A composite model assessment score for protein structure prediction
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ABSTRACT

Motivation: Reliable assessment of model accuracy is an important and unsolved problem in protein structure prediction. Many protein structure prediction methods can generate a large number of models for a target sequence, from which the most native-like must be identified. Because a successful prediction method requires both sufficient sampling and correct identification of a native-like solution, the ability to correctly assess the accuracy of a model is essential for increasing the utility of protein structure prediction. 

Results:  Using support vector machine (SVM) regression, we constructed a composite scoring function that attempts to identify the most native-like model from a set of alternative models. 23 different assessment scores, including physics based energies, statistical potentials, and composite scoring functions, were tested for their abilities to identify the most native-like models from a set of 6,000 comparative models of 20 representative protein structures. These individual scores were compared to ~80,000 SVMs constructed in a jackknife protocol in terms of their abilities to identify the most accurate models. For the 20 subsets of test models, the best jackknife SVMs outperformed all individual scores by decreasing the RMSD difference between the model identified as the best of the set and the model with the lowest RMSD ((RMSD) from 0.63Å to 0.45Å, while having a higher correlation to RMSD (r = 0.87) than any other method tested.  The most accurate model assessment—based on a combination of the DOPE all atom statistical potential; surface, contact, and combined statistical potentials from MODPIPE; and two PSIPRED/DSSP scores—was implemented in the MODASS program. MODASS is proving helpful in various aspects of comparative modeling, including target-template alignment and loop modeling. 

Availability:  MODASS is available through the World Wide Web at http://salilab.org/modass/
INTRODUCTION

Genomics efforts are providing researchers with the genomes of many species, including Homo sapiens. More difficult tasks lie ahead in annotating, understanding, and modifying the functions of the proteins encoded by these genomes. Structures of proteins aid in these efforts, as the biochemical function of a protein is determined by its structure and dynamics. Atomic structures can be determined for a small subset of proteins by X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. However, for many proteins of interest, such methods are often costly, time-consuming, and challenging. In the absence of an experimentally determined structure, computational structure prediction models are often valuable for tasks such as inferring function, guiding experimental mutagenesis studies or performing computational docking (Baker and Sali, 2001). 
The accuracy of a model determines its utility, making a means of reliably determining the accuracy of a model an important problem in protein structure prediction (Baker and Sali, 2001). Model accuracy assessment has been previously applied to (i) determine whether or not a model has the correct fold (Domingues, et al., 1999; McGuffin and Jones, 2003; Melo, et al., 2002; Miyazawa and Jernigan, 1996); (ii) discriminate between native and near-native states (Gatchell, et al., 2000; Lazaridis and Karplus, 1999; Seok, et al., 2003; Tsai, et al., 2003; Vorobjev and Hermans, 2001; Zhu, et al., 2003); and (iii) select the most native-like model in a set of decoys that does not contain the native structure (Shortle, et al., 1998; Wallner and Elofsson, 2003). Several scoring schemes have been developed for these tasks, including (i) physics-based energies, (ii) statistical potentials, and (iii) composite scores.  Molecular mechanics energy functions with solvation models are the usual components of physics-based energies, examples of which include EEF1 (Lazaridis and Karplus, 1999) and Generalized Born potentials (Still, et al., 1990). In contrast, statistical potentials are derived from known protein structures and quantify the observed conformational preferences of residue or atom types in proteins (Melo, et al., 2002; Sippl, 1995). Examples of statistical potentials include ProsaII (Sippl, 1993; Sippl, 1993), ANOLEA (Melo and Feytmans, 1997), DFIRE (Zhang, et al., 2004; Zhou and Zhou, 2002), and DOPE (M-Y Shen and A. Sali, in preparation). Finally, composite scoring methods combine scores from physics-based energies and statistical potentials using machine learning methods, such as the genetic algorithm-derived GA341 score (F. Melo and A. Sali, submitted), and ProQ, which is implemented as a neural network (Wallner and Elofsson, 2003).
The combination of model accuracy scores has been shown to increase the ability to discriminate incorrect models from correct models (Melo, et al., 2002; Wallner and Elofsson, 2003). Our program for model assessment, called MODASS, combines different scores into a composite score, derived by a support vector machine (SVM) algorithm, with the goal of selecting the best protein structure model from among a set of decoys. Support vector machines are universal approximators that learn a variety of representations from training samples, and as such, are applicable to classification and regression tasks (Vapnik, 1995). SVMs have been used in biological problems including fold recognition (Ding and Dubchak, 2001), functional annotation of single nucleotide polymorphisms (Karchin, et al., 2004), prediction of b-turns (Cai, et al., 2003), protein function classification (Cai, et al., 2003), prediction of central nervous system permeability to drug molecules (Doniger, et al., 2002), analysis of pharmaceutical quantitative structure-activity relationships (Burbidge, et al., 2001), identification of protein-protein interactions (Bock and Gough, 2001), and protein secondary structure prediction (Ward, et al., 2003). In this work, several SVMs were trained in the regression mode with individual scores from physics based energies, statistical potentials, and composite scoring functions as inputs. The output of the SVMs is a score that predicts the actual RMSD between the model and its native structure.  A jackknife protocol was used to identify the best inputs and training parameters, which were then used to derive the composite score implemented in MODASS.

