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A AIMS

Our broad goal is to contribute to the determination, control, modification, and design of the functions of proteins. The function of a protein is determined by its interactions with other molecules in its environment. Since all protein interactions cannot be characterized by experiment, combining experiment and computation is the only remaining option. Therefore, we will construct an integrated software and hardware system for genome-wide mapping of interactions of proteins with both proteins and small molecules (Figure 1). The construction of the modules of the software pipeline will involve mostly implementation, improvement, and validation of the existing methods, although in some cases new methods will also be developed. Our specific aims are organized into four groups:

Aims I: Create a software pipeline for automated, large-scale protein structure modeling and docking of small ligands. The input will be a set of known protein sequences, a database of known protein structures, and lists of ligands; the output will be annotated 3D models of ligand-complexes and estimated ligand affinities for as many of the input sequences as possible.

Aim 1:
Implement and improve a module for comparative protein structure modeling.

Aim 2: 
Implement and improve a module for refining comparative models.


Aim 3: 
Develop and implement a module for identifying ligand binding sites on protein models.

Aim 4: 
Develop and implement a module for building virtual ligand libraries.

Aim 5:
Implement and improve a module for docking ligands against protein structure models.

Aim 6: 
Develop and implement a module for rescoring protein-ligand complexes.

Aims II: Create a software pipeline for automated, large-scale protein-protein docking. The input will be a set of protein sequences, a database of known protein structures, and a set of known protein-protein interactions; the output will be low- and high-resolution models of protein complexes as well as estimated specificities, depending on the information available about the interacting proteins and their complexes.

Aim 7:
Develop and implement a module for collecting known protein-protein interactions from the reference resources on the web.
Aim 8:
Develop and implement a module for identifying protein binding sites on protein models.

Aim 9:
Implement and improve a module for building binary and higher order protein complexes.

Aim 10:
Develop and implement a module for modeling specificity of protein interactions.

Aims III: Create technologies and environments that will facilitate development and application of the pipeline.

Aim 11:
Develop a central database for all the data and results.

Aim 12:
Develop a web-based graphical user interface for flexible access to the central database.

Aim 13:
Create a software backplane for integrating the modules into the pipeline.

Aim 14:
Improve global optimization algorithms for protein structure prediction and docking.

Aim 15:
Develop and apply a module for testing the pipeline.

Aim 16:
Develop information navigation and search strategies for maximizing the utility of the central database.

Aim 17:
Develop a cluster computer and software environment capable of executing the pipeline for millions of proteins and ligands.

Aims IV: Illustrate the pipeline by computational applications to functional annotation and drug discovery.

Aim 18:
Develop and implement a module for annotation of function based on ligand binding profiles.
Aim 19:
Annotate the functions of all Protein Structure Initiative targets and their homologs.

Aim 20:
Develop, implement, and apply a module for predicting functional consequences of point mutations.

These aims are ambitious, and this application is correspondingly long; a detailed reading may weary even the most patient reviewer.  There are thus four core themes and “deliverables” that we have tried to emphasize throughout Core 1&2, which we feel are the most important to keep in mind while reading it.  The four themes are: 

1. Lowering barriers to entry: Automating structure prediction, virtual screening, and protein-protein docking will dramatically reduce barriers to entry in structural biology, bringing to many investigators a high-resolution, three-dimensional view that has traditionally been out of reach.  Barriers will be reduced by developing facile interfaces to tools and data.

2. The pipeline:  Lowering these barriers will be achieved through the construction of a software pipeline that links together largely existing, though still developing modules.  The proposal considers improvements to these individual modules, each one of which represents an active area of research, as well as challenging software engineering issues that arise as we link them together in a pipeline.

3. A Comprehensive Map of Protein-Ligand Interactions: A key result of this pipeline will be the ability to model protein interactions, both with small molecule and protein ligands, on a genomic scale.  This map will allow for functional inferences not previously possible.  

4. Applications to drug discovery and functional annotation: Major applications for our own research focus on large-scale early drug discovery and functional annotation. These applications are described in part in the driving biological projects (Core 3), and form the major area of interface with experimental efforts.  They are also described in this Core, especially in the area of annotating the functions of proteins based on the ligands with which they are predicted to interact.  
As much as possible, we have tried to put in connections to these core themes at the beginning of every major section of this proposal. Naturally, there will be reason to read specific modules and sections in great detail.  One high-level way to approach this proposal, however, is to look at summary sections and the links to these four themes and deliverables, both of which occur in the top text of each section.  The structure and “bullet points” of the proposal are also apparent in the Table of Contents for Core 1&2, at the beginning of this Core.  

B BACKGROUND AND SIGNIFICANCE

Determining the function of proteins based on their sequences is a challenge of longstanding interest in biology. The function of a protein is determined by its interactions with other molecules in its environment, which in turn depend on the three-dimensional structure and dynamics of these molecules. For much of the past century, biology has focused on the identities and roles of individual protein molecules, and their regulation. The advent of genome projects has given us most of these protein identities.  What these projects have not given us are the partners with which each individual protein interacts, and hence their functions. This need has occasioned the development of innovative experimental technologies to determine the functions of the proteins encoded by the various genomes (functional proteomics).  These technologies include mass spectrometric investigation of protein expression patterns1, high-throughput yeast two hybrid approaches to identifying protein association partners2, large scale affinity tag purification efforts, and protein micro-array techniques to study protein-protein, protein-nucleic acid, protein-lipid, enzyme-substrate, and protein-drug interactions3, among others.  

As innovative as these experimental technologies are, the number of possible interacting partners is staggering.  Even identifying all the one-on-one partners within the proteome is beyond a purely experimental program; if one adds the possible small molecule ligands, including drugs and reagents, the problem becomes even more difficult.  The only option for making large-scale progress is to leverage available experimental information with computation.
Our goal is an integrated software system that will allow for a genome-wide mapping of the interactions of protein receptors with drug-like and macromolecular ligands.  The fundamental input to this software system will be the sequence of protein targets.  The fundamental output will be a list of ligands, from among a large list of possibilities, predicted to bind to the structure of these targets.  This software system will take a structure-based approach and its output will be describable at atomic resolution.  This goal will require:

1. Creation of protein structure models, typically using comparative modeling.

2. Refinement of these models.
3. Prediction of binding sites on proteins.
4. Docking ligands against these sites.
5. Analyzing the predicted ligands and complexes for functional inference (eg, the identity of the substrate, the pathway to which it belongs) and modulation (eg, leads for drug discovery).  
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Figure 1. Aims and corresponding Sections in C and D are numbered identically.
A key aim is to make this software system accessible to the general biological community.  To achieve this goal, the software must operate as an integrated and largely automated pipeline.  Admittedly, this is an ambitious goal.  Structure prediction, energy-based refinement of the models, and structure-based screens (docking) have remained the purview of experts, and even in their hands have been prone to error.  We nevertheless believe that this goal is possible.  Advances in the underlying technologies have overcome important barriers in the last five years.  Thus, comparative modeling has successfully predicted the structures of proteins on a genome wide-scale, and the results have been made available to the community4.  Correspondingly, docking screens for ligands and inhibitors, though they retain algorithmic liabilities, have had important, practical successes recently; docking software can reliably predict sensible ligands, a certain percentage of which can be expected to bind.  Finally, much of the underlying technology necessary for this pipeline already exists in our laboratories; a major goal of this project will be to link already existing software. Notwithstanding its ambition, this project is thus feasible.

Whereas many investigators have contributed to each component area of this pipeline, and each area remains actively researched, this modeling and docking system will be unique because it can be applied on a genomic scale, enabling a host of new applications. In addition to making the pipeline available to investigators in the community, we will ourselves apply it to several important problems in biology and medicine that have not been accessible on any scale previously.   
For instance, we will dock large libraries of functionally annotated ligands (such as metabolites and drug analogs) against multiple proteins within a family of proteins.  Based on the patterns of ligands predicted to bind, it should be possible to infer functional relationships among the proteins that would not be available from docking calculations, or even binding experiments, against any single protein in isolation (Section ‎D.18).   
Similarly, we will use the integrated technologies to target structures determined from structural genomics, as well as those of related homologs, in an effort to predict the functions of those proteins for which  no function is known (Section ‎D.19).  
Finally, we will use the pipeline to target entire classes of drug targets among pathogenic organisms, including all annotated cysteine proteases from several pathogenic parasites, and all proteins for which a sequence is available in the malarial genome (Core 3, Driving Biological Project 3). 
Of course, we anticipate that many of the new applications to which this pipeline will be addressed will come at the hands of the biologists who, because of its simplification and automation, will be able to use these modeling and docking technologies effectively against their own problems for the first time.  
B.1 Protein-Ligand Docking

B.1.1 Library Screening by Molecular Docking

Small molecule docking programs take a large database of molecules and screen each for complementarity to a binding site of known structure.  To distinguish this sort of docking from protein-protein docking (below), we will refer to it as “protein-ligand docking” or simply “ligand docking.”  To be useful, ligand docking screens must be fast, and therefore must make many approximations. Important energy terms, such as electronic polarization, are left out of docking calculations.  Important degrees of freedom, such as receptor conformation, are either under-sampled or simply ignored. In many ways, it’s surprising that docking screens work at all.
Docking has nevertheless had important recent successes5-11.  The technique has discovered genuinely novel ligands for over 17 disparate targets in the last two years alone (Table 1).  Increasingly, docking predictions have been tested by subsequent determination of x-ray structures; this has particularly been true in the work of Klebe10,12, Olson13,14, and ourselves15,16 (Figure 1).  Recently, docking screens have been compared to random high throughput screens (HTS), with the docking screens predicting ligands with a hit rate 100 to 1700-fold better than random screening alone (Table 2)17,18. 

How can the algorithmic weaknesses of docking be reconciled with these apparent successes?  Like any screening technique, docking tolerates both false positives and false negatives, as long as genuinely novel ligands are suggested at a rate high enough to justify the effort.  Its focus on libraries of available compounds makes it a popular technique for both pharmaceutical and academic screening19, and docking screens are now the most important way to leverage structure for novel ligand discovery.  As ever-more structures are determined20, there is an ever-larger pool of potential users for the technique.

Unfortunately, docking screens are largely restricted to a small number of experts and their collaborators.  There are large barriers to entry into the field: small molecule databases suitable for docking are expensive to acquire, demand considerable curation, and the programs require expert knowledge.  Even those groups willing to purchase small molecule source databases such as the Available Chemicals Database (ACD) are frequently unprepared for the series of calculations, including assigning charges, solvation energies, and often conformations that are necessary to make the database useful for docking.  These barriers have diminished the impact of docking screens and limited their applicability. 
Lowering these barriers to docking would bring the technology to a much larger audience.  To do so, the following would have to occur:

· A large database of receptor structures must be accessible.

· Binding sites on those receptors must be identified.

· Large databases of compounds must be constructed, including:

· A library of purchasable small molecules (for experimental testing).

· A library of annotated drugs (for exploring possible receptor functions).

· A library of annotated metabolites (for exploring pathways and connections).

· The interface to the docking software must be simplified.

· Lower throughput but more reliable energy methods must be available for post processing.

· This process must be available over the web and must be automated. 
	Target
	Best hit
IC50 ((M)
	Docking

program
	Structure

solved?

	Aldose reductase21
	4.3 
	Adam & Eve
	No

	CDK422
	44 
	Legend
	Yes

	Matriptase11
	0.9 
	DOCK
	No

	Bcl-223
	10.4
	DOCK 
	No

	Adenovirus protease24
	3.1 
	EUDOC
	No

	AmpC15
	26a
	DOCK3.6
	Yes

	retinoic acid receptor25
	2
	ICM
	No

	TH receptor26
	1.5
	ICM
	No

	TGT10
	8.3
	LUDI/ FlexX
	Yes

	Carbonic anhydrase12
	0.0008
	FlexX
	Yes

	HPRTase27
	2.2 a
	DOCK3.6
	No

	Cavity site28
	56 b
	DOCK3.6
	Yes

	H2picolinate reductase18
	7.2
	FLOG
	No

	PTP-1B17
	0.5
	DOCK3.6
	No

	Edema Factor29
	25 a
	DOCK3.6
	No

	CK230
	0.08
	DOCK4
	No


Table 1. Some recent docking successes (a, Ki. b, Kd.).
	Technique
	Compounds tested
	Hits with IC50 < 100 μM
	Hits with IC50 <   10 μM
	Hit Rate (%)

	HTS
	400,000
	85
	6
	0.021

	Docking
	365
	127
	18
	34.8

	Table 2. Docking versus screening for PTP-1B.
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Figure 2. Docking predicted (carbons in green) versus x-ray (carbons in cyan) structure of a novel -lactamase inhibitor. 

B.1.2 Automated Docking Screens and Functionally Annotated Hit Lists

We propose to develop tools and databases for automatic docking by non-specialists, as well as databases of pre-calculated and functionally-rich possible complexes.  This task will be achieved through a pipeline of linked software packages.  Aims 1 and 2 implement and improve modules for comparative protein structure modeling and model refinement, which provide the receptor structures with which the docking calculations will work. A strong start has been made in MODBASE and related databases and software packages, available from the Sali group.  Aim 3 develops a module for identifying ligand binding sites on these refined protein models.  Aims 4 to 6 develop the automated, web-based docking engine, which begins with the refined models and predicted binding sites, and ends with lists of predicted ligands and their geometries in complex with the receptors. This process involves building large virtual ligand libraries (all of which will be made available), constructing the automated docking engine itself, and delivering web-based tools for analysis and examination of the docking results.  
In later stages of the proposal, we describe projects to archive and relate docking results among different proteins, allowing for functional inference (Aims 11 and 18), and developing a cluster computer and software environment capable of executing the pipeline for hundreds of thousands of proteins and millions of ligands (Aim 17).  
Before describing the preliminary results that support the feasibility of these aims, we consider a second major theme of this proposal, the simulation of interactions between and among proteins through protein-protein docking.  

B.2 Protein-Protein Interactions: Assemblies and Pathways

Proteins are integral parts of larger biological units. Protein-mediated interactions in biological systems are organized into macromolecular assemblies and complex cellular signaling pathways and networks. As a consequence, the structures of individual macromolecules are often uninformative about function if taken out of context. Just as words must be assembled into sentences, paragraphs, and chapters to make sense, vital cellular functions are performed by structured complexes of proteins, not by freely diffusing and occasionally colliding proteins31.
The number of protein-mediated interactions is immense. The Protein Quaternary Structure (PQS) database currently contains ~10,000 structurally defined protein assemblies (http://pqs.ebi.ac.uk/pqs-doc.shtml). The most comprehensive information about protein complexes exist for the yeast proteome of ~6200 proteins. The Munich Information Center for Protein Sequences (MIPS)32 and Yeast Proteome Database (YPD)33 list ~11,000 binary interactions and functional links34, corresponding on average to ~3.5 partners per protein. In addition, several high-throughput studies of protein interactions have been performed in yeast, using two-hybrid35,36 and affinity purification methods37, and suggest that the lower bound on the binary protein–protein interactions and functional links in yeast is ~30,00034,38. This number corresponds to ~9 protein partners per protein or 3.6 protein partners per domain. The human proteome may have an order of magnitude more complexes than the yeast cell.  

Protein complex structures at the highest resolution possible are necessary for an understanding of biological processes from atoms to cells. Structural information on the architecture of binary complexes, assemblies, and interaction networks provides powerful means to formulate hypotheses and design experiments directed at a mechanistic understanding of biological processes. This strategy is complementary to ‘top down’ approaches to understanding cellular circuits. On one hand, by modeling biological processes through the interaction of modules, ‘top down’ predictive algorithms may be developed that do not require the knowledge of molecular detail (which is often not available). On the other hand, the generation of testable predictions will require more detailed, molecular information39. In addition, structural data are essential to answer important biomedical questions that concern an alteration at the molecular level: What is the consequence of a protein mutation or a small molecule drug on the behavior of a biological system? Answering such questions requires linking ‘top down’ and ‘bottom up’ concepts to understand biological mechanisms at the systems level. The computational approaches will help bridge the gap where experimental information is not available at the atomic level.

A comprehensive map of protein interactions cannot be obtained by experimental means alone. In recent years, two trends have emerged in structural biology: efforts to achieve comprehensive coverage of protein structure (ie, structural genomics) and efforts to analyze the structures of large complexes40,41. However, given the immense number of protein-mediated interactions, experimental methods are not capable of characterizing all complexes that exist in a cell. Our approach uses computational methods to complement and leverage experimental approaches to provide a predictive platform for understanding complex macromolecular assemblies.  

We propose to construct a protein docking pipeline. The input to the protein docking pipeline will be a set of one or more protein sequences, a database of known protein structures, and a set of known protein-protein interactions; the output will be models of protein complexes as well as rank-ordered specificities. This goal seems daunting, but has the potential to have an equally large impact, given the importance of molecular machines and functional networks in biology and medicine. Identification of assemblies and transient complexes combined with their structural and functional characterization will allow us to understand and modulate the functioning of larger biological systems and will contribute to drug discovery. 

There are challenges to the implementation of the protein-protein docking pipeline. Figure 1 illustrates that many of the modules of the Center will be shared by both protein-ligand and protein-protein docking, including the modules for comparative model building, energy refinement, and, with some modification, binding site identification.  Development of modules for archiving the data, creating a software backplane, optimization of algorithms for large-scale applications and testing is underway.  Enormous hardware resources will be needed for the development, testing and application of the pipeline. While it is clear that additional computing power will be needed in future years, the existing resources (1,700 CPUs) are already sufficient for initial development and testing efforts. These considerations suggest that, from a technical point of view, the implementation of a protein-protein docking pipeline is feasible.

Scientifically, protein docking faces significant challenges, both in the usability of docking by non-experts as well as in the failures of current methods to obtain consistently correct predictions. The development of a protein docking pipeline will facilitate usage by non-experts. Testing of the pipeline modules will address how application of docking algorithms by an expert user can be translated into automated execution. 
With respect to the underlying limitations of computational prediction methods, several features of this research program suggest that significant advances can be made even in the light of the present difficulties resulting in a significant proportion of incorrect predictions. Recent progress in (i) the development of more accurate energy functions, (ii) better sampling in protein-protein docking, and (iii) the integration of different sources of information to obtain models of large protein assemblies are encouraging. Although protein docking predictions still suffer from significant errors, we are entering the stage where predictions generate useful biological information and methods can be developed to gauge the accuracy of the predictions. These efforts will be significantly advanced by the Driving Biological Project 2 in Core 3.

Significant recent advances in protein-protein docking at both high and low resolution support the scientific feasibility of our proposal; they are summarized in the following two sections:

B.2.1 Progress in High-Resolution Protein-Protein Docking

Two general problems are encountered in high-resolution protein docking.  First, the conformational space has to be sampled adequately; secondly, the energy function has to be accurate enough to identify docked conformations close to the free energy minimum. Katchalski-Katzir, Vakser and coworkers have pioneered the development of fast Fourier transform based (FFT) methods for rapidly searching through the space of possible docked configurations42, and these methods have been incorporated into programs such as FTDock and 3D-Dock43,44, GRAMM45, DOT46, ZDOCK47, and HEX48.  While very fast, the FFT based methods represent proteins as rigid objects, whereas proteins often change their conformation upon binding. While large structural alterations upon binding occur in some cases, many rearrangements involve changes primarily in side-chain conformations49. A promising approach is to explicitly allow sidechain conformational flexibility during the docking procedure, as implemented by Sternberg and coworkers50, Abagyan and coworkers51 and ourselves52.  Significant advances have also been made in the rescoring of complexes to discriminate correct, native-like arrangements from many alternative conformations (“decoys”), using ‘statistical potentials’53,54 and physics-based scoring functions derived from molecular mechanics force fields55,56. 

Recent docking studies have obtained encouraging results. Fernandez-Recio51 tested their methods on unbound components (components of a protein complex that have been separately crystallized) and found correct solutions in the top 20 models in 17 of 24 cases. Palma et al.57 similarly found correct solutions of rank 20 or less in 14 of 25 cases (bound, semi-bound, or unbound) using a soft docking algorithm designed to capture side chain flexibility. Chen & Weng used target functions that are tolerant to conformational change to study 27 systems58; they predicted 12 structures within the top 20 ranked decoys. Our own results are described in Section C.9.5.

