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Chapter 1

Protein Structure Modeling

T. Schwede*", A. Sali*, N. Eswart
and M. C. Peitsch$

1.1 Introduction

Knowledge of the three-dimensional (3D) structures of protcins pro-
vides invaluable insights into the molecular basis of their functions.
Furthermore, the design of experiments aimed at understanding
molecular mechanisms — such as site-directed mutagenesis, mapping
of disease-related mutations, and the structure-based design of spe-
cific inhibitors — are greatly facilitated by the detailed knowledge of
the spatial arrangement of key amino acid residues within the overall
3D structure. While great progress has been made in structure deter-
mination using experimental methods, such as X-ray crystallography
(Chapter 22), high-resolution clectron microscopy (Chapter 23) and
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nuclear magnetic resonance (NMR) spectroscopy (Chapter 24),
these approaches are generally still expensive, time consuming, and
not always applicablc. Currently, less than 50 000 experimental pro-
tein structures have been released by the Protein Data Bank PDB!
(Table 1.1), while another 3500 have been deposited but are still
awaiting relcase. These structures correspond to approximately
17 000 different proteins (sharing less than 90% sequence identity
among onc another). Nevertheless, the number of structurally char-
acterized proteins is small compared to the 300000 annotated and
curated protein sequences in the Swiss-Prot section of the
UniProtKB? (http://www.cxpasy.org/sprot/). This number is cven
smaller when compared to the 5.2 million known protein sequences
in the complete UniProtKB (October 2007). Even after removal of
the highly redundant sequences from this database (above), the
remaining 3.3 million sequences exceed the number of known 3D
structures by more than two orders of magnitude. Thus, no experi-
mental structurc is available for the vast majority of protecin
sequences. This gap has widened over the last decade, despite the
high-throughput X-ray crystallography pipelines developed for struc-
tural genomics.>* Therefore, the gap in structural knowledge must
be bridged by computation.

Computational methods for predicting the 3D structures of pro-
teins enjoy a high degrec of interest and are the focus of many

Table 1.1. Current PDB Holdings (October 2007)*

Molecule Type

Proteins Nucleic Protein/NA
Acids  Complexes Other Total

Experimental X-ray 36847 991 1709 24 39571
Method NMR 5929 788 134 7 6858
EM 106 11 40 0 157

Other 83 4 4 2 93

Total 42965 1794 1887 33 46679

*The conrent of the table was obtained from http://www.pdb.org (1). EM: clectron
microscopy.
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research and service development cfforts. The prediction of the 3D
structure of a protein from its amino acid sequence remains a funda-
mental scientific problem and it is often considered as one of the
grand challenges in computational biology and chemistry. Broadly,
four different types of approaches are commonly in use. The first and
most accurate approach is “comparative” or “homology” modcling
that uses experimentally clucidated structures of related protein fam-
ily members as templates to model the structure of the protein of
interest (the “target™). These methods can only be employed when a
detectable template of known structure is available. Second, fold
recognition and threading methods are used to model proteins that
have low or statistically insignificant scquence similarity to protcins of
known structure (Chapter 2). Third, de novo (or ab initio) methods
aim to predict the structure of a protein purely from its primary
sequence, using principles of physics that govern protein folding
and/or using information derived from known structures but without
rclying on any evolutionary relationship to known folds. Finally, a
fourth group of methods, recently receiving a lot of attention, is the
“integrative” or “hybrid” methods that combinc information from a
varicd set of computational and experimental sources, including all
those listed above. '

1.2 Modeling Methods

1.2.1 Comparative Protein Structure
Modeling Techniques

Template-based protein modeling techniques (aka “homology model-
ing” or “comparative modeling™) exploit the evolutionary relationship
between a target protein and templates with known experimental
structurcs, based on the obscrvation that evolutionarily related
sequences generally have similar 3D structures. Most comparative
modeling procedures consist of several consecutive steps, which can be
rcpeated iteratively until a satisfactory model is obtained: 1) identifica-
tion of suitable template structures related to the target protein and
the alignment of the target and template(s) sequences; 2) modceling of
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the structurally conserved regions and the prediction of structurally
variable regions; 3) refinement of the initial model; and 4) evaluation
of the resulting model(s).

1.2.1.1 Identification of modeling templates
and sequence alignments

Identifying suitable template structures and calculating an accurate
alignment of their sequences with that of the target are the key first
steps of the comparative modeling process. The sequence identity of
the target-template alignment is the most commonly used metric to
quantify the similarity between the target and template(s) and is also
a good predictor of the quality of the resulting model. It is thus cru-
cial to consider the target-template sequence identity level when
sclecting template structures (Sections 1.2.2, 1.6 and Chapter 5), as
this will have a critical impact on the quality of the resulting model
and hence, its potential applications. The overall accuracy of models
calculated from alignments with sequence identities of 40% or higher
is almost always good (i.e. deviate by less than 2A RMSD from the
experimentally determined structure) (Section 1.2.2). As the target—
template sequence identity falls below 30-40%, models that deviate
significantly from the average accuracy are frequent (i.e. deviate by
more than 2A RMSD from an cxperimentally-determined structure).
Alignment errors also tend to rapidly increase in this regime and
become the most frequent cause of large errors in comparative mod-
els even when the correct template is chosen. Moreover, models based
on alignments with such low sequence identities may have an entirely
incorrect fold.®

