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ABSTRACT 
Motivation: Protein-hydroxyapatite interactions govern development 
and homeostasis of mineralized tissues including tooth and bone. 
Little is known about these interactions because no available bench 
techniques produce robust data for assessing phase interfaces. 
Characterization will enable design of peptides for repair and regen-
eration of mineralized tissues. 
Results: We show that tooth enamel pellicle peptides have subtle 
sequence similarities that encode hydroxyapatite-binding mecha-
nisms, by segregating them from control peptides using a substitu-
tion matrix-based peptide comparison protocol. We improved dis-
crimination in leave-one-out experiments from 0.81 by our previously 
developed protocol (Oren et al., 2007) to 0.99 AUC, by considering 
many matrices, adding biological control sequences, and optimizing 
the matrix refinement algorithm and statistical formalism. Applying 
the selected refined matrix (pellitrix) to cluster, align, and analyze the 
pellicle peptides identified residues differentially conserved for the 
common function of enamel binding. 
Availability: Software to apply this protocol is freely available at 
http://software.compbio.washington.edu/pellitrix/. 
Contact:  ram@compbio.washington.edu 
Supplementary information: Supplementary data are available at 
Bioinformatics online.  

1 INTRODUCTION 
A wealth of data has recently been created to describe the human 

contribution to the proteomic environment of the mouth [salivary 
proteome ref], particularly the saliva-derived tissues that combat 
dental caries, including the tooth enamel-coating pellicle (pellicle 
peptides). 78 pellicle peptide sequences have been characterized, 
and described as consistent across patients (Siqueira et al., 2007; 
Vitorino et al., 2007; Vitorino et al., 2008; Siqueira and Oppen-
heim, 2009). However, current techniques fail to find similarities 
to explain the shared function of enamel binding (Siqueira and 
Oppenheim, 2009). 

Pellicle peptides bind tooth enamel on one side, and some bind 
plaque bacteria on the other. As one handle by which oral flora 
adhere to the tooth, adhesion has been explored for several pep-
tides (Mei et al., 2009), to the extent of redesigning selectivity (Li 
et al., 2009). Yet mechanisms for enamel adhesion, and protein-
hydroxyapatite interactions in general, are still poorly understood. 
  
*To whom correspondence should be addressed.  

These 78 enamel binding-specific peptide sequences present a 
Rosetta stone for understanding protein-hydroxyapatite interac-
tions. We hypothesize that a methodology to identify weak signals 
in a set of short sequences with shared rare function will be appli-
cable to this set, and conversely that the evolutionary information 
in this set is sufficient to drive the training of a sequence compari-
son algorithm to successfully discriminate the enamel-binding 
pellicle peptides from control sequences. 

1.1 Protein-hydroxyapatite interaction mechanisms 
A few mechanistic bases of protein-hydroxyapatite interactions 

are obvious from clues in nature. For example, the many aspartate 
- serine - serine (DSS) repeats in dentin phosphoprotein (DPP) hint 
that three residue spacing of carboxylates supports calcium interac-
tions, and the intervening hydroxyls form favorable interactions to 
phosphates within the surface of forming or mature hydroxyap-
atite. These data are supported by similar or even enhanced affini-
ties upon mutation to residues bearing the same functional groups 
but different patterns of side chain length (Yarbrough et al., 2010). 

Patterns within the sequences of the 78 enamel pellicle peptides 
may be used to drive analysis for less obvious aspects of sequence-
controlled hydroxyapatite binding. While the greatest mechanistic 
insights into protein interactions arise from experimentally deter-
mined structures, no atomic resolution structures of proteins that 
physiologically interact with hydroxyapatite are known, except 
osteocalcin (PDB identifiers 1q8h and 1vzm). No analogous re-
gions are observed between the pellicle peptides or enamel matrix-
proteins and the DSS repeats of DPP or γ-carboxy glutamic acids 
of osteocalcin, so homology-based-inferences from well under-
stood systems are not accessible either. Meanwhile, position-
specific information in profile or hidden Markov model compari-
sons fails to identify sufficient nonobvious relationships to enable 
meaningful analysis (Supplementary Figure 1). 

1.2 Substitution matrix-based peptide similarity 
Previously we exploited sequence similarities among phage dis-

play peptides that bind to inorganic surfaces to program an amino 
acid substitution matrix that designed peptides with enhanced bind-
ing (Oren et al., 2007). A similar approach may learn the patterns 
of naturally occurring enamel binding peptides of varying lengths. 

The Needleman-Wunsch dynamic programming algorithm com-
pares two protein sequences to find the optimal global alignment 
with respect to the scoring system being used (Needleman and 
Wunsch, 1970), which includes a substitution matrix. The Smith-
Waterman algorithm is essentially a variant of the Needleman-
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Wunsch algorithm with zeroed negative matrix values, such that 
local alignments are optimized over the global alignments of the 
Needleman-Wunsch algorithm (Smith and Waterman, 1981). 

