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Abstract	
  
To	
  understand	
  the	
  workings	
  of	
  the	
  living	
  cell,	
  we	
  need	
  to	
  characterize	
  protein	
  
assemblies	
  that	
  constitute	
  the	
  cell	
  (for	
  example,	
  the	
  ribosome,	
  26S	
  proteasome,	
  and	
  
the	
  nuclear	
  pore	
  complex).	
  	
  A	
  reliable	
  high-­‐resolution	
  structural	
  characterization	
  of	
  
these	
  assemblies	
  is	
  frequently	
  beyond	
  the	
  reach	
  of	
  current	
  experimental	
  methods,	
  
such	
  as	
  X-­‐ray	
  crystallography,	
  NMR	
  spectroscopy,	
  electron	
  microscopy,	
  footprinting,	
  
chemical	
  cross-­‐linking,	
  FRET	
  spectroscopy,	
  small	
  angle	
  X-­‐ray	
  scattering,	
  and	
  
proteomics.	
  However,	
  the	
  information	
  garnered	
  from	
  different	
  methods	
  can	
  be	
  
combined	
  and	
  used	
  to	
  build	
  computational	
  models	
  of	
  the	
  assembly	
  structures	
  that	
  
are	
  consistent	
  with	
  all	
  of	
  the	
  available	
  datasets.	
  Here,	
  we	
  describe	
  a	
  protocol	
  for	
  this	
  
integration,	
  whereby	
  the	
  information	
  is	
  converted	
  to	
  a	
  set	
  of	
  spatial	
  restraints	
  and	
  a	
  
variety	
  of	
  optimization	
  procedures	
  can	
  be	
  used	
  to	
  generate	
  models	
  that	
  satisfy	
  the	
  
restraints	
  as	
  well	
  as	
  possible.	
  These	
  generated	
  models	
  can	
  then	
  potentially	
  inform	
  
about	
  the	
  precision	
  and	
  accuracy	
  of	
  structure	
  determination,	
  the	
  accuracy	
  of	
  the	
  
input	
  datasets,	
  and	
  further	
  data	
  generation.	
  We	
  also	
  demonstrate	
  the	
  Integrative	
  
Modeling	
  Platform	
  (IMP)	
  software,	
  which	
  provides	
  the	
  necessary	
  computational	
  
framework	
  to	
  implement	
  this	
  protocol,	
  and	
  several	
  applications	
  for	
  specific	
  use	
  
cases.	
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Introduction	
  
To	
  understand	
  the	
  function	
  of	
  a	
  macromolecular	
  assembly,	
  we	
  must	
  know	
  the	
  
structure	
  of	
  its	
  components	
  and	
  the	
  interactions	
  between	
  them(1-­‐4).	
  However,	
  
direct	
  experimental	
  determination	
  of	
  such	
  a	
  structure	
  is	
  generally	
  rather	
  difficult.	
  



While	
  multiple	
  methods	
  do	
  exist	
  for	
  structure	
  determination,	
  each	
  has	
  a	
  drawback.	
  
For	
  example,	
  crystals	
  suitable	
  for	
  X-­‐ray	
  crystallography	
  cannot	
  always	
  be	
  produced,	
  
especially	
  for	
  large	
  assemblies	
  of	
  multiple	
  components(5).	
  Cryo-­‐electron	
  
microscopy	
  (cryo-­‐EM),	
  on	
  the	
  other	
  hand,	
  can	
  be	
  used	
  to	
  study	
  large	
  assemblies,	
  but	
  
it	
  is	
  generally	
  limited	
  to	
  worse	
  than	
  atomic	
  resolution(6-­‐8).	
  Finally,	
  proteomics	
  
techniques,	
  such	
  as	
  yeast	
  two-­‐hybrid(9)	
  and	
  mass	
  spectrometry(10),	
  yield	
  
information	
  about	
  the	
  interactions	
  between	
  proteins,	
  but	
  not	
  the	
  positions	
  of	
  these	
  
proteins	
  within	
  the	
  assembly	
  or	
  the	
  structures	
  of	
  the	
  proteins	
  themselves.	
  

Integrative	
  modeling	
  
One	
  approach	
  to	
  solve	
  the	
  structures	
  of	
  proteins	
  and	
  their	
  assemblies	
  is	
  by	
  
integrative	
  modeling,	
  in	
  which	
  information	
  from	
  different	
  methods	
  is	
  considered	
  
simultaneously	
  during	
  the	
  modeling	
  procedure.	
  The	
  approach	
  is	
  briefly	
  outlined	
  
here	
  for	
  clarity;	
  it	
  has	
  been	
  covered	
  in	
  greater	
  detail	
  previously(11-­‐17).	
  These	
  
methods	
  can	
  include	
  experimental	
  techniques,	
  such	
  as	
  X-­‐ray	
  crystallography(5),	
  
nuclear	
  magnetic	
  resonance	
  (NMR)	
  spectroscopy(18-­‐20),	
  electron	
  microscopy	
  
(EM)(6-­‐8),	
  footprinting(21,	
  22),	
  chemical	
  cross-­‐linking(23-­‐26),	
  FRET	
  
spectroscopy(27),	
  small	
  angle	
  X-­‐ray	
  scattering	
  (SAXS)(28,	
  29),	
  and	
  proteomics(30).	
  
Theoretical	
  sources	
  of	
  information	
  about	
  the	
  assembly	
  can	
  also	
  be	
  incorporated,	
  
such	
  as	
  template	
  structures	
  used	
  in	
  comparative	
  modeling(31,	
  32),	
  scoring	
  
functions	
  used	
  in	
  molecular	
  docking(33),	
  as	
  well	
  as	
  other	
  statistical	
  preferences(34,	
  
35)	
  and	
  physics-­‐based	
  energy	
  functions(36-­‐38).	
  Different	
  methods	
  yield	
  
information	
  about	
  different	
  aspects	
  of	
  structure	
  and	
  at	
  different	
  levels	
  of	
  resolution.	
  
For	
  example,	
  atomic	
  resolution	
  structures	
  may	
  be	
  available	
  for	
  individual	
  proteins	
  
in	
  the	
  assembly;	
  in	
  other	
  cases,	
  only	
  their	
  approximate	
  size,	
  approximate	
  shape,	
  or	
  
interactions	
  with	
  other	
  proteins	
  may	
  be	
  known.	
  Thus,	
  integrative	
  modeling	
  
techniques	
  generate	
  models	
  at	
  the	
  resolution	
  that	
  is	
  consistent	
  with	
  the	
  input	
  
information.	
  An	
  example	
  of	
  a	
  simple	
  integrative	
  approach	
  is	
  building	
  a	
  pseudo-­‐
atomic	
  model	
  of	
  a	
  large	
  assembly,	
  such	
  as	
  the	
  26S	
  proteasome(39,	
  40),	
  by	
  fitting	
  
atomic	
  structures	
  of	
  its	
  subunits	
  predicted	
  by	
  comparative	
  protein	
  structure	
  
modeling	
  into	
  a	
  density	
  map	
  determined	
  by	
  cryo-­‐EM(41,	
  42).	
  
	
  
The	
  integrative	
  modeling	
  procedure	
  used	
  here(12,	
  17)	
  is	
  shown	
  in	
  Figure	
  1.	
  The	
  
first	
  step	
  in	
  the	
  procedure	
  is	
  to	
  collect	
  all	
  experimental,	
  statistical,	
  and	
  physical	
  
information	
  that	
  describes	
  the	
  system	
  of	
  interest.	
  A	
  suitable	
  representation	
  for	
  the	
  
system	
  is	
  then	
  chosen	
  and	
  the	
  available	
  information	
  is	
  translated	
  to	
  a	
  set	
  of	
  spatial	
  
restraints	
  on	
  the	
  components	
  of	
  the	
  system.	
  For	
  example,	
  in	
  the	
  case	
  of	
  
characterizing	
  the	
  molecular	
  architecture	
  of	
  the	
  nuclear	
  pore	
  complex	
  (NPC)(12,	
  
13),	
  atomic	
  structures	
  of	
  the	
  protein	
  subunits	
  were	
  not	
  available,	
  but	
  the	
  
approximate	
  size	
  and	
  shape	
  of	
  each	
  protein	
  was	
  known,	
  so	
  each	
  protein	
  was	
  
represented	
  as	
  a	
  ‘string’	
  of	
  connected	
  spheres	
  consistent	
  with	
  the	
  protein	
  size	
  and	
  
shape.	
  A	
  simple	
  distance	
  between	
  two	
  proteins	
  can	
  be	
  restrained	
  by	
  a	
  harmonic	
  
function	
  of	
  the	
  distance,	
  while	
  the	
  fit	
  of	
  a	
  model	
  into	
  a	
  3D	
  cryo-­‐EM	
  density	
  map	
  can	
  
be	
  restrained	
  by	
  the	
  cross-­‐correlation	
  between	
  the	
  map	
  and	
  the	
  computed	
  density	
  
of	
  the	
  model.	
  Next,	
  the	
  spatial	
  restraints	
  are	
  summed	
  into	
  a	
  single	
  scoring	
  function	
  
that	
  can	
  be	
  sampled	
  using	
  a	
  variety	
  of	
  optimizers,	
  such	
  as	
  conjugate	
  gradients,	
  



molecular	
  dynamics,	
  Monte	
  Carlo,	
  and	
  inference-­‐based	
  methods(42).	
  This	
  sampling	
  
generates	
  an	
  ensemble	
  of	
  models	
  that	
  are	
  as	
  consistent	
  with	
  the	
  input	
  information	
  
as	
  possible.	
  In	
  the	
  final	
  step,	
  the	
  ensemble	
  is	
  analyzed	
  to	
  determine,	
  for	
  example,	
  
whether	
  all	
  of	
  the	
  restraints	
  have	
  been	
  satisfied	
  or	
  certain	
  subsets	
  of	
  data	
  conflict	
  
with	
  others.	
  The	
  analysis	
  may	
  generate	
  a	
  consensus	
  model,	
  such	
  as	
  the	
  probability	
  
density	
  for	
  the	
  location	
  of	
  each	
  subunit	
  in	
  the	
  assembly.	
  

