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Thermodynamics and kinetics of protein folding

Andrej Sali, Eugene Shakhnovich, and Martin Karplus

ApsTrRACT. The number of all possible conformations of a polypeptide chain is
too large to be sampled exhaustively. Nevertheless, protein sequences do fold
into unique native states in seconds (Levinthal paradox). To determine how
the Levinthal paradox is resolved, we use a lattice Monte Carlo model in which
the global minimum (native state) is known. The necessary and sufficient con-
dition for folding in this model is that the native state be a pronounced global
minimum on the potential surface. This guarantees thermodynamic stability
of the native state at a temperature where the chain does not get trapped in
local minima. Folding starts by a rapid collapse from a random-coil state to
a random semi-compact globule. It then proceeds by a slow, rate-determining
search through the semi-compact states to find a transition state close to the
native state from which the chain folds rapidly to the native state. The ele-
ments of the folding mechanism that lead to the resolution of the Levinthal
paradox are the reduced number of conformations that need to be searched
in the semi-compact globule (~ 10'© versus ~ 10'® for the random coil) and
the existence of many (= 10%) transition states. The results have evolutionary
implications and suggest principles for the folding of real proteins.

1. Introduction

The mechanism of protein folding is not understood, despite many studies de-
voted to this subject [1-4]. The essential question is how a polypeptide chain is
able to fold rapidly, in ms to s, to the stable native state in spite of the very large
number of possible conformations that exist for the chain (Levinthal paradox) [5].
The mechanisms of protein folding are proposed on the basis of conceptual dis-
cussions [6-9], simulations [10-14], and theory [15-17]. Theories of protein folding
were recently reviewed in refs. [1,3,4,18-27].

While the dynamics of the native state can be characterized relatively well by
molecular dynamics simulations [28], much less is known about the potential surface
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governing the non-native portion of conformation space that is involved in protein
folding. It includes a wide range of structures which may differ by tens of angstroms.
Concomitantly, instead of the time scale of picoseconds to nanoseconds that is
required for exploring the neighborhood of the native state, the characteristic times
corresponding to the motions in the full conformation space are in the nanosecond
to second range. The existence of such a separation of time and length scales with
fast local motions and slow large-scale motions makes it possible to introduce two
simplifying concepts, which can serve as a basis for theoretical work on protein
folding. The first simplification is an effective potential or potential of mean force
and the second is a discretized description of the polypeptide chain. Both of these
concepts are based on the idea of “preaveraging” the small-scale motions to obtain
a “coarse grained” model, which can treat a molecule on the time and length
scales at which protein folding occurs. This leads to simplified models of proteins
that include only a subset of atoms [29]. and to discretized conformational space of
various lattice models [30-32] that employ Monte Carlo (MC) dynamics to simulate
the kinetics.

Recently, lattice models have been used to address a variety of aspects of the
protein folding problem [9, 10,12, 33—44].

In one particularly simple class of lattice models, the protein chain is repre-
sented as a string of beads on the 2D square lattice [32,45] or 3D cubic lattice [16].
These models are generally not meant to simulate folding of any particular real
amino acid sequence. However, the lattice models do capture the most essential
features of proteins, including their heteropolymeric nature and the interactions be-
tween sequentially local and distant amino acid residues. Thus, the simple lattice
models may be suitable for elucidating overall features of the folding process such
as the main stages of folding. The advantages of simple lattice models are that
simulations of many sequences are possible and that frequently the global energy
minimum can be determined by enumeration.

As the model does not include side chains, the “native” state in the lattice
model corresponds to a compact globule with the native fold of a real protein.
Such structured globules may correspond to the experimentally observed molten
globules, which (although expanded relative to the native state) preserve much of
the backbone structure, and whose side chains are free to undergo dihedral angle
transitions [46-49]. Molten globules appear to be a late stage in the folding of some
proteins and their formation involves resolution of the Levinthal paradox [47,49,50].
For further discussion of the suitability of lattice models to describe real proteins
and of MC to represent molecular dynamics see refs. [4,37,51,52]. The purpose of
this study is to examine some attributes of the kinetics of protein folding by the use
of simple lattice models. For global optimization techniques, the reader is referred
to a review paper by Pardalos and coworkers [53].

