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The construction of a predictive model of an entire eukaryotic cell that describes its dynamic struc-
ture from atomic to cellular scales is a grand challenge at the intersection of biology, chemistry,
physics, and computer science. Having such a model will open new dimensions in biological
research and accelerate healthcare advancements. Developing the necessary experimental and
modeling methods presents abundant opportunities for a community effort to realize this goal.
Here, we present a vision for creation of a spatiotemporal multi-scale model of the pancreatic
b–cell, a relevant target for understanding and modulating the pathogenesis of diabetes.
The goals of this Perspective are to outline characteristics of a

comprehensive whole-cell model, to point out opportunities for

community collaboration in its construction, and to highlight

several challenges that should be addressed along the way. By

bringing attention to specific areaswhere there aregaps in knowl-

edge or a lack of tools, we hope this piece will serve as a ‘‘call to

arms’’ for both the b-cell biology and whole-cell-modeling fields

to work together and address these challenges. It is likely that

as the whole-cell-modeling field evolves, so will the definition of

a comprehensivewhole-cellmodel.We hope to ignite the conver-

sation about and effort toward conquering this grand challenge.

We believe that it will take a community effort to prescribe

convincingly and in detail how to construct predictive cellular

models. Therefore, the focus of the commentary is to shed light

on various attributes of comprehensive whole-cell models and

the importance of modeling b cells while at the same time noting

the dearth of applicable data. To begin,we reviewprevious efforts

in line with whole-cell modeling and what is currently possible.

Previous Whole-Cell-Modeling Efforts
A whole-cell model describes one or more aspects of the entire

cell as a function of its components and relationships among

them. Such models increase our understanding of how the cell

functions, how it can be modulated, and how it evolved. Recent

efforts in whole-cell modeling are wide-ranging and include

static visual reconstructions of cellular landscapes, dynamic

structural simulations of molecular interactions, systems of

mathematical equations recapitulating biochemical reaction
pathways, and more. For example, atomic resolution models of

cytoplasmic subsections of Mycoplasma genitalium (Feig et al.,

2015; Yu et al., 2016) and Escherichia coli (Hasnain et al.,

2014; McGuffee and Elcock, 2010) were assembled and used

for simulating dynamics via Brownian dynamics (BD) or molecu-

lar dynamics (MD) to investigate diffusion and protein stability

under crowded cellular conditions. Other efforts focused on

assembling 3D cellular landscapes using experimental data,

including, for example, models of HIV-1 virus and Mycoplasma

mycoides using cellPACK (a software tool that assembles

large-scale models from molecular components using packing

algorithms, www.cellpack.org) (Johnson et al., 2014, 2015), an

atomic resolution snapshot of a synaptic bouton using quantita-

tive immunoblotting, mass spectrometry, electron microscopy

and super-resolution fluorescence imaging (Wilhelm et al.,

2014), and an ultrastructuremodel of mouse pancreatic b cell us-

ing electron tomography (Noske et al., 2008). Additionally, math-

ematical models using differential equations and flux balance

analysis have been used to construct cellular (e.g., Karr et al.,

2012) and metabolic networks (e.g., King et al., 2016) of whole

cells to predict phenotype from genotype. Many other platforms

for modeling cellular processes using various techniques have

been developed over the last two decades. One example is

V-Cell, a modeling platform that simulates a variety of molecular

mechanisms, including reaction kinetics, membrane transport,

and flow, using spatial restraints derived from microscope im-

ages (Cowan et al., 2012; Moraru et al., 2008). Another popular

cellular modeling platform is M-Cell, which also uses spatial 3D
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cellular models and Monte Carlo methods to simulate reactions

and movement of molecules (Stiles et al., 1996). Similarly, the

E-Cell platform simulates cell behavior using differential equa-

tions and user-defined reaction rules regarding aspects like pro-

tein function, regulation of gene-expression, and protein-pro-

tein interactions (Tomita et al., 1999). Collectively, these efforts

required both an enormous amount of data, as well as integrative

computational methods. While each of these models offered

some degree of insight and represented important milestones

in whole-cell modeling, none was able to fully represent the

complexity and scope of an entire cell.