Application of the Needleman-Wunsch algorithm to evaluate the 
similarity of a given pair of sequences requires a substitution ma-
trix and two gap penalties for opening or extending gaps in the 
alignment. These parameters need to be calculated or trained for 
each particular application. Optimal gap penalties are easy to find 
using a simple grid search. However, finding the optimal values to 
score the potential alignment of two sequences is a challenge (Ka-
washima et al., 2008). The combination of 39 integer values (from 
-19 to 19) for each of the 210 possible amino acid substitutions in a 
symmetric matrix, 39210, is too many to calculate (39400 if asym-
metric). Substitution matrices can be calculated directly by com-
parative analysis between sets, but some alignments must already 
be known, and unless the set is large enough to represent the rele-
vant evolutionary relationships, this approach has the propensity to 
become too specific to the data set to connote biological infor-
mation (Moult et al., 1997). 

One technique to avoid overtraining that performed well for the 
phage display-derived inorganic surface-binding problem was to 
exploit a matrix calculated with a widely diverse set of proteins 
(e.g. BLOSUM62, PAM250) and refine the values to the specific 
application (Oren et al., 2007). However, it is unlikely for refine-
ment to create an optimal matrix, as coarse scoring functions like 
matrices have many local maxima and weak trajectories to guide 
improvement. Therefore here we add sampling of many starting 
matrices from the diverse substitution matrices in the AAindex 
(Kawashima et al., 2008; accessed May 2010). Assessing the abil-
ity of many matrices to discriminate pellicle peptides from controls 
allows analysis of matrices that are particularly successful, as the 
commonality and uniqueness of the proteins used to construct that 
matrix may inform our understanding of pellicle peptides. 

Specific biological sequences that do not bind tooth enamel have 
not been observed by bench experiment, so we fabricate decoy 
nonbinder sets as the negative control instances to feed the ma-
chine learning algorithm. It is possible that the sequences least 
likely to bind enamel are the areas of the source protein from 
which the pellicle peptides are not derived - they are exposed to the 
same environment that enables enamel interactions and therefore it 
is likely that they would be observed if they did bind enamel. We 
derive the decoy control set from these protein regions. Omission 
by lack of observation is not sufficient evidence to identify absent 
function (enamel binding), but the ability to help discriminate pel-
licle peptides would give evidence of differential evolution for not 
binding enamel, and demonstrate the flexibility of our approach. 

A substitution matrix has previously been trained from an exist-
ing matrix to discriminate strong, moderate, and weak inorganic 
surface binding peptides, yet the source sequences were taken from 
artificial phage display constructs absent of evolutionary infor-
mation (Oren et al., 2007). The uniform length of the phage display 
sequences presented a simpler task for machine learning than what 
is found in nature. Therefore in this work we ask whether a se-
quence analytic algorithm can select and refine a substitution ma-
trix to discriminate functional peptides of dissimilar lengths from 
controls, find these peptides from within their source proteins, and 
identify mechanistic patterns in these natural sequences. 

2 MATERIALS AND METHODS 
2.1 Data sets 

2.1.1  Acquired enamel pellicle peptides. The principal data set used 
in this work is comprised by the 78 acquired enamel pellicle peptides of 29 
salivary proteins (Siqueira and Oppenheim, 2009). The researchers 
swabbed electron wick paper across the buccal surfaces of the central inci-
sors and first molars in ten patients with good oral health, two hours after 
dental prophylaxis. Fractionates <10kDa were used because this molecular 
weight range is known to specify pellicle peptides (Siqueira and Oppen-
heim, 2009). These were applied through a single in-line high performance 
liquid chromatography to electrospray ionization tandem mass spectrome-
ter (LC-EPI-MS/MS; Siqueira and Oppenheim, 2009). For use in our bioin-
formatic experiments, we aligned the peptide sequences, removed 100% 
redundant sequences, and combined overlapping portions of the same pro-
tein. The resulting new pellicle peptide fragment set includes 49 peptides, 
eight to 36 residues in length (Supplemental Table 1). This set was con-
structed before any selection of the matrices or training of the algorithm. 
 
2.1.2  Control sequences from the same proteins. To model controls 
for training and back-testing we used fragments of the 29 proteins not 
observed within the 78 acquired enamel pellicle peptides. We retrieved 
random fragments matching the number and length of the peptides, in 
regions of the 29 proteins not overlapping the pellicle peptide sequences.  
In cases for which intervening stretches were not abundant or long enough 
to derive a matching set, we retrieved additional fragments from random 
other proteins in the set. The resulting decoy nonbinder control set includes 
49 peptides, eight to 36 residues in length (Supplemental Table 2).  
 