In this review, we summarize our results obtained by the use of MC simulations
of 27-mer heteropolymers on a cubic lattice. We identified the features of the folding
sequences that allow them to fold rapidly into a unique and stable native state [51]
and the mechanism by which they achieve this state [12,54].
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2. Methods

We use a simplified model that consists of a 27-bead self-avoiding chain on a
cubic lattice [10] (Figures. 1, 2). The native (lowest-energy) state can be determined
exactly [10] and a survey of the folding behavior of many sequences is possible [51].
In addition, the full phase space density of the system (Figure 6) [12,54] can be
obtained and the thermodynamic properties can be calculated as a function of the
folding “reaction coordinate” (Figure 7) [12,54]. The model is sufficiently complex
that the Levinthal paradox exists: i.e., some sequences find the native state in
only = 107 MC (MC) steps even though there are ~ 10'¢ possible conformations
(Figure 6b).
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FIGURE 1. Lattice model of protein folding. a, An example of a com-
pact self-avoiding structure of a chain of 27 monomers (filled numbered
circles) with 28 contacts (thin lines). The structure shown is the native
state of the folding random sequence 43 used as an example in this pa-
per. The total energy of a conformation is the sum of contact energies:
E = 3. .; A(ri,75)Bij, where r; are the positions of monomers i, Bi;
are the contact energies for pairs of monomers i, j, and A(r;,r;) is 1
if monomers ¢ and j are in contact and is 0 otherwise; two monomers
are in contact if they are not successive in sequence and are at unit
distance from each other. The values of the B;; are obtained from a
Gaussian distribution with a mean B, and standard deviation og. This
particular model for B;; corresponds to a heteropolymer with a random
sequence of monomers of many different types whose heterogeneity is
measured by op [15]. The parameter B, is an overall attractive term
that emulates the hydrophobic effect observed in globular proteins. A
particular sequence is defined by the matrix of contact energies B;;. In
terms of their magnitude and standard deviation, the B;;’s correspond
to the contact energies in real proteins [12], such as those described by
Miyazawa and Jernigan [55]. The native conformation is the compact
self-avoiding chain with the lowest energy. b, The three types of possible
MC moves (1-3). Situation 4 shows a conformation where no move of
the central monomer is possible. The current conformation is shown in
thick lines. Possible new conformations are shown in dashed lines. A
move is possible if all new positions are unoccupied. The monomers that
are being moved are shown in dark gray.
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FIGURE 2. Typical trajectory for a folding random sequence (7' = 1.3).
Energy, € (in units of kgT'); the number of contacts, N.; fraction of
the number of contacts in common with the native state, Q.. The
instantaneous values of these quantities are plotted every 10 MC steps in
the first part of the trajectory (< 10000 MC steps) and every 20000 steps
in the subsequent part. The folding trajectory starts with a random-coil
conformation and consists of local MC moves described in Figure 1b [51];
one MC step corresponds to a move and a test of its acceptance with the
Metropolis criterion [56]. In the first part of the trajectory, = 50% of the
MC moves are accepted, while only 5-10% of the moves are successful
in the subsequent part of the simulation.

3. Results and Discussion

3.1. A pronounced energy minimum is necessary and sufficient for
rapid folding to a stable native state. In the first part of the analysis, 200
sequences with random interactions were generated and subjected to MC folding
simulations (Figure 3) [51]. Of these, 30 chains found the known native state in
a short time. These chains correspond to actual protein sequences in the present
model; the remaining sequences, which do not fold, do not correspond to protein
sequences and serve as controls. The 30 folding sequences were analyzed and com-
pared with the non-folding sequences. Several suggested mechanisms for resolving
the Levinthal paradox do not apply to the present model; i.e., the features assumed
to be responsible for rapid folding in these mechanisms are found to be the same for
the folding and non-folding sequences. These include a high number of short versus
long range contacts in the native state [8], a high content of secondary structure
in the native state [7], a strong correlation between the native contact map and
the interaction parameters [30], and the existence of a high number of low energy
states with near-native conformations [10]. Moreover, there is no repetitive trap-
ping of the non-folding sequences in the same local minimum, so that the native
state cannot be a metastable state [57]. The only significant difference between
the folding and non-folding sequences is that the native state is at a pronounced
energy minimum (Figure 3). This is the necessary and sufficient condition for a
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sequence to fold rapidly in the present model (Figure 4). It is necessary because
no sequences without a pronounced energy minimum fold to the native state and
it is sufficient because all sequences with such a minimum do fold.

