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Comparative protein structure modeling as an optimization problem’
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Abstract

Comparative or homology protein modeling uses experimentally determined protein structures to predict the conformation of
another protein with a similar amino acid sequence. This technique can produce useful models for about an order of magnitude
more protein sequences than there have been structures determined by experiment. Here, we review our approach to compara-
tive protein modeling. In this approach, the three-dimensional model is calculated by satisfying spatial restraints extracted from
an alignment of the sequence to be modeled with related known structures. We examine the types of errors in the resulting
models and discuss some of the potential advantages of formulating comparative modeling as an optimization problem. © 1997

Elsevier Science B.V.
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1. Introduction

In a few years, the genome projects will have pro-
vided us with amino acid sequences of approximately
500000 proteins. The full potential of the genome
projects will only be realized once we can assign,
understand, and manipulate the function of these
new proteins. Such control of protein function gener-
ally requires knowledge of protein three-dimensional
(3D) structure. Unfortunately, experimental methods
for protein structure determination, such as X-ray
crystallography and NMR spectroscopy, are time con-
suming and not successful with all proteins; conse-
quently, 3D structures have been determined for
only a tiny fraction of proteins for which the amino
acid sequence is known. In the absence of a high-
resolution protein structure determined by X-ray
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crystallography or NMR spectroscopy, a useful 3D
model of a given sequence can often be calculated
by comparative modeling.

Comparative or homology protein modeling uses
experimentally determined protein structures (tem-
plates) to predict the conformation of another protein
with a similar amino acid sequence (target) [1-6].
This is possible because a small change in the
sequence usually results in a small change in the 3D
structure [7]. All comparative modeling methods
begin with an alignment between the target and tem-
plates. The main difference between the different
comparative modeling methods is in how the 3D
model is calculated from a given alignment. The old-
est and still the most widely used method is modeling
by rigid body assembly [3]. The method constructs the
model from a few core regions, loops and side-chains,
which are obtained from dissected related structures.
This assembly involves fitting the rigid bodies on the
framework, which is defined as the average of the C,,
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atoms in the conserved regions of the fold. Another
family of methods, modeling by segment matching,
relies on approximate positions of conserved atoms
from the templates to calculate the coordinates of
other atoms [8]. This is achieved by the use of a data-
base of short segments of protein structure, energy or
geometry rules, or some combination of these criteria.
The third group of methods, modeling by satisfaction
of spatial restraints, satisfies spatial restraints obtained
from the alignment of the target sequence with homo-
logous templates of known structure [9,10]. As this
restraint-based modeling can use many different types
of information about the target sequence, it is perhaps
the most promising of all comparative modeling
techniques.

A recent version of the Protein Information
Resource database of protein sequences (PIR 45) con-
tained 134 896 entries on 30 August 1995 [11]. In
contrast, the Brookhaven Protein Databank of experi-
mentally determined protein structures contained only
3836 entries on 22 September 1995 [12]. Since about
one-third of known sequences appear to be related to
at least one known structure [13], the number of
sequences that can be modeled is an order of magni-
tude larger than the number of experimentally deter-
mined protein structures. Furthermore, the usefulness
of comparative modeling is steadily increasing
because genome projects are producing more
sequences and because novel protein folds are being
determined experimentally, Thus, comparative mod-
eling will be an increasingly important tool for biol-
ogists who seek to understand and control normal and
disease-related processes in living organisms. Typical
applications include the formulation and testing of
hypotheses about ligand binding sites [14,15], sub-
strate specificity [16], and drug design [17]; it can
also provide starting models in X-ray crystallography
[18] and NMR spectroscopy [19].

In the subsequent sections, we first outline our
approach to comparative protein structure modeling,
which is implemented in the computer program
MODELLER (Section 2). We then summarize the errors
in the models derived by the current version of
MODELLER, version 3 (Section 3). Finally, we outline
the tools for defining and optimizing objective functions
in MODELLER (Section 4) and discuss the potential
advantages of formulating comparative modeling as
an optimization problem (Section 5).

2. Comparative protein modeling by satisfaction of
spatial restraints

We developed an automated approach to com-
parative protein modeling that is based on satisfaction
of spatial restraints [9,20-24] (Fig. 1). It is implemen-
ted in the computer program MODELLER which is
freely available to academic researchers via World
Wide Web at URL http://guitar.rockefeller.edu.
Graphical interfaces to MODELLER are provided
by QUANTA and INSIGHTII (MSI, San Diego, CA;
e-mail: blp@biosym.com).

