Chapter 4

Protein Structure Modeling with MODELLER

Benjamin Webb and Andrej Sali

Abstract

Genome sequencing projects have resulted in a rapid increase in the number of known protein sequences.
In contrast, only about one-hundredth of these sequences have been characterized at atomic resolution
using experimental structure determination methods. Computational protein structure modeling techni-
ques have the potential to bridge this sequence-structure gap. In the following chapter, we present an
example that illustrates the use of MODELLER to construct a comparative model for a protein with
unknown structure. Automation of a similar protocol has resulted in models of useful accuracy for domains
in more than half of all known protein sequences.
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ment, Multiple templates

1 Introduction

The function of a protein is determined by its sequence and its
three-dimensional (3D) structure. Large-scale genome sequencing
projects are providing researchers with millions of protein
sequences, from various organisms, at an unprecedented pace.
However, the rate of experimental structural characterization of
these sequences is limited by the cost, time, and experimental
challenges inherent in the structural determination by X-ray crys-
tallography and nuclear magnetic resonance (NMR) spectroscopy.

In the absence of experimentally determined structures, com-
putationally derived protein structure models are often valuable for
generating testable hypotheses [1, 2]. Such models are generally
produced using either comparative modeling methods or free mod-
eling techniques (also referred to as ab initio or de novo modeling)
[3]. Comparative modeling relies on structural information from
related proteins to guide the modeling procedure [4-6]. Free
modeling does not require a related protein, but instead uses a
variety of methods to combine physics with the known behaviors
of protein structures (for example, by combining multiple short
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structural fragments extracted from known proteins) [7-9]; it is,
however, extremely computationally expensive [3]. Comparative
protein structure modeling, which this text focuses on, has been
used to produce reliable structure models for at least one domain in
more than half of all known sequences [10]. Hence, computational
approaches can provide structural information for two orders of
magnitude more sequences than experimental methods, and are
expected to be increasingly relied upon as the gap between the
number of known sequences and the number of experimentally
determined structures continues to widen.

Comparative modeling consists of four main steps [4] (Fig. 1):
(a) fold assignment that identifies overall similarity between the
target sequence and at least one known structure (template); (b)
alignment of the target sequence and the template(s); (¢) building a
model based on the alignment with the chosen template(s); and (d)
predicting the accuracy of the model.

(b) 3D GKITFYERGFQGHCYESDC-NLQP... + CHARMM-22
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FREQUENCY

Fig. 1 Comparative protein structure modeling. (a) A flowchart illustrating the steps in the construction of a
comparative model [4]. (b) Description of comparative modeling by extraction of spatial restraints as
implemented in MODELLER [12]. By default, spatial restraints in MODELLER involve (1) homology-derived
restraints from the aligned template structures, (2) statistical restraints derived from all known protein
structures, and (3) stereochemical restraints from the CHARMM-22 molecular mechanics force-field. These
restraints are combined into an objective function that is then optimized to calculate the final 3D model of the
target sequence
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MODELLER is a computer program for comparative protein
structure modeling [11, 12]. In the simplest case, the input is an
alignment of a sequence to be modeled with the template structure
(s), the atomic coordinates of the template(s), and a simple script
file. MODELLER then automatically calculates a model containing
all non-hydrogen atoms, without any user intervention and within
minutes on a desktop computer. Apart from model building,
MODELLER can perform auxiliary tasks such as fold assignment,
alignment of two protein sequences or their profiles [ 13], multiple
alignment of protein sequences and/or structures [14, 15], clus-
tering of sequences and/or structures, and a& initio modeling of
loops in protein structures [11].

MODELLER implements comparative protein structure mod-
eling by satisfaction of spatial restraints that include (a) homology-
derived restraints on the distances and dihedral angles in the target
sequence, extracted from its alignment with the template structures
[12], (b) stereochemical restraints such as bond length and bond
angle preferences, obtained from the CHARMM-22 molecular
mechanics force-field [16], (¢) statistical preferences for dihedral
angles and non-bonded inter-atomic distances, obtained from a
representative set of known protein structures [17, 18], and (d)
optional manually curated restraints, such as those from NMR
spectroscopy, rules of secondary structure packing, cross-linking
experiments, fluorescence spectroscopy, image reconstruction
from electron microscopy, site-directed mutagenesis, and intuition
(Fig. 1). The spatial restraints, expressed as probability density
functions, are combined into an objective function that is opti-
mized by a combination of conjugate gradients and molecular
dynamics with simulated annealing. This model building procedure
is similar to structure determination by NMR spectroscopy.