While identifying and aligning sequences with similaritics above
40% is relatively straightforward, more sensitive methods are needed
for the lower levels of evolutionary relatedness berween sequences.
In recent years, significant progress has been made in the devclop-
ment of sensitive methods for sequence homology detection and
alignment based on iterative profile scarches, ¢.g. PSI-Blast,” Hidden
Markov Models, e.g. SAM,? HMMER,’® or profile-profile alignment
such as FFAS03,' profile.scan,!! and HHsearch.'? Furthermore, in
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the absence of a detectable sequence similarity, fold recognition and
threading methods can be used to identify proteins with known
structures, that share a common fold with the target sequence
(Chapter 2).

1.2.1.2 Generating all-atom models

Comparative protein structure modeling yiclds an all-atom model of
a protcin, based on its alignment to one or more related template
structures. Over the years, two commonly used approaches for model
building have emerged and can be described as follows: the first is a
rigid fragment assembly approach, in which an initial model is con-
structed from structurally conserved core regions of the template and
from structural fragments obtained from cither aligned or unrelated
structures.’®! The initial model is then subjected to an optimization
procedure to refine its geometry and stercochemistry (Section 1.2.1.3).
The second approach relics on a single optimization strategy that
attemipts to maximize the satisfaction of spatial restraints obtained
from the target-template alignment, known protein structures, and
molccular mechanics force-fields.!® Such an approach may not require
a scparate refinement step. However, most model building proce-
dures are usually followed by the application of specialized protocols
to enhance the accuracy of the non-conserved regions of the align-
ment such as loops'®"” and/or side chains.'*!?

1.2.1.3 Model refinement

Once an atomic model has been obtained, it can potentially be refined
to idealize bond geometry and to remove unfavorable contacts that
may have been introduced by the initial modeling process. The refine-
ment will generally begin with an energy minimization stcp using one
of the molecular mechanics force fields.2*?' For further refinement,
techniques such as molecular dynamics as well as Monte Carlo and
genetic algorithm-based sampling methods~* can be applied. For
instance, in certain cascs molecular dynamics has been reported to
vicld some improvement of side chain contacts and rotamer states.?®
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Monte Carlo sampling with focus on regions most likely to contain
crrors, while allowing the whole structure to relax in a physically real-
istic all-atom force field, can significantly improve the accuracy of
models in terms of both the backbone conformations and the place-
ment of core side chains.26 Nevertheless, limitations still exist in sam-
pling as well as force field accuracy.

1.2.1.4 Model evaluation

Model evaluation aims to recognize the various problems that might
have occurred during the modeling process. Furthermore, estimating
the overall geometrical accuracy of the individual regions of the
model is an essential task of model evaluation. There are two kinds of
evaluation schemes that are commonly employed. The first is “fold-
asscssment™ that secks to ensure the calculated models posscss the
correct fold and helps in detecting errors in template sclection, fold
recognition, and target-template alignment.®?-?* The second class of
methods seeks to identify the model that is closest to the native struc-
ture out of a number of alternative models.*** A combination of
such assessments is usually employed to sclect the most accurate
model from amongst a set of alternative models, generated based on
different templates and/or alignments. In general, addressing these

different types of asscssment requires specialized scoring systems and
classificrs (Chapters 3 and 4).

1.2.2 Accuracy and Limitations of Comparative
Protein Structure Modeling

Comparative protein structure modeling rclies on the cvolutionary
relationship between the target and template proteins. Consequently,
the application of this approach is limited by 1) the availability of
suitable template structures; 2) the ability of alignment methods to
calculate an accurate alignment between the targer and template
scquences, cven when the relationship between them is remote;

and 3) the structural and functional divergence between the target
and the template.%
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The percentage of sequence identity between target and template
correlates with model accuracy and often allows for a good first esti-
mate of the model quality. As a rule of thumb, comparative models
based on more than 50% sequence identity to their templates can be
considered as “high accuracy models” and tend to have about 1 A
root mean square deviation (RMSD)* for the main-chain atoms,
which is comparable to the accuracy of a medium-resolution NMR-

derived structurc or a low-resolution X-ray structure.

5.39

Inaccuracies

are mainly found in the packing of side chains and loop regions.
Comparative models based on 30 to 50% sequence identity can be
considered “medium accuracy models”, where the most frequent
errors include side-chain packing errors, slight distortions of the pro-
tein core, inaccurate loop modeling, and sporadic alignment mistakes.
Since alignment errors increase rapidly below 30% sequence identity
and become the most substantial origin of crrors in comparative mod-
els, comparative models based on less than 30% sequence identity are

considered “low accuracy models™.

