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Methods 

We first describe the set of non-redundant structures and the source of multiple sequence alignments of their homologous sequences used for calculating the SSSP. We then continue by outlining how sequences were weighted in the multiple sequence alignment. We proceed by defining how to transform the information encoded in the multiple sequence alignment into a potential of mean force and conclude by describing the training and testing sets of models and measures of accuracy of the derived statistical potentials.

Non-redundant set of structures from PDB.

The DBAli database {Marti-Renom, 2001, 11524379} was queried to obtain a series of clusters of protein structures that represent the protein structure space. As of June 2005, there were a 22,732 non-redundant chain structures in the PDB {Berman, 2002, 12037327}. Any two chains in a representative cluster passed the following four cut-offs: a minimum of 90% sequence identity, a minimum of 90% of Ca atoms aligned within 4Å, a maximum of 1Å Ca RMSD, and a maximum of 50 residues difference in length. The non-redundant database was then cleaned to remove obsolete PDB entries or entries with undefined or missing residues, resulting in a total of 22,589 chains. We then further clustered the representative set of chains by changing the cut-offs for sequence and structural similarity (Table 1)
. Each cluster represented all other PDB chains that passed the cut-offs for all pairwise comparisons within the group; where possible, the representative was picked by maximizing its resolution. 

Multiple sequence alignment

For each sequence of the non-redundant set of PDB structures, a multiple sequence alignment with its homologs was prepared by scanning the non-redundant protein sequence database at NCBI (June, 2005) with the program PSI-BLAST version 2.2.10 {Schaffer, 2001, SCHAFFER2001; Altschul, 1998, ALTKOO98}. The scanning was performed without filtering out compositionally biased segments, was run for up to 5 iterations, and included all matches with an e-value smaller than 0.0005. Up to 100,000 sequences with the most significant e-values were retained in the resulting multiple sequence alignment. The default values were used for all other parameters. Finally sequences that aligned with less than 20%, 40%, and 60% sequence identity to the query sequence were removed from the multiple sequence alignment, resulting in three different multiple sequence alignment for each of the non-redundant PDB chains.

Sequence weighing 

Sequence weighing was used to compensate for non-uniform distribution of the homologs in a multiple alignment. The position-based sequence weighing {Henikoff, 1994, HENHEN94} that assigns low weights to over-represented sequences and high weights to unique sequences was used to weight each sequence in a multiple sequence alignment.

Statistical potential.

All statistical potentials were calculated as previously described {Sippl, 1990, 2359125} and using the optimal parameters obtained in our previous work {Melo, 2002, 11790853}. 

The main distinction of a SSSP is that is built based on the sequence space of homologous sequences to a given structure. To transform the information encoded in a multiple sequence alignment into a statistical potential, each homologous sequence was threaded into its representative structure capturing the known variation in the sequence space rather than the structure space. Three different types of threading were implemented. In the first approach (type 1) residues are replaced by those provided in the alignment, if the alignment provides no information (a gap), the corresponding residue in the template structure is maintained for the building of the threaded model. In a second approach (type 2) all those template residues not replaced by the aligned sequence are deleted. The same is done for a third approach (type 3) where the only difference to type 2 is that after the deletion of unmatched amino acids a re-numeration of the structure takes place.  This is relevant for the k parameter in the calculation of the potential. The k parameter indicates the sequence distance (in residues) between different amino acids on the same chain {Melo, 2002, 11790853}. 
 A total of 22,589 representative structure chains and the threaded models of their homologous sequences were used to derive all SSSP. Additionally, the ALLMSA 
potential was derived by using all representative structures and their homologues. Finally, a REP statistical potential was derived by using only the structural space that included the representative set of structures.
Calculation of Z-score 

Z-scores were calculated from each of the statistical potential energy of a model, using the mean and standard deviation of the statistical potential energy of 200 random sequences with the same composition and structure of the model as previously described {Melo, 2002, 11790853}.

Testing set of comparative models

To benchmark the accuracy of the SSSPs in protein structure fold assessment, we used a set consisting pf ~10,000 3D-models divided in 3,375 correct and 6,270 incorrect models {Melo, 2002, 11790853}. All correct models had a proper fold assignment and were built based on a relatively accurate sequence/structure alignment. Incorrect models either were built using a wrong fold or built based on the correct fold, but containing a large fraction of misalignments.

Benchmarking criteria

The performance of classifiers based on the statistical potential Z-scores as a single feature was assessed by means of receiver operating characteristic (ROC) curves as previously described {Melo, 2002, 11790853}. An ROC curve is obtained by plotting the false negatives fraction against the corresponding false positives fraction for all cut-offs on the energy Z-score. The area under the ROC curve represents the probability of incorrect classification over the whole range of cut-offs. This area is usually taken to be an important index because it provides a single measure of overall accuracy that is not dependent upon a particular feature threshold. The optimal classification threshold was also obtained for each statistical potential energy Z-score as the value where the highest positive prediction rate was observed.

Other benchmarked methods

ProsaII. The ProsaII program {Sippl, 1993, 8229096; Sippl, 1995, 7648326} uses distance- and surface-dependent statistical potentials for Cb atoms of all residues in the model. The original ProsaII program was used with default parameters to obtain a combined score that combines its distance-dependent pair score and an accessible surface score.

DFIRE. The DFIRE score {Zhou, 2002, 12381853} is a statistical potential summed over all pairs of non-hydrogen atoms. DFIRE uses a distance-scaled finite ideal-gas as reference state. The DFIRE program was used with default parameters to calculate the energy of each model in the test set.

Results

1.- ROC curves of SSSPs derived for different clusters (and tables with the accuracy measures).

2.- ROC curves of SSSPs derived for different filters of the MSAs (and tables with the accuracy measures).

3.- ROC curves of optimal SSSPs (better combination of the above) against REP.

4.- ROC curves of optimal SSSPs compared against Prosa, DFIRE, and REP (and/or others well established methods for fold assessment). This is to avoid stupid comments by the referees like saying that our benchmark set is to easy (because of the spectacular performance of the SSSPs). (and tables with the accuracy measures)

5.- Describe the characteristics or general features (try to explain why) of those models that are not classified correctly by the optimal SSSPs (ie. Few sequences in the MSA, few heterogeneity of sequences in the MSA, small coverage of the structure by the sequences in the MSA, other reasons … etc). Marc, we are preparing a nice figure that shows the distribution of the sequence identity for the sequences at each MSA. It will be a very nice figure which could be included in section 2 of results or here in case this figure illustrates the varying performance (or failures) of the SSSPs. Once we have this figure we will let you know and we can discuss where it is best to incorporate it. The Figure will be VERY nice !!! (a lot of calculations are required to produce it, we are already calculating the data points).

Discussion (this is the tough part !!!, Andrej with all his experience should help us here a lot !!!)

1.- The rational of using sequence information in SP derivation. Correlate with Chothia and Lesk findings.

2.- Discuss projections and applications of SSSPs for: protein structure prediction in general, threading, moulding, protein design, structural genomics, and protein structure assessment (specially of comparative models).
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�Sasha,


Could you please prepare a table with all different cut-offs used (one per row) and give the following information for each:


- NAME


- N of SSSPs with at least 50 sequences in the MSA (also known as SSSP coverage)


- AVG & STD number of sequences per MSA


- AVG & STD seq id% per MSA








�Sasha, Pancho,


Which is the final version we used? I guess we stick to one. Just describe the ones used and remove the other two.


�I am not sure what name to use but did not like your original “FAT”