Integrative	
  Modeling	
  Platform	
  
We	
  have	
  developed	
  the	
  Integrative	
  Modeling	
  Platform	
  (IMP)	
  software	
  
(http://salilab.org/imp/)(12-­‐15)	
  to	
  implement	
  the	
  integrative	
  modeling	
  procedure	
  
described	
  above.	
  Integrative	
  modeling	
  problems	
  vary	
  in	
  size	
  and	
  scope,	
  and	
  thus	
  
IMP	
  offers	
  a	
  great	
  deal	
  of	
  flexibility	
  and	
  several	
  abstraction	
  levels	
  as	
  part	
  of	
  a	
  multi-­‐
tiered	
  platform	
  (Figure	
  2).	
  At	
  the	
  lowest	
  level,	
  IMP	
  provides	
  building	
  blocks	
  and	
  
tools	
  to	
  allow	
  methods	
  developers	
  to	
  convert	
  data	
  from	
  new	
  experimental	
  methods	
  
into	
  spatial	
  restraints,	
  to	
  implement	
  optimization	
  and	
  analysis	
  techniques,	
  and	
  to	
  
implement	
  an	
  integrative	
  modeling	
  procedure	
  from	
  scratch;	
  the	
  developer	
  can	
  use	
  
the	
  C++	
  and	
  Python	
  programming	
  languages	
  to	
  achieve	
  these	
  tasks.	
  Higher	
  
abstraction	
  levels,	
  designed	
  to	
  be	
  used	
  by	
  IMP	
  users	
  with	
  no	
  programming	
  
experience,	
  provide	
  less	
  flexible	
  but	
  more	
  user-­‐friendly	
  applications	
  to	
  handle	
  
specific	
  tasks,	
  such	
  as	
  fitting	
  of	
  proteins	
  into	
  a	
  density	
  map	
  of	
  their	
  assembly,	
  or	
  
comparing	
  a	
  structure	
  with	
  the	
  corresponding	
  SAXS	
  profile.	
  IMP	
  is	
  freely	
  available	
  
as	
  open	
  source	
  software	
  under	
  the	
  terms	
  of	
  the	
  GNU	
  Lesser	
  General	
  Public	
  License	
  
(LGPL).	
  Integrative	
  modeling,	
  due	
  to	
  its	
  use	
  of	
  multiple	
  sources	
  of	
  information,	
  is	
  
often	
  a	
  highly	
  collaborative	
  venture,	
  and	
  thus	
  benefits	
  from	
  openness	
  of	
  the	
  
modeling	
  protocols	
  and	
  the	
  software	
  itself.	
  

Materials	
  
To	
  follow	
  the	
  examples	
  in	
  this	
  discussion,	
  both	
  the	
  IMP	
  software	
  itself	
  and	
  a	
  set	
  of	
  
suitable	
  input	
  files	
  are	
  needed.	
  The	
  IMP	
  software	
  can	
  be	
  downloaded	
  from	
  
http://salilab.org/imp/download.html	
  and	
  is	
  available	
  in	
  binary	
  form	
  for	
  most	
  
common	
  machine	
  types	
  and	
  operating	
  systems;	
  alternatively,	
  it	
  can	
  be	
  rebuilt	
  from	
  
the	
  source	
  code.	
  The	
  example	
  files	
  can	
  be	
  downloaded	
  from	
  
http://salilab.org/imp/tutorials/basic.zip.	
  

Methods	
  

The	
  IMP	
  C++/Python	
  library	
  
The	
  core	
  of	
  IMP	
  is	
  the	
  C++/Python	
  library,	
  which	
  provides	
  all	
  of	
  the	
  necessary	
  
components,	
  as	
  a	
  set	
  of	
  classes	
  and	
  modules,	
  to	
  allow	
  methods	
  developers	
  to	
  build	
  
an	
  integrative	
  modeling	
  protocol	
  from	
  scratch.	
  Most	
  users	
  of	
  IMP	
  will	
  use	
  one	
  of	
  the	
  
higher-­‐level	
  interfaces	
  described	
  in	
  later	
  sections;	
  however,	
  we	
  will	
  briefly	
  
demonstrate	
  this	
  library	
  here	
  to	
  illustrate	
  the	
  core	
  IMP	
  concepts	
  that	
  these	
  
interfaces	
  rely	
  on.	
  
	
  



The	
  IMP	
  library	
  is	
  split	
  into	
  a	
  kernel	
  and	
  a	
  set	
  of	
  extension	
  modules	
  (Table	
  1).	
  The	
  
kernel	
  is	
  a	
  small	
  collection	
  of	
  classes	
  that	
  define	
  the	
  storage	
  of	
  information	
  about	
  the	
  
system	
  and	
  the	
  main	
  interfaces	
  used	
  to	
  interact	
  with	
  that	
  information.	
  The	
  
information	
  is	
  stored	
  in	
  a	
  set	
  of	
  Particle	
  objects;	
  these	
  are	
  flexible	
  and	
  abstract	
  
data	
  containers,	
  able	
  to	
  hold	
  whatever	
  information	
  is	
  necessary	
  to	
  represent	
  the	
  
system.	
  For	
  example,	
  a	
  given	
  Particle	
  may	
  be	
  assigned	
  x,	
  y,	
  and	
  z	
  attributes	
  to	
  
store	
  point	
  coordinates,	
  another	
  may	
  be	
  assigned	
  x,	
  y,	
  z,	
  and	
  a	
  radius	
  to	
  represent	
  a	
  
sphere,	
  and	
  another	
  may	
  contain	
  two	
  pointers	
  to	
  other	
  Particles	
  to	
  represent	
  a	
  
bond	
  or	
  another	
  relationship.	
  The	
  kernel	
  defines	
  only	
  the	
  abstract	
  interfaces	
  to	
  
manipulate	
  the	
  data	
  in	
  the	
  Particles,	
  but	
  does	
  not	
  provide	
  implementations;	
  
these	
  are	
  provided	
  in	
  the	
  extension	
  modules.	
  For	
  example,	
  it	
  merely	
  defines	
  a	
  
Restraint	
  as	
  any	
  object	
  that,	
  given	
  a	
  set	
  of	
  Particles,	
  returns	
  a	
  score,	
  and	
  an	
  
Optimizer	
  as	
  an	
  object	
  that	
  changes	
  the	
  attributes	
  of	
  all	
  Particles	
  to	
  yield	
  an	
  
optimized	
  score	
  over	
  all	
  restraints.	
  It	
  is	
  the	
  core	
  module	
  that	
  provides,	
  for	
  example,	
  
a	
  concrete	
  Restraint	
  acting	
  like	
  a	
  harmonic	
  ‘spring’	
  between	
  two	
  point-­‐like	
  
Particles,	
  an	
  Optimizer	
  that	
  utilizes	
  the	
  conjugate	
  gradients	
  minimization	
  
method,	
  and	
  much	
  other	
  functionality.	
  
	
  
IMP	
  includes	
  a	
  variety	
  of	
  	
  modules	
  (Table	
  1).	
  Some	
  modules	
  provide	
  the	
  basic	
  
building	
  blocks	
  needed	
  to	
  construct	
  a	
  protocol,	
  such	
  as	
  the	
  core	
  module	
  that	
  
provides	
  functionality	
  including	
  harmonic	
  restraints,	
  point-­‐like	
  and	
  spherical	
  
particles,	
  and	
  basic	
  optimizers,	
  and	
  the	
  atom	
  module	
  that	
  provides	
  atom-­‐like	
  
particles,	
  a	
  molecular	
  dynamics	
  optimizer,	
  etc.	
  	
  Other	
  modules	
  provide	
  support	
  for	
  
specific	
  types	
  of	
  experimental	
  data	
  or	
  specialized	
  optimizers,	
  such	
  as	
  the	
  em	
  module	
  
that	
  supports	
  electron	
  microscopy	
  data,	
  and	
  the	
  domino	
  module	
  that	
  provides	
  an	
  
inference-­‐based	
  divide-­‐and-­‐conquer	
  optimizer.	
  IMP	
  is	
  designed	
  so	
  that	
  it	
  is	
  easy	
  to	
  
add	
  a	
  new	
  module;	
  for	
  example,	
  a	
  developer	
  working	
  on	
  incorporating	
  data	
  from	
  a	
  
new	
  experimental	
  technique	
  may	
  add	
  a	
  new	
  IMP	
  module	
  that	
  translates	
  the	
  data	
  
from	
  this	
  technique	
  into	
  spatial	
  restraints.	
  
	
  
IMP	
  is	
  primarily	
  implemented	
  in	
  C++	
  for	
  speed;	
  however,	
  each	
  of	
  the	
  classes	
  is	
  
wrapped	
  so	
  that	
  it	
  can	
  also	
  be	
  used	
  from	
  Python.	
  	