In this chapter, we use a sequence with unknown structure to
illustrate the use of various modules in MODELLER to perform
the four steps of comparative modeling.

2 Materials

To follow the examples in this discussion, both the MODELLER
software and a set of suitable input files are needed. The MODEL-
LER software is free for academic use; it can be downloaded from
https: //salilab.org/modeller/ and is available in binary form for
most common machine types and operating systems (se¢ Note 1).
This text uses MODELLER 9.17, the most recent version at the
time of writing, but the examples should also work with any newer
version. The example input files can be downloaded from https: //
salilab.org/modeller /tutorial /FG17.zip.

All MODELLER scripts are Python scripts. Python is pre-
installed on most Linux and Mac machines; Windows users can
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2.1 Typographical
Conventions

obtain it from https://www.python.org/. It is not necessary to
install Python, or to have a detailed knowledge of its use, to use
MODELLER, but it is helpful for creating and understanding the
more advanced MODELLER scripts.

Monospaced text is used below for computer file and folder/
directory names, command lines, file contents, and variable and
class names.

3 Methods

3.1 Fold Assignment

The procedure for calculating a 3D model for a sequence with
unknown structure will be illustrated using the following example:
a novel gene for lactate dehydrogenase (LDH) was identified from
the genomic sequence of Trichomonas vaginalis (TvLDH). The
corresponding protein had higher sequence similarity to the malate
dehydrogenase of the same species (TvMDH) than to any other
LDH [19]. Comparative models were constructed for TvLDH and
TvMDH to study the sequences in a structural context and to
suggest site-directed mutagenesis experiments to elucidate changes
in enzymatic specificity in this apparent case of convergent evolu-
tion. The native and mutated enzymes were subsequently expressed
and their activities compared [19].

The first step in comparative modeling is to identify one or more
templates (sequences with known 3D structure) for the modeling
procedure. One way to do this is to search a database of experimen-
tally determined structures extracted from the Protein Data Bank
(PDB) [20] to find sequences that have detectable similarity to the
target (see Note 2). To prepare this database (see Note 3), run the
following command from the command line (se¢e Note 4):

python make_pdb_95.py > make_pdb_95.1log

This generates a file called pdb_95.bin, which is a binary
representation of the search database (se¢ Note 5) and a log file,
make_pdb_95.10og. Next, MODELLER’s profile.build()
command is used; this uses the local dynamic programming algo-
rithm to identify sequences related to TVLDH [21]. In the simplest
case, profile.build () takes as input the target sequence, in file
TvLDH.ali (see Note 6), and the binary database and returns a set
of statistically significant alignments (file build_profile.prf)
and a MODELLER log file (build_profile.log). Run this step

by typing

python build_profile.py > build_profile.log
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The first few lines of the resulting build_profile.prf will
look similar to (see Note 7) the following (note that the rightmost
column, containing the primary sequence, has been omitted here

for clarity):

# Number of sequences: 69

# Length of profile : 335

# N_PROF_ITERATIONS : 1

# GAP_PENALTIES_1D : -500.0 -50.0

# MATRIX_OFFSET : -450.0

# RR_FILE : $S{LIB}/blosumé62.sim.mat
1 TvIDH S 0 335 1 335 0 0 0 0. 0.0
2 lab5zA X 1 312 75 242 63 229 164 28. 0.58E-07
3 2a92A X 1 316 8 191 6 186 174 26. 0.11E-03
4 4aj2A X 1 327 85 301 89 300 207 25. 0.24E-04
5 1b8pA X 1 327 7 331 6 325 316 42. 0.0

The first six lines of this file contain the input parameters used
to create the alignments. Subsequent lines contain several columns
of data; for the purposes of this example, the most important
columns are (a) the second column, containing the PDB code of
the related template sequences; (b) the eleventh column, contain-
ing the percentage sequence identity between the TvLDH and
template sequences; and (c) the twelfth column, containing the
E-values for the statistical significance of the alignments. These
columns are shown in bold above.

