
Modeling	
 of	
 proteins	
 and	
 their	

assemblies	
 with	
 the	
 Integrative	

Modeling	
 Platform	

	

Contributed	
 by	
 Benjamin	
 Webb,	
 Keren	
 Lasker,	
 Dina	
 Schneidman-­‐Duhovny,	
 Elina	

Tjioe,	
 Jeremy	
 Phillips,	
 Seung	
 Joong	
 Kim,	
 Javier	
 Velázquez-­‐Muriel,	
 Daniel	
 Russel,	
 and	

Andrej	
 Sali,	
 Department	
 of	
 Bioengineering	
 and	
 Therapeutic	
 Sciences,	
 Department	
 of	

Pharmaceutical	
 Chemistry,	
 and	
 California	
 Institute	
 for	
 Quantitative	
 Biosciences	

(QB3),	
 University	
 of	
 California	
 San	
 Francisco,	
 San	
 Francisco,	
 CA	
 94158,	
 USA.	

Abstract	

To	
 understand	
 the	
 workings	
 of	
 the	
 living	
 cell,	
 we	
 need	
 to	
 characterize	
 protein	

assemblies	
 that	
 constitute	
 the	
 cell	
 (for	
 example,	
 the	
 ribosome,	
 26S	
 proteasome,	
 and	

the	
 nuclear	
 pore	
 complex).	
 	
 A	
 reliable	
 high-­‐resolution	
 structural	
 characterization	
 of	

these	
 assemblies	
 is	
 frequently	
 beyond	
 the	
 reach	
 of	
 current	
 experimental	
 methods,	

such	
 as	
 X-­‐ray	
 crystallography,	
 NMR	
 spectroscopy,	
 electron	
 microscopy,	
 footprinting,	

chemical	
 cross-­‐linking,	
 FRET	
 spectroscopy,	
 small	
 angle	
 X-­‐ray	
 scattering,	
 and	

proteomics.	
 However,	
 the	
 information	
 garnered	
 from	
 different	
 methods	
 can	
 be	

combined	
 and	
 used	
 to	
 build	
 computational	
 models	
 of	
 the	
 assembly	
 structures	
 that	

are	
 consistent	
 with	
 all	
 of	
 the	
 available	
 datasets.	
 Here,	
 we	
 describe	
 a	
 protocol	
 for	
 this	

integration,	
 whereby	
 the	
 information	
 is	
 converted	
 to	
 a	
 set	
 of	
 spatial	
 restraints	
 and	
 a	

variety	
 of	
 optimization	
 procedures	
 can	
 be	
 used	
 to	
 generate	
 models	
 that	
 satisfy	
 the	

restraints	
 as	
 well	
 as	
 possible.	
 These	
 generated	
 models	
 can	
 then	
 potentially	
 inform	

about	
 the	
 precision	
 and	
 accuracy	
 of	
 structure	
 determination,	
 the	
 accuracy	
 of	
 the	

input	
 datasets,	
 and	
 further	
 data	
 generation.	
 We	
 also	
 demonstrate	
 the	
 Integrative	

Modeling	
 Platform	
 (IMP)	
 software,	
 which	
 provides	
 the	
 necessary	
 computational	

framework	
 to	
 implement	
 this	
 protocol,	
 and	
 several	
 applications	
 for	
 specific	
 use	

cases.	

Key	
 Words	

Integrative	
 modeling,	
 protein	
 structure	
 modeling,	
 macromolecular	
 assemblies	

proteomics,	
 X-­‐ray	
 crystallography,	
 electron	
 microscopy,	
 SAXS.	

Introduction	

To	
 understand	
 the	
 function	
 of	
 a	
 macromolecular	
 assembly,	
 we	
 must	
 know	
 the	

structure	
 of	
 its	
 components	
 and	
 the	
 interactions	
 between	
 them(1-­‐4).	
 However,	

direct	
 experimental	
 determination	
 of	
 such	
 a	
 structure	
 is	
 generally	
 rather	
 difficult.	

While	
 multiple	
 methods	
 do	
 exist	
 for	
 structure	
 determination,	
 each	
 has	
 a	
 drawback.	

For	
 example,	
 crystals	
 suitable	
 for	
 X-­‐ray	
 crystallography	
 cannot	
 always	
 be	
 produced,	

especially	
 for	
 large	
 assemblies	
 of	
 multiple	
 components(5).	
 Cryo-­‐electron	

microscopy	
 (cryo-­‐EM),	
 on	
 the	
 other	
 hand,	
 can	
 be	
 used	
 to	
 study	
 large	
 assemblies,	
 but	

it	
 is	
 generally	
 limited	
 to	
 worse	
 than	
 atomic	
 resolution(6-­‐8).	
 Finally,	
 proteomics	

techniques,	
 such	
 as	
 yeast	
 two-­‐hybrid(9)	
 and	
 mass	
 spectrometry(10),	
 yield	

information	
 about	
 the	
 interactions	
 between	
 proteins,	
 but	
 not	
 the	
 positions	
 of	
 these	

proteins	
 within	
 the	
 assembly	
 or	
 the	
 structures	
 of	
 the	
 proteins	
 themselves.	

Integrative	
 modeling	

One	
 approach	
 to	
 solve	
 the	
 structures	
 of	
 proteins	
 and	
 their	
 assemblies	
 is	
 by	

integrative	
 modeling,	
 in	
 which	
 information	
 from	
 different	
 methods	
 is	
 considered	

simultaneously	
 during	
 the	
 modeling	
 procedure.	
 The	
 approach	
 is	
 briefly	
 outlined	

here	
 for	
 clarity;	
 it	
 has	
 been	
 covered	
 in	
 greater	
 detail	
 previously(11-­‐17).	
 These	

methods	
 can	
 include	
 experimental	
 techniques,	
 such	
 as	
 X-­‐ray	
 crystallography(5),	

nuclear	
 magnetic	
 resonance	
 (NMR)	
 spectroscopy(18-­‐20),	
 electron	
 microscopy	

(EM)(6-­‐8),	
 footprinting(21,	
 22),	
 chemical	
 cross-­‐linking(23-­‐26),	
 FRET	

spectroscopy(27),	
 small	
 angle	
 X-­‐ray	
 scattering	
 (SAXS)(28,	
 29),	
 and	
 proteomics(30).	

Theoretical	
 sources	
 of	
 information	
 about	
 the	
 assembly	
 can	
 also	
 be	
 incorporated,	

such	
 as	
 template	
 structures	
 used	
 in	
 comparative	
 modeling(31,	
 32),	
 scoring	

functions	
 used	
 in	
 molecular	
 docking(33),	
 as	
 well	
 as	
 other	
 statistical	
 preferences(34,	

35)	
 and	
 physics-­‐based	
 energy	
 functions(36-­‐38).	
 Different	
 methods	
 yield	

information	
 about	
 different	
 aspects	
 of	
 structure	
 and	
 at	
 different	
 levels	
 of	
 resolution.	

For	
 example,	
 atomic	
 resolution	
 structures	
 may	
 be	
 available	
 for	
 individual	
 proteins	

in	
 the	
 assembly;	
 in	
 other	
 cases,	
 only	
 their	
 approximate	
 size,	
 approximate	
 shape,	
 or	

interactions	
 with	
 other	
 proteins	
 may	
 be	
 known.	
 Thus,	
 integrative	
 modeling	

techniques	
 generate	
 models	
 at	
 the	
 resolution	
 that	
 is	
 consistent	
 with	
 the	
 input	

information.	
 An	
 example	
 of	
 a	
 simple	
 integrative	
 approach	
 is	
 building	
 a	
 pseudo-­‐
atomic	
 model	
 of	
 a	
 large	
 assembly,	
 such	
 as	
 the	
 26S	
 proteasome(39,	
 40),	
 by	
 fitting	

atomic	
 structures	
 of	
 its	
 subunits	
 predicted	
 by	
 comparative	
 protein	
 structure	

modeling	
 into	
 a	
 density	
 map	
 determined	
 by	
 cryo-­‐EM(41,	
 42).	

	

The	
 integrative	
 modeling	
 procedure	
 used	
 here(12,	
 17)	
 is	
 shown	
 in	
 Figure	
 1.	
 The	

first	
 step	
 in	
 the	
 procedure	
 is	
 to	
 collect	
 all	
 experimental,	
 statistical,	
 and	
 physical	

information	
 that	
 describes	
 the	
 system	
 of	
 interest.	
 A	
 suitable	
 representation	
 for	
 the	

system	
 is	
 then	
 chosen	
 and	
 the	
 available	
 information	
 is	
 translated	
 to	
 a	
 set	
 of	
 spatial	

restraints	
 on	
 the	
 components	
 of	
 the	
 system.	
 For	
 example,	
 in	
 the	
 case	
 of	

characterizing	
 the	
 molecular	
 architecture	
 of	
 the	
 nuclear	
 pore	
 complex	
 (NPC)(12,	

13),	
 atomic	
 structures	
 of	
 the	
 protein	
 subunits	
 were	
 not	
 available,	
 but	
 the	

approximate	
 size	
 and	
 shape	
 of	
 each	
 protein	
 was	
 known,	
 so	
 each	
 protein	
 was	

represented	
 as	
 a	
 ‘string’	
 of	
 connected	
 spheres	
 consistent	
 with	
 the	
 protein	
 size	
 and	

shape.	
 A	
 simple	
 distance	
 between	
 two	
 proteins	
 can	
 be	
 restrained	
 by	
 a	
 harmonic	

function	
 of	
 the	
 distance,	
 while	
 the	
 fit	
 of	
 a	
 model	
 into	
 a	
 3D	
 cryo-­‐EM	
 density	
 map	
 can	

be	
 restrained	
 by	
 the	
 cross-­‐correlation	
 between	
 the	
 map	
 and	
 the	
 computed	
 density	

of	
 the	
 model.	
 Next,	
 the	
 spatial	
 restraints	
 are	
 summed	
 into	
 a	
 single	
 scoring	
 function	

that	
 can	
 be	
 sampled	
 using	
 a	
 variety	
 of	
 optimizers,	
 such	
 as	
 conjugate	
 gradients,	

molecular	
 dynamics,	
 Monte	
 Carlo,	
 and	
 inference-­‐based	
 methods(42).	
 This	
 sampling	

generates	
 an	
 ensemble	
 of	
 models	
 that	
 are	
 as	
 consistent	
 with	
 the	
 input	
 information	

as	
 possible.	
 In	
 the	
 final	
 step,	
 the	
 ensemble	
 is	
 analyzed	
 to	
 determine,	
 for	
 example,	

whether	
 all	
 of	
 the	
 restraints	
 have	
 been	
 satisfied	
 or	
 certain	
 subsets	
 of	
 data	
 conflict	

with	
 others.	
 The	
 analysis	
 may	
 generate	
 a	
 consensus	
 model,	
 such	
 as	
 the	
 probability	

density	
 for	
 the	
 location	
 of	
 each	
 subunit	
 in	
 the	
 assembly.	

Integrative	
 Modeling	
 Platform	

We	
 have	
 developed	
 the	
 Integrative	
 Modeling	
 Platform	
 (IMP)	
 software	

(http://salilab.org/imp/)(12-­‐15)	
 to	
 implement	
 the	
 integrative	
 modeling	
 procedure	

described	
 above.	
 Integrative	
 modeling	
 problems	
 vary	
 in	
 size	
 and	
 scope,	
 and	
 thus	

IMP	
 offers	
 a	
 great	
 deal	
 of	
 flexibility	
 and	
 several	
 abstraction	
 levels	
 as	
 part	
 of	
 a	
 multi-­‐
tiered	
 platform	
 (Figure	
 2).	
 At	
 the	
 lowest	
 level,	
 IMP	
 provides	
 building	
 blocks	
 and	

tools	
 to	
 allow	
 methods	
 developers	
 to	
 convert	
 data	
 from	
 new	
 experimental	
 methods	

into	
 spatial	
 restraints,	
 to	
 implement	
 optimization	
 and	
 analysis	
 techniques,	
 and	
 to	

implement	
 an	
 integrative	
 modeling	
 procedure	
 from	
 scratch;	
 the	
 developer	
 can	
 use	

the	
 C++	
 and	
 Python	
 programming	
 languages	
 to	
 achieve	
 these	
 tasks.	
 Higher	

abstraction	
 levels,	
 designed	
 to	
 be	
 used	
 by	
 IMP	
 users	
 with	
 no	
 programming	

experience,	
 provide	
 less	
 flexible	
 but	
 more	
 user-­‐friendly	
 applications	
 to	
 handle	

specific	
 tasks,	
 such	
 as	
 fitting	
 of	
 proteins	
 into	
 a	
 density	
 map	
 of	
 their	
 assembly,	
 or	

comparing	
 a	
 structure	
 with	
 the	
 corresponding	
 SAXS	
 profile.	
 IMP	
 is	
 freely	
 available	

as	
 open	
 source	
 software	
 under	
 the	
 terms	
 of	
 the	
 GNU	
 Lesser	
 General	
 Public	
 License	

(LGPL).	
 Integrative	
 modeling,	
 due	
 to	
 its	
 use	
 of	
 multiple	
 sources	
 of	
 information,	
 is	

often	
 a	
 highly	
 collaborative	
 venture,	
 and	
 thus	
 benefits	
 from	
 openness	
 of	
 the	

modeling	
 protocols	
 and	
 the	
 software	
 itself.	

