Modeling of proteins and their
assemblies with the Integrative
Modeling Platform

Contributed by Benjamin Webb, Keren Lasker, Dina Schneidman-Duhovny, Elina
Tjioe, Jeremy Phillips, Seung Joong Kim, Javier Velazquez-Muriel, Daniel Russel, and
Andrej Sali, Department of Bioengineering and Therapeutic Sciences, Department of
Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences
(QB3), University of California San Francisco, San Francisco, CA 94158, USA.

Abstract

To understand the workings of the living cell, we need to characterize protein
assemblies that constitute the cell (for example, the ribosome, 26S proteasome, and
the nuclear pore complex). A reliable high-resolution structural characterization of
these assemblies is frequently beyond the reach of current experimental methods,
such as X-ray crystallography, NMR spectroscopy, electron microscopy, footprinting,
chemical cross-linking, FRET spectroscopy, small angle X-ray scattering, and
proteomics. However, the information garnered from different methods can be
combined and used to build computational models of the assembly structures that
are consistent with all of the available datasets. Here, we describe a protocol for this
integration, whereby the information is converted to a set of spatial restraints and a
variety of optimization procedures can be used to generate models that satisfy the
restraints as well as possible. These generated models can then potentially inform
about the precision and accuracy of structure determination, the accuracy of the
input datasets, and further data generation. We also demonstrate the Integrative
Modeling Platform (IMP) software, which provides the necessary computational
framework to implement this protocol, and several applications for specific use
cases.

Key Words

Integrative modeling, protein structure modeling, macromolecular assemblies
proteomics, X-ray crystallography, electron microscopy, SAXS.

Introduction

To understand the function of a macromolecular assembly, we must know the
structure of its components and the interactions between them(1-4). However,
direct experimental determination of such a structure is generally rather difficult.



While multiple methods do exist for structure determination, each has a drawback.
For example, crystals suitable for X-ray crystallography cannot always be produced,
especially for large assemblies of multiple components(5). Cryo-electron
microscopy (cryo-EM), on the other hand, can be used to study large assemblies, but
it is generally limited to worse than atomic resolution(6-8). Finally, proteomics
techniques, such as yeast two-hybrid(9) and mass spectrometry(10), yield
information about the interactions between proteins, but not the positions of these
proteins within the assembly or the structures of the proteins themselves.

Integrative modeling

One approach to solve the structures of proteins and their assemblies is by
integrative modeling, in which information from different methods is considered
simultaneously during the modeling procedure. The approach is briefly outlined
here for clarity; it has been covered in greater detail previously(11-17). These
methods can include experimental techniques, such as X-ray crystallography(5),
nuclear magnetic resonance (NMR) spectroscopy(18-20), electron microscopy
(EM)(6-8), footprinting(21, 22), chemical cross-linking(23-26), FRET
spectroscopy(27), small angle X-ray scattering (SAXS)(28, 29), and proteomics(30).
Theoretical sources of information about the assembly can also be incorporated,
such as template structures used in comparative modeling(31, 32), scoring
functions used in molecular docking(33), as well as other statistical preferences(34,
35) and physics-based energy functions(36-38). Different methods yield
information about different aspects of structure and at different levels of resolution.
For example, atomic resolution structures may be available for individual proteins
in the assembly; in other cases, only their approximate size, approximate shape, or
interactions with other proteins may be known. Thus, integrative modeling
techniques generate models at the resolution that is consistent with the input
information. An example of a simple integrative approach is building a pseudo-
atomic model of a large assembly, such as the 26S proteasome(39, 40), by fitting
atomic structures of its subunits predicted by comparative protein structure
modeling into a density map determined by cryo-EM(41, 42).

The integrative modeling procedure used here(12, 17) is shown in Figure 1. The
first step in the procedure is to collect all experimental, statistical, and physical
information that describes the system of interest. A suitable representation for the
system is then chosen and the available information is translated to a set of spatial
restraints on the components of the system. For example, in the case of
characterizing the molecular architecture of the nuclear pore complex (NPC)(12,
13), atomic structures of the protein subunits were not available, but the
approximate size and shape of each protein was known, so each protein was
represented as a ‘string’ of connected spheres consistent with the protein size and
shape. A simple distance between two proteins can be restrained by a harmonic
function of the distance, while the fit of a model into a 3D cryo-EM density map can
be restrained by the cross-correlation between the map and the computed density
of the model. Next, the spatial restraints are summed into a single scoring function
that can be sampled using a variety of optimizers, such as conjugate gradients,



molecular dynamics, Monte Carlo, and inference-based methods(42). This sampling
generates an ensemble of models that are as consistent with the input information
as possible. In the final step, the ensemble is analyzed to determine, for example,
whether all of the restraints have been satisfied or certain subsets of data conflict
with others. The analysis may generate a consensus model, such as the probability
density for the location of each subunit in the assembly.

Integrative Modeling Platform

We have developed the Integrative Modeling Platform (IMP) software
(http://salilab.org/imp/)(12-15) to implement the integrative modeling procedure
described above. Integrative modeling problems vary in size and scope, and thus
IMP offers a great deal of flexibility and several abstraction levels as part of a multi-
tiered platform (Figure 2). At the lowest level, IMP provides building blocks and
tools to allow methods developers to convert data from new experimental methods
into spatial restraints, to implement optimization and analysis techniques, and to
implement an integrative modeling procedure from scratch; the developer can use
the C++ and Python programming languages to achieve these tasks. Higher
abstraction levels, designed to be used by IMP users with no programming
experience, provide less flexible but more user-friendly applications to handle
specific tasks, such as fitting of proteins into a density map of their assembly, or
comparing a structure with the corresponding SAXS profile. IMP is freely available
as open source software under the terms of the GNU Lesser General Public License
(LGPL). Integrative modeling, due to its use of multiple sources of information, is
often a highly collaborative venture, and thus benefits from openness of the
modeling protocols and the software itself.