The first two rounds of CAPRI provided an important blind test of current protein docking methods59.  In this community-wide experiment, coordinates of two proteins are distributed to participants, who subsequently have to predict the structure of the protein-protein complex, which has been solved but not published. A total of 19 groups including ourselves predicted the structures of seven complexes. Collectively, the groups submitted acceptable predictions for five out of seven targets59. “Acceptable” predictions are those with an RMSD to native <4 Å and more than 10% correctly predicted residue-residue pairwise contacts59. These results are encouraging; “acceptable” predictions identify the correct interface patch, and can thus guide biochemical experiments aimed at modulating the interaction and understanding its function.

Our implementation of an automated protein docking pipeline will provide objective and large-scale tests to assess and improve the predictions. As the structures of the individual proteins forming a protein-protein complex may not be available from experiment, protein-protein docking will also need to be applied to comparative models. At the moment, only preliminary work has been carried out on the testing of docking methods with homology models. However, anecdotal evidence suggest that high-resolution docking techniques can in some cases be applied successfully to homology models: Our CAPRI prediction of a complex between dockerin and cohesin, given the structure of cohesin and our homology model of dockerin, was remarkably close to the native structure (Section C.9.5).

B.2.2 Progress in Structure Prediction of Macromolecular Complexes

The complexes generated by protein-protein docking are binary, but protein-mediated interactions in biological systems are often organized into larger macromolecular assemblies. An important aim of our protein-docking pipeline is to implement methods for the structural characterization of macromolecular assemblies. Sources of information about the assemblies and their constitutive macromolecules60,61 may include data from X-ray crystallography, NMR spectroscopy, electron microscopy, electron tomography, chemical cross-linking, foot-printing, immuno purification, yeast two hybrid system experiments, gene/protein arrays, site-directed mutagenesis, computational docking, bioinformatics analysis of protein sequences and structures, etc. Significant advances have been made in the modeling of the structures of macromolecular assemblies consistent with all available information. A striking example is the modeling of the nuclear pore complex consisting of 480 proteins, described in Section C.9.1. 

B.2.3 Automated Protein-Protein Docking

We propose to develop tools for the automated docking of protein-protein complexes for the non-specialist, both at high (atomic) and low resolution. This will be done through a pipeline of linked software packages, many of which will be shared by the protein-ligand and protein-protein docking pipelines (Figure 1). Aim 7 develops and implements a module that collects information on known protein-protein interactions from the reference resources in the web, providing a list of all protein assemblies to be modeled. Aim 8 develops and implements a module for identifying protein binding sites on protein models by homology to known protein complexes, by analogy to known interaction patches, and by analysis of sequence patterns that might be conserved because they constitute a binding site (Section D.8). Aims 9 and 10 implement the protein-protein docking methodology for binary and higher-order protein complexes, by adapting the methods described above for use in the pipeline. Higher-order organisms often contain several hundred homologous members of defined protein interaction module families. In these cases, we will apply the pipeline to attempt to predict specificities and cross-reactivities of these domains, which have been shown experimentally to form intricate protein interaction networks62 (Aim 10). 

Finally, the goal of Driving Biological Project 2 is to provide links between structural models of protein-protein interactions generated by the Center and the role of these interactions in their biological context. We will iteratively test and improve the predictive algorithms for protein-protein docking through tight coupling with experimental studies on protein complexes and interaction networks. These projects will provide critical data to assess the ability of the protein-protein docking pipeline, even in the presence of incorrect predictions, to generate experimentally testable hypotheses about the architecture of macromolecular assemblies, the function of protein-protein interaction networks, and the action of small molecule drugs on a system level.

C PRELIMINARY RESULTS

The following Section C.a briefly lists the investigators and their research interests. The subsequent longer Sections ‎C.1-‎C.18 list preliminary results for each of the Aims of this core, and incorporate relevant results from all the investigators. The Aims, Section C, and Section D are numbered identically.

C.a Investigators

C.a.1
Patsy Babbitt: Protein Functional Annotation and Assessment of Docking Results

The Babbitt group (UCSF) investigates structure-function relationships to generate models for functional inference. A prototype “Structure-Function Linkage Database” (SFLD) has been created to provide access to these structure-function mappings, including computationally accessible descriptions of enzyme chemistry. Characterized enzyme superfamilies will be used in assessing the Center’s comparative modeling efforts, loop modeling, and docking of small ligands; and in generating the Center’s functional predictions and enhancing their accuracy.

C.a.2
David Baker: Prediction and Design of Protein Structures, Protein Folding Mechanisms, and Protein-Protein Interactions

David Baker’s group (University of Washington, Seattle) is focused on the prediction and design of protein structures and protein-protein interactions. These efforts are combined in the ROSETTA program, which uses a common set of core optimization algorithms and energy functions for high resolution protein structure prediction, protein-protein docking, and design of protein structures and interfaces with other proteins and nucleic acids.

C.a.3
Ken Dill: Understanding Conformations and Folding Principles of Proteins, and Aqueous Solvation of Biomolecules, through Statistical Mechanical Modeling

Research in the Dill group (UCSF) focuses on understanding the physical principles governing protein stability, structure, and dynamics.  Simplified models have aided in understanding the free energy landscape and kinetics of protein folding, especially the role of the chain entropy, and the thermodynamics of solvation.  The lab is exploring novel computational search strategies with detailed molecular mechanics models, improved models of biomolecular solvation, and efficient algorithms for characterizing conformational dynamics.

C.a.4
Tom Ferrin: Interactive Molecular Visualization, Computational and Structural Biology, Bioinformatics, Software Design

Tom Ferrin's group (UCSF) focuses on the creation of innovative computational and visualization-based data analysis methods and algorithms, implementing these as professional-quality easy-to-use software tools, and applying these tools for solving a wide range of genomic and molecular recognition problems.  Tom is also director of the UCSF Resource for Biocomputing, Visualization, and Informatics (RBVI), described in Section G of the Introduction.

C.a.5
John Irwin: Molecular Docking Software and Databases

John Irwin's team in Brian Shoichet’s research group (UCSF) makes molecular docking software easier to use for non-specialists, lowering the barriers to entry in virtual screening. We are developing a free database of commercially available small molecules suitable for docking, building a free web-based molecular docking service in the spirit of BLAST, and using these technologies to discover novel inhibitors for therapeutic targets.

C.a.6
Marti Hearst: Databases, Information Retrieval, Natural Language Processing, User Interfaces

Marti Hearst's BioText project (UC Berkeley) creates new user interfaces for search and navigation of biomedical text, algorithms for natural language processing of biomedical text, and database techniques that help to integrate these interfaces and algorithms.  We have developed algorithms for analyzing biomedical text, recognizing abbreviation definitions, recognizing the relations between the words within noun-noun compounds, and mapping different gene name descriptions into a canonical representation. These techniques will be applied to integrate navigation and search of biomedical articles into the Center’s protein and ligand pipelines, to help scientists make sense of their results and postulate new hypotheses.

C.a.7
Matt Jacobson: Physics-Based Protein Structure Modeling

Research in the Jacobson lab (UCSF) focuses on physics-based modeling of proteins and protein-ligand complexes. We use all-atom, physics-based energy functions in creating new computational tools for protein modeling, including sampling algorithms for side chains, loops, and helix positions and orientations. The Center will use these algorithms to refine homology models in preparation for ligand docking, and to refine and score protein-ligand complexes generated by Dock. Accurate all-atom energy functions can significantly improve the critical details of active sites such as hydrogen bond networks. 

C.a.8
IBM and Intel: Hardware and Software Infrastructure Development

The investigators at UCSF have productive relationships with both IBM and Intel.

The relationship with IBM involves scientific collaborations between Ken Dill (UCSF) and Jed Pitera (IBM, Almaden, CA) on protein folding theory (Section C.a), and between Andrej Sali (UCSF) and Ajay Royyuru (IBM, Hawthorne, NY) on the assessment of protein structure models by statistical scoring schemes. In August 2003, IBM awarded UCSF a SUR grant for 40 computational nodes with dual Intel Xeon CPUs to support our large-scale protein structure modeling and ligand docking project (Section ‎C.13). IBM will continue to contribute their expertise on the hardware and software environments for large computations, as described in detail in Section D.17.2; in particular, IBM will ensure that our software runs efficiently on their BlueGene computer.

Likewise, we have a strong relationship with Intel, including Tim Matson (Strategic Lead, Worldwide Life Sciences) and Allan Knies (Principle Engineer, Itanium architecture group). Together, we achieved a six fold improvement in the speed of dynamic programming routines in MODELLER running on a 64 bit Intel Itanium processor, by optimizing our source code, compiler options, and the compiler itself (Section C.17). In September 2003, Intel awarded us a 4 CPU Itanium server and 4 nodes with dual Intel Itanium CPUs, which we combined with our computer cluster and are using to support the large-scale protein structure modeling and ligand docking project. Intel will continue to contribute their expertise on the cluster hardware and software infrastructure, as described in detail in Section D.17.1.

C.a.9
Tanja Kortemme: High Resolution Modeling, Prediction and Design of Protein-Protein Interactions

Tanja Kortemme’s group (UCSF) has developed a computational framework for high-resolution modeling of protein-protein complexes. We have developed methods of modeling side-chain flexibility and a simple all-atom free energy function for the identification of energetically important interactions in interfaces and for the prediction and design of interaction specificity.  The Kortemme lab will develop, apply, and improve these methods for prediction of protein-protein interaction specificity using the structural information generated by the Center’s protein docking pipeline.

C.a.10
Marc A. Marti-Renom: Structure-Sequence-Function Relationships for Protein Structure and Function Prediction

Marc Marti-Renom (UCSF), Adjunct Assistant Professor in the group of A. Sali, uses computational methods to analyze protein sequence and structure databases and to improve the accuracy of protein structure prediction in the Center’s software pipeline.
C.a.11
Jed Pitera: High Performance Computing for Life Sciences: Kinetics and Thermo-dynamics of Protein Folding

Jed Pitera is a research staff member in Science & Technology at the IBM Almaden Research Center in San Jose and Adjunct Assistant Professor in the Department of Pharmaceutical Chemistry (UCSF).  His research focuses on atomistic molecular dynamics simulations of protein folding kinetics and thermodynamics as part of the IBM BlueGene project.  Other research interests include accurate approaches for the calculation of free energy differences in biomolecular systems and the development of improved models for simulations of water and solvation phenomena. This work helps drive the development of new hardware and new software (both middleware and applications) for high performance computing in the life sciences.

C.a.12
Ben Rosen: Efficient Computational Algorithms for Local and Global Constrained Optimization Problems and Their Application to Computational Biology

J. Ben Rosen is a Professor Emeritus in Computer Science & Engineering at the University of Minnesota, a Senior Fellow in the Computer Science & Engineering department at University of California, San Diego, and Editor of Journal of Global Optimization. He has an extensive background in global optimization and close ties to the San Diego Supercomputing Center. A close collaborator with the Dill group (UCSF), Rosen has helped develop global optimization algorithms for protein structure prediction, protein-ligand docking, and force field parameter optimization. 

C.a.13
Andrej Sali: Prediction of Structure and Function of Proteins and Macromolecular Assemblies

The Sali group (UCSF) is using computation grounded in the laws of physics and rules extracted from databases to study the structure and function of proteins. We develop, improve, and apply tools for (i) predicting the structures of proteins; (ii) determining the structures of macromolecular assemblies; and (iii) annotating the functions of proteins using their structures.

C.a.14
Brian Shoichet: Structure-Based Inhibitor Discovery and Molecular Docking

Brian Shoichet's laboratory (UCSF) studies how protein structures can be used as templates for designing new ligands to modulate functions.  A major focus is the development and testing of molecular docking algorithms for our pipeline, and integrating algorithm development aspects with experimental studies.

The following longer Sections ‎C.1-‎C.18 list preliminary results for each of the Aims of this core, and incorporate relevant results from all the investigators. The Aims, Section C, and Section D are numbered identically.

C.1 Automated, Large-Scale Comparative Protein Structure Modeling (Sali)

The very first requirement for the docking pipelines that form the heart of this project is a module for comparative protein structure modeling.  This requirement is a sine qua non for this entire project: protein structure modeling is necessary to get genomic coverage, and all the subsequent modules in the pipeline depend on the structures it will generate (Figure 3). The Sali group has extensive experience with developing programs, databases, and web servers to this end, including the MODELER program and the MODBASE database, which are widely used. 

C.1.1 MODELLER, a Program for Comparative Protein Structure Modeling
The Sali group developed MODELLER, a computer program for comparative protein structure modeling (http://salilab.org/modeller)63-70. In the simplest case, the input is an alignment of a sequence to be modeled with the template structures, the atomic coordinates of the templates, and a short script file. MODELLER then automatically calculates a model containing all non-hydrogen atoms, without any user intervention and within minutes on a Pentium processor.

MODELLER implements comparative protein structure modeling by satisfaction of spatial restraints. The spatial restraints include (i) homology-derived restraints on the distances and dihedral angles in the target sequence, extracted from its alignment with the template structures, (ii) stereochemical restraints such as bond length and bond angle preferences, obtained from the CHARMM-22 molecular mechanics force-field71, (iii) statistical preferences for dihedral angles and non-bonded inter-atomic distances, obtained from a representative set of known protein structures, and (iv) optional manually curated restraints, such as those from NMR spectroscopy and cross-linking experiments. The spatial restraints, expressed as probability density functions, are combined into an objective function that is optimized by a combination of conjugate gradients and molecular dynamics with simulated annealing. This model building procedure is similar to structure determination by NMR spectroscopy.

The loop prediction algorithm in MODELLER is particularly relevant to this proposal72 because the structural elements that deliver the ligand binding specificities are likely to be largely associated with loops.
MODELLER optimizes the positions of all non-hydrogen atoms of a loop in a fixed environment. The optimization relies on a protocol consisting of the conjugate gradient minimization and molecular dynamics with simulated annealing. The pseudo-energy function is similar to that outlined above, but does not depend on any template structures. It contains terms from a molecular mechanics force field as well as restraints based on statistical distributions derived from known protein structures. Bonds, angles, some dihedral angles, and improper dihedral angles are restrained by the corresponding terms in the CHARMM-22 potential function71. The mainchain and sidechain dihedral angles as well as non-bonded atom pairs are restrained by statistical potentials extracted from many known protein structures64,65,73,74. The modeling protocol generates a number of independently optimized conformations (eg, 500), starting with random initial structures. The final loop prediction is the optimized conformation that has the lowest pseudo-energy score. Evaluation of the method relied on 40 randomly selected loops of known structure at each length from 1 to 14 residues. The accuracy was determined by building loops both in the native and distorted loop environments because only approximate loop environments are available in real comparative modeling applications. The errors in loop predictions increase with loop length and environment distortion. 
Recent developments include improvements in fold assignment75, sequence-structure alignment75,76, sidechain modeling77, incorporation of an implicit solvation model67, model assessment78, and automation of the modeling process68,79. 
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Figure 3. Programs, databases and web servers developed by the Sali group, and their links to CHIMERA (Section ‎C.12.1) and other external resources.
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Figure 4. Schematic illustration of comparative protein structure modeling by satisfaction of spatial restraints, as implemented in MODELLER.

The program has been distributed freely to more than 5,000 academic laboratories and is licensed to a large number of biotech and pharmaceutical companies. In addition, we applied MODELLER to construct many comparative protein structure models that were used to address biological problems in collaboration with other scientists, including identification of ligand binding sites, characterization of substrate and ligand specificity, and protein-protein docking63,80-105.

C.1.2 MODPIPE, a Program for Automated Comparative Protein Structure Modeling

The Sali group developed MODPIPE, a completely automated software pipeline for comparative protein structure modeling that can calculate comparative models for a large number of protein sequences4,68,106. Sequence-structure matches are established by aligning the PSI-BLAST sequence profile107 of the target sequence against each of the template sequences extracted from the Protein Data Bank28, as well as by scanning the target sequence against a database of the template profiles using IMPALA108. Significant alignments covering distinct regions of the target sequence are chosen for modeling. Models are calculated for each of the sequence-structure matches using our program MODELLER. The resulting models are then evaluated by a composite model assessment criterion that depends on the compactness of a model, the sequence identity of the sequence-structure match, and statistical energy Z-scores78,109.

The thoroughness of a search for the best model is modulated by a number of user parameters, including two E-value thresholds for identifying useful sequence-structure relationships and the degree of conformational sampling given a sequence-structure alignment. The validity of sequence-structure relationships is not pre-judged at the fold detection stage, but is assessed after the construction of the model and its evaluation. This approach enables a thorough exploration of fold assignments, sequence-structure alignments, and conformations, with the specific aim of finding the model with the best evaluation score.
C.1.3 MOULDER, a Program for Comparative Modeling Based on Distant Structures

The Sali group developed MOULDER, an optional protocol available to the MODPIPE pipeline (http://salilab.org/modweb)68,109. If chosen, an iteration of target-template alignment, model building, and model assessment replaces the default model building step by MODELLER in the standard MODPIPE protocol. MOULDER optimizes both the given alignment and the model implied by it. The optimization relies on a genetic algorithm protocol that starts with an initial alignment, and then iterates through re-alignment, model building, and model assessment to optimize a model assessment score. During this iterative process, (i) new alignments are constructed by application of genetic algorithm operators, such as alignment mutation and cross-over, (ii) the comparative models corresponding to these alignments are built by satisfaction of spatial restraints, as implemented in MODELLER, and (iii) the models are assessed by a composite criterion, partly depending on an atomic statistical potential. This iterative approach blurs the boundary between traditional comparative modeling, which calculates a highly refined model for one alignment, and threading, which calculates a simple implicit model for each one of the many tested alignments. MOULDER runs on a cluster of computers running the Linux operating system. For a 150-residue target sequence, the protocol currently requires approximately a day of computation on 100 CPUs.
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Figure 5. Large-scale automated comparative protein structure modeling by MODPIPE.

C.2 Refining Comparative Models (Jacobson)

Many of the more ambitious aims of the Center’s computational pipeline will involve docking of small molecule ligands into protein homology models.  The accuracy achieved in this effort will of course depend critically on the accuracy of the protein models, particularly in and near the binding sites. 

The major emphasis of Dr. Jacobson’s prior work has been the development of a new approach to protein model refinement that is aimed at reducing the computational effort for all-atom predictions, as well as improving the accuracy of the energy functions themselves.  In principle, one should be able to refine protein models by employing an accurate molecular mechanics energy function, including solvation effects, and locating the global (free) energy minimum of this function.  In practice, this strategy has rarely been applied to the refinement problem, both due to the expense of the individual energy calculations and due to the difficulty of sampling the rugged all-atom energy surface.  That is, although there are numerous examples of all-atom physical chemical models being used to elucidate the function of specific proteins by molecular dynamics (MD) simulations, such models currently play a very limited role in predictive modeling, when the protein in question lacks an experimentally determined structure.  

As part of these previous efforts, Dr. Jacobson developed numerous new algorithms to make the all-atom predictions computationally tractable, with an emphasis on hierarchical and multi-scale algorithms.  We take a "divide and conquer" approach, defining a number of critical sub-problems, which include conformational sampling algorithms for side chains, loops, and helices, as shown in Figure 6.  These are applied iteratively in protein modeling applications.  The essence of the approach is to combine dihedral angle sampling methods, which enable large energy barriers to be surmounted, with direct minimization to rapidly enumerate local minima.    These algorithms have been implemented in a new software package (~50,000 lines, Fortran 90) called Protein Local Optimization Program (PLOP), which is developed and maintained in Dr. Jacobson’s group at UCSF.  The program is freely available for academic purposes.  

Most of the work described below uses the all-atom OPLS force field110-112 and the Surface Generalized Born113 solvent model with a nonpolar solvation free energy estimator114.  Dr. Jacobson has also been active in the validation and refinement of these energy models112,115.
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Figure 6. Schematic overview of the hierarchy of algorithms implemented in Protein Local Optimization Program (PLOP), which is developed and maintained in the Dr. Jacobson’s group at UCSF.  The full range of capabilities is employed in the work proposed here.