Materials	

To	
 follow	
 the	
 examples	
 in	
 this	
 discussion,	
 both	
 the	
 IMP	
 software	
 itself	
 and	
 a	
 set	
 of	

suitable	
 input	
 files	
 are	
 needed.	
 The	
 IMP	
 software	
 can	
 be	
 downloaded	
 from	

http://salilab.org/imp/download.html	
 and	
 is	
 available	
 in	
 binary	
 form	
 for	
 most	

common	
 machine	
 types	
 and	
 operating	
 systems;	
 alternatively,	
 it	
 can	
 be	
 rebuilt	
 from	

the	
 source	
 code.	
 The	
 example	
 files	
 can	
 be	
 downloaded	
 from	

http://salilab.org/imp/tutorials/basic.zip.	

Methods	

The	
 IMP	
 C++/Python	
 library	

The	
 core	
 of	
 IMP	
 is	
 the	
 C++/Python	
 library,	
 which	
 provides	
 all	
 of	
 the	
 necessary	

components,	
 as	
 a	
 set	
 of	
 classes	
 and	
 modules,	
 to	
 allow	
 methods	
 developers	
 to	
 build	

an	
 integrative	
 modeling	
 protocol	
 from	
 scratch.	
 Most	
 users	
 of	
 IMP	
 will	
 use	
 one	
 of	
 the	

higher-­‐level	
 interfaces	
 described	
 in	
 later	
 sections;	
 however,	
 we	
 will	
 briefly	

demonstrate	
 this	
 library	
 here	
 to	
 illustrate	
 the	
 core	
 IMP	
 concepts	
 that	
 these	

interfaces	
 rely	
 on.	

	

The	
 IMP	
 library	
 is	
 split	
 into	
 a	
 kernel	
 and	
 a	
 set	
 of	
 extension	
 modules	
 (Table	
 1).	
 The	

kernel	
 is	
 a	
 small	
 collection	
 of	
 classes	
 that	
 define	
 the	
 storage	
 of	
 information	
 about	
 the	

system	
 and	
 the	
 main	
 interfaces	
 used	
 to	
 interact	
 with	
 that	
 information.	
 The	

information	
 is	
 stored	
 in	
 a	
 set	
 of	
 Particle	
 objects;	
 these	
 are	
 flexible	
 and	
 abstract	

data	
 containers,	
 able	
 to	
 hold	
 whatever	
 information	
 is	
 necessary	
 to	
 represent	
 the	

system.	
 For	
 example,	
 a	
 given	
 Particle	
 may	
 be	
 assigned	
 x,	
 y,	
 and	
 z	
 attributes	
 to	

store	
 point	
 coordinates,	
 another	
 may	
 be	
 assigned	
 x,	
 y,	
 z,	
 and	
 a	
 radius	
 to	
 represent	
 a	

sphere,	
 and	
 another	
 may	
 contain	
 two	
 pointers	
 to	
 other	
 Particles	
 to	
 represent	
 a	

bond	
 or	
 another	
 relationship.	
 The	
 kernel	
 defines	
 only	
 the	
 abstract	
 interfaces	
 to	

manipulate	
 the	
 data	
 in	
 the	
 Particles,	
 but	
 does	
 not	
 provide	
 implementations;	

these	
 are	
 provided	
 in	
 the	
 extension	
 modules.	
 For	
 example,	
 it	
 merely	
 defines	
 a	

Restraint	
 as	
 any	
 object	
 that,	
 given	
 a	
 set	
 of	
 Particles,	
 returns	
 a	
 score,	
 and	
 an	

Optimizer	
 as	
 an	
 object	
 that	
 changes	
 the	
 attributes	
 of	
 all	
 Particles	
 to	
 yield	
 an	

optimized	
 score	
 over	
 all	
 restraints.	
 It	
 is	
 the	
 core	
 module	
 that	
 provides,	
 for	
 example,	

a	
 concrete	
 Restraint	
 acting	
 like	
 a	
 harmonic	
 ‘spring’	
 between	
 two	
 point-­‐like	

Particles,	
 an	
 Optimizer	
 that	
 utilizes	
 the	
 conjugate	
 gradients	
 minimization	

method,	
 and	
 much	
 other	
 functionality.	

	

IMP	
 includes	
 a	
 variety	
 of	
 	
 modules	
 (Table	
 1).	
 Some	
 modules	
 provide	
 the	
 basic	

building	
 blocks	
 needed	
 to	
 construct	
 a	
 protocol,	
 such	
 as	
 the	
 core	
 module	
 that	

provides	
 functionality	
 including	
 harmonic	
 restraints,	
 point-­‐like	
 and	
 spherical	

particles,	
 and	
 basic	
 optimizers,	
 and	
 the	
 atom	
 module	
 that	
 provides	
 atom-­‐like	

particles,	
 a	
 molecular	
 dynamics	
 optimizer,	
 etc.	
 	
 Other	
 modules	
 provide	
 support	
 for	

specific	
 types	
 of	
 experimental	
 data	
 or	
 specialized	
 optimizers,	
 such	
 as	
 the	
 em	
 module	

that	
 supports	
 electron	
 microscopy	
 data,	
 and	
 the	
 domino	
 module	
 that	
 provides	
 an	

inference-­‐based	
 divide-­‐and-­‐conquer	
 optimizer.	
 IMP	
 is	
 designed	
 so	
 that	
 it	
 is	
 easy	
 to	

add	
 a	
 new	
 module;	
 for	
 example,	
 a	
 developer	
 working	
 on	
 incorporating	
 data	
 from	
 a	

new	
 experimental	
 technique	
 may	
 add	
 a	
 new	
 IMP	
 module	
 that	
 translates	
 the	
 data	

from	
 this	
 technique	
 into	
 spatial	
 restraints.	

	

IMP	
 is	
 primarily	
 implemented	
 in	
 C++	
 for	
 speed;	
 however,	
 each	
 of	
 the	
 classes	
 is	

wrapped	
 so	
 that	
 it	
 can	
 also	
 be	
 used	
 from	
 Python.	
 	
 A	
 protocol	
 can	
 thus	
 be	
 developed	

from	
 scratch	
 by	
 simply	
 writing	
 a	
 Python	
 script.	
 As	
 an	
 example,	
 we	
 will	
 first	
 look	
 at	

the	
 script	
 simple.py	
 in	
 the	
 ‘library’	
 subdirectory	
 of	
 the	
 zipfile	
 downloaded	

above	
 (Figure	
 3).	

	

In	
 the	
 first	
 part	
 of	
 the	
 script,	
 the	
 IMP	
 kernel	
 and	
 the	
 algebra	
 and	
 core	
 modules	

are	
 loaded,	
 as	
 regular	
 Python	
 modules.	
 We	
 then	
 proceed	
 to	
 set	
 up	
 the	

representation	
 of	
 the	
 system,	
 using	
 the	
 Model	
 and	
 Particle	
 classes	
 defined	
 in	
 the	

kernel.	
 The	
 Model	
 class	
 represents	
 the	
 entire	
 system,	
 and	
 keeps	
 track	
 of	
 all	
 the	

Particles,	
 Restraints,	
 and	
 links	
 between	
 them.	
 As	
 mentioned	
 earlier,	
 the	

Particle	
 class	
 is	
 a	
 flexible	
 container,	
 but	
 here	
 we	
 give	
 the	
 two	
 Particles	
 (p1	

and	
 p2)	
 point-­‐like	
 attributes	
 using	
 the	
 XYZ	
 class	
 defined	
 in	
 the	
 core	
 module.	
 This	

XYZ	
 class	
 is	
 known	
 as	
 a	
 ‘decorator’;	
 it	
 does	
 not	
 create	
 a	
 new	
 Particle,	
 but	
 merely	

presents	
 a	
 new	
 interface	
 to	
 an	
 existing	
 Particle,	
 in	
 this	
 case	
 a	
 point-­‐like	
 one.	

(Multiple	
 decorators	
 can	
 be	
 applied	
 to	
 a	
 single	
 Particle;	
 for	
 example,	
 an	
 atom-­‐
like	
 Particle	
 could	
 be	
 treated	
 like	
 a	
 point,	
 a	
 sphere,	
 an	
 electrically	
 charged	

particle,	
 or	
 an	
 atom.)	
 We	
 can	
 then	
 treat	
 each	
 Particle	
 like	
 a	
 point	
 using	
 methods	

in	
 the	
 XYZ	
 class,	
 here	
 setting	
 the	
 x,	
 y,	
 and	
 z	
 coordinates	
 to	
 a	
 provided	
 vector.	

	

In	
 the	
 second	
 part,	
 we	
 set	
 up	
 the	
 scoring	
 of	
 the	
 system.	
 We	
 add	
 two	
 restraints	
 to	
 the	

Model,	
 one	
 of	
 which	
 harmonically	
 restrains	
 p1	
 to	
 the	
 origin	
 and	
 the	
 other	
 of	
 which	

restrains	
 p1	
 and	
 p2	
 to	
 be	
 distance	
 5.0	
 apart.	
 	
 (IMP	
 does	
 not	
 enforce	
 any	
 units	
 of	

distance;	
 however,	
 some	
 physical	
 optimizers,	
 such	
 as	
 molecular	
 dynamics,	
 expect	

distances	
 to	
 be	
 in	
 angstroms.)	
 Note	
 that	
 the	
 core	
 module	
 provides	
 suitable	
 building	

block	
 restraints	
 for	
 this	
 purpose.	
 In	
 the	
 first	
 case,	
 we	
 use	
 the	

SingletonRestraint	
 class	
 that	
 creates	
 a	
 restraint	
 on	
 a	
 single	
 particle	
 (p1).	
 It	

delegates	
 the	
 task	
 of	
 actually	
 scoring	
 the	
 particle,	
 however,	
 to	
 another	
 class	
 called	

SingletonScore	
 that	
 is	
 simply	
 given	
 the	
 Particle	
 and	
 asked	
 for	
 its	
 score.	
 In	

this	
 example,	
 we	
 use	
 a	
 type	
 of	
 SingletonScore	
 called	
 a	

DistanceToSingletonScore	
 that	
 calculates	
 the	
 Cartesian	
 distance	
 between	
 the	

point-­‐like	
 Particle	
 and	
 a	
 fixed	
 point	
 (in	
 this	
 case	
 the	
 origin),	
 and	
 again	
 delegates	

the	
 task	
 of	
 scoring	
 the	
 distance	
 to	
 another	
 class,	
 a	
 UnaryFunction.	
 In	
 this	
 case,	

the	
 UnaryFunction	
 is	
 a	
 simple	
 harmonic	
 function	
 with	
 a	
 mean	
 of	
 zero.	
 	
 Thus,	
 the	

Particle	
 p1	
 is	
 harmonically	
 restrained	
 to	
 be	
 at	
 the	
 origin.	
 The	
 second	
 restraint	
 is	

set	
 up	
 similarly;	
 however,	
 in	
 this	
 case	
 the	
 restraints	
 and	
 scores	
 act	
 on	
 a	
 pair	
 of	

particles.	
 This	
 building	
 block	
 functionality	
 makes	
 it	
 easy	
 to	
 add	
 a	
 new	
 type	
 of	

restraint;	
 for	
 example,	
 to	
 implement	
 a	
 van	
 der	
 Waals	
 potential	
 it	
 is	
 only	
 necessary	
 to	

provide	
 a	
 suitable	
 PairScore	
 that	
 scores	
 a	
 single	
 pair	
 of	
 particles;	
 the	

functionality	
 for	
 efficiently	
 enumerating	
 all	
 pairs	
 of	
 such	
 particles	
 is	
 already	

provided	
 in	
 IMP.	