Materials

To follow the examples in this discussion, both the IMP software itself and a set of
suitable input files are needed. The IMP software can be downloaded from
http://salilab.org/imp/download.html and is available in binary form for most
common machine types and operating systems; alternatively, it can be rebuilt from
the source code. The example files can be downloaded from

http://salilab.org/imp /tutorials/basic.zip.

Methods

The IMP C++/Python library

The core of IMP is the C++/Python library, which provides all of the necessary
components, as a set of classes and modules, to allow methods developers to build
an integrative modeling protocol from scratch. Most users of IMP will use one of the
higher-level interfaces described in later sections; however, we will briefly
demonstrate this library here to illustrate the core IMP concepts that these
interfaces rely on.



The IMP library is split into a kernel and a set of extension modules (Table 1). The
kernel is a small collection of classes that define the storage of information about the
system and the main interfaces used to interact with that information. The
information is stored in a set of Particle objects; these are flexible and abstract
data containers, able to hold whatever information is necessary to represent the
system. For example, a given Particle may be assigned x, y, and z attributes to
store point coordinates, another may be assigned x, y, z, and a radius to represent a
sphere, and another may contain two pointers to other Particles to represent a
bond or another relationship. The kernel defines only the abstract interfaces to
manipulate the data in the Particles, but does not provide implementations;
these are provided in the extension modules. For example, it merely defines a
Restraint as any object that, given a set of Particles, returns a score, and an
Optimizer as an object that changes the attributes of all Particles to yield an
optimized score over all restraints. It is the core module that provides, for example,
a concrete Restraint acting like a harmonic ‘spring’ between two point-like
Particles, an Optimizer that utilizes the conjugate gradients minimization
method, and much other functionality.

IMP includes a variety of modules (Table 1). Some modules provide the basic
building blocks needed to construct a protocol, such as the core module that
provides functionality including harmonic restraints, point-like and spherical
particles, and basic optimizers, and the atom module that provides atom-like
particles, a molecular dynamics optimizer, etc. Other modules provide support for
specific types of experimental data or specialized optimizers, such as the em module
that supports electron microscopy data, and the domino module that provides an
inference-based divide-and-conquer optimizer. IMP is designed so that it is easy to
add a new module; for example, a developer working on incorporating data from a
new experimental technique may add a new IMP module that translates the data
from this technique into spatial restraints.

IMP is primarily implemented in C++ for speed; however, each of the classes is
wrapped so that it can also be used from Python. A protocol can thus be developed
from scratch by simply writing a Python script. As an example, we will first look at
the script simple.py in the ‘1ibrary’ subdirectory of the zipfile downloaded
above (Figure 3).

In the first part of the script, the IMP kernel and the algebra and core modules
are loaded, as regular Python modules. We then proceed to set up the
representation of the system, using the Model and Particle classes defined in the
kernel. The Model class represents the entire system, and keeps track of all the
Particles, Restraints, and links between them. As mentioned earlier, the
Particle class is a flexible container, but here we give the two Particles (pl
and p2) point-like attributes using the XYZ class defined in the core module. This
XYZ class is known as a ‘decorator’; it does not create a new Particle, but merely



presents a new interface to an existing Particle, in this case a point-like one.
(Multiple decorators can be applied to a single Particle; for example, an atom-
like Particle could be treated like a point, a sphere, an electrically charged
particle, or an atom.) We can then treat each Particle like a point using methods
in the XYZ class, here setting the x, y, and z coordinates to a provided vector.

In the second part, we set up the scoring of the system. We add two restraints to the
Model, one of which harmonically restrains p1 to the origin and the other of which
restrains p1 and p2 to be distance 5.0 apart. (IMP does not enforce any units of
distance; however, some physical optimizers, such as molecular dynamics, expect
distances to be in angstroms.) Note that the core module provides suitable building
block restraints for this purpose. In the first case, we use the
SingletonRestraint class that creates a restraint on a single particle (p1). It
delegates the task of actually scoring the particle, however, to another class called
SingletonScore thatis simply given the Particle and asked for its score. In
this example, we use a type of SingletonScore called a
DistanceToSingletonScore that calculates the Cartesian distance between the
point-like Particle and a fixed point (in this case the origin), and again delegates
the task of scoring the distance to another class, a UnaryFunction. In this case,
the UnaryFunction is a simple harmonic function with a mean of zero. Thus, the
Particle pl is harmonically restrained to be at the origin. The second restraint is
set up similarly; however, in this case the restraints and scores act on a pair of
particles. This building block functionality makes it easy to add a new type of
restraint; for example, to implement a van der Waals potential it is only necessary to
provide a suitable PairScore that scores a single pair of particles; the
functionality for efficiently enumerating all pairs of such particles is already
provided in IMP.

Finally, in the third part of the script, we tell IMP that it can move the two point-like
particles, and to build a system configuration that is consistent with all the
restraints. In this example, a simple conjugate gradients optimization is used.

The script is a regular Python script. Thus, provided that both IMP and Python are
installed, it can be run on any machine, by typing on a command line, in the same
directory as the script:

python simple.py

The script will run the optimization, printing IMP log messages as it goes, and finally
print the coordinates of the optimized particles.