The comparative modeling procedure begins with
an alignment of the target sequence with related
known 3D structures. The output, obtained without
any user intervention, is a 3D model for the target
sequence containing all main-chain and side-chain
non-hydrogen atoms. In the first phase of the model-
ing process, many distance and dihedral angle
restraints on the target sequence are derived from its
alignment with template 3D structures (Fig. 2). The
form of these restraints was obtained from the statis-
tical analysis of the relationships between homolo-
gous structures. This analysis relied on a database of
105 family alignments that include 416 proteins with
known 3D structure [22]. By scanning the database,
tables quantifying various correlations were obtained,
such as the correlations between two equivalent C,—
C, distances, or between equivalent main-chain
dihedral angles from two related proteins [9]. These
relationships were expressed as conditional proba-
bility density functions (PDFs) and can be used
directly as spatial restraints. For example, proba-
bilities for different values of the main-chain dihedral
angles are calculated from the type of residue consid-
ered, from main-chain conformation of an equivalent
residue, and from sequence similarity between the two
proteins. Another example is the PDF for a certain
C,-C, distance given equivalent distances in two
related protein structures (Fig. 2). An important fea-
ture of the method is that the forms of spatial restraints
are obtained empirically, from a database of protein
structure alignments. Next, the spatial restraints and
CHARMM energy terms enforcing proper stereo-
chemistry [25] are combined into an objective func-
tion. Finally, the model is obtained by optimizing the
objective function in Cartesian space. The optimiza-
tion is carried out by the use of the variable target
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Fig. 1. Comparative protein modeling by satisfaction of spatial restraints. First, the sequence to be modeled (target) is aligned with the known
3D structures (templates). Second, a large number of restraints (broken lines) on distances and dihedral angles in the target sequence are
extracted from the alignment. Third, the 3D model is obtained by satisfying all the restraints as well as possible.
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Fig. 2. Sample spatial restraint. A restraint on a given C,—C,, dis-
tance, d, is expressed as a conditional probability density function
that depends on two other equivalent distances (d'=17.0 and
d"=23.5): pldid'.d"). The restraint (continuous line) is obtained
by least-squares fitting a sum of two Gaussian functions to the
histogram, which in turn is derived from the database of alignments
of protein structures. In practice, more complicated restraints are
used that depend on additional information, such as similarity
between the proteins, solvent accessibility, and distance from a
gap in the alignment.

function method [26] employing methods of conju-
gate gradients and molecular dynamics with simulated
annealing [27] (Fig. 3). Several slightly different
models can be calculated by varying the initial struc-
ture and the variability among these models can be
used to estimate the errors in the corresponding
regions of the fold.

3. Errors in homology-derived protein models

In order to facilitate the improvements of com-
parative modeling by satisfaction of spatial restraints,
bona fide predictions of three proteins were made and
evaluated when the X-ray structures became available
[24]. These three sequences span a range of difficulty
from easy (based on 77% sequence identity with tem-
plates), and medium (41% sequence identity), to dif-
ficult (33% sequence identity).

The three models have good stereochemistry and
overall structural accuracy that is as high as the
similarity between the template and the actual target
structures [24]. The errors that did occur can be
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Fig. 3. Optimization of the objective function. This (curve) starts with a random or distorted template structure. The iteration number is
indicated below each sample structure. The first 1800 iterations correspond to the variable target function method [26] relying on the conjugate
gradients technique. This approach first satisfies sequentially local restraints and slowly introduces longer range restraints until the complete
objective function is optimized. In the remaining iterations, molecular dynamics with simulated annealing is used to refine the model [27]. CPU
time needed to generate one model is about 20 min for a 250 residue protein on a medium-sized workstation.

divided into four categories: (1) errors in side-chain
packing (Fig. 4); (2) distortions or shifts of a region
that is aligned correctly with the templates (Fig. 5);
(3) distortions or shifts of a region that does not have
an equivalent segment in any of the templates (Fig. 6);
(4) distortions or shifts of a region that is aligned
incorrectly with the templates (Fig. 7).