	

Finally,	
 in	
 the	
 third	
 part	
 of	
 the	
 script,	
 we	
 tell	
 IMP	
 that	
 it	
 can	
 move	
 the	
 two	
 point-­‐like	

particles,	
 and	
 to	
 build	
 a	
 system	
 configuration	
 that	
 is	
 consistent	
 with	
 all	
 the	

restraints.	
 In	
 this	
 example,	
 a	
 simple	
 conjugate	
 gradients	
 optimization	
 is	
 used.	

	

The	
 script	
 is	
 a	
 regular	
 Python	
 script.	
 Thus,	
 provided	
 that	
 both	
 IMP	
 and	
 Python	
 are	

installed,	
 it	
 can	
 be	
 run	
 on	
 any	
 machine,	
 by	
 typing	
 on	
 a	
 command	
 line,	
 in	
 the	
 same	

directory	
 as	
 the	
 script:	

	

python simple.py
	

The	
 script	
 will	
 run	
 the	
 optimization,	
 printing	
 IMP	
 log	
 messages	
 as	
 it	
 goes,	
 and	
 finally	

print	
 the	
 coordinates	
 of	
 the	
 optimized	
 particles.	

	

IMP	
 is	
 designed	
 such	
 that	
 the	
 C++	
 and	
 Python	
 interfaces	
 are	
 similar	
 to	
 use.	
 Thus,	

IMP	
 applications	
 or	
 protocols	
 can	
 be	
 constructed	
 either	
 in	
 C++	
 or	
 in	
 Python,	
 and	

new	
 IMP	
 functionality	
 (for	
 example,	
 new	
 types	
 of	
 Restraint)	
 can	
 be	
 implemented	

in	
 either	
 language.	
 For	
 a	
 comparison,	
 please	
 inspect	
 the	
 simple.cpp	
 file.	
 This	
 file	

implements	
 the	
 same	
 protocol	
 as	
 the	
 first	
 part	
 of	
 simple.py	
 but	
 uses	
 the	
 IMP	
 C++	

classes	
 rather	
 than	
 their	
 Python	
 equivalents.	
 The	
 two	
 programs	
 are	
 very	
 similar;	
 the	

only	
 differences	
 are	
 in	
 the	
 language	
 syntax	
 (eg,	
 the	
 Python	
 ‘import IMP’	
 translates	

to	
 ‘#include <IMP.h>’	
 in	
 C++)	
 and	
 in	
 memory	
 handling	
 (Python	
 handles	

memory	
 automatically;	
 in	
 C++,	
 memory	
 handling	
 must	
 be	
 done	
 explicitly	
 by	
 using	

the	
 IMP::Pointer	
 class,	
 which	
 adds	
 reference	
 counting	
 to	
 automatically	
 clean	
 up	

after	
 IMP	
 objects	
 when	
 they	
 are	
 not	
 used	
 anymore).	

restrainer:	
 a	
 high-­‐level	
 interface	
 for	
 integrative	
 modeling	

The	
 IMP	
 C++/Python	
 library	
 offers	
 a	
 great	
 deal	
 of	
 flexibility	
 in	
 setting	
 up	
 the	
 system	

and	
 restraints.	
 However,	
 in	
 many	
 cases,	
 a	
 simpler	
 interface	
 to	
 solve	
 modeling	

problems	
 is	
 preferable.	
 The	
 restrainer	
 IMP	
 module	
 is	
 one	
 such	
 interface	
 that	

simplifies	
 the	
 set	
 up	
 of	
 a	
 complex	
 system,	
 generating	
 the	
 system	
 representation	
 and	

restraints	
 from	
 a	
 pair	
 of	
 XML	
 files.	
 Optimization,	
 however,	
 may	
 still	
 need	
 to	
 be	

adjusted	
 for	
 specific	
 cases.	

	

As	
 a	
 simple	
 demonstration	
 of	
 the	
 module,	
 we	
 consider	
 the	
 construction	
 of	
 a	
 model	

of	
 a	
 subcomplex	
 of	
 the	
 NPC(12,	
 13).	
 The	
 yeast	
 NPC	
 is	
 a	
 large	
 assembly	
 of	
 50	
 MDa	

containing	
 456	
 proteins	
 of	
 30	
 different	
 types.	
 The	
 modeling	
 of	
 the	
 entire	
 assembly	
 is	

beyond	
 the	
 scope	
 of	
 this	
 tutorial;	
 however,	
 it	
 has	
 been	
 observed	
 that	
 the	
 NPC	
 is	

made	
 up	
 of	
 a	
 set	
 of	
 smaller	
 subcomplexes	
 (Figure	
 4).	
 One	
 of	
 these	
 complexes	
 is	
 the	

Nup84	
 complex,	
 consisting	
 of	
 seven	
 proteins,	
 and	
 the	
 modeling	
 of	
 this	
 complex	
 is	

illustrated	
 in	
 this	
 tutorial.	

	

All	
 of	
 the	
 XML	
 and	
 Python	
 files	
 necessary	
 to	
 perform	
 the	
 Nup84	
 modeling	
 can	
 be	

found	
 in	
 the	
 ‘restrainer’	
 subdirectory	
 of	
 the	
 zipfile	
 downloaded	
 above.	
 The	
 first	

of	
 these	
 XML	
 files	
 is	
 representation.xml,	
 which	
 determines	
 how	
 the	
 system	
 is	

represented.	
 IMP	
 does	
 not	
 require	
 every	
 protein	
 in	
 the	
 system	
 to	
 be	
 modeled	
 with	

the	
 same	
 representation;	
 for	
 example,	
 some	
 proteins	
 could	
 be	
 modeled	
 as	
 sets	
 of	

atoms	
 and	
 others	
 at	
 a	
 lower	
 resolution.	
 As	
 for	
 the	
 original	
 NPC	
 modeling,	
 here	
 we	

use	
 a	
 ‘bead	
 model’	
 for	
 the	
 Nup84	
 complex;	
 each	
 protein	
 is	
 represented	
 as	
 a	
 sphere,	

or	
 a	
 pair	
 of	
 spheres	
 (in	
 the	
 case	
 of	
 the	
 more	
 rodlike	
 Nup133	
 and	
 Nup120	
 proteins),	

with	
 larger	
 proteins	
 using	
 larger	
 spheres.	
 The	
 second	
 XML	
 file	
 encodes	
 the	
 input	

structural	
 data	
 as	
 spatial	
 restraints	
 on	
 the	
 system.	
 Here,	
 we	
 use	
 two	
 simple	
 sources	

of	
 information.	
 First,	
 excluded	
 volume	
 for	
 each	
 protein.	
 Second,	
 yeast	
 two-­‐hybrid	

results	
 for	
 some	
 pairs	
 of	
 proteins.	
 The	
 third	
 XML	
 file	
 is	
 for	
 visualization	
 only,	
 and	

assigns	
 each	
 sphere	
 a	
 different	
 color.	
 	
 Finally,	
 the	
 Python	
 script	
 loads	
 in	
 all	
 three	
 of	

the	
 XML	
 files	
 and	
 performs	
 a	
 simple	
 conjugate	
 gradients	
 optimization.	
 This	
 Python	

script	
 can	
 be	
 executed	
 just	
 like	
 any	
 other	
 Python	
 script:	

python nup84.py
	

restrainer	
 first	
 generates	
 a	
 set	
 of	
 sphere-­‐like	
 particles	
 to	
 represent	
 the	
 system.	

It	
 then	
 converts	
 the	
 information	
 in	
 the	
 restraints	
 file	
 into	
 a	
 set	
 of	
 IMP	
 restraints.	
 It	

generates	
 an	
 excluded	
 volume	
 restraint	
 that	
 prevents	
 each	
 protein	
 sphere	
 from	

penetrating	
 any	
 other	
 sphere	
 and	
 a	
 set	
 of	
 ‘connectivity’	
 restraints(12)	
 that	
 force	
 the	

protein	
 particles	
 to	
 reproduce	
 the	
 interactions	
 implied	
 by	
 the	
 yeast	
 two-­‐hybrid	

experiments.	
 The	
 optimization	
 generates	
 a	
 file	
 optimized.py	
 that	
 is	
 an	
 input	
 file	

for	
 the	
 molecular	
 visualization	
 program	
 Chimera(43);	
 when	
 loaded	
 into	
 Chimera,	
 it	

displays	
 the	
 final	
 optimized	
 configuration	
 of	
 the	
 complex	
 (Figure	
 5).	

	
 	

In	
 this	
 example,	
 the	
 modeling	
 problem	
 is	
 simple	
 and	
 thus	
 generating	
 a	
 single	
 model	

is	
 sufficient	
 to	
 find	
 a	
 solution	
 that	
 satisfies	
 all	
 restraints.	
 However,	
 when	
 all	
 such	

models	
 need	
 to	
 be	
 found	
 or,	
 in	
 more	
 complex	
 cases,	
 when	
 a	
 global	
 solution	
 of	
 the	

scoring	
 function	
 is	
 hard	
 to	
 find	
 (for	
 example,	
 because	
 restraints	
 are	
 contradictory	

due	
 to	
 errors	
 in	
 experiments	
 or	
 experiment	
 interpretations),	
 the	
 modeling	

procedure	
 is	
 repeated	
 to	
 generate	
 an	
 ensemble	
 of	
 models.	
 When	
 modeling	
 the	
 NPC,	

the	
 top-­‐scoring	
 models	
 were	
 clustered	
 and	
 used	
 to	
 generate	
 a	
 probability	
 density	

for	
 each	
 component	
 within	
 the	
 complex(12).	
 The	
 envelope	
 of	
 this	
 density	
 defined	

the	
 precision	
 of	
 the	
 corresponding	
 component	
 localization.	
 Only	
 a	
 single	
 cluster	
 of	

structures	
 was	
 found	
 that	
 satisfied	
 all	
 of	
 the	
 restraints.	
 If	
 contradictory	
 information	

is	
 presented,	
 however,	
 the	
 optimization	
 will	
 be	
 frustrated,	
 unable	
 to	
 find	
 solutions	

that	
 simultaneously	
 satisfy	
 all	
 restraints.	
 The	
 ensemble	
 of	
 solutions	
 will	
 exhibit	

more	
 variability	
 than	
 that	
 in	
 a	
 non-­‐frustrated	
 case.	
 Such	
 frustration	
 can	
 be	
 tested	
 for	

in	
 the	
 iterative	
 integrative	
 modeling	
 procedure	
 by	
 removing	
 potentially	
 conflicting	

restraints	
 and	
 repeating	
 the	
 modeling.	
 Finally,	
 the	
 accuracy	
 of	
 the	
 generated	

model(s)	
 can	
 be	
 gauged	
 by	
 comparison	
 with	
 experimental	
 data	
 that	
 were	
 not	
 used	

in	
 the	
 original	
 modeling.	
 For	
 example,	
 the	
 generated	
 bead	
 model	
 of	
 the	
 Nup84	

complex	
 has	
 a	
 characteristic	
 Y-­‐shape,	
 which	
 is	
 consistent	
 with	
 electron	
 micrographs	

of	
 the	
 complex(44),	
 even	
 though	
 these	
 data	
 were	
 not	
 used	
 in	
 our	
 example.	

	

The	
 restrainer	
 XML	
 and	
 Python	
 files,	
 together	
 with	
 the	
 experimental	
 data,	
 such	

as	
 cryo-­‐EM	
 maps,	
 constitute	
 a	
 complete	
 modeling	
 protocol.	
 Thus,	
 an	
 assembly	

model	
 built	
 using	
 this	
 protocol	
 can	
 be	
 published	
 along	
 with	
 the	
 input	
 files	
 to	
 allow	

the	
 model	
 to	
 be	
 reproduced	
 and	
 easily	
 updated.	
 Such	
 a	
 model	
 can	
 thus	
 act	
 as	
 a	

reference	
 for	
 future	
 studies;	
 for	
 example,	
 regions	
 of	
 the	
 model	
 that	
 were	
 poorly	

resolved	
 can	
 be	
 investigated	
 with	
 new	
 experiments,	
 the	
 resulting	
 data	
 incorporated	

into	
 the	
 protocol,	
 and	
 new	
 models	
 generated.	
 Alternatively,	
 existing	
 unused	

experimental	
 data	
 can	
 be	
 added	
 to	
 the	
 protocol	
 to	
 determine	
 whether	
 unused	
 data	

is	
 consistent	
 with	
 that	
 used	
 to	
 build	
 the	
 model.	
 The	
 iterative	
 nature	
 of	
 the	
 protocol	

thus	
 extends	
 beyond	
 the	
 generation	
 of	
 the	
 first	
 ‘correct’	
 model.	