C.2.1 Improved Minimization for Comparative Modeling

Rapid energy-based minimization will aid the refinement/rescoring algorithms for protein-ligand complexes described in Section D.6.1 and plays a foundational role in the homology model refinement algorithms. 

The truncated Newton method that we employ has been demonstrated by others to outperform commonly employed quasi-Newton and conjugate gradient methods on many classes of problems116.  We have further accelerated the method with a simple multi-scale strategy in which long-range forces are updated less frequently than short-range forces. This approach is analogous to multi-scale MD methods such as RESPA117 and leads to a 3-5 fold speed-up relative to the Truncated Newton algorithm alone. Figure 7 compares minimization convergence for three algorithms on a short loop.  This comparison reveals a three-fold acceleration for our “Multi-Scale TN” method relative to TNPACK118 (ie, truncated Newton without multi-scale updating), and several orders of magnitude acceleration relative to the conjugate gradient method. In addition to these gas-phase results, a self-consistent minimization algorithm for use with Generalized Born (GB) solvent models has been developed. This algorithm permits minimizations in implicit solvent to be accomplished with only 50% additional computer time and will be especially useful for optimizing protein-ligand complexes.  Typical computational time for minimizing a ligand in a rigid protein receptor, using GB solvent, is only ~15 s.  A manuscript describing this work is in preparation.   
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Figure 7. Three minimization algorithms applied to a short loop, residues 42-46 in 2igd, using the OPLS force field in the gas phase.  Convergence is monitored by root-mean-squared gradient, on a logarithmic scale, versus computational time. 

C.2.2 Side Chain Optimization in Comparative Modeling

The side chain sampling algorithm119,120 will be employed to refine active site side chain conformations, both pre- and post-docking.  The algorithm developed by Dr. Jacobson uses highly detailed rotamer libraries developed by Xiang and Honig120,121. Combinatorial side chain optimization proceeds by an iterative procedure in which one side chain at a time is optimized with the others held fixed120,121 followed by complete energy minimization and scoring with the OPLS/GB energy function110,113,114. In validation tests on proteins of known structure, the prediction accuracy for core residues (< 20% solvent exposed) was 96% "correct" for the 1 dihedral angle (using the standard ±40° criterion)121. Side chain prediction accuracy for surface and/or partially buried side chains, which is much more important in the context of active site generation or ligand docking, has not been consistently reported in the literature. In our own validation tests, the side chain prediction accuracy for residues in and near active sites, particularly for charged and polar groups, is much more sensitive to the choice of scoring function than the buried side chains. To our knowledge, ours is the first side chain prediction algorithm to employ an all-atom force field with a Generalized Born solvent model.  Many prior studies have entirely ignored electrostatics and solvation, or used simple models such as distance-dependent dielectric.  Optimization times scale linearly with the number of residues being optimized, approximately 3 s per side chain residue on a 1.2 GHZ PC. 
The first published use of the side chain packing algorithm was an analysis of the effects of crystal packing forces on side chain conformations121. Other applications of the side chain prediction algorithm have also been described in the literature112,122.  
C.2.3 Loop Sampling in Comparative Modeling
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Loop prediction is a critical technology for homology modeling65,123.  The basic strategy employs a dihedral angle sampling procedure for the backbone degrees of freedom to generate thousands of loop candidates, followed by iterative cycles of clustering124, side chain optimization, and complete energy minimization of selected loop structures.  We have evaluated this method using the largest test set yet employed for validation of a loop prediction method, containing 833 loops ranging from 4 to 12 residues in length.  Average/median backbone RMSDs to the native structures are 0.42/0.24 Å for 5 residue loops, 1.00/0.44 Å for 8 residue loops, and 2.47/1.83 Å for 11 residue loops.  It should be noted that these RMSD values are generated by superimposing the loop stems and not just aligning the freestanding loop. That is, any errors in the orientation of the loop with respect to the protein are included as well as mistakes in loop shape. In the vast majority of cases, the method locates energy minima that are lower than or equal to that of the minimized native loop, indicating that sampling rarely limits prediction accuracy.  The overall results are, to our knowledge, the best reported to date.  We attribute this success to the combination of an accurate all-atom energy function, efficient methods for loop build-up and side chain optimization, and the hierarchical refinement protocol.  Timings average a few CPU-hours for an 8 residue loop. As written, the algorithm is not intended for genome-scale protein structure prediction, but it is highly appropriate for the detailed model building activities in this proposal where accuracy is paramount to achieve high quality ligand design and docking.

Figure 8 illustrates the loop prediction algorithm for a nine-residue loop in 3pte (residues 78-86)125.  The prediction proceeds in three stages, an initial loop build-up stage (blue squares), followed by two refinement stages (red circles and green triangles) in which progressively finer sampling is applied to low energy loop conformations found in preceding stages.  Each point on the energy versus RMSD plot represents a single local minimum of the energy function.  Two basins of attraction can clearly be observed, and it is only after stage 3 that the algorithm has sufficiently explored the two funnel-like basins to reveal that the native-like basin has substantially lower energy.  Thus, the loop prediction is hierarchical in multiple senses.  The three stages of prediction sample the energy surface at progressively higher resolution, and at each stage, hierarchical methods eliminate bad conformations (e.g, steric clashes) without full energy evaluations, and clustering methods reduce redundancy.    


Figure 8. Local energy minima identified for a nine residue loop in 3pte (residues 78-86), during a three-stage prediction algorithm.  Stage 1 minima are represented by blue squares; stage 2 by red circles, and stage 3 by green triangles.

We continue to pursue improvements to the loop prediction algorithm126.  As part of an on-going collaboration, Dr. Jacobson’s group has integrated into existing code an analytical loop closure algorithm developed by Prof. Evangelos Coutsias (U. New Mexico) and Prof. Ken Dill and his group (UCSF).  This closure algorithm borrows key concepts from literature on robotics and kinematics, and improves upon previous work127,128 in terms of its generality and speed.  It determines the backbone torsion angles for three residues using analytical expressions based upon the geometries of the flanking residues.  Thus, fewer backbone torsions need to be explicitly sampled, reducing the complexity of the conformational search.  This capability is particularly valuable for long loops.  For example, when tested on a series of 12-residue loops, the analytical loop closure algorithm identified 70 times more closed loops than our previous method of closure, at the same sampling resolution.  Moreover, the analytical closure is fast, with an average computational expense of 0.72 ms per loop, compared with 106 ms per loop with our previous method.  Further optimization and testing is underway.

C.2.4 Helix Sampling in Comparative Modeling

This novel capability is critical for homology modeling below 50% sequence identity129. Helix shifts can also be important in conformational changes due to ligand binding130, and this algorithm will be adapted for induced-fit studies as needed for this proposal.

The prediction of helix positions and orientations is accomplished by coupling rigid body motions of the helix with prediction of the flanking loops.  The key steps of the algorithm are:  

1. Initial sampling of helix positions, using geometric transformations to generate many candidates, followed by multiple stages of screening to eliminate conformations based on a variety of geometrically and physically based criteria.

2. Clustering124 of the surviving helix conformations to reduce redundancy, and selection of representative candidates from each cluster, which are subjected to steps 3-5.

3. A coarse-grained loop construction procedure, to close the two flanking loops rapidly.

4. Multi-stage, hierarchical loop refinement as described above. 

5. Side-chain optimization and complete energy minimization of the entire loop-helix-loop region, using the algorithms described above.

As with the loop prediction algorithm, the use of hierarchical screening and clustering greatly improves algorithmic efficiency.  We have validated this algorithm in tests analogous to those employed to validate loop prediction, ie, predicting the loop-helix-loop region keeping the rest of the protein fixed at the native conformation.  The average RMSD for the helix regions is 0.9 Å for 36 cases in the test set.

C.2.5 Assessment of Comparative Modeling

The goal of Dr. Jacobson’s CASP5 participation was to establish that physics-based energy functions could be used to improve the quality of comparative protein models in two ways131:  

· by selecting the most accurate model among several possibilities generated from different template proteins, or different alignments to the same template protein, and 

· by refining initially constructed models to improve the accuracy (an historically difficult problem).  

Here we provide one example, target T178.   The model 1 submission for this target ranked #7 out of 139 submissions according to the GDT-TS (Global Distance Test—Total Score), which is used as a primary measure of model accuracy by CASP assessors.  Although several of the models submitted by Dr. Jacobson’s team ranked even higher (including the single best model for T186_1), this example illustrates the use of the all-atom energy function for both model selection and model refinement.   

T178 is an / barrel, deoxyribose-phosphate aldolase, with 37% sequence identity to the closest template protein (1jcl).  Available alignments differed significantly in the C-terminus, and we constructed models from two reasonable alignments and subjected them to extensive energy-based refinement.  The all-atom energies of the models after refinement differed by >100 kcal/mol.  The CASP5 results reveal that the lower energy model, submitted as model #1, has a C RMSD of 2.0 Å, compared to 6.0 Å for the other model.  The refinement itself, which involved iterative application of the side chain, loop, and helix sampling algorithms, also improved the model quality, at least for the correct alignment.  The C RMSD decreased from 2.4 to 2.0 Å during refinement, while the GDT-TS score improved from 78.3 to 83.0.  As shown in Figure 9, the improvement results mostly from better positioning of three helices.  The unrefined initial model would have ranked #40 out of 139 submissions, while the refined model ranked #7, according to GDT-TS. 
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Figure 9. Energy-based refinement of a model for Target 178 in CASP5.  In the left/right panels, the unrefined/refined models are superimposed on the native.  Green indicates highest accuracy (<1 Å), while yellow and orange represent progressively less accurate regions.  Three helices that account for most of the improvement are highlighted.

Finally, we note that the quality of the active site region is excellent.  The overall heavy atom RMSD, including side chains, over 22 residues in the active site was 0.99 Å after refinement.  The five residues among the 22 that are not conserved between target and template (T18A, K172F, A203S, V206I, A237T) show substantial improvement due to refinement, with the side chain RMSD decreasing from 1.4 to 0.5 Å.

C.3 Identifying Ligand Binding Sites on Protein Models (Babbitt, Sali)

Virtual screening works best when one knows the site into which the ligands will dock.  This information will often be unavailable for the proteins targeted in the ligand-docking pipeline, many of which will not even have an annotated function. Thus, we need to develop methods for predicting the locations of binding sites; this task is the focus of Aim 3 of this proposal.  

The Babbitt and Sali groups have developed methods for identification of ligand binding sites. The Sali group’s methods are suitable for high-throughput inference both from homology (Section C.3.1) and through identification of generalized biophysical properties (Section C.3.2). Both approaches are sufficiently mature for immediate implementation in the pipeline. In Section C.3.3, theoretical work done by Babbitt to understand explicit mappings between conserved structural elements and common functions in protein superfamilies is described. This work has led to models for prediction of functional properties, including ligand binding sites, that will be useful for assessment and evaluation of modeling and docking and for applications of the pipeline for functional annotation. A Structure-Function Linkage Database (SFLD) provides these structure-function mappings in a form that can be integrated into the pipeline (Section C.3.3). Sections C.3.4 and C.3.5 describe preliminary results from superfamily analysis pertinent to identification of ligand binding sites on protein models.

C.3.1 Predicting the Location of Binding Sites for Small Ligands by Homology (Sali)

MODBASE contains a list of the binding sites of known structure for approximately 50,000 ligands found in the PDB132. The ligands include small molecules, such as metal ions, nucleotides, and saccharides, but exclude water molecules, peptides, and nucleic acids. Binding sites in the template structures are defined by residues with atoms within 5Å of any ligand atom. In addition to the actual binding sites in the known structures, MODBASE also contains predicted binding sites on the template structures and models. The predicted binding sites on the template structures are inherited from any related known structure if at least 75% of the binding site residues are within 4Å of the template residues in a global superposition of the two structures and if at least 75% of the binding site residue types are invariant. The structure superpositions are obtained from our comprehensive database of all pairwise structure superpositions, DBALI133. The predicted binding sites on the model are defined by all the model residues that are aligned with either the actual or predicted binding site residues on the template. 44% of the models in MODBASE have at least one predicted binding site for a small ligand.

C.3.2 Predicting the Location of Binding Sites by Optimization (Sali)

The Sali lab has  developed a method for predicting the locations of binding sites on protein structures134. The input is the protein structure to be annotated. The output is a list of putative binding site locations. First, the scoring function is constructed that encodes a number of binding site properties, such as sequence conservation, cavity shape, geometric features, polarity, hydrophobicity, and electrostatic patterns. The function is constructed by contrasting the sample binding sites to random surface patches, potentially also relying on sample protein structures with known binding sites of the required type. Next, the method uses a Monte Carlo search algorithm to find the patches on the molecular surface of the protein that optimize the scoring function. The approach is automated and applicable on large scale. It is also general in that it can in principle emulate methods for locating binding sites by their generic properties (eg, the scoring function is cavity size), geometric patterns (eg, the scoring is a root-mean-square deviation between a 3D motif and a putative binding site), as well as physical docking (eg, the scoring function is energy). The method was tested by predicting ~2,000 known binding sites on ~1,000 proteins of known structure. These sites bind 20 different types of a small ligand, such as ATP, ADP, and heme. The method identifies the correct binding sites in approximately 80% of the cases. 

C.3.3 Using Enzyme Superfamilies for Prediction of Ligand Binding Sites and other Functional Characteristics of Modeled Proteins (Babbitt)

For extremely diverse homologs, including many models from MODBASE, identification of ligand binding sites can be complicated. This difficulty arises because only a subset of ligand binding interactions will be common among such proteins, and these commonalities can be difficult to determine in the complex background presented by the divergent relationships. For example, divergent members of enzyme superfamilies may have only a partial reaction in common rather than performing the same overall reaction. The related proteins may differ substantially in substrates/products as well, making it difficult to infer either their functions or ligand binding sites simply from distant similarity to a known sequence or global similarities among modeled structures.

Prediction of ligand binding sites can be enhanced by understanding the general principles by which structural similarities in a given superfamily of divergent proteins can be mapped to similarities in ligand binding and in function. This allows us to distinguish ligand binding sites for specific substrates used by individual members of a superfamily from ligand binding sites for moieties common to all substrates associated with superfamily members. Bioinformatic and theoretical studies in the Babbitt group have contributed to the “chemistry-constrained” model of enzyme evolution which describes many superfamilies evolved from an ancestral scaffold by altering the substrates they bind and their overall chemical reactions while preserving the structural characteristics required to perform only a fundamental chemical capability135-138. This model has been useful for prediction of complex structure-function relationships within many highly diverse enzyme superfamilies139-148. In the pipeline, rules generated from structure-function mappings in specific superfamilies will be applied to prediction of ligand binding sites and other functional characteristics of modeled proteins (Aims 3, 8: Sections D.3.3-
D.3.5, D.8.3), to assessment of modeling and docking results (Aims 2 and 6: Sections D.18-20), and to improvement of the associated algorithms and tools.

The best understood example of a chemistry constrained superfamily is the enolase superfamily139. Although the 500+ nonredundant sequence members of this superfamily are highly divergent, structural characterization of 10 members shows a remarkable similarity in their folds and active sites. Consistent with the chemistry-constrained model, the overall chemical reactions of these enzymes are highly diverse and involve substantially different substrates and products; however, all perform a common fundamental partial reaction which can be associated specifically with the conserved structural elements in their active sites. This partial reaction, abstraction of a proton alpha to a carboxylate group in the substrate, initiates catalysis, leading to a common type of enolate anion intermediate. Superposition of the active site residues associated with this partial reaction for six of these enzymes is shown in Figure 10, accompanied by the different overall reactions of each enzyme represented. 

Despite the fact that all of these overall reactions are very different, the structural similarities associated with the proton abstraction step allowed prediction, subsequently verified by experiment, of active site residues in proteins of unknown function in the initial publication describing the enolase superfamily139. This approach has been applied to additional superfamilies studied in the laboratories of Babbitt and her collaborators138,145,147,148, showing the generality of these concepts for other superfamilies representing different fold classes. Recent studies by other groups suggest that the prevalence of this chemistry constrained enzyme evolution is widespread149-151 and likely represents the dominant model for functional divergence in enzymes.

[image: image13]
Figure 10. Superposition of conserved active site residues associated with the common proton abstraction step in some divergent enolase superfamily members. Overall reactions of these enzymes are shown; the proton abstracted to initiate the reaction in each enzyme in shown in red.

The widespread occurrence of chemistry-constrained enzyme superfamilies has important consequences for assessment of pipeline performance, especially with regard to identification of ligand binding residues and for functional inference for structures modeled from a homologous template. Specifically, members of chemistry-constrained superfamilies are not expected to share all of the same ligand binding residues but only a subset, despite perhaps substantial similarity in their overall structures. Moreover, docking hit lists would not be expected to share the same ligand hit list profiles overall, but rather, only the same profiles for moieties associated with common functional capabilities of the members of a given superfamily. Thus, the approach described here provides an opportunity to distinguish similar binding ligands across more complex and divergent sets of related proteins than is possible from more commonly used approaches. While it will be time consuming to generate a sufficient number of characterized superfamilies to be globally useful with the pipeline, even the small number of superfamilies now available represent an important “Gold Standard” source of information that can be used for evaluation and improvement of docking and modeling methodologies. Several of these “Gold Standard” superfamilies have been archived in a “Structure-Function Linkage Database,” described in the next section. 

C.3.3.1 Development of a Structure-Function Linkage Database (SFLD) to Capture the Linkage between Enzyme Chemistry and the Sequences/Structures that Mediate that Chemistry

To enable use of superfamily-based analyses in the Center, an existing Structure-Function Linkage Database (SFLD) will be integrated into the pipeline. The SFLD will be used in identification of ligand binding sites (Aim 3: Sections D.3.3-D.3.5) and protein binding sites (Aim 8: Section D.8) on protein models, and in applications of the pipeline for evaluation of docking results (Aim 6: D.18) and for functional annotation (Aims 18-20: Sections D.18-20). The SFLD can be viewed at http://sfld.rbvi.ucsf.edu.

The Babbitt lab originally created the SFLD, in collaboration with Tom Ferrin’s group, to capture functional similarities in enzymes that are members of chemistry-constrained superfamilies (manuscript in preparation). The database was designed to include both overall chemical reactions and the partial reactions that each of members of a given superfamily perform. This information is important to capture because partial reactions can be correlated explicitly with conserved active site patterns or residues. By comparing the partial reactions that each superfamily member performs, fundamental functional capabilities common to all members of a superfamily can be identfied140,141. The SFLD allows annotation of new sequences by associating them with a characterized superfamily and then transferring annotation of the appropriate common partial reaction or chemical capability based on that homologous relationship. For well characterized superfamilies, a new sequence can be further annotated with respect to how well it clusters with a specific subgroup or family within the superfamily.  This is achieved by matching the new query sequence against Hidden Markov Models152 representing each superfamily and each subgroup or family within a superfamily in the database. Currently, X-ray crystal structures are stored in the SFLD, along with information regarding the particular residues involved in specific functional or chemical roles. The schema design can easily incorporate modeled structures. The user interface incorporates the Chimera visualization program, which will be used for other visualization needs in the pipeline, allowing a flexible method of visualizing the links between protein structure and function. Users can download database information as PDB files, SMILES strings, and multiple sequence alignments.

Users can search the SFLD by specifying a reaction or partial reaction, or by specifying the structure (or substructure) of a substrate or product. Searches are performed using the extremely flexible SMILES/SMARTS153,154 patterns. Figure 11 shows some reaction queries. The flexibility of these reaction searches allows users to find individual enzymes which perform a specific reaction, as well identify sets of enzymes which perform classes of reactions or partial mechanistic steps.
C.3.4 Active Site Templates for Identification of Superfamily Members and Ligand Binding Sites (Babbitt)

Three-dimensional active site templates have been developed for chemistry-constrained enzyme superfamilies. These types of active site templates will be used in the Center for identification of ligand binding sites on protein models (Aim 3: Section D.3.5) and for applications in functional annotation (Aim 19: Section D.19).