Errors (2)—(4) are relatively infrequent when
sequences with more than 40% identity to the tem-
plates are modeled. For example, in such a case,
approximately 90% of the main-chain atoms are likely
to be modeled with an RMS error of about 1 A. In this

s

Fig. 4. Errors in side-chain packing. The Trp 109 residue in the
crystallographically determined structure of mouse cellular retinoic
acid binding protein I [28] (thin line) is compared with its model
(thick line), and with the template mouse adipocyte lipid-binding
protein (the Brookhaven code 1LIF) (broken line).

range of sequence similarity, the alignment is mostly
straightforward to construct, there are not many gaps,
and structural differences between the proteins are
usually limited to loops and side-chains. When
sequence identity is between 30 and 40%, the struc-
tural differences become larger, and the gaps in the
alignment are more frequent and longer. As a result,
the main-chain RMS error rises to about 1.5 A for
about 80% of residues. The rest of the residues are
modeled with large errors because the methods gen-
erally cannot model structural distortions and rigid
body shifts, and cannot recover from misalignments.
Below 40% sequence identity, misalignments and
insertions in the target sequence become the major

Al3 Al3

Fig. 5. Distortions and shifts in correctly aligned regions. A region
in the crystallographically determined structure of mouse cellular
retinoic acid binding protein I [28] (thin line) is compared with its
model (thick line), and with the template fatty acid binding protein
(the Brookhaven code 2ZHMB) (broken line).
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Fig. 6. Errors in unaligned regions. Stereo plot of the C,, trace of the 112127 loop is shown for the X-ray structure of human eosinophil
neurotoxin [29] (continuous thin line), its model (thick line), and the template ribonuclease A structure (residues 111-117; thick broken line).

problems. Insertions longer than about eight residues
cannot be modeled accurately at this time, while
shorter loops frequently can be modeled successfully
[31-35]. When sequence identity drops below 30%,

protein pairs are related at less than 40% sequence
identity [9,13].

the main problem becomes the identification of
related templates and their alignment with the
sequence to be modeled. In general, it can be expected
that about 20% of residues will be misaligned, and
consequently incorrectly modeled with an error larger
than 3 A at this level of sequence similarity [36]. This
is a serious impediment for comparative modeling
because it appears that at least one-half of all related

4. Protein structure modeling by satisfaction of
spatial restraints

In general, various protein structure modeling
problems can be expressed as an optimization of a
certain function with respect to the model. The
methods differ in the objective function, in the
model representation and the degrees of freedom, in
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Fig. 7. Errors in the sequence alignment of human eosinophil neurotoxin and ribonuclease A. Automatically derived sequence alignment is
shown. The black lines show correct equivalences, that is residues whose C, atoms are within 5 A of each other in the optimal least-squares
superposition of the two X-ray structures, The bottom line indicates helices (a) and strands (b), as assigned in the human eosinophil neurotoxin
structure by program DSSP [30].
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the method of optimization, and in the starting con-
formation. The program MODELLER provides much
flexibility in all four categories. The 3D model of
one or more molecules is obtained by minimizing
the objective function F with respect to Cartesian
coordinates of up to 15000 atoms

F=F(R)=-In {UP,-{ f;-/r,-)]
= ZEE(J(;'»“;') —In P;=E; (1)

where R are Cartesian coordinates of all atoms, P;is a
conditional probability density function (PDF) for
geometric feature f; that depends on information /;,
E; is an energy term, and a; are parameters that gen-
erally vary from term to term and are related to I;.
Both the P; and E; terms can be seen as spatial
restraints. The equivalence between P; and E; allows
the formulation of a modeling problem that is most
convenient for the data at hand: it is possible to use
both the “‘statistical’’ definition of F in terms of PDFs
P; (e.g. when the data come directly from an analysis
of the database of known related structures) and the
“‘physical’’ definition of F in terms of the energy
terms E; (e.g. when incorporating the CHARMM
force field). Although the statistical and physical defi-
nitions are equivalent, it may be easier to arrive at the
correct restraint form using one or the other definition.
This is illustrated by the following example. The aim
is to restrain a certain C,—C, distance in a target
sequence given two equivalent distances from two
template structures. Using the energy terms, a natural
restraint would be a sum of two harmonic terms cor-
responding to each of the template distances. This is
equivalent to the PDF consisting of a product of two
Gaussian functions. However, it has been shown
empirically that the target distance is likely to be
close to one of the template distances and less likely
to be somewhere in between, described properly as a
sum of two Gaussian PDFs (Fig. 2) [9]. The equiva-
lent energy term is thus the negative logarithm of a
sum of two Gaussian functions, not the sum of two
harmonic terms. In a typical comparative modeling
calculation, there are on the order of 40 000 restraints.
The form of E; is simple; it can be a quadratic func-
tion, cosine, a logarithm of the weighted sum of a few
Gaussian functions, Coulomb law, Lennard-Jones
potential, and a cubic spline function. The geometric