An essential element of the study was to examine a large number of sequences
and separate those that fold from those that do not. Consequently, a temperature at
the neighbourhood of T}, the mid-point of the folding transition, was used to speed
up the reaction and save computer time (Figure 3). Optimization of the folding rate
was important to verify that certain sequences did not fold. If folding to the native
state were always possible under the simulation conditions, there would not have
been any nonfolding sequences and our computer experiment would have failed.
Figure 5 shows the temperature dependence of the folding rate over a range where
0 to 50% of the polymers are in the native state at equilibrium. Linear folding
kinetics is observed throughout the temperature range; this justifies the use of a
relatively high temperature for the folding experiments (Figure 3).

The reason for the correlation between folding and stability is that significant
portions of the potential energy surface of the model system are “rugged”. In
particular, the random collapsed state that is sampled in the three-stage random
search (3SRS) mechanism (see below) is a multiminimum surface on which the
search for the native state requires surmounting many intervening barriers. This
can be done on a reasonable time scale only if the folding temperature is sufficiently
high for there to be a significant probability of overcoming such barriers. However,
at a high temperature, the majority of the random sequences have a ground state
that is not stable; in other words, the Boltzmann probability of being in any of the
excited states is too large unless a sizeable energy gap separates the native state
from the excited states. As the temperature at which the folding simulations are
done is near the midpoint of the thermodynamic transition temperature between the
native and denatured states, the simulation temperature is high enough to overcome
the barriers only for the strongly folding sequences with a particularly stable ground
state . The transition temperature for the nonfolding sequences is so low that the
27-mer gets trapped in a metastable well. This qualitative argument only explains
why the pronounced energy minimum is necessary for folding. The explanation
for why it is also sufficient is provided by the 3SRS mechanism discussed below.
It is likely that the necessity of the energy gap condition is general for reasonable
lattice models and for real proteins, while its sufficiency may be of more limited
applicability.

The importance of the temperature in the protein folding reaction and the re-
lation between an energy gap and folding, which are clearly demonstrated by the
27-mer simulations [12,51], have been discussed previously. Based on statistical
mechanical arguments and spin glass theory, Bryngelson and Wolynes [17, 58] sug-
gested that there are two temperatures that need to be considered in determining
the folding properties of a sequence. One is the folding temperature and the other
is the glass transition temperature. They suggested that the glass transition tem-
perature corresponds to the temperature below which the chain is frozen into a
random low energy conformation because it does not have enough energy to over-
come the barriers separating such conformations. On this basis, they concluded
that the temperature at which the sequence folds must be higher than the glass
transition temperature. Further, it was shown that random sequences do not satisfy
this condition and so would be likely to be trapped in metastable states [17, 58).
Bryngelson and Wolynes introduced specific biases toward the native state to make
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FIGURE 3. Energy spectra for 10 folding and non-folding random se-
quences. The energies of the 400 lowest compact self-avoiding confor-
mations are shown. The native state corresponds to the bottom bar.
The numbers below the spectra show the foldicities of the correspond-
ing sequences; if no number is given, foldicity is 0. A sequence folds in a
given MC simulation if it finds the native conformation within 50 - 10°
MC steps. Foldicity of a given sequence is defined as the fraction of
10 MC runs that started with a random conformation and reached the
native conformation under a given set of conditions. A sequence is a
folding sequence if the native conformation is structurally unique and
foldicity is high (> 0.4) under conditions where the native structure is
thermodynamically stable. A sequence is a non-folding sequence if the
foldicity is 0.0. There are 24 intermediate sequences that we do not
consider here. Optimal values for parameters B, (—2) and og (1) were
determined by exhaustive sampling of foldicity as a function of these two
parameters [51]. Each sequence is studied at a temperature, Tx, slightly
above the midpoint of the folding transition [51]. An order parameter
that describes a transition of a chain from a degenerate state with many
backbone conformations to a state with few, possibly only one, back-
bone conformation is X(T) = 1 — M p?, where p; = exp(—ﬁ;?),fz
and Z = Zf’f exp(—527). kn is the Boltzmann constant set to 1 in this
study, p; is the Boltzmann probability for a system to be in state i, M is
the number of all compact self-avoiding states, and Z is the configura-
tion partition function of the chain. T% is defined such that X (7%) = 0.8
where the native state has a weight almost invariably larger than 0.2
relative to other compact-self avoiding conformations.

folding possible. The existence of such biases on the entire potential surface corre-
sponds to the principle of “minimum frustration” [17,58], which is closely related to
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FIGURE 4. Discrimination between strongly folding (circles) and non-
folding sequences (dots). Aejp is the energy gap between the native state
and the second most stable compact self-avoiding conformation. T is
the temperature at which the MC simulations are performed. The larger
are A€o and T, the more pronounced the global energy minimum is.
The continuous line separates the two groups of sequences by minimizing
the number of the folding and non-folding sequences in the non-folding
and folding parts of the plot, respectively. The dashed line indicates the
critical temperature, defined as the temperature below which almost no
folding is observed [51]. T is determined for each sequence separately
such that the native state had a high probability to be reasonably stable
(see Figure 3) [51].