The SPASM algorithm (Spatial Arrangements of Side-chains and Main-chain)155 was used to generate active site templates based on 5-7 residues associated with molecular functions/ligand interactions conserved across families and superfamilies. These were used to search structural databases. For one model system, the enolase superfamily, templates were chosen to distinguish superfamily members from other ()8 barrel proteins or to distinguish subgroups within the superfamily. The results showed that the subgroup-targeted templates are highly sensitive and specific with no false positives at cutoff values that captured all of the true positives. Searches of the PDB using these active site templates performed better than searches for similarities at the overall fold level (using the Dali156 and CE programs157,158) in distinguishing enolase superfamily members from all other ()8 barrel proteins. Active site templates representing a more divergent model system produced similar results, although finding all members of very highly diverged superfamilies is, as expected, more difficult than the enolase superfamily experiment. These templates have also been shown to be useful for identification of superfamily members and for subclassification of functional families within a given superfamily159. Based on these preliminary results, this approach will be scaled up for application to modeled structures to aid in the identification of ligand binding residues and for functional annotation.
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Figure 11. Examples of SMARTS queries to the SFLD. More information about SMARTS and SMILES can be found at the Daylight website (http://www.daylight.com).
C.3.5 Identification of Functional Sites by the Evolutionary Trace Method (Babbitt)

Although many methods attempt to discern the precise location of all of the functional sites on the surface or within the active site of a single macromolecule by inspection, this is often difficult to achieve with high precision because of the complexities of protein surfaces and the fact that many molecules may bind to one or more macromolecules to form functional complexes. Like the superfamily methods described in Section C.3.3, the evolutionary trace (ET) method takes advantage of the larger context provided by a family-based view of proteins to improve the accuracy of binding site determination. The Babbitt group will work in consultation with Fred Cohen (see letter of collaboration from F.E. Cohen) to implement a version of ET to function with the pipeline for identification of ligand binding sites (Aim 3: Section D.3.4) and of protein binding sites (Aim 8: Section D.8.3). The collection of residues that mediate the interaction can be identified computationally, making the method amenable to incorporation into the Center pipeline.

In its simplest form, ET uses sequence-based clustering of related proteins to distinguish class-specific differences in ligand binding determinants across a particular family or superfamily of proteins. The sequence information derived from multiple alignments and phylogenetic clustering is leveraged by mapping class-specific patterns likely to be functionally important onto three dimensional structures and models, thereby providing a topologically useful interpretation of the sequence analysis. Briefly, residues on the surface of a protein not involved in a functionally important role accommodate mutation more readily than their functionally important neighbors.  If one places proteins drawn from a homologous family on a phylogenetic tree that highlights these evolutionary relationships, it is clear that the pattern of residue variation within a branch of the tree is distinct from that between branches for functionally important surface residues. Recent work in this area by Lichtarge has provided statistical confirmation of this approach and shown that it can be automated and applied on a large scale160,161. The ET method was codified originally in the laboratory of Fred Cohen at UCSF162,163 and, more recently made available for public use, in the JEvTrace code164. While the ET method was originally developed for identifying ligand binding sites on the surfaces of proteins, the Babbitt laboratory has used this method extensively to distinguish families within a superfamily, focusing on enzyme active site residues (unpublished results).  

C.4 Building Community-Accessible Virtual Ligand Libraries (Shoichet)
A major goal of this proposal is to provide the broad biological community with easy-to-use tools for structure-based modeling and docking.  To conduct a virtual screen for new ligands, one must first have a database of potential ligands.  Here we describe preliminary efforts to create such databases and make them available to the community.

C.4.1 Developing Compound Databases Suitable for Docking

Among the most formidable barriers to entry for structure-based screening is the lack of dockable compound databases in the general community.  Two sorts of databases are needed: those of purchasable compounds and those of compounds that are annotated for activity (eg, drugs, known inhibitors, and metabolites).  A database of commercially available compounds is crucial to database docking; for docking to have an impact, the compounds being screened must be easy to acquire.  Correspondingly, databases of molecules that are annotated for activity allow one to perform control calculations and, more ambitiously, predict the sort of ligands that a new target might interact with.  Neither sort of database is currently available, certainly not in a suitable format, to the general community.

The most widely used database of commercial compounds for docking has been the Available Chemicals Directory (ACD), produced by Molecular Design Limited.  This database contains about 250,000 organic compounds from vendors such as Aldrich, Maybridge, Lancaster, Specs, ICN, and so forth.  The database contains pricing and supplier information, registry numbers, and three-dimensional coordinates for the compounds.  Unfortunately, the ACD is a commercial product of MDL and is not publicly available.

Alternate sources of compounds for dockable databases are supplier catalogs that contain 2D representations of molecules and that are freely available from suppliers, typically without restriction.  A dockable database could be built from these catalogs, if one were willing to put some effort into cleaning the structures up and calculating extra parameters such as multiple conformations165,166, van der Waals parameters, and partial atomic charges16.  Below we describe our preliminary efforts to do so.

C.4.1.1 Database Sources

We have assembled a list of about 500,000 unique molecules from commercial vendors such as Aldrich, Specs/Biospecs, ChemBridge, Maybridge, and Asinex (Table 3).These compounds are supplied electronically at no cost, and contain two-dimensional structures in an SDF formatted file including bond order, connectivity, and atom type.  Each compound is also associated with a supplier and a catalog number.  An example of this is shown for methotrexate (Figure 12).  We have permission to freely distribute these molecular data files to the community. In and of itself, such a list will be a boon to researchers, who have typically not had easy access to these data.

Figure 12. Supplier catalog information for methotrexate (MTX).

C.4.1.2 Protonation and Charge

The next step is calculating protonation and net molecular charge for each of the molecules in the database.  This information is needed for any docking program that uses an “atomistic” scoring function, as our program, DOCK3.5.5.4167-170 does.  Calculating protonation states and charges is complicated by the possibility of ionizing different groups in the ligand.  For instance, for methotrexate, the N1 atom would typically be considered neutral.  But when conjugated to the 4-amino group, the N1 pKa rises and it may frequently be found in its protonated, cationic form when bound to enzymes.  Thus we need rules to recognize the different ionization states of molecules.  We typically calculate multiple forms for groups that have pKa values in the region of 5 to 9, and simply represent each form in the database as an independent molecule.  We use hand-built rules currently implemented in the program Omega (OpenEye, Santa Fe, NM) to accomplish this; we have previously used similar rules implemented in SYBYL. This protocol is an inelegant but, after several years of curatorial work, successful approach.

C.4.1.3 Atomic Parameters

The next step is assigning atomic parameters. Atom types are looked up based on the SYBYL atom types as assigned by the OpenEye tool Filter (OpenEye, Santa Fe, NM). The van der Waals parameters are looked up in a table of AMBER atom types (for example, the pterin ring atoms of methotrexate are shown in Table 4).  Separately, the partial atomic charges and atomic desolvation energies are calculated using the semi-empirical quantum mechanics program AMSOL171. We use a Generalized-Born/Surface Area formalism to calculate solvation energies172 (Table 4).
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Ligand Flexibility

There are several programs available to calculate accessible ligand conformations165,166; we currently use the program Omega.  A maximum of 2500 input conformations are generated for each molecule in the dockable database.

C.4.1.5 Final Assembly

We combine this information into a dockable database using our own program MOL2DB. Docking molecules in thousands of orientations and conformations is computationally intensive.  We save time by pre-calculating the ligand conformations before docking. To overcome the problem of storing these conformations, we take advantage of the tremendous redundancy inherent in a flexibase, using a hierarchical format that allows about 100 conformations per molecule to be stored in only about twice the space necessary for a single conformation. This hierarchical format also simplifies pruning of the conformer search tree at the time of docking.  Although the preparation of the database takes time (Table 3), the actual docking runs can be quite fast, typically 50,000 small molecules in 5 CPU hours.  We call our free database “ZINC” which is an acronym for “ZINC is not commercial.” We offer SMILES and Tripos mol2 versions of ZINC at http://blaster.docking.org/databases/.

C.4.1.6  Summary of Database Preparation

We currently have a royalty-free database called ZINC of 50,000 commercially available compounds in dockable format available via the webpage http://zinc.docking.org.  ZINC may be distributed without cost to the community or used by the DOCK Blaster service to screen receptor structures for novel ligands.  In the subsequent sections we describe our progress in automating docking screens through a web-based service. In the Proposed Research we describe expanding ZINC from 50,000 to 500,000 commercially available compounds, and preparing analogous databases of about 8,000 annotated metabolites and about 100,000 annotated drugs and drug analogs.

C.5 Docking Ligand Libraries against the Refined Protein Structure Models (Shoichet, Jacobson)

Docking of large ligand libraries is at the heart of a large part of this project.  To make this accessible to the community and applicable by ourselves on a large scale, this process must be automated as much as possible.  Here we describe feasibility studies that suggest such automation is possible. 
	Supplier Catalog
	Unique molecules
	CPU build time (h)
	Average confs.
	Median # rotatable bonds
	Size of db (GB)
	   Cost

	Specs
	116,800
	166
	2342
	6
	4
	Free

	Chembridge
	324,180
	502
	1923
	5
	12
	Free

	SigmaAldrich
	185,147
	244
	1412
	4
	7
	Free

	Ryan /
Maybridge
	101,588
	154
	2135
	5
	4
	Free

	Asinex
	95,172
	143
	2154
	6
	4
	Free

	CMC
	8,478
	12
	2100
	7
	<1
	$$$

	KEGG
	8,743
	11
	190
	5
	<1
	Free

	MDDR
	134,645
	170
	2929
	8
	6
	$$$

	* After filtering.

	Table 3. Dockable databases – size, preparation time, other statistics.


	atom

id
	atom type
	vdW params
	atomic charge & salvation

(kcal/mol)

	
	Sybyl type
	Amber type
	Sqrt A
	Sqrt B
	Atom charge
	Polar desolv
	Apolar desolv

	N1
	N.ar
	8
	735
	24.2
	-0.61
	4.22
	-1.05

	C2
	C.ar
	1
	889
	24.8
	0.72
	-5.96
	2.33

	N3
	N.pl3
	8
	735
	24.2
	-0.77
	8.50
	-0.49

	N4
	N.ar
	8
	735
	24.2
	-0.63
	5.18
	-1.92

	C5
	C.ar
	1
	889
	24.8
	0.61
	-5.25
	1.14

	N6
	N.pl3
	8
	735
	24.2
	-0.70
	8.16
	-0.45

	C7
	C.ar
	1
	889
	24.8
	-0.05
	0.40
	0.29

	N8
	N.ar
	8
	735
	24.2
	-0.37
	2.54
	-1.63

	C9
	C.ar
	1
	889
	24.8
	0.08
	-0.31
	0.24

	C10
	C.ar
	1
	880
	24.8
	0.17
	-0.55
	0.86

	N11
	N.ar
	8
	735
	24.2
	-0.37
	0.81
	-2.11

	C12
	C.ar
	1
	889
	24.8
	0.31
	-1.33
	0.98

	Table 4. Atomic parameters for the pteridine ring of methotrexate.


C.5.1 Automating a Highly “Artisanal” Technology for Binding Site Preparation (Shoichet)

The next barrier to entry to a community-usable docking service is preparation of the binding site for docking.  Here too, difficulties emerge.  For any macromolecule, there are ionizable groups (eg, histidines) that need to be recognized and charged correctly.  One needs a procedure to recognize displaceable groups, such as crystallographic waters and co-factors.  Special effort must be spent on the latter, which is rarely standard for most force fields.  Frequently structures will have disordered regions, multiple conformations, and disulfides.  Treating these groups requires no great insight but it does demand attention to detail and context.  We have developed scripts that will:

· Assign atom types using the AMBER forcefield dictionary.

· Correctly protonate most protein groups, treating most histidines as partially charged. 

· Identify and correctly treat cysteines involved in disulphide bridges.

· Remove crystallographic water molecules.

· Identify and select one conformation if multiple conformations are present.

· Identify and draw the user’s attention to incomplete side chains and unrecognized atoms.

Additionally, we have developed automated methods to calculate “hot spots” in the binding sites and scoring grids needed for docking.  These include:

· Definition of the binding site based either on ligand coordinates or a user definition (below).

· Calculation of “hot-spots” using either ligand (if available) or calculated information173,174
· Selection of a binding site.

· Preparation of scoring grids for rapid van der Waals, electrostatic, and desolvation calculations.

At every step, provision is made to allow the user to intervene with expert knowledge.  These automated scripts allow one to completely prepare a macromolecular target for a docking screen.  The only input required from the user is the target protein structure and some indication of the binding site to target (below).

C.5.2 Docking against Comparative Protein Structure Models (Shoichet)

We propose to dock large ligand databases against multiple targets, most of which, by necessity, have not been determined experimentally but rather have been modeled by homology.  How reliable is docking against such structures?  

We have made considerable progress in making homology-modeled structures available to the broad community as described in Section C.11.1. The question is how can we interface such structures with a docking protocol?  For proteins without co-factors, this turns out to be, at least from a data manipulation standpoint, straight-forward. The proteins produced by MODELLER and stored in MODBASE (http://salilab.org/modbase) are in simple PDB format, and in fact are more “cleaned-up” than what one might find for a protein structure in the PDB itself.  Thus there are not multiple conformations or bound waters, metal ions, or co-factors to worry about or process, just the simple protein atoms themselves.  From this standpoint, it is even easier to work with homology modeled structures than with experimental structures.

Of course, from the standpoint of structure quality, this simplicity is also a deficiency.  We and others have used bound waters as templates for docking.  Similarly, bound metal ions and co-factors can be critical to the success of a docking calculation.  One of the goals of the Proposed Research is to include key metal ions and co-factors.  Putting these complications aside, it is appropriate to ask, even for simple proteins for which co-factors and metals play little or no role, how successful the docking is relative to crystallographic structures?

We investigated ten targets whose structures were available in three forms: a ligand-bound (holo) crystallographic conformation, an apo crystallographic conformation, and a homology-modeled conformation from the MODBASE website4 (Table 5).  Each target had multiple ligands in the MDDR.  We docked the MDDR against all three conformations of the targets, asking which conformation best enriched the known ligands from among the decoy molecules that dominate the database.  We judged enrichment by several criteria, the simplest of which was how much of the docking-ranked database did we have to look through to find 25% of the known ligands (Table 5).  For instance, for the holo conformation of DHFR, we only had to look through 2% of the top-ranking docked molecules to find 25% of the known ligands in the database.  We expected the holo conformations to perform best, the apo next, and the modeled structures worst. 
	Enzyme
	% of ranked db to find 25% of known ligands
	Enzyme
	% of   ranked db  to find 25% of known ligands

	DHFR
	
	GART
	

	Holo*
	2.0
	Holo*
	0.4

	Apo
	3.9
	Apo
	30.0

	Model
	10.7
	Model
	6.8

	PNP - PO4
	
	SAHH
	

	Holo
	2.8
	Holo*
	1.1

	Apo
	13.1
	Apo
	9.7

	Model*
	1.2
	Model
	20.5

	PNP+PO4
	
	AR
	

	Holo*
	0.4
	Holo*
	2.8

	Apo
	N.D.
	Apo
	4.3

	Model
	0.9
	Model
	10.6

	PARP
	
	AChE
	

	Holo*
	2.8
	Holo*
	6.3

	Apo
	3.8
	Apo
	9.0

	Model
	18.2
	Model
	15.6

	Thrombin
	
	TS
	

	Holo
	6.6
	Holo
	3.5

	Apo*
	3.1
	Apo*
	2.1

	Model
	3.5
	Model
	2.6


Table 5.  Docking the MDDR database against holo, apo, and modeled structures.  *conformations did best

These expectations were often, but not always, met. In seven systems, the holo conformations performed the best.  For instance, in S-adenosylhomocysteine hydrolase (SAHH) the holo conformation of the enzyme found 25% of the known ligands within the top 1.1% of the docking-ranked database (Figure 13). The apo-conformation performed much less well; here we had to look through the first 9.7% of the ranked docking list to find 25% of the known ligands.  The homology modeled structure performed worst, finding 25% of the known ligands only after looking through 20.5% of the ranked database, hardly better than random selection175.

Surprisingly, in three of the ten systems the holo structure was outperformed by either the apo or the modeled structure.  In docking against a modeled conformation of purine nucleoside phosphorylase (PNP-PO4) for instance, 25% of the known ligands were found in the top 1.2% of the ranked database, whereas for the holo conformation 2.8% of the ranked list had to be searched before 25% of the ligands were found (Figure 14).  
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A second surprise was that although the homology modeled structures usually performed worse than the x-ray structures, they nevertheless often significantly enriched the known ligands.  In four targets this enrichment was better than 20-fold over random for top-scoring molecules (not shown, see ref175).  Moreover, we made no effort to refine the models that we took from MODBASE.  We don’t want to overstate the case for homology models—certainly the experimental structures performed better.  Still, these results give us some reason to hope that homology-modeled structures can provide useful templates for structure-based library screening through docking.  

C.5.3 Sampling of Receptor Conformations for Induced Fit (Jacobson)

Most docking algorithms currently retain the protein receptor in a completely rigid conformation.  This choice is appropriate for “lock and key” ligand binding, but when the ligand induces conformational changes in the receptor, a flexible receptor in principle should improve accuracy.  As one step towards this goal, Dr. Jacobson has investigated ligand-induced changes in loop conformations.  As an example, in collaboration with Dr. Victor Guallar (Washington U. School of Medicine), Dr. Jacobson has used the loop prediction algorithm to reproduce ligand-dependent conformational changes of the catalytic loop in triosephosphate isomerase (TIM)176.  One key result is that the catalytic loop is reconstructed with accuracy better than 1 Å RMSD both with (closed loop) and without (open loop) substrate present (Figure 15).  Closed conformations are also identified in the absence of substrate, but have energies a few kcal/mol higher than that of the open conformation. Crystal packing forces help to stabilize the observed open conformation; when simulations are performed on single solvated proteins, several nearly isoenergetic conformations are identified.
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Figure 15.  Low energy conformations of loop 6 for the substrate-free TIM enzyme.  The green loop (pointing towards the right) is the lowest in energy and within 0.5 Å RMSD of the crystal structure (gray).  This conformation is partly stabilized by crystal packing forces.  Red and blue (pointing towards the left) represent higher energy conformations that are similar to the substrate-bound conformation.  With substrate included, the loop is reconstructed to within 1.0 Å RMSD of the correct closed structure (not shown).  

C.5.4 Tools to Interpret Docking Results (Shoichet)

To be useful to web users, a report of top scoring ligands (Figure 16) incorporating the following features must be available: 

· The docking score and its components.

· A 2D sketch of the compound.

· The 3D docked pose in the context of the receptor.

· Purchasing or functional information.

· A link to the source database.  

Properties of the molecule and its pose, such as number of polar interactions, molecular weight, net charge, number of rotatable bonds, and so forth should also be available (Figure 16), as should comparative information such as enrichment plots of known ligand lists.  Finally, it should be possible to sort and filter the hits by such criteria.

For example, after docking to a target such as DHFR, the user may browse the top scoring hits in the results browser (Figure 16). She may customize this browser to display details of each hit: the docking energy and its components (the van der Waals, electrostatic, polar and apolar desolvation energies), the net charge on the ligand, the number of heavy atoms, the number of polar protein-ligand contacts, and the number of conformations sampled.  This list may be filtered by any of these criteria (eg only display uncharged molecules).  It may also be filtered by functional group in SMARTS representation, eg display only molecules containing a hydroxamic acid moiety.  

A 2D sketch of the molecule provides an at-a-glance depiction of the molecule.  Clicking on the 2D depiction opens the molecule and the protein binding site in the Chimera 3D viewer (Figure 17).  In Chimera, we can draw upon tools specifically designed for docking hits (ViewDock, Figure 18), sockets-based facilities for interoperability with browsers via an XML stream, and longstanding interest in developing this technology.  Nevertheless, we will also support a Java 3D browser and other 3rd party molecular modeling packages.

If the molecule is interesting, the user may select the checkbox under the shopping basket icon to add this compound to the shopping basket.  If the user is not yet sure whether the compound should be purchased, it may be added to the wish-list by clicking under the wishlist star icon.  By clicking on the star or the shopping basket, the user is taken to the wish-list or shopping cart respectively where molecules there may be browsed for supplier, price, availability and shipping time.  
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Figure 16. DOCK Blaster results browser.

