An evolutionary approach to predicting variability in human drug response

Libusha Kelly Andrej Sali lab

In honor of Katie Gettman

• Mutational analysis of human ABC transporter nucleotide binding domains reveals functional hotspots

- Mutational analysis of human ABC transporter nucleotide binding domains reveals functional hotspots
 - "Although I don't understand a word of your project title, I'm sure it makes sense to you."

- Mutational analysis of human ABC transporter nucleotide binding domains reveals functional hotspots
 - "Although I don't understand a word of your project title, I'm sure it makes sense to you."
 - "I have no idea what your talk is about... it sounds very sci-fi to me."

- Mutational analysis of human ABC transporter nucleotide binding domains reveals functional hotspots
 - "Although I don't understand a word of your project title, I'm sure it makes sense to you."
 - "I have no idea what your talk is about... it sounds very sci-fi to me."
 - "Can't wait for the movie version!"

- Mutational analysis of human ABC transporter nucleotide binding domains reveals functional hotspots
 - "Although I don't understand a word of your project title, I'm sure it makes sense to you."
 - "I have no idea what your talk is about... it sounds very sci-fi to me."
 - "Can't wait for the movie version!"
 - "woo-hoo! I'm there...at least for the drinks"

An evolutionary approach to predicting variability in human drug response

- What's known about human genetic variation and drug response?
- Examining the role of transport proteins in drug response and disease
- Predicting the effects of newly discovered variants on transporter function
- Validating these predictions in the wet lab
- Towards predicting drug interactions with transport proteins

The human genome has lots of variation

- Over 10 million common variants in the human genome
 - ~0.1% difference between two humans
 - ~1.5% difference between a human and a chimp
- Sequences with variants are called alleles : UGT1A1*28
- Collections of alleles across some region of the genome is called a genotype

Commonly prescribed drugs where genetic variation affects response

- Warfarin: anticoagulant prescribed to about two million patients in the US annually.
 - Narrow therapeutic range, dosage needs to be carefully monitored
 - Variants in CYP2C9, an enzyme that metabolizes warfarin, are associated with:
 - warfarin maintenance dose
 - time to stable warfarin dosing
 - bleeding events in patients
 - Variants differ by ethnic group

Ethnicity	"White", with 3.8% Hispanic
-----------	--------------------------------

Warfarin

Commonly prescribed drugs where genetic variation affects response

- Irinotecan: cancer therapy
 - Variants in membrane-bound protein UGT1A1 affect drug toxicity
 - Possible ability to predict response
 - 'Personalized' cancer chemotherapy

Irinotecan

Liu CY, Chen PM, Chiou TJ, Liu JH, Lin JK, Lin TC, Chen WS, Jiang JK, Wang HS, Wang WS. UGT1A1*28 polymorphism predicts irinotecan-induced severe toxicities without affecting treatment outcome and survival in patients with metastatic colorectal carcinoma. Cancer. 2008 May 1;112(9):1932-40.

• Transporter proteins get drugs and other molecules in and out of cells

Dennis Kunkel Microscopy, Inc., Kathy Giacomini, UCSF

 Transporter proteins get drugs and other molecules in and out of cells

 Transporter proteins get drugs and other molecules in and out of cells

Substrate

 Transporter proteins get drugs and other molecules in and out of cells

 Transporter proteins get drugs and other molecules in and out of cells

 Catalogue genetic variation in the genes encoding membrane transporters in ethnically diverse human populations

- Catalogue genetic variation in the genes encoding membrane transporters in ethnically diverse human populations
- Characterize the functional significance of variant transporters

- Catalogue genetic variation in the genes encoding membrane transporters in ethnically diverse human populations
- Characterize the functional significance of variant transporters
- Use the structure and evolutionary history of membrane transporters to predict function

- Catalogue genetic variation in the genes encoding membrane transporters in ethnically diverse human populations
- Characterize the functional significance of variant transporters
- Use the structure and evolutionary history of membrane transporters to predict function
- Assess the role of membrane transporter variants in clinical drug response

Single-nucleotide polymorphisms and protein function

- Single amino acid residue change
- Single protein

Single-nucleotide polymorphisms and protein function

- Single amino acid residue change
- Single protein

Single-nucleotide polymorphisms and protein function

- Single amino acid residue change
- Single protein

ABC transporters play roles in disease and drug response

Human ABC transporter	Function	Disease
ABCC7 (CFTR)	Chloride ion transporter	Cystic fibrosis
ABCD1 (ALD)	Likely a very long chain fatty acid transporter	Adrenoleukodystrophy
ABCA4 (ABCR)	Retinoids	Retinitis pigmentosa, AMD STGD
ABCC2	Organic anions, multidrug resistance-associated	Dubin–Johnson syndrome