IMP is designed such that the C++ and Python interfaces are similar to use. Thus,
IMP applications or protocols can be constructed either in C++ or in Python, and
new IMP functionality (for example, new types of Restraint) can be implemented



in either language. For a comparison, please inspect the simple. cpp file. This file
implements the same protocol as the first part of simple.py but uses the IMP C++
classes rather than their Python equivalents. The two programs are very similar; the
only differences are in the language syntax (eg, the Python ‘import IMP’translates
to ‘#include <IMP.h>'in C++) and in memory handling (Python handles
memory automatically; in C++, memory handling must be done explicitly by using
the IMP: : Pointer class, which adds reference counting to automatically clean up
after IMP objects when they are not used anymore).

restrainer: a high-level interface for integrative modeling

The IMP C++/Python library offers a great deal of flexibility in setting up the system
and restraints. However, in many cases, a simpler interface to solve modeling
problems is preferable. The restrainer IMP module is one such interface that
simplifies the set up of a complex system, generating the system representation and
restraints from a pair of XML files. Optimization, however, may still need to be
adjusted for specific cases.

As a simple demonstration of the module, we consider the construction of a model
of a subcomplex of the NPC(12, 13). The yeast NPC is a large assembly of 50 MDa
containing 456 proteins of 30 different types. The modeling of the entire assembly is
beyond the scope of this tutorial; however, it has been observed that the NPC is
made up of a set of smaller subcomplexes (Figure 4). One of these complexes is the
Nup84 complex, consisting of seven proteins, and the modeling of this complex is
illustrated in this tutorial.

All of the XML and Python files necessary to perform the Nup84 modeling can be
found in the ‘restrainer’ subdirectory of the zipfile downloaded above. The first
of these XML files is representation.xml, which determines how the system is
represented. IMP does not require every protein in the system to be modeled with
the same representation; for example, some proteins could be modeled as sets of
atoms and others at a lower resolution. As for the original NPC modeling, here we
use a ‘bead model’ for the Nup84 complex; each protein is represented as a sphere,
or a pair of spheres (in the case of the more rodlike Nup133 and Nup120 proteins),
with larger proteins using larger spheres. The second XML file encodes the input
structural data as spatial restraints on the system. Here, we use two simple sources
of information. First, excluded volume for each protein. Second, yeast two-hybrid
results for some pairs of proteins. The third XML file is for visualization only, and
assigns each sphere a different color. Finally, the Python script loads in all three of
the XML files and performs a simple conjugate gradients optimization. This Python
script can be executed just like any other Python script:

python nup84.py

restrainer first generates a set of sphere-like particles to represent the system.
It then converts the information in the restraints file into a set of IMP restraints. It



generates an excluded volume restraint that prevents each protein sphere from
penetrating any other sphere and a set of ‘connectivity’ restraints(12) that force the
protein particles to reproduce the interactions implied by the yeast two-hybrid
experiments. The optimization generates a file optimized. py that is an input file
for the molecular visualization program Chimera(43); when loaded into Chimera, it
displays the final optimized configuration of the complex (Figure 5).

In this example, the modeling problem is simple and thus generating a single model
is sufficient to find a solution that satisfies all restraints. However, when all such
models need to be found or, in more complex cases, when a global solution of the
scoring function is hard to find (for example, because restraints are contradictory
due to errors in experiments or experiment interpretations), the modeling
procedure is repeated to generate an ensemble of models. When modeling the NPC,
the top-scoring models were clustered and used to generate a probability density
for each component within the complex(12). The envelope of this density defined
the precision of the corresponding component localization. Only a single cluster of
structures was found that satisfied all of the restraints. If contradictory information
is presented, however, the optimization will be frustrated, unable to find solutions
that simultaneously satisfy all restraints. The ensemble of solutions will exhibit
more variability than that in a non-frustrated case. Such frustration can be tested for
in the iterative integrative modeling procedure by removing potentially conflicting
restraints and repeating the modeling. Finally, the accuracy of the generated
model(s) can be gauged by comparison with experimental data that were not used
in the original modeling. For example, the generated bead model of the Nup84
complex has a characteristic Y-shape, which is consistent with electron micrographs
of the complex(44), even though these data were not used in our example.

The restrainer XML and Python files, together with the experimental data, such
as cryo-EM maps, constitute a complete modeling protocol. Thus, an assembly
model built using this protocol can be published along with the input files to allow
the model to be reproduced and easily updated. Such a model can thus act as a
reference for future studies; for example, regions of the model that were poorly
resolved can be investigated with new experiments, the resulting data incorporated
into the protocol, and new models generated. Alternatively, existing unused
experimental data can be added to the protocol to determine whether unused data
is consistent with that used to build the model. The iterative nature of the protocol
thus extends beyond the generation of the first ‘correct’ model.

Integration of comparative modeling, X-ray crystallography, and SAXS

The Nup84 complex structure determined above is consistent with all input
information, but for a detailed understanding of its function, an accurate atomic
structure is required. Two possible routes to such a structure, depending on the
available information, are (i) fitting atomic structures of the individual protein
subunits into a cryo-EM map of the assembly and (ii) accurately placing pairs of
subunits relative to each other using X-ray crystallography or molecular docking.



For both routes, atomic structures of the subunits are required; these structures can
be obtained via X-ray crystallography or comparative modeling.

One component of the Nup84 complex is the Nup133 protein; the structure of this
protein has been characterized by both X-ray crystallography and SAXS(45). SAXS
differs from X-ray crystallography in that it is applied to proteins in solution rather
than crystals; thus, it can be applied to a much wider range of proteins in states
more closely resembling their functional forms than X-ray crystallography, but the
information is rotationally averaged and so the resulting SAXS profile gives less
structural information(29, 46, 47). IMP contains a method that, given an atomic
protein structure, can calculate its SAXS profile using the Debye formula, and then fit
this profile against the experimentally determined one(48, 49). This method is
implemented in the IMP saxs module and so can be used by writing a suitable
Python script. However, because fitting against a SAXS profile is a common task, we
provide an IMP application, FoXS, which automates this process. FoXS is available
both as a command-line IMP application and a web service at
http://salilab.org/foxs.