Integration	
 of	
 comparative	
 modeling,	
 X-­‐ray	
 crystallography,	
 and	
 SAXS	

The	
 Nup84	
 complex	
 structure	
 determined	
 above	
 is	
 consistent	
 with	
 all	
 input	

information,	
 but	
 for	
 a	
 detailed	
 understanding	
 of	
 its	
 function,	
 an	
 accurate	
 atomic	

structure	
 is	
 required.	
 	
 Two	
 possible	
 routes	
 to	
 such	
 a	
 structure,	
 depending	
 on	
 the	

available	
 information,	
 are	
 (i)	
 fitting	
 atomic	
 structures	
 of	
 the	
 individual	
 protein	

subunits	
 into	
 a	
 cryo-­‐EM	
 map	
 of	
 the	
 assembly	
 and	
 (ii)	
 accurately	
 placing	
 pairs	
 of	

subunits	
 relative	
 to	
 each	
 other	
 using	
 X-­‐ray	
 crystallography	
 or	
 molecular	
 docking.	

For	
 both	
 routes,	
 atomic	
 structures	
 of	
 the	
 subunits	
 are	
 required;	
 these	
 structures	
 can	

be	
 obtained	
 via	
 X-­‐ray	
 crystallography	
 or	
 comparative	
 modeling.	

	

One	
 component	
 of	
 the	
 Nup84	
 complex	
 is	
 the	
 Nup133	
 protein;	
 the	
 structure	
 of	
 this	

protein	
 has	
 been	
 characterized	
 by	
 both	
 X-­‐ray	
 crystallography	
 and	
 SAXS(45).	
 SAXS	

differs	
 from	
 X-­‐ray	
 crystallography	
 in	
 that	
 it	
 is	
 applied	
 to	
 proteins	
 in	
 solution	
 rather	

than	
 crystals;	
 thus,	
 it	
 can	
 be	
 applied	
 to	
 a	
 much	
 wider	
 range	
 of	
 proteins	
 in	
 states	

more	
 closely	
 resembling	
 their	
 functional	
 forms	
 than	
 X-­‐ray	
 crystallography,	
 but	
 the	

information	
 is	
 rotationally	
 averaged	
 and	
 so	
 the	
 resulting	
 SAXS	
 profile	
 gives	
 less	

structural	
 information(29,	
 46,	
 47).	
 IMP	
 contains	
 a	
 method	
 that,	
 given	
 an	
 atomic	

protein	
 structure,	
 can	
 calculate	
 its	
 SAXS	
 profile	
 using	
 the	
 Debye	
 formula,	
 and	
 then	
 fit	

this	
 profile	
 against	
 the	
 experimentally	
 determined	
 one(48,	
 49).	
 This	
 method	
 is	

implemented	
 in	
 the	
 IMP	
 saxs	
 module	
 and	
 so	
 can	
 be	
 used	
 by	
 writing	
 a	
 suitable	

Python	
 script.	
 However,	
 because	
 fitting	
 against	
 a	
 SAXS	
 profile	
 is	
 a	
 common	
 task,	
 we	

provide	
 an	
 IMP	
 application,	
 FoXS,	
 which	
 automates	
 this	
 process.	
 FoXS	
 is	
 available	

both	
 as	
 a	
 command-­‐line	
 IMP	
 application	
 and	
 a	
 web	
 service	
 at	

http://salilab.org/foxs.	

	

All	
 input	
 files	
 for	
 this	
 demonstration	
 are	
 available	
 in	
 the	
 ‘saxs’	
 subdirectory	
 of	
 the	

downloaded	
 zipfile.	
 The	
 structure	
 of	
 the	
 C-­‐terminal	
 domain	
 of	
 yeast	
 Nup133	
 is	

available	
 in	
 the	
 RCSB	
 Protein	
 Data	
 Bank	
 (PDB)(50)	
 as	
 code	
 3kfo	
 (file	
 3KFO.pdb),	

while	
 the	
 experimental	
 SAXS	
 profile	
 is	
 given	
 in	
 the	
 23922_merge.dat	
 file.	
 The	

atomic	
 structure	
 can	
 be	
 fit	
 against	
 the	
 SAXS	
 profile	
 by	
 running	
 FoXS	
 in	
 the	
 directory	

containing	
 both	
 files:	

foxs 3KFO.pdb 23922_merge.dat
	

Alternatively,	
 the	
 two	
 files	
 can	
 be	
 submitted	
 to	
 the	
 FoXS	
 web	
 server.	
 FoXS	
 compares	

the	
 theoretical	
 profile	
 of	
 the	
 provided	
 structure	
 (solid	
 line	
 in	
 Figure	
 6)	
 with	
 the	

experimental	
 profile	
 (points),	
 and	
 calculates	
 the	
 quality	
 of	
 the	
 fit,	
 χ,	
 with	
 smaller	

values	
 corresponding	
 to	
 closer	
 fits.	

	

The	
 fit	
 in	
 this	
 example	
 is	
 not	
 a	
 good	
 one	
 (χ=2.96).	
 To	
 understand	
 why	
 this	
 is	
 so,	
 we	

examine	
 the	
 header	
 of	
 the	
 3kfo	
 PDB	
 file,	
 which	
 reveals	
 two	
 problems.	
 Several	

residues	
 at	
 the	
 N	
 and	
 C	
 termini	
 were	
 not	
 resolved	
 in	
 the	
 X-­‐ray	
 experiment	
 (8	
 in	

total,	
 2	
 at	
 the	
 N	
 terminus	
 and	
 6	
 at	
 the	
 C	
 terminus),	
 and	
 the	
 sidechains	
 of	
 16	
 other	

residues	
 could	
 also	
 not	
 be	
 located	
 (REMARK	
 465	
 and	
 REMARK	
 470	
 lines).	

	

The	
 missing	
 8	
 residues	
 and	
 16	
 sidechains	
 need	
 to	
 be	
 placed	
 to	
 create	
 a	
 complete	

atomic	
 structure.	
 One	
 way	
 to	
 achieve	
 this	
 goal	
 is	
 to	
 build	
 a	
 comparative	
 model	
 using	

a	
 package	
 such	
 as	
 MODELLER	
 (http://salilab.org/modeller/)(31,	
 32)	
 relying	
 on	
 the	

original	
 3kfo	
 structure	
 as	
 a	
 template	
 and	
 the	
 full	
 sequence	
 (including	
 the	
 8	
 missing	

N	
 and	
 C	
 terminal	
 residues)	
 as	
 the	
 target.	
 The	
 corresponding	
 MODELLER	
 alignment	

file	
 (3KFO-fill.ali)	
 and	
 script	
 file	
 (fill.py)	
 are	
 provided	
 in	
 the	
 downloaded	

zipfile.	
 Each	
 candidate	
 comparative	
 model	
 can	
 be	
 fitted	
 against	
 the	
 SAXS	
 profile	

using	
 the	
 FoXS	
 command-­‐line	
 application	
 or	
 the	
 web	
 service	
 in	
 exactly	
 the	
 same	

way	
 as	
 the	
 original	
 3kfo	
 structure;	
 the	
 best	
 MODELLER	
 model	
 gives	
 a	
 significantly	

improved	
 fit	
 between	
 the	
 theoretical	
 and	
 experimental	
 profiles	
 (dashed	
 line	
 in	

Figure	
 6;	
 χ=1.21).	

	

Given	
 similar	
 atomic	
 structures	
 of	
 the	
 subunits	
 in	
 the	
 Nup84	
 complex,	
 as	
 either	

crystal	
 structures	
 or	
 comparative	
 models,	
 restrainer	
 can	
 be	
 used	
 to	
 build	
 an	

atomic	
 model	
 of	
 the	
 complex.	
 Note,	
 however,	
 that	
 an	
 accurate	
 model	
 of	
 such	
 a	

complex	
 would	
 require	
 additional	
 information	
 beyond	
 the	
 proteomics	
 data	
 used	

above,	
 since	
 yeast	
 two-­‐hybrid	
 data	
 only	
 show	
 that	
 proteins	
 interact,	
 not	
 the	
 specific	

residues	
 in	
 the	
 protein-­‐protein	
 interaction,	
 and	
 thus	
 do	
 not	
 inform	
 us	
 about	
 the	

relative	
 orientations	
 of	
 the	
 interacting	
 proteins.	
 Such	
 information	
 can	
 be	
 obtained,	

for	
 example,	
 from	
 chemical-­‐crosslinking,	
 molecular	
 docking,	
 or	
 cryo-­‐EM	
 maps,	
 as	

illustrated	
 in	
 the	
 next	
 section.	

Determining	
 macromolecular	
 assembly	
 structures	
 by	
 fitting	
 multiple	
 structures	

into	
 an	
 electron	
 density	
 map	

Often,	
 we	
 have	
 available	
 high-­‐resolution	
 (atomic)	
 information	
 for	
 the	
 subunits	
 in	
 an	

assembly,	
 and	
 low-­‐resolution	
 information	
 for	
 the	
 assembly	
 as	
 a	
 whole	
 (a	
 cryo-­‐EM	

electron	
 density	
 map).	
 A	
 high-­‐resolution	
 model	
 of	
 the	
 whole	
 assembly	
 can	
 thus	
 be	

constructed	
 by	
 simultaneously	
 fitting	
 the	
 subunits	
 into	
 the	
 density	
 map.	
 Fitting	
 of	
 a	

single	
 protein	
 into	
 a	
 density	
 map	
 is	
 usually	
 done	
 by	
 calculating	
 the	
 electron	
 density	

of	
 the	
 protein	
 followed	
 by	
 a	
 search	
 of	
 the	
 protein	
 position	
 in	
 the	
 cryo-­‐EM	
 map	
 that	

maximizes	
 the	
 cross	
 correlation	
 of	
 the	
 two	
 maps.	
 Simultaneously	
 fitting	
 multiple	

proteins	
 into	
 a	
 given	
 map	
 is	
 significantly	
 more	
 difficult,	
 since	
 an	
 incorrect	
 fit	
 of	
 one	

protein	
 will	
 also	
 prevent	
 other	
 proteins	
 from	
 being	
 placed	
 correctly.	

	

IMP	
 contains	
 a	
 multifit(41,42)	
 module	
 (http://salilab.org/multifit/)	
 that	
 can	

efficiently	
 solve	
 such	
 multiple	
 fitting	
 problems	
 for	
 density	
 map	
 resolutions	
 as	
 low	
 as	

25Å,	
 relying	
 on	
 a	
 general	
 inferential	
 optimizer	
 DOMINO.	
 The	
 fitting	
 protocol	
 is	
 a	

multi-­‐step	
 procedure	
 that	
 proceeds	
 via	
 discretization	
 of	
 both	
 the	
 map	
 and	
 the	

proteins,	
 local	
 fitting	
 of	
 the	
 proteins	
 into	
 the	
 map,	
 and	
 an	
 efficient	
 combination	
 of	

local	
 fits	
 into	
 global	
 solutions	
 (Figure	
 7).	
 Here,	
 we	
 will	
 demonstrate	
 the	
 use	
 of	

multifit	
 in	
 building	
 a	
 model	
 of	
 the	
 ARP2/3	
 complex(51)	
 using	
 crystal	
 structures	

of	
 its	
 seven	
 constituent	
 proteins	
 (ARP2,	
 ARP3,	
 and	
 ARC1-­‐5)	
 and	
 a	
 20Å	
 density	
 map	

of	
 the	
 assembly.	
 All	
 input	
 files	
 for	
 this	
 procedure	
 can	
 be	
 found	
 in	
 the	
 ‘multifit’	

subdirectory	
 of	
 the	
 downloaded	
 zipfile.	