We begin by describing the training and testing sets used, the individual evaluated scoring methods, the testing criteria, and the generation of the SVMs (Methods). Then, we assess the accuracy of each individual scoring method as applied to our testing set and the comparative performance gain by the SVM-derived score (Results). We conclude by discussing the implications of the results for protein structure prediction.

METHODS

Decoy set

Twenty target/template pairs of protein sequences with known structure ranging from 81 to 340 residues in length (Table 1) were randomly selected from the Fischer set of remotely related homologues (Fischer, et al., 1996; John and Sali, 2003). The Fischer set was devised to test fold assignment methods in the most difficult regime of no statistically significant sequence similarity. The percentages of the pairs in the (, (, (/(, and (+( SCOP classes (Andreeva, et al., 2004) were 25%, 45%, 10%, and 20%, respectively. The 20 target structures do not share significant similarity to each other. For each of the 20 targets, the structural template specified by the Fischer set was used as the template. The target-template alignments were obtained using MOULDER (John and Sali, 2003) with MODELLER (Sali and Blundell, 1993) to create 300 different target-template alignments. The 300 alignments uniformly ranged from 0 to 100% of correctly aligned positions with respect to the CE structure-based alignment (Shindyalov and Bourne, 1998).  No two alignments of a given target shared more than 95% of identically aligned positions or had fewer than 5 different alignment positions. A comparative model was built from each target-template alignment using the default parameters of MODELLER.  Thus, the final decoy set consisted of a total of 300 models for each of the 20 targets. The structural accuracy of each model was measured by the C( RMSD and the native overlap after rigid superposition to the native structure as calculated by the model.superpose module in MODELLER-8. The native overlap (NO) was defined as the percentage of C( atoms in the model that are with 3.5Å of the corresponding atoms in the superposed native structure.  Roughly, 4% of the models are within 1-3Å RMSD (good models), ~15% are between 3-5Å RMSD (acceptable models), and ~81% superimpose to the native structure with an RMSD >5Å (bad models). The distribution of RMSD and native overlap varied greatly between the 20 sets (Supplemental Material Figure 1). This test set was previously used in the development of the MOULDER protocol (John and Sali, 2003) and the Mod-EM method (Topf, et al., 2005). 
Additionally, to measure the ability of MODASS to predict the absolute accuracy (ie, the actual RMSD value) of a model, the PDB-select40 list (6,877 sequences as of March 2005) was used as input to our automated modeling protocol MODPIPE (Eswar, et al., 2003) to generate a total of 168,632 comparative models. All models shorter than 100 residues or larger than 250 residues were removed from the testing set. This length restriction reduced the set size to 80,593 models for 4,011 different sequences. The RMSD binning of the models in the MODPIPE set shows that ~5% of models are within 1Å RMSD to the native structure (very good models), ~13% are within 1-3Å RMSD (good models), ~20% are within the RMSD range 3-5Å (acceptable models), and ~62% superimpose to the native structure with an RMSD >5Å (bad models).
The entire MOULDER and MODPIPE testing sets, including all 86,593 models and the assessment scores calculated for each model, are available for download at http://salilab.org/our_resources.shtml.
Model accuracy measures

The choice of metric to quantify the accuracy of a model, given the native structure, is difficult (Cristobal, et al., 2001; Eyrich, et al., 2001; Marti-Renom, et al., 2002; Moult, et al., 2003; Rychlewski and Fischer, 2005). While there are a number of measures that have been used to quantify model accuracy, such as LGScore (Cristobal, et al., 2001) and MaxSub (Siew, et al., 2000), we decided to evaluate all models using the C( RMSD and native overlap (NO) measures after rigid superimposition of the compared structures. All model quality assessment methods were tested for their ability to minimize the (RMSD and (NO scores, which are defined as the absolute differences in RMSD and NO between the selected model (ie, best scored model) and the actual best model (ie, structurally closest to the native conformation of the protein). Thus, a value of 0.0 for either measure indicates that the closest model to the native conformation in the decoy set was identified. 

Model assessment scores
A total of 23 scores for predicting model accuracy were calculated for each of the 6,000 models of the Fischer testing set. Next, we briefly describe these scores:

CHARMM EEF1

The effective energy function (EEF1) in the CHARMM program (brooks, et al., 1983) consists of a modified form of the CHARMM 19 force field that includes a Gaussian solvent exclusion model (Lazaridis and Karplus, 1997; Lazaridis and Karplus, 1999; Lazaridis and Karplus, 2000). CHARMM v.28a3 was used to minimize the energy of the models by 50 steps of conjugate gradients minimization followed by 300 steps of Adopted Basis Newton-Raphson minimization. The EEF1 potential energy (EEF1) was then calculated on the minimized models. 
CHARMM Generalized Born

The CHARMM GB potential includes the Generalized Born (GB) solvation model (Qiu, et al., 1997; Still, et al., 1990) into the CHARMM force field to account for the solvation contribution to the free energy difference between two states. The implementation of GB in CHARMM v.28a3 was used to calculate the GB potential energy (GB), using the same minimization protocol as that of EEF1.