Finally, before investing the effort to actually purchase and test new compounds, the user will often look for an objective criterion to evaluate how successful the calculation has been.  Perhaps the most reliable way to do this is by asking how well known ligands did in the docking calculation.  Whereas such ligands are not always known, often they are; for instance by the user directly or through annotated in functional databases, such as metabolite and drug databases (eg the MDL Drug Data Report, MDDR).  The rankings of these known ligands in the screen act as positive controls for the docking calculation.  The success of the calculation, as far as these control ligands is concerned, may be quantified using enrichment factors.

The enrichment factor (EF) is defined as the number of known ligands found, at any given point in the docked-ranked list of compounds, divided by the number of ligands one would expect to find at random.  For instance, if there are 95 known ligands in a database of 95,000 molecules, one would expect to find one ligand per bin of 1000 database molecules by random selection alone (EF=1). If a docking screen ranked 10 ligands in the top-scoring 1000 molecules, this would represent a 10-fold improvement over random (EF=10) for this bin.  Enrichment factors are widely used in molecular docking, and we can provide them as a clickable tool, or indeed a pre-calculated number, for the user for any given site and set of known ligands. 
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Summary of feasibility studies:  These preliminary studies suggest that it is feasible to provide the databases and automated tools that will bring docking screens to a large scientific audience. We have developed and deployed a public access database of 50,000 commercially available compounds, and anticipate expanding this to 500,000 compounds. This database alone will overcome a serious barrier to entry to docking screens. The automated docking tools, though still being developed, are simple enough to be used by an interested noïve user and fast enough to be deployed as a public service tool. As we show in section C.15, these tools are, even now, robust enough to provide results that are competitive with an expert in most of the systems in which it has been tested.  For the general biological community, these tools and databases will provide an entrée to an increasingly successful technique that would otherwise remain the domain of experts.

C.6 Rescoring Protein-Ligand Complexes (Jacobson, Babbitt)

First-pass docking hits, which are the primary output of the docking screens described in the previous section, are notoriously unreliable.  The reliability of the docking pipeline would be much improved by detailed re-scoring of the docked complexes using better energy functions.  Because this could be done post-docking, with many fewer structures, more computationally intensive techniques could be used.  This is the focus of Aim 6 of this Core; here we describe preliminary results that suggest such re-scoring is feasible, will be helpful, and will fit in within the overall pipeline.  

C.6.1 Refinement and Rescoring of Protein-Ligand Complexes (Jacobson)

Docking energies are notoriously inaccurate, and improving scoring functions remains an active area of research for us (Jacobson, Shoichet) and others.  The scoring functions employed for high-throughput docking must be very quick to evaluate, and thus generally do not attempt to model electrostatics, and especially solvation, in a detailed way.  Notwithstanding these efforts, a practical alternative for the current effort might well be a two-stage approach, where the initial high-throughput docking calculation is followed by slower, more detailed energy calculations to re-prioritize the top-scoring hits.  We and others have successfully used all-atom force fields and implicit solvent models to refine and rescore docking results172,177-179.  The Jacobson and Shoichet groups will collaborate on further development of such methods and their application to drug targets under this grant (Section ‎D.6).

The existing protocols involve energy minimization of ligands and sometimes the protein using the OPLS all-atom force field and a Generalized Born (GB) solvent model.  After extensive algorithmic development, this protocol may be applied to about 1000 protein-ligand complexes per day on a current-generation PC.  The central new algorithm is a multi-scale, truncated Newton minimization algorithm that permits rapid minimizations with GB implicit solvent; about 15 seconds for a flexible ligand in a rigid receptor (Section ‎C.2.1).  Our early studies have applied this protocol to re-ranking docking hit lists from database screens, aimed at predicting substrates for enzymes in the enolase superfamily, an area of specific interest to several of us (Babbitt, Jacobson). 

In this proof-of-principle study, we have performed docking using a library of known metabolites for several of the available structures of enolase superfamily139 members.  In all cases, the Glide program (Schrödinger, Inc.) was used for high-throughput docking of the KEGG "Metabolites" database, which after processing contains ~12,000 enzymatically relevant ligands.  The results are encouraging.  The re-scoring procedure substantially improves the robustness of the virtual screening for this class of enzyme.  The high-throughput docking algorithm typically ranks the natural substrate within the top 15% of the database but only rarely within the top 1%.  On the other hand, the pose of the ligand in the active site is often very accurate (<2 Å RMSD), suggesting that the scoring function is primarily responsible for the rank of the ligand being worse than desired.  The rescoring procedure improves all ranks to within the top 1-2% (Table 6).  Both the speed of calculation and the diverse ligands that it treats make the protocol attractive for re-ranking of docking hits more broadly (Section ‎D.6). 

	
	Rank of known substrate 

	Target structure
	Before          re-scoring
	After             re-scoring

	Mandelate racemase (holo)
	1228
	103

	Mandelate racemase (apo)
	2299
	197

	Glucarate dehydratase (holo)
	5
	78

	Muconate lactonizing enzyme (holo)
	926
	7

	Methylaspartate ammonia lyase (holo)
	1823
	303

	Ortho-succinyl benzoate synthase (holo)
	287
	7

	Table 6.  Re-scoring a docking screen of 19,000 metabolites, using energy minimization of the ligand in implicit solvent; the receptor was held rigid.  


C.6.2 Using Enzyme Superfamilies for Assessment of Docking Results for Protein-Ligand Complexes (Babbitt)

In collaboration with the Shoichet and Jacobson groups, we have begun to use chemistry-constrained enzyme superfamilies for assessment of docking results. Because we know that all enzymes in a specific superfamily will exhibit the fundamental partial reaction that defines its structure-function paradigm, we can use this information to winnow docking hit lists and to assess docking results (Aim 6: Sections D.18.1, D.18.2). As described in Section C.6.1, the enolase superfamily has been a useful model for detailed energy calculations to re-rank high-scoring docking hits. Another superfamily the Babbitt group is characterizing, the amidohydrolase (AH) superfamily180, has been used by the Shoichet group (Section D.18.1) to explore using docking hit lists for functional annotation. This work was initially performed in preparation for submission of a Program Project grant proposal (see letter of collaboration from PI John Gerlt, Univ. of IL) for detailed experimental and computational analyses aimed at understanding the structural determinants of specificity in these two superfamilies. The results of these highly focused studies will lay the groundwork for evaluation of high throughput modeling and docking strategies for functional inference in the Center proposed here.

C.7 Collecting Known Protein-Protein Interactions from the Reference Resources on the Web (Sali)

The second overarching aim of Core 1&2 is the creation of a software pipeline for protein-protein docking.  The first module specific to this protein-protein docking pipeline is Aim 7, collecting known protein-protein interactions from reference resources on the web.  This collection will reduce the staggering number of possible protein-protein complexes to a much smaller, much more biologically relevant group.  Here we describe feasibility studies, centered around a protein-protein interface database called Base, which suggest that compiling this collection is feasible.  
Base is a comprehensive relational database of all structurally characterized interfaces between protein structural domains181. The interfaces are extracted from protein structures in the Protein Data Bank (PDB)28 and Protein Quaternary Structure (PQS) server182 using domain definitions from the Structural Classification of Proteins (SCOP)183 and CATH domain classification system184. Initially, domain definitions are generated for the PQS structures using sequence identity with the associated PDB entry. Next, all protein structures are parsed to identify domain pairs with at least one atomic contact ≤5.5 Å. A variety of interface properties are calculated, such as buried surface area (total, polar, non-polar), number of structural and sequence segments at the interface, and contact vectors. Buried surface area is then used as a filter to remove interfaces with non-extensive contacts. The properties are used to hierarchically cluster the interfaces into a non-redundant set of unique interfaces, first within each PDB file, then within files associated with the same PDB entry, and finally across all PDB entries. A scan of PDB and PQS using the most recent SCOP domain definitions (v1.63, May 2003) identifies ~140,000 domain-domain contacts. Filtering using a buried surface area of 300 Å2 reduces the set to ~80,000 interfaces. Removing redundancy within PDB entries reduces this set to ~30,000 interfaces which represent 2215 unique SCOP family pairs. On average, each SCOP family has structurally characterized interfaces with 1.7 other SCOP families.
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Figure 19. Venn diagram of SCOP family space. Blue represents SCOP families involved in homo-family interactions. Red represents those involved in hetero-family interactions. Purple represents their overlap. Regular font denotes number of families (ie, 495 families exclusively involved in hetero interactions), underlined italics denotes number of interfaces (ie, 896 hetero interfaces).
C.8 Identifying Protein Binding Sites on Protein Models (Sali)

Identifying likely interaction surfaces and domains can aid protein-protein docking by diminishing the search space of the docking problem.  Preliminary analyses of pairs of modeled sequences in MODBASE suggests predicting such interfaces is feasible.  

C.8.1 Predicting the Interacting Proteins by Homology (Sali)
MODBASE185 links pairs of modeled sequences from the same organism that are predicted to interact with each other186. First, residue contacts between the two models are predicted based on a match of both modeled sequences to different parts of a single PDB file. Next, the residue contacts in a hypothetical interface are scored by their propensities to span an interface. These propensities were extracted from ~8,000 representative pairs of interacting domains stored in Base (Section ‎C.7). If the total score is sufficiently large, the two modeled sequences are predicted to interact with each other. The method is an extension of the Rosetta Stone approach that was first applied to sequences187 and is similar to several studies applied to structures188,189. ~9,000 modeled sequences in MODBASE are linked via ~14,000 predicted pairwise interactions, with an estimated false positives ratio of 25%.

C.9 Building Binary and Higher Order Protein Complexes (Sali, Kortemme, Baker)

The Center’s automated large-scale protein-protein docking pipeline requires a module to generate structural models of protein-protein complexes at different levels of resolution, dependent on the information available about the interacting proteins and their complexes. These data range from low-resolution shape information on the complex components to atomic models or experimentally determined structures at the high-resolution end of the scale. Modeling efforts will also concern different levels of complexity, dependent on the relevant biological context in which an interaction occurs, ranging from binary protein-protein complexes to large, multi-component protein assemblies. The preliminary results by the Sali, Kortemme and Baker labs presented below address the modeling of protein complexes at various levels of complexity and resolution. 

The Sali lab has developed methods for the structural modeling of large macromolecular assemblies both at low resolution, illustrated by work on the nuclear pore complex (Section ‎C.9.1) and at high resolution by comparative modeling, as shown for the yeast 80S ribosome (Section ‎C.9.2).

Protein-protein docking at atomic resolution is a challenging problem, even when the structures of the isolated components are known experimentally, and more so if one has to rely on comparative models. A major focus of Dr. Kortemme’s prior work has concerned two difficulties in the high-resolution modeling of protein interfaces: the sampling of conformational space and the identification of native-like low energy conformation, with particular emphasis on an adequate modeling of electrostatic effects in interfaces. These efforts have resulted in the development of a readily computable free energy function including a simple hydrogen bonding model190,191 (Section ‎C.9.3) and a side-chain conformational sampling method that has led to the design of new protein interfaces190,192 (Section ‎C.9.4).   

The Baker lab has developed a high-resolution protein-protein docking method that uses the simple free energy function described above and employs a full conformational sampling procedure, involving simultaneous optimization of all sidechain conformations and rigid body degrees of freedom193,194. Application of the method, incorporated into the program ROSETTA, has resulted in recent successful predictions of protein complex structures in a blind test, the Critical Assessment of Predicted Interactions (Section ‎C.9.5).

C.9.1 Modeling Macromolecular Assemblies by Satisfaction of Spatial Restraints at Low-Resolution (Sali)

Some large assemblies, such as the nuclear pore complex (NPC), consist predominantly of subunits whose structures have not yet been defined. Such assemblies may be characterized only by low-resolution information about their overall shape and some protein-protein contacts. In these cases, we can expect to be able to model only the configuration of the proteins in the assembly, not their individual conformations. We characterized the configuration of the proteins in the yeast NPC195 (Figure 20). The NPC proteins (nucleoporins) are represented as spheres with the radii estimated from their numbers of amino acid residues. The NPC structure was obtained by minimizing violations of the following restraints: exclusion volume restraints, protein-protein proximity restraints extracted from ~80 immuno-purification experiments, axial and radial positional restraints on nucleoporins obtained by electron microscopy of gold-coated antibodies against tagged nucleoporins, restraints imposed by the shape of the nuclear envelope that contains the NPC, and restraints on the symmetry of the NPC derived primarily from electron microscopy at approximately 200Å resolution. Starting with random configurations of the nucleoporins, many 3D models of the NPC were calculated by MODELLER. The final configurations that satisfied the input restraints well were clustered, resulting in one dominant model of the NPC. 
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Figure 20. Modeling of the yeast nuclear pore complex195. The distribution of the scores for 44,000 optimized models is shown. Most of the models are misfolded, but some, corresponding to low score values, satisfy all the input restraints.

C.9.2 Comparative Modeling for Structure Determination of Macromolecular Complexes (Sali)

Due to the progress in structural biology and structural genomics, the structures of the individual subunits of larger complexes are frequently already known or can at least be modeled relatively accurately by comparative modeling. Therefore, there is a growing need to improve the use of homologous subunit structures in the structure determination of macromolecular complexes by electron cryo-microscopy (cryoEM). Our initial example in this area was the fitting of comparative models for the yeast ribosomal proteins into a low-resolution cryoEM map of the whole yeast ribosomal particle in collaboration with Joachim Frank’s group196,197. High-resolution crystallographic structures were available for the subunits of the archaeal ribosomes, but not for the eukaryotic yeast ribosome; however, it was possible to determine its 15 Å density map by cryoEM. The challenge was to calculate as complete and accurate a molecular model of the yeast ribosome as possible, relying on its density map and atomic-resolution information about the related archaeal ribosomes. The use of the archaeal structures was justified by the evolutionary conservation of rRNA and ribosomal proteins that indicated similar quaternary structures. MODPIPE produced comparative models for 43 out of the 77 proteins of the yeast ribosome, based on their archaeal homologs of known 3D structure. The models were calculated using alignments with sequence identities from 20 to 56% (an average of 32%) and E-values better than 10-4. The modeled fraction of the yeast ribosomal sequences ranged from 34 to 99% (an average of 75%). The models were docked manually into the cryoEM density map with the aid of the program O198. Thus, a combination of cryoEM and comparative modeling resulted in a partial molecular model of the whole ribosomal particle. The model was subsequently used to address several outstanding questions in the function of the ribosome. This example represents the first step in integrating computational modeling with cryoEM structures to assemble a structural and functional model of a large macromolecular complex. A similar study was recently completed for the E. coli ribosome199.
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Figure 21. Hybrid assembly of the 80S ribosome from yeast197. Superposition of a comparative protein structure model for a domain in protein L2 from B. Stearother-mophilus with the actual structure (1RL2) (left). A partial molecular model of the whole yeast ribosome (right) was calculated by fitting atomic rRNA (not shown) and comparative protein structure models (ribbon representation) into the density of the 80S ribosome.

C.9.3 A Simple, Computationally Efficient Energy Function for the High-Resolution Modeling of Protein-Protein Complexes (Kortemme)

The high-resolution large-scale modeling of protein-protein complexes in the context of the protein docking pipeline requires a reasonably accurate, but at the same time readily computable free energy model. Kortemme and Baker have developed a simple all-atom free energy function for the prediction and design of protein-protein interfaces190,191. The method is based on a full-atom representation of the protein complex in question. The scoring function is a linear combination of a Lennard-Jones potential, an implicit solvation model200, Coulomb electrostatics, a new hydrogen-bonding potential191,201, and statistical terms representing the backbone-dependent internal free energies of amino acid rotamers202. 

Physical models have recently had some success rationalizing energetically important interactions in protein-protein interfaces203-206. Common to most approaches is the realization that readily computable descriptions of electrostatic and hydrogen bonding interactions are important for an adequate modeling of energetics and specificity at protein-protein interfaces. To this end, we have developed a hydrogen bonding function derived from the observed geometries of hydrogen bonds in high-resolution protein crystal structures. The new potential improves discrimination of correctly docked protein-protein complexes from large sets of alternative structures (Figure 22 for an example), and is superior to the widely used Coulomb model alone191 that cannot capture the significant orientation dependence of hydrogen bonds observed in proteins. 
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Figure 22.  Hydrogen bonding score versus C RMSD to the native structure (green square) for a family of protein docking decoys (black triangles). Protein docking decoys were obtained by rigid-body perturbations of the relative orientations of the two partners in the protein-protein complex. The backbone coordinates of the bound conformations were used for docking, but all side-chains conformations were repacked using the rotamer repacking protocol described in Section C.9.4 to eliminate the information stored in the bound crystal structure sidechain coordinates. The hydrogen bonding score alone discriminates the native and near-native complexes from a large set of high RMSD conformations.
Comparison of the orientation dependence of hydrogen bonds observed in ab initio electronic structure calculations (applying Density Functional Theory (DFT) methods) with the orientation dependent hydrogen bonding potential derived from experimental protein structures shows a remarkably close agreement (Figure 23). This close correspondence between the results of electronic structure calculations and experimentally observed hydrogen bonding geometries provides a physical understanding of the empirical hydrogen-bonding potential and suggests a route to more accurate and computable energy functions by combining the two approaches.
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An evaluation of different models of electrostatic interactions in proteins using tests related to the prediction of the structures of proteins and protein-protein complexes led to the development of a combined electrostatics-hydrogen bonding potential that appears to better capture the free energy difference between native, native-like and non-native proteins and protein complexes than Coulomb electrostatics or hydrogen bonding alone201.

An advantage of the simple free energy model, while being more approximate than more sophisticated treatments of electrostatic interactions, it its speed and pairwise-additivity. This allows the application to rapid refinement calculations of protein interfaces where all side chain conformations are optimized simultaneously (described in the following Section ‎C.9.4), enabling complete flexibility of the modeled protein interfaces at the side-chain level.


C.9.4 Side-Chain Optimization for the High-Resolution Modeling of Protein-Protein Complexes (Kortemme)

An important difficulty in the prediction of the structure of protein-protein complexes, even when the structures of the isolated components are known or can be modeled with good accuracy, is the occurrence of conformational changes upon binding. These conformational rearrangements can be extensive, involving large backbone displacements. However, a comparison of the structures of proteins unbound and in complex with other proteins by Sternberg and colleagues207 revealed that conformational changes often are limited to the protein side chains. Therefore, in this simple case, conformational sampling at the side chain level may be sufficient to obtain an accurate model of the protein complex.

Kortemme and Baker have developed a side-chain repacking methodology that has been validated by the successful design and high-resolution structural characterization of protein-protein interfaces191,192. The program creates a library of possible sidechain conformations spanning the native or all 20 naturally occurring amino acids in different backbone-dependent rotameric states (200-2000 rotamers per sequence position). The interaction of all rotamers with the surrounding, fixed portion of the molecule (including the polypeptide backbone and all sidechains not subjected to repacking), and all pairwise rotamer-rotamer energies are computed using the simple free energy model described in Section ‎C.9.3 above. A Monte Carlo-simulated annealing procedure, in which a move consists of the random replacement of a single rotamer from the library is then used to search through the rotamer combinations to identify particularly low free energy amino acid sequences and conformations. This strategy requires approximations in the free energy function to render it pairwise additive, but amounts to a significant advantage in speed (an extensive protein-protein interface can be repacked and designed on a time scale of minutes on a single 800 MHz INTEL processor) necessary for large-scale applications. 

The computational design of a new domain-domain interface generated by fusing domains from distantly related proteins resulted in the creation of a novel functional endonuclease (in collaboration with Barry Stoddard and Ray Monnat, Fred Hutchinson Cancer Research Center and University of Washington). The crystal structure of the designed interface shows good agreement with the model produced by the computational method, illustrating the accuracy of the side-chain repacking and design procedure192.