2.1.3 Additional negative sequences from other proteins. To in-
crease information content for matrix training and to enhance relevance to 
nonpellicle proteins, we produced additional presumed nonfunctional sets 
matching the pellicle peptide set in length and quantity. Extracting random 
parts of any human protein found to be secreted in the saliva produced one 
set. The resulting salivary proteome-derived control set includes 49 pep-
tides, eight to 36 residues in length (Supplemental Table 3). Additional sets 
were constructed from random sequences by combination of amino acids 
selected to mimic the distribution in UniProt accessed May 25th, 2010 (The 
UniProt Consortium, 2007): A 0.08559150, C 0.01316784, D 0.05286585, 
E 0.06143265, F 0.04036596, G 0.07075697, H 0.02212168, I 0.05972078, 
K 0.05282025, L 0.09822349, M 0.02436435, N 0.04181098, P 
0.04786202, Q 0.03893130, R 0.05510762, S 0.06789354, T 0.05612079, 
V 0.06705310, W 0.01323359, Y 0.03055564. The resulting additional 
UniProt amino acid type distribution-derived fragment set includes 49 
peptides, eight to 36 residues in length (Supplemental Table 4).  
 
2.1.4  Training data set combinations. We attempted training with 
and without each of the additional background sequence sets. The addition-
al negative sequences were not included as controls during assessment; 
they were only used for training. As long as inclusion of these sequences 
did not disrupt training we used the matrix trained with them, as this may 
enhance relevance to proteins outside the 29 enamel pellicle proteins. 

2.2 Training protocol 
2.2.1  Similarity calculations. The total similarity score (TSS) was 
used to apply substitution matrices for the specific purpose of differentiat-
ing between inorganic surface binding from moderate or weak binding 
peptides (Oren et al., 2007). The basis is the raw score of a particular ma-
trix applied with the Needleman-Wunsch algorithm (Needleman and Wun-
sch, 1970), normalized for the length of each peptide involved and the 
number of sequences in each set, summed over the input set. The calcula-
tion used previously was the mathematical difference between the pellicle 
to pellicle TSS (TSS.pp) and the pellicle to control TSS (TSS.pc; Oren et 
al., 2007). Here we explore the utility of also considering the control to 
control TSS (TSS.cc) and the control to pellicle TSS (TSS.cp), attempted 
using the difference (TSS.pp + TSS.cc - TSS.pc - TSS.cp) or the quotient 
((TSS.pp * TSS.cc) / (TSS.pc * TSS.cp)). We also attempted training with 
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the difference between the lowest scoring pellicle peptide and the highest 
scoring control sequence (or the third of each to allow for outliers). 
 
2.2.2  Gap penalties. Gap penalties were trained by selecting the max-
imal score in an integer grid based search [-16, -1] for the gap open penalty 
and [-8, -1] for the gap extend penalty. Gap penalties were only trained 
before altering substitution matrices, and not iteratively, due to their poten-
tial volatility during a training process. 
 
2.2.3  Amino acid substitution matrices.  We selected starting matri-
ces from 75 amino acid substitution matrices in the AAindex (Kawashima 
et al., 2008), as described in the Introduction. 
 
2.2.4  Refinement paths. We evaluated three substitution matrix re 
finement paths. We perturb the starting matrix values by either greedy or 
modified Monte Carlo trajectories. The greedy algorithm considers all 
possibilities and then chooses the path that makes the largest magnitude of 
improvement. We also attempted either local maximization by using the 
minimum unit of the matrix, or a modified Monte Carlo search for the 
global maximum by using a random value less than the maximum differ-
ence in the matrix, with the decision of keeping each sequential step made 
after local maximization. We also attempted a set of paths wherein the 
importance of query versus database amino acid and overall trends in ami-
no acid type were simultaneously examined rather than amino acid type 
combinations (e.g. the target position being an alanine versus both query 
and target being alanine), as all sequential combinations of mutating col-
umns, rows, and cells of the matrix. 

2.3 Assessment 
2.3.1  Leave out one protein experiments. We attempted to discrimi-
nate pellicle peptides from control sequences by total similarity score (Fig-
ure 1). To assess performance, we performed modified leave-one-out ex-
periments: while scoring a peptide we remove all sequences (pellicle pep-
tides and controls) from the same protein. A normal leave one out experi-
ment involves removing one constituent from the set, training on the rest, 
scoring the constituent, and repeating for each instance. Here peptides are 
separated by protein such that in the benchmark the algorithm never learns 
from and applies information to peptides from the same protein, because 
sequences in the same protein are likely to contain mutual information. 
 
2.3.2  Statistical metrics. The receiver operating characteristic com-
pares sensitivity (true positives) across all ranges of specificity (true nega-
tives; Figure 2a). The precision recall curve compares the precision at all 
ranges of recalled selections (Figure 2b). The Matthews correlation coeffi-
cient (MCC; Matthews, 1975) measures the correlation of true positives, 
false positives, false negatives, and true negatives. We demonstrate here 
that the complexity of a MCC curve informs the capacity for improvement 
by further training, and identifies the threshold cutoff score that results in 
the most informative predictions (Figure 2c). Receiver operating character-
istic area under the curve (AUC) and one tailed unpaired unequal variance 
Student’s T-test (p values) analyses were used to evaluate significance for 
each experiment. 
 