1.2.2.1 Template availability and structural diversity

It has been observed that a very small number of different folds
account for the majority of known structures,* and a recent study
has argued that most sequences could alrcady be modeled using
known folds (or fragments of known folds) as templates.*! Thus, for
the majority of target protein domains, a structurc with a similar fold
would be available within the Protein Data Bank (PDB). However,
models bascd on alignments with low sequence identity often pro-
vide accurate information only about the fold of the protein. As
stated above, the accuracy of homology models decreases rapidly
when the scquence identity between the target and template drops
below 30%, mainly duc to alignment crrors and our inability to
model structural differences between the targer and the template.
While the overall fold of proteins is often well conserved even at
undctectable levels of sequence similarity, protein function — such as

enzyme function and specificity — shows much higher variability,
even at high levels of sequence identity (above 50%). New methods

42,43
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beyond simple homology-based assignments are therefore required
for functional annotation of new genomic sequences, taking into
account specific local structural features.

1.2.2.2 Natively unstructured proteins

Intrinsic disorder in proteins, i.e. the presence of unstructured
regions, has been a focus of much attention recently, as it has been
shown to be implicated in important biological roles, such as transla-
tion and transcriptional regulation, cell signaling, and molecular
recognition in general. Several studies report examples of disordered
proteins implicated in important ccllular processes, undergoing tran-
sitions to more structured states upon binding to their target ligand,
DNA, or other proteins.*~*¢ New biological functions linked to native
disorder are emerging, such as sclf-assembly of multi-protein com-
plexes or involvement in RNA and protein chaperones.*”#* Natively
unstructured proteins pose a challenge for experimental structural
determination as they can hinder the crystallization of proteins or
interfere with NMR spectroscopy. Consequently, such proteins are
also not amenable to modeling techniques, as it is unclear to what
extent the “correct” conformation can be inferred by comparative
modeling, as these protcin regions depend on the context of a folded
scaffold to assume a defined structure. However, computational
approaches for detecting regions in protein sequences with a high
propensity for intrinsic disorder have been successfully developed,
based on the observation that such protein segments possess charac-
teristic sequence properties.**-52

1.2.2.3 Membrane proteins

Membrane proteins are involved in a broad range of central cellular
processes, including signaling and intercellular communication, vesi-
cle trafficking, ion transport, and protein translocation. It is not sur-
prising that the targets for ~40% of all therapeutic drugs in use today
are human membrane proteins. These include targets such as ion
channels, reuptake pumps as targets for anti-depressants, and the
important group of 7-transmembrane G-protein coupled receptors
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(GPCRs). However, membrane proteins posc formidable challenges
to experimental structure determination by X-ray crystallography and
NMR spectroscopy. Furthermore, human proteins often have no
closely related homologs in prokaryotes or archaea, which would
facilitate expression and crystallization. As a consequence, structurcs
of membrane proteins are significantly underrepresented in the PDB.
The 3D structures of only ~135 different membranc proteins are
currently publicly available (1 January 2008). Consequently, predic-
tion of membrane protein structures based on physical modcls that
describe intra-protein and protein—solvent interactions in the mem-
brane environment without relying on homologous template struc-
tures has been attempted by several groups.’*5* An important
challengc in the modeling of membrane protein structures is the pre-
sumed difference relative to the globular proteins. For cxample, it is
believed thar membrane proteins are “inside-out” globular proteins,
with hydrophobic residues on the outside in contact with the lipid
bilayer and polar residucs on the inside in the protein core. This
design may render the standard scoring functions used for the mod-
eling of globular proteins less suitable for use with membrane pro-
teins. Most recently, a new scoring function was developed in
Rosetta to account for such differences.5

1.2.3 De novo Modeling Techniques

Comparative protein structure modeling methods are only able to
produce highly accurate models for protein sequences for which suf-
ficient template information is available on the structures of homolo-
gous proteins. However, these methods are not suited to predict parts
of sequences that are nor aligned with the template sequenccs, e.g.
long variable loop regions, or completely novel folds that have not
been observed before. In contrast, de novo modeling methods do not
explicitly rely on whole known structures as templates. Thus, the
structure of any protein can be predicted by these de #0ro methods.
The term ab initio prediction often refers to the subset of de novo
methods that rely on energy functions based solely on physicochemi-
cal interactions, not on the PDB. Such approaches, using full-atom
simulations with empirical force fields as well as explicit and implicit
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solvent models, have been successful in predicting the folding of short
peptides®* and in discriminating berween the native state and a static
set of decoys.’® However, from a practical protein structure predicton
perspective, there are still limitations with regards to protein size and
accuracy of the predictions.