the “consistency” or “harmony” principle proposed by G& and Abe [59]. One way
of introducing the bias is by the use of associative-memory Hamiltonians [60-64]
which have been employed successfully in a variety of applications; e.g., it was
shown that the ratio between the folding and glass transition temperatures, whose
maximization was assumed to lead to faster folding, is proportional to the ratio of
the energetic separation of the native state from the denatured states and the range
of energies corresponding to the denatured states [60].

Simulations using other simple lattice models confirmed that the pronounced
global energy minimum is associated with rapid folding [37,39,65]. An additional
confirmation came from the success of designing stable folding sequences by mini-
mizing the energy of a given native state [34,65-67].

3.2. Random sequences fold by the three-stage random search mech-
anism. The insights concerning the role of the temperature and the energy gap
provided by the 27-mer computer experiment [51] and theoretical analyses [17] do
not, in themselves, provide the specific mechanism by which a model resolves the
Levinthal paradox. For this purpose, further examination of the results for the
strongly folding sequences in the 27-mer was required [12, 54].

To explore the mechanism of folding, the density of states was determined
as a function of the energy and the reaction coordinate (the number of native
contacts) (Figure 6); a related reaction coordinate, the number of residues in the
native conformation, has been used previously [17]. If there were a nucleus of a
small number of native contacts that would lead rapidly and with high probability
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FIGURE 5. Kinetics of conversion of the denatured state into the native
state for sequence 43 as a function of temperature. Kinetics of conversion
of the denatured state into the native state for sequence 43 as a function
of temperature. For each temperature, the probability, Cn, that the
native state is reached in a given number of MC steps is estimated
from 100 folding trials. The lines are linear least-squares fits to the
points determined at the temperature as indicated on the plot. It can
be seen that the results satisfy the simple unimolecular rate equation
dCpn/ dt = kCp, where k is the rate constant, Cp is the probability of
being in the denatured state. The line at T' = 1.0 is linear in the whole
time range explored (up to 400 - 10° MC steps where Cn ~ 1).