- >1,000 clinically characterized disease-associated variants in human ABC transporters
- Functional analysis of mutations is lacking

- In humans, ABC transporters are active export pumps
- Substrate binds in transmembrane domains (TMDs), ATP binds in nucleotide binding domains (NBDs)
- ATP binding, hydrolysis and release are coupled to substrate transport

- In humans, ABC transporters are active export pumps
- Substrate binds in transmembrane domains (TMDs), ATP binds in nucleotide binding domains (NBDs)
- ATP binding, hydrolysis and release are coupled to substrate transport

- In humans, ABC transporters are active export pumps
- Substrate binds in transmembrane domains (TMDs), ATP binds in nucleotide binding domains (NBDs)
- ATP binding, hydrolysis and release are coupled to substrate transport

- In humans, ABC transporters are active export pumps
- Substrate binds in transmembrane domains (TMDs), ATP binds in nucleotide binding domains (NBDs)
- ATP binding, hydrolysis and release are coupled to substrate transport

Uncharacterized variation in 10 ABC transporters

Single residue changes can have a range of effects

- Destabilizing: force a charged residue into the generally hydrophobic interior of the protein
- Impair domain interactions
- Impair residue interactions: hydrogen bonding, salt bridges
- Impair interactions with other proteins or ligands: ATP binding, other partners

structures of four ABC NBDs

 The overall fold of the nucleotide-binding domains (NBDs) is highly conserved

- The overall fold of the nucleotide-binding domains (NBDs) is highly conserved
- Structural features are shared by human proteins

- The overall fold of the nucleotide-binding domains (NBDs) is highly conserved
- Structural features are shared by human proteins
- This enables us to model human NBDs and variants based on homologs with known structure

Examining genetic variation at interfaces in ABC transporters

- Does conservation vary at domain interfaces?
- Could some disease-associated mutants be affecting domain interactions?

from *M. jannaschii* (1L2T)

Kelly L, Karchin R, Sali A. Protein interactions and disease phenotypes in the ABC transporter superfamily. Pac Symp Biocomput. 2007;:51-63.
Calculating sequence conservation at the interfaces

- Multiple sequence alignments for each structure and for the NBDs of each human ABC transporter
- We calculate a measure of entropy in the alignment

$$H = -\sum_{aa=1}^{20} P_{aa} \log _2 P_{aa}$$

1L2T:A/PDBID/CHAIN/SEQUENCE/1-235	NVNL		E G E F V S	IN	S P S	<mark>G</mark> S	GK S	STMLN	NİIGCL	DK P T E <mark>G</mark> I
ABCG2_HUMAN/1-168	NINC	JIMKI	G-LNA	11	1 9	GG	GK S	SLLL	DVLAAR	KDPSSGL
ABCX_CYACA/1-175	NINL	QIKI	ΓΝΕΤΗν	INC	5 P N	GS	GK S	SLLK	VIAGH	PKVIE <mark>G</mark> E
ABCE1_HUMAN/1-176	IVAC	GEFTO	DSEIMV	ML	EN	GТ	GK	TTFIF	RMLAGR	LKPDE <mark>G</mark> I
ADCC_STRPN/1-185	HINY	CVDS	SGEFVT	LT	EN	GA	AK	TLIK	ASLGI	LQPRIGI
ARTP_HAEIN/1-213	DINL	EAEE	EGDTVV	LLC	S P S	GA	GK S	STLIF	RTLNLL	EVPKSGI
ABCX_PORPU/1-178	GVNL	SIKE	GEIHA	INC	P N	GS	GK S	STLSK	(VIA	GHPANG
ABCBB_HUMAN/1-207	DLNN	IVIK	G EMTA	LVC	P S	GA	GK S	STALC	LIQRF	YDPCE <mark>G</mark> N
ABCD1_MOUSE/1-183	N I	IRVEE	EGMHLL	ITC	P N	GC	GK S	SLFF	RILGGL	WPTYS <mark>G</mark>
ALSA_ECOLI/1-195	SVNL	TVY	GEIHA	LLC	EN	GA	GK S	STLM	VLSGI	H E P T K <mark>G</mark> 1

We found 68 disease-associated positions at putative interfaces

- 10 transporters from four out of seven ABC subfamilies are represented
- 38 were at the

TMD

interface

- NBD 30 were at the interface
- Characterizing analogous interface residues in the human
 - ABC transporter MRP4 to examine the functional effects of point mutants at the TMD/NBD interface