ANOLEA

The Atomic Non-Local Environment Assessment program (Melo, et al., 1997; Melo and Feytmans, 1997; Melo and Feytmans, 1998) calculates a pseudo-energy of a protein chain by evaluating the “Non-Local Environment” (NLE) of each non-hydrogen atom in the molecule. The score for each pairwise interaction in this non-local environment is taken from a distance-dependent statistical potential. ANOLEA was run with the default values, producing three scores: the ANOLEA pseudo-energy score (ANOLEAPE), percent of residues in the structure that make unfavorable contacts (ANOLEAPUC), and the ANOLEA pseudo-energy Z-score (ANOLEAZPE).

DFIRE

The DFIRE score (Zhou and Zhou, 2002) is a statistical potential summed over all pairs of non-hydrogen atoms. DFIRE uses a distance-scaled finite ideal-gas as reference state. The DFIRE program was used with default parameters to calculate the score (DFIRE) for each model in the test set.

DOPE

The Discrete Optimized Protein Energy (DOPE) program (MY Shen and A. Sali, in preparation) is a distance-dependent statistical potential based on a physical reference state that accounts for the finite size and spherical shape of proteins. The DOPE program was used with default parameters to calculate two scores: an all-atom potential energy (DOPEAA) and a backbone potential energy (DOPEBB).

Harmonic Average Distance Score 

The weighted harmonic average difference (Xd) (Pazos, et al., 1997) is a score that measures the Euclidean distance for correlated pairs of residues in a multiple sequence alignment. The algorithm for the calculation of the Xd score was implemented as described in Pazos et al.

Modcheck

The Modcheck program relies on the distance-based statistical potential implemented in the GenTHREADER program (Jones, 1999) and incorporates an estimate of the initial alignment accuracy based on a randomly shuffled set of alignments. The Modcheck program was used with default parameters (MODCHECK).

MODPIPE Assessment Scores

Several model assessment scores are calculated by MODPIPE:  a distance-dependent statistical potential (MODPIPEPAIR); an accessible surface statistical potential (MODPIPESURF), a distance and surface combined potential (MODPIPECOMB), a structural compactness score (MODPIPECOMP), the target-template sequence identity (Si) implied by the target-template alignment, and a learning-based potential derived from a genetic algorithm protocol (GA341)
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where the Z-score is calculated for the combined statistical potential energy of the model using the mean and standard deviation of the statistical potential score of 200 random sequences with the same amino acid residue type composition and structure as the model. All of the MODPIPE scores were developed and implemented as described elsewhere (Eswar, et al., 2003; John and Sali, 2003; Melo, et al., 2002) (F. Melo and A. Sali, submitted).

ProsaII

The ProsaII program (Sippl, 1993; Sippl, 1995) uses distance- and surface-dependent statistical potentials for Cb atom coordinates of all residues in the model. The ProsaII program was used with default parameters to obtain three different scores:  a distance-dependent pair score (PROSAPAIR), an accessible surface score (PROSASURF), and a combined score (PROSACOMB).  Absolute scores, not Z-scores, were used.

Sift

Sift (Adamczak, et al., 2004) is a statistical potential-based program that calculates the shape of the inter-residue radial distribution function (RDF) for a given model. The RDF shape function is compared to an averaged (ie, independent of the amino acid residue type) RDF to discriminate properly packed models from misfolded ones. Sift was used with default parameters (SIFT).

Solvx

The Solvx program (Holm and Sander, 1992) implements a statistical potential that evaluates the solvent contacts made by a model with respect to atomic solvation preferences derived from a database of known structures. Solvx was used with default parameters (SOLVX). 

Victor/FRST

The Victor/FRST program (Tosatto, 2005) depends on a weighted linear combination of three statistical potentials for estimating the accuracy of a protein model.  The program was used with default parameters (FRST).
Predicted Secondary Structure

The DSSP program (Kabsch and Sander, 1983) was used to assign a secondary structure state to each residue in a protein structure model. The DSSP assignments were translated to the Q3 format following the conventions of EVA (Eyrich, et al., 2001). The PSIPRED program (Jones, 1999) was used to predict a secondary structure state for each residue of the 20 target sequences. Finally, we calculated the percentage of amino acid residues that had different Q3 states for both the model and the target sequence (PSIPREDPRCT). A weighted score that takes into account the PSIPRED prediction confidence was also calculated (PSIPREDWEIGHT) as follows:
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where n is the number of residues that have different Q3 states in the sequence and the model, Ci is the confidence value (0-9) for prediction of the state of residue i, and r is the total number of residues in the sequence.
Comparing assessment scores

All 23 assessment scores were compared to each other by the average correlation coefficient for the 6,000 model scores in the testing set. The average correlation coefficient between every pair of assessment scores was calculated as the average of the pair-wise correlation coefficients for each of the 20 templates.  A matrix containing the correlation coefficients for all comparisons was input into the NEIGHBOR program of the PHYLIP Package (Felsenstein, 1985) to generate a tree representation of the relationships between the scores (Figure 1).

