrated that simple
arguments based on conformational analysis can account
for many features of the observed dependence of the
side-chain rotamers on the backbone [170°*].

Eisenmenger et al. [193] used program ICM [157**] to
model side chains. Each side chain was configured in the
environment of only the backbone atoms by a systematic
search procedure combined with extensive local energy
minimization of van der Waals, hydrogen-bond, tor-
sional, and tether terms. Tests using main-chain atoms or
both the main-chain and remaining side-chain atoms in
the energy evaluations established the dominance of the
main-chain contribution. The final model is obtained by
a full energy refinement of the structure.

Tanimura et al. [181*] predicted side-chain confor-
mations on a given backbone by a conformational
search procedure relying either on side-chain—side-chain
interactions or side-chain—main-chain interactions. In
agreement with [193], removal of side-chain—side-chain
interactions did not cause a large decrease in the
prediction accuracy. Even so, the model having only
side-chain—side-chain interactions still retained a signifi-
cant level of accuracy. These results suggest that the two
classes of interaction are consistent with each other and
work in harmony to stabilize native conformations [194].

Wilson et al. [171] randomly picked local sites of adjacent
side chains throughout the protein and evaluated all
combinations of side-chain rotamers within each site
using a molecular mechanics force field enhanced by
the inclusion of a solvation term. At each site, the
lowest energy combination of side chains is identified
and added onto the fixed backbone. The procedure is
repeated until side-chain conformations converge. The
robustness of the method is evaluated by perturbing the
backbone coordinates. The rms of predicted side chains
rose from 1.3 A in a test case with the correct backbone
to 2.7 A in one with <35% identity.

Vriend ef al. [99°] have introduced SCAN3D, a new
database system for integrated sequence—structure anal-
ysis. Site-dependent, side-chain rotamer distributions
are obtained by extracting short segments with a
given main-chain conformation from a database of
protein structures. These rotamer distributions are then
used in side-chain modelling. In a separate analysis,
a set of predictive rules was derived that relied on
the site-dependent rotamers and hydrogen-bonding
criterion to explain 85% of point mutations currently
available [173°].

Cregut et al. [174*] have tested three methods for
side-chain prediction. The methods included molecular
mechanics conformational search, the use of a rotamer
database, and a combination of these two methods. It was
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shown that the rotamer-based method is more efficient
and that energy minimization before rotamer selection
does not afford clearly improved predictions. It was also
demonstrated that implicit solvation terms improve the
predictions and that most errors can be identified by a
combination of evaluation criteria, including solvation
energy, rms deviations, ¥ angle distributions, and
hydrogen bonds.

Laughton [175¢*] has compared the local environment of
each residue whose side chain is to be predicted with a
database of local environments for the same residue type
constructed from an analysis of high-resolution protein
structures. Local environments are described in terms of
the residue type and location of neighbouring residues
that interact with the given side chain. The best few
matches are inputted into a Monte Carlo procedure,
which gives the final model by removing the steric
clashes in the structure. In further development, the
AMBER program has been used to explore a variety of
simulated-annealing protocols and modifications of the
united-atom force field for side-chain modelling [176¢].
In this work, the modelling problems are generated by
defining a percentage of side chains in a given X-ray
structure as undefined.

The use of the dead-end elimination theorem in
side-chain modelling (which was discussed previously
[167]) has been re-examined [168]. The original
theorem was meant to identify rotamers and pairs of
rotamers that could not be part of the global energy
minimum. This would allow a large reduction in
the search space, thus leading to a possibility of a
deterministic search for the global energy minimum. It
was shown that the dead-end elimination theorem was
not correct for rotamer pairs. Yet, a ‘fuzzy’ version of
the theorem was proposed that still reduced the size
of the search for the best conformations. It was used
to help in modelling side-chain conformations given
known backbone coordinates and a library of side-chain
rotamers.

Koehl and Delarue [152%*] have described a side-chain
modelling method based on a rotamer library and a given
backbone. It employs the self-consistent mean field ap-
proach. The method iteratively refines a conformational
matrix of each side chain in a protein such that its current
element i, j at each cycle gives the probability that
the corresponding side-chain i adopts the conformation
of its possible rotamer j. Each residue experiences the
average of all possible environments, weighted by their
respective probabilities. The final prediction corresponds
to the rotamers with the highest probabilities. Estimates
of the conformational entropy of side chains in the
folded proteins are also given.