Most of the successful de novo prediction methods that are appli-
cable to larger protein scgments (up to ~150 residucs) use informa-
tion from known protein structures.’® De novo methods assume that
the native state of a protein is at the global frec encrgy minimum and
carry out a large-scale scarch of conformational space for protein ter-
tiary structures that are particularly low in free energy for the given
amino acid sequence. The working hypothesis of this approach is that
local amino acid sequence propensitics bias cach local segment of a
polypeptide chain towards a small number of alternative local struc-
tures and that non-local interactions prefercntially stabilize native-like
arrangements of these otherwisc transitory local structures. For exam-
ple, the Rosetta method developed by Baker and coworkers uscs an
ensemble of short structural fragments extracted from the PDB.°
These fragments arc then assembled in a Monte Carlo search strategy
using a scoring function that favors non-local propertics of native pro-
tein structures such as hydrophobic burial, compactness, and pairing
of B-strands.?26%¢! Using fragments of known structures ensures that
the local interactions are close to optimal, thereby reducing the
demand on the free energy function. The Rosetta fragment assembly
strategy has been successtlly applicd' to a4 nove structure predicaon,
as well as to modeling of structurally variable regions (loops, inser-
tions) in comparative protein structure models.

The TASSER (Threading/ASSEmbly/Refinement) method
developed by Skolnick, Zhang and coworkers uses tertiary restraints
derived from threading results to restrict the conformational scarch
space. The query sequence is first threaded through the structures
representative of the PDB to identify appropriate local fragments
for further structural reassembly. For a given alignment, an initial
full-length model is built by connecting the continuous secondary
structure fragments through a random walk, followed by parallel-
exchange Monte Carlo sampling for refinement. 5243
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De nove modcling techniques have made tremendous progress
over the last decade, and several individual examples of highly accu-
rate predictions have been reported. However, there are still signifi-
cant limitations that restrict their application for routine use: the
computational demand is immense and therefore limits these meth-
ods to relatively small systems. In parallel, the overall quality of the
resulting models decreases with the increasing size of the protein. As
a result, the accuracy of de novo predictions is in general still poor,
despite a number of positive cxamples. In CASP7 (Section 1.5), it
was generally not possible to correctly predict the overall fold for a
majority of the de nove modeling rargets.*

1.3 Protein Modeling and Structural Genomics

Comparative protcin structurc modeling and cxperimental protein
structure determination complement each other, with the long-term
goal of making three-dimensional atomic-level information of most
protcins obtainable from their corresponding amino acid scquences.
To achieve structural coverage of a majority of sequenced genes, sys-
tematic sampling of major protein families with experimental protein
structures is essential (unless the de novo methods become perfect).
Structural genomics is a worldwide initiative aimed at rapidly deter-
mining a large number of protein structurcs using X-ray crystallog-
raphy and NMR spectroscopy in a high-throughput mode.®¢ As a
result of concerted efforts in technology and methodology develop-
ment in recent years, cach step of experimental structurc determina-
tion has become more efficicnt, less expensive, and more likely to
succeed.” Structural genomics initiatives are making significant con-
tribution to both the scope and depth of our structural knowledge
about protein familics. Although worldwide structural genomics ini-
tiatives only account for ~20% of the new structures, these contribute
approximatcly to three quarters of the new structurally characterized
families and over five times as many novel folds as classical structural
biology.5%73

Most structural genomics consortia follow specific objectives
that include focusing on certain protein classes, such as membranc
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proteins, protcin families with special biomedical relevance, enlarg-
ing the coverage of sequence space on the domain level, and deter-
mining all the proteins in a model genome. They are applying
sophisticated bioinformatics strategies for target sclection to maxi-
mize the gain in novel insights into protein function from a struc-
tural perspective. 0870717476
In the light of the ever-growing amount of genome sequencing
data, the structure of most of the proteins, even with structural
genomics, will be modcled and not elucidated cxperimentally. From a
modecling-centric perspective, the selection of structural genomics tar-
gets should thus be such that most of the remaining sequences can be
modeled with useful accuracy by comparative modeling. As discussed
before, the accuracy of the comparative models currently declines
sharply below the 30% scquence identity. Thus, target selection
strategics should aim at systematic sampling of protcin structures to
ensure that most of the remaining sequences are related to at least one
experimentally elucidated structurc at more than the 30% sequence
identity.® Using this cutoff, it has been estimated that a minimum of
16000 targets must be determined to cover 90% of all the protcin
domain families, including those of membrane proteins.” Such esti-
mates show large variations, depending on the level of sequence iden-
tity that is assumed to ensure sufficiently accurate model building,
and how this coverage is calculated. Recently, it has been proposed to
reduce this number to a manageable size by prioritizing structuraily
uncharacterized protein families from PFAM according to the num-
ber of family-members.”® However, it has been argucd that such
coarse-grained target sclection is suboptimal in terms of reliable struc-
tural and functional annotation, and a selection of “finc-grain™ targets
from within larger coarse-grained families of distantly related proteins
would be required to provide a more thorough coverage of functional
space as it relates to protein structure.%®
Until recently, sequence databases were highly biased towards
protcins of known function from a relatively small set of model organ-
isms, a result of targeted protein sequencing. However, in the last
decade, whole-genome sequencing cfforts have presumably reduced
or eliminated this bias. We are, however, on the threshold of a new
dimension in sequence diversity. The recent meta-genomics projects
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(which arc bascd on shotgun sequencing of populations of micro-
organisms) have yiclded new insights into the distribution of (mainly
microbial) protein families. As there is an approximately linear rela-
tionship between the number of sequence clusters and the number of .
protein sequences, this indicates that there remain many more protein
families to be discovered. This, in turn, has direct implications on the
sclection of targets for structural genomics.”™