The extent of similarity between the target-template pairs is
usually quantified using sequence identity or a statistical measure
such as E-value (see Note 8). Inspection of column 11 shows that a
template with a high sequence identity with the target is the 1y7tA
structure (45% sequence identity). Further inspection of column 12
shows that there are 14 PDB sequences, all but one corresponding
to malate dehydrogenases (1b8pA, 1bdmA, 1civA, 3d5tA, 4h7pA,
4h7pB, 5mdhA, 7mdhA, 4tvoA, 4tvoB, 4uulA, 4uuoA, 4uupA,
1y7tA) that show significant similarities to TvLDH with E-values
of zero.

The next step is to align the target TvLDH sequence with the
chosen template (see Note 9). Here, the 1y7tA template is used.
This alignment is created using MODELLER’s align2d() func-
tion (see Note 10). Although align2d() is based on a global
dynamic programming algorithm [22], it is different from standard
sequence-sequence alignment methods because it takes into
account structural information from the template when construct-
ing an alignment. This task is achieved through a variable gap
penalty function that tends to place gaps in solvent exposed and
curved regions, outside secondary structure segments, and not
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3.3 Model Building

3.4 Model Evaluation

3.5 Use of Multiple
Templates

between two positions that are close in space [14]. In the current
example, the target-template similarity is so high that almost any
method with reasonable parameters will result in the correct align-
ment (see Note 11).

This step is carried out by running:

python align2d.py > align2d.log

This script reads in the PDB structure of the template, and the
sequence of the target (TvLDH) and calls the align2d () function
to perform the alignment. The resulting alignment is written out in
two formats. TvLDH-1y7tA. ali in the PIR format is subsequently
used by MODELLER for modeling; TvLDH-1y7tA.pap in the
PAP format is easier to read, for example, to see which residues
are aligned with each other.

Models of TVLDH can now be built by running;:
python model.py > model.log

The script uses MODELLER’s automodel class, specifying
the name of the alignment file to use and the identifiers of the
target (TVLDH) and template (1y7tA) sequences. It then asks
automodel to generate five models (see Note 12). Each is assessed
with the normalized DOPE assessment method [18]. The five
models are written out as PDB files with names TvLDH.B9999
[0001-0005] .pdb.

The log file produced by the model building procedure (model.
log) contains a summary of each calculation at the bottom of the
file. This summary includes, for each of the five models, the MOD-
ELLER objective function (see Note 13) [12] and the normalized
DOPE score (see Note 14). These scores can be used to identify
which of the 5 models produced is likely to be the most accurate
model (see Note 15).

Since the DOPE potential is simply a sum of interactions
between pairs of atoms, it can be decomposed into a score per
residue, which is termed in MODELLER an “energy profile.”
This energy profile can be generated for the model with the best
DOPE score by running the make_energy_profile.py script.
The script outputs the profile, TvLDH.profile, in a simple format
that is easily displayed in any graphing package. Such a profile is
useful to detect local regions of high pseudo-energy that usually
correspond to errors in the model (se¢ Notes 16 and 17).

One way to potentially improve the accuracy of generated models is
to use multiple template structures. When there are multiple tem-
plates, different template structures may be of higher local sequence
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identity to the target (or higher quality) than others in different
regions, allowing MODELLER to build a model based on the most
useful structural information for each region in the protein. The
procedure is demonstrated here using five templates that have high
sequence identity to the target (1b8pA, 4h7pA, 4h7pB, 5mdhA,
1y7tA). Input files can be found in the “multiple” subdirectory
of the zip-file. The first step is to align all of the templates with each
other, which can be done by running:

python salign.py > salign.log

This script uses MODELLER’s salign() function [15] to
read in all of the template structures and then generate their best
structural alignment (see Note 18), written out as templates.
ali.

Next, just as for single template modeling, the target is aligned
with the templates using the align2d () function. The function’s
align_block parameter is set to 5 to align the target sequence
with the pre-aligned block of templates, and not to change the
existing alignment between individual templates:

python align2d.py > align2d.log

Finally, model generation proceeds just as for the single tem-
plate case (the only difference is that automodel is now given a list
of all five templates):

python model.py > model.log

Comparison of the normalized DOPE scores from the end of
this logfile with those from the single template case shows an
improvement in the DOPE score of the best model from —0.92
to —1.19. Figure 2 shows the energy profiles of the best scoring
models from each procedure (generated using the plot_pro-
files.py script). It can be seen that some of the predicted errors
in the single template model (peaks in the graph) have been
resolved in the model calculated using multiple templates.

