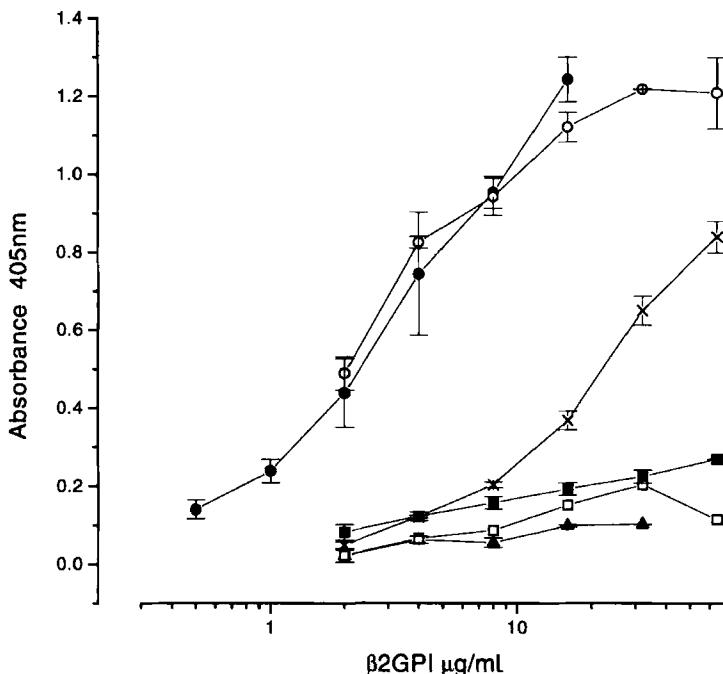


Site-directed Mutagenesis of Recombinant Human β_2 -Glycoprotein I

Effect of Phospholipid Binding and Anticardiolipin Antibody Activity

YONG SHENG,^a STEVEN A. KRILIS,^a AND ANDREJ SALI^b

^a*Department of Immunology, Allergy, and Infectious Disease
and*


*Department of Medicine
University of New South Wales
St. George Hospital
Kogarah NSW 2217, Australia*

^b*The Jane Coffin Child Memorial Fund for Medical Research
The Rockefeller University
New York, New York 10021*

β_2 -Glycoprotein I (β_2 GPI), a phospholipid-binding plasma protein, has been shown to be the target antigen for antiphospholipid (aPL) antibodies purified from patients with autoimmune disease.¹ Antiphospholipid antibodies that occur in association with infections are not associated with an increased risk of thromboembolic complications² and are directed against anionic phospholipids and not β_2 GPI.¹

These antibodies preferentially bind β_2 GPI that has been immobilized on anionic phospholipid surfaces, whereas binding in the fluid phase is weak and nondetectable. A number of hypotheses have been put forward to explain this reactivity. It has been proposed that the binding of β_2 GPI to PL induces a conformational change in β_2 GPI, thus exposing a cryptic epitope for aPL antibodies to bind.¹ Alternatively, it has been suggested that binding of β_2 GPI to phospholipid increases the local concentration of β_2 GPI, thus promoting an increase in affinity of the aPL antibodies for β_2 GPI.³ β_2 GPI is composed of five highly conserved domains of 60 repeating amino acids called complement control protein (CCP) repeats. In β_2 GPI, the fifth domain is the most variable and contains a region that has been predicted to be critical for phospholipid binding. To study the interaction between native β_2 GPI and anionic PL such as cardiolipin in more detail, we first calculated a 3D model of the fifth domain of β_2 GPI (β_2 GPI-5), relying on its similarity to the 15th module from human factor H, whose 3D structure has been determined by NMR. The electrostatic calculations confirm that the loop Lys282-Lys287 is likely to be part of the PL-binding site. To test this prediction, the cDNA for human β_2 GPI was inserted into a baculovirus vector for expression in insect cells. Site-directed mutagenesis was then performed to assess the role of individual amino acids in the Lys282-Lys287 loop on the phospholipid binding and cofactor activity of β_2 GPI. Expressed wild-type β_2 GPI had activity equivalent to native β_2 GPI. Four mutants were generated: mutants 1, Lys286 to Glu286; 2, Lys286,

287 to Glu286, 287; 3, Lys284, 287 to Glu284, 287; and 4, Lys284, 286, 287 to Glu284, 286, 287. Affinity-purified antibodies from patients with aPL syndrome exhibited binding in a CL-ELISA system only in the presence of recombinant wild-type β_2 GPI in a dose-dependent manner similar to that obtained with native human β_2 GPI (FIGURE 1). In contrast, no cofactor activity was obtained with mutants 2, 3, and 4 when these were tested up to a concentration of 64 μ g/mL (FIGURE 1). However, mutant 1 exhibited a dose-dependent increase in binding that was only

FIGURE 1. Dose response of binding activity of affinity-purified aPL antibody at 2 μ g/mL from an autoimmune patient to CL in a modified CL-ELISA in the presence of different preparations of β_2 GPI: native β_2 GPI (●), recombinant wild-type β_2 GPI (○), mutant 1 (X), mutant 2 (■), mutant 3 (▲), and mutant 4 (□). Results are expressed as the mean \pm SE of duplicates.

demonstrated at high concentrations of β_2 GPI and only reached approximately 50% of that obtained with wild-type β_2 GPI (FIGURE 1).

In summary, comparative molecular modeling has predicted that a highly positive charged amino acid sequence, Lys282-Asn-Lys-Glu-Lys-Lys287, located in the fifth domain of β_2 GPI is the major PL-binding site. We have tested this hypothesis and have shown that amino acid residues Lys284, 286, and 287 are critical for β_2 GPI binding to PL and for cofactor activity for aPL antibodies.

REFERENCES

1. KRILIS, S. A. & J. E. HUNT. 1994. Immunology of antiphospholipid antibodies. *In* Immunology of Connective Tissue Disease. Volume 22. G. S. Panayi, Ed.: 279–304. Kluwer. Dordrecht.
2. McNEIL, H. P., C. N. CHESTERMAN & S. A. KRILIS. 1991. *Adv. Immunol.* **49**: 193–279.
3. ROUBEY, R. A. S., R. A. EISENBERG, H. F. HARPER & J. B. WINFIELD. 1995. *J. Immunol.* **154**(2): 954–960.