A Whole-Cell Model: The Ideal
A comprehensive whole-cell model should allow us to address

questions from multiple scientific fields, incorporate all available

experimental information, and harness the power of a wide vari-

ety of computational and database resources. Biologists, chem-

ists, physicists, and many others should be able to use the

model to ask a myriad of scientific questions depending on the

researcher’s particular interest. For example, biologists could

query the effects of a drug on a cell’s expression patterns, chem-

ists could test the stability of a particular compound in a cellular

environment, and physicists could examine the relationships

between reaction rates in biochemical contexts. For the model

to be useful to many disciplines, it should integrate data gener-

ated from a wide range of experimental platforms. For instance,

in the model, each of the cell’s components that are determined

by omics approaches should be connected to their conforma-

tional data determined through structural biology approaches.

Similarly, subcellular localization data should be determined by

microscopy, and so forth. To connect these disparate pieces

of information, the model will need to integrate a wide variety

of database tools and will also require the incorporation of

extensive computational resources to perform simulations and

queries. The scope of biological questions accessible through

a comprehensive whole-cell model will continue to evolve as

the available data and technology evolve.

Attributes of a Comprehensive Whole-Cell Model
In our view, a comprehensive model of the cell will have the

following attributes.

Complete and Multi-scale

The model will consist of all cellular components, including

individual atoms, small molecules (e.g., water and metabolites),

macromolecules (e.g., proteins, nucleic acids, and polysaccha-

rides), and complexes (e.g., ribosomes, nuclear pore complex,

and proteasome), as well as organelles and cellular compart-

ments (e.g., nucleus, mitochondria, and vesicles). The model

will describe the cell at multiple levels of its hierarchical organiza-

tion, from atoms to cellular compartments.

Space and Time

The spatial organization of the cell will bemapped by defining the

distributions of its components (Thul et al., 2017), as well as how

these distributions change over time, through atomic fluctua-

tions, chemical reactions, diffusion, and active mass transport.

Logical Organization

Themodel will also define the logical organization of the cell (e.g.,

via molecular networks, mass, and information flow), providing a
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sense of functional relationships among components of the

cell; for example, how insulin secretion pathways change and

are affected by drug molecules in the environment.

Couple Multiple Representations

A comprehensive cell model will need to simultaneously include

various representations of the cell that researchers have estab-

lished and published in the past. Examples of some of these

representations include: (1) a static description of the spatial

distribution of cellular components derived from various experi-

ments like fluorescent imaging and quantitative proteomics

(Johnson et al., 2015; Murphy, 2012, 2016; Wilhelm et al.,

2014); (2) static molecular networks used in systems biology

(Fabregat et al., 2018); (3) ordinary differential equations (ODEs)

commonly used for modeling metabolic pathways (Karr et al.,

2012); (4) a flux balance analysis (FBA) for modeling biochemical

networks (King et al., 2016); (5) a description of dynamics by

statistical inferencing fromspatiotemporal distribution of compo-

nents and live imaging (Komatsu et al., 2011; Mikuni et al., 2016);

(6) particle diffusion in crowded environments via BD (Ando and

Skolnick, 2011; D1ugosz and Trylska, 2011); and (7) atomic fluc-

tuations by MD simulations (Yu et al., 2016).

Each of these representations are informed by different inputs

and provide answers to different questions. Therefore, each will

be useful to include as a different layer for modeling whole cells.

Although the representations will be derived from diverse

sources of information, they must be in harmony and coupled

with each other in the final model. The model of the cell should

couple diverse representations, directly or indirectly, such that

a change in a model of one cellular component described by

one representation will be reflected in all models of all compo-

nents. For example, a change in concentrations derived from

mathematical modeling implies a change in spatial model. Simi-

larly, information about diffusion of complexes and metabolites

from BD simulations should feed back into reaction-diffusion

models of functional processes, the structure of a protein com-

plex implies a molecular network involving the constituent pro-

teins (Mosca et al., 2013), and a change in the structure of a sub-

unit in a complex may imply a change in the complex structure.