Testing of the assessment scores

To determine the accuracy of each scoring method to identify the most native-like models from a set, each of the 20 sets of 300 models was broken down into 2,000 randomly populated smaller sets of 75 models. For each 75-model set, the model with the lowest C( RMSD after rigid superposition to the native structure was used as a reference to calculate the (RMSD measure; for the (NO measure, the model with the highest native overlap was used as a reference. The (RMSD and (NO measures were averaged for the 23 scoring methods over all 40,000 (20 by 2,000) subsets. The frequency with which a particular score produced the best (or equivalent to the best) (RMSD and (NO were also calculated, as well as an enrichment factor defined as the fraction of the 20 targets for which a method was able to select the best model within the top N ranked models. Finally, the statistical significance of the difference in performance of any two scores was assessed by the parametric Student’s t test at the 95% confidence value (Marti-Renom, et al., 2002). 

Development and optimization of support vector machines (SVM)

Ten of the best performing scoring methods provided input into the SVM software SVMlight (Joachims, 1988). The regression mode of SVMlight was used so that a number of input features are mapped to an output value. The SVMs were trained to predict the RMSD value of a model given a number of input scores. A leave-one-out heterogeneous jackknife approach was applied to develop all SVMs. For each sequence, a SVM was trained by using the remaining 19 sequences as training input (5,700 possible models), and its models (300 in total) as the testing set. To avoid noise in the SVM training, all models at least 15Å Ca RMSD from the native structure were removed from the training sets. The native structures were not included in the training sets. To accelerate the training process, all input scores were normalized between -1 and 1. This normalization had no significant effect on the accuracy of the predicted classifiers, yet it increased the training speed by an order of magnitude (results not shown). 

Four different SVM standard kernel types were tested: a linear kernel, a polynomial kernel, a radial basis function kernel, and a sigmoid kernel. C-values between 0 and 10 were tested in increments of 1, and W-values between 0 and 1 in increments of 0.1. In excess of 4,000 different training parameters and inputs were tried and assessed; with the jackknife protocol, this resulted in the training of over 80,000 SVMs. The relative weights for each input score in a trained SVM were calculated by computing the normalized weighted sum of the support vectors, using an SVMlight script. Once the best input features and parameters were identified through the jackknife protocol, the composite score underlying MODASS was derived by using all models under 15Å Ca RMSD from all 20 MOULDER sets.

RESULTS

Testing of 23 assessment scores with the MOULDER decoys

23 different assessment scores were tested for how many times each score obtains the best or equal to the best (RMSD and (NO. The DFIRE and DOPEAA scores were most frequently the best single scores at discriminating the most native-like models from others as judged by (RMSD, obtaining the best or equal to the best (RMSD ~25% of the time (Table 2). PROSACOMB, PSIPREDWEIGHT, MODPIPECOMB, and MODCHECK obtained the best (RMSD 23%, 23%, 21% and 20% of the time, respectively. The PSIPREDWEIGHT score at 0.63Å obtained the absolute lowest average (RMSD. Similar results were obtained by PSIPREDPERCENT at 0.75Å, DOPEAA at 0.77Å, MODCHECK at 0.83Å, and MODPIPECOMB at 0.87Å. Of the 23 scores, a total of 10 had an average accuracy under 1.0Å (RMSD (Table 2 and supplemental material Table S1a). 

By the (NO criterion, the PSIPREDWEIGHT, DOPEAA, and DFIRE scores were most frequently the most accurate assessment scores, obtaining the best or equal to the best (NO 28%, 27%, and 26% of the time, respectively (Table 2). PROSACOMB, MODPIPECOMB, PSIPREDWEIGHT, and MODCHECK obtained the best (NO 25%, 25%, 23% and 22% of the time, respectively. The PSIPREDWEIGHT score at 6.7% obtained the absolute lowest average (NO. Similar results were obtained by DOPEAA at 6.9, DFIRE at 7.1, MODPIPECOMB at 7.4 and GA341 at 7.5%. Of the 23 scores, a total of 11 had an average accuracy under 10.0% (NO (Table 2 and supplemental material Table S1b).