1.4 Integrative (Hybrid) Modeling Techniques

Biological function is scldom cffected by a single protein molecule in
isolation. It is most often the result of transient or stable interactions
among individual protcins in the cell. Most of these interactions
remain uncharacterized by traditional structural biology techniques
such as X-ray crystallography (Chapter 22) and NMR spectroscopy
(Chapter 24). This gap is being bridged by several emerging experi-
mental approaches that vary in terms of the information they
provide.*® For example, the stoichiometry and composition of protein
components in an assembly can be determined by methods such as
quanttative immunoblotting and mass spectrometry. The shape of
the assembly can be revealed by electron microscopy and small angle
X-ray scattering. The positions of the components can be elucidated
by cryoclectron microscopy and labeling techniques. Whether or not
components interact with each other can be mecasured by mass spec-
trometry, ycast two-hybrid and affinity purification. The relative ori-
entations of the components and information about intcracting
residues can be inferred from cryoelectron microscopy, hydrogen/
deuterium cxchange, hydroxyl radical footprinting, and chemical-
crosslinking. :

When the approaches dominated by a single source of infor-
mation fail, simultancous consideration of all the available infor-
mation about the composition and structure of a given asscmbly,
irrespective of its source, can sometimes be sufficient to calcularte
a useful structural model. Thus, integrative modeling mecthods
convert the experimental data derived from the methods listed above
into a structural model of a macromolecular assembly through
computation® (Fig. 1.1). Such an approach can be used to uncover
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Fig. 1.1 Integrative structure determination. The four steps of determining a
structure by integration of varied data are illustrated with the example of the nuclear
pore complex.8#4132 Eirse, structural data are generated by experiments, such as elec-
tron microscopy (left panel), immunoelectron microscopy (middle panel), and affin-
ity purification of subcomplexes (right panel); many other types of information can
also be added. Second, the data and theoretical considerations are expressed as spa-
tial restraints ensuring the observed symmetry and shape of the assembly (clectron
microscopy, /eft panel), positions of constituent gold-labeled proteins (immunoelec-
tron microscopy, middlc panel), and proximity among the constituent proteins (affin-
ity co-purification, right panel). Third, an ¢nsemble of structural sofutions that satisfy
the data is obtained by minimizing the violations of the spatial restraints (from /et to
right). Fourth, the cnsemble is clustered into sets of distinct solutions (/eft panel) as
well as analyzed in different representations, such as protein positions (middle panel)
and protein-protein contacts (right panel). The integrative approach to structure
determination has several advantages: (i) it benefits from the syncrgy among the
input data, minimizing the drawback of incomplete, inaccurate, and/or imprecise
data scts (although cach individual restraint may contain little structural information,
the concurrent satisfaction of all restraints derived from independent experiments
may drastically reduce the degeneracy of structural solutions); (ii) it can potentially
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the molecular architecture of macromolecular assemblics and even
atomic models of protein complexes. Even when this medel is of
relatively low resolution and accuracy, it can still be helpful for
studying the function and evolution of the corresponding assem-
bly; it also provides the necessary starting point for a higher reso-
lution study.

An example of a simple hybrid approach is building a pscudo-
atomic model of a large assembly by fitting atomic structures of sub-
units into its cryoelectron microscopy map.* Unassigned or partially
assigned NMR spectroscopy data and fragment-based modcling
approaches have been combined to improve structure refinement in
terms of its accuracy, efficiency, and success rate.283 A varicty of dif-
ferent types of information, such as symmctry and protcein proximity,
have been used to characterize large symmetrical assemblies, includ-
ing the nuclear pore complex,*% EscJ from the type III secretion
system,* and the AAA+ ring complcxes.?”

1.5 Assessment and Evaluation
of Prediction Accuracy

Protein structure modeling is maturing and therefore widcly used as
a scientific rescarch tool today. Conscquently, it is increasingly
important to evaluate to what extent the current prediction methods
meet the accuracy and requirements of different scientific applica-
tions (Chapter 5). A good way to assess the reliability of different
protein structure modeling methods 4 posteriori is by cvaluating the
results of blind predictions after the corresponding protein structures
‘have been determined experimentally. One such effort is the bian-
nual “Community Wide Experiment on the Critical Assessment of

Produce all structures that arc consistent with the data, not just onc; (iii) the varia-
tion among the structures consistent with the data allows us to assess the sufficiency
of the data and the precision of the representative structure; (iv) it can make the
process of structure determination morc efficient by indicating what measurements
would be the most informative. (This figure was reproduced from Fig. 5 in Ref, 80).
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Techniques for Protcin Structure Prediction” (CASP).®# During a
CASP trial, research groups apply their prediction methods to
sequences for which the experimental structure is about to be deter-
mined. The accuracy of these blind predictions is then assessed inde-
pendently once the structures are made available. There are also
web servers, LIVEBENCH?®® and EVA,’! that assess protein structure
prediction scrvers on an automated and continuous basis using
sequences from the PDB, before their structures arc released, as
modeling rargets.