Sequence alignments suggest functionally important regions

ABC810_2hyd_489_731_1.0_renumber.pdbA/1-243 ABC811_2ghi_1074_1313_1.0_renumber.pdbA/1-240 ABC811_2hyd_413_653_1.0_renumber.pdbA/1-241 ABC81_2HYT_392_618_1.0_renumber.pdbA/1-227 ABC81_2ixe_1028_1271_1.0_renumber.pdbA/1-244 ABC82_1jj7_457_681_1.0_renumber.pdbA/1-249 ABC84_2ghi_1028_1278_1.0_renumber.pdbA/1-244 ABC84_2ghi_377_633_1.0_renumber.pdbA/1-244 ABC85_2hyd_564_807_1.0_renumber.pdbA/1-244 ABC86_2hyd_579_822_1.0_renumber.pdbA/1-244 ABC86_2hyd_579_822_1.0_renumber.pdbA/1-244 ABC88_2hyd_464_706_1.0_renumber.pdbA/1-243 ABC88_2hyd_464_706_1.0_renumber.pdbA/1-243 ABC89_2ixe_504_730_1.0_renumber.pdbA/1-227

A8C810_2hyd_489_731_1.0_renumber.pdbA/1-243 7 A8C811_2ghi_1074_1313_1.0_renumber.pdbA/1-240 8 A8C811_2hyd_413_653_1.0_renumber.pdbA/1-241 8 A8C81_2ff7_392_618_1.0_renumber.pdbA/1-241 8 A8C81_2ixe_1028_1271_1.0_renumber.pdbA/1-244 8 A8C82_1jj7_457_681_1.0_renumber.pdbA/1-249 8 A8C83_1jj7_457_681_1.0_renumber.pdbA/1-249 8 A8C84_2ghi_1028_1278_1.0_renumber.pdbA/1-244 8 A8C84_2ghi_377_633_1.0_renumber.pdbA/1-244 8 A8C84_2ghi_377_633_1.0_renumber.pdbA/1-244 8 A8C85_2hyd_564_807_1.0_renumber.pdbA/1-244 8 A8C85_2hyd_564_807_1.0_renumber.pdbA/1-244 8 A8C86_2hyd_579_822_1.0_renumber.pdbA/1-244 8 A8C87_2ghi_472_706_1.0_renumber.pdbA/1-244 8 A8C88_2hyd_464_706_1.0_renumber.pdbA/1-244 8 A8C89_2ixe_504_730_1.0_renumber.pdbA/1-244 8 A8C80_2ixe_504_730_1.0_renumber.pdbA/1-244 8 A8C80_2ixe_504_730_1.0_renumber.pdbA/1-244 8 A8C80_2ixe_504_730_1.0_renumber.pdbA/1-244 8 A8C80_2ixe_504_730_1.0_renumber.pdbA/1-244 8 A8C80_2ixe_504_730_1.0_renumber.pdbA/1-244 8 A8C80_2ixe_504_730_1.0_renumber.pdbA/1-244 8 A8C80_2ixe_50

ABCB10_2hyd_489_731_1.0_renumber.pdbA/1-243 ABCB11_2ghi_1074_1313_1.0_renumber.pdbA/1-240 ABCB11_2hyd_413_653_1.0_renumber.pdbA/1-241 ABCB1_2frf_392_618_1.0_renumber.pdbA/1-227 ABCB1_2ixe_1028_1271_1.0_renumber.pdbA/1-244 ABCB2_1jj7_494_742_1.0_renumber.pdbA/1-249 ABCB3_1jj7_457_681_1.0_renumber.pdbA/1-225 ABCB4_2ghi_1028_1278_1.0_renumber.pdbA/1-244 ABCB4_2ghi_377_633_1.0_renumber.pdbA/1-244 ABCB5_2hyd_564_807_1.0_renumber.pdbA/1-244 ABCB6_2hyd_579_822_1.0_renumber.pdbA/1-244 ABCB7_2ghi_472_706_1.0_renumber.pdbA/1-243 ABCB8_2hyd_464_706_1.0_renumber.pdbA/1-243 ABCB8_2ixe_504_730_1.0_renumber.pdbA/1-227

Known functional hotspots

Proposed functional hotspots

Disease-associated variants are spread out across the domains

Disease-associated variants are spread out across the domains

position in MSA

- Mutations mapped to a multiple structure alignment of all human NBD comparative models.
- Known motifs show disease mutations in multiple transporters.

position in MSA

- Mutations mapped to a multiple structure alignment of all human NBD comparative models.
- Known motifs show disease mutations in multiple transporters.