2.3.3  Amino acid content calculation. For each amino acid in a pep-
tide, a score was calculated as the difference in abundance for that amino 
acid type between pellicle peptides and control sequences. This served as a 
control for the predominance of amino acid type on enamel binding, to ask 
the question of whether sequential orientation (sequence) matters. 

2.4 Application to full protein sequences 
We recapture functional regions from full protein sequences by generating 
a score for each residue in the protein, considering the surrounding region. 
In the sliding window technique, all possible continuous segments of a 
particular length are taken from the sequence. We applied the sliding win-

dow approach for each unique length of pellicle peptides. For this problem, 
it is uncertain whether it would be better to choose segments of one particu-
lar length, or to exhaustively create segments of all pellicle peptide lengths. 
Even then, it is not known how to consider the similarity scores for the 
various segments to which each particular residue contributes. For both a 
single window length (the median of all peptide lengths) and exhaustive 
enumeration of the lengths, we evaluated the application of the mean of the 
similarity scores for overlying segments and the maximum score for each. 
Maintaining consistent fragment lengths between query and comparison 
sets avoids a difficult normalization problem. We compared the predictive 
ability of residue scores to recapture the pellicle peptides from the entire 
protein sequences, again leaving out all pellicle peptides and control se-
quences derived from each protein as it was evaluated (Figure 3). 

2.5 Cluster analysis 
To study the sequence patterns in pellicle peptides, we derived sequence 
clusters by analyzing a matrix comparison of each enamel pellicle peptides 
against all others using the best selected and refined matrix (pellitrix). We 
filtered the resulting similarity scores by the threshold cutoff that gave 
maximum information in the benchmark according to the MCC plot (Figure 
2c). We then input the suprathreshold similarity values as clustering force 
vectors. Subcluster networks were identified from 2D depictions of the 
contiguous network, and constructed into a multiple sequence alignment 
(MSA) using pellitrix (Figure 4, bottom). The importance of each cluster 
alignment column relative to the entire set was estimated as the sum of the 
pellitrix values for all possible residue pairs within the column divided by 
the number of columns (Figure 4, blue bars). The importance of each resi-
due among its cluster was similarly estimated as the sum of pellitrix values 
for comparison to other residues in the same column (Figure 4, white to 
green coloring of MSA, bold letters mark the top 25th percentile of scores). 

2.6 Software 
All code was written in the Python programming language version 2.5. The 
Needleman-Wunsch algorithm used was ggsearch35 within fasta-35.4.11. 
Multiple sequence alignments were generated by CLUSTALW (Larkin et 
al., 2007). Statistical tools employed in the assessment were written locally 
and extensively checked against both SPSS and STATA. Depiction of 
assessment in Figures 1-3,5 was performed with gnuplot. Clustering and 
depiction of the network in Figure 4 were performed with Cytoscape. 

3 RESULTS 
3.1 Selected and refined peptide discrimination 
We demonstrate the ability of the matrix sampling and refinement 
protocol to optimize performance in discriminating pellicle from 
control sequences (Figures 1 and 2). We obtained marked im-
provement for two highly different substitution matrices by three 
rigorous statistical metrics (Figure 2). The β-3D-Ali matrix 
(MEHP950102) was selected for optimal peptide discrimination, 
and refined from 0.92 (p=3.44*10-15) to 0.99 AUC (p=3.43*10-26). 
We present the optimized substitution matrix and values changed 
during training in Supplemental Table 5. The PAM250 matrix 
(DAYM780301) was refined from 0.76 (p=5.00*10-7) to 0.84 AUC 
(p=4.53*10-10). We extended the refined β-3D-Ali matrix to esti-
mate the likelihood of any single residue binding tooth enamel and 
calculate recovery of the pellicle peptides (0.75 AUC; Figure 3). 
Finally, we used the refined selected matrix to analyze similarities 
between the pellicle peptides for possible mechanistic bases of 
enamel interactions (Figure 4).  

3.2 Matrix sampling 
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Sampling within AAindex (Kawashima et al., 2008) identified 
matrices that discriminate pellicle peptides from control sequences. 
Performance ranged from discriminating the majority of pellicle 
peptides, to not discriminating any significantly. Figure 1 shows 
the distribution of scores for pellicle peptides and control sequenc-
es for the top twenty matrices and the amino acid content score 
(parameters and evaluation for all matrices in Supplemental Table 
6). The matrix that most accurately separated pellicle peptides 
from controls, the β-3D-Ali matrix, was used for further analysis. 
The PAM250 matrix was run through the same analyses for com-
parison. 
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Fig. 1. Discrimination of enamel pellicle peptides. The selection of 49 
pellicle peptides (red) from 49 control sequences (blue) by the top 20 and 
worst 10 performing substitution matrices is shown. Each row corresponds 
to one matrix, for which normalized scores are plotted for each pellicle and 
control sequence. Better discrimination is seen at top, with pellicle peptides 
assigned higher scores (red to the right) and controls assigned lower scores 
(blue to the left). Nonoverlap for the profiles of pellicle and control mark-
ers would indicate perfect discrimination. Most matrices discriminate more 
accurately than amino acid content (at bottom), which demonstrates the 
importance of the sequential and spatial arrangement of residues. The abil-
ity of the algorithm to separate pellicle peptides from decoy control se-
quences that are not observed to bind enamel verifies that the controls do 
not bind and are actually evolved to not bind enamel.  