1.5.1 Critical Assessment of Techniques
for Protein Structure Prediction (CASP)

The biannual CASP experiments aim to assess the progress of protein
structure prediction methods.®2 Besides using classical measures for
assessing the accuracy of the Ca positions of the models, several addi-
tional criteria were introduced in CASP7 to ensure that the assess-
ment appraiscs the overall quality of the models, as well as those
features of the predictions that are relevant to their usefulness in spe-
cific scientific applications, such as the fraction of correctly modeled
hydrogen bond interactions (HBscore), the suitability of models for
phasing X-ray diffraction data, assessment of the accuracy of predicted
cofactor binding sitcs, and accuracy of the model error estimates pro-
vided by the predictors.

In the latest edition of CASP (round 7 in 2006),%4+*93 the gen-
eral trends observed in the previous years continued: comparative
modeling remained by far the most accurate technique for protein
structure modcling. However, the majority of predictions submitted
in the category of template-based modcling (TBM) were again closer
to the template than to the real structure, and only in a few cases,
some improvement over a model based on a single best template
structure was observed. The fact that no group would outperform a
virtual predictor submitting models based on the single best template
for cach target indicates that template identification and alignment are
by 'no means solved problems and constitute a major bottleneck,
besides the challenging question of model refinement. Impressively,
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successful refinement of model coordinates to a value closer to the
experimental structure has been observed, at least in a small. number
of cases.??%

One of the most remarkable results of CASP7 was that automated
prediction servers have matured significantly in the recent years: six of
the top 25 groups in the assessment of template-based models were
predictors using automated prediction servers, which produce their
models without manual intervention. In 29% of a total of 108 cases,
the best model for an individual prediction target was submitted by a
server. The best prediction server®® was ranked third over all, i.c. it
outperformed all but two of the participating groups.®>**

1.5.2 EVA-CM — Continuous Automated
Assessment of Prediction Servers

The goal of EVA®! is to evaluate the sustained performance of protcin
structure prediction servers through objective measures for prediction
accuracy in a fully automated manner. Every weck, test sequences are
automatically submitted to prediction servers and the results are cval-
uated and posted on the EVA web sites, thereby providing a contin-
uous, fully automatic and statistically significant analysis of structure
prediction servers. Besides comparative modeling, EVA assesscs the
prediction of sccondary structure, inter-residue distances and con-
tacts, and threading.

1.5.3 Model Quality Evaluation

Retrospective assessment of the average accuracy of individual mod-
cling methods via projects such as CASP or EVA is invaluable for the
development of modcling techniques, but unfortunately does not
allow drawing of any conclusions about the accuracy of a specific
model, as the correct answer is unknown in a real-life situation. Since
the usefulness of predictions crucially depends on their accuracy, a
means of reliably predicting the likely accuracy of a protein structure
model in the absence of its known 3D structure is an important
problem in protein structurc prediction (Scction 1.2.1.4). Accurate
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estimates of the errors in a model are an essential component of any
predictive method — protein structure prediction not being an
exception.

Different scoring schemes have been developed to determine
whether or not a model has the correct fold, to differentiate between
the native and near-native states, to select the most near-native model
in a set of decoys, and to provide quantitative estimates for the coordi-
nate error of the predicted amino acids (Section 1.2.1.4). A variety of
mcthods have been applied to address these tasks, such as physics-
based cnergies, knowledge-based potendals (Chapter 3), combined
scoring functions, and clustering approaches. Combined scoring
functions integrate several different scores, aiming to extract the
most informative features from each of the individual input scores
(Chapter 4). Clustering approaches use consensus information from an
ensemble of protein structure models provided by different methods.

1.6 Application of Protein Models
1.6.1 Typical Applications of Protein Models

The suitability of protein modecls for specific applications crucially
depends on their accuracy. There is a wide range of applications for
comparative models, such as designing experiments for site-directed
mutagencsis or protein engineering, predicting ligand binding sites
and docking small molecules in structure-bascd drug discovery,?
studying the effect of mutations and SNPs %7 phasing X-ray diffrac-
tion data in molecular replacement,?** as well as protein engineering
and design.'”® See Chapter 5 for a more detailed discussion about
applications of models.

Although the target-template sequence identity generally corre-
lates well with the overall model accuracy, it is often not suitable for
making decisions about the usability of models for specific applica-
tions. There is a need for new measures to come up with more reli-
able cstimates of model quality. For instance, applications in drug
design require a very high accuracy of the local sidechain positions in
the binding sitc, much more so that the overall global accuracy of the
backbone. %1% Local cstimates of the expected model accuracy on a
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- per residue or per atom level would be crucial for many applications,
e phasing of crystallographic diffraction data.”