All input files for this demonstration are available in the ‘saxs’ subdirectory of the
downloaded zipfile. The structure of the C-terminal domain of yeast Nup133 is
available in the RCSB Protein Data Bank (PDB)(50) as code 3kfo (file 3KFO . pdb),
while the experimental SAXS profile is given in the 23922 merge.dat file. The
atomic structure can be fit against the SAXS profile by running FoXS in the directory
containing both files:

foxs 3KFO.pdb 23922 merge.dat

Alternatively, the two files can be submitted to the FoXS web server. FoXS compares
the theoretical profile of the provided structure (solid line in Figure 6) with the
experimental profile (points), and calculates the quality of the fit, x, with smaller
values corresponding to closer fits.

The fit in this example is not a good one (x¥=2.96). To understand why this is so, we
examine the header of the 3kfo PDB file, which reveals two problems. Several
residues at the N and C termini were not resolved in the X-ray experiment (8 in
total, 2 at the N terminus and 6 at the C terminus), and the sidechains of 16 other
residues could also not be located (REMARK 465 and REMARK 470 lines).

The missing 8 residues and 16 sidechains need to be placed to create a complete
atomic structure. One way to achieve this goal is to build a comparative model using
a package such as MODELLER (http://salilab.org/modeller/)(31, 32) relying on the
original 3kfo structure as a template and the full sequence (including the 8 missing
N and C terminal residues) as the target. The corresponding MODELLER alignment
file (3KFO-£ill.ali) and script file (£111 . py) are provided in the downloaded
zipfile. Each candidate comparative model can be fitted against the SAXS profile



using the FoXS command-line application or the web service in exactly the same
way as the original 3kfo structure; the best MODELLER model gives a significantly
improved fit between the theoretical and experimental profiles (dashed line in
Figure 6; x=1.21).

Given similar atomic structures of the subunits in the Nup84 complex, as either
crystal structures or comparative models, restrainer can be used to build an
atomic model of the complex. Note, however, that an accurate model of such a
complex would require additional information beyond the proteomics data used
above, since yeast two-hybrid data only show that proteins interact, not the specific
residues in the protein-protein interaction, and thus do not inform us about the
relative orientations of the interacting proteins. Such information can be obtained,
for example, from chemical-crosslinking, molecular docking, or cryo-EM maps, as
illustrated in the next section.

Determining macromolecular assembly structures by fitting multiple structures
into an electron density map

Often, we have available high-resolution (atomic) information for the subunits in an
assembly, and low-resolution information for the assembly as a whole (a cryo-EM
electron density map). A high-resolution model of the whole assembly can thus be
constructed by simultaneously fitting the subunits into the density map. Fitting of a
single protein into a density map is usually done by calculating the electron density
of the protein followed by a search of the protein position in the cryo-EM map that
maximizes the cross correlation of the two maps. Simultaneously fitting multiple
proteins into a given map is significantly more difficult, since an incorrect fit of one
protein will also prevent other proteins from being placed correctly.

IMP contains amultifit (41, 42) module (http://salilab.org/multifit/) that can
efficiently solve such multiple fitting problems for density map resolutions as low as
25A, relying on a general inferential optimizer DOMINO. The fitting protocol is a
multi-step procedure that proceeds via discretization of both the map and the
proteins, local fitting of the proteins into the map, and an efficient combination of
local fits into global solutions (Figure 7). Here, we will demonstrate the use of
multifit in building a model of the ARP2/3 complex(51) using crystal structures
of its seven constituent proteins (ARP2, ARP3, and ARC1-5) and a 20A density map
of the assembly. All input files for this procedure can be found in the ‘multifit’
subdirectory of the downloaded zipfile.

The first step in usingmultifit is to create input files that guide the protocol. The
first of these files, assembly . input, lists each of the subunits and the density
map, complete with the names of the files from which the input structures and map
will be read, and those to which outputs from later steps will be written. In this case,
we also know the native structure of the assembly (PDB code 1tyq) and so we add
the subunit structures in native conformation to this input file (rightmost column);
multifit will use them to assess its accuracy. Normally, of course, the real native



structure is not known, in which case this column in the input file is left blank. The
second file, multifit.par, specifies various optimization parameters, and is
described in more detail on the multifit website (http://salilab.org/multifit/).

The second step is to determine a reduced representation for both the density map
and the subunits, using the Gaussian Mixture Model. This task can be achieved by
typing, in the directory containing assembly. input (the syntax for running
Python scripts may vary depending on where the files are installed):

/opt/multifit/utils/run _anchor points_detection.py
assembly.input 700

This run determines a reduced representation of the EM map that best reproduces
the configuration of all voxels with density above 700, and a similar reduced
representation of each subunit as a set of 3D Gaussian functions. The number of
Gaussians is specified in assembly . input for each subunit. It should be at least 3
(the minimum required for fitting) and each Gaussian should cover approximately
the same number of residues (for example, if you choose 50 residues per Gaussian, a
170-residue protein should use 3 Gaussians and a 260-residue protein should use 5
Gaussians). Each such reduced map representation can also be thought of as an
anchor point graph, where each anchor point corresponds to the center of a 3D
Gaussian, and the edges in the graph correspond to the connectivity between
regions of the map or protein. These reduced representations are written out as
PDB files containing fake Ca atoms, where each Ca corresponds to a single anchor
point.