3.3 Matrix refinement 
The refinement protocols improved performance on the task of 
sorting pellicle peptides from control sequences for both the 
PAM250 and β-3D-Ali matrices (Figure 2, Supplemental Table 7). 
 
3.3.1  Similarity calculations. All three subtraction-based simi-
larity calculations resulted in improvement for the PAM250 and β-
3D-Ali matrices, whereas the quotient based similarity calculation 
did not. The most significant improvements in the matrices arose 
consistently from including the relation of control sequences to 
themselves and to the pellicle peptides in the total similarity score 
(TSS.pp + TSS.cc - TSS.pc - TSS.cp). 
 

!-3D-Ali.trained!

!-3D-Ali!

PAM250.trained!

PAM250!

ExposedContext!

d.!Score separation!

Training enamel pellicle binder recapture!

0 1 
Enamel binding prediction confidence  

Fig. 2. Refinement improves enamel pellicle peptide discrimination. The β-
3D-Ali.trained (solid red line, see key below panels a-c) and 
PAM250.trained (blue coarsely dashed line) matrices demonstrate in-
creased predictive ability across three rigorous metrics from the β-3D-Ali 
(red dashed line) and PAM250 (blue thinly dashed line) matrices, respec-
tively. Comparison is given to the worst performing matrix (ExposedCon-
text = KOSJ950113). a. receiver operating characteristic curve. b. precision 
recall curve. c. Matthews correlation coefficient (MCC) curve. The com-
plexity of each MCC curve informs the capacity for improvement: the 
untrained matrices both show a large local minimum, lost with improve-
ment in the correlate trained curve. d. Score distributions (as in Figure 1) 
show greater separation of pellicle peptide (red) and control sequence 
(blue) scores after training. 

3.3.2  Refinement paths. The best and most consistent matrix 
refinement protocol was achieved by a greedy path, exhausting 
improvements from changing all values in each column together, 
exhausting improvements similarly in the rows, then optimizing 
whole columns and rows with the modified Monte Carlo search. 
The greedy algorithm uses more processor time than a random or 
Monte Carlo path, as both positive and negative trajectories for 
each position must be considered before progressing to the next 
step. Nonetheless, each training combination was able to reach 
completion in less than one day on a single 4.8 GHz processor. 

The order of starting permutations with matrix row (query ami-
no acid type) or column (pellicle / control amino acid type) affect-
ed the performance of the matrix. Only a few random paths starting 
with rows increased performance, while many training conditions 
improved accuracy when starting with columns. Adding Monte 
Carlo perturbations of columns and then rows as a last set of steps 
after the described greedy path improved performance in nearly all 
cases, whereas Monte Carlo perturbations of the cells never did. 
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3.3.3  Training data set combinations. Inclusion of the additional 
background sequences into the controls improved the discriminato-
ry performance of both PAM250 and β-3D-Ali matrices slightly 
(AUC ~1%) with statistical significance (p<0.01). 
 
3.3.4  Preferences of the matrix. Pairwise amino acid substitution 
scores for the identical residue and for the mean of all possible 
residue substitutes indicate the importance of matching each par-
ticular amino acid type (Supplemental Table 8). For example, it is 
preferred that glutamic acid is aligned with another glutamic acid 
(score = 2.00), but self match is penalized for leucine (-1.40) and 
arginine (-2.00). 
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Fig. 3. Enamel pellicle peptide recapture from complete proteins. Predic-
tions of enamel affinity by the refined β-3D-Ali matrix for each residue are 
plotted in blue for each enamel pellicle protein. Scores represent the mean 
of the similarity scores between all peptides derived from other proteins 
(leave one out experiment) and all possible overlapping sequence frag-
ments of lengths matching the pellicle peptides (sliding window fragmenta-
tion). Experimentally derived pellicle peptides are shown as red blocks. 
Overlap of high blue bars with the red blocks denotes recapture of pellicle 
peptides from the parent protein. Protein length (AAs) and recapture accu-
racy (AUC) are listed at far right.  