	

The	
 first	
 step	
 in	
 using	
 multifit	
 is	
 to	
 create	
 input	
 files	
 that	
 guide	
 the	
 protocol.	
 The	

first	
 of	
 these	
 files,	
 assembly.input,	
 lists	
 each	
 of	
 the	
 subunits	
 and	
 the	
 density	

map,	
 complete	
 with	
 the	
 names	
 of	
 the	
 files	
 from	
 which	
 the	
 input	
 structures	
 and	
 map	

will	
 be	
 read,	
 and	
 those	
 to	
 which	
 outputs	
 from	
 later	
 steps	
 will	
 be	
 written.	
 In	
 this	
 case,	

we	
 also	
 know	
 the	
 native	
 structure	
 of	
 the	
 assembly	
 (PDB	
 code	
 1tyq)	
 and	
 so	
 we	
 add	

the	
 subunit	
 structures	
 in	
 native	
 conformation	
 to	
 this	
 input	
 file	
 (rightmost	
 column);	

multifit	
 will	
 use	
 them	
 to	
 assess	
 its	
 accuracy.	
 Normally,	
 of	
 course,	
 the	
 real	
 native	

structure	
 is	
 not	
 known,	
 in	
 which	
 case	
 this	
 column	
 in	
 the	
 input	
 file	
 is	
 left	
 blank.	
 The	

second	
 file,	
 multifit.par,	
 specifies	
 various	
 optimization	
 parameters,	
 and	
 is	

described	
 in	
 more	
 detail	
 on	
 the	
 multifit	
 website	
 (http://salilab.org/multifit/).	

	

The	
 second	
 step	
 is	
 to	
 determine	
 a	
 reduced	
 representation	
 for	
 both	
 the	
 density	
 map	

and	
 the	
 subunits,	
 using	
 the	
 Gaussian	
 Mixture	
 Model.	
 This	
 task	
 can	
 be	
 achieved	
 by	

typing,	
 in	
 the	
 directory	
 containing	
 assembly.input (the	
 syntax	
 for	
 running	

Python	
 scripts	
 may	
 vary	
 depending	
 on	
 where	
 the	
 files	
 are	
 installed):	

	

/opt/multifit/utils/run_anchor_points_detection.py
assembly.input 700
	

This	
 run	
 determines	
 a	
 reduced	
 representation	
 of	
 the	
 EM	
 map	
 that	
 best	
 reproduces	

the	
 configuration	
 of	
 all	
 voxels	
 with	
 density	
 above	
 700,	
 and	
 a	
 similar	
 reduced	

representation	
 of	
 each	
 subunit	
 as	
 a	
 set	
 of	
 3D	
 Gaussian	
 functions.	
 The	
 number	
 of	

Gaussians	
 is	
 specified	
 in	
 assembly.input	
 for	
 each	
 subunit.	
 It	
 should	
 be	
 at	
 least	
 3	

(the	
 minimum	
 required	
 for	
 fitting)	
 and	
 each	
 Gaussian	
 should	
 cover	
 approximately	

the	
 same	
 number	
 of	
 residues	
 (for	
 example,	
 if	
 you	
 choose	
 50	
 residues	
 per	
 Gaussian,	
 a	

170-­‐residue	
 protein	
 should	
 use	
 3	
 Gaussians	
 and	
 a	
 260-­‐residue	
 protein	
 should	
 use	
 5	

Gaussians).	
 Each	
 such	
 reduced	
 map	
 representation	
 can	
 also	
 be	
 thought	
 of	
 as	
 an	

anchor	
 point	
 graph,	
 where	
 each	
 anchor	
 point	
 corresponds	
 to	
 the	
 center	
 of	
 a	
 3D	

Gaussian,	
 and	
 the	
 edges	
 in	
 the	
 graph	
 correspond	
 to	
 the	
 connectivity	
 between	

regions	
 of	
 the	
 map	
 or	
 protein.	
 These	
 reduced	
 representations	
 are	
 written	
 out	
 as	

PDB	
 files	
 containing	
 fake	
 Cα	
 atoms,	
 where	
 each	
 Cα	
 corresponds	
 to	
 a	
 single	
 anchor	

point.	

	

The	
 third	
 step	
 is	
 to	
 fit	
 each	
 protein	
 in	
 the	
 vicinity	
 of	
 the	
 EM	
 map’s	
 anchor	
 points.	

This	
 task	
 is	
 achieved	
 by	
 running:	

	

/opt/multifit/utils/run_protein_fitting.py assembly.input
multifit.par
	

The	
 output	
 is	
 a	
 set	
 of	
 candidate	
 fits,	
 where	
 the	
 subunit	
 is	
 rigidly	
 rotated	
 and	

translated	
 to	
 fit	
 into	
 the	
 density	
 map.	
 Each	
 fit	
 is	
 written	
 as	
 a	
 PDB	
 file	
 in	
 the	
 ‘fits’	

subdirectory.	
 The	
 fitting	
 procedure	
 is	
 performed	
 by	
 either	
 aligning	
 a	
 reduced	

representation	
 of	
 a	
 protein	
 to	
 a	
 reduced	
 representation	
 of	
 the	
 density	
 map(41)	
 or	

by	
 fitting	
 the	
 protein	
 principal	
 components	
 to	
 the	
 principal	
 components	
 of	
 a	

segmented	
 region	
 of	
 the	
 map.	

	

Finally,	
 the	
 fits	
 are	
 scored	
 and	
 then	
 combined	
 into	
 a	
 set	
 of	
 the	
 best-­‐scoring	
 global	

configurations:	

	

/opt/multifit/utils/run_all_scores.py assembly.input >
scores.log

/opt/multifit/utils/run_multifit.py assembly.input
assembly.jt assembly_configurations.output
data/models/1tyq.fitted.pdb > multifit.log

The	
 scoring	
 function	
 used	
 to	
 assess	
 each	
 fit	
 includes	
 the	
 quality-­‐of-­‐fit	
 of	
 each	

subunit	
 into	
 the	
 map,	
 the	
 protrusion	
 of	
 each	
 subunit	
 out	
 of	
 the	
 map	
 envelope,	
 and	

the	
 shape	
 complementarity	
 between	
 pairs	
 of	
 neighboring	
 subunits.	
 The	

optimization	
 avoids	
 exhaustive	
 enumeration	
 of	
 all	
 possible	
 mappings	
 of	
 subunits	
 to	

anchor	
 points	
 by	
 means	
 of	
 a	
 branch-­‐and-­‐bound	
 algorithm	
 combined	
 with	
 the	

DOMINO	
 divide-­‐and-­‐conquer	
 message-­‐passing	
 optimizer	
 using	
 a	
 discrete	
 sampling	

space(42).	

	

The	
 final	
 output	
 from	
 multifit	
 is	
 a	
 file	
 assembly_configurations.output	

that	
 lists	
 the	
 best	
 global	
 solutions,	
 ranked	
 by	
 their	
 score,	
 an	
 excerpt	
 of	
 which	
 is	

shown	
 below:	

	

ARP3,0|ARP2,14|ARC1,3|ARC2,24|ARC3,19|ARC4,11|ARC5,13|(17.5
593729019)(rmsd:29.2637996674)(conf.0.pdb)
ARP3,5|ARP2,13|ARC1,9|ARC2,24|ARC3,19|ARC4,4|ARC5,13|(18.32
58602619)(rmsd:11.997220993)(conf.1.pdb)
	

For	
 each	
 global	
 solution,	
 multifit	
 lists	
 the	
 indices	
 of	
 the	
 local	
 fits	
 for	
 each	
 subunit	

and	
 the	
 score.	
 Each	
 solution	
 is	
 also	
 written	
 out	
 as	
 a	
 multi-­‐chain	
 PDB	
 file	
 of	
 the	

assembly.	
 In	
 addition,	
 because	
 we	
 also	
 provided	
 the	
 native	
 structure	

(1tyq.fitted.pdb),	
 the	
 RMSD	
 between	
 the	
 native	
 conformation	
 and	
 each	

solution	
 is	
 listed.	
 In	
 this	
 case,	
 the	
 RMSD	
 measure	
 indicates	
 that	
 multifit	
 has	

correctly	
 determined	
 the	
 architecture	
 of	
 the	
 assembly,	
 placing	
 each	
 subunit	
 in	
 the	

approximately	
 correct	
 part	
 of	
 the	
 map.	
 However,	
 the	
 protein-­‐protein	
 interfaces	
 are	

clearly	
 not	
 accurate	
 at	
 the	
 atomic	
 level.	
 These	
 models	
 could	
 thus	
 be	
 refined	
 with	
 a	

combination	
 of	
 pairwise	
 computational	
 docking	
 and	
 local	
 sampling,	
 ideally	

supported	
 by	
 additional	
 experimental	
 data,	
 such	
 as	
 chemical	
 cross-­‐linking,	
 various	

kinds	
 of	
 footprinting,	
 and	
 X-­‐ray	
 crystallography	
 of	
 binary	
 subunit	
 complexes.	

Summary	

The	
 structures	
 of	
 protein	
 assemblies	
 can	
 typically	
 not	
 be	
 fully	
 characterized	
 with	

any	
 individual	
 computational	
 or	
 experimental	
 method.	
 Integrative	
 modeling	
 aims	
 to	

solve	
 this	
 problem	
 by	
 combining	
 information	
 from	
 multiple	
 methods	
 to	
 generate	

structural	
 models.	
 Integrative	
 modeling	
 problems	
 can	
 be	
 tackled	
 using	
 the	
 method	

of	
 satisfaction	
 of	
 spatial	
 restraints.	
 In	
 this	
 approach,	
 a	
 suitable	
 representation	
 for	

the	
 system	
 is	
 chosen,	
 the	
 information	
 is	
 converted	
 into	
 a	
 set	
 of	
 spatial	
 restraints,	
 the	

restraints	
 are	
 simultaneously	
 satisfied	
 as	
 well	
 as	
 possible	
 by	
 optimizing	
 a	
 function	

that	
 is	
 the	
 sum	
 of	
 all	
 restraints,	
 and	
 the	
 resulting	
 models	
 are	
 analyzed.	
 Further	

experiments	
 as	
 well	
 as	
 the	
 precision	
 and	
 likely	
 accuracy	
 of	
 both	
 the	
 model	
 and	
 the	

data	
 can	
 be	
 informed.	
 IMP	
 is	
 an	
 open	
 source	
 and	
 flexible	
 software	
 package	
 that	

provides	
 all	
 of	
 the	
 components	
 needed	
 to	
 implement	
 an	
 integrative	
 modeling	

protocol	
 from	
 scratch.	
 It	
 also	
 contains	
 higher-­‐level	
 applications	
 and	
 web	
 services	

that	
 can	
 tackle	
 specific	
 use	
 cases	
 more	
 conveniently.	

Acknowledgements	

We	
 are	
 grateful	
 to	
 all	
 members	
 of	
 our	
 research	
 group,	
 especially	
 to	
 Frank	
 Alber,	

Friedrich	
 Förster,	
 and	
 Bret	
 Peterson	
 who	
 contributed	
 to	
 early	
 versions	
 of	
 IMP.	
 We	

also	
 acknowledge	
 support	
 from	
 National	
 Institutes	
 of	
 Health	
 (R01	
 GM54762,	
 U54	

RR022220,	
 PN2	
 EY016525,	
 and	
 R01	
 GM083960)	
 as	
 well	
 as	
 computing	
 hardware	

support	
 from	
 Ron	
 Conway,	
 Mike	
 Homer,	
 Hewlett-­‐Packard,	
 NetApp,	
 IBM,	
 and	
 Intel.	

References	

	

1.	
 Schmeing	
 TM,	
 and	
 Ramakrishnan	
 V	
 (2009)	
 What	
 recent	
 ribosome	
 structures	

have	
 revealed	
 about	
 the	
 mechanism	
 of	
 translation,	
 Nature	
 461,	
 1234-­‐1242.	

2.	
 Sali	
 A,	
 Glaeser	
 R,	
 Earnest	
 T,	
 and	
 Baumeister	
 W	
 (2003)	
 From	
 words	
 to	

literature	
 in	
 structural	
 proteomics,	
 Nature	
 422,	
 216-­‐225.	

3.	
 Mitra	
 K,	
 and	
 Frank	
 J	
 (2006)	
 Ribosome	
 dynamics:	
 insights	
 from	
 atomic	

structure	
 modeling	
 into	
 cryo-­‐electron	
 microscopy	
 maps,	
 Annu	
 Rev	
 Biophys	

Biomol	
 Struct	
 35,	
 299-­‐317.	

4.	
 Robinson	
 C,	
 Sali	
 A,	
 and	
 Baumeister	
 W	
 (2007)	
 The	
 molecular	
 sociology	
 of	
 the	

cell,	
 Nature	
 450,	
 973-­‐982.	

5.	
 Blundell	
 T,	
 and	
 Johnson	
 L	
 (1976)	
 Protein	
 Crystallography,	
 Academic	
 Press,	

New	
 York.	

6.	
 Stahlberg	
 H,	
 and	
 Walz	
 T	
 (2008)	
 Molecular	
 electron	
 microscopy:	
 state	
 of	
 the	

art	
 and	
 current	
 challenges,	
 ACS	
 Chem	
 Biol	
 3,	
 268-­‐281.	