The ability of the tested methods for identifying native-like models greatly varied across different targets. Thus, the particularities of the MOULDER test set, and not only the assessment scores, may have contributed to some of the high (RMSD and (NO values observed. In particular, all assessment methods averaged worse than 1.25Å (RMSD in the assessment of models for the 1cewI target. Most of the models for this relatively short target (108 residues) contain a poorly modeled long loop region (17 residues) that largely contributed to the overall global RMSD value. Therefore, models of this target with similarly well-packed cores may differ in the RMSD solely to the orientation of this loopy region. Another example where most methods underperformed is the target 1lgaA (average (RMSD higher than 0.5Å). The crystal structure of this target contains a shorter loop (11 residues) that points directly into the solvent.  In comparison to 1cewI, the overall contribution of this loop to the global RMSD of a model is reduced because of the larger size of protein (279 residues), yet it still is responsible for the higher (RMSD values for all assessment methods.  In contrast, sets 1bbhA and 1eaf_ had at least one score with high accuracy averaging a (RMSD value within 0.1Å. Despite the differences in performance for each target, an average (RMSD under 0.05Å and an average (NO score of 0.4% can be achieved by selecting the model based on the most accurate method for each target. This indicates that at least one of the 23 tested scoring methods was able to identify a model close to the best model for all targets in the set.
A Student t-test to assess the significance of the difference between two methods (Marti-Renom, et al., 2002) indicates that 8 assessment scores (PSIPREDWEIGHT, PSIPREDPERCENT, DOPEAA, DFIRE, Modcheck, MODPIPEGA, MODPIPECOMB, ProsaCOMB) outperformed all other methods with statistical significance at the 95% confidence level (Figure 2). Despite being ranked lower than 16 other scores, the Xd score was not shown to be statistically worse or better than the other assessment scores due to a very high standard deviation of the (RMSD.

Testing of the composite score with the MOULDER decoys
Ten scores (PSIPREDWEIGHT, PSIPREDPERCENT, DOPEAA, DFIRE, Modcheck, MODPIPEGA, MODPIPECOMB, MODPIPEPAIR, MODPIPESURF, Xd) were used as inputs to train SVMs using the jackknife protocol (Methods). We did not simply select the top 10 ranked individual scores. Several scores were omitted because 
their performances correlated with other scores (eg, ProsaIICOMB and MODPIPECOMB, and DOPEAA and DOPEBB have correlation coefficients of 0.95 and 0.90, respectively). The CHARMM EEF1 and GB scores were omitted due to their dependence to the model minimization protocol, which would affected our intention of developing a composite score independent of the method to generate models. Finally, despite being ranked lower than FRST, Xd was selected since it could not be statistically distinguished from the best-performing methods and was considered to be a unique, orthogonal method in comparison to other scores.

Of the ~80,000 SVMs tested with different feature inputs, kernel types, and training values, the best performing class combined PSIPREDPRCT, DOPEAA, MODPIPECOMB, MODPIPEPAIR, MODPIPESURF, and PSIPREDWEIGHT as feature inputs with a linear kernel, default C-value, and a W value of 0.1. The transparency of the SVM method allows us to calculate the weights of the derived score directly:
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This equation reflects the fact that the input PSIPREDWEIGHT, DOPEAA, MODPIPECOMB, MODPIPEPAIR, MODPIPESURF, and PSIPREDPERCENT scores were normalized in magnitude prior to SVM training by dividing the actual raw values by 10, 10000, 1, 100, 10 and 1, respectively.  The relative contributions of PSIPREDWEIGHT, DOPEAA, MODPIPECOMB, MODPIPEPAIR, MODPIPESURF, and PSIPREDPRCT in MODASS are thus approximately 39%, 8%, 4%, -7%, 18% and 24%, respectively.
The jackknife test confirmed that these inputs and parameters produce an SVM-derived score that consistently outperformed any individual method. Using the (RMSD criterion, the composite score was the best assessment score in ~30% of the 40,000 testing subsets (Table 2). The next-best individual scores were DFIRE and DOPEAA, which obtained the lowest average (RMSD for ~25% of the time. The average (RMSD for the composite score was 0.45Å, outperforming by 0.18Å the absolute best individual method, PSIPREDWEIGHT (Figure 3, supplemental material Table S1a). 

Using (NO as an accuracy criterion, the jackknife composite score was best in 33% of the subsets, outperforming next-best individual scores PSIPREDWEIGHT and DFIRE and DOPEAA, which obtained the lowest average (NO for 28% and 27% of the time, respectively (Table 2).  The composite score was also the best method assessed by the (NO criterion.  The average (NO for the composite score was 4.5%, outperforming the best method, PSIPREDWEIGHT, by 2.2% (Table 2, supplemental material Table S1b).  Thus, though the composite score was trained to predict an RMSD value, it was still able to outperform each individual method at identifying the best models of a set by the native overlap criterion.

The average correlation coefficient between the composite score and the actual RMSD for all 20-target sets of 300 models was of 0.87 ranging from 0.75 to 0.93 (Figure 3, supplemental material Table S3). The averages for all 23 individual methods ranged between 0.23 and 0.87 (Supplementary Table 2a). Despite resulting in a similar average correlation coefficient, MODASS selected with higher frequency better models than DOPEAA alone.