Integrative

Because of the vast complexities of cellular functions, all relevant

information must be used to construct the cellular model. This

information includes varied experimental datasets, physical

theories, statistical inferences, and/or prior models. Thus, inte-

grative modeling will need to be relied on to convert the diverse

input information into the cellular model (Alber et al., 2007; Ward

et al., 2013).

Specify Uncertainty

Importantly, any model must include a quantification of its un-

certainty, as consideration of model uncertainty is essential for

its interpretation. Model uncertainty depends on the sparseness

of the input information and the uncertainty about how input in-

formation limits the model (Schneidman-Duhovny et al., 2014).

For example, the B-factor used in structural biology specifies

the uncertainty in atomic positions in amodel of protein structure

(Schneidman-Duhovny et al., 2014; Yuan et al., 2005). Likewise,

localization probability densities quantify the uncertainty of an

integrative model of macromolecular complex structure (Alber

et al., 2007).



Descriptive and Predictive

A good model will allow rationalization of existing experimental

observations. It will also be quantitatively predictive rather than

providing only a table or visualization of experimental observa-

tions. Thus, a model will allow testable predictions to be made

(i.e., be falsifiable).

Reflect Heterogeneity

Even cells of the same type vary in terms of abundance and

localization of components (e.g., molecules, complexes, and

organelles). Therefore, a whole-cell model will describe the vari-

ation among individual cells of the same subtype, among cells of

different subtypes (Aguayo-Mazzucato et al., 2017; Dorrell et al.,

2016; Gutierrez et al., 2017; Tamura et al., 1992), and among

cells from different individuals in the human population. It should

also be able to take into account different environments and per-

turbations. These variations are likely to play significant roles in

the progression of disease and drug response and therefore

must be accounted for in a whole-cell model.

Iterative

A model must be capable of continued refinements, reflecting

the growth in quantity and quality of input information as well

as improvements in computing capacity andmodeling methods.

A goodmodel will facilitate the identification of themost informa-

tive future experiments and thus expedite the scientific cycle of

iterating through experiment andmodeling (Sanghvi et al., 2013).

Why Model a b Cell?
The human pancreatic b cell is an attractive target for a multi-

scale model of a eukaryotic cell for several reasons. First, a

b cell can be mechanistically simplified as an input-output ma-

chine, receiving blood glucose as its primary input and subse-

quently releasing insulin as its primary output, a paradigm that

is suitable for coarse-grained model development. Second,

there is a wealth of b-cell experimental data available in the

literature, especially from electron tomography and transcrip-

tomics (e.g., (Blodgett et al., 2015; Brackeva et al., 2015; Li

et al., 2016; Nica et al., 2013; Noske et al., 2008; Pfeifer et al.,

2015). Finally, as b cells are responsible for insulin production,

a thorough understanding of their molecular processes would

directly benefit researchers focused on diabetes, a disease

that affects hundreds of millions of individuals worldwide (Guar-

iguata et al., 2014). This effort will also provide an example for

how to construct models of other cell types.

What Data Are Necessary?
To build a comprehensive model that accurately represents the

3D structure, organization, and function of a b–cell, we require:

(1) the basic ultrastructural architecture of the cell, including

the overall shape and size of the cell and abundance, location,

and membrane topology of all the different organelles; (2) an

exhaustive list of the identities of the b-cell components,

including proteins, nucleic acids, sugars, lipids, metabolites,

etc., and macromolecular assemblies; (3) the quantities and dy-

namic localization of each of the organelles, components, and

assemblies; (4) high-resolution structural information of all the

components and assemblies from the atomic to the cellular

scale; and (5) variability of all structural and compositional fea-

tures between individual cells in a population, including the plas-
ticity of its architectural organization and variations in the identi-

ties, amount, and locations of its components in different cells.

Ideally, data from both single cells and primary tissues will be

used to capture single-cell variability, as well as the influence

of native environment to fully understand cellular function. The

required toolbox for acquiring the necessary data is illustrated

in Figure 1.