7.	
 Chiu	
 W,	
 Baker	
 ML,	
 Jiang	
 W,	
 Dougherty	
 M,	
 and	
 Schmid	
 MF	
 (2005)	
 Electron	

cryomicroscopy	
 of	
 biological	
 machines	
 at	
 subnanometer	
 resolution,	

Structure	
 13,	
 363-­‐372.	

8.	
 Lucic	
 V,	
 Leis	
 A,	
 and	
 Baumeister	
 W	
 (2008)	
 Cryo-­‐electron	
 tomography	
 of	
 cells:	

connecting	
 structure	
 and	
 function,	
 Histochem	
 Cell	
 Biol	
 130,	
 185-­‐196.	

9.	
 Parrish	
 JR,	
 Gulyas	
 KD,	
 and	
 Finley	
 RL	
 Jr.	
 (2006)	
 Yeast	
 two-­‐hybrid	

contributions	
 to	
 interactome	
 mapping,	
 Curr	
 Opin	
 Biotechnol	
 17,	
 387-­‐393.	

10.	
 Gingras	
 AC,	
 Gstaiger	
 M,	
 Raught	
 B,	
 and	
 Aebersold	
 R	
 (2007)	
 Analysis	
 of	
 protein	

complexes	
 using	
 mass	
 spectrometry,	
 Nat	
 Rev	
 Mol	
 Cell	
 Biol	
 8,	
 645-­‐654.	

11.	
 Alber	
 F,	
 Kim	
 M,	
 and	
 Sali	
 A	
 (2005)	
 Structural	
 characterization	
 of	
 assemblies	

from	
 overall	
 shape	
 and	
 subcomplex	
 compositions,	
 Structure	
 13,	
 435-­‐445.	

12.	
 Alber	
 F,	
 Dokudovskaya	
 S,	
 Veenhoff	
 L,	
 Zhang	
 W,	
 Kipper	
 J,	
 Devos	
 D,	
 Suprapto	
 A,	

Karni-­‐Schmidt	
 O,	
 Williams	
 R,	
 Chait	
 B,	
 Rout	
 M,	
 and	
 Sali	
 A	
 (2007)	
 Determining	

the	
 architectures	
 of	
 macromolecular	
 assemblies,	
 Nature	
 450,	
 683-­‐694.	

13.	
 Alber	
 F,	
 Dokudovskaya	
 S,	
 Veenhoff	
 L,	
 Zhang	
 W,	
 Kipper	
 J,	
 Devos	
 D,	
 Suprapto	
 A,	

Karni-­‐Schmidt	
 O,	
 Williams	
 R,	
 Chait	
 B,	
 Sali	
 A,	
 and	
 Rout	
 M	
 (2007)	
 The	

molecular	
 architecture	
 of	
 the	
 nuclear	
 pore	
 complex,	
 Nature	
 450,	
 695-­‐701.	

14.	
 Lasker	
 K,	
 Phillips	
 JL,	
 Russel	
 D,	
 Velazquez-­‐Muriel	
 J,	
 Schneidman-­‐Duhovny	
 D,	

Webb	
 B,	
 Schlessinger	
 A,	
 and	
 Sali	
 A	
 (2010)	
 Integrative	
 Structure	
 Modeling	
 of	

Macromolecular	
 Assemblies	
 from	
 Proteomics	
 Data,	
 Mol	
 Cell	
 Proteomics,	
 epub	

ahead	
 of	
 print.	

15.	
 Russel	
 D,	
 Lasker	
 K,	
 Phillips	
 J,	
 Schneidman-­‐Duhovny	
 D,	
 Velazquez-­‐Muriel	
 J,	

and	
 Sali	
 A	
 (2009)	
 The	
 structural	
 dynamics	
 of	
 macromolecular	
 processes,	

Curr	
 Opin	
 Cell	
 Biol	
 21,	
 97-­‐108.	

16.	
 Alber	
 F,	
 Forster	
 F,	
 Korkin	
 D,	
 Topf	
 M,	
 and	
 Sali	
 A	
 (2008)	
 Integrating	
 diverse	

data	
 for	
 structure	
 determination	
 of	
 macromolecular	
 assemblies,	
 Annu	
 Rev	

Biochem	
 77,	
 443-­‐477.	

17.	
 Alber	
 F,	
 Chait	
 BT,	
 Rout	
 MP,	
 and	
 Sali	
 A	
 (2008)	
 Integrative	
 Structure	

Determination	
 of	
 Protein	
 Assemblies	
 by	
 Satisfaction	
 of	
 Spatial	
 Restraints,	
 In	

Protein-­‐protein	
 interactions	
 and	
 networks:	
 identification,	
 characterization	
 and	

prediction.	
 (Panchenko,	
 A.,	
 and	
 Przytycka,	
 T.,	
 Eds.),	
 pp	
 99-­‐114,	
 Springer-­‐
Verlag,	
 London,	
 UK.	

18.	
 Bonvin	
 AM,	
 Boelens	
 R,	
 and	
 Kaptein	
 R	
 (2005)	
 NMR	
 analysis	
 of	
 protein	

interactions,	
 Curr	
 Opin	
 Chem	
 Biol	
 9,	
 501-­‐508.	

19.	
 Fiaux	
 J,	
 Bertelsen	
 EB,	
 Horwich	
 AL,	
 and	
 Wuthrich	
 K	
 (2002)	
 NMR	
 analysis	
 of	
 a	

900K	
 GroEL	
 GroES	
 complex,	
 Nature	
 418,	
 207-­‐211.	

20.	
 Neudecker	
 P,	
 Lundstrom	
 P,	
 and	
 Kay	
 LE	
 (2009)	
 Relaxation	
 dispersion	
 NMR	

spectroscopy	
 as	
 a	
 tool	
 for	
 detailed	
 studies	
 of	
 protein	
 folding,	
 Biophys	
 J	
 96,	

2045-­‐2054.	

21.	
 Takamoto	
 K,	
 and	
 Chance	
 MR	
 (2006)	
 Radiolytic	
 protein	
 footprinting	
 with	

mass	
 spectrometry	
 to	
 probe	
 the	
 structure	
 of	
 macromolecular	
 complexes,	

Annu	
 Rev	
 Biophys	
 Biomol	
 Struct	
 35,	
 251-­‐276.	

22.	
 Guan	
 JQ,	
 and	
 Chance	
 MR	
 (2005)	
 Structural	
 proteomics	
 of	
 macromolecular	

assemblies	
 using	
 oxidative	
 footprinting	
 and	
 mass	
 spectrometry,	
 Trends	

Biochem	
 Sci	
 30,	
 583-­‐592.	

23.	
 Taverner	
 T,	
 Hernandez	
 H,	
 Sharon	
 M,	
 Ruotolo	
 BT,	
 Matak-­‐Vinkovic	
 D,	
 Devos	
 D,	

Russell	
 RB,	
 and	
 Robinson	
 CV	
 (2008)	
 Subunit	
 architecture	
 of	
 intact	
 protein	

complexes	
 from	
 mass	
 spectrometry	
 and	
 homology	
 modeling,	
 Acc	
 Chem	
 Res	

41,	
 617-­‐627.	

24.	
 Chen	
 ZA,	
 Jawhari	
 A,	
 Fischer	
 L,	
 Buchen	
 C,	
 Tahir	
 S,	
 Kamenski	
 T,	
 Rasmussen	
 M,	

Lariviere	
 L,	
 Bukowski-­‐Wills	
 JC,	
 Nilges	
 M,	
 Cramer	
 P,	
 and	
 Rappsilber	
 J	
 (2010)	

Architecture	
 of	
 the	
 RNA	
 polymerase	
 II-­‐TFIIF	
 complex	
 revealed	
 by	
 cross-­‐
linking	
 and	
 mass	
 spectrometry,	
 EMBO	
 J	
 29,	
 717-­‐726.	

25.	
 Sinz	
 A	
 (2006)	
 Chemical	
 cross-­‐linking	
 and	
 mass	
 spectrometry	
 to	
 map	
 three-­‐
dimensional	
 protein	
 structures	
 and	
 protein-­‐protein	
 interactions,	
 Mass	

Spectrom	
 Rev	
 25,	
 663-­‐682.	

26.	
 Trester-­‐Zedlitz	
 	
 M,	
 Kamada	
 K,	
 Burley	
 SK,	
 Fenyo	
 D,	
 Chait	
 BT,	
 and	
 Muir	
 TW	

(2003)	
 A	
 modular	
 cross-­‐linking	
 approach	
 for	
 exploring	
 protein	
 interactions,	
 J	

Am	
 Chem	
 Soc	
 125,	
 2416-­‐2425.	

27.	
 Joo	
 C,	
 Balci	
 H,	
 Ishitsuka	
 Y,	
 Buranachai	
 C,	
 and	
 Ha	
 T	
 (2008)	
 Advances	
 in	
 single-­‐
molecule	
 fluorescence	
 methods	
 for	
 molecular	
 biology,	
 Annu	
 Rev	
 Biochem	
 77,	

51-­‐76.	

28.	
 Mertens	
 HD,	
 and	
 Svergun	
 DI	
 (2010)	
 Structural	
 characterization	
 of	
 proteins	

and	
 complexes	
 using	
 small-­‐angle	
 X-­‐ray	
 solution	
 scattering,	
 J	
 Struct	
 Biol.	

29.	
 Hura	
 GL,	
 Menon	
 AL,	
 Hammel	
 M,	
 Rambo	
 RP,	
 Poole	
 FL	
 2nd,	
 Tsutakawa	
 SE,	

Jenney	
 FE	
 Jr,	
 Classen	
 S,	
 Frankel	
 KA,	
 Hopkins	
 RC,	
 Yang	
 SJ,	
 Scott	
 JW,	
 Dillard	
 BD,	

Adams	
 MW,	
 and	
 Tainer	
 JA	
 (2009)	
 Robust,	
 high-­‐throughput	
 solution	

structural	
 analyses	
 by	
 small	
 angle	
 X-­‐ray	
 scattering	
 (SAXS),	
 Nat	
 Methods	
 6,	

606-­‐612.	

30.	
 Berggard	
 T,	
 Linse	
 S,	
 and	
 James	
 P	
 (2007)	
 Methods	
 for	
 the	
 detection	
 and	

analysis	
 of	
 protein-­‐protein	
 interactions,	
 Proteomics	
 7,	
 2833-­‐2842.	

31.	
 Sali	
 A,	
 and	
 Blundell	
 TL	
 (1993)	
 Comparative	
 protein	
 modelling	
 by	
 satisfaction	

of	
 spatial	
 restraints,	
 J	
 Mol	
 Biol	
 234,	
 779-­‐815.	

32.	
 Sali	
 A,	
 and	
 Blundell	
 TL	
 (1994)	
 Comparative	
 protein	
 modeling	
 by	
 statisfaction	

of	
 spatial	
 restraints,	
 In	
 Protein	
 Structure	
 by	
 Distance	
 Analysis	
 (Bohr,	
 H.,	
 and	

Brunak,	
 S.,	
 Eds.),	
 pp	
 64-­‐86,	
 TECH	
 UNIV	
 DENMARK,	
 CTR	
 BIOL	
 SEQUENCE	

ANAL,	
 LYNGBY,	
 DENMARK.	

33.	
 Vajda	
 S,	
 and	
 Kozakov	
 D	
 (2009)	
 Convergence	
 and	
 combination	
 of	
 methods	
 in	

protein-­‐protein	
 docking,	
 Curr	
 Opin	
 Struct	
 Biol	
 19,	
 164-­‐170.	

34.	
 Shen	
 MY,	
 and	
 Sali	
 A	
 (2006)	
 Statistical	
 potential	
 for	
 assessment	
 and	

prediction	
 of	
 protein	
 structures,	
 Protein	
 Sci	
 15,	
 2507-­‐2524.	

35.	
 Melo	
 F,	
 Sanchez	
 R,	
 and	
 Sali	
 A	
 (2002)	
 Statistical	
 potentials	
 for	
 fold	

assessment,	
 Protein	
 Sci	
 11,	
 430-­‐448.	