Lee [179**] has improved an earlier side-chain modelling
method [177,178] by developing a new powerful
optimization technique based on the self-consistent
mean field approximation. Side-chains are built on
a fixed backbone. The energetics of the system are
described by Lennard—Jones and simple dihedral angle
terms; no electrostatic or hydrogen-bonding terms are

used. Side-chain dihedral angles are allowed to assume 33
different values. All possible conformations are initially
set to have the same probability. The optimization then
proceeds in the space of these probabilities, rather than
in conformational space. The energy of each state for
each dihedral angle is calculated as the mean field energy,
given the current probabilities for all the other possible
conformations. The probabilities are then recalculated
using the Boltzmann distribution. These two steps are
repeated many times at successively lower temperatures
until the convergence in energy is achieved. To speed
up the calculations, the mean field is not calculated
exhaustively, but by Monte Carlo sampling of possible
conformations. The method shares many features with
that of Koehl and Delarue [152°*], and they are both
related to an approach to threading [43]. The robustness,
speed, and size dependence of the new optimizer
compare favourably with an earlier simulated-annealing
method [178]. The method was used for calculating
both protein thermostability differences and side-chain
conformations. The calculated thermostability of the
hydrophobic core mutants of A repressor compared
very well with experimental data. Similarly, side-chain
conformation was predicted reliably; for example,
flavodoxin core side chains were modelled with an rms
error of 1A when the crystallographically determined
backbone of flavodoxin was used.

Although the solvation term is irrelevant for the
modelling of core side chains, it is important for the
modelling of exposed side chains [83,171,174%]. It has
also been demonstrated that treating hydrogen bonds
explicitly can significantly improve side-chain prediction
[169,173¢]. It appears that relatively fine sampling of the
dihedral angle space is necessary to model some side
chains; for example, Schrauber et al. [195] reported
that 5-30% of the side chains, depending on the
residue type, are substantially different (by >20°) from
common rotameric states in highly resolved structures.
Another point relevant for homology modelling is that
the best side-chain conformation depends relatively
strongly on the backbone conformation of the residue
[99°,169,181°,195]. For example, the preferred rotamers
can vary within the same secondary structure, with
the changes in the ®, W dihedral angles as small as
20° [169]. Because these changes are smaller than the
differences between closely related homologues, the
prediction of the side-chain conformation generally
cannot be uncoupled from backbone prediction. This
partly explains why conformation of equivalent side
chains in homologous structures is useful in side-chain
modelling [5]. This is consistent with the X-ray structure
of a variant of A repressor which reveals that the protein
accommodates the potentially disruptive residues with
shifts in its a-helical arrangement and with only limited
changes in side-chain orientations [196°].

Model evaluation

It is clearly necessary for a good model to have a
low energy according to a molecular mechanics force
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field, such as that of CHARMM [112]. Correspond-
ingly, stereochemical tests have been incorporated in
PROCHECK [197], a program that is based on the
analysis of known protein structures [198]. The local
criteria checked by PROCHECK include the distribution
of main-chain and side-chain dihedral angles, and the
geometry of bonds, angles, improper dihedral angles,
planes and chiral centres. The seminal work by Novotny
et al. [199,200] showed, however, that low molecular
mechanics energy does not ensure that the model is
correct. Thus, distributions of many spatial features have
been compiled from high-resolution protein structures,
and any large deviations from the most likely values
have been interpreted as strong indicators of errors
in the model. Such features include packing [201],
creation of a hydrophobic core [202], residue and atomic
solvent accessibilities [203—206,207¢], spatial distribution
of charged groups [208], distribution of atom—atom
distances [209], and main-chain hydrogen bonding
[197].

Another group of methods for testing three-dimensional
models, which implicitly takes into account many of the
criteria listed above, involves three-dimensional profiles
or threading. These methods evaluate the environment
of each residue in a model with respect to the
expected environment, as found in the high-resolution
X-ray structures. The programs implementing this
approach include 3DPROFILE [210], PROSAII [211,212],
THREADER [46], MATCHMAKER [45], and HARMONY
[213*]. In principle, an improvement in the accuracy of
a model is possible by incorporating the quality criteria
into a scoring function being optimized to derive the
model in the first place.

Recently, protein modellers were challenged to model
sequences without available three-dimensional struc-
tures and to submit them to the first ‘Meeting on
Critical Assessment of Techniques for Protein Structure
Prediction’ in Asilomar in December of 1994. At
the same time, the three-dimensional structures were
being determined by X-ray crystallography and NMR
methods. Because these structures were only released
at the meeting, it was possible to test the modelling
methods objectively. The evaluation of comparative
modelling can be summarized as follows [22¢]. In
general, the best comparative techniques can produce
models with good stereochemistry and overall structural
accuracy that is as high as the similarity between the
template and the actual target structures. The errors
can be divided into four categories: first, errors in
side-chain packing; second, distortions or shifts of a
region that is aligned correctly with the templates (e.g.
loops, helices and strands); third, distortions or shifts of
a region that does not have an equivalent segment in
any of the templates (e.g. inserted loops); and fourth,
distortions or shifts of a region that is aligned incorrectly
with the templates (e.g. loops and larger segments with
low sequence identity to the templates). The last three
of these errors are relatively infrequent when sequences
with >40% identity to the templates are modelled. For
example, in such a case, approximately 90% of the