  A	
  protocol	
  can	
  thus	
  be	
  developed	
  
from	
  scratch	
  by	
  simply	
  writing	
  a	
  Python	
  script.	
  As	
  an	
  example,	
  we	
  will	
  first	
  look	
  at	
  
the	
  script	
  simple.py	
  in	
  the	
  ‘library’	
  subdirectory	
  of	
  the	
  zipfile	
  downloaded	
  
above	
  (Figure	
  3).	
  
	
  
In	
  the	
  first	
  part	
  of	
  the	
  script,	
  the	
  IMP	
  kernel	
  and	
  the	
  algebra	
  and	
  core	
  modules	
  
are	
  loaded,	
  as	
  regular	
  Python	
  modules.	
  We	
  then	
  proceed	
  to	
  set	
  up	
  the	
  
representation	
  of	
  the	
  system,	
  using	
  the	
  Model	
  and	
  Particle	
  classes	
  defined	
  in	
  the	
  
kernel.	
  The	
  Model	
  class	
  represents	
  the	
  entire	
  system,	
  and	
  keeps	
  track	
  of	
  all	
  the	
  
Particles,	
  Restraints,	
  and	
  links	
  between	
  them.	
  As	
  mentioned	
  earlier,	
  the	
  
Particle	
  class	
  is	
  a	
  flexible	
  container,	
  but	
  here	
  we	
  give	
  the	
  two	
  Particles	
  (p1	
  
and	
  p2)	
  point-­‐like	
  attributes	
  using	
  the	
  XYZ	
  class	
  defined	
  in	
  the	
  core	
  module.	
  This	
  
XYZ	
  class	
  is	
  known	
  as	
  a	
  ‘decorator’;	
  it	
  does	
  not	
  create	
  a	
  new	
  Particle,	
  but	
  merely	
  



presents	
  a	
  new	
  interface	
  to	
  an	
  existing	
  Particle,	
  in	
  this	
  case	
  a	
  point-­‐like	
  one.	
  
(Multiple	
  decorators	
  can	
  be	
  applied	
  to	
  a	
  single	
  Particle;	
  for	
  example,	
  an	
  atom-­‐
like	
  Particle	
  could	
  be	
  treated	
  like	
  a	
  point,	
  a	
  sphere,	
  an	
  electrically	
  charged	
  
particle,	
  or	
  an	
  atom.)	
  We	
  can	
  then	
  treat	
  each	
  Particle	
  like	
  a	
  point	
  using	
  methods	
  
in	
  the	
  XYZ	
  class,	
  here	
  setting	
  the	
  x,	
  y,	
  and	
  z	
  coordinates	
  to	
  a	
  provided	
  vector.	
  
	
  
In	
  the	
  second	
  part,	
  we	
  set	
  up	
  the	
  scoring	
  of	
  the	
  system.	
  We	
  add	
  two	
  restraints	
  to	
  the	
  
Model,	
  one	
  of	
  which	
  harmonically	
  restrains	
  p1	
  to	
  the	
  origin	
  and	
  the	
  other	
  of	
  which	
  
restrains	
  p1	
  and	
  p2	
  to	
  be	
  distance	
  5.0	
  apart.	
  	
  (IMP	
  does	
  not	
  enforce	
  any	
  units	
  of	
  
distance;	
  however,	
  some	
  physical	
  optimizers,	
  such	
  as	
  molecular	
  dynamics,	
  expect	
  
distances	
  to	
  be	
  in	
  angstroms.)	
  Note	
  that	
  the	
  core	
  module	
  provides	
  suitable	
  building	
  
block	
  restraints	
  for	
  this	
  purpose.	
  In	
  the	
  first	
  case,	
  we	
  use	
  the	
  
SingletonRestraint	
  class	
  that	
  creates	
  a	
  restraint	
  on	
  a	
  single	
  particle	
  (p1).	
  It	
  
delegates	
  the	
  task	
  of	
  actually	
  scoring	
  the	
  particle,	
  however,	
  to	
  another	
  class	
  called	
  
SingletonScore	
  that	
  is	
  simply	
  given	
  the	
  Particle	
  and	
  asked	
  for	
  its	
  score.	
  In	
  
this	
  example,	
  we	
  use	
  a	
  type	
  of	
  SingletonScore	
  called	
  a	
  
DistanceToSingletonScore	
  that	
  calculates	
  the	
  Cartesian	
  distance	
  between	
  the	
  
point-­‐like	
  Particle	
  and	
  a	
  fixed	
  point	
  (in	
  this	
  case	
  the	
  origin),	
  and	
  again	
  delegates	
  
the	
  task	
  of	
  scoring	
  the	
  distance	
  to	
  another	
  class,	
  a	
  UnaryFunction.	
  In	
  this	
  case,	
  
the	
  UnaryFunction	
  is	
  a	
  simple	
  harmonic	
  function	
  with	
  a	
  mean	
  of	
  zero.	
  	
  Thus,	
  the	
  
Particle	
  p1	
  is	
  harmonically	
  restrained	
  to	
  be	
  at	
  the	
  origin.	
  The	
  second	
  restraint	
  is	
  
set	
  up	
  similarly;	
  however,	
  in	
  this	
  case	
  the	
  restraints	
  and	
  scores	
  act	
  on	
  a	
  pair	
  of	
  
particles.	
  This	
  building	
  block	
  functionality	
  makes	
  it	
  easy	
  to	
  add	
  a	
  new	
  type	
  of	
  
restraint;	
  for	
  example,	
  to	
  implement	
  a	
  van	
  der	
  Waals	
  potential	
  it	
  is	
  only	
  necessary	
  to	
  
provide	
  a	
  suitable	
  PairScore	
  that	
  scores	
  a	
  single	
  pair	
  of	
  particles;	
  the	
  
functionality	
  for	
  efficiently	
  enumerating	
  all	
  pairs	
  of	
  such	
  particles	
  is	
  already	
  
provided	
  in	
  IMP.	
  
	
  
Finally,	
  in	
  the	
  third	
  part	
  of	
  the	
  script,	
  we	
  tell	
  IMP	
  that	
  it	
  can	
  move	
  the	
  two	
  point-­‐like	
  
particles,	
  and	
  to	
  build	
  a	
  system	
  configuration	
  that	
  is	
  consistent	
  with	
  all	
  the	
  
restraints.	
  In	
  this	
  example,	
  a	
  simple	
  conjugate	
  gradients	
  optimization	
  is	
  used.	
  
	
  
The	
  script	
  is	
  a	
  regular	
  Python	
  script.	
  Thus,	
  provided	
  that	
  both	
  IMP	
  and	
  Python	
  are	
  
installed,	
  it	
  can	
  be	
  run	
  on	
  any	
  machine,	
  by	
  typing	
  on	
  a	
  command	
  line,	
  in	
  the	
  same	
  
directory	
  as	
  the	
  script:	
  
	
  
python simple.py 
	
  
The	
  script	
  will	
  run	
  the	
  optimization,	
  printing	
  IMP	
  log	
  messages	
  as	
  it	
  goes,	
  and	
  finally	
  
print	
  the	
  coordinates	
  of	
  the	
  optimized	
  particles.	
  
	
  
IMP	
  is	
  designed	
  such	
  that	
  the	
  C++	
  and	
  Python	
  interfaces	
  are	
  similar	
  to	
  use.	
  Thus,	
  
IMP	
  applications	
  or	
  protocols	
  can	
  be	
  constructed	
  either	
  in	
  C++	
  or	
  in	
  Python,	
  and	
  
new	
  IMP	
  functionality	
  (for	
  example,	
  new	
  types	
  of	
  Restraint)	
  can	
  be	
  implemented	
  



in	
  either	
  language.	
  For	
  a	
  comparison,	
  please	
  inspect	
  the	
  simple.cpp	
  file.	
  This	
  file	
  
implements	
  the	
  same	
  protocol	
  as	
  the	
  first	
  part	
  of	
  simple.py	
  but	
  uses	
  the	
  IMP	
  C++	
  
classes	
  rather	
  than	
  their	
  Python	
  equivalents.	
  The	
  two	
  programs	
  are	
  very	
  similar;	
  the	
  
only	
  differences	
  are	
  in	
  the	
  language	
  syntax	
  (eg,	
  the	
  Python	
  ‘import IMP’	
  translates	
  
to	
  ‘#include <IMP.h>’	
  in	
  C++)	
  and	
  in	
  memory	
  handling	
  (Python	
  handles	
  
memory	
  automatically;	
  in	
  C++,	
  memory	
  handling	
  must	
  be	
  done	
  explicitly	
  by	
  using	
  
the	
  IMP::Pointer	
  class,	
  which	
  adds	
  reference	
  counting	
  to	
  automatically	
  clean	
  up	
  
after	
  IMP	
  objects	
  when	
  they	
  are	
  not	
  used	
  anymore).	
  

restrainer:	
  a	
  high-­‐level	
  interface	
  for	
  integrative	
  modeling	
  
The	
  IMP	
  C++/Python	
  library	
  offers	
  a	
  great	
  deal	
  of	
  flexibility	
  in	
  setting	
  up	
  the	
  system	
  
and	
  restraints.	
  However,	
  in	
  many	
  cases,	
  a	
  simpler	
  interface	
  to	
  solve	
  modeling	
  
problems	
  is	
  preferable.	
  The	
  restrainer	
  IMP	
  module	
  is	
  one	
  such	
  interface	
  that	
  
simplifies	
  the	
  set	
  up	
  of	
  a	
  complex	
  system,	
  generating	
  the	
  system	
  representation	
  and	
  
restraints	
  from	
  a	
  pair	
  of	
  XML	
  files.	
  Optimization,	
  however,	
  may	
  still	
  need	
  to	
  be	
  
adjusted	
  for	
  specific	
  cases.	
  