36.	
 Brooks	
 BR,	
 Brooks	
 CL	
 3rd,	
 Mackerell	
 AD	
 Jr,	
 Nilsson	
 L,	
 Petrella	
 RJ,	
 Roux	
 B,	

Won	
 Y,	
 Archontis	
 G,	
 Bartels	
 C,	
 Boresch	
 S,	
 Caflisch	
 A,	
 Caves	
 L,	
 Cui	
 Q,	
 Dinner	

AR,	
 Feig	
 M,	
 Fischer	
 S,	
 Gao	
 J,	
 Hodoscek	
 M,	
 Im	
 W,	
 Kuczera	
 K,	
 Lazaridis	
 T,	
 Ma	
 J,	

Ovchinnikov	
 V,	
 Paci	
 E,	
 Pastor	
 RW,	
 Post	
 CB,	
 Pu	
 JZ,	
 Schaefer	
 M,	
 Tidor	
 B,	

Venable	
 RM,	
 Woodcock	
 HL,	
 Wu	
 X,	
 Yang	
 W,	
 York	
 DM,	
 and	
 Karplus	
 M	
 (2009)	

CHARMM:	
 the	
 biomolecular	
 simulation	
 program,	
 J	
 Comput	
 Chem	
 30,	
 1545-­‐
1614.	

37.	
 Case	
 DA,	
 Cheatham	
 TE	
 3rd,	
 Darden	
 T,	
 Gohlke	
 H,	
 Luo	
 R,	
 Merz	
 KM	
 Jr,	
 Onufriev	

A,	
 Simmerling	
 C,	
 Wang	
 B,	
 and	
 Woods	
 RJ	
 (2005)	
 The	
 Amber	
 biomolecular	

simulation	
 programs,	
 J	
 Comput	
 Chem	
 26,	
 1668-­‐1688.	

38.	
 Christen	
 M,	
 Hunenberger	
 PH,	
 Bakowies	
 D,	
 Baron	
 R,	
 Burgi	
 R,	
 Geerke	
 DP,	
 Heinz	

TN,	
 Kastenholz	
 MA,	
 Krautler	
 V,	
 Oostenbrink	
 C,	
 Peter	
 C,	
 Trzesniak	
 D,	
 and	
 van	

Gunsteren	
 WF	
 (2005)	
 The	
 GROMOS	
 software	
 for	
 biomolecular	
 simulation:	

GROMOS05,	
 J	
 Comput	
 Chem	
 26,	
 1719-­‐1751.	

39.	
 Forster	
 F,	
 Lasker	
 K,	
 Beck	
 F,	
 Nickell	
 S,	
 Sali	
 A,	
 and	
 Baumeister	
 W	
 (2009)	
 An	

Atomic	
 Model	
 AAA-­‐ATPase/20S	
 core	
 particle	
 sub-­‐complex	
 of	
 the	
 26S	

proteasome,	
 Biochem	
 Biophys	
 Res	
 Commun	
 388,	
 228-­‐233.	

40.	
 Nickell	
 S,	
 Beck	
 F,	
 Scheres	
 SHW,	
 Korinek	
 A,	
 Forster	
 F,	
 Lasker	
 K,	
 Mihalache	
 O,	

Sun	
 N,	
 Nagy	
 I,	
 Sali	
 A,	
 Plitzko	
 J,	
 Carazo	
 J,	
 Mann	
 M,	
 and	
 Baumeister	
 W	
 (2009)	

Insights	
 into	
 the	
 Molecular	
 Architecture	
 of	
 the	
 26S	
 Proteasome,	
 Proc	
 Natl	

Acad	
 Sci	
 U	
 S	
 A	
 29,	
 11943-­‐11947.	

41.	
 Lasker	
 K,	
 Sali	
 A,	
 and	
 Wolfson	
 HJ.	
 Determining	
 macromolecular	
 assembly	

structures	
 by	
 molecular	
 docking	
 and	
 fitting	
 into	
 an	
 electron	
 density	
 map,	
 in	

press.	

42.	
 Lasker	
 K,	
 Topf	
 M,	
 Sali	
 A,	
 and	
 Wolfson	
 H	
 (2009)	
 Inferential	
 optimization	
 for	

simultaneous	
 fitting	
 of	
 multiple	
 components	
 into	
 a	
 cryoEM	
 map	
 of	
 their	

assembly,	
 J	
 Mol	
 Biol	
 388,	
 180-­‐194.	

43.	
 Pettersen	
 EF,	
 Goddard	
 TD,	
 Huang	
 CC,	
 Couch	
 GS,	
 Greenblatt	
 DM,	
 Meng	
 EC,	
 and	

Ferrin	
 TE	
 (2004)	
 UCSF	
 Chimera-­‐-­‐a	
 visualization	
 system	
 for	
 exploratory	

research	
 and	
 analysis,	
 J	
 Comput	
 Chem	
 25,	
 1605-­‐1612.	

44.	
 Kampmann	
 M,	
 and	
 Blobel	
 G	
 (2009)	
 Three-­‐dimensional	
 structure	
 and	

flexibility	
 of	
 a	
 membrane-­‐coating	
 module	
 of	
 the	
 nuclear	
 pore	
 complex,	
 Nat	

Struct	
 Mol	
 Biol	
 16,	
 782-­‐788.	

45.	
 Sampathkumar	
 P,	
 Gheyi	
 T,	
 Miller	
 SA,	
 Bain	
 K,	
 Dickey	
 M,	
 Bonanno	
 J,	
 Kim	
 S,	

Phillips	
 J,	
 Pieper	
 U,	
 Fernandez-­‐Martinez	
 J,	
 Franke	
 JD,	
 Martel	
 A,	
 Tsuruta	
 H,	

Atwell	
 S,	
 Thompson	
 D,	
 Emtage	
 JS,	
 Wasserman	
 S,	
 Rout	
 MP,	
 Sali	
 A,	
 Sauder	
 JM,	

and	
 Burley	
 SK	
 (Submitted)	
 Structure	
 of	
 the	
 C-­‐terminal	
 domain	
 of	

Saccharomyces	
 cerevisiae	
 Nup133,	
 a	
 component	
 of	
 the	
 Nuclear	
 Pore	

Complex.	

46.	
 Putnam	
 CD,	
 Hammel	
 M,	
 Hura	
 GL,	
 and	
 Tainer	
 JA	
 (2007)	
 X-­‐ray	
 solution	

scattering	
 (SAXS)	
 combined	
 with	
 crystallography	
 and	
 computation:	
 defining	

accurate	
 macromolecular	
 structures,	
 conformations	
 and	
 assemblies	
 in	

solution,	
 Q	
 Rev	
 Biophys	
 40,	
 191-­‐285.	

47.	
 Petoukhov	
 MV,	
 and	
 Svergun	
 DI	
 (2007)	
 Analysis	
 of	
 X-­‐ray	
 and	
 neutron	

scattering	
 from	
 biomacromolecular	
 solutions,	
 Curr	
 Opin	
 Struct	
 Biol	
 17,	
 562-­‐
571.	

48.	
 Schneidman-­‐Duhovny	
 D,	
 Hammel	
 A,	
 and	
 Sali	
 A.	
 (2010)	
 FoXS:	
 A	
 Web	
 Server	

for	
 Rapid	
 Computation	
 and	
 Fitting	
 of	
 SAXS	
 Profiles,	
 Nucleic	
 Acids	
 Res,	
 epub	

ahead	
 of	
 print.	

49.	
 Forster	
 F,	
 Webb	
 B,	
 Krukenberg	
 KA,	
 Tsuruta	
 H,	
 Agard	
 DA,	
 and	
 Sali	
 A	
 (2008)	

Integration	
 of	
 small-­‐angle	
 X-­‐ray	
 scattering	
 data	
 into	
 structural	
 modeling	
 of	

proteins	
 and	
 their	
 assemblies,	
 J	
 Mol	
 Biol	
 382,	
 1089-­‐1106.	

50.	
 Berman	
 HM,	
 Battistuz	
 T,	
 Bhat	
 TN,	
 Bluhm	
 WF,	
 Bourne	
 PE,	
 Burkhardt	
 K,	
 Feng	

Z,	
 Gilliland	
 GL,	
 Iype	
 L,	
 Jain	
 S,	
 Fagan	
 P,	
 Marvin	
 J,	
 Padilla	
 D,	
 Ravichandran	
 V,	

Schneider	
 B,	
 Thanki	
 N,	
 Weissig	
 H,	
 Westbrook	
 JD,	
 and	
 Zardecki	
 C	
 (2002)	
 The	

Protein	
 Data	
 Bank,	
 Acta	
 Crystallogr	
 D	
 Biol	
 Crystallogr	
 58,	
 899-­‐907.	

51.	
 Robinson	
 RC,	
 Turbedsky	
 K,	
 Kaiser	
 DA,	
 Marchand	
 JB,	
 Higgs	
 HN,	
 Choe	
 S,	
 and	

Pollard	
 TD	
 (2001)	
 Crystal	
 structure	
 of	
 Arp2/3	
 complex,	
 Science	
 294,	
 1679-­‐
1684.	

52.	
 DeLano	
 WL	
 (2002)	
 The	
 PyMOL	
 molecular	
 graphics	
 system,	
 Version	
 1.2r3pre,	

Schrödinger,	
 LLC.	

53.	
 Galassi	
 M,	
 Davies	
 J,	
 Theiler	
 J,	
 Gough	
 B,	
 Jungman	
 G,	
 Booth	
 M,	
 and	
 Rossi	
 F	

(2002)	
 GNU	
 Scientific	
 Library.	

54.	
 Topf	
 M,	
 Lasker	
 K,	
 Webb	
 B,	
 Wolfson	
 H,	
 Chiu	
 W,	
 and	
 Sali	
 A	
 (2008)	
 Protein	

structure	
 fitting	
 and	
 refinement	
 guided	
 by	
 cryo-­‐EM	
 density,	
 Structure	
 16,	

295-­‐307.	

	

	

Tables	

Table	
 1:	
 IMP	
 Modules	

Module	
 name	
 Description	

Basic	
 modules	

core Basic	
 functionality	
 commonly	
 used	
 in	
 structural	
 modeling,	
 including	
 representation	
 of	
 particles	

as	
 rigid	
 bodies,	
 commonly	
 used	
 restraints	
 such	
 as	
 distance,	
 excluded	
 volume	
 and	

connectivity(16)	
 and	
 frequently	
 used	
 optimizers	
 such	
 as	
 Monte	
 Carlo	
 and	
 conjugate	
 gradients.	
 	

algebra General-­‐purpose	
 algebraic	
 and	
 geometric	
 methods,	
 including	
 principal	
 component	
 analysis	
 of	

attributes,	
 geometric	
 alignment	
 between	
 two	
 sets	
 of	
 3D	
 coordinates	
 and	
 geometric	

manipulations	
 of	
 spheres,	
 cones,	
 cylinders	
 and	
 cubes.	

display Tools	
 for	
 displaying	
 and	
 exporting	
 of	
 IMP	
 data,	
 such	
 as	
 intermediate	
 models	
 in	
 an	
 optimization	

process,	
 in	
 PDB(50),	
 Chimera(43)	
 or	
 PyMol(52)	
 format.	

statistics Basic	
 statistics	
 tools,	
 including	
 k-­‐means	
 clustering,	
 Gaussian	
 mixture	
 model	
 clustering	
 and	

histogram	
 calculation.	

gsl Interfaces	
 to	
 allow	
 algorithms	
 from	
 the	
 GNU	
 Scientific	
 Library(53),	
 including	
 simplex,	
 quasi-­‐
Newton	
 and	
 conjugate	
 gradients	
 optimizers,	
 to	
 be	
 used	
 in	
 IMP.	

container Tools	
 and	
 algorithms	
 for	
 manipulating	
 subsets	
 of	
 the	
 system’s	
 particles,	
 such	
 as	
 maintaining	
 a	

list	
 of	
 all	
 pairs	
 of	
 particles	
 that	
 are	
 spatially	
 close.	