Models generated by MODELLER are stored in PDB files, and so
can be evaluated for accuracy with other methods if desired. One
such method is the ModEval web server at https://salilab.org/
evaluation/. This server takes as input the PDB file and the MOD-
ELLER PIR alignment used to generate it. It returns not only the
normalized DOPE score and the energy profile, but also the
GA341 assessment score [23, 24] and an estimate of the Ca
RMSD and native overlap between the model and its hypothetical
native structure, using the TSVMod method [25 ]; native overlap is
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Fig. 2 The DOPE [18] energy profiles for the best-assessed model generated by modeling with a single
template (solid line) and multiple templates (dotted line). Peaks (local regions of high, unfavorable score) tend
to correspond to errors in the models

3.7 Structures of
Complexes

defined as the fraction of Ca atoms in the model that are within
3.5 A of the same Ca atom in the native structure after least squares
superposition.

The example shown here generates a model of a single protein.
However, MODELLER can also generate models of complexes of
multiple proteins if templates for the entire complex are available;
examples can be found in the MODELLER manual. In the case
where only templates for the individual subunits in the complex can
be found, comparative models can be docked in a pairwise fashion
by molecular docking [26, 27] or assembled based on various
experimental data to generate approximate models of the complex
using a wide variety of integrative modeling methods [28-31]. For
example, if a cryo-electron microscopy density map of the complex
is available, a model of the whole complex can be constructed by
simultaneously fitting comparative models of the subunits into the
density map using the MultiFit method [32] or its associated web
server at https: //salilab.org/multifit/ [ 33]. Alternatively, it a small
angle X-ray (SAXS) profile of a dimer is available, models of the
dimer can be generated by docking the two subunits, constrained
by the SAXS data, using the FoXSDock web server at https://
salilab.org/foxsdock/ [34]. Both of these methods are part of the
open source Integrative Modeling Platform (IMP) package [29].
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4 Notes

1. The MODELLER website also contains a full manual, a mail-
ing list, and more example MODELLER scripts. A license key
is required to use MODELLER, but this can also be obtained
from the website.

2. The sequence identity is a useful predictor of the accuracy of
the final model when its value is >30%. It has been shown that
models based on such alignments usually have, on average,
more than ~60% of the backbone atoms correctly modeled
with a root-mean-squared-deviation (RMSD) for Ca atoms of
less than 3.5 A (Fig. 3). Sequence-structure relationships in the
“twilight zone” [35] (corresponding to relationships with
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Fig. 3 Average model accuracy as a function of sequence identity [55]. As the sequence identity between the
target sequence and the template structure decreases, the average structural similarity between the template
and the target also decreases (dark grey area, squares) [56]. Structural overlap is defined as the fraction of
equivalent Co atoms. For the comparison of the model with the actual structure (circles), two Co atoms were
considered equivalent if they belonged to the same residue and were within 3.5 A of each other after least
squares superposition. For comparisons between the template structure and the actual target structure
(squares), two Ca atoms were considered equivalent if they were within 3.5 A of each other after alignment
and rigid-body superposition. The difference between the model and the actual target structure is a
combination of the target-template differences (dark grey area) and the alignment errors (light grey area).
The figure was constructed by calculating ~1 million comparative models based on single template of varying
similarity to the targets. All targets had known (experimentally determined) structures
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statistically significant sequence similarity with identities
generally in the 10-30% range), or the “midnight zone” [35]
(corresponding to statistically insignificant sequence similar-
ity), typically result in less accurate models.

. The database contains sequences of the structures from PDB.

To increase the search speed, redundancy is removed from the
database; the PDB sequences are clustered with other
sequences that are at least 95% identical, and only the represen-
tative of each cluster is stored in the database. This database is
termed “pdb_95.” A copy of this database is included in the
downloaded zip-file as pdb_95.pir. Newer versions of this
database, updated as new structures are deposited in PDB, can
be downloaded from the MODELLER website at https://
salilab.org/modeller /supplemental.html.