	
  
As	
  a	
  simple	
  demonstration	
  of	
  the	
  module,	
  we	
  consider	
  the	
  construction	
  of	
  a	
  model	
  
of	
  a	
  subcomplex	
  of	
  the	
  NPC(12,	
  13).	
  The	
  yeast	
  NPC	
  is	
  a	
  large	
  assembly	
  of	
  50	
  MDa	
  
containing	
  456	
  proteins	
  of	
  30	
  different	
  types.	
  The	
  modeling	
  of	
  the	
  entire	
  assembly	
  is	
  
beyond	
  the	
  scope	
  of	
  this	
  tutorial;	
  however,	
  it	
  has	
  been	
  observed	
  that	
  the	
  NPC	
  is	
  
made	
  up	
  of	
  a	
  set	
  of	
  smaller	
  subcomplexes	
  (Figure	
  4).	
  One	
  of	
  these	
  complexes	
  is	
  the	
  
Nup84	
  complex,	
  consisting	
  of	
  seven	
  proteins,	
  and	
  the	
  modeling	
  of	
  this	
  complex	
  is	
  
illustrated	
  in	
  this	
  tutorial.	
  
	
  
All	
  of	
  the	
  XML	
  and	
  Python	
  files	
  necessary	
  to	
  perform	
  the	
  Nup84	
  modeling	
  can	
  be	
  
found	
  in	
  the	
  ‘restrainer’	
  subdirectory	
  of	
  the	
  zipfile	
  downloaded	
  above.	
  The	
  first	
  
of	
  these	
  XML	
  files	
  is	
  representation.xml,	
  which	
  determines	
  how	
  the	
  system	
  is	
  
represented.	
  IMP	
  does	
  not	
  require	
  every	
  protein	
  in	
  the	
  system	
  to	
  be	
  modeled	
  with	
  
the	
  same	
  representation;	
  for	
  example,	
  some	
  proteins	
  could	
  be	
  modeled	
  as	
  sets	
  of	
  
atoms	
  and	
  others	
  at	
  a	
  lower	
  resolution.	
  As	
  for	
  the	
  original	
  NPC	
  modeling,	
  here	
  we	
  
use	
  a	
  ‘bead	
  model’	
  for	
  the	
  Nup84	
  complex;	
  each	
  protein	
  is	
  represented	
  as	
  a	
  sphere,	
  
or	
  a	
  pair	
  of	
  spheres	
  (in	
  the	
  case	
  of	
  the	
  more	
  rodlike	
  Nup133	
  and	
  Nup120	
  proteins),	
  
with	
  larger	
  proteins	
  using	
  larger	
  spheres.	
  The	
  second	
  XML	
  file	
  encodes	
  the	
  input	
  
structural	
  data	
  as	
  spatial	
  restraints	
  on	
  the	
  system.	
  Here,	
  we	
  use	
  two	
  simple	
  sources	
  
of	
  information.	
  First,	
  excluded	
  volume	
  for	
  each	
  protein.	
  Second,	
  yeast	
  two-­‐hybrid	
  
results	
  for	
  some	
  pairs	
  of	
  proteins.	
  The	
  third	
  XML	
  file	
  is	
  for	
  visualization	
  only,	
  and	
  
assigns	
  each	
  sphere	
  a	
  different	
  color.	
  	
  Finally,	
  the	
  Python	
  script	
  loads	
  in	
  all	
  three	
  of	
  
the	
  XML	
  files	
  and	
  performs	
  a	
  simple	
  conjugate	
  gradients	
  optimization.	
  This	
  Python	
  
script	
  can	
  be	
  executed	
  just	
  like	
  any	
  other	
  Python	
  script:	
  
 
python nup84.py 
	
  
restrainer	
  first	
  generates	
  a	
  set	
  of	
  sphere-­‐like	
  particles	
  to	
  represent	
  the	
  system.	
  
It	
  then	
  converts	
  the	
  information	
  in	
  the	
  restraints	
  file	
  into	
  a	
  set	
  of	
  IMP	
  restraints.	
  It	
  



generates	
  an	
  excluded	
  volume	
  restraint	
  that	
  prevents	
  each	
  protein	
  sphere	
  from	
  
penetrating	
  any	
  other	
  sphere	
  and	
  a	
  set	
  of	
  ‘connectivity’	
  restraints(12)	
  that	
  force	
  the	
  
protein	
  particles	
  to	
  reproduce	
  the	
  interactions	
  implied	
  by	
  the	
  yeast	
  two-­‐hybrid	
  
experiments.	
  The	
  optimization	
  generates	
  a	
  file	
  optimized.py	
  that	
  is	
  an	
  input	
  file	
  
for	
  the	
  molecular	
  visualization	
  program	
  Chimera(43);	
  when	
  loaded	
  into	
  Chimera,	
  it	
  
displays	
  the	
  final	
  optimized	
  configuration	
  of	
  the	
  complex	
  (Figure	
  5).	
  
	
  	
  
In	
  this	
  example,	
  the	
  modeling	
  problem	
  is	
  simple	
  and	
  thus	
  generating	
  a	
  single	
  model	
  
is	
  sufficient	
  to	
  find	
  a	
  solution	
  that	
  satisfies	
  all	
  restraints.	
  However,	
  when	
  all	
  such	
  
models	
  need	
  to	
  be	
  found	
  or,	
  in	
  more	
  complex	
  cases,	
  when	
  a	
  global	
  solution	
  of	
  the	
  
scoring	
  function	
  is	
  hard	
  to	
  find	
  (for	
  example,	
  because	
  restraints	
  are	
  contradictory	
  
due	
  to	
  errors	
  in	
  experiments	
  or	
  experiment	
  interpretations),	
  the	
  modeling	
  
procedure	
  is	
  repeated	
  to	
  generate	
  an	
  ensemble	
  of	
  models.	
  When	
  modeling	
  the	
  NPC,	
  
the	
  top-­‐scoring	
  models	
  were	
  clustered	
  and	
  used	
  to	
  generate	
  a	
  probability	
  density	
  
for	
  each	
  component	
  within	
  the	
  complex(12).	
  The	
  envelope	
  of	
  this	
  density	
  defined	
  
the	
  precision	
  of	
  the	
  corresponding	
  component	
  localization.	
  Only	
  a	
  single	
  cluster	
  of	
  
structures	
  was	
  found	
  that	
  satisfied	
  all	
  of	
  the	
  restraints.	
  If	
  contradictory	
  information	
  
is	
  presented,	
  however,	
  the	
  optimization	
  will	
  be	
  frustrated,	
  unable	
  to	
  find	
  solutions	
  
that	
  simultaneously	
  satisfy	
  all	
  restraints.	
  The	
  ensemble	
  of	
  solutions	
  will	
  exhibit	
  
more	
  variability	
  than	
  that	
  in	
  a	
  non-­‐frustrated	
  case.	
  Such	
  frustration	
  can	
  be	
  tested	
  for	
  
in	
  the	
  iterative	
  integrative	
  modeling	
  procedure	
  by	
  removing	
  potentially	
  conflicting	
  
restraints	
  and	
  repeating	
  the	
  modeling.	
  Finally,	
  the	
  accuracy	
  of	
  the	
  generated	
  
model(s)	
  can	
  be	
  gauged	
  by	
  comparison	
  with	
  experimental	
  data	
  that	
  were	
  not	
  used	
  
in	
  the	
  original	
  modeling.	
  For	
  example,	
  the	
  generated	
  bead	
  model	
  of	
  the	
  Nup84	
  
complex	
  has	
  a	
  characteristic	
  Y-­‐shape,	
  which	
  is	
  consistent	
  with	
  electron	
  micrographs	
  
of	
  the	
  complex(44),	
  even	
  though	
  these	
  data	
  were	
  not	
  used	
  in	
  our	
  example.	
  
	
  
The	
  restrainer	
  XML	
  and	
  Python	
  files,	
  together	
  with	
  the	
  experimental	
  data,	
  such	
  
as	
  cryo-­‐EM	
  maps,	
  constitute	
  a	
  complete	
  modeling	
  protocol.	
  Thus,	
  an	
  assembly	
  
model	
  built	
  using	
  this	
  protocol	
  can	
  be	
  published	
  along	
  with	
  the	
  input	
  files	
  to	
  allow	
  
the	
  model	
  to	
  be	
  reproduced	
  and	
  easily	
  updated.	
  Such	
  a	
  model	
  can	
  thus	
  act	
  as	
  a	
  
reference	
  for	
  future	
  studies;	
  for	
  example,	
  regions	
  of	
  the	
  model	
  that	
  were	
  poorly	
  
resolved	
  can	
  be	
  investigated	
  with	
  new	
  experiments,	
  the	
  resulting	
  data	
  incorporated	
  
into	
  the	
  protocol,	
  and	
  new	
  models	
  generated.	
  Alternatively,	
  existing	
  unused	
  
experimental	
  data	
  can	
  be	
  added	
  to	
  the	
  protocol	
  to	
  determine	
  whether	
  unused	
  data	
  
is	
  consistent	
  with	
  that	
  used	
  to	
  build	
  the	
  model.	
  The	
  iterative	
  nature	
  of	
  the	
  protocol	
  
thus	
  extends	
  beyond	
  the	
  generation	
  of	
  the	
  first	
  ‘correct’	
  model.	
  