Structural	
 modeling	
 modules	

atom Tools	
 for	
 manipulating	
 atoms	
 and	
 proteins.	
 The	
 module	
 allows	
 molecules	
 to	
 be	
 read	
 or	
 written	

in	
 PDB	
 format(50)	
 and	
 scored	
 using	
 force	
 fields	
 such	
 as	
 CHARMM(36).	
 It	
 also	
 provides	

molecular	
 dynamics	
 and	
 Brownian	
 dynamics	
 optimizers.	

em Integration	
 of	
 2D	
 and	
 3D	
 EM	
 data	
 into	
 the	
 integrative	
 modeling	
 procedure.	
 The	
 module	

provides	
 functionality	
 to	
 read	
 and	
 write	
 EM	
 density	
 maps	
 in	
 MRC,	
 X-­‐PLOR,	
 Spider	
 and	
 EM	

formats,	
 to	
 simulate	
 density	
 maps	
 from	
 a	
 set	
 of	
 particles,	
 and	
 to	
 represent	
 the	
 EM	
 quality-­‐of-­‐fit	

as	
 a	
 restraint(54).	

modeller
Interface	
 to	
 the	
 MODELLER(31,	
 32)	
 comparative	
 modeling	
 program.	
 The	
 module	
 allows	
 for	

MODELLER	
 models	
 and	
 restraints	
 to	
 be	
 imported	
 into	
 IMP,	
 and	
 for	
 IMP	
 restraints	
 to	
 be	
 used	

with	
 the	
 MODELLER	
 optimizers,	
 or	
 vice	
 versa.	

saxs Integration	
 of	
 SAXS	
 data	
 into	
 the	
 integrative	
 modeling	
 procedure.	
 The	
 module	
 reads	
 and	
 writes	

SAXS	
 profiles,	
 and	
 provides	
 a	
 restraint	
 that	
 scores	
 a	
 set	
 of	
 particles	
 on	
 their	
 fit	
 to	
 an	

experimental	
 profile(48,	
 49).	

restrainer High-­‐level	
 interface	
 for	
 setting	
 up	
 an	
 integrative	
 modeling	
 procedure,	
 reading	
 the	

representation	
 of	
 the	
 system	
 and	
 the	
 sources	
 of	
 input	
 information	
 from	
 a	
 pair	
 of	
 XML	
 files.	
 	

domino Implementation	
 of	
 an	
 inferential	
 message-­‐passing	
 optimization	
 procedure(42).	
 The	
 module	

provides	
 functionality	
 to	
 build	
 a	
 graphical	
 model	
 of	
 the	
 defined	
 scoring	
 function,	
 and	
 to	

decompose	
 the	
 graph	
 into	
 a	
 tree	
 on	
 which	
 a	
 message-­‐passing	
 sampling	
 procedure	
 is	
 performed.	

multifit Tools	
 for	
 fitting	
 multiple	
 proteins	
 into	
 their	
 assembly	
 density	
 map.	
 The	
 main	
 functionality	

includes:	
 (i)	
 fitting	
 a	
 single	
 protein	
 into	
 its	
 density	
 based	
 on	
 point-­‐alignment,	
 principal	

component	
 matching	
 or	
 fast-­‐Fourier	
 transform	
 search,	
 (ii)	
 combinatorial	
 consideration	
 of	

fitting	
 solutions	
 of	
 multiple	
 components	
 for	
 generating	
 an	
 assembly	
 model,	
 and	
 (iii)	
 modeling	

of	
 cyclic	
 symmetric	
 assemblies(41).	

Support	
 modules	

benchmark A	
 set	
 of	
 benchmarks	
 of	
 the	
 IMP	
 software,	
 to	
 ensure	
 that	
 the	
 algorithms	
 perform	
 optimally.	

example Examples	
 for	
 developers	
 on	
 how	
 to	
 implement	
 new	
 IMP	
 functionality.	
 	

helper High-­‐level	
 functionality	
 to	
 assist	
 in	
 setting	
 up	
 and	
 manipulating	
 a	
 system,	
 including	
 simplified	

interfaces	
 for	
 creating	
 restraints	
 such	
 as	
 EM,	
 connectivity	
 and	
 excluded	
 volume.	

misc Miscellaneous	
 and	
 experimental	
 functionality	
 that	
 has	
 not	
 been	
 fully	
 tested.	

test Procedures	
 to	
 help	
 in	
 testing	
 the	
 IMP	
 software	
 itself.	

Figures	

	

	

	

	

	

Figure	
 1.	
 Integrative	
 modeling	
 protocol.	
 After	
 the	
 datasets	
 to	
 be	
 used	
 are	
 enumerated,	
 a	
 suitable	

representation	
 is	
 chosen	
 for	
 the	
 system,	
 and	
 the	
 input	
 information	
 is	
 converted	
 into	
 a	
 set	
 of	
 spatial	

restraints.	
 Models	
 are	
 generated	
 that	
 are	
 optimally	
 consistent	
 with	
 the	
 input	
 information	
 by	
 optimizing	

a	
 function	
 of	
 these	
 restraints.	
 Analysis	
 of	
 the	
 resulting	
 models	
 informs	
 about	
 the	
 model	
 and	
 data	

accuracy	
 and	
 may	
 help	
 guide	
 further	
 experiments.	
 The	
 protocol	
 is	
 demonstrated	
 with	
 the	
 construction	

of	
 a	
 bead	
 model	
 of	
 the	
 NPC(12).	

Integrative modeling - IMP

Alber et al. Nature 2007 • Robinson, Sali, Baumeister. Nature 2007 •
Russel, et al. Current Option in Cell Biology, 2009

Data generation

Design of
representation

and scoring

Ensemble
analysis

Structure
enumeration

Friday, June 18, 2010

	

	

	

Figure	
 2.	
 Overview	
 of	
 the	
 IMP	
 software.	
 Components	
 are	
 displayed	
 by	
 simplicity	
 (or	
 user-­‐friendliness)	

and	
 expressiveness	
 (or	
 power).	
 The	
 core	
 C++/Python	
 library	
 allows	
 protocols	
 to	
 be	
 designed	
 from	

scratch;	
 higher-­‐level	
 modules	
 and	
 applications	
 provide	
 more	
 user-­‐friendly	
 interfaces.	

IMP C++/Python library

restrainer

Simplicity
E

xp
re

ss
iv

en
es

s

Chimera tools/
web services

Domain-specific applications

Monday, July 12, 2010

	

	

	

Figure	
 3.	
 simple.py,	
 a	
 simple	
 Python	
 script	
 that	
 uses	
 IMP	
 to	
 build	
 a	
 model	
 consisting	
 of	
 two	
 particles	

satisfying	
 a	
 harmonic	
 distance	
 restraint.	

import IMP
import IMP.algebra
import IMP.core

m = IMP.Model()

Create two "untyped" Particles
p1 = IMP.Particle(m)
p2 = IMP.Particle(m)

"Decorate" the Particles with x,y,z attributes (point-like particles)
d1 = IMP.core.XYZ.setup_particle(p1)
d2 = IMP.core.XYZ.setup_particle(p2)

Use some XYZ-specific functionality (set coordinates)
d1.set_coordinates(IMP.algebra.Vector3D(10.0, 10.0, 10.0))
d2.set_coordinates(IMP.algebra.Vector3D(-10.0, -10.0, -10.0))
print d1, d2

Harmonically restrain p1 to be zero distance from the origin
f = IMP.core.Harmonic(0.0, 1.0)
s = IMP.core.DistanceToSingletonScore(f, IMP.algebra.Vector3D(0., 0., 0.))
r1 = IMP.core.SingletonRestraint(s, p1)
m.add_restraint(r1)

Harmonically restrain p1 and p2 to be distance 5.0 apart
f = IMP.core.Harmonic(5.0, 1.0)
s = IMP.core.DistancePairScore(f)
r2 = IMP.core.PairRestraint(s, IMP.ParticlePair(p1, p2))
m.add_restraint(r2)

Optimize the x,y,z coordinates of both particles with conjugate gradients
d1.set_coordinates_are_optimized(True)
d2.set_coordinates_are_optimized(True)
o = IMP.core.ConjugateGradients(m)
o.optimize(50)
print d1, d2
~
~
~
~
~
~
~
 1,1 All

	

	

Figure	
 4.	
 Division	
 of	
 the	
 yeast	
 NPC	
 into	
 subcomplexes(13);	
 one	
 such	
 subcomplex	
 is	
 the	
 Nup84	
 complex	
 of	

seven	
 proteins.	

Restrainer example

Determine a simple
“bead model”of a
subcomplex of the
Nuclear Pore
Complex, Nup84

FG nucleoporins

Spoke

Pom152

Ndc1 Pom34

Nup120

Nup85

Nup145C

Nup84

Sec13

Seh1

Nup133

Nup188

Nup192

Nup170

Nup157

Nup82

Nup82

Nic96

Nic96

5 nm

5 nm

Nup145N

Nup53

Nup1

Nup60Nsp1

Nup59

Nup49

Nsp1

Nup57

Nup145N

Nup159

Nup57

Nup49

Nup100

Nup116

Nsp1
Nup59

Nsp1

Nup42

Nup53

Cytoplasm

Nucleoplasm

Inner rings

Outer rings

Membrane rings

Linker nucleoporins

Figure 2 | Localization of major substructures and their component
nucleoporins in the NPC. This figure is a single view of data presented in
our Supplementary Movie. The nucleoporins are represented by their
localization volumes14 and have been coloured according to their
classification into five distinct substructures on the basis of their location
and functional properties: the outer rings in yellow, the inner rings in purple,
the membrane rings in brown, the linker nucleoporins in blue and pink, and
the FG nucleoporins (for which only the structured domains are shown) in
green. The pore membrane is shown in grey. A single arbitrary repeat unit,
termed the spoke, is shown dissected into its component nucleoporins.
Together, the outer and inner rings connect to form the NPC’s core scaffold
(Fig. 3). Each of the outer rings makes connections with the adjacent linker
nucleoporins and inner rings, but connects with few FGnucleoporins and no
components of the membrane rings. The two inner rings are closely
associated with each other at the NPC’s equator and form connections with
all three integral membrane proteins in the membrane rings, thereby
anchoring the NPC to the nuclear envelope. The bulk of themembrane rings

is formed by homo-oligomerization of the C-terminal domain of Pom152.
The linker nucleoporins Nic96 and Nup82 are anchored between the inner
and outer rings and have a central role in bridging the core scaffold of the
NPC with the functionally important FG nucleoporins. On both the
cytoplasmic and nucleoplasmic sides of each spoke, one copy of Nic96 is
anchored through Nup192 and a second copy through Nup188. Whereas
one copy of Nic96 carries the FG nucleoporins Nsp1, Nup57 andNup49, the
second copy forms interactions to another copy of Nsp1 and at the
cytoplasmic side also interacts with Nup82. Here, Nup82 associates with the
FG nucleoporins Nup159, Nup116, Nsp1 and Nup42. Thus, Nsp1 forms at
least two distinct complexes in the NPC: one exclusively cytoplasmic and
one disposed symmetrically52–55. By contrast, the FG nucleoporins found
only on the nucleoplasmic side connect mainly to the inner ring
nucleoporins, as do Nup53 and Nup59, both of which also face the pore
membrane. The scale bars indicate the average standard deviation of the
distance between a pair of neighbouring proteins in the 1,000 best-scoring
configurations14.

NATURE |Vol 450 |29 November 2007 ARTICLES

697
Nature ©2007 Publishing Group

Friday, June 18, 2010

	

	

Figure	
 5.	
 Bead	
 model	
 of	
 the	
 Nup84	
 complex	
 generated	
 by	
 restrainer,	
 based	
 on	
 yeast	
 two-­‐hybrid	

system	
 data	
 and	
 excluded	
 volume	
 considerations.	

Run the optimization

Run like any other Python script
Output: log file, structures (as Chimera Python inputs)

Nup120

Sec13

Seh1 Nup85

Nup84

Nup133

Nup145c

Friday, June 18, 2010

	

	

Figure	
 6.	
 Fit	
 of	
 the	
 3kfo	
 PDB	
 structure	
 (solid	
 line)	
 against	
 the	
 experimentally-­‐determined	
 SAXS	
 profile	
 of	

the	
 same	
 protein	
 (points),	
 using	
 the	
 FoXS	
 web	
 service	
 at	
 http://salilab.org/foxs(48).	
 A	
 plot	
 of	
 a	

comparative	
 model's	
 profile	
 is	
 also	
 shown	
 (dashed	
 line).	

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 0.05 0.1 0.15 0.2 0.25 0.3

I(q
) l

og
-s

ca
le

q

	

Figure	
 7.	
 The	
 MultiFit	
 protocol(42).	
 Protein	
 subunits	
 are	
 fitted	
 into	
 a	
 density	
 map	
 of	
 the	
 assembly	
 by	

discretizing	
 both	
 the	
 map	
 and	
 the	
 components,	
 locally	
 fitting	
 each	
 protein,	
 and	
 efficiently	
 combining	
 the	

local	
 fits	
 into	
 global	
 solutions.	

	

	

1. Input: components, map

2. Discretize
 map and
 components

Map segmented into anchor graph

Component fits in vicinity
of anchor nodes

4. Sample subsets
 semi-independently

Decompose
into subsets

Gather subset
solutions
into best global
solutions

3. Fit proteins
 into the map

Friday, July 16, 2010