1.6.2 Modeling GPCRs

Modeling G-protein-coupled receptors has drawn much attention
due to their relevance as drug targets. Constraints-based and homol-
ogy modeling!®' has been used as a tool to obtain structural models
for GPCRs, at first based on the structures of bactcriorhodopsin, %1%
© and since 2000 using the high resolution X-ray structure of bovine
thodopsin'? as a template for modeling.'® ! Only recently the first
structure of a GPCR bound to a diffusible ligand, the human §,-
adrenergic G-protein coupled receptor,''™!! has become available
and may now serve as a more suitable template for modeling other
members of the class A GPCRs. However, the level of sequence iden-
tity within the members of the class A GPCRs is often very low, seri-
ously limiting the accuracy of the local alignment. Especially the
_conformations of non-conserved inter-helical loops are difficult to
model using comparative techniques. Retrospectively, we can analyze
~the accuracy of the “historic™ comparative models built for the human
f,-adrencrgic receptor based on the rhodopsin structure as templates.
While the overall arrangement of the 7 trans-membrane helix scg-
ments is generally correctly represented, significant differences are
observed in the relative orientation and shifts of the helices with
regard to the center of the receptor (Fig. 1.2).
. Theligand-binding pocket is, with regard to rhodopsin, formed by
 both the structurally conserved and divergent segments. Most devia-
tions are observed for helices 111, V, and the extracellular loop ECL2,
- which connects helices IV and V (Fig. 1.2). Whilc ECL2 is forming a
. frsheet structure in rhodopsin, in f,-adrencrgic receptor it contains an
uncxpected additional a-helical segment and a sccond disulfide bridge
hat might stabilize the more solvent exposed conformation.
Consequently, specific interactions between the ligand molecule and
¢ side chains forming the binding pocket are only partially reproduced
by a comparative model based on rhodopsin (Fig. 1.3). Sce Refs. 110,
"111 for a detailed discussion of the individual structural differences, as
well as discussion of the activation mechanism.
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Fig. 1.2 Ribbon representation of the human f,-adrenergic G-protein coupled
receptor with bound ligand carazolol (green, PDB: 2rh1'%) and the bovine rhodopsin
(blue, PDB: 1ul19'7). Bovine rhodopsin has been the only available high resolution
template for modeling class A GPCRs until the structure of f,-adrenergic receptor has
been solved in 2007. (Superposition, stereo view).

1.7 Major Protein Modeling Resources
1.7.1 Protein Modeling Servers and Software Tools

The huge and constantly growing number of structurally uncharac-
terized protein sequences, together with the increasing number of
available template structures requires the development of automated,
stable and reliable modeling methods. Modeling of protein struc-
tures usually requires expertise in structural biology and the use of
highly specialized computer programs for cach of the individual steps
of the modeling process. Therefore, automared modeling pipelines
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(b)

Fig. 1.3 The ligand binding site of the f,-adrencrgic G-protein coupled recep-
tor. The experimentally elucidated structure in panel (a) (PDB: 2rh1''%) as com-
pared to the comparative model based on bovine rhodopsin as template in plancl
(b) (PDB: 1u19'7).

with integrated expert knowledge such as SWISS-MODELM™ 1211
and MODPIPE'"!"* were established 15 years ago and have been
successfully applied to large data sets. ™12

| Today, there is a plethora of modeling services available on the
Internet. Therefore, the question is whart is the most appropriate
method for a specific targer? Meta-servers — methods that use the
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Table 1.2. List of Protein Modeling Servers and Software. For a more
exhaustive list, sce Refs. 93 and 122

Modeling Server
SwissMode]|! 12114124 http://swissmodel.expasy.org
ModWeb!!'® http://salilab.org/modweb/
I-Tasscer® http://zhang.bioinformatics.ku.edu/I-TASSER/
Robetta'? http://robetta.bakerlab.org

Software Tools

HHPred'* http:/ /toolkit.tuebingen.mpg.de/hhpred
Modeller's41® http:/ /salilab.org/modeller/
SCWRL3" hitp://dunbrack.fccc.edu/SCWRL3.php
Whatlf!3 http:/ /swift.cmbi.ru.nl /whatif/
Rosctta® http://www.roscttacommons.org

results of other servers as input to gencrate their predictions — are
aiming to address this question.”®!?! The general opinion in the
community has been that the modecls generated using a combination
of automated predictions and human expertisc are superior to those
gencrated using purely automated servers.”® However, it appears that
this view might have to be revised in the near future as the gap
berween human predictors and servers is closing. Table 1.2 provides
examples of the major available resources; see Refs. 93, 122 for a
more comprehensive list.

1.7.2 Protein Model Databases

Depositions to the PDB are restricted to atomic coordinates that are
substantially determined by experimental measurcments on specimens
containing biological macromolecules.'?