Integration	
  of	
  comparative	
  modeling,	
  X-­‐ray	
  crystallography,	
  and	
  SAXS	
  
The	
  Nup84	
  complex	
  structure	
  determined	
  above	
  is	
  consistent	
  with	
  all	
  input	
  
information,	
  but	
  for	
  a	
  detailed	
  understanding	
  of	
  its	
  function,	
  an	
  accurate	
  atomic	
  
structure	
  is	
  required.	
  	
  Two	
  possible	
  routes	
  to	
  such	
  a	
  structure,	
  depending	
  on	
  the	
  
available	
  information,	
  are	
  (i)	
  fitting	
  atomic	
  structures	
  of	
  the	
  individual	
  protein	
  
subunits	
  into	
  a	
  cryo-­‐EM	
  map	
  of	
  the	
  assembly	
  and	
  (ii)	
  accurately	
  placing	
  pairs	
  of	
  
subunits	
  relative	
  to	
  each	
  other	
  using	
  X-­‐ray	
  crystallography	
  or	
  molecular	
  docking.	
  



For	
  both	
  routes,	
  atomic	
  structures	
  of	
  the	
  subunits	
  are	
  required;	
  these	
  structures	
  can	
  
be	
  obtained	
  via	
  X-­‐ray	
  crystallography	
  or	
  comparative	
  modeling.	
  
	
  
One	
  component	
  of	
  the	
  Nup84	
  complex	
  is	
  the	
  Nup133	
  protein;	
  the	
  structure	
  of	
  this	
  
protein	
  has	
  been	
  characterized	
  by	
  both	
  X-­‐ray	
  crystallography	
  and	
  SAXS(45).	
  SAXS	
  
differs	
  from	
  X-­‐ray	
  crystallography	
  in	
  that	
  it	
  is	
  applied	
  to	
  proteins	
  in	
  solution	
  rather	
  
than	
  crystals;	
  thus,	
  it	
  can	
  be	
  applied	
  to	
  a	
  much	
  wider	
  range	
  of	
  proteins	
  in	
  states	
  
more	
  closely	
  resembling	
  their	
  functional	
  forms	
  than	
  X-­‐ray	
  crystallography,	
  but	
  the	
  
information	
  is	
  rotationally	
  averaged	
  and	
  so	
  the	
  resulting	
  SAXS	
  profile	
  gives	
  less	
  
structural	
  information(29,	
  46,	
  47).	
  IMP	
  contains	
  a	
  method	
  that,	
  given	
  an	
  atomic	
  
protein	
  structure,	
  can	
  calculate	
  its	
  SAXS	
  profile	
  using	
  the	
  Debye	
  formula,	
  and	
  then	
  fit	
  
this	
  profile	
  against	
  the	
  experimentally	
  determined	
  one(48,	
  49).	
  This	
  method	
  is	
  
implemented	
  in	
  the	
  IMP	
  saxs	
  module	
  and	
  so	
  can	
  be	
  used	
  by	
  writing	
  a	
  suitable	
  
Python	
  script.	
  However,	
  because	
  fitting	
  against	
  a	
  SAXS	
  profile	
  is	
  a	
  common	
  task,	
  we	
  
provide	
  an	
  IMP	
  application,	
  FoXS,	
  which	
  automates	
  this	
  process.	
  FoXS	
  is	
  available	
  
both	
  as	
  a	
  command-­‐line	
  IMP	
  application	
  and	
  a	
  web	
  service	
  at	
  
http://salilab.org/foxs.	
  
	
  
All	
  input	
  files	
  for	
  this	
  demonstration	
  are	
  available	
  in	
  the	
  ‘saxs’	
  subdirectory	
  of	
  the	
  
downloaded	
  zipfile.	
  The	
  structure	
  of	
  the	
  C-­‐terminal	
  domain	
  of	
  yeast	
  Nup133	
  is	
  
available	
  in	
  the	
  RCSB	
  Protein	
  Data	
  Bank	
  (PDB)(50)	
  as	
  code	
  3kfo	
  (file	
  3KFO.pdb),	
  
while	
  the	
  experimental	
  SAXS	
  profile	
  is	
  given	
  in	
  the	
  23922_merge.dat	
  file.	
  The	
  
atomic	
  structure	
  can	
  be	
  fit	
  against	
  the	
  SAXS	
  profile	
  by	
  running	
  FoXS	
  in	
  the	
  directory	
  
containing	
  both	
  files:	
  
 
foxs 3KFO.pdb 23922_merge.dat 
	
  
Alternatively,	
  the	
  two	
  files	
  can	
  be	
  submitted	
  to	
  the	
  FoXS	
  web	
  server.	
  FoXS	
  compares	
  
the	
  theoretical	
  profile	
  of	
  the	
  provided	
  structure	
  (solid	
  line	
  in	
  Figure	
  6)	
  with	
  the	
  
experimental	
  profile	
  (points),	
  and	
  calculates	
  the	
  quality	
  of	
  the	
  fit,	
  χ,	
  with	
  smaller	
  
values	
  corresponding	
  to	
  closer	
  fits.	
  
	
  
The	
  fit	
  in	
  this	
  example	
  is	
  not	
  a	
  good	
  one	
  (χ=2.96).	
  To	
  understand	
  why	
  this	
  is	
  so,	
  we	
  
examine	
  the	
  header	
  of	
  the	
  3kfo	
  PDB	
  file,	
  which	
  reveals	
  two	
  problems.	
  Several	
  
residues	
  at	
  the	
  N	
  and	
  C	
  termini	
  were	
  not	
  resolved	
  in	
  the	
  X-­‐ray	
  experiment	
  (8	
  in	
  
total,	
  2	
  at	
  the	
  N	
  terminus	
  and	
  6	
  at	
  the	
  C	
  terminus),	
  and	
  the	
  sidechains	
  of	
  16	
  other	
  
residues	
  could	
  also	
  not	
  be	
  located	
  (REMARK	
  465	
  and	
  REMARK	
  470	
  lines).	
  
	
  
The	
  missing	
  8	
  residues	
  and	
  16	
  sidechains	
  need	
  to	
  be	
  placed	
  to	
  create	
  a	
  complete	
  
atomic	
  structure.	
  One	
  way	
  to	
  achieve	
  this	
  goal	
  is	
  to	
  build	
  a	
  comparative	
  model	
  using	
  
a	
  package	
  such	
  as	
  MODELLER	
  (http://salilab.org/modeller/)(31,	
  32)	
  relying	
  on	
  the	
  
original	
  3kfo	
  structure	
  as	
  a	
  template	
  and	
  the	
  full	
  sequence	
  (including	
  the	
  8	
  missing	
  
N	
  and	
  C	
  terminal	
  residues)	
  as	
  the	
  target.	
  The	
  corresponding	
  MODELLER	
  alignment	
  
file	
  (3KFO-fill.ali)	
  and	
  script	
  file	
  (fill.py)	
  are	
  provided	
  in	
  the	
  downloaded	
  
zipfile.	
  Each	
  candidate	
  comparative	
  model	
  can	
  be	
  fitted	
  against	
  the	
  SAXS	
  profile	
  



using	
  the	
  FoXS	
  command-­‐line	
  application	
  or	
  the	
  web	
  service	
  in	
  exactly	
  the	
  same	
  
way	
  as	
  the	
  original	
  3kfo	
  structure;	
  the	
  best	
  MODELLER	
  model	
  gives	
  a	
  significantly	
  
improved	
  fit	
  between	
  the	
  theoretical	
  and	
  experimental	
  profiles	
  (dashed	
  line	
  in	
  
Figure	
  6;	
  χ=1.21).	
  
	
  
Given	
  similar	
  atomic	
  structures	
  of	
  the	
  subunits	
  in	
  the	
  Nup84	
  complex,	
  as	
  either	
  
crystal	
  structures	
  or	
  comparative	
  models,	
  restrainer	
  can	
  be	
  used	
  to	
  build	
  an	
  
atomic	
  model	
  of	
  the	
  complex.	
  Note,	
  however,	
  that	
  an	
  accurate	
  model	
  of	
  such	
  a	
  
complex	
  would	
  require	
  additional	
  information	
  beyond	
  the	
  proteomics	
  data	
  used	
  
above,	
  since	
  yeast	
  two-­‐hybrid	
  data	
  only	
  show	
  that	
  proteins	
  interact,	
  not	
  the	
  specific	
  
residues	
  in	
  the	
  protein-­‐protein	
  interaction,	
  and	
  thus	
  do	
  not	
  inform	
  us	
  about	
  the	
  
relative	
  orientations	
  of	
  the	
  interacting	
  proteins.	
  Such	
  information	
  can	
  be	
  obtained,	
  
for	
  example,	
  from	
  chemical-­‐crosslinking,	
  molecular	
  docking,	
  or	
  cryo-­‐EM	
  maps,	
  as	
  
illustrated	
  in	
  the	
  next	
  section.	
  