3.4 Protein binding region recapture 
Accuracy of pellicle peptide recapture from full protein sequence 
depended largely on the formalism. Comparing protein segments 
of length corresponding to the median pellicle peptide length (four-
teen residues) achieved 0.75 AUC for the mean score, and 0.54 
AUC for the maximum. A similar difference was found for enu-
merating all lengths: 0.69 AUC for the mean and 0.54 AUC for the 
maximum. A caveat to this experiment should be noted: while the 
leave-one-out design avoids comparing peptides directly to any 
part of their source protein sequence, the information trained into 
the matrix in the selection and refinement steps cannot be removed 
and so biases this experiment. Without training, the β-3D-Ali ma-
trix achieves 0.73 AUC using the mean of the multiple sliding 
window, again the highest of all matrices (Supplemental Table 7). 

3.5 Pellicle peptide sequence cluster analysis 

Application of the selected and refined β-3D-Ali matrix to com-
pare all 78 pellicle peptides to each other resulted in an informative 
network of context-specific sequence similarities (Figure 4). Mul-
tiple sequence alignments constructed with the matrix illustrate in 
each column the amino acid types that can function similarly with-
in the specific context of protein-hydroxyapatite interactions. 

4 DISCUSSION 
4.1 Advancement in biomineralization 
The ability of many amino acid substitution matrices to accurately 
discriminate enamel pellicle peptides from control sequences (Fig-
ure 1) demonstrates the presence of mechanistic information en-
coded in the sequences. The common function of enamel hydroxy-
apatite binding is the most likely explanation for the hidden se-
quence patterns that enable discrimination. Cluster analysis (Figure 
4) suggests peptide groups likely to share similar hydroxyapatite 
binding mechanisms, and sequence patterns to facilitate those 
mechanisms. The refined selected matrix can be used to analyze 
sequences for likelihood of contributing protein-hydroxyapatite 
interactions in peptides (Figure 2), whole protein sequences (Fig-
ure 3), and to design novel peptides with tunable affinity. 

Novel biocompatible peptides may be designed with controlla-
ble affinities, used as a supplementary pellicle coat to control the 
attachment of oral flora, or as an adjuvant vehicle for controllable 
delivery of saliva replacements such as anticariogenic antibiotics 
(He et al., 2007), remineralizing agents (Yarbrough et al., 2010), 
buffers, or lysozyme (Hannig et al., 2009). 

4.2 Advancement in bioinformatics 
The improvements we introduce to our protocol to develop peptide 
similarity detection tools increased the final trained matrix discrim-
inatory ability from 0.81 AUC with the old protocol to an unprece-
dented 0.99 AUC with the new protocol. MCC plot analyses indi-
cate the training of this matrix has approached saturation (Figure 
2c). The most significant improvements arose from sampling many 
starting substitution matrices, including the total similarity scores 
of peptides to controls and vice versa, and optimizing after greedy 
refinement. This approach may be generalizable to learning pat-
terns in any group of functional peptides, and is available as soft-
ware for use and development. 

4.3 Matrix sampling 
Outstanding discriminatory performance by a matrix may indicate 
relevance to the context for which the matrix was calculated. A 
matrix that gives specific structural context performed best, matri-
ces built for general protein sequence comparison exhibited inter-
mediate performance, and matrices built for intuitively irrelevant 
contexts performed no better than random. 

The best performing matrix, AAindex name MEHP950102, was 
calculated from the alignment of β-strands in 38 3D-Ali protein 
structure families (Mehta et al., 1995; AUC=0.925, p=3.44*10-15; 
Figure 1). The relevance of the β-3D-Ali matrix to these peptides 
may be the similarity between extended conformations of beta 
strand and polyproline type II, which seems to be the secondary 
structure for many hydroxyapatite-interacting proteins (Le et al., 
2006; Jin et al., 2009; Lyngstadaas et al., 2009). The matrix de-
rived from coil portions of the 3D-Ali protein set (non α-helix or 
β-strand) was the third best performing matrix (MEHP950103, 
AUC=0.89, p=3.0*10-13), which may suggest that coil secondary 
structure is nearly as relevant as β-strand or simply that α-helices 
are not. Structural alignments, or the 38 3D-Ali protein structure 
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families, may be particularly relevant to this group of peptides, as 
even the α-helix derivation performs 16th best (MEHP950101, 
AUC=0.78, p=1.06*10-6). 

The ability of substitution matrices to discriminate pellicle pep-
tides from decoy sequences presumed to not bind enamel demon-
strates unique patterns within these sequences. The ability to sort 

the nonbinding regions gives evidence for divergent evolution of 
these sequence regions from the source proteins, suggesting that 
the regions not observed in the pellicle may have evolved to spe-
cifically not bind enamel. Significantly worse discrimination by 
amino acid content (Figure 1, last row) demonstrates that sequen-
tial arrangement of amino acids is important for enamel binding. 