The context of structure: disease mutants at a putative communication network

NBD	1	1	NBD2
ABCC6_SL ABCC1_SL ABCC2_SL ABCC5_SL ABCC7_SL ABCC4_NL ABCC9_CV ABCC8_SV ABCC8_SV ABCB7_AI ABCB5_AI ABCB5_AI ABCB4_AI ABCB4_AI ABCC8_AL ABCC3_SL ABCC3_SL ABCC3_SL ABCC3_AL ABCC9_AM ABCC2_AL	ARAVY ARAVY ARAVY ARAVY ARAVY ARAVY ARAVY ARALV ARALV ARALV ARALV ARALV ARALV ARALV ARALV ARALV ARALV ARALV ARALV	ABCB11 ABCC6_ ABCC10 ABCB4_ ABCC12 ABCC9_ ABCC3_ ABCC3_ ABCC11 ABCC5_ ABCC4_	A I ARA I V CLARAL L A I ARAL I A I ARAL V CVARAL L CLARAFV CLARAV L CLARAV L CLARAL L CLARAL L CLARAL L
ABCF1 SL	ARALE		

• Well conserved motif at the TMD/NBD interface

•10 disease associated mutations

Blue: transmembrane domain Red: ARA Purple: Q-loop

Family-specific domain interactions: C-loop 1

- Loop oriented toward TMD
- Conserved in the ABCB and ABCC subfamilies, absent in five other families
- Four mutations in two proteins with diseaseassociation

Yellow: C-loop 1 Light/Dark blue: *S. aureus* 2HYD Orange: Model of MDR1 NBD1

A disease-associated region at the intracellular NBD surface

 11 disease-associated mutations in six different transporters

A disease-associated region at the intracellular surface

Intracellular partner interaction surface?

Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell. 2006 Nov 17;127(4):803-15.

Wang X, et al.

- "Features" of disease-associated mutation R768W in ABCC2
- **Residue**: size change, charge change
- Evolution
 - Sequence: conserved in an alignment of related sequences
 - Structure: buried

- "Features" of disease-associated mutation R768W in ABCC2
- **Residue**: size change, charge change
- Evolution
 - Sequence: conserved in an alignment of related sequences
 - **Structure**: buried

ABCC2 R768W DISEASE 29 0.1	8 30 0.12	1 -1.8 -	-14.0 -7.0 3	.0 101 0
----------------------------	-----------	----------	--------------	----------

- "Features" of disease-associated mutation R768W in ABCC2
- **Residue**: size change, charge change
- Evolution
 - Sequence: conserved in an alignment of related sequences
 - Structure: buried

ABCC2	R768W	DISEASE	29	0.128	30	0.12	1	-1.8	-14.0	-7.0	3.0	101	0
CFTR	A455E	DISEASE	0	0	0	0	1	-1.7	9.8	-8.3	0.66	107	1

- "Features" of disease-associated mutation R768W in ABCC2
- **Residue**: size change, charge change
- Evolution
 - Sequence: conserved in an alignment of related sequences
 - **Structure**: buried

Developing a general tool to integrate variant data

• Given a set of features that represents a point mutant

MDR1	S1141T	57	0.4	41	0.32	0	-0.9	-0.6	-7.3	0.75	58	0
------	--------	----	-----	----	------	---	------	------	------	------	----	---

• Return a binary prediction of effect

L
L

• Use Random Forests (RF), a supervised learning algorithm, to combine the features for prediction

Karchin R, Diekhans M, Kelly L, Thomas DJ, Pieper U, Eswar N, Haussler D, Sali A.

LS-SNP: large-scale annotation of coding non-synonymous SNPs based on multiple information sources. Bioinformatics. 2005 Jun 15;21(12):2814-20. Epub 2005 Apr 12.

Karchin R, Kelly L, Sali A. Improving functional annotation of non-synonomous SNPs with information theory. Pac Symp Biocomput. 2005;:397-408.