Determining	
  macromolecular	
  assembly	
  structures	
  by	
  fitting	
  multiple	
  structures	
  
into	
  an	
  electron	
  density	
  map	
  
Often,	
  we	
  have	
  available	
  high-­‐resolution	
  (atomic)	
  information	
  for	
  the	
  subunits	
  in	
  an	
  
assembly,	
  and	
  low-­‐resolution	
  information	
  for	
  the	
  assembly	
  as	
  a	
  whole	
  (a	
  cryo-­‐EM	
  
electron	
  density	
  map).	
  A	
  high-­‐resolution	
  model	
  of	
  the	
  whole	
  assembly	
  can	
  thus	
  be	
  
constructed	
  by	
  simultaneously	
  fitting	
  the	
  subunits	
  into	
  the	
  density	
  map.	
  Fitting	
  of	
  a	
  
single	
  protein	
  into	
  a	
  density	
  map	
  is	
  usually	
  done	
  by	
  calculating	
  the	
  electron	
  density	
  
of	
  the	
  protein	
  followed	
  by	
  a	
  search	
  of	
  the	
  protein	
  position	
  in	
  the	
  cryo-­‐EM	
  map	
  that	
  
maximizes	
  the	
  cross	
  correlation	
  of	
  the	
  two	
  maps.	
  Simultaneously	
  fitting	
  multiple	
  
proteins	
  into	
  a	
  given	
  map	
  is	
  significantly	
  more	
  difficult,	
  since	
  an	
  incorrect	
  fit	
  of	
  one	
  
protein	
  will	
  also	
  prevent	
  other	
  proteins	
  from	
  being	
  placed	
  correctly.	
  
	
  
IMP	
  contains	
  a	
  multifit(41,42)	
  module	
  (http://salilab.org/multifit/)	
  that	
  can	
  
efficiently	
  solve	
  such	
  multiple	
  fitting	
  problems	
  for	
  density	
  map	
  resolutions	
  as	
  low	
  as	
  
25Å,	
  relying	
  on	
  a	
  general	
  inferential	
  optimizer	
  DOMINO.	
  The	
  fitting	
  protocol	
  is	
  a	
  
multi-­‐step	
  procedure	
  that	
  proceeds	
  via	
  discretization	
  of	
  both	
  the	
  map	
  and	
  the	
  
proteins,	
  local	
  fitting	
  of	
  the	
  proteins	
  into	
  the	
  map,	
  and	
  an	
  efficient	
  combination	
  of	
  
local	
  fits	
  into	
  global	
  solutions	
  (Figure	
  7).	
  Here,	
  we	
  will	
  demonstrate	
  the	
  use	
  of	
  
multifit	
  in	
  building	
  a	
  model	
  of	
  the	
  ARP2/3	
  complex(51)	
  using	
  crystal	
  structures	
  
of	
  its	
  seven	
  constituent	
  proteins	
  (ARP2,	
  ARP3,	
  and	
  ARC1-­‐5)	
  and	
  a	
  20Å	
  density	
  map	
  
of	
  the	
  assembly.	
  All	
  input	
  files	
  for	
  this	
  procedure	
  can	
  be	
  found	
  in	
  the	
  ‘multifit’	
  
subdirectory	
  of	
  the	
  downloaded	
  zipfile.	
  
	
  
The	
  first	
  step	
  in	
  using	
  multifit	
  is	
  to	
  create	
  input	
  files	
  that	
  guide	
  the	
  protocol.	
  The	
  
first	
  of	
  these	
  files,	
  assembly.input,	
  lists	
  each	
  of	
  the	
  subunits	
  and	
  the	
  density	
  
map,	
  complete	
  with	
  the	
  names	
  of	
  the	
  files	
  from	
  which	
  the	
  input	
  structures	
  and	
  map	
  
will	
  be	
  read,	
  and	
  those	
  to	
  which	
  outputs	
  from	
  later	
  steps	
  will	
  be	
  written.	
  In	
  this	
  case,	
  
we	
  also	
  know	
  the	
  native	
  structure	
  of	
  the	
  assembly	
  (PDB	
  code	
  1tyq)	
  and	
  so	
  we	
  add	
  
the	
  subunit	
  structures	
  in	
  native	
  conformation	
  to	
  this	
  input	
  file	
  (rightmost	
  column);	
  
multifit	
  will	
  use	
  them	
  to	
  assess	
  its	
  accuracy.	
  Normally,	
  of	
  course,	
  the	
  real	
  native	
  



structure	
  is	
  not	
  known,	
  in	
  which	
  case	
  this	
  column	
  in	
  the	
  input	
  file	
  is	
  left	
  blank.	
  The	
  
second	
  file,	
  multifit.par,	
  specifies	
  various	
  optimization	
  parameters,	
  and	
  is	
  
described	
  in	
  more	
  detail	
  on	
  the	
  multifit	
  website	
  (http://salilab.org/multifit/).	
  
	
  
The	
  second	
  step	
  is	
  to	
  determine	
  a	
  reduced	
  representation	
  for	
  both	
  the	
  density	
  map	
  
and	
  the	
  subunits,	
  using	
  the	
  Gaussian	
  Mixture	
  Model.	
  This	
  task	
  can	
  be	
  achieved	
  by	
  
typing,	
  in	
  the	
  directory	
  containing	
  assembly.input (the	
  syntax	
  for	
  running	
  
Python	
  scripts	
  may	
  vary	
  depending	
  on	
  where	
  the	
  files	
  are	
  installed):	
  
	
  
/opt/multifit/utils/run_anchor_points_detection.py 
assembly.input 700 
	
  
This	
  run	
  determines	
  a	
  reduced	
  representation	
  of	
  the	
  EM	
  map	
  that	
  best	
  reproduces	
  
the	
  configuration	
  of	
  all	
  voxels	
  with	
  density	
  above	
  700,	
  and	
  a	
  similar	
  reduced	
  
representation	
  of	
  each	
  subunit	
  as	
  a	
  set	
  of	
  3D	
  Gaussian	
  functions.	
  The	
  number	
  of	
  
Gaussians	
  is	
  specified	
  in	
  assembly.input	
  for	
  each	
  subunit.	
  It	
  should	
  be	
  at	
  least	
  3	
  
(the	
  minimum	
  required	
  for	
  fitting)	
  and	
  each	
  Gaussian	
  should	
  cover	
  approximately	
  
the	
  same	
  number	
  of	
  residues	
  (for	
  example,	
  if	
  you	
  choose	
  50	
  residues	
  per	
  Gaussian,	
  a	
  
170-­‐residue	
  protein	
  should	
  use	
  3	
  Gaussians	
  and	
  a	
  260-­‐residue	
  protein	
  should	
  use	
  5	
  
Gaussians).	
  Each	
  such	
  reduced	
  map	
  representation	
  can	
  also	
  be	
  thought	
  of	
  as	
  an	
  
anchor	
  point	
  graph,	
  where	
  each	
  anchor	
  point	
  corresponds	
  to	
  the	
  center	
  of	
  a	
  3D	
  
Gaussian,	
  and	
  the	
  edges	
  in	
  the	
  graph	
  correspond	
  to	
  the	
  connectivity	
  between	
  
regions	
  of	
  the	
  map	
  or	
  protein.	
  These	
  reduced	
  representations	
  are	
  written	
  out	
  as	
  
PDB	
  files	
  containing	
  fake	
  Cα	
  atoms,	
  where	
  each	
  Cα	
  corresponds	
  to	
  a	
  single	
  anchor	
  
point.	
  
	
  
The	
  third	
  step	
  is	
  to	
  fit	
  each	
  protein	
  in	
  the	
  vicinity	
  of	
  the	
  EM	
  map’s	
  anchor	
  points.	
  
This	
  task	
  is	
  achieved	
  by	
  running:	
  
	
  
/opt/multifit/utils/run_protein_fitting.py assembly.input 
multifit.par 
	
  
The	
  output	
  is	
  a	
  set	
  of	
  candidate	
  fits,	
  where	
  the	
  subunit	
  is	
  rigidly	
  rotated	
  and	
  
translated	
  to	
  fit	
  into	
  the	
  density	
  map.	
  Each	
  fit	
  is	
  written	
  as	
  a	
  PDB	
  file	
  in	
  the	
  ‘fits’	
  
subdirectory.	
  The	
  fitting	
  procedure	
  is	
  performed	
  by	
  either	
  aligning	
  a	
  reduced	
  
representation	
  of	
  a	
  protein	
  to	
  a	
  reduced	
  representation	
  of	
  the	
  density	
  map(41)	
  or	
  
by	
  fitting	
  the	
  protein	
  principal	
  components	
  to	
  the	
  principal	
  components	
  of	
  a	
  
segmented	
  region	
  of	
  the	
  map.	
  
	
  
Finally,	
  the	
  fits	
  are	
  scored	
  and	
  then	
  combined	
  into	
  a	
  set	
  of	
  the	
  best-­‐scoring	
  global	
  
configurations:	
  
	
  
/opt/multifit/utils/run_all_scores.py assembly.input > 
scores.log 
 



/opt/multifit/utils/run_multifit.py assembly.input 
assembly.jt assembly_configurations.output 
data/models/1tyq.fitted.pdb > multifit.log 
 
The	
  scoring	
  function	
  used	
  to	
  assess	
  each	
  fit	
  includes	
  the	
  quality-­‐of-­‐fit	
  of	
  each	
  
subunit	
  into	
  the	
  map,	
  the	
  protrusion	
  of	
  each	
  subunit	
  out	
  of	
  the	
  map	
  envelope,	
  and	
  
the	
  shape	
  complementarity	
  between	
  pairs	
  of	
  neighboring	
  subunits.	
  The	
  
optimization	
  avoids	
  exhaustive	
  enumeration	
  of	
  all	
  possible	
  mappings	
  of	
  subunits	
  to	
  
anchor	
  points	
  by	
  means	
  of	
  a	
  branch-­‐and-­‐bound	
  algorithm	
  combined	
  with	
  the	
  
DOMINO	
  divide-­‐and-­‐conquer	
  message-­‐passing	
  optimizer	
  using	
  a	
  discrete	
  sampling	
  
space(42).	
  