main-chain atoms are likely to be modelled with an
rms error of ~1 A [22*]. Below 40% sequence identity,
misalignments and insertions in the target sequence
become the major problems. Insertions longer than
about eight residues cannot be modelled accurately
at this time, even when the alignment of the stem
regions delimiting the insertion is correct. Most of the
insertions shorter than eight residues also cannot be
modelled successfully, primarily because the alignment
of the inserted and neighbouring residues is frequently
incorrect. If the length of an insertion can be extended
enough to make the alignment of the delimiting stem
regions reliable (but not too much, so that less than
eight residues are inserted) the insertions can frequently
be modelled sucessfully [138°,156°,157**]. In general,
it can be expected that ~20% of the residues will
be misaligned, and consequently incorrectly modelled,
when the level of sequence identity between the target
and templates is 30% [73].

To put errors into perspective, the differences among
experimentally determined structures of the same pro-
tein can be compared. The 1A accuracy of main-chain
atom positions corresponds to X-ray structures defined
at a resolution of ~2.5A and with an R-factor of
~25% [214*] as well as to NMR structures determined
from 10 inter-proton distance restraints per residue
[215,216%]. Similarly, differences between the highly
refined X-ray and NMR structures of the same
protein also tend to be ~1A [215]. Changes in the
environment (e.g. crystal packing, solvent and ligands)
can also have a significant effect on the structure [217].
Overall, homology modelling based on templates with
>40% identity is almost as good, simply because the
homologues at this level of similarity are likely to be
as similar to each other as the structures for the same
protein determined by different experimental techniques
under different conditions. The caveat in modelling,
however, is that some regions, mainly loops and side
chains, have larger errors. Although such regions may
have an important function, many applications in biology
do not require high-resolution structures. For example,
some binding sites may be located with the aid of
low-resolution models [218].

We need a standardized, centralized, and comprehensive
suite of model tests in order to bench-mark existing
methods and to aid in the development of new
methods. Alignment as well as modelling of side chains,
loops, and whole structures should be tested in an
automated way. The first step in this direction is
the ‘Biotech Validation Suite for Protein Structures’
accessible at the World-Wide Web (WWW) address
http://www.embl-heidelberg.de:8400.

Conclusions

The existing comparative modelling techniques can be
used in an automated way and without any subjective
decisions, provided templates with at least 40% sequence
identity are known; no significant improvement of such
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models is achieved by subjective interventions. On
the other hand, for sequences with sequence identity
<40%, large errors in the alignment can sometimes
be prevented by examining and editing the alignment
manually. In general, models have good stereochemistry
and overall structural accuracy that is as high as the
similarity between the template and the actual structure
being predicted. As a result, the number of sequences
that can be modelled is an order of magnitude larger
than the number of experimentally determined protein
structures, and the accuracy of a large fraction of these
models is in many ways comparable to the accuracy of
low-resolution X-ray structures and medium-resolution
NMR structures. That is, >90% of main-chain atoms
can be modelled with an accuracy of ~1 A, provided a
template structure with at least 40% sequence identity
is available. The errors in different regions of the model
can be estimated by a variety of evaluation techniques.

Future improvements of comparative modelling should
aim to model proteins with lower similarities to known
structures, to increase the accuracy of the models, and
to make modelling fully automated. The improvements
are likely to include the simultaneous optimization of
side-chain and backbone conformations in side-chain
modelling, and simultaneous optimization of a loop and
its environment in loop modelling. At the same time,
better potential functions and possibly better optimizers
are needed. The potential function should guide the
model away from the templates towards the correct
structure. An addition of atomic- or residue-based
potentials of mean force to the homology-derived
scoring function, such as that of MODELLER [5], could
be one way of achieving this goal. To reduce the errors
in the model stemming from the alignment errors,
iterative changes in the alignment during the calculation
of the model, perhaps similar to the threading techniques
[45,46], are needed.

Even though comparative modelling needs significant
improvements, it is already a mature technique that
can be used to address many practical problems.
Some successful predictions include identification of
the heparin-binding site in the mouse mast cell
tryptases [219*], design of micromolar inhibitors of
the malarial cysteine protease [220], prediction and
conversion of substrate specificity of granzyme B [221],
and solution of a molecular replacement problem in
X-ray crystallography [222]. With the increase in the
number of protein sequences and in the fraction of
all folds that are known, comparative modelling will
become even more useful in the future.
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