. MODELLER is a command line tool, so all commands must be

run by typing at the command line. All of the necessary input
files for this demonstration are in the downloaded zip-file;
simply download and extract the zip-file and change into the
newly created directory (using the “cd” command at the com-
mand line). After this, MODELLER scripts can be run as
shown in the text. All MODELLER scripts are Python scripts
and so should be run with the “python” command. (On some
systems the full path to the Python interpreter may be neces-
sary, such as /usr/bin/python on a Linux or Mac machine
or C:\python27\python.exe on a Windows system.)
MODELLER scripts can also be run from other Python fron-
tends, such as IDLE, if desired. On a Windows system, it is
generally not a good idea to simply “double click” on a
MODELLER Python script, since any output from the script
will disappear as soon as it finishes. Finally, if Python is not
installed, MODELLER includes a basic Python 2.3 interpreter
as “mod<version>.” For example, to run the first script using
MODELLER version 9.17’s own interpreter, run “mod9.17
make_pdb_95.py.” Note that mod9. 17 automatically creates
a “make_pdb_95.1log” logfile.

. The binary database is much faster to use than the original text

format database, pdb_95.pir. Note, however, that it is not
necessarily smaller. This script does not need to be run again
unless pdb_95.pir is updated.

. TVLDH.ali simply contains the primary sequence of the tar-

get, in MODELLER’s variant of the PIR format (which is
documented in more detail in the MODELLER manual).
This file is included in the zip-file.

7. Although MODELLER'’s algorithms are deterministic, exactly

the same job run on different machines (e.g., a Linux box versus
a Windows or Mac machine) may give different results.
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This difference may arise because different machines handle
rounding of floating point numbers and ordering of floating
point operations differently, and the minor differences intro-
duced can be compounded and end up giving very different
outputs. This variation is normal and to be expected, and so the
results shown in this text may differ from those obtained by
running MODELLER elsewhere.

. The sequence identity is not a statistically reliable measure of
alignment significance and corresponding model accuracy for
values lower than 30% [35, 36]. During a scan of a large
database, for instance, it is possible that low values occur purely
by chance. In such cases, it is useful to quantity the sequence-
structure relationship using more robust measures of statistical
significance, such as E-values [37], that compare the score
obtained for an alignment with an established background
distribution of such scores.

One other problem of using sequence identity as a measure to
select templates is that, in practice, there is no single generally
used way to normalize it [36]. For instance, local alignment
methods usually normalize the number of identically aligned
residues by the length of the alignment, while global alignment
methods normalize it by either the length of the target
sequence or the length of the shorter of the two sequences.
Therefore, it is possible that alignments of short fragments
produce a high sequence identity but do not result in an
accurate model. Measures of statistical significance do not suf-
fer from this normalization problem because the alignment
scores are corrected for the length of the aligned segment
before the significance is computed [37, 38].

. After a list of all related protein structures and their alignments
with the target sequence has been obtained, template struc-
tures are usually prioritized depending on the purpose of the
comparative model. Template structures may be chosen based
purely on the target-template sequence identity or a combina-
tion of several other criteria, such as the experimental accuracy
of the structures (resolution of X-ray structures, number of
restraints per residue for NMR structures), conservation of
active-site residues, holo-structures that have bound ligands
of interest, and prior biological information that pertains to
the solvent, pH, and quaternary contacts. In this case an MDH
template with a moderately high sequence identity was chosen.
(In practice, the modeling can be simply repeated with a differ-
ent template or set of templates and the resulting models
compared for utility.) One of the detected templates, 4uulA,
is TvLDH itself, the structure of which was recently deter-
mined in a study of convergent evolution of LDH and MDH
[39]; this template was excluded from selection in order to
demonstrate the comparative modeling method.
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10.

11.

12.

13.

Although fold assignment and sequence-structure alignment
are logically two distinct steps in the process of comparative
modeling, in practice almost all fold assignment methods also
provide sequence-structure alignments. In the past, fold
assignment methods were optimized for better sensitivity in
detecting remotely related homologs, often at the cost of
alignment accuracy. However, recent methods simultaneously
optimize both the sensitivity and alignment accuracy. For the
sake of clarity, however, they are still considered as separate
steps in the current chapter.

Most alignment methods use either the local or global dynamic
programming algorithms to derive the optimal alignment
between two or more sequences and /or structures. The meth-
ods, however, vary in terms of the scoring function that is being
optimized. The differences are usually in the form of the gap
penalty function (linear, affine, or variable) [14], the substitu-
tion matrix used to score the aligned residues (20 x 20 matri-
ces derived from alignments with a given sequence identity,
those derived from structural alignments, and those incorpor-
ating the structural environment of the residues) [40], or
combinations of both [41—44]. There doesn’t yet exist a single
universal scoring function that guarantees the most accurate
alignment for all situations. Above 30—40% sequence identity,
alignments produced by almost all methods are similar. How-
ever, in the twilight and midnight zones of sequence identity,
models based on the alignments of different methods tend to
have significant variations in accuracy. Improving the perfor-
mance and accuracy of methods in this regime remains one of
the main tasks of comparative modeling [45, 46].