features presently include a distance, an angle, a dihe-
dral angle, and a pair of dihedral angles between two,
three, four, and eight points, respectively. Points cor-
respond to real atoms or to pseudo atoms, such as a
gravity center of several real atoms. A pair of dihedral
angles can be used to restrain simultaneously such
strongly correlated features as the mainchain dihedral
angles ® and ¥ of the same residue. Most terms in the
CHARMM energy function are implemented in MOD-
ELLER. Molecular representations that correspond to
any subset of an all-atom topology library of
CHARMM [25] (e.g. all-atom, non-hydrogen atoms,
C,-only) as well as a simplified side-chain model [37]
can be used at the present. The optimization is cur-
rently carried out by the use of the variable target
function method [26] employing methods of conju-
gate gradients and molecular dynamics with simulated
annealing [27]. New functional forms, optimizers, and
topologies, such as additional approximate side-chain
representations, can be easily incorporated into the
program.

5. Discussion

Our future development of comparative modeling
will rely on the framework for general objective func-
tion definition and optimization provided by the pro-
gram MODELLER [9], briefly described above. In order
to improve comparative modeling in the problematic
areas (ie, side-chain packing, distortions in correctly
and incorrectly aligned regions, and distortions in
unaligned regions), we will rely on this flexible frame-
work to test systematically many possible choices for
the objective function, model representation, optimi-
zation, and starting conformation. Some of the poten-
tial benefits of comparative modeling by satisfaction
of spatial restraints are discussed next.

The MODELLER objective function is formally simi-
lar to the energy function in molecular mechanics and
to the objective function in the NMR refinement. They
are all sums of many simple terms, each of which
depends on a small number of atoms. However, the
general representation of restraints in MODELLER (e.g.
cubic splines) will allow an accurate incorporation of
many kinds of input information about the structure
being modeled. This flexibility will be an important
advantage since in many cases the bottleneck in
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structure prediction is not the power of the optimizer,
but the accuracy of the objective function [9].

Traditionally, comparative modeling consisted of
four separate problems: aligning the sequence with
related structures, constructing the core of the protein,
annealing the loops on the core, and decorating the
main-chain with side-chains [1]. Although these three
problems are independent from each other in the first
approximation, the coupling between the backbone
and side-chains, between the conserved core and vari-
able loops, and between the alignment and the model
will have to be addressed to improve the accuracy of
the final models. For example, if side-chain positions
are modeled incorrectly, the backbone of loops may
also be predicted incorrectly because the native loop
conformation is sometimes stabilized by side-chain—
main-chain hydrogen bonds and local electrostatic
interactions [31]. Similarly, side-chain conformations
depend sensitively on the main-chain conformation
[38,39].

Another example of interdependence between cur-
rently separately considered aspects of modeling is
the coupling between the alignment and the positions
of all atoms. If the alignment is incorrect, the atoms
will certainly be positioned incorrectly by all the cur-
rent comparative modeling methods. Even a shift in
the alignment by only one residue would produce an
RMS error in the backbone atoms on the order of 4 A.
It is estimated that the best methods for aligning
sequences with structures align incorrectly about
20% of residues, according to the structure—structure
alignments, when the sequence identity between the
sequence and structure is about 30% [36]. Likewise,
threading methods sometimes fail to produce a correct
alignment because of the incorrect placement of
residues in space or because of ignoring inserted seg-
ments altogether. Comparative modeling by optimiza-
tion can at least, in principle, treat the coupling
between the alignment and the model in one simulta-
neous optimization of all the aspects of the model and
the alignment. The final best model may be found by
iteratively changing the alignment and, for each align-
ment, calculating the best model given the current
alignment.

Another strength of comparative modeling by satis-
faction of spatial restraints is that constraints or
restraints derived from a number of different sources
can be added to the homology-derived restraints. For

example, restraints could be provided by rules for
secondary structure packing [40], analyses of hydro-
phobicity [41] and correlated mutations [42], empiri-
cal potentials of mean force [43], NMR experiments
[19], cross-linking experiments, fluorescence spectro-
scopy, image reconstruction in electron microscopy,
site-directed mutagenesis [44], etc. In this way, a
homology model, especially in the difficult cases,
can be improved by making it consistent with avail-
able experimental data and with general knowledge
about protein structure.
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