Our composite score resulted in an enrichment factor 10% higher than any of the compared methods when selecting the top 20 ranked models. MODASS found the best geometrical model within the top 20 ranked models for 75% of the targets while DOPEAA, DFIRE, and PSIPREDPERCENT selected the best model for 65% of the targets (Figure 5).
Testing of the MODASS composite score with the MODPIPE decoys

The MODPIPE testing set was generated to help assess the performance of MODASS in the context of large-scale comparative modeling. In particular, the set was designed to test how well MODASS could predict the absolute accuracy of a model, rather than it’s accuracy relative to other models.  The RMSD binning of the models generated by MODPIPE shows that ~5% of models are within 1Å RMSD to the native structure (very good models), ~13% are within 1-3Å RMSD (good models), ~20% are within the RMSD range 3-5Å (acceptable models), and ~62% superimpose to the native structure with an RMSD >5Å (bad models). Of the very good models, MODASS predicted 53% to have an RMSD within 1Å and 93% within 2Å. Only 14% of the good models were predicted by MODASS to have an RMSD higher than 3Å. For the acceptable models (3-5Å), 46% were predicted in the correct range, with 51% being predicted with smaller values of RMSD; 32% were predicted to be in the range 2-3Å.  Finally, 85% of the bad models were predicted by MODASS to have an RMSD higher than 3Å. Thus, 15% of the bad models were predicted as good (RMSD within 3Å) by MODASS and could be considered false positives (Figure 6). The correlation coefficient between the actual RMSD and the MODASS score for the MODPIPE test set is 0.68. 

DISCUSSION

We described a composite score (MODASS) for selecting the best model out of a set of alternative decoys. The MODASS score correlates with the Ca RMSD between the model and its native structure (0.87 and 0.68 average correlation coefficients for the MOULDER and MODPIPE testing sets, respectively). MODASS, a fully automated method, begins by taking as input the 3D coordinates for a model and proceeds by calculating 6 independent assessment scores from PSIPRED (Jones, 1999), DOPE (MY Shen and A Sali, in preparation), and MODPIPE (Eswar, et al., 2003). After normalizing and combining the calculated scores with a function derived from SVM regression, MODASS outputs a single composite score for the accuracy of the model. Our tests indicate that MODASS score outperforms the top individual methods by selecting in average models between 0.18 and 1.22Å closer to the best model in the decoys set (Table 2 and Figure 3). Additionally, the MODASS score correlates with an average correlation coefficient of 0.87 to the actual Ca RMSD of the models (Figure 4). Only the DOPEAA score resulted in similar correlation with the actual Ca RMSD of the models.
MODASS was developed and tested with the aid of two decoy sets generated by different comparative protein structure prediction protocols. The differences between these sets and other published decoy sets reflect the differences between our stated aim and that of other studies. Normally, model assessment methods try to identify native-like structures among a set of decoys whereas we attempted to select the closer model to the native structure, which may not necessarily have native-like characteristics.  Thus, an optimal decoy set for testing the ability of an assessment method to discriminate native from non-native structures should (i) contain conformations for a wide variety of different proteins; (ii) contain conformations relatively close to the native structure (ie, within 4Å); (iii) consist of conformations that are not trivially excludable based on obvious non-protein like features; and (iv) be produced by an unbiased procedure that does not use information from the native structure (Park and Levitt, 1996; Park, et al., 1997). In contrast, for the purpose of selecting the best model from among a set of similar models, criterion (ii) does not always reflect actual conditions in which a model assessment score is used, as even the best model generated by a prediction method—particularly in de novo predictions or comparative modeling in the very low sequence identity—may often result in RMSD greater than 4Å.  The MOULDER and MODPIPE test sets used here include targets for which the most accurate model is not near the native state (supplemental material Figure S1). This parallels the accuracy of models produced in large-scale comparative modeling that may not be able to generate a good model for a given target, and thus represents a more realistic test of the discrimination abilities of model assessment scores.
The individual assessment scores, as well as the performance of the composite scores derived by the SVM protocol, were assessed by their abilities to minimize the (RMSD and (NO scores.  This goal is, in essence, the same as minimizing the RMSD to the native state, yet allows for a comparison of the performance of a method across different test sets, which may have models with greatly different RMSD values.  We chose to use these relative rather than absolute measures because the accuracy distribution of the sets used was not uniform (supplemental material Figure S1).  For example, the (RMSD difference between the 1st ranked model and 25th ranked model across the 20 MOULDER sets varies from 0.27 to 5.7Å.  Reliance on the rank order neglects the fact that at small differences in (RMSD, the modeled structures may be considered identical, due to the inherent flexibility and dynamics of protein structures.  Thus, the (RMSD and (NO scores are more suitable than rank order for identifying the models closer to the native conformation from among a set of similar models.  