The interface repacking methodology has been applied to the conformational side-chain refinement of protein-protein interfaces generated by the protein-protein docking protocol (see the following Section ‎C.9.5) prior to scoring. This procedure resulted in an improved recognition of native-like protein complexes as tested in the first round of the Critical Assessment of Protein Interaction (CAPRI)194.
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Figure 24. A superposition of the 2.4 Å crystal structure of a redesigned protein interface (gray and blue) with the initial computational model generated by the design program (red) showed that the amino acid side chain conformations of designed interface residues were nearly identical to those predicted by the design procedure. 

C.9.5 High-Resolution Protein-Protein Docking (Baker)

Structural genomics projects will produce high resolution structural information on the building blocks of macromolecular complexes—domains and monomeric protein structures, but the complexes themselves are often the most critical for biological function. Hence, there is considerable need for computational methods for predicting the structures of protein-protein complexes from the structures of the components. Since the pioneering work of Katchalski-Katzir, Vakser and coworkers208, fast Fourier transform based (FFT) methods have become very popular for rapidly searching through the space of possible docked configurations due to their great computational efficiency.  In these methods, the proteins are represented on a regular grid, and the interaction energy as a function of the translation of one of the partners can be written as a convolution of two functions which becomes a simple product in Fourier space.  While very fast, such methods have the disadvantage that the proteins must be represented as rigid objects during the search, and because of this the interactions are generally softened to make up for the lack of flexibility.

The alternate approach is to explicitly allow sidechain conformational flexibility during the docking procedure.  This immediately disallows FFT based methods, and slower real space methods must be used.  Jackson and Sternberg209 combined  steepest descent  rigid body refinement with mean field optimization of  sidechain conformations to identify the energy minimum closest to a low resolution model generated using an FFT based method.  Abagyan and coworkers210 used a soft interaction energy function precalculated on a grid to carry out a global search of conformational space followed by optimization of the sidechain conformations of one of the partners.
We have developed a protein-protein docking method that is to our knowledge the first to employ a full conformational sampling procedure involving simultaneous optimization of all sidechain conformations and rigid body degrees of freedom. Our approach extends previous approaches both in the level of detail (and, we believe, the accuracy) of the free energy function (for example, the treatment of explicit bound water molecules) and the coupling of the optimization of rigid body, sidechain, and backbone degrees of freedom. 

The method has been tested in the Critical Assessment of Predicted Interactions (CAPRI) challenges (http://capri.ebi.ac.uk/) in which coordinates of two proteins for which a high resolution crystal structure of a complex had been solved but not yet published are distributed to participants, who subsequently have to predict the structure of the protein-protein complex. An important validation of the method in a blind test was the very recent successful prediction of the structure of the complex between Nidogen-G3/laminin by Jeffrey Gray in round 3 of CAPRI (http://capri.ebi.ac.uk/round3/Evaluation_08/FinalSummary.html). This prediction (T08_P01.2) was one of the two best predictions made for this target, with 53% of the native contacts.  The most recent CAPRI challenge problem further illustrates both the potential power of the approach and the potential for docking using comparative models, which will be discussed below.  The first part of the challenge was to predict the structure of a complex between dockerin and cohesin, given the structure of a homolog of dockerin and the structure of cohesin.  Comparative models of dockerin were built, and then docked using the procedure described above with cohesin.  The best submitted model is shown in the lower panels; overall the correct site is identified in both proteins, but the dockerin model (cyan) is rotated relative to the correct structure (red).  After models were submitted for this problem, the actual coordinates of dockerin in the complex were released, and predictors were challenged to produce improved models using this additional information.  In the top right of the Figure 25, the energies of the very large numbers of complexes produced in the global search phase are shown (the x axis is RMSD from an arbitrary starting configuration).  Three configurations stand out as having much lower energies than the others; local searches starting from these configurations have clear “funneled” shapes leading into the energy minimum they represent (top right, inset).  Based on these observations, we submitted the lowest energy structure in this minimum as our top choice model, and were delighted to see, when the structure was very recently published, that the model is remarkably close to the true structure (top left; the model and the true structure are indistinguishable at this resolution; the C RMSD is less than 0.5 Å).

C.10 Modeling Specificity of Protein Interactions (Kortemme)

The protein-protein complexes that are the direct output of the protein-protein docking are based on alignments to experimentally-determined complexes.  But if more than one sequence in an organism aligns to the structures in this template complex, the problem of predicting specificity arises.  In such cases, it may not be known from experiment which of these sequences form biologically relevant interactions and which ones do not. We thus aim to develop and apply a module for automated modeling of protein-protein interaction specificity and cross-reactivity of all homologous sequences in a genome for which there is structural information available on at least one protein-protein complex (Aim 10).  The large-scale nature of the protein docking pipeline provides an ideal framework for developing such genome-wide, structure-based models of protein interaction specificity.  

Kortemme and Baker are developing a protocol for the application high-resolution modeling of protein-protein complexes to the prediction of protein interaction specificity. In the simplest case, the input of this procedure consists of the structure of a protein-protein complex, consisting of a receptor and a ligand. The output is a family of sequences for all interface positions on the ligand (using the design capability of the methodology described in Section ‎C.9.4) that are predicted to recognize the receptor within an adjustable range in the free energy of binding. Applications of the procedure will address the question, given an alignment of sequences for the receptor; can the sequences of possible interacting ligands be predicted based on structural information on at least one related protein-protein complex? Secondly, given sequence alignments for both receptor and ligand, can the method identify patterns of specificity and promiscuity for all pairs?

The specificity prediction procedure is currently being tested using available experimental data on interaction specificities on several different protein families, such as PDZ domains, SH3 domains, SH2 domains, WW domains, protein kinases EVH1 domains and others211-219 (see Core 3 Section C.3.1 for Preliminary Results on specificity predictions on SH3 and PDZ domains). Table 7 illustrates an example of how the procedure can be used to classify specifically interacting pairs of Rho-type small GTPases and their exchange factors220. 
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Figure 25. Dockerin-cohesin complex. See text for details.

a) for exchange factor TIAM1:


	GTPase
	GTPase

interface

sequence
	% native amino acid identical to amino acid present in cdc42, Rac1 or RhoA, respectively, in 500 sequence design runs (for each of the 6 sequence positions)

	
	
	seq# 3
	seq# 41
	seq# 43
	seq# 52
	seq# 54
	seq# 56

	cdc42  
	TATTGF
	-
	2
	2
	-
	100
	-

	Rac1   
	ASNNGW
	-
	98
	-
	89
	100
	100

	RhoA   
	RVDEAW
	-
	-
	-
	9
	-
	100






b) for exchange factor DBS:

	GTPase
	GTPase

interface

sequence
	% native amino acid identical to amino acid present in cdc42, Rac1 or RhoA, respectively, in 500 sequence design runs (for each of the 6 sequence positions)

	
	
	seq# 3
	seq# 41
	seq# 43
	seq# 52
	seq# 54
	seq# 56

	cdc42  
	TATTGF
	 -
	-
	1
	
	-
	-

	Rac1   
	ASNNGW
	 -
	-
	51
	 -
	-
	-

	RhoA   
	RVDEAW
	56
	42
	 8
	33
	4
	-






c) for exchange factor INTERSECTIN:

	GTPase
	GTPase

interface

sequence
	% native amino acid identical to amino acid present in cdc42, Rac1 or RhoA, respectively, in 500 sequence design runs (for each of the 6 sequence positions)

	
	
	seq# 3
	seq# 41
	seq# 43
	seq# 52
	seq# 54
	seq# 56

	cdc42  
	TATTGF
	-
	60
	23
	49
	-
	-

	Rac1   
	ASNNGW
	-
	 -
	-
	-
	-
	-

	RhoA   
	RVDEAW
	-
	 40
	-
	-
	-
	-


Table 7. Predicted specificities of three exchange factors for their target GPTases. For complex structures of each of the three exchange factors TIAM1 (a), DBS (b) and INTERSECTIN (c), 500 Monte-Carlo simulated annealing design runs were performed, where the six indicated interface positions on the GTPases side of the interface were designed (the positions at which the three potential target GTPases vary in sequence), while all remaining interface positions were repacked. The table shows how often the native amino acid present in each of the three GTPases was observed in the design runs. For all three exchange factors, the sequence of the cognate GTPase (in red) is identified with the highest percentages on average over all designed position, allowing a structure-based classification of the cognate pairs.
C.11 Central Database for all the Data and Results (Sali, Shoichet, Babbitt)

An overarching Aim (III) of Core 1&2 is to create technologies and environments to facilitate development and application of the pipeline.  A critical component of these technologies is databases for archiving and relating results of pipeline calculations (Aim 11).  In the following sections, we outline preliminary work that suggests that the creation and use of these databases is feasible.  

C.11.1 MODBASE, A Comprehensive Database of Comparative Protein Structure Models (Sali)

MODBASE (http://salilab.org/modbase) is a relational database of annotated comparative protein structure models for all available protein sequences matched to at least one known protein structure4,68,185,221,222. The models are calculated by MODPIPE (Section ‎C.1.2).  MODBASE uses the MySQL relational database management system for flexible querying and CHIMERA for viewing the sequences and structures (http://www.cgl.ucsf.edu/chimera/)223 (Section ‎C.12.1). MODBASE is updated regularly to reflect the growth in protein sequence and structure databases, as well as improvements in the software for calculating the models.  For ease of access, MODBASE is organized into different datasets.

The largest dataset contains 1,262,629 models for domains in 659,495 out of 1,182,126 unique protein sequences in the complete SwissProt/TrEMBL database (August 25, 2003); only models based on significant alignments and models assessed to have the correct fold despite insignificant alignments are included. Another model dataset supports target selection and structure-based annotation by the New York Structural Genomics Research Consortium; for example, the 53 new structures produced by the consortium allowed us to characterize structurally 24,113 sequences. MODBASE also contains binding site predictions for small ligands and a set of predicted interactions between pairs of modeled sequences from the same genome.

C.11.2 The SFLD (Babbitt)

The SFLD will be released as a stand-alone application for public use late in 2004. In the pipeline, the initial use of the SFLD will be as a tool for assessment of docking and modeling tools and results (Aim 6 and 20: Sections D.18.1, D.18.2) and for development of applications in functional inference focusing on characterized superfamilies (Aim 18) and on the targets from the Protein Structure Initiative (Aim 19: D.20.3). The Babbitt lab has developed a Gold Standard set of enzyme superfamilies, stored in the SFLD, in which conserved chemical capabilities have been correlated to protein sequence and structural motifs (C.3.3.1). For many members of these superfamilies, these correlations have been experimentally verified, providing a well-characterized set of highly divergent homologs for use in assessment and evaluation of modeling and docking results. This information has been structured for storage in the SFLD to enable automated access.  The MySQL database that provides the back end to the SFLD was designed for flexibility in adding new information, eg, docking hit lists associated with families and superfamilies or modeled structures, such as those provided by MODBASE. In particular, because both the SFLD and the docking elements of this proposal already use SMILES/SMARTS for representation of small molecules and their transformations, information transfer and analysis between the SFLD and docking results will be straightforward A web-based user interface provides access to the data (http://sfld.rbvi.ucsf.edu/). After more superfamilies have been are added to the SFLD, it will be incorporated more fully into the pipeline where it will provide a specialized portal for users to view Center results, particularly in the context of functional annotation (See Core 4).
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Figure 26. A collage of MODBASE web pages.

C.12 Web-Based Graphical User Interface for Flexible Access to Databases (Ferrin)

The databases described in the previous section require good interfaces to interrogate them.  For Aim 12 we will develop web-based graphical user interfaces for flexible access to the database (see Core 4).  Extensive preliminary development efforts with our program CHIMERA suggest that this is feasible.  

C.12.1 CHIMERA

Chimera224 is a highly extensible interactive molecular visualization tool for depicting and manipulating three-dimensional structural models.  It is the recent successor to MidasPlus225, a very successful interactive molecular graphics package created by the UCSF Resource for Biocomputing, Visualization, and Informatics (RBVI) in the mid-1980’s and still in active use by a large community of scientists in both academia and industry.  Chimera was designed with extensibility as a primary goal, as well as a design that promotes high portability so that it can be used on a wide variety of platforms.  Chimera provides state-of-the-art computer graphics capabilities such as transparency support and interactive ball-and-stick, space-filling, ribbon, and solid surface molecular representations.  Another design goal was to make Chimera as useful as possible to users at all skill levels by providing both a graphical menu/window interface and a command-line interface.

Chimera’s primary programming language is Python (http://www.python.org/).  Python is an interpreted object-oriented programming language that is also easy to learn and very readable.  All of these features are important assets for Chimera development.  Since Python is interpreted, it is very good for rapid development and debugging.  Readability is important for a project the size of Chimera, developed by a team of programmers that must be able to understand each other’s code.  An easy-to-learn language also enables others to develop extensions for Chimera without undue effort.  Object orientation allows access to powerful programming paradigms that would otherwise be impossible.  Chimera includes an interactive development environment to assist in diagnosing problems during extension development.  In order to ensure interactive response, a C++ programming layer handles time-critical operations (eg, graphics rendering).

Chimera is divided into a “core” and extensions.  The core provides basic services and molecular graphics capabilities.  All higher-level functionality is provided through extensions.  This design, with the bulk of Chimera functions provided by extensions, ensures that the extension mechanism is robust enough to handle the needs of outside researchers wanting to extend Chimera in novel ways.  Extensions can easily be integrated into the Chimera menu system and can also present a separate graphical user interface as needed.

Core capabilities include molecular file input/output, molecular surface generation using the MSMS algorithm226, and aspects of graphical display such as wire-frame, ball-and-stick, ribbon, and sphere representations, transparency control, near and far clipping planes, and lenses (screen areas with different display attributes).  Another core service is maintenance and display of the “current selection.”  Users may select parts of structures by picking with the mouse, by making menu choices (eg, selecting aromatic rings), or via certain extension actions.  The selected structure areas are highlighted either by drawing an outline around them or changing their color.  Extensions can query for the contents of the selection.  Many menu actions (such as coloring or setting the display style) work on the current selection.  Figure 27 illustrates some of Chimera’s graphical display capabilities.

Chimera is a stand-alone software tool.  This design was intentional because is not feasible to incorporate the real-time graphical display capabilities of a tool like Chimera directly as a web-browser “plug in.”  Chimera depends on the hardware acceleration provided by add-on graphics rendering chips and cards now available for virtually all desktop and laptop computers.  In recent years, the cost of these cards has dropped dramatically, largely because the computer gaming industry has created a competitive mass market and the resulting high volume and of sales has driven costs down to a fraction of what it was just a few years ago.  Savvy graphics hardware vendors have also created standardized application programmer interfaces to their products, typically based on OpenGL (http://www.opengl.org/).  This allows computer game authors and scientific programmers alike to take advantage of these high-performance graphics engines.  The result is that sophisticated interactive graphics capabilities are now readily available to scientific researchers.

Even though Chimera is a stand-alone program, it is easily linked into a web-based interface.  This is accomplished by registering a lightweight “helper application” with the user’s web browser though use of a customized MIME (Multipurpose Internet Mail Extension) data type.  This helper application then invokes a local instance of Chimera whenever a web server sends data of the type “application/x-chimera” to the user’s browser.  We have recently utilized this approach to facilitate the visual inspection of models within MODBASE185 (see Figure 28).  Our intent is to expand this approach to serve the structure and sequence visualizations needs for all aspects of the CCPR pipeline. Another example relevant to the pipeline is the use of Chimera for the visualization needs of the SFLD. The database was originally developed as a collaboration between the Babbitt and Ferrin groups, under the aegis of the RBVI, and thus is already fully implemented for use with Chimera. 
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Figure 27. The drug netropsin is shown bound to double-stranded DNA (PDB entry 6bna). The DNA is shown with sticks and smooth ribbon representations, and has been colored with the Chimera “rainbow” command. Netropsin is colored by atom type and drawn using Chimera’s ball-and-stick representation, with a transparent pink molecular surface. H-bonds were detected with Chimera’s “FindHBond” command and are shown as magenta lines.  The entire image and be rotated and translated interactively.
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Figure 28.  A local instance of Chimera can be invoked to display a 3-D model from MODBASE by a utilizing a small helper application. 

C.13 Software Backplane for Integrating Modules into a Pipeline

C.13.1 Large-Scale Protein Structure Modeling and Ligand Docking Pipeline

Since April 2003, the UCSF computational biologists who are investigators on this proposal have worked on constructing a prototype software pipeline for automated protein structure modeling and ligand docking. In particular, the ligand docking modules of the Shoichet group have been interfaced to the MODBASE database of comparative models maintained by the Sali group. In addition, the Ferrin group adapted the CHIMERA program for display of comparative protein structure models and sequence-structure alignments in MODBASE and for display of protein-ligand docking results. These initial, “proof of concept” steps provided us with experience in interfacing to each others’ codes and databases.  Meetings of all the researchers interested in the project occur on a monthly basis, and are facilitated by a web site dedicated to the project. The web site contains manuals, papers, PowerPoint presentations, and other useful texts (http://www.computationalproteomics.org).

C.13.2 Data Sharing Among Collaborative Projects

The Resource for Biocomputing, Visualization, and Informatics (RBVI) submitted a proposal to NIH in September 2003 seeking support for a technology research and development project aimed at facilitating the sharing of data among collaborators.  Although the DASH proposal is still under review, we believe that the data flow technology proposed in that application is ideally suited to the CCPR pipeline.

One of the primary motivations for the DASH proposal comes from our experiences with data sharing in the Pharmacogenetics of Membrane Transporters (PMT) project (http://pharmacogenetics.ucsf.edu/).  The PMT project is representative of many collaborative projects, in that the same data sets are shared amongst multiple components. Each component performs a specific processing task upon that data as part of a continuous workflow. With this compartmentalization comes the burden of establishing efficient avenues of communication among the components. As the number and complexity of components increases, maintaining consistency becomes increasingly difficult. For example, Figure 29 is an in-depth representation of the workflow between two of the groups in the PMT project, the Bioinformatics Core and the Genomics Core.

[image: image34.png]BC - Bioinformatics core
H (€ /1 GC - Genomics core
i | trace files
GC Word
H : | BCexon file of
BC i | sequence reference
CAF/SCF sequence
files H
A N i
Reference
GC data GC sequence and
description CAF/SCF positions of
file files primers and
exon(s)
Per sample BC gene
SNP data annotation

Arrow legend:
RefMap
SnpMap Gene/exon
SnpWeb web pages





Figure 29.  Workflow schematic for PMT Project.

This work flow is described in detail elsewhere227 and provides insight into one of the complex relationships among PMT components.  Our experience with these issues raises several questions that must be considered when planning a collaborative project of this nature:

· What is the best way for members of one component to notify those of another that they have modified, deleted, or deposited data? 

· How does one component transmit new data to another? To what extent will this result in duplicate data and wasted storage space?

· Are all components storing the data in the same format? How many formats are involved? What resources are available to translate between these formats?

The implications of these considerations, including the requisite software infrastructure, hardware support, and trained personnel, can limit the scalability of existing collaborations and may even prevent their initial conception. Currently in the PMT, synchronization among the participant core components is achieved by using shared data repositories (relational databases and file systems) to which each component has access.  Notification consists of manually contacting another component and informing it that there are new or modified data in the system that are ready to be utilized.  

In the overall PMT project, 15 different file formats are used to transmit data among the four core components, with up to a dozen exchanges (mostly via email) of new data per day. Any modification to exon-specific data requires reprocessing an entire gene, a process that can take up to 15 minutes on a fast computer system. The process is often repeated several times due to errors in the data itself or in the processing pipeline.  As it stands, this infrastructure is labor-intensive and inefficient. The DASH data sharing infrastructure will alleviate these problems by removing the need for manual intervention at data-transfer points within the workflow. We are very fortunate to have the PMT locally available, as it has several characteristics that make it an ideal test bed during the developmental stages of the DASH project:

· The PMT data producers/consumers are sufficiently separated geographically that our proposed system could provide a substantial benefit to the project, but they are also close enough that they will be able to provide valuable feedback in refining the DASH system and its user interfaces.

· While the workflow within the PMT project has been determined, and several data processing protocols have been implemented, the PMT is continually being refined as it matures. One of the goals for the DASH project is to provide enough flexibility so that the infrastructure can be utilized on data networks that are already established, or used as a paradigm for designing new data networks. Because the structure of the PMT continues to evolve, it fits both of these roles.