Collecting the Building Blocks
The Architecture of a b Cell

X-ray and cryo-electron tomography are capable of determining

the ultrastructural architecture of b cells, each at different spatial

scales. X-ray tomograms can be used to extract information

regarding quantity, location, shape, and size of the nucleus,

Golgi, mitochondria, and other organelles. At a higher resolution,

cryo-electron tomography can elucidate the topology of mem-

branes and compartments within a cell, as well as reveal individ-

ual macromolecular complexes. Even the low-resolution elec-

tron tomograms taken a decade ago by serial sectioning of

high-pressure frozen and plastic-embedded cells showed a

surprisingly tight packing of insulin vesicles inside islet b cells

(Noske et al., 2008; Pfeifer et al., 2015). But with recent ad-

vances, including focused ion beam milling, direct detectors,

and phase plates, we can increase the resolution and contrast

of captured images so that even macromolecules can be visual-

ized (Danev and Baumeister, 2016; Rigort et al., 2012). Compu-

tational methods like template-based search (Beck et al., 2009;

Nickell et al., 2006) and template-free pattern mining (Xu et al.,

2015; Xu et al., 2011) are also under development for the detec-

tion of macromolecules in cellular tomograms. With further tech-

nological advances and increased resolution, the combination of

X-ray and cryo-electron tomographic data along with accurate

computational techniques will be key for creating spatial and

temporal distribution maps of the organelles and macromolec-

ular complexes of b cells under various environmental conditions

(Beck et al., 2009; Earnest et al., 2017, Ekman et al., 2017).

Genes and Proteins Expressed in b Cells

The other requirement for building a 3D cellular model is an

exhaustive list of the cell’s components for a given cell state

and point in time. This would include both RNA expression levels

and measures of protein abundance. Currently, only a limited

number of transcriptomics and even fewer proteomics datasets

are available for human pancreatic b cells. Previous analyses

were largely performed on model organisms, such as rodents

because human sample availability is limited. Studies with

human samples were mostly carried out on whole pancreatic

islets due to the difficulty of segregating b cells from islets,

limiting their utility in this context.

We compiled and curated the available transcriptomics data

for human pancreatic b cells and compared it with the sole avail-

able proteomics dataset of pancreatic b cells. This assessment

showed that the proteomics analysis represents a partial survey

of the b cell proteome. There are only 750 proteins included in the

proteomics dataset and 11,606 genes available via transcrip-

tomics corresponding to 11,700 proteins (Tables S1 and S2,

respectively). Many important proteins are missing from the pro-

teomics data, including G protein-coupled receptors (GPCRs)

e.g., glucagon-like peptide 1 receptor (GLP-1R) and other cell
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Figure 1. Tools for Deriving a Spatiotemporal Multi-scale Model of the Human Pancreatic b Cell
Methods of interest: Fluorescent imaging (super-resolution imaging, live imaging), X-ray tomography, cryo-electron tomography, genome architecture
mapping (Hi-C maps, fluorescent in situ hybridization, etc.), integrative structure modeling, protein structure determination (X-ray crystallography,
electron microscopy, nuclear magnetic resonance spectroscopy), omics (proteomics, transcriptomics, metabolomics, genomics, lipidomics), compu-
tational systems biology, and molecular graphics and packing tools. These methods collectively cover a wide range of scales from atomic to the cellular
level. Images were adapted from (Kalhor et al., 2011; Xu et al., 2015; Jeong et al., 2001; Liu et al., 2012; Sali et al., 2015; Song et al., 2017; Yang
et al., 2015).
membrane proteins that are known to be expressed in human

pancreatic b cells and instrumental in glucose and insulin

signaling. Hence, there is a need for global proteomic analyses

on human pancreatic b cells and single-cell RNA sequencing

(RNA-seq) for a more descriptive analysis and also to capture

the variability between individual cells.