	
  
The	
  final	
  output	
  from	
  multifit	
  is	
  a	
  file	
  assembly_configurations.output	
  
that	
  lists	
  the	
  best	
  global	
  solutions,	
  ranked	
  by	
  their	
  score,	
  an	
  excerpt	
  of	
  which	
  is	
  
shown	
  below:	
  
	
  
ARP3,0|ARP2,14|ARC1,3|ARC2,24|ARC3,19|ARC4,11|ARC5,13|(17.5
593729019)(rmsd:29.2637996674)(conf.0.pdb) 
ARP3,5|ARP2,13|ARC1,9|ARC2,24|ARC3,19|ARC4,4|ARC5,13|(18.32
58602619)(rmsd:11.997220993)(conf.1.pdb) 
	
  
For	
  each	
  global	
  solution,	
  multifit	
  lists	
  the	
  indices	
  of	
  the	
  local	
  fits	
  for	
  each	
  subunit	
  
and	
  the	
  score.	
  Each	
  solution	
  is	
  also	
  written	
  out	
  as	
  a	
  multi-­‐chain	
  PDB	
  file	
  of	
  the	
  
assembly.	
  In	
  addition,	
  because	
  we	
  also	
  provided	
  the	
  native	
  structure	
  
(1tyq.fitted.pdb),	
  the	
  RMSD	
  between	
  the	
  native	
  conformation	
  and	
  each	
  
solution	
  is	
  listed.	
  In	
  this	
  case,	
  the	
  RMSD	
  measure	
  indicates	
  that	
  multifit	
  has	
  
correctly	
  determined	
  the	
  architecture	
  of	
  the	
  assembly,	
  placing	
  each	
  subunit	
  in	
  the	
  
approximately	
  correct	
  part	
  of	
  the	
  map.	
  However,	
  the	
  protein-­‐protein	
  interfaces	
  are	
  
clearly	
  not	
  accurate	
  at	
  the	
  atomic	
  level.	
  These	
  models	
  could	
  thus	
  be	
  refined	
  with	
  a	
  
combination	
  of	
  pairwise	
  computational	
  docking	
  and	
  local	
  sampling,	
  ideally	
  
supported	
  by	
  additional	
  experimental	
  data,	
  such	
  as	
  chemical	
  cross-­‐linking,	
  various	
  
kinds	
  of	
  footprinting,	
  and	
  X-­‐ray	
  crystallography	
  of	
  binary	
  subunit	
  complexes.	
  

Summary	
  
The	
  structures	
  of	
  protein	
  assemblies	
  can	
  typically	
  not	
  be	
  fully	
  characterized	
  with	
  
any	
  individual	
  computational	
  or	
  experimental	
  method.	
  Integrative	
  modeling	
  aims	
  to	
  
solve	
  this	
  problem	
  by	
  combining	
  information	
  from	
  multiple	
  methods	
  to	
  generate	
  
structural	
  models.	
  Integrative	
  modeling	
  problems	
  can	
  be	
  tackled	
  using	
  the	
  method	
  
of	
  satisfaction	
  of	
  spatial	
  restraints.	
  In	
  this	
  approach,	
  a	
  suitable	
  representation	
  for	
  
the	
  system	
  is	
  chosen,	
  the	
  information	
  is	
  converted	
  into	
  a	
  set	
  of	
  spatial	
  restraints,	
  the	
  
restraints	
  are	
  simultaneously	
  satisfied	
  as	
  well	
  as	
  possible	
  by	
  optimizing	
  a	
  function	
  
that	
  is	
  the	
  sum	
  of	
  all	
  restraints,	
  and	
  the	
  resulting	
  models	
  are	
  analyzed.	
  Further	
  
experiments	
  as	
  well	
  as	
  the	
  precision	
  and	
  likely	
  accuracy	
  of	
  both	
  the	
  model	
  and	
  the	
  
data	
  can	
  be	
  informed.	
  IMP	
  is	
  an	
  open	
  source	
  and	
  flexible	
  software	
  package	
  that	
  



provides	
  all	
  of	
  the	
  components	
  needed	
  to	
  implement	
  an	
  integrative	
  modeling	
  
protocol	
  from	
  scratch.	
  It	
  also	
  contains	
  higher-­‐level	
  applications	
  and	
  web	
  services	
  
that	
  can	
  tackle	
  specific	
  use	
  cases	
  more	
  conveniently.	
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Tables	
  

Table	
  1:	
  IMP	
  Modules	
  
Module	
  name	
   Description	
  
Basic	
  modules	
  
core Basic	
  functionality	
  commonly	
  used	
  in	
  structural	
  modeling,	
  including	
  representation	
  of	
  particles	
  

as	
  rigid	
  bodies,	
  commonly	
  used	
  restraints	
  such	
  as	
  distance,	
  excluded	
  volume	
  and	
  
connectivity(16)	
  and	
  frequently	
  used	
  optimizers	
  such	
  as	
  Monte	
  Carlo	
  and	
  conjugate	
  gradients.	
  	
  

algebra General-­‐purpose	
  algebraic	
  and	
  geometric	
  methods,	
  including	
  principal	
  component	
  analysis	
  of	
  
attributes,	
  geometric	
  alignment	
  between	
  two	
  sets	
  of	
  3D	
  coordinates	
  and	
  geometric	
  
manipulations	
  of	
  spheres,	
  cones,	
  cylinders	
  and	
  cubes.	
  

display Tools	
  for	
  displaying	
  and	
  exporting	
  of	
  IMP	
  data,	
  such	
  as	
  intermediate	
  models	
  in	
  an	
  optimization	
  
process,	
  in	
  PDB(50),	
  Chimera(43)	
  or	
  PyMol(52)	
  format.	
  

statistics Basic	
  statistics	
  tools,	
  including	
  k-­‐means	
  clustering,	
  Gaussian	
  mixture	
  model	
  clustering	
  and	
  
histogram	
  calculation.	
  

gsl Interfaces	
  to	
  allow	
  algorithms	
  from	
  the	
  GNU	
  Scientific	
  Library(53),	
  including	
  simplex,	
  quasi-­‐
Newton	
  and	
  conjugate	
  gradients	
  optimizers,	
  to	
  be	
  used	
  in	
  IMP.	
  

container Tools	
  and	
  algorithms	
  for	
  manipulating	
  subsets	
  of	
  the	
  system’s	
  particles,	
  such	
  as	
  maintaining	
  a	
  
list	
  of	
  all	
  pairs	
  of	
  particles	
  that	
  are	
  spatially	
  close.	
  

Structural	
  modeling	
  modules	
  
atom Tools	
  for	
  manipulating	
  atoms	
  and	
  proteins.	
  The	
  module	
  allows	
  molecules	
  to	
  be	
  read	
  or	
  written	
  

in	
  PDB	
  format(50)	
  and	
  scored	
  using	
  force	
  fields	
  such	
  as	
  CHARMM(36).	
  It	
  also	
  provides	
  
molecular	
  dynamics	
  and	
  Brownian	
  dynamics	
  optimizers.	
  

em Integration	
  of	
  2D	
  and	
  3D	
  EM	
  data	
  into	
  the	
  integrative	
  modeling	
  procedure.	
  The	
  module	
  
provides	
  functionality	
  to	
  read	
  and	
  write	
  EM	
  density	
  maps	
  in	
  MRC,	
  X-­‐PLOR,	
  Spider	
  and	
  EM	
  
formats,	
  to	
  simulate	
  density	
  maps	
  from	
  a	
  set	
  of	
  particles,	
  and	
  to	
  represent	
  the	
  EM	
  quality-­‐of-­‐fit	
  
as	
  a	
  restraint(54).	
  

modeller 
Interface	
  to	
  the	
  MODELLER(31,	
  32)	
  comparative	
  modeling	
  program.	
  The	
  module	
  allows	
  for	
  
MODELLER	
  models	
  and	
  restraints	
  to	
  be	
  imported	
  into	
  IMP,	
  and	
  for	
  IMP	
  restraints	
  to	
  be	
  used	
  
with	
  the	
  MODELLER	
  optimizers,	
  or	
  vice	
  versa.	
  

saxs Integration	
  of	
  SAXS	
  data	
  into	
  the	
  integrative	
  modeling	
  procedure.	
  The	
  module	
  reads	
  and	
  writes	
  
SAXS	
  profiles,	
  and	
  provides	
  a	
  restraint	
  that	
  scores	
  a	
  set	
  of	
  particles	
  on	
  their	
  fit	
  to	
  an	
  
experimental	
  profile(48,	
  49).	
  

restrainer High-­‐level	
  interface	
  for	
  setting	
  up	
  an	
  integrative	
  modeling	
  procedure,	
  reading	
  the	
  
representation	
  of	
  the	
  system	
  and	
  the	
  sources	
  of	
  input	
  information	
  from	
  a	
  pair	
  of	
  XML	
  files.	
  	