All-atom statistical potentials (ie, DOPE and DFIRE) were most frequently the best performing individual scores in our two test sets (Table 2, Figures 2 and 3). PSIPREDPRCT and PSIPREDWEIGHT, two scores based on the percent agreement between the predicted and actual secondary structure of a model, were the two best scores by the (RMSD criterion.  PSIPREDWEIGHT was also the best score by the (NO criterion. In general, statistical potentials outperformed energies from statistical mechanics force fields. This observation is in agreement with the suggestion that the statistical potentials are less sensitive to small structural displacements making them more suitable for assessing protein structure models with larger structural changes (Lazaridis and Karplus, 2000).  This is not to say, however, that statistical potentials are necessarily better suited for selecting the best models from among a set of similar models:  EEF1 and GB were more accurate than many of the statistical potentials tested (Table 2 and supplemental material Table S1). Further, increasing the coarseness of the statistical potential did not improve performance, as all-atom potentials (eg, DOPEAA) performed better than their coarser counterparts (eg, DOPEBB), and very coarse potentials such as Xd did not outperform the more fine-grained surface and contact potentials tested.  
The average correlation coefficients between the 23 assessment scores revealed that similar performances (Table 2 and Figure 2) cannot be attributed to similarities between the scores (Figure 1 and 2 and supplemental material Table S3). No discernable grouping could be observed between scores based on our set of decoys, even between scores based upon similar principles (ie, MODPIPESURF and PROSASURF, or DOPEAA and DFIRE). Though all scores did show some correlation with RMSD and NO (supplemental material Tables S2), this was not reflected in the correlations with each other. Additionally, the jack-knife test showed that the ability of MODASS for selecting the best models from among a set was independent of the SCOP fold type, RMSD value of the best model in the decoys set (correlation coefficient of r = 0.41 between best RMSD and composite score average (RMSD), median RMSD value of the decoys set (r = 0.50), and fraction of models structurally similar to the best model of the decoys set (r = 0.57).  Finally, despite the inclusion of PSIPRED-based scores in MODASS, its performance showed little correlation to the PSIPRED Q3 accuracy (r = 0.28). While individually these correlations between the composite score performance and a given measure are small, the results do show that that the best composite score has a tendency to perform better on globular proteins ranging from 100 to 250 residues, for which there are a number of close-to-native models, and from sequences that result in an accurate PSIPRED prediction.

The most accurate MODASS composite score is a summed contribution of PSIPREDWEIGHT, DOPEAA, MODPIPECOMB, MODPIPEPAIR, MODPIPESURF, and PSIPREDPRCT with relative weighs of 39%, 8%, 4%, -7%, 18% and 24%, respectively. These six individual methods were selected from a set of 10 different scores because of their optimal performance when combined by the SVM. The other 13 individual methods were not included in the MODASS optimization for several reasons: (i) the ANOLEA, SIFT, and Solvx scores resulted in significantly lower accuracy when compared against all other methods (Figure 2). Although the three methods use different properties to evaluate the accuracy of a model, their statistical potentials are sensitive to small changes in the atomic coordinates of individual atoms; (ii) the physics-based scores (EEF1 and GB) require to perform a minimization of the models, which conditioned the final evaluation of the models and their comparison to other scores calculated from the un-relaxed models. Additionally, those two methods required larger calculation time, which make them prohibitive for large-scale applications; (iii) the PROSA scores were not included due to their similar characteristics to the MODPIPE scores (Melo, et al., 2002) as well as the DOPEBB, which is a derivation of the DOPEAA score; finally (iv) the FRST and GA341 were not included because those methods are already a combination of independent scores for model assessment.

As previously shown in other studies (Melo, et al., 2002; Wallner and Elofsson, 2003), we demonstrated combining disparate assessment scores in a composite score results in a more successful method than any of the individual scores for identifying the most accurate model within a decoy set. The benchmark of MODASS using the MODPIPE decoys set shows that a composite score trained on a limited number of models from a limited number of targets may still be general enough to be applied to models of proteins of different folds. Further, it shows that combining information from multiple assessment scores can produce a score that correlates with the actual RMSD of the model. Thus, the trained SVM in the MODASS score is able to capture subtle properties of individual scores that generalize to many different sequences and folds, capturing non-obvious relationships between the input scores and the RMSD. 

The current implementation of MODASS is limited by: (i) particular properties of the training set, (ii) the use of optimal parameters during the SVM training, and (iii) incorrect assessments by the underlying individual input scores. First, the training set is limited primarily in its size: the use of a much larger training set would allow for multiple SVMs to be trained on more narrow or tailored decoy sets.  Additionally, the relative contributions of poorly assessed specific targets, such as 1cewI and 1lga_, would be reduced in larger test set. Second, the actual training of the SVM used to derive the MODASS score was extensive, but not exhaustive.  Custom kernels have not been tested at this time, and may be a better solution to our inputs than any of the standard SVM kernel types.  Custom kernels might be a solution to having to find a global fit on inputs that vary so widely in value and are dependent on other factors (ie, protein length) that are not easily normalized.  Third, inaccurate input assessment scores hamper the overall accuracy of MODASS.  As the underlying assessment scores improve in accuracy, the performance of later versions of MODASS would be expected to accordingly improve. Moreover, we are poised to include additional information in model assessment, such as protein size, length, and fold type. As these additions are incorporated, the performance of the composite score is likely to further improve. 
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Table 1

MOULDER testing set properties. Maximum and minimum values for each of the target properties are underlined. RMSD values are for all C( atoms; all-atom RMSD is typically 1.5 times as large.