Another crucial piece of information is the respective protein

copy numbers per cell, as well as the variability of the copy

numbers across individual cells. The relative abundance of pro-
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teins in a cell population can in principle be extracted from

proteomics datasets. However, this information is still lacking

due to the limited number of proteomics datasets available for

human b-cells. Recently, new techniques have been developed

for single-cell proteomics (Hughes et al., 2014; Budnik et al.,

2017; Su et al., 2017), but they have not yet been widely applied.

A complete model of a cell also requires similar quantitative in-

formation about metabolites, lipids, polysaccharides, and other

molecules, including their identities and relative concentrations.



Figure 2. Pancreatic b-Cell Protein Classes

and Structural Coverage
(A and B) Structural coverage of b-cell proteins
identified in analyses of (A) transcriptomic and (B)
proteomics data were categorized according
to the amount of available structural information.
The categories are experimental structures (PDB:
sequence coverage R 75%), reliable homology
models (SWISS-MODEL: sequence coverage R
75%, normalized-QMEAN R 0.6), disordered
proteins (D2P2: Disordered residues R 50%),
unknown (no reliable experimental structure, no
reliable homology model, fraction of disordered
residues < 50%). We used three transcriptomics
datasets (Blodgett et al., 2015; Li et al., 2016; Nica
et al., 2013) to create a combined list of genes
expressed in b cells. There were approximately
13,400 unique genes (with RPKM/FPKM/TPM
values R 1) in all three datasets combined. To
improve confidence, we limited the list to genes
present in at least two of the three datasets
(11,606 genes) for which we could identify 11,700

protein products in UniProtKB (The UniProt Consortium, 2017) (Table S1). For the proteomics dataset, we used the only available quantitative proteomics dataset
specific to human pancreatic b cells, which reported only 750 proteins (Brackeva et al., 2015) (Table S2). Disordered content information came from the
D2P2 database (Oates et al., 2013), and homology models were downloaded from SWISS-MODEL (Kiefer et al., 2009).
Partial data are available from omics datasets for rodent cells or

islets and human islets (e.g., Gooding et al., 2016; Huang and

Joseph, 2012; Pearson et al., 2016; Roomp et al., 2017;

Wallace et al., 2013), but not for isolated human b cells. A com-

plete list of the components of the cell is necessary to begin to

understand what processes occur inside a cell as a result of

the interactions and reactions of these components.

Protein Structures in Human Pancreatic b Cells

Because our overall focus is on building multi-scale 3D models

of b cells, we need not only the list and relative abundance

of component proteins, but also their atomic structures. We

analyzed how many atomic protein structures are available for

our list of 11,700 b-cell proteins. As of March 1, 2018, only

�28% of the proteins had either an experimental structure in

the PDB (Berman et al., 2000) (sequence coverage R 75%) or

a reliable homology model in SWISS-MODEL (Bienert et al.,

2016; Benkert et al., 2008) (sequence coverageR 75%, normal-

ized-QMEANR 0.6). 10% of proteins are structurally disordered

(fraction of disordered residues R 50%) (Oates et al., 2013),

while almost 62% of proteins have no reliable 3D structures

(Figure 2). This lack of structural knowledge is even more pro-

nounced when considering protein complexes, which have not

yet been exhaustively identified, let alone structurally character-

ized (Im et al., 2016; Mosca et al., 2013).

The scarcity of omics data, as well as the limited number of

reliable structures, presents a great opportunity for discovery

and for a community effort to contribute information about

human b cells under various conditions.

Mathematical Models

As mentioned earlier, no single approach or representation will

suffice. A number of modeling approaches and/or models

should be coupled together for whole-cell modeling. There are

many published mathematical models of functional processes

in pancreatic b cells using ODEs, including modeling of Ca+2

flux (Fridlyand et al., 2003), electrophysiological responses

(Riz et al., 2014), and insulin secretory pathway (Fridlyand and

Philipson, 2016; Jiang et al., 2007; Topp et al., 2000). However,
tuning of these models is required for human datasets, as

most of these models were constructed using datasets from

rodent cell lines and islets (Babtie and Stumpf, 2017).