The third step is to fit each protein in the vicinity of the EM map’s anchor points.
This task is achieved by running:

/opt/multifit/utils/run protein fitting.py assembly.input
multifit.par

The output is a set of candidate fits, where the subunit is rigidly rotated and
translated to fit into the density map. Each fit is written as a PDB file in the ‘€its’
subdirectory. The fitting procedure is performed by either aligning a reduced
representation of a protein to a reduced representation of the density map(41) or
by fitting the protein principal components to the principal components of a
segmented region of the map.

Finally, the fits are scored and then combined into a set of the best-scoring global
configurations:

/opt/multifit/utils/run _all scores.py assembly.input >
scores.log



/opt/multifit/utils/run multifit.py assembly.input
assembly.]jt assembly configurations.output
data/models/1tyq.fitted.pdb > multifit.log

The scoring function used to assess each fit includes the quality-of-fit of each
subunit into the map, the protrusion of each subunit out of the map envelope, and
the shape complementarity between pairs of neighboring subunits. The
optimization avoids exhaustive enumeration of all possible mappings of subunits to
anchor points by means of a branch-and-bound algorithm combined with the
DOMINO divide-and-conquer message-passing optimizer using a discrete sampling
space(42).

The final output frommultifitisafile assembly configurations.output
that lists the best global solutions, ranked by their score, an excerpt of which is
shown below:

ARP3,0|ARP2,14 |ARC1,3|ARC2,24 |ARC3,19|ARC4,11|ARCS,13| (17.5
593729019) (rmsd:29.2637996674) (conf.0.pdb)
ARP3,5|ARP2,13|ARC1, 9|ARC2,24 |ARC3,19|ARC4,4|ARC5,13]| (18.32
58602619) (rmsd:11.997220993) (conf.1.pdb)

For each global solution, multifit lists the indices of the local fits for each subunit
and the score. Each solution is also written out as a multi-chain PDB file of the
assembly. In addition, because we also provided the native structure

(1tyq. fitted.pdb), the RMSD between the native conformation and each
solution is listed. In this case, the RMSD measure indicates thatmultifit has
correctly determined the architecture of the assembly, placing each subunit in the
approximately correct part of the map. However, the protein-protein interfaces are
clearly not accurate at the atomic level. These models could thus be refined with a
combination of pairwise computational docking and local sampling, ideally
supported by additional experimental data, such as chemical cross-linking, various
kinds of footprinting, and X-ray crystallography of binary subunit complexes.

Summary

The structures of protein assemblies can typically not be fully characterized with
any individual computational or experimental method. Integrative modeling aims to
solve this problem by combining information from multiple methods to generate
structural models. Integrative modeling problems can be tackled using the method
of satisfaction of spatial restraints. In this approach, a suitable representation for
the system is chosen, the information is converted into a set of spatial restraints, the
restraints are simultaneously satisfied as well as possible by optimizing a function
that is the sum of all restraints, and the resulting models are analyzed. Further
experiments as well as the precision and likely accuracy of both the model and the
data can be informed. IMP is an open source and flexible software package that



provides all of the components needed to implement an integrative modeling
protocol from scratch. It also contains higher-level applications and web services
that can tackle specific use cases more conveniently.

Acknowledgements

We are grateful to all members of our research group, especially to Frank Alber,
Friedrich Forster, and Bret Peterson who contributed to early versions of IMP. We
also acknowledge support from National Institutes of Health (R01 GM54762, U54
RR022220, PN2 EY016525, and RO1 GM083960) as well as computing hardware
support from Ron Conway, Mike Homer, Hewlett-Packard, NetApp, IBM, and Intel.

References

1. Schmeing TM, and Ramakrishnan V (2009) What recent ribosome structures
have revealed about the mechanism of translation, Nature 461, 1234-1242.

2. Sali A, Glaeser R, Earnest T, and Baumeister W (2003) From words to
literature in structural proteomics, Nature 422, 216-225.

3. Mitra K, and Frank ] (2006) Ribosome dynamics: insights from atomic
structure modeling into cryo-electron microscopy maps, Annu Rev Biophys
Biomol Struct 35, 299-317.

4. Robinson C, Sali A, and Baumeister W (2007) The molecular sociology of the
cell, Nature 450, 973-982.

5. Blundell T, and Johnson L (1976) Protein Crystallography, Academic Press,
New York.

6. Stahlberg H, and Walz T (2008) Molecular electron microscopy: state of the
art and current challenges, ACS Chem Biol 3, 268-281.

7. Chiu W, Baker ML, Jiang W, Dougherty M, and Schmid MF (2005) Electron
cryomicroscopy of biological machines at subnanometer resolution,
Structure 13, 363-372.

8. Lucic V, Leis A, and Baumeister W (2008) Cryo-electron tomography of cells:
connecting structure and function, Histochem Cell Biol 130, 185-196.

0. Parrish JR, Gulyas KD, and Finley RL Jr. (2006) Yeast two-hybrid
contributions to interactome mapping, Curr Opin Biotechnol 17, 387-393.

10.  Gingras AC, Gstaiger M, Raught B, and Aebersold R (2007) Analysis of protein
complexes using mass spectrometry, Nat Rev Mol Cell Biol 8, 645-654.

11.  Alber F, Kim M, and Sali A (2005) Structural characterization of assemblies
from overall shape and subcomplex compositions, Structure 13, 435-445.

12.  Alber F, Dokudovskaya S, Veenhoff L, Zhang W, Kipper ], Devos D, Suprapto A,
Karni-Schmidt O, Williams R, Chait B, Rout M, and Sali A (2007) Determining
the architectures of macromolecular assemblies, Nature 450, 683-694.