· The PMT manages and presents data using several different storage mechanisms (databases, flat files, and web interfaces), providing the variety of data storage formats that our system is targeted to support. 

In Figure 30, we have identified a subsection (shaded) of the PMT workflow from Figure 29, and created a prototype processing pipeline that is used to automate the generation of pages on the PMT web site from data files. The image on the right illustrates this pipeline utilizing a standard set of data flow diagram symbols that will be described later in the Research Design and Methods section.
C.14 Global Optimization for Protein Structure Prediction and Docking (Rosen, Dill)

Most of the modules in this Core consider improvements to or creation of specific algorithms for modeling, docking, and related technologies.  There is also a call for investigation of global optimization methods that could be broadly useful to many of the modules in the pipeline.  Here we consider global optimization algorithms for predicting the most stable conformation of a protein, based on a longstanding collaboration between Rosen and Dill.  Extending these studies will be the focus of Aim 14 (Section ‎D.14). 
The computation of the most stable conformation of a protein, or the docking of a protein-protein complex, typically requires the determination of the global minimum of an appropriate energy function E(x), where x is a vector in Rn specifying the conformation coordinates. These functions will usually have a very large number of local minima. In addition, the energy surface will typically be funnel-shaped. While good computational methods are available for computing a local minimum of E(x), because of the large number of local minima, the determination of the global minimum xg is a difficult problem, where E(xg) ≤ E(x), for all x in the range of allowed coordinates. A new approach to computing xg has been developed, and successfully applied, to small model proteins228-230,231 and protein-ligand docking232,233 . This method, called the Convex Global Underestimator (CGU) attempts to approximate the energy landscape with a convex surface, using a relatively small number of local minima to determine the convex surface, as summarized in Section D.14.1.2. In work to date, the convex approximating surface is a convex quadratic function of x. We propose to investigate other possible approximating surfaces, based on the specific application, to determine which surfaces are most efficient in correctly predicting the global minimum of the energy landscape. The variety of protein docking and structure determinations described in this proposal will enable us to test these different possible surfaces, and determine which are best for each type of application. This information will then be incorporated in the algorithms and software to greatly improve the speed of finding global optimum solutions.
C.15 Testing the Pipeline (Sali, Shoichet)

Tests of usefulness and quality are critical in pipelines of the complexity anticipated by this application.  Aim 15 of Core 1&2 is directed at such tests, which will probe the weaknesses and strengths of the pipeline, how to fix the former and build on the latter. Here we describe preliminary efforts at testing the quality of the comparative models, including those in MODBASE, and testing the quality of screening results produced by the automated docking engine.
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Figure 30.  Illustration of a pipeline constructed to automate workflow within the Bioinformatics Core of PMT project. The shaded area in the image on the left represents the portion of the workflow encapsulated by the data flow diagram at right, which is used to automate the generation of web pages for the PMT web site from source data.
C.15.1 Evaluation of Protein Structure Predictions (Sali)

In collaboration with Burkhard Rost at Columbia University and Alfonso Valencia at CNB, Madrid, the Sali group developed EVA (http://cubic.bioc.columbia.edu/eva/), a web server for evaluation of the accuracy of automated protein structure prediction methods234,235. The evaluation is updated automatically to cope with the large number of existing prediction servers and the constant changes in the prediction methods. EVA currently accesses servers for secondary structure prediction, contact prediction, comparative protein structure modeling, and threading/fold recognition. Every day, sequences of newly available protein structures in the PDB are sent to the servers and their predictions are collected. The predictions are then compared to the experimental structures once a week; the results are published on the EVA web pages. Over time, EVA has accumulated prediction results for a large number of proteins, ranging from hundreds to thousands, depending on the prediction method. Using such a large sample common to all assessed methods ensures that methods are compared reliably. As a result, EVA provides useful information to developers as well as users of prediction methods.

C.15.2 Evaluation of Automated Docking on 13 Test Systems (Shoichet)



We have investigated how well our prototype automated service performs on 13 test systems for which results have been separately prepared by an expert, most of which have been published16,175,236,237 (Table 8). Whereas the expert generally produces superior results, in nearly all of the systems the automatic procedure returns comparable results (Figure 31). In these systems, the known ligands are ranked highly and docked in the correct binding modes.
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Figure 31. Enrichment plots for 9 enzymes systems comparing the performance of an expert (dark blue), our automated procedures (magenta), and random enrichment (black). The wide range of targets represented here indicates that our protocol performs well on a diverse range of binding sites.

We consider several of these systems in detail. The enrichment plots for aldose reductase (AR) were nearly as good as for an expert, especially where it counts most, in the top 2% of the database.  Indeed, the discrepancy after the top 2% is due largely to a few large molecules being filtered out by the automated procedure. For acetylcholinesterase (AChE), the near identity of the results by automation and an expert extends out to 30% of the database, making the automatic method almost indistinguishable from an expert.  For PNP and PARP, we again observe close similarities in the enrichment results, particularly in the top few percent of the database.  For SAHH, the automated method fails to score a few key molecules well, reducing enrichment over the first 0.4% of the database. Thereafter, the automated method keeps pace with the expert until 60% of the ligands have been scored.  Finally, in the cavity site of L99A (not shown)16 the automated method is competitive with an expert using “artisanal” methods.  In these cases, the automated methods are nearly as good as an expert.

	Target
	# ligands
	Expert
	Auto

	AChE
	680
	6.3
	5.0

	Adometc
	13
	11
	0.72

	AR
	908
	2.8
	3.5

	DHFR
	142
	2.0
	0.3

	GART
	50
	0.4
	0.95

	L99A
	57
	N/A
	0.05

	PARP
	45
	2.9
	4.6

	PNP
	35
	2.8
	1.25

	SAHH
	51
	1.1
	2.1

	Thrombin
	699
	6.6
	4.2

	TS
	235
	3.5
	1.55

	MMP-3
	400
	2.9
	3.9

	CA-II
	243
	0.5
	1.9

	Table 8. Expert performance versus automated docking on 13 enzyme systems. % of the DOCK-ranked database in which 25% of the known ligands are found. AChE, acetylcholinesterase; AR, aldose reducatse; DHFR, dihydrofolate reductase; GART, glycinamide ribonucleotide transformylase; PARP, poly(ADP-ribose) polymerase; PNP, purine nucleoside phosphorylase, phosphate-free form; SAHH, S-adenosylhomocysteine hydrogenase; TS, thymidylate synthase; MMP-3, matrix metalloproteinase-3; CA-II, carbonic anhydrase II


Success against thirteen receptor targets is a beginning, but is insufficient to convince us that the automated scripts are reliable in the general case. In the Proposed Research, we extend this testing effort to 20 new protein targets, which offer a diverse set of challenges for the automated scripts and for which extensive ligand binding data exist (Table 11, Section ‎D.6.1). 

C.16 Information Navigation and Search (Hearst)

Users of these pipelines will be confronted with a great deal of information about protein sequences, associations, structures, and complexes.  Our goal is for them to use this information to address their own particular questions, but the sheer amount of information, and its large basis on modeling, will confront them with problems of reliability and context.  It would be helpful if users could check biological roles of the proteins, structures, and modeled complexes against the literature for context and biological relevance.  We are therefore building tools that can begin with a particular sequence, structure, interaction or group of interactions that have been predicted and go to a search of the literature to establish relevance and context.  This is the focus of Aim 16 of this core, to be undertaken by the Hearst group.  To support these information search and navigation needs, querying, retrieval, and organization of biomedical literature will be integrated into the proteomics pipeline, and applied to both specifying input and interpreting output.  The extensive experience of the Hearst group with natural language processing of biomedical literature suggests that this will be feasible.
C.16.1 Natural Language Processing of BioMedical Literature

In the BioText project (biotext.berkeley.edu), we are building a flexible, efficient, platform-independent database system infrastructure specifically geared towards supporting the advanced and particular search needs of biomedical researchers. We are using this infrastructure to support the development and deployment of statistical approaches to natural language processing, which will identify entities and relations between them in biomedical texts.  This will in turn facilitate more effective search and synthesis.

We have developed natural language processing algorithms that can recognize entities such as protein names and ligands as well as relations that hold between these entities.  We are using these algorithms to mark up the text in order to support more accurate querying and retrieval. We also mark up the text according to hierarchical syntactic structure using a probabilistic context-free parser238 as well as a simpler flat structure using a shallow parser.  One layer of markup is used to help create new layers. For example, once a sequence of words has been bracketed by the shallow parser as belonging to a noun phrase, then the MeSH term recognizer is run on this sequence to determine which, if any, portion of the MeSH hierarchy to assign the noun phrase to.  Once these annotations have been added, specific relation assigning algorithms can make use of the underlying annotations to create a layer representing relations between entities.

In earlier work we have determined that often the semantic relation that holds between two nouns in a noun-noun compound can be determined by looking at the higher-level MeSH categories the nouns have been assigned to239. For example, for the noun compounds (NC) "leg paresis," "skin numbness," and "hip pain," the first word of the NC falls into the MeSH category A01 (Body Regions) category, and the second word falls into C10 (Nervous System Diseases).  From these we determined that the relation that holds between any pair of words within these two categories describes the relation “located in” when juxtaposed.  Using this technique on a subpart of the category space, we obtained 90% accuracy overall for assigning semantic relations to two-word noun compounds.

We have created a semi-automated technique to identify variations in gene and protein names and map them into a canonical form.  We first analyzed a large set of gene names to determine rules for converting a given representation into a form240.  We used n-gram matching to find candidate sets of similar gene names and then inspected the results to set rules for conversion.  Some of these rules were more accurate than others and so we assigned a higher weight to those. The resulting rules are syntactic in nature and sometimes miss variations that depend on the meanings of the underlying words.  However, the results were strong enough to enable the BioText team to achieve among the top scores in the 2003 NIST TREC genomics track competition241.
As another example, we have developed a very simple linear-time algorithm for recognizing the long forms of abbreviations242.  The algorithm achieves 96% precision and 83% recall on a standard test collection, which is an improvement over other existing approaches.  It also achieves 95% precision and 90% recall on another, larger test set.  This is especially significant since earlier approaches are cubic or quadratic in running time, or require complex syntactic analysis. 

With this algorithm, we have created a database of abbreviations and their definitions from all of Medline.  In the cases where abbreviations represent protein or gene names, we plan to annotate their occurrence, in both long and short form, with a canonical semantic identifier.   In some cases the abbreviation occurs without a corresponding definition.  We plan to develop disambiguation algorithms that use the terminology surrounding the occurrence of the abbreviation to assign to it the appropriate label243.  Such an algorithm will benefit by being cognizant of the meanings of the MeSH terms surrounding the abbreviation.

C.16.2 Database Support for Hierarchical Annotation Structure

These layers of annotation can be used to create improved language analysis algorithms, but we also plan to use them to support more precise, targeted queries than are currently possible with systems such as PubMed.  For example, a biologist might want to retrieve all journal articles in which any member of a particular family of proteins is described as interacting with any member of a particular type of ligand. This can be roughly translated into a query like:

 
"Retrieve all articles in which patterns of the type

<PROTEIN> ... <INTERACTION-VERB> ... <LIGAND>

occur within a sentence, where both PROTEIN and LIGAND are expressed as noun phrases, INTERACT-VERB is an interaction verb (inhibit, interact etc.), and PROTEIN is selected from anywhere within the MeSH subtree with root label D12.776.034 (Albumins) and LIGAND is selected from anywhere within the MeSH subtree with root label D12.644 (Peptides)."  

Note that this query is quite complex; it allows interrogation at different levels of description, incorporates structural information, and includes terms from different subhierarchies.  The hierarchical nature of textual annotations raises the need for a specialized representation and querying mechanism.  To address this need, we are developing efficient mechanisms to support queries that can incorporate information from varying levels of annotation with in a relational database management system (RDBMS)244.
Our basic model consists of a collection of intervals indicated by position within the text.  Each layer represents a different kind of entity; currently the system supports the following entity types: word, part-of-speech, full parse, shallow parse, sentence extent, MeSH term, protein/gene name. Each entity in a layer is represented as a character-level interval with beginning and ending (see Figure 32).

We have also developed a Layered Query Language (LQL) which is far more concise than SQL for our purposes of querying a database across the various layers of annotations.  Currently the queries are currently translated into SQL by hand; we plan to write a translator.  Although LQL is intended to be readable, for many users it will be necessary to have a graphical interface with which to build queries, which will then be translated into LQL.

We have evaluated several different architectures for supporting such queries based on execution time, number of buffer pool logical and physical reads, and number of bytes query244.  We compared the architectures on eight different types of queries, which were drawn from the biomedical NLP literature.  (The markup algorithms were run in advance on 13,504 Medline abstracts, producing 10,290,372 records.)  The architectures differ according to how explicitly the different levels are represented within the indexes; the simplest architecture represents only the PubMed ID, the layer ID, the document section, the start and ending character positions, and the unique identifier for the represented item. For each architecture we have at least one forward and one backward index; the simplest architecture has the minimum of two indexes.  We are still assessing the relative merits of the different architectures, but our results show that these types of queries can be accomplished with reasonable efficiently using an RDMBS. 
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Figure 32.  Hierarchical text annotation structure supported by BioText infrastructure. The levels show, from top to bottom: words, parts of speech, phrase groupings from a shallow parser, identifiers for gene names, MeSH identifiers, and hierarchical representation of MeSH categories.  Not shown is the full parse structure.

C.16.2.1 Search User Interfaces
We have created a search interface framework, called Flamenco (flamenco.berkeley.edu), whose primary design goal is to allow users to move through large information spaces in a flexible manner without feeling lost245,246.  A key property of the interface is the explicit exposure of hierarchical faceted metadata, both to guide the user toward possible choices, and to organize the results of keyword searches.  The interface uses metadata in a manner that allows users to both refine and expand the current query, while maintaining a consistent representation of the collection's structure.  This use of metadata is integrated with free-text search, allowing the user to follow links, then add search terms, then follow more links, without interrupting the interaction flow.  This system builds on earlier work that shows the importance of query previews for indicating next choices.  Query previews allow users to recognize terms rather than have to remember them, and eliminate the occurrence of empty result sets.

In previous years we developed and tested different interface ideas in a series of usability studies, and succeeded in finding a design that was well-received by participants.  In the most recent usability study, 32 art history students explored a collection of 35,000 fine arts images, comparing the hierarchical faceted approach to a fast Google-like baseline.  Despite the unfamiliarity and power of the interface (attributes that often lead to rejection of new search interfaces), the study results show that 90% of the participants preferred the metadata approach overall, 97% said that it helped them learn more about the collection, 75% found it more flexible, and 72% found it easier to use than a standard baseline system246.  These results indicate that a category-based approach is a successful way to provide access to image collections.

The system is implemented using Python, MySQL, and the WebWare toolkit. Collections are stored according to a generic database schema that accommodates a wide range of metadata: facets can be hierarchical or flat, single-valued or multi-valued.  All components of the interface are dynamically generated, based on the facets and metadata terms defined in the database.  A clean abstraction layer translates queries composed of metadata terms into standard SQL queries over the schema.  The software is designed so that new collections can be added easily.

Most recently we have applied the interface technology to a small subset of 50,000 Medline citations (Figure 33).  The metadata system illustrated here makes use of a modified version of the MeSH subject hierarchy, although we plan to experiment in future with alternative organizations.  The illustration shows the power of organized metadata for organizing and refining search results.

C.17 Hardware and Software Environments for the Pipeline (Sali, Ferrin)

Considerable hardware resources, supported by a sophisticated software environment, are needed for the development, testing, and especially application of our pipeline for large-scale protein structure modeling, protein-ligand docking, and protein-protein docking.  In Aim 17 we develop such resources in an effort to efficiently and fairly manage the calls upon the overall pipeline both by the community and by our own internal research efforts.  Whereas we anticipate a significant expansion of the hardware resources available to the pipeline, and a great increase in the sophistication of job management, we do have an established infrastructure on which to build.  
The existing computing resource of the Sali group is available to the Center. This cluster is served by two Sun V880 servers with 8 processors, 32 GB of memory, and 2 TB of RAID hard disk space each. The 330 dual Pentium CPU nodes running Linux are connected to the servers at 100 mbps via a Foundry F800 switch. Backups are performed regularly on a low cost RAID disk system, and regular software, file, and database updates are executed semi-automatically over the network. The servers run the SUN GRID engine for queuing and load balancing of the individual single CPU jobs.

This cluster was constructed primarily for automated comparative protein structure modeling by MODPIPE of all known protein sequences detectably related to at least one known protein structure (Section ‎C.1.2). It is capable of calculating fold assignments and sequence-structure alignments for ~3 million models in approximately 4 weeks.
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Figure 33. Illustration of the organization capabilities of the Flamenco prototype interface run over a small subset of Medline abstracts. Shown here are the results of a query on the MeSH categories Chemical and Pharmacologic Phenomena AND Antineoplastic Agents.  Note that the query previews on the lefthand side show how many of the 57 retrieved documents have been assigned categories from other parts of MeSH.  For example, 40 of the retrieved documents are assigned to the Neoplasms category under Diseases, while 11 have been assigned to Endocrine diseases.   Thus the interface allows the user to view the retrieved documents along several different hierarchical facets simultaneously.  Selecting a category link drills narrows the subset of documents; selecting a citation link show the citation in detail along with links to its associated MeSH categories.

The cluster has recently been expanded by the grants from IBM and Intel (Section C.a), adding another 80 Xeon CPUs, a 64 bit Itanium server, and 4 nodes with dual Itanium CPUs. Additional resources are currently being sought via an NSF Major Research Infrastructure grant. Existing resources will allow us to start the Center in 2004 with a cluster of ~1,000 CPUs. The cluster computing needs of the Center will be substantial, but the existing hardware and software infrastructures are a good starting point.

The Resource for Biocomputing, Visualization, and Informatics (RBVI) also has an existing computing environment that will be utilized in part for the CCPR project.  This environment consists of a cluster of high-performance HP/Compaq AlphaServers. The cluster consists of a 32-processor GS1280 computer with 32GB of memory and four 4-processor ES45 computers with 16GB of memory each. The nodes of the cluster are interconnected using a high-bandwidth, low-latency “memory channel” switch that provides 100MB/sec bandwidth between nodes.  The Alpha cluster runs a single-system image of the “TruCluster Server” version of HP Tru64 UNIX, and HP’s Cluster File System provides a uniform view of the file system regardless of which node a process runs on.  Thus, from both a user and application software perspective, the cluster appears as a single computing environment.  This provides high system reliability and the capability to easily balance computing loads across nodes or the cluster.  The large directly addressable memory space provided by the 64-bit Alpha architecture, coupled with symmetric multiprocessor hardware implementation, makes this system well suited for running relational database applications.  To address this need, a 7TB fiber channel based storage area network (SAN) is used for file storage.  The RBVI cluster currently provides for the compute- and data-intensive needs of the RBVI user community.  It will continue to serve in this role, but will also be used to support the DASH subproject and at least some of the web services required for the CCPR project.

C.18 Applications of the Pipeline to Functional Annotation and Drug Discovery (Babbitt, Sali)

One of the promises of the genome projects is the possibility for large-scale, context based comparisons. The final overarching Aim of Core 1&2 is our own application of the pipeline to questions that can only be posed on a large scale.  Among the most important of these questions  is annotating the activity of a protein based on the ligands to which it is predicted to bind, and, correspondingly, predicting the functional consequences at the protein level  of a mutation(s) to a gene.  The first of these questions could not even be posed without a facility for exploring many ligand possibilities for any given protein. We further propose that addressing these questions in the larger context of a protein family, rather than only for a single protein, will be especially powerful for assessing docking results.  Preliminary studies suggest that investigating these questions may now be feasible on a large scale.