Putting the Pieces Together
Coupling the structural information of cell architecture and

experimentally derived spatial distribution of cell components

with mathematical models is an important aspect of the whole-

cell model. Platforms like V-Cell (Moraru et al., 2008) and

M-Cell (Stiles et al., 1996) already integrate such spatial informa-

tion with mathematical modeling. V-Cell can simulate various

molecular mechanisms using ordinary and/or partial differential

equations (ODEs) in the context of compartments, whereas

M-Cell can simulate cellular environments via 3D reaction-

diffusion using Monte-Carlo methods. Other studies have also

considered spatial aspects. For example, Earnest et al. (2017)

extracted cell geometry from cryo-electron tomography experi-

ments and used stochastic simulations to study the effect of

cell structure on reaction network. Other studies have relied on

fluorescent images to extract ultrastructure and spatial distribu-

tion of proteins for cell modeling using V-Cell or M-Cell (Murphy,

2012, 2016). These methods do not represent cellular environ-

ments, including proteins, lipids, and macromolecular assem-

blies, as three-dimensional structures. M-Cell represents com-

ponents as diffusing particles and V-Cell models component

concentrations via ODEs. In the future, new versions of these

modeling platforms that include 3D representations of compo-

nents and physical interactions are likely to be applied to larger

and more complex systems, such as human b cells.

Computing Resources for Whole-Cell Modeling
One reason why an effort to model the cell is timely is that the

required computational capabilities seem to be within reach.

As already discussed, it is highly likely that a variety of different

types of modeling are needed to construct a model of the

cell. Thus, different types of computing architectures will also

be required, at least initially. These architectures will include
Cell 173, March 22, 2018 15



special-purpose hardware such as the Anton supercomputer

for MD simulations (Miao et al., 2015), Graphics Processing

Units (GPUs) for image processing (Zheng et al., 2011), general

purpose parallel computer clusters for modeling that requires

significant data bandwidth (Alber et al., 2007), and finally, cloud

computing for modeling with relatively low volume of data trans-

fer among the central repository and individual compute nodes.

Large-scale recruitment of personal computers on the Internet,

as in Folding@Home (Folding@home, 2017), may also be helpful.

Some computing capabilities of each one of these types are

already available. As the modeling methods evolve and as it

becomes more clear what types of modeling are required, it

will also be beneficial to construct increasingly specialized and

thus efficient computing architectures, perhaps culminating in

a special-purpose computer for simulating cells. Just as the

need to solve the phase problem in crystallography motivated

the development of early computer hardware (Kendrew, 1963),

we anticipate that the goal of modeling whole cells will also

attract computer hardware and software engineers with a

commensurate support from governments, philanthropic foun-

dations, and industry partnerships. It is encouraging that a

number of government institutions have already recognized the

need for increased computing for biology in general and are

investing in it, e.g., the Cloud Credits Models by NIH (Common-

fund.nih.gov, 2017) and The European Cloud Initiative (Digital

Single Market, 2017).

In addition to computing hardware for modeling, the modeling

efforts will also require resources for archiving and disseminating

the data and models. It is likely that this functionality will be best

achieved through a federated archive of repositories. One such

arrangement is envisioned for integrative structures of biological

macromolecules and corresponding data for the integrative/

hybrid methods initiative of wwPDB (Burley et al., 2017; Sali

et al., 2015). The Biostudies resource (McEntyre et al., 2015) at

European Bioinformatics Institute (EBI) may provide a conve-

nient portal to the participating archives. Therefore, it is conceiv-

able that the common goal of modeling cells will encourage the

communities that generate the data to come together and define

appropriate standards for archiving, annotating, validating, and

disseminating their data to provide maximal use of the accumu-

lated results.