to the native state, the fraction of native contacts would not be a good reaction
coordinate; instead, the fraction of the contacts present in the nucleus should be
used. However, a folding nucleus is not present in the model, confirming that the
fraction of native contacts is a suitable reaction coordinate. From the density of
states, the mean energy, entropy, and free energy for a given temperature were
calculated (Figure 7). Above the critical temperature (7, = 1), the energy and
entropy decrease smoothly as the chain approaches the native state. The free energy
has a maximum corresponding to the transition region that separates the denatured
and native states. This barrier, which makes the reaction a cooperative transition,
is dominated by the entropic contribution, as can be seen from the temperature
dependence of the free energy. Below the critical temperature, the reaction profile
corresponding to the free energy becomes rugged [15,17] and folding is much slower
because the chain is likely to be trapped in one of the many local minima.
Analyses of individual trajectories for both strongly folding and non-folding
sequences, as well as the calculated density of states and reaction profiles [12,54],
demonstrated that the sequences in the present model fold according to the three-
stage random search (3SRS) mechanism at temperatures above 1.0 (Figure 8). The
time history of the folding process (Figure 1b) shows that there is a rapid collapse
in ~ 10* MC steps to a semi-compact random globule; i.e., the number of contacts
increases, the energy decreases, while the fraction of native contacts remains below
0.3. In this way, the total of ~ 10'® random-coil conformations is effectively reduced
to =~ 10'° random semi-compact globule states. The fast collapse results from a
large energy gradient (Figure 1b) and the presence of many empty lattice points.
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FIGURE 6. Density of states for a folding random sequence, as ob-
tained from a long MC simulation. a, The logarithm of the average
occupancy of the (Qo,€) bins, (¢(Qo,€)), at T = 1.3. Each bin spans
1/28 @, units and 1 energy unit. The occupancy of a bin is the number
of MC steps that remain or result in any of the conformations corre-
sponding to the bin. The average is calculated from 20 independent
MC sampling simulations of 50 - 10° steps each [12,54]. The bro-
ken line indicates a typical folding pathway. b, The logarithm of the
density of states, w(Q,,€). The density of states is calculated from
((Qo,€)) by the use of @l = Zw@ed L
where €, is the energy of the native state and kp is the Boltzmann
constant set to 1; because w(Q, = 1,€ = ¢,) = 1, the density of states
is w(Qo, €) = "((%(&Tf))}l cxp(—i’ﬂ%f). The calculation is accurate because
thermodynamic equilibrium at the present Q,, € resolution is achieved,
as demonstrated by a small fractional error in (v(Q,,€)) (less than 10%
in the populated parts of the phase space). The summation of w(Q,, €)
over all QQ, and e results in ~ 1.1 - 10'® self-avoiding chains; this is
in good agreement with the extrapolation of the exact enumerations for
shorter chains: v*~" /12 = 2.2.10'® where L is the number of monomers,
v = 4.68 is the average number of monomer states, and division by 12
corrects for symmetry [68]. Semi-compact states are defined as the states
with energy less than —45kpT'; summation over the appropriate region
of w(Qo,€) yields = 10'% such states. The transition states correspond
to all the states with 0.8 < Q, < 1; there are = 10® such states. ¢, The
average occupancy of the bins at a low T' (T = 0.8) as calculated from
w(Qo,€). The line shows the rapid collapse of a random coil chain into
a random semi-compact frozen conformation. d, The calculated average
occupancy of the bins at a high T (T' = 2.0). The line shows a rapid
collapse of the random coil chain into a region consisting of many inter-
converting semi-compact random states; the ground state is no longer
stable so the chain spends most of its time in the entropically favored
denatured states. In contrast, at T = 1.0, the native state occurs for
~ 40% of the time while still being kinetically accessible.
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In the second stage, which is rate limiting, the chain searches for one of the ~ 103
transition states. The transition region consists of all states from which the chain
folds rapidly to the native state. The transition states are structurally similar to
the native state, with 23—26 (80-95%) of the native contacts. Generally, the mean
" first passage time, 7, for finding any of the n states among the total of NV states
by a random search which explores r states per unit of time is N/(n x r). For the
present model, 7 = 101%/(10% x 1) = 107, identical to the observed time scale. This
indicates that the rate limiting stage in folding consists of a random search for a
transition state in the semi-compact part of the phase space. In the third stage,
the chain rapidly (within ~ 10° MC steps) attains the native conformation from
any one of the transition states. The relationship of each of the three stages in the
3SRS-mechanism to other mechanisms is discussed in ref. [4].

The second, rate-limiting stage is “random” in the sense that, over many tra-
jectories, the microscopic states are occupied according to their Boltzmann proba-
bilities and that there are many different microscopic states with comparable Boltz-
mann probabilities at the random-coil, random globule, and transition-state stages
of folding. There is only a small difference between the folding and random non-
folding sequences in the way they explore the phase space at the same absolute
temperature. That is, above the glass transition temperature, the folding sequences
tend to find their native states no more than an order of magnitude faster than the
non-folding sequences [39, 51, 54]. However, in the neighbourhood of T},, the mid-
point of the folding transition, the non-folding sequences fold much slower. This is
clearly different from the funnel hypothesis of protein folding which assumes that
folding sequences fold because they have a single large folding funnel leading to the
native conformation and that non-folding sequences do not fold because they have
multiple pathways leading to several conformations [11].

The pronounced energy minimum is the necessary condition for the folding of
a 27-mer on a lattice because it guarantees that the native state is stable above the
critical temperature, where the rearrangements required in the rate limiting stage
are energetically possible. It is also a sufficient condition because a random search
of compact globules with random structures can rapidly find a transition state that
folds to the stable native state in a short time. While a non-folding sequence may
also fold slowly to its native state above the critical temperature, it would not be
stable and, therefore, could not correspond to a real protein.

Surfaces can be constructed for which resolution of the Levinthal paradox is
trivial (e.g., a smooth descent to an energy minimum [59], or only local interactions
stabilizing the native state [71], as in the helix-coil transition). However, this does
not obviate the fact that the large size of the configuration space is a necessary
condition for a paradox to exist. The 27-mer model satisfies this condition with
10'® configurations, while short oligomers that have been extensively studied on
a two-dimensional square lattice [14, 37, 38,45] may not; for example, in ref. [45],
simulations involving more than 10° MC steps were used to fold a 13-mer on a
square lattice that has only ~ 4-10* conformers. As was pointed out previously, the
shape of the configuration space, as well as the number of conformers, is important
[11,51,71]. The landscape of the 27-mer is clearly sufficiently complex to have a
Levinthal paradox; otherwise all sequences would have folded rapidly to the stable
native state.