13.  Alber F, Dokudovskaya S, Veenhoff L, Zhang W, Kipper ], Devos D, Suprapto A,

Karni-Schmidt O, Williams R, Chait B, Sali A, and Rout M (2007) The
molecular architecture of the nuclear pore complex, Nature 450, 695-701.



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Lasker K, Phillips JL, Russel D, Velazquez-Muriel ], Schneidman-Duhovny D,
Webb B, Schlessinger A, and Sali A (2010) Integrative Structure Modeling of
Macromolecular Assemblies from Proteomics Data, Mol Cell Proteomics, epub
ahead of print.

Russel D, Lasker K, Phillips ], Schneidman-Duhovny D, Velazquez-Muriel ],
and Sali A (2009) The structural dynamics of macromolecular processes,
Curr Opin Cell Biol 21,97-108.

Alber F, Forster F, Korkin D, Topf M, and Sali A (2008) Integrating diverse
data for structure determination of macromolecular assemblies, Annu Rev
Biochem 77, 443-477.

Alber F, Chait BT, Rout MP, and Sali A (2008) Integrative Structure
Determination of Protein Assemblies by Satisfaction of Spatial Restraints, In
Protein-protein interactions and networks: identification, characterization and
prediction. (Panchenko, A., and Przytycka, T., Eds.), pp 99-114, Springer-
Verlag, London, UK.

Bonvin AM, Boelens R, and Kaptein R (2005) NMR analysis of protein
interactions, Curr Opin Chem Biol 9, 501-508.

Fiaux ], Bertelsen EB, Horwich AL, and Wuthrich K (2002) NMR analysis of a
900K GroEL GroES complex, Nature 418, 207-211.

Neudecker P, Lundstrom P, and Kay LE (2009) Relaxation dispersion NMR
spectroscopy as a tool for detailed studies of protein folding, Biophys ] 96,
2045-2054.

Takamoto K, and Chance MR (2006) Radiolytic protein footprinting with
mass spectrometry to probe the structure of macromolecular complexes,
Annu Rev Biophys Biomol Struct 35, 251-276.

Guan ]JQ, and Chance MR (2005) Structural proteomics of macromolecular
assemblies using oxidative footprinting and mass spectrometry, Trends
Biochem Sci 30, 583-592.

Taverner T, Hernandez H, Sharon M, Ruotolo BT, Matak-Vinkovic D, Devos D,
Russell RB, and Robinson CV (2008) Subunit architecture of intact protein
complexes from mass spectrometry and homology modeling, Acc Chem Res
41,617-627.

Chen ZA, Jawhari A, Fischer L, Buchen C, Tahir S, Kamenski T, Rasmussen M,
Lariviere L, Bukowski-Wills JC, Nilges M, Cramer P, and Rappsilber ] (2010)
Architecture of the RNA polymerase II-TFIIF complex revealed by cross-
linking and mass spectrometry, EMBO | 29, 717-726.

Sinz A (2006) Chemical cross-linking and mass spectrometry to map three-
dimensional protein structures and protein-protein interactions, Mass
Spectrom Rev 25, 663-682.

Trester-Zedlitz M, Kamada K, Burley SK, Fenyo D, Chait BT, and Muir TW
(2003) A modular cross-linking approach for exploring protein interactions, J
Am Chem Soc 125, 2416-2425.

Joo C, Balci H, Ishitsuka Y, Buranachai C, and Ha T (2008) Advances in single-
molecule fluorescence methods for molecular biology, Annu Rev Biochem 77,
51-76.



28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Mertens HD, and Svergun DI (2010) Structural characterization of proteins
and complexes using small-angle X-ray solution scattering, J Struct Biol.
Hura GL, Menon AL, Hammel M, Rambo RP, Poole FL 2nd, Tsutakawa SE,
Jenney FE Jr, Classen S, Frankel KA, Hopkins RC, Yang SJ, Scott JW, Dillard BD,
Adams MW, and Tainer JA (2009) Robust, high-throughput solution
structural analyses by small angle X-ray scattering (SAXS), Nat Methods 6,
606-612.

Berggard T, Linse S, and James P (2007) Methods for the detection and
analysis of protein-protein interactions, Proteomics 7, 2833-2842.

Sali A, and Blundell TL (1993) Comparative protein modelling by satisfaction
of spatial restraints, ] Mol Biol 234, 779-815.

Sali A, and Blundell TL (1994) Comparative protein modeling by statisfaction
of spatial restraints, In Protein Structure by Distance Analysis (Bohr, H., and
Brunak, S., Eds.), pp 64-86, TECH UNIV DENMARK, CTR BIOL SEQUENCE
ANAL, LYNGBY, DENMARK.

Vajda S, and Kozakov D (2009) Convergence and combination of methods in
protein-protein docking, Curr Opin Struct Biol 19, 164-170.

Shen MY, and Sali A (2006) Statistical potential for assessment and
prediction of protein structures, Protein Sci 15, 2507-2524.

Melo F, Sanchez R, and Sali A (2002) Statistical potentials for fold
assessment, Protein Sci 11, 430-448.

Brooks BR, Brooks CL 3rd, Mackerell AD Jr, Nilsson L, Petrella R], Roux B,
Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner
AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma ],
Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B,
Venable RM, Woodcock HL, Wu X, Yang W, York DM, and Karplus M (2009)
CHARMM: the biomolecular simulation program, | Comput Chem 30, 1545-
1614.

Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev
A, Simmerling C, Wang B, and Woods RJ (2005) The Amber biomolecular
simulation programs, ] Comput Chem 26, 1668-1688.

Christen M, Hunenberger PH, Bakowies D, Baron R, Burgi R, Geerke DP, Heinz
TN, Kastenholz MA, Krautler V, Oostenbrink C, Peter C, Trzesniak D, and van
Gunsteren WF (2005) The GROMOS software for biomolecular simulation:
GROMOSO05, ] Comput Chem 26,1719-1751.