TYGKLEAVQY-- 
KTNETYGKLE-- 
--FWELIGEAAK 
NFHQYSVEGG-- 

-IDE---ERQGPPLG- 
--TP---AQFDADELR 
--REQLGPVTQEF--- 
--SE--GPLKGILGY- 
PLVE---EPQNLIK-- 
---EQGQTQTQPGS-- 
-GDYG-SNYLYDN--- 

-G-YGYGPYQPVPE-- 
-Y-GDYGSNYLYDN-- 
GG-DVQLDSVRIF--- 
----TEGNCTALTRGE 
-I-ANLGSCNDSKL-- 
-A-QGGVLPNIQAV-- 
-A-VMD-DFAAFVEK- 
EVPWEDRMSLVN---- 
----ALVFVDNHDNQR 

-KLGHPDTLNQGEF- 
GNCTALTRGELKR-- 
SLPGQNED-LVLTG- 
-SSDFNSDTHSSTF- 
-EVFTSSSSSSSRQ- 
QTNKAKHDELTYF-- 
--IENEEQEYVQTVK 

--PPGKP--QGPPPQGGR-- 
----GGRP-QGPP-QGQSPQ 
----IDEERQGPPLGGQQ-- 
---HKQSHGAAPCSGGS--- 
--APIKVGDAIPA-VEV--- 
---TIAQGGVLPNIQAV--- 
IYQEVIDL-GGEP-IK---- 
--SSPSPAPGCDN-AIP--- 
----VGDEAQSKRGILTL-- 
-QEFSDVERAIETLI----- 
---ESTVFEDLSDEAER--- 
----FIENEEQEYVQTVK-- 

-GNQPQGPP----PP-PGKP-Q----- 
GQQQ-QGPP----PPQ-GKP-Q----- 
------GPP----PPPPGKP-QGPPPQ 
----PQGPPPQGGRPQ-GPP-Q----- 
------GNP-QGPSPQGGNKPQ----- 
------GVFGG--VSGSGSGGYK---- 
------RNDEE-LNKLLGKVTIA---- 
------AHFS-ISNSAEDPFIAI---- 
------DFVN-CSTLPALNLASW---- 
-----SERLAKYNQLLRIEEE------ 
------TGSG---DIENYNDATQVR-- 

PQGPPPQGGNKP-QGPPPP--GK-- 
PQGPPPQGGNKP-QGPPPP--GK-- 
--GPP-QQGGNRPQGPPPP--GKPQ 
--GPP--QQGGHQQGPPPPPPGKPQ 
-IGRF-GYGYGP-YQPVPE--QP-- 
--RSF-WELIGE-AAKSVK--LE-- 

GPPPQGGNKPQGPPPP-GKPQ----- 
GPPPQGGNQPQGPPPPPGKPQ----- 
IDEERQGPPLGG-----QQSQPS--- 
G-P--YQPVPEQP----LYPQPYQPQ 
ASVDSGSSEEQG-----GSSRAL--- 
AASSSSLEKSYELPD--GQVI----- 
--SVKLGHPDTLN---QGEFKEL--- 

 

Fig. 4. Cluster analysis of enamel pellicle peptide sequences identifies enamel-binding residues. A network of pairwise pellicle peptide sequence alignments 
was clustered, with edge weights given by alignment scores (increasing edge width and green to violet color) and threshold cutoff corresponding to that of 
the maximum Matthews correlation coefficient in Figure 2c. Protein names that appear multiple times indicate alternate peptides derived from the same 
protein. Multiple sequence alignments for each cluster are analyzed: the estimated importance of each alignment column relative to the entire set is shown as 
blue bars; and that of each residue to its cluster is shown in white to green; bold font marks the top 25th percentile of scores. This analysis identifies the 
mutual information in the pellicle peptides that encodes the function they have in common: enamel binding. All comparisons were calculated with pellitrix. 

4.4 Matrix refinement 
The matrix refinement results demonstrate success, but a limit to 
the protocol: refining the PAM250 matrix never achieves the accu-
racy of the existing β-3D-Ali matrix (Figure 2). This observation 
highlights the importance of selecting from a diverse set of substi-
tution matrices, as it increases the sample space with dramatic 
efficiency. 

4.5 Protein binding region recapture 
Comparison of the score profiles to experimentally derived pellicle 
peptide sequences in Figure 3 shows that we have successfully 
modeled a significant subset of enamel binding mechanisms, and 
predicted other regions not yet consistently observed within the 
enamel pellicle. High scoring regions at locations where pellicle 
peptides have not been measured are predictions of areas that may 
bind enamel, for example the amino terminal regions of α-actin 2, 
cystatin-A, S100-A14, histone H2As 1-A and 1-D (Figure 3).  

Recapture of pellicle peptides from whole protein sequences is 
better than average for 21 of 29 proteins, with a by-residue AUC of 
0.75 across all proteins. Poor performance of the PAM250 matrix 
(AUC=0.31) highlights the uniqueness of sequence traits within 
these peptides of such rare function, and therefore the importance 
of using similarity matrices with maximal relevance to any particu-
lar group of proteins under study. This analysis demonstrates novel 
ability to understand, predict, and potentially design protein to 
hydroxyapatite interactions. 