  

domino Implementation	
  of	
  an	
  inferential	
  message-­‐passing	
  optimization	
  procedure(42).	
  The	
  module	
  
provides	
  functionality	
  to	
  build	
  a	
  graphical	
  model	
  of	
  the	
  defined	
  scoring	
  function,	
  and	
  to	
  
decompose	
  the	
  graph	
  into	
  a	
  tree	
  on	
  which	
  a	
  message-­‐passing	
  sampling	
  procedure	
  is	
  performed.	
  

multifit Tools	
  for	
  fitting	
  multiple	
  proteins	
  into	
  their	
  assembly	
  density	
  map.	
  The	
  main	
  functionality	
  
includes:	
  (i)	
  fitting	
  a	
  single	
  protein	
  into	
  its	
  density	
  based	
  on	
  point-­‐alignment,	
  principal	
  
component	
  matching	
  or	
  fast-­‐Fourier	
  transform	
  search,	
  (ii)	
  combinatorial	
  consideration	
  of	
  
fitting	
  solutions	
  of	
  multiple	
  components	
  for	
  generating	
  an	
  assembly	
  model,	
  and	
  (iii)	
  modeling	
  
of	
  cyclic	
  symmetric	
  assemblies(41).	
  

Support	
  modules	
  
benchmark A	
  set	
  of	
  benchmarks	
  of	
  the	
  IMP	
  software,	
  to	
  ensure	
  that	
  the	
  algorithms	
  perform	
  optimally.	
  
example Examples	
  for	
  developers	
  on	
  how	
  to	
  implement	
  new	
  IMP	
  functionality.	
  	
  
helper High-­‐level	
  functionality	
  to	
  assist	
  in	
  setting	
  up	
  and	
  manipulating	
  a	
  system,	
  including	
  simplified	
  

interfaces	
  for	
  creating	
  restraints	
  such	
  as	
  EM,	
  connectivity	
  and	
  excluded	
  volume.	
  
misc Miscellaneous	
  and	
  experimental	
  functionality	
  that	
  has	
  not	
  been	
  fully	
  tested.	
  
test Procedures	
  to	
  help	
  in	
  testing	
  the	
  IMP	
  software	
  itself.	
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Figure	
  1.	
  Integrative	
  modeling	
  protocol.	
  After	
  the	
  datasets	
  to	
  be	
  used	
  are	
  enumerated,	
  a	
  suitable	
  
representation	
  is	
  chosen	
  for	
  the	
  system,	
  and	
  the	
  input	
  information	
  is	
  converted	
  into	
  a	
  set	
  of	
  spatial	
  
restraints.	
  Models	
  are	
  generated	
  that	
  are	
  optimally	
  consistent	
  with	
  the	
  input	
  information	
  by	
  optimizing	
  
a	
  function	
  of	
  these	
  restraints.	
  Analysis	
  of	
  the	
  resulting	
  models	
  informs	
  about	
  the	
  model	
  and	
  data	
  
accuracy	
  and	
  may	
  help	
  guide	
  further	
  experiments.	
  The	
  protocol	
  is	
  demonstrated	
  with	
  the	
  construction	
  
of	
  a	
  bead	
  model	
  of	
  the	
  NPC(12).	
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Figure	
  2.	
  Overview	
  of	
  the	
  IMP	
  software.	
  Components	
  are	
  displayed	
  by	
  simplicity	
  (or	
  user-­‐friendliness)	
  
and	
  expressiveness	
  (or	
  power).	
  The	
  core	
  C++/Python	
  library	
  allows	
  protocols	
  to	
  be	
  designed	
  from	
  
scratch;	
  higher-­‐level	
  modules	
  and	
  applications	
  provide	
  more	
  user-­‐friendly	
  interfaces.	
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Figure	
  3.	
  simple.py,	
  a	
  simple	
  Python	
  script	
  that	
  uses	
  IMP	
  to	
  build	
  a	
  model	
  consisting	
  of	
  two	
  particles	
  
satisfying	
  a	
  harmonic	
  distance	
  restraint.	
  

import IMP
import IMP.algebra
import IMP.core

m = IMP.Model()

# Create two "untyped" Particles
p1 = IMP.Particle(m)
p2 = IMP.Particle(m)

# "Decorate" the Particles with x,y,z attributes (point-like particles)
d1 = IMP.core.XYZ.setup_particle(p1)
d2 = IMP.core.XYZ.setup_particle(p2)

# Use some XYZ-specific functionality (set coordinates)
d1.set_coordinates(IMP.algebra.Vector3D(10.0, 10.0, 10.0))
d2.set_coordinates(IMP.algebra.Vector3D(-10.0, -10.0, -10.0))
print d1, d2

# Harmonically restrain p1 to be zero distance from the origin
f = IMP.core.Harmonic(0.0, 1.0)
s = IMP.core.DistanceToSingletonScore(f, IMP.algebra.Vector3D(0., 0., 0.))
r1 = IMP.core.SingletonRestraint(s, p1)
m.add_restraint(r1)

# Harmonically restrain p1 and p2 to be distance 5.0 apart
f = IMP.core.Harmonic(5.0, 1.0)
s = IMP.core.DistancePairScore(f)
r2 = IMP.core.PairRestraint(s, IMP.ParticlePair(p1, p2))
m.add_restraint(r2)

# Optimize the x,y,z coordinates of both particles with conjugate gradients
d1.set_coordinates_are_optimized(True)
d2.set_coordinates_are_optimized(True)
o = IMP.core.ConjugateGradients(m)
o.optimize(50)
print d1, d2
~                                                                                  
~                                                                                  
~                                                                                  
~                                                                                  
~                                                                                  
~                                                                                  
~                                                                                  
                                                                 1,1           All



	
  
	
  

Figure	
  4.	
  Division	
  of	
  the	
  yeast	
  NPC	
  into	
  subcomplexes(13);	
  one	
  such	
  subcomplex	
  is	
  the	
  Nup84	
  complex	
  of	
  
seven	
  proteins.	
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Figure 2 | Localization of major substructures and their component
nucleoporins in the NPC. This figure is a single view of data presented in
our Supplementary Movie. The nucleoporins are represented by their
localization volumes14 and have been coloured according to their
classification into five distinct substructures on the basis of their location
and functional properties: the outer rings in yellow, the inner rings in purple,
the membrane rings in brown, the linker nucleoporins in blue and pink, and
the FG nucleoporins (for which only the structured domains are shown) in
green. The pore membrane is shown in grey. A single arbitrary repeat unit,
termed the spoke, is shown dissected into its component nucleoporins.
Together, the outer and inner rings connect to form the NPC’s core scaffold
(Fig. 3). Each of the outer rings makes connections with the adjacent linker
nucleoporins and inner rings, but connects with few FGnucleoporins and no
components of the membrane rings. The two inner rings are closely
associated with each other at the NPC’s equator and form connections with
all three integral membrane proteins in the membrane rings, thereby
anchoring the NPC to the nuclear envelope. The bulk of themembrane rings

is formed by homo-oligomerization of the C-terminal domain of Pom152.
The linker nucleoporins Nic96 and Nup82 are anchored between the inner
and outer rings and have a central role in bridging the core scaffold of the
NPC with the functionally important FG nucleoporins. On both the
cytoplasmic and nucleoplasmic sides of each spoke, one copy of Nic96 is
anchored through Nup192 and a second copy through Nup188. Whereas
one copy of Nic96 carries the FG nucleoporins Nsp1, Nup57 andNup49, the
second copy forms interactions to another copy of Nsp1 and at the
cytoplasmic side also interacts with Nup82. Here, Nup82 associates with the
FG nucleoporins Nup159, Nup116, Nsp1 and Nup42. Thus, Nsp1 forms at
least two distinct complexes in the NPC: one exclusively cytoplasmic and
one disposed symmetrically52–55. By contrast, the FG nucleoporins found
only on the nucleoplasmic side connect mainly to the inner ring
nucleoporins, as do Nup53 and Nup59, both of which also face the pore
membrane. The scale bars indicate the average standard deviation of the
distance between a pair of neighbouring proteins in the 1,000 best-scoring
configurations14.
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Figure	
  5.	
  Bead	
  model	
  of	
  the	
  Nup84	
  complex	
  generated	
  by	
  restrainer,	
  based	
  on	
  yeast	
  two-­‐hybrid	
  
system	
  data	
  and	
  excluded	
  volume	
  considerations.	
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Figure	
  6.	
  Fit	
  of	
  the	
  3kfo	
  PDB	
  structure	
  (solid	
  line)	
  against	
  the	
  experimentally-­‐determined	
  SAXS	
  profile	
  of	
  
the	
  same	
  protein	
  (points),	
  using	
  the	
  FoXS	
  web	
  service	
  at	
  http://salilab.org/foxs(48).	
  A	
  plot	
  of	
  a	
  
comparative	
  model's	
  profile	
  is	
  also	
  shown	
  (dashed	
  line).	
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Figure	
  7.	
  The	
  MultiFit	
  protocol(42).	
  Protein	
  subunits	
  are	
  fitted	
  into	
  a	
  density	
  map	
  of	
  the	
  assembly	
  by	
  
discretizing	
  both	
  the	
  map	
  and	
  the	
  components,	
  locally	
  fitting	
  each	
  protein,	
  and	
  efficiently	
  combining	
  the	
  
local	
  fits	
  into	
  global	
  solutions.	
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