Currently, the PDB holds approximately 50000 entries repre-
senting 17 000 different proteins. Using these experimentally cluci-
dated structures as templates, scveral millions of comparative protein
models have been generated for the protein sequences contained
in the UniProtKB database.3*!?*!25 Databases of annotated compar-
ative models increase the efficiency for expert users, allow cross-
referencing with other (non-structure-centric) resources, and make
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Table 1.3.  Databases of Automated Comparative Protein Modecls

Model Database Resources Refs.
MODBASE http://www.salilab.org/modbasc/ 125,126
SWISS-MODEL http://swissmodel.cxpasy.org,/ 117, 120, 124
Repository repository/
Protein Model hetp://wwiw.protcinmodelportal.org
Portal

Table 1.4 Protease Models for Entries referenced in the MEROPS Databasc
available in the Protein Model Portal

Group Number of Number of Average
UniProtKB Modecls Scquence
Entries Identity
with Best
Template
Grand Total 6869 28701 39.0%
SWISS-MODEL Repository 3362 5440 69.9%
MODBASE 5001 21471 33.2%
CSMP (Center for Structures 7 17 19.9%
of Membrane Protcins)
MCSG (Midwest Center 48 48 28.2%
for Structural Genontics)
NESG (Northcast Center 199 244 17.7%
for Structural Genomics)
NYSGXRC (New York SGX 748 1481 16.9%
Center for Structural Genomics)
PDB: 400 2338 N.A.
Protease sequences without 1342 0 N.A.

structure or model

‘Experimentally elucidated protease structures. NLA., not applicable.

comparative models accessible to non-experts. Many specialized
efforts exist for specific protein families, or specific organisms. These
resources are often manually curated, which poses challenges in
terms of maintaining a reasonable update frequency when new tem-
plate structures and new or updated sequence information become
available. Generic model databases such as MODBASE!'2%126 3nd the
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SWISS-MODEL Repository'?®'?* apply entirely automated tech-
niques for large-scale comparative protein structure modeling.

The Protein Model Portal (http://www.proteinmodelportal.org)
has recently been developed as part of the PSI Structural Genomics
Knowledge Base to provide an integrated access to the various data-
bases containing structural information and thereby implementing
the first step of the community workshop recommendation'?® on
archiving structural models of biological macromolecules. Currently,
automatically-derived models from six structural genomics centers,
MODBASE and SWISS-MODEL Repository are accessible through
a single scarch interface. As an example, we have analyzed all the
protease families referenced in the MEROPS database'?” for the
number of protein models — and their average sequence identity to
the best modeling template — currently available from the Protein
Model Portal. It is interesting to note that even in this highly stud-
ied class of proteins, there is no structural information available,

experimental or modeled, for approximately 20% of the sequences
in UniProtKB.

1.8 Future Outlook
1.8.1 Model Refinement

Comparative protein structure modeling has matured over the last
decade and is now routinely used in many practical applications.
There has been a continuous increase in the overall accuracy of pro-
tein structure models due to progress in the quality of the sequence-
structurc alignments as well as the increased availability of high quality
template structures. However, comparatively little progress has been
made in refining the initial models away from the template closer to
the target structure. Model refinement is particularly relevant for
models based on alignments with a sequence identity below 30%,
which is the typical situation in comparative modeling. Many bio-
medical applications (Scction 1.6) are critically dependent on model
accuracy, and the accuracy achieved by comparative modeling based
on low sequence identity templates is often insufficient. Improving
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the accuracy of comparative models beyond the information derived
from the template therefore continues to be one of the key questions
in the futurc. Although examples of successful model refinement
using molecular dynamics methods have been described occasionally,
these methods do not seem to be generally successful.*!¥ The chal-
lenges with refincment seem to reside in the limitations of the cur-
rently available force fields (which do not accurately represent the
energetic interactions of the native state of the protein structure), as
well as in the computational cffort required for sampling a highly
dimensional and rugged energy landscape, which is necessary to iden-
tify the global minimum 22232612

1.8.2 Integrative (Hybrid) Modeling

Cryoclectron microscopy is emerging as a key technique for studying
3D structures of multi-component macromolecular complexes with
masses >250 kDa, such as membrane proteins, cytoskeletal complexes,
ribosomes, quasi spherical viruses, molecular chaperones, flagella, ion
channels, and oligomeric enzymes. Electron cryotomography even
cnables the observation of macromolecules inside a living cell in its
native state.'*® Various modcling approaches are being developed that
utilize cryoelectron microscopy density maps as a constraint in deriv-
ing a pscudo-atomic model of the molecular components within a
larger complex. Because of the significant likelihood of conforma-
tional differences between isolated domains and biological assemblies,
additional rescarch lcading to the development of reliable hybrid
modeling methods, which are able to correctly include structural
information from various experimental sources of different resolution
and rcliability, is essential. The important structural information from
hybrid models, generating a synoptic image of the heterogeneous
information available for a given macromolecular system, is expected
to increase sharply in the coming years. Naturally, this raises the ques-
tion of whether it will be feasible at one point to combine all these
data, together with other data related to the overall cellular structure,
to construct a quantitative spatial and temporal model of the cell.’!
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