4.6 Pellicle peptide sequence cluster analysis 

Each cluster displays trends in the multiple sequence alignments 
(Figure 4). Generally we observe tolerance for swapping residue 
identity but maintenance of chemical moieties: adjacent carboxyl 
or amide residues may facilitate calcium interactions (Horst and 
Samudrala, 2010), and alternating hydroxyl moieties may mediate 
phosphate interactions. Stretches of prolines may stabilize extend-
ed conformations, facilitating surface interactions. Proline almost 
never aligns with glutamine, suggesting non-interchangeable roles 
for the two most abundant residues in these peptides. Residue 
types most commonly involved in protein-mediated catalysis (in 
order: EKDHRSTCYNQAFGMLWIVP; Wang et al., 2008) are 
seldom aligned with identical amino acid types in these clusters. 
Generally these patterns suggest greater structural conservation 
with variance allowed for chemical interactions; this description 
fits the manifold presentation of calcium and phosphate on the 
enamel hydroxyapatite surface. 
 

Ameloblastin 

Amelogenin 

Amelotin 

Enamelin 

ODAM 

protein name AAs 

421 

175 

193 

1103 

264 

hydroxyapatite interaction predictions for enamel matrix proteins 

 

Fig. 5. By-residue likelihood of hydroxyapatite interactions for enamel 
matrix proteins. The refined selected matrix was applied to find the similar-
ity of the region surrounding each residue to the enamel pellicle peptides. 
Scores are normalized to the highest (1.0) and lowest (0.5) scores observed 
for all peptides and control sequences. Length of proteins shown at right. 
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High scoring regions likely correspond to functional areas that interact with 
mature or maturing enamel. Low scoring areas may have carry out func-
tions not consistent with mature enamel, such as hydroxyapatite nucleation 
and endoprotease cleavage.  

4.7 Application to enamel matrix proteins  
To demonstrate the utility of our approach as a scientific tool, we 
applied the refined selected matrix and data set to the five known 
enamel matrix proteins (Figure 5). High scoring regions likely 
correspond to functional areas that interact with mature or matur-
ing enamel. Low scoring areas may carry out functions not con-
sistent with mature enamel, such as hydroxyapatite nucleation and 
endoprotease cleavage. These data support design of peptides for 
nanotechnology, and mutation experiments to develop a mechanis-
tic understanding of enamel development. 

4.8 Matthews correlation coefficient plot  
The complexity of each MCC curve informs the capacity for im-
provement: the untrained matrices each show one large local min-
imum, which is lost with improvement in the correlate trained 
curve (Figure 2c). The trained matrix MCC curves are more broad 
and show decreased complexity, suggesting that these are near the 
end of the respective training paths. While not communicated di-
rectly by standard PR nor ROC plots, the MCC plot directly shows 
the cutoff value with the most discriminative ability and informa-
tional content. 

4.9 Comparison to previous work  
We extended the methodology for sequence-based prediction of 
inorganic binding peptides to naturally occurring peptides ob-
served in the human enamel pellicle. We invoked a powerful step 
to efficiently sample the amino acid substitution matrix space by 
selecting from an existing diverse database of these matrices. The 
profile of accuracies for these matrices informs relevance of the 
pellicle peptides to the matrix derivation. Analysis might be 
strengthened by comparison to other function prediction methods 
(e.g. Wang et al., 2008), differential aspects of calcium phosphate 
nucleation, hydroxyapatite maturation, and hydroxyapatite binding. 

As seen previously for artificial phage display derived inorganic 
surface binding peptides (Oren et al., 2007), amino acid substitu-
tion matrix methods can learn contextual patterns, now including 
natural salivary enamel pellicle peptides. Further understanding 
and specificity will be gained by considering endoprotease cleav-
age sites, post-translation processing, and evolutionary conserva-
tion among the by-residue pellicle similarity scores. While no other 
tool known to us can dissect sequences with such unique function, 
the analysis presented here demonstrates the ability to understand, 
predict, and therefore design protein-hydroxyapatite interactions. 

5 CONCLUSIONS 
We demonstrated that enamel pellicle peptides contain subtle se-
quence similarities that encode hydroxyapatite binding mecha-
nisms. With various experimental and algorithmic improvements, 
our substitution matrix-based peptide comparison protocol was 
able to represent the pellicle peptide similarities in an amino acid 
substitution matrix (pellitrix) that discriminates the pellicle pep-
tides from   sequences with near perfect accuracy (0.99 
AUC). We showed that pellitrix can recapture the peptides from 
the source protein sequences, and that this can be applied as a tool 
to predict hydroxyapatite interaction regions of relevant proteins. 
Analysis of relationships between the pellicle peptide sequences 

indicates that adjacent carboxyl or amide residues facilitate calci-
um interactions, that alternating hydroxyl moieties mediate phos-
phate interactions, and that stretches of prolines stabilize extended 
conformations. This protocol was built as a freely available soft-
ware suite to learn similarities in any set of peptides, for bioengi-
neering design and analysis of biologic function. 
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