A supervised learner "learns" classes of data

A supervised learner "learns" classes of data

A supervised learner "learns" classes of data

We use independent training and test sets to validate our predictions

275 mutations total

Test set: 72 mutations from CFTR

- The classifier trained on clinical data is the best performer
- Accuracy: 85%
- The ABC-trained classifier suffered from a lack of neutral examples

False positive rate

Experimental validation of predictions

GENE	HUGO	VARIANT	DOMAIN	PREDICTION
MDR1	ABCB1	S1141T	NBD2	NEUTRAL
MDR1	ABCB1	V1251I	NBD2	NEUTRAL
MDR1	ABCB1	W1108R	NBD2	DISEASE
MRP4	ABCC4	G487F	NBD1	DISEASE
MRP4	ABCC4	K498E	NBD1	NEUTRAL
MRP4	ABCC4	V1071I	NBD2	NEUTRAL

- Predicted the effects of 36 point mutants in seven human ABC transporters from three families
- Functional assays for two transporters, MDR1 and MRP4
- Experimental validation of six predictions

Experimental functional analysis of ABC transporters

• Yeast - transport assays, cytotoxicity

Reference

Mammalian cells - transport assays, cytotoxicity, mRNA and protein expression

Drosophila – live visualization of transport across membranes hs

Validation of MRP4 predictions

Nada Abla and Deanna Kroetz

Validation of MDR1 predictions

•	Variant	Prediction	
	W1108R	Disease	V
	S1141T	Neutral	V
	V1251I	Neutral	

Bodipy-paclitaxel accumulation in HEK293T cells transiently transfected with P-gp reference and variants

Ho Jeong, Jason Gow and Deanna Kroetz

Characterizing genetic variation in human transport proteins

- Comparative modeling of all human ABC transporter NBDs and 300+ point mutants
- Located 68 disease-associated mutations at putative interfaces in 10 human ABC transporters
- Developed a general tool for predicting the impact of point mutations on protein function
 - Correctly predicted the *in vitro* function of six out of six previously uncharacterized ABC transporter variants found in a healthy population

Towards predicting substrate specificity for membrane transporters

- Substrates bind in the transmembrane domains
 - Overlapping substrate specificity
 - Multidrug resistance
- Not easily alignable
 - Extremely diverse in sequence

Towards predicting substrate specificity for membrane transporters

- We excise all TMDs and create sequence profiles for each
- Each profile is scanned against a large database of membrane protein profiles

Extending the analysis to whole genomes	Plasmodium vivax Plasmodium falciparum Toxoplasma gondii Cryptosporidium parvum Trypanosoma cruzi Trypanosoma brucei Leishmania major Mus musculus Homo sapiens Drosophila melanogaster Saccharomyces cerevisiae
We selected:	Aeropyrum pernix Pyrobaculum aerophilum
• model species	Methanopyrus kandleri
 pathogenic species complete genomes 	Picrophilus torridus Thermoplasma volcanium Thermoplasma acidophilum Pyrococcus furiosus
	Methanocaldococcus jannaschii
• genomic DNA available	Mycobacterium tuberculosis Mycobacterium leprae Mycoplasma pneumoniae Clostridium tetani Bacillus subtilis Streptococcus pyogenes Burkholderia mallei Rickettsia prowazekii Yersinia pestis Escherichia coli Pseudomonas aeruginosa

http://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi

Eukaryotes

Archaea

Bacteria

ABC transporters with similar substrates cluster together

- The clusters reproduce evolutionary trees based on the NBDs
- NBD/TMD domains evolved together
- ABCA, with no archaeal hits and few bacterial hits, may be the most recently evolved transporter family

Identifying the membrane proteome of organisms

- 598 membrane protein families in Pfam
- How many times does each appear in a given organism?

Identifying the membrane proteome of organisms

- 598 membrane protein families in Pfam
- How many times does each appear in a given organism?

Human Mouse

Identifying the membrane proteome of organisms

- 598 membrane protein families in Pfam
- How many times does each appear in a given organism?

Human Mouse Yeast

Family content reveals a clear split between prokaryotes and eukaryotes

- Clusters of families that tend to travel together
- Clusters of families that appear in specific organisms

A taxonomic profile of the membrane protein universe

- Identified ~20,000 membrane proteins in 34 organisms and created a database of sequence profiles
 - Human ABC transporter NBDs and TMDs likely evolved together on a single polypeptide chain
 - Identified ~300 multidrug-resistance family members in pathogenic organisms
- Added to current estimates of ~600 membrane protein families with the identification of 51 putative new membrane protein families
- Target selection for the structural genomics of integral membrane proteins in yeast
Thanks!

• Questions?

Awesome thesis committee

Andrej Sali

Deanna Kroetz

Bob Stroud

Awesome thesis committee

More

accurate Andrej Sali

> Non-silly picture

Sweet . photo montage

Deanna Kroetz

Bob Stroud

We're not usually this organized

Deanna Kroetz lab

Leslie Jason Hisa

UCSF and **BMI**!

Rebecca, Julia, Patsy and Tom

Thursday night crew

Marty, Nan, Sylvia, Fred, Sue, Jeff and Mie

5

Mama and Papa

• 40 more years!

Partner in crime