Forster F, Lasker K, Beck F, Nickell S, Sali A, and Baumeister W (2009) An
Atomic Model AAA-ATPase/20S core particle sub-complex of the 26S
proteasome, Biochem Biophys Res Commun 388, 228-233.

Nickell S, Beck F, Scheres SHW, Korinek A, Forster F, Lasker K, Mihalache O,
Sun N, Nagy I, Sali A, Plitzko ], Carazo J, Mann M, and Baumeister W (2009)
Insights into the Molecular Architecture of the 26S Proteasome, Proc Natl
Acad SciUS A 29,11943-11947.

Lasker K, Sali A, and Wolfson HJ. Determining macromolecular assembly
structures by molecular docking and fitting into an electron density map, in
press.



42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Lasker K, Topf M, Sali A, and Wolfson H (2009) Inferential optimization for
simultaneous fitting of multiple components into a cryoEM map of their
assembly, ] Mol Biol 388, 180-194.

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, and
Ferrin TE (2004) UCSF Chimera--a visualization system for exploratory
research and analysis, ] Comput Chem 25, 1605-1612.

Kampmann M, and Blobel G (2009) Three-dimensional structure and
flexibility of a membrane-coating module of the nuclear pore complex, Nat
Struct Mol Biol 16, 782-788.

Sampathkumar P, Gheyi T, Miller SA, Bain K, Dickey M, Bonanno J, Kim S,
Phillips ], Pieper U, Fernandez-Martinez ], Franke D, Martel A, Tsuruta H,
Atwell S, Thompson D, Emtage |JS, Wasserman S, Rout MP, Sali A, Sauder JM,
and Burley SK (Submitted) Structure of the C-terminal domain of
Saccharomyces cerevisiae Nup133, a component of the Nuclear Pore
Complex.

Putnam CD, Hammel M, Hura GL, and Tainer JA (2007) X-ray solution
scattering (SAXS) combined with crystallography and computation: defining
accurate macromolecular structures, conformations and assemblies in
solution, Q Rev Biophys 40, 191-285.

Petoukhov MV, and Svergun DI (2007) Analysis of X-ray and neutron
scattering from biomacromolecular solutions, Curr Opin Struct Biol 17, 562-
571.

Schneidman-Duhovny D, Hammel A, and Sali A. (2010) FoXS: A Web Server
for Rapid Computation and Fitting of SAXS Profiles, Nucleic Acids Res, epub
ahead of print.

Forster F, Webb B, Krukenberg KA, Tsuruta H, Agard DA, and Sali A (2008)
Integration of small-angle X-ray scattering data into structural modeling of
proteins and their assemblies, /] Mol Biol 382, 1089-1106.

Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Feng
Z, Gilliland GL, Iype L, Jain S, Fagan P, Marvin ], Padilla D, Ravichandran V,
Schneider B, Thanki N, Weissig H, Westbrook JD, and Zardecki C (2002) The
Protein Data Bank, Acta Crystallogr D Biol Crystallogr 58, 899-907.
Robinson RC, Turbedsky K, Kaiser DA, Marchand ]B, Higgs HN, Choe S, and
Pollard TD (2001) Crystal structure of Arp2/3 complex, Science 294, 1679-
1684.

DeLano WL (2002) The PyMOL molecular graphics system, Version 1.2r3pre,
Schrédinger, LLC.

Galassi M, Davies ], Theiler ], Gough B, Jungman G, Booth M, and Rossi F
(2002) GNU Scientific Library.

Topf M, Lasker K, Webb B, Wolfson H, Chiu W, and Sali A (2008) Protein
structure fitting and refinement guided by cryo-EM density, Structure 16,
295-307.



Tables

Table 1: IMP Modules

Module name |

Description

Basic modules

core

Basic functionality commonly used in structural modeling, including representation of particles
as rigid bodies, commonly used restraints such as distance, excluded volume and
connectivity(16) and frequently used optimizers such as Monte Carlo and conjugate gradients.

algebra

General-purpose algebraic and geometric methods, including principal component analysis of
attributes, geometric alignment between two sets of 3D coordinates and geometric
manipulations of spheres, cones, cylinders and cubes.

display

Tools for displaying and exporting of IMP data, such as intermediate models in an optimization
process, in PDB(50), Chimera(43) or PyMol(52) format.

statistics

Basic statistics tools, including k-means clustering, Gaussian mixture model clustering and
histogram calculation.

gsl

Interfaces to allow algorithms from the GNU Scientific Library(53), including simplex, quasi-
Newton and conjugate gradients optimizers, to be used in IMP.

container

Tools and algorithms for manipulating subsets of the system’s particles, such as maintaining a
list of all pairs of particles that are spatially close.

Structural modeling modules

atom

Tools for manipulating atoms and proteins. The module allows molecules to be read or written
in PDB format(50) and scored using force fields such as CHARMM(36). It also provides
molecular dynamics and Brownian dynamics optimizers.

em

Integration of 2D and 3D EM data into the integrative modeling procedure. The module
provides functionality to read and write EM density maps in MRC, X-PLOR, Spider and EM
formats, to simulate density maps from a set of particles, and to represent the EM quality-of-fit
as a restraint(54).

modeller

Interface to the MODELLER(31, 32) comparative modeling program. The module allows for
MODELLER models and restraints to be imported into IMP, and for IMP restraints to be used
with the MODELLER optimizers, or vice versa.

saxs

Integration of SAXS data into the integrative modeling procedure. The module reads and writes
SAXS profiles, and provides a restraint that scores a set of particles on their fit to an
experimental profile(48, 49).

restrainer

High-level interface for setting up an integrative modeling procedure, reading the
representation of the system and the sources of input information from a pair of XML files.

domino

Implementation of an inferential message-passing optimization procedure(42). The module
provides functionality to build a graphical model of the defined scoring function, and to
decompose the graph into a tree on which a message-passing sampling procedure is performed.

multifit

Tools for fitting multiple proteins into their assembly density map. The main functionality
includes: (i) fitting a single protein into its density based on point-alignment, principal
component matching or fast-Fourier transform search, (ii) combinatorial consideration of
fitting solutions of multiple components for generating an assembly model, and (iii) modeling
of cyclic symmetric assemblies(41).