The size of the search for the native state is greatly reduced when the chain
is semi-compact as it is in real proteins [69]. Nevertheless, in the 27-mer model
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FIGURE 7. Reaction profiles as a function of the reaction coordi-
nate for the folding random sequence at 0.6 < T < 1.5. a, Energy,
E. b, Entropy, S. ¢, Free energy, F. The transition state lies be-
tween the two vertical lines at 0.83 < @, < 0.96. Profiles are cal-
culated in temperature intervals of 0.1, using the partition function
Z(Qo,T) = X, w(Qo,€) exp (—¢/kT). BE(Qo,T) = ¥, w(Qore) pe €,
pe = exp(—¢/kpT)[Z(Q.,T), F(Qo,T) = —kpTInZ(Q,,T), and
S(QD!T) = [E(QOIT) - F(QD: T]]/T

as in real proteins, a random search of a collapsed globule cannot find the native
state in the observed time. It is the existence of a transition region, consisting
of a large number of states, that reduces the search time to realistic values when
combined with the search of the random compact globule. Extrapolation of the
folding time to real proteins suggests that the 3SRS-mechanism could be effective
for small proteins (Figure 8). However, the mechanism breaks down for long chains
because the folding time is expected to increase exponentially with chain length;
i.e., the number of semi-compact states increases faster than the number of the
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FIGURE 8. Three-stage random search mechanism of folding for the
present model (see text). The numbers of the states were obtained from
Figure 6. The relative rates are obtained from 100 folding simulations
(Figure 2). The empty rectangle indicates the energy of the native state
of a non-folding sequence; in the non-folding sequence, the ground state
would not be populated at a temperature sufficiently high to avoid being
trapped as in Figure 6¢c. The other states of a non-folding sequence
appear at essentially the same positions as the corresponding states
of a folding sequence. It can be estimated that a real protein of 80
residues has 2.577° = 10%? possible mainchain conformations of which
1.7™ =~ 10'® are semi-compact [69]. The number of the transition states
can be extrapolated from a 27-mer as follows. In a 27-mer, 10% out of
the 10'° semi-compact states are transition states; thus, in an 80-residue
protein, approximately 10 out of the 10'® semi-compact states are likely
to be transition states. According to a molecular dynamics simulation
of native hydrated myoglobin at 300 K [70], there are 52 mainchain
dihedral angle changes per 153 residues per 100 ps or 3 transitions per
residue in 1 ns; conformational transitions in the semi-compact state
are likely to be faster. Use of these numbers for an 80 residue protein
that folds by the three-stage mechanism yields a rate determining step
of 10'? transitions which would correspond to a folding time to a molten
globule state of about 3 sec. This is close to the time scale observed in
real proteins.

transition states. Thus, a modification of the present mechanism is required for
larger proteins.

It is likely that proteins existing early in evolution were small enough to fold
according to the 3SRS-mechanism [72]. Since the pre-biotic and early biotic en-
vironment was hot, unusually thermostable proteins were required, such as those
found in the most primitive bacteria that live at temperatures as high as 105° [73]. If
s0, the stability condition required a native state that is a very low energy minimum
for which the folding problem was solved simultaneously. As evolution progressed,
longer proteins evolved. These proteins had to fold on the same time scale. One
way of achieving this is by evolving proteins with sequences that have a larger differ-
ence between the native and non-native contact energies than the random folding
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sequences of the present model. Such sequences would have an even more pro-
nounced global minimum in their potential surfaces, in line with the “consistency
principle” [59] and the “principle of minimal frustration” [58]. It is also in accord
with the existence of a nucleus for folding [8], or the early appearance of secondary
structural elements [7, 74], neither of which are found in the folding sequences of
the present model. As a result, the collapse would not result in random semi-
compact globules and the very favorable native contacts would lead more directly
to a native-like molten globule state; i.e., the folding pathway in Figure 6a would
approximate a straight line from the random-coil to the “native state”. Such a
mechanism has been observed in folding simulations of long chains with highly sta-
ble native states [13,33,75]. Actual proteins could use an intermediate mechanism
that might vary with the external conditions.

The results of this study may have implications for the prediction of the struc-
ture of a protein from its amino acid sequence. The success of the 3SRS-mechanism
in finding the pronounced global minimum on a potential surface suggests, at least
for small proteins, that the bottleneck in structure prediction may be the derivation
of a suitable potential function rather than the design of folding algorithms.
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