Value of Whole-Cell Model
Accuratemulti-scale models will contribute to our understanding

of how the cell functions, how it can be modulated, and how it

evolved. Models of whole cells will lead to innovative ways of

designing therapeutics, just as structures of individual proteins

often facilitate rational, structure-based drug discovery. Drug

design efforts have focused at the molecular level on isolated

proteins for decades. It is only logical to move toward designing

drugs by modeling their effect at the cellular level. Whole-cell

models could help in target selection for drug discovery by pre-

dicting a potential drug target’s impact on modulating various

cell functions. In addition, these models could also provide a

basis for rational-based cell therapies. There are a rising number

of cell therapy clinical trials but only one recently approved cell

therapy (Golubovskaya et al., 2017). There is therefore scope

for models to help improve this outlook. In the case of diabetes,
16 Cell 173, March 22, 2018
a major area of investigation for improving therapy is focused

on generating healthy b cells in vitro. Thus, studies focused on

holistically understanding b cells are a clear necessity. Efforts

toward deriving b cells from iPSCs and implanting healthy b cells

in patients are active areas of research and provide many chal-

lenges (Millman et al., 2016; Rezania et al., 2014). Accurate

b-cell models can potentially be used to inform the design of

these approaches for therapy (Purcell et al., 2013).

Whole-cell models may also provide new insights about the

molecular links from genotype to phenotype and shed light on

more complex emergent properties that arise from molecular

interactions, such as coordinated insulin release from clusters

of b cells. Multi-scale models will also provide a way to compre-

hend heterogeneous data from a vast array of complementary

experiments and push computational limits so that complex

biological questions can be answered. Many of these points

have also been considered in other contexts (Betts and Russell,

2007; Carrera and Covert, 2015; Horwitz, 2016; Horwitz and

Johnson, 2017; Macklin et al., 2014; Roberts, 2014). One spe-

cific outcome of an initial focus on b cells would be establish-

ment of a platform consisting of the basic pipeline, framework,

toolbox, methods, approaches, experimental and computa-

tional infrastructure, etc. that could be then extended to other

cell types. Beyond that, it’s important to think about how these

individual cells integrate into tissues and such complex struc-

tures could become an additional target for modeling efforts.

To take the long view, development of whole-cell and eventually

tissue-scale models will allow for deeper insights into a myriad

of health conditions, including diseases like diabetes and

cancer, each of which affects hundreds of millions of people

worldwide.

Concluding Remarks: A Call to Arms
The scale of many challenges in biology and biomedicine is

evolving, prompting corresponding changes toward increased

collaboration and communication among scientists. To pursue

grand challenges more systematically and strategically, it is

becoming increasingly common to adopt a community-wide

approach because these undertakings require both a large effort

and varied expertise in diverse fields. Community-wide collabo-

rations are the future of science and are typically structured to

allow for rapid sharing of information and tools. Currently, there

are many large collaborations around the world, including the

Cancer Cell Map Initiative (Krogan et al., 2015), Chan Zuckerberg

Biohub (https://www.czbiohub.org/), Allen Brain Institute, 4D

Nucleome (Dekker et al., 2017), and European Brain Project

(Amunts et al., 2016) to name a few. These efforts will develop

new technologies and generate data leading to new discoveries,

which in turn will change the way we think about grand chal-

lenges in biology.

There are many facets of whole-cell modeling that will require

a community effort. For example, how these whole-cell models

should be built will remain unclear until the field collectively starts

working toward this ambitious goal and navigates success and

failures. It is insufficient for themodelers to simply work together.

Rather the modelers, experimentalists, hardware and software

developers, and potentially entire institutions must unite in these

efforts. This approach will also be useful for developing new

https://www.czbiohub.org/


computing technologies that will extend the power of whole-cell

modeling. As more and more data are collected, the cell types,

conditions, and archiving process can be standardized and

streamlined to facilitate these efforts. Additionally, large collabo-

rations will be necessary to collect and integrate disparate data,

including transcriptomics, proteomics, cryo-electron tomogra-

phy, X-ray tomography, live-cell imaging, cryo-electron micro-

scopy, X-ray crystallography, and single-particle analysis, under

similar conditions for capturing different dimensions of the same

state of a cell (Figure 1).

Now is the time to take advantage of the technological ad-

vancements in each of these fields to build 3D models of human

pancreatic b cells, thereby providing a method for testing and

developing new therapies targeting diabetes. The development

of these models will also provide a prototype method to examine

and understand other cell types, tissues, and the human body.
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