Support modules

benchmark

A set of benchmarks of the IMP software, to ensure that the algorithms perform optimally.

example

Examples for developers on how to implement new IMP functionality.

helper

High-level functionality to assist in setting up and manipulating a system, including simplified
interfaces for creating restraints such as EM, connectivity and excluded volume.

misc

Miscellaneous and experimental functionality that has not been fully tested.

test

Procedures to help in testing the IMP software itself.




Figures

=3 Data generation

\

Design of
representation
and scoring

\

Structure
enumeration

\

Ensemble
analysis

T

"\4

Cryo-electron
MICroscopy

immuno-electron
MICIOsCopy

€« -

&1-

Alfisity  SDS-
column  PAGE

Affinty purification

Figure 1. Integrative modeling protocol. After the datasets to be used are enumerated, a suitable
representation is chosen for the system, and the input information is converted into a set of spatial
restraints. Models are generated that are optimally consistent with the input information by optimizing
a function of these restraints. Analysis of the resulting models informs about the model and data
accuracy and may help guide further experiments. The protocol is demonstrated with the construction

of a bead model of the NPC(12).



Simplicity ﬁ

Chimera tools/

web services

Expressiveness

Domain-specific applications

IMP C++/Python library

Figure 2. Overview of the IMP software. Components are displayed by simplicity (or user-friendliness)
and expressiveness (or power). The core C++/Python library allows protocols to be designed from
scratch; higher-level modules and applications provide more user-friendly interfaces.



import IMP
import IMP.algebra
import IMP.core

m = IMP.Model()
# Create two "untyped" Particles

pl IMP.Particle(m)
p2 = IMP.Particle(m)

# "Decorate" the Particles with x,y,z attributes (point-like particles)
d1 IMP.core.XYZ.setup_particle(pl)
d2 IMP.core.XYZ.setup_particle(p2)

# Use some XYZ-specific functionality (set coordinates)
dl.set_coordinates(IMP.algebra.Vector3D(10.0, 10.0, 10.0))
d2.set_coordinates(IMP.algebra.Vector3D(-10.0, -10.0, -10.0))
print di, d2

# Harmonically restrain pl to be zero distance from the origin

f = IMP.core.Harmonic(0.0, 1.0)

s = IMP.core.DistanceToSingletonScore(f, IMP.algebra.Vector3D(@., 0., 0.))
rl = IMP.core.SingletonRestraint(s, p1l)

m.add_restraint(rl)

# Harmonically restrain pl and p2 to be distance 5.0 apart
f = IMP.core.Harmonic(5.0, 1.0)

s = IMP.core.DistancePairScore(f)

r2 = IMP.core.PairRestraint(s, IMP.ParticlePair(pl, p2))
m.add_restraint(r2)

# Optimize the x,y,z coordinates of both particles with conjugate gradients
dl.set_coordinates_are_optimized(True)
d2.set_coordinates_are_optimized(True)

o = IMP.core.ConjugateGradients(m)

o.optimize(50)

print d1, d2

Figure 3. simple.py, a simple Python script that uses IMP to build a model consisting of two particles
satisfying a harmonic distance restraint.



Nucleoplasm

) i-. :
2 o 5nm
Nup84 Nup133 Nup82\ /Ni096
Nup85~_ / Sec13 7@

\
Spoke Nup82 Nic96

Nup120 /

Pom152
Nupts7 NuP192 <
Ndc1  Pom34
Nup188 —
up
Nup170 Nup42 Nsp
Nup53 Nup59
Nup100
Nup59 = P ) /.{/ Nup53

- Nup116 \\\Nsm
NP Nu 1/ \ Nup49
Nup49 P Nup145N
* Nsp1 Nup60 Nups7
Nup57 P up

Nup145N

Figure 4. Division of the yeast NPC into subcomplexes(13); one such subcomplex is the Nup84 complex of
seven proteins.



Nup120

Nup84

Nup133

Figure 5. Bead model of the Nup84 complex generated by restrainer, based on yeast two-hybrid
system data and excluded volume considerations.



I(q) log-scale

0 0.05 0.1 0.15 0.2 0.25 0.3

Figure 6. Fit of the 3kfo PDB structure (solid line) against the experimentally-determined SAXS profile of
the same protein (points), using the FoXS web service at http://salilab.org/foxs(48). A plot of a
comparative model's profile is also shown (dashed line).



1. Input: components, map Map segmented into anchor graph

; ‘, ]‘ N
52%) D 2. Discretize A
N \/—) map and -
components 3. Fit proteins

into the map

i;f‘;'é",:" s . Decompose
"&(ﬁ‘ N/ into subsets
e €«— ]
RSl ﬂgs Gather subset
Al solutions
(" into best global > o
solutions Component fits in vicinity

of anchor nodes
4. Sample subsets

semi-independently
Figure 7. The MultiFit protocol(42). Protein subunits are fitted into a density map of the assembly by
discretizing both the map and the components, locally fitting each protein, and efficiently combining the
local fits into global solutions.