To generate each model, MODELLER takes a starting struc-
ture, which is simply the target sequence threaded onto the
template backbone, adds some randomization to the coordi-
nates, and then optimizes it by searching for the minimum of
its scoring function. Since finding the global minimum of the
scoring function is not guaranteed, it is usually recommended
to repeat the procedure multiple times to generate an ensemble
of models; the randomization is necessary, otherwise the same
model would be generated each time. Computing multiple
models is particularly important when the sequence-structure
alignment contains different templates with many insertions
and/or deletions. Calculating multiple models allows for
better sampling of the different template segments and the
conformations of the unaligned regions. The best scoring
model among these multiple models is generally more accurate
than the first model produced.

The MODELLER objective function is a measure of how well
the model satisfies the input spatial restraints. Lower values of
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the objective function indicate a better fit with the input data
and, thus, models that are likely to be more accurate [12].

The Discrete Optimized Protein Energy (DOPE) [18] is an
atomic distance-dependent statistical potential based on a
physical reference state that accounts for the finite size and
spherical shape of proteins. The reference state assumes that a
protein chain consists of non-interacting atoms in a homoge-
neous sphere of equivalent radius to that of the corresponding
protein. The DOPE potential was derived by comparing the
distance statistics from a non-redundant PDB subset of 1472
high-resolution protein structures with the distance distribu-
tion function of the reference state. By default, the DOPE
score is not included in the model building routine, and thus
can be used as an independent assessment of the accuracy of the
output models. The DOPE score assigns a score for a model by
considering the positions of all non-hydrogen atoms, with
lower scores predicting more accurate models. Since DOPE is
a pseudo-energy dependent on the composition and size of the
system, DOPE scores are only directly comparable for models
with the same set of atoms (so can, for example, be used to rank
multiple models of the same protein, but cannot be used
without additional approximations to compare models of a
protein and its mutant). The normalized DOPE (or z-
DOPE) score, however, is a z score that relates the DOPE
score of the model to the average observed DOPE score for
“reference” protein structures of similar size [25]. Negative
normalized DOPE scores of -1 or below are likely to corre-
spond to models with the correct fold.

Difterent measures to predict errors in a protein structure
perform best at different levels of resolution. For instance,
physics-based force-fields may be helpful at identifying the
best model when all models are very close to the native state
(<1.5 A RMSD, corresponding to ~85% target-template
sequence identity). In contrast, coarse-grained scores such as
atomic distance statistical potentials have been shown to_have
the greatest ability to differentiate models in the ~3 A Ca
RMSD range. Tests show that such scores are often able to
identity a model within 0.5 A Ca RMSD of the most accurate
model produced [47]. When multiple models are built, the
DOPE score generally selects a more accurate model than the
MODELLER objective function.

Segments of the target sequence that have no equivalent region
in the template structure (z.e., insertions or loops) are among
the most difficult regions to model [ 11, 48-50]. This difficulty
is compounded when the target and template are distantly
related, with errors in the alignment leading to incorrect posi-
tions of the insertions and distortions in the loop environment.
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Using alignment methods that incorporate structural
information can often correct such errors [ 14]. Once a reliable
alignment is obtained, various modeling protocols can predict
the loop conformation, for insertions of less than approxi-
mately 15 residues long [11, 48, 51, 52].

17. As a consequence of sequence divergence, the mainchain

18.

conformation of a protein can change, even if the overall fold
remains the same. Therefore, it is possible that in some cor-
rectly aligned segments of a model, the template is locally
different (<3 A) from the target, resulting in errors in that
region. The structural differences are sometimes not due to
differences in sequence, but are a consequence of artifacts in
structure determination or structure determination in different
environments (e.g., packing of subunits in a crystal and
ligands). The simultaneous use of several templates can mini-
mize this kind of error [53, 54].

It is particularly important to generate the best alignment of
the structures to minimize conflicting information (e.g., one
template suggesting that two Ca atoms in the target are close,
and another suggesting they are widely separated). SALIGN
[15] uses both sequence- and structure-dependent features to
align multiple structures. It employs an iterative procedure to
determine the input parameters that maximize the structural
overlap of the generated alignment.
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