	
	Length
	SCOP Class
	RMSD Range (Å)
	Median RMSD (Å)
	NO 

Range (%)
	Median 

NO (%)

	1bbhA
	127
	(
	2.5-20.8
	6.5
	0-91
	33

	1c2rA
	115
	(
	3.4-16.4
	10.5
	0-84
	29

	1cauB
	178
	(
	3.4-29.0
	11.9
	0-83
	14

	1cewI
	108
	(+(
	5.0-19.7
	14.7
	0-45
	3

	1cid_
	109
	(
	3.3-19.6
	11.2
	0-73
	12

	1dxtB
	143
	(
	2.0-34.1
	7.2
	0-94
	38

	1eaf_
	201
	(/(
	3.4-16.8
	12.6
	1-74
	17

	1gky_
	186
	(/(
	6.2-20.8
	11.6
	0-64
	15

	1lgaA
	279
	(
	3.2-18.7
	8.2
	1-86
	35

	1mdc_
	130
	(
	1.9-16.4
	9.3
	0-95
	37

	1mup_
	152
	(
	3.3-20.8
	8.2
	0-76
	38

	1onc_
	101
	(+(
	2.2-22.8
	10.5
	0-92
	18

	2afnA
	289
	(
	3.8-18.8
	8.5
	1-77
	40

	2cmd_
	310
	(+(
	2.5-20.2
	5.8
	0-86
	48

	2fbjL
	210
	(
	2.4-22.5
	8.8
	0-88
	31

	2mtaC
	81
	(
	2.2-42.7
	6.7
	0-88
	41

	2pna_
	100
	(+(
	3.2-15.5
	7.3
	0-81
	30

	2sim_
	340
	(
	4.7-44.9
	11.0
	0-66
	34

	4sbvA
	193
	(
	4.9-20.9
	17.4
	0-79
	3

	8i1b_
	144
	(
	3.0-17.5
	8.3
	0-78
	35


Table 2

Accuracy of the individual assessment scores on the MOULDER testing set. The percent best is the frequency of selecting the best (or equivalent to the best) model in the test set. The entries are sorted by the DRMSD.  

	Score
	∆RMSD (Å)
	BEST RMSD (%)
	∆NO (%)
	BEST NO (%)

	MODASS
	0.45
	29.6
	4.5
	33.1

	PSIPREDWEIGHT
	0.63
	23.4
	6.7
	27.7

	PSIPREDPERCENT
	0.75
	20.0
	8.3
	23.2

	DOPEAA
	0.77
	24.7
	6.9
	25.7

	DFIRE
	0.82
	25.4
	7.1
	26.8

	MODCHECK
	0.83
	20.0
	7.6
	22.4

	GA341
	0.83
	16.2
	7.5
	19.9

	MODPIPECOMB
	0.87
	21.1
	7.4
	24.8

	PROSACOMB
	0.88
	23.1
	7.7
	25.1

	DOPEBB
	0.96
	17.2
	9.1
	20.8

	PROSASURF
	0.97
	19.7
	9.0
	20.7

	GB
	1.05
	13.9
	10.2
	14.3

	EEF1
	1.06
	16.9
	9.7
	20.6

	MODPIPEPAIR
	1.21
	18.2
	10.9
	17.8

	PROSAPAIR
	1.34
	16.8
	11.7
	20.0

	MODPIPESURF
	1.35
	16.9
	11.3
	20.0

	FRST
	1.54
	19.3
	13.2
	19.2

	Xd
	1.67
	19.0
	13.4
	21.0

	SOLVX
	1.74
	12.3
	15.1
	14.4

	ANOLEAZPE
	1.92
	8.2
	16.9
	9.6

	ANOLEAPUC
	2.26
	7.1
	19.8
	7.4

	SIFT
	5.45
	2.4
	39.7
	3.0

	ANOLEAPE
	9.03
	0.0
	60.2
	0.1


Figure 1

Weighted pair-group average clustering based on a pair-wise correlation distance matrix. Image generated by the Phylodendron web server (http://iubio.bio.indiana.edu/treeapp/).
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Figure 2

Comparison of accuracies of the individual assessment scores, based on the ∆RMSD. Upper diagonal: gray and white squares indicate pairs of methods whose performance are and are not statistically significantly different at the confidence level of 95%, respectively. Lower diagonal: the intensity of gray is proportional to the ∆RMSD between the compared methods.
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Figure 3

Comparison of the accuracies of the best model assessment scores, based on the ∆RMSD. Upper diagonal: gray and white squares indicate pairs of methods whose performance are and are not statistically significantly different at the confidence level of 95%, respectively. Lower diagonal: the intensity of gray in each box is proportional to the pair-wise ∆RMSD between the scores listed on the axes (absolute differences indicated).
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Figure 4

Ca RMSD correlation with the MODASS score for 300 models for the targets with the best (1dxtB, upper panel) and worst (1cewI, lower panel) correlations, at r= 0.93 and 0.75, respectively. 
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Figure 5

Enrichment factor defined as the fraction of the 20 targets for which a method was able to select the best model within the top ranked models.
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Figure 6. 

Correlation of the Ca RMSD and MODASS score (predicted RMSD) distributions for the MODPIPE set of 80,593 models. RMSD measures were grouped in bins of 1Å.
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