C.18.1 Inference of Function Using Superfamily Analysis (Babbitt)

Collaborations among the Babbitt, Sali, Jacobson and Shoichet groups to extend our capabilities for functional inference are described in Aims 18 and 19. Viewing the functional annotation problem in the context of families and superfamilies extends the reach of inference by homology to very distant relationships.  This is important for problems in which no close sequence or structural homolog to a protein of unknown function can be found.  Because the members of a superfamily may be so diverged as to perform very different overall chemical reactions using different substrates, inference of functional characteristics for such sequences can often be difficult, however, even when three-dimensional structural information is available. Using the rules-based approach described in Section ‎C.3.3, functional characteristics of even divergent members of chemistry-constrained superfamilies can be inferred from structural homology, thereby enhancing the capabilities of the pipeline for functional inference. Thus, correlation of conserved functional capabilities with conserved structural elements for all members of a divergent superfamily provides a basis for inference of function of unknown proteins in that superfamily. Using this approach, the Babbitt group has been successful in assigning functions142,247,248, correcting functions148,249, and predicting new functions for proteins that had been previously characterized139 for several of these highly difficult functional assignment problems.  In general, only the fundamental function common to the overall superfamily can be predicted using these approaches, however. Prediction of specific biochemical function or specific ligands that may bind to a superfamily member requires additional biological or other information, such as docking hits. 

C.18.2 Predicting functional consequences of point mutations (Sali)

SNPWEB is a web server for prediction of the functional effect of a single amino acid residue substitution (http://salilab.org/snpweb)68,100. The server takes as input the specifications of the wild-type protein structure and a single amino acid residue substitution. The output, generated in a matter of minutes, is a prediction of whether or not the function of the mutant is impaired, as well as the rationalization of the predicted impact in terms of several features of the wild-type and mutant structures.

The specified wild-type structure is first loaded, or located in PDB or MODBASE; if not found, modeling is attempted with MODWEB. If the wild-type structure cannot be obtained in any one of these four ways, the calculation cannot proceed and no results are displayed. Alternatively, with the wild-type structure in hand, the model of the mutant is calculated by the MUTATE_MODEL command of MODELLER. Next, the server calculates a set of sequence- and structure-based features for the wild-type and mutant proteins, including (i) accessible surface area (ASA), (ii) rigidity of the changed position and its neighborhood as indicated by the average isotropic temperature factor from X-ray crystallography of the wild-type structure or the template structure used to calculate the wild-type model, (iii) changes in residue volume, ASA, charge and hydrophobicity, (iv) the degree of evolutionary conservation at the replacement position among the members of the corresponding sequence family, and (v) the replacement likelihood from the family-specific substitution matrix250. Optionally, additional features, such as the location of the substitution relative to known functional site(s) and known structural and/or functional importance of the residues, may also be included in the feature set for the special cases curated by hand. The subsequent classification of the mutation as neutral or deleterious is achieved by a decision tree. The protocol is based on the assumption that a mutation is deleterious in either one of the following two ways: (i) when it is exposed to the solvent, it may substantially change the structure or chemical nature of functional sites that bind other molecules; or (ii) when it is buried in the core, it may prevent folding of the domains into their native fold, or, less likely, affect only the structure of functional sites. In the case of the human BRCA1 domains, the server is able to rationalize 31 of 37 point mutations with known functional impact.

D RESEARCH DESIGN AND METHODS

The research proposed by the CCPR is organized into four overarching aims:

Aims I: Create a software pipeline for automated, large-scale protein structure modeling and docking of small ligands. 

Aims II: Create a software pipeline for automated, large-scale protein-protein docking. 

Aims III: Create technologies and environments that will facilitate development and application of the pipeline.

Aims IV: Illustrate the pipeline by computational applications to functional annotation and drug discovery.

Within each of these overarching aims are several specific aims, amounting to 20 overall. We recognize that this is a lot to comprehend. We have tried, therefore, to emphasize four core themes and “deliverables” throughout the text. These themes are presented at the end of the Aims section. To recapitulate briefly here, they are: 1) Lowering the barriers to a high resolution, three-dimensional view of proteins for the large majority of biomedical researchers not trained in these fields; 2) Developing a software pipeline to link together modules for automated, large scale modeling and docking; 3) Generating a comprehensive map of protein-ligand interactions on a genomic scale; 4) Applying, in our own research, the pipeline to problems in drug discovery and functional annotation.

Figure 34 provides a map to Section D showing the sub-sections corresponding to those 20 specific aims. 
D.a. Outline of the Protein-Ligand Docking Pipeline 

Here we consider the first of our overarching Aims, construction of the protein-ligand docking pipeline.  This overarching Aim is divided into six specific aims, each of which addresses a particular software module and algorithmic goal. Several of these modules are also used in other parts of Core 1&2; these include the construction (Aim 1) and refinement (Aim 2) of homology models.  We also anticipate applying this ligand docking pipeline to the Driving Biological Projects in Core 3. Notwithstanding these connections, the pipeline can stand on its own, both in terms of its technologies and its goals, and so it seems sensible to discuss it as an integrated whole. 

The goal of the ligand docking pipeline is to take one or more protein sequences and a large library of molecules and from that produce a list of likely ligands and ligand complexes. Such complexes will provide the basis for drug discovery projects and will inform the functional annotation of the target proteins. There are liabilities in almost all of the theoretical techniques that we will bring to bear.  

Nevertheless, these techniques are now widely used in the community. Thus, whereas homology-modeled structures can certainly be incorrect in important regions, such as loops, homology modeling has made important strides and is the most common technique in prediction of protein structures where none is experimentally available, which is by far the typical case.  Similarly, molecular docking screens are now the most practical technique to leverage structure for ligand discovery, and are widely used both in industry and academia.  
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Figure 34. Aims and corresponding Sections in C and D are numbered identically.  This figure is identical to Figure 1 in Section A, and is repeated here for ease of reference. 
How can the algorithmic weaknesses of these techniques be reconciled with their apparent popularity?  At the simplest level, there are sometimes few reasonable alternatives to modeling and virtual screening. More compellingly, the techniques have genuinely advanced over the last five years.  For structure prediction, for instance, models can now be reliably calculated for sequences that share 30% or more sequence identity with a template of determined structure.  Docking is largely saved by its status as a screening technique, where both false positives and false negatives are tolerated as long as true ligands are suggested at a rate high enough to justify the effort.  Its focus on libraries of available compounds has made failure inexpensive.  As ever-more structures are determined251, there is an ever-larger pool of potential users for the techniques we deploy here.
Thus, developing a pipeline to go from sequence, via refined models, to predictions of ligands and functions will have two important impacts on biology.  First, it will lower the barriers to using these techniques, now often the domain of experts and their collaborators. We will build public services for structure modeling, binding site analysis, large molecular libraries, user-friendly docking, and functional analyses of ligand lists and receptor function. This project will bring modeling and virtual screening to a large audience. Second, it will provide databases for storing the results of these screens, and tools to exploit these databases for functional inference. The very structure of these databases will allow for questions not previously posable, allowing for relationships among the different receptor ligands to be examined.  Even if many of the putative ligands in these databases are, in the beginning, incorrect, owing to current algorithmic liabilities, the structure of the databases can be correct, as can be the tools used to draw functional inference from them. Thus, we will be well-positioned to exploit improvements in the underlying modeling, refinement, and docking algorithms.  

Whereas one might reasonably doubt the robustness of the algorithms that underlie the pipeline, its technical basis is well advanced. Although a considerable software development effort is required to integrate all of the existing modules in the pipeline, it is a reasonably straightforward engineering project involving applications of existing theory.  The stages of the pipeline correspond to our specific aims and include: (i) automated comparative protein structure modeling; (ii) identification and annotation of protein functional sites based primarily on homology considerations; (iii) refinement of comparative protein structure models by molecular mechanics methods; (iv) building of virtual libraries of ligands; (v) docking of the ligand libraries against the refined protein structure models; (vi) assessment of the accuracy of the complex models and predicted ligands; and (vii) storing the computational results in a database with a web-based graphical interface for flexible access to the data. This pipeline will be optimized for a cluster of processors, and will allow automated docking calculations for millions of proteins and potential ligands. The advanced stage of each of these modules suggest that, from a technical standpoint, this project is feasible. 
D.b. Outline of the Protein-Protein Docking Pipeline 

The second overarching Aim in Core 1&2 is the creation of a software pipeline for automated, large-scale protein-protein docking. This pipeline will construct structural models of all protein-protein complexes for which experimental information can be extracted from public interaction databases or where an interaction can be inferred from experimental data. This computation will result in a comprehensive, atomic resolution map of many protein-protein complexes. The modules used by the pipeline (Figure 35, left panel) are analogous to components of the protein-ligand docking pipeline. These general modules are used in varying ways in four different paths through the pipeline (Figure 35, right panel), that can be distinguished broadly based on the type of input information:
Hierarchical modeling of protein assemblies: The identities of the protein components of a multi-protein assembly are known. Structural information is available at different levels of resolution and includes data of one or more of the following types: (i) the overall shape of a protein complex, (ii) the shape of complex components including low-resolution comparative or ab initio models (iii) the overall stoichiometry, (iv) the location of defined protein components in the assembly, (v) protein-protein proximity restraints,(vi) the location of interface residues, and/or high resolution models/structures of complex components. 
Comparative protein docking: Two or more proteins are known to interact; a model of the protein complex can be built based on homology to a structure of a known protein complex.

High-resolution protein-protein docking: Two or more proteins are known to interact, and the structures of the components of a protein complex have been determined experimentally to high-resolution and/or high-confidence comparative models can be generated. However, there is no high-resolution structure of the protein-protein complex.
Predcition of protein interaction specificity: Several homologous sequences within one organism exist for two or multiple partners of a protein-protein complex with known experimentally determined structure. High-resolution comparative models of all possible protein-protein interactions can be built for each of the sequences. However, the interaction specificities and cross-reactivities of the sequences are only partially known or unknown.
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Figure 35. Comparison flowcharts, illustrating the correspondence of general pipeline modules (left panel) and different paths through the protein-protein docking pipeline.

The input of the protein-protein interaction pipeline consists of a collection of different types of experimental and structural information on known protein-protein interactions at various scales of resolution. The output will be models consistent with the available input information for as many protein-protein complexes as possible. The representation of these models will be dependent on the input information, ranging from low-resolution maps of protein assemblies to all-atom models of predicted protein-protein interaction networks.
We now proceed with describing the proposed research for each one of the 20 specific Aims (Figure 34).
D.1 Implement and improve a module for comparative protein structure modeling (Sali)

The core theme associated with this section is lowering the barriers to entry to a three-dimensional structural view of proteins. The associated deliverable is a pipeline that will achieve this. This section describes work to address the first Aim of this Core, to implement and improve a module for comparative protein structure modeling.  This is a sine qua non for this entire project: modeling is absolutely necessary to get genomic coverage, and all the subsequent modules in the pipeline depend on the structures it will generate.  Fortunately, this very first module in the pipeline is in good shape.  Currently, over 650,000 of the ~1.3 million known protein sequences can be modeled based on ~23,000 known protein structures. In the future, the ratio between the numbers of the modelable sequences and known structures is likely to increase further. Therefore, if ligand docking is to be comprehensive, it has to be able to work with comparative protein structure models. In this section, we describe the source of our models.

When available, high quality experimentally determined structures of the input protein sequences will be used for docking. If these structures are not available, 3D models will be obtained from MODBASE, our existing database of comparative protein structure models for all protein sequences that are detectably related to at least one known protein structure. If the models are not found in MODBASE, a comparative modeling calculation by MODPIPE will be attempted. We will initially develop an ad hoc interface between MODBASE and the docking pipeline, using java script and SQL. Later, we will interface MODBASE and the docking pipeline using the software backplane described in Section ‎D.13.

MODPIPE is an existing, completely automated software pipeline for comparative protein structure modeling that can calculate comparative models for a large number of protein sequences4,68,106 (Section ‎C.1). Sequence-structure matches are established by aligning the PSI-BLAST sequence profile107 of the target sequence against each of the template sequences extracted from the Protein Data Bank28, as well as by scanning the target sequence against a database of the template profiles using IMPALA108. Significant alignments covering distinct regions of the target sequence are chosen for modeling. Models are calculated for each of the sequence-structure matches using our program MODELLER. The resulting models are then evaluated by a composite model assessment criterion that depends on the compactness of a model, the sequence identity of the sequence-structure match, and statistical energy Z-scores78,109.

The protocol was evaluated by building models for sequences that have an experimental structure in the Protein Data Bank. Models based on alignments with more than 30% sequence identity usually tend to have more than 60% of the backbone atoms superposable to their actual structure with a root-mean-square error of less than 3.5Å (Figure 36). The difference between the black circles and the red triangles arises because of the errors in the alignment. The errors indicated by the red triangles indicate the differences between the target and template structures. The error bars seen for models based on high sequence identities indicate either regions with distortions or shifts in the aligned regions or regions with no templates due to insertions (loops) in the alignment. At lower sequence identities, the errors are usually the result of incorrect templates and/or incorrect alignments with the correct template. 

While a large fraction of the models in MODBASE may already be suitable for ligand docking (Section ‎C.5.2), it is clearly imperative to improve the accuracy of the models, especially in the ligand binding regions, and to improve our ability to assess their likely accuracy. A flowchart of the proposed new version of MODPIPE is shown in Figure 37. The new version will reflect our scientific and technical advances made in each of the four steps of comparative modeling, namely, fold assignment, target-template alignment, model building and model evaluation.
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Figure 36. Model accuracy as a function of target-template sequence identity. The overlaps of an experimentally determined protein structure with its model (black circles) and with the template on which the model was based (red triangles) are shown as a function of target-template sequence identity. The points correspond to median values and the error bars in the positive and negative directions correspond to the average differences from the median, respectively.

D.1.1 Building Sequence Profiles for Target Sequences

Sequence profiles for the target and template sequences are currently calculated by iteratively scanning the SP/TrEMBL non-redundant sequence database by PSI-BLAST. PSI-BLAST relies on an efficient and generally robust heuristic algorithm to maximize similarity between a growing profile and a given sequence. Despite its qualities, the algorithm can also result in errors in profiles, especially when distant homologs are included. Such errors subsequently amplify the error rates in the detection of suitable templates and in the target-template alignment. 

[image: image41]
This limitation of PSI-BLAST will be partly overcome by constructing profiles with the Smith and Waterman algorithm that ensures locally optimal alignments252, in contrast to the heuristic algorithm of PSI-BLAST107  that does not. This approach is being implemented in the new BUILD_PROFILE module of MODELLER, as is an empirical protocol for assessing the statistical significance of a local match of a sequence to a profile.

Because dynamic programming is significantly slower than the PSI-BLAST heuristics, we expended significant effort on optimizing it for the Intel’s 32 and 64 bit CPUs (Section ‎C.17). For example, we already succeeded in increasing its performance on the Itanium processor for a factor of six relative to our starting point. To increase the speed of calculating a profile, we also filtered the TrEMBL database by removing redundant sequences, which reduced the 1.3 million sequences to a non-redundant set of ~400,000 sequences, none of which has more than 90% sequence identity to each other. For a protein sequence of a few hundred residues, we estimate to be able to calculate a profile within 30 minutes of CPU time on a 1GHz Itanium CPU, as compared to 10 minutes for PSI-BLAST. This increase in the CPU time needed to calculate a profile does not impact significantly on the total effort needed for building a comparative protein structure model.

D.1.2 Structurally Defined Templates for Model Building

Models in the current version of MODPIPE are based on single templates. However, as shown in Figure 36, even models based on alignments with high sequence identities can have errors that are a consequence of our inability to model distortions or segment shifts between the target and template structures. Such errors can be addressed partly by using multiple templates in the model building process69. 

Multiple templates for MODPIPE will be defined with the aid of our DBALI database, which contains a comprehensive set of multiple structure alignments of the proteins in the PDB133. The groups of related protein structures are defined by MAMMOTH253 and the multiple structure-based alignments are calculated by the SALIGN module of MODELLER254. Representative groups of structurally similar proteins from the PDB will be extracted from DBALI to serve as templates for modeling. As a result, the final models will be able to benefit from the modeling procedure in MODELLER, which can often automatically choose the best template to mimic in each of the differing regions of the fold69. 

The template profiles will be built for each of these multiple structure alignments by adding all clearly related sequences from the SP/TrEMBL database, using the BUILD_PROFILE command of MODELLER described above.

D.1.3 Finding Templates and Sequence-Structure Alignment for Model Building

Sequence-structure matches are currently established by aligning the profile of the target sequence with the sequence of the template structure and vice versa. However, profile-profile alignments have been shown to outperform both sequence-sequence and profile-sequence alignment methods76. 

Therefore, we will find suitable templates for a given target sequence by our new profile-profile alignment method implemented in the SALIGN module of MODELLER76. This method relies on a matrix of residue-residue substitution scores, such as the Blosum62 matrix, and local dynamic programming for finding the optimal alignment. The alignments with each potential template profile will be evaluated by an empirical protocol that depends on an estimate of statistical significance of a given score relative to the scores of optimal alignments for random profiles. Significant sequence-structure matches that cover distinct regions of the target sequence will be chosen for subsequent modeling.

D.1.4 Model Building

Three aspects of the model building step in the current MODPIPE will be optimized:

First, multiple models (up to  ~50) will be constructed for each of the chosen alignments, using the standard ‘model’ protocol of MODELLER. The best model will be selected using model assessment (Section ‎D.1.6).

Second, if there are bound ligands in any of the template structures, the ligand will be modeled along with the protein atoms. The ligand will be treated as a “block” residue (http://salilab.org/modeller). Such “block” residues are restrained almost as rigid bodies relative to the neighboring residues, attempting to mimic the conformation and configuration in the template structure(s). Such models containing ligands are expected to be useful in the identification of the ligand binding sites.

Third, MODPIPE will be modified to allow using template structures with multiple chains. This option will allow calculating comparative models of complexes by reproducing the relative orientation of the template domains.

D.1.5 Optimization of Loop Conformations

The optimization of loop conformations in comparative protein structure models is central to the success of the pipeline. Loops often contribute to binding sites and determine the functional specificity of a given protein framework. Consequently, the accuracy of loop modeling255-260 is a major factor determining the usefulness of comparative protein structure models67,261 in studying interactions between the protein and its ligands. Loop modeling is the most important aspect of comparative modeling at the medium level of target-template sequence similarity (ie, 30-50%). At this level, the core is conserved, the alignment is mostly correct, but loop lengths and conformations can vary significantly among the family members.

As described in Preliminary Results (Sections C.1.1 and C.2.3), both the Sali and Jacobson groups have invested considerable effort in the development of loop prediction algorithms. Because the algorithms were developed entirely independently, they differ significantly in the representation of the protein, sampling methods, and scoring functions employed. The algorithm developed by Jacobson relies primarily on dihedral angle sampling and direct minimization to enumerate many local minima in a hierarchical fashion, using an all-atom force field (OPLS) and implicit solvation (Generalized Born) for scoring.  On the other hand, MODELLER, developed by the Sali group, uses molecular dynamics with simulated annealing as the primary sampling algorithm and energy terms from CHARMM combined with statistically derived pseudo-potentials for scoring.  Both methods will be employed for model creation and refinement in the work supported under this grant, and both of them will be evaluated against known structures using the infrastructure provided by the EVA web server (Sections C.15.1). Such a broad application and assessment of all modeling methods will be a significant advantage because it will allow us to learn better about the advantages and disadvantages of various protocols, and thus ultimately result in more accurate modeling procedures.

Both the Sali and Jacobson groups continue to work on the loop problem in comparative protein structure modeling. The Jacobson effort is described below in Section ‎D.2. The current loop modeling method in MODELLER includes the solvation effect only indirectly, through the statistical potential of mean force used to restrain the non-bonded contacts between protein atoms. Since the environment of most loops is significantly solvent exposed, we aim to improve loop modeling by including a more accurate description of the interactions between the protein and the solvent. We began using an implicit solvation model67. In particular, we focused on the Generalized Born (GB) approximation implemented in the CHARMM molecular mechanics and modeling package262. 

The current improved protocol in MODELLER is as follows. For a given loop sequence, many loop conformations are first generated with MODELLER, without any solvation terms. Next, these conformations are minimized by CHARMM with respect to the standard PARAM19 force field, the Generalized Born approximation to solvation, as well as harmonic restraints with force constants of 0.1 and 1 kcal/mol applied to the protein atoms within 9 Å of the loop atoms and to protein atoms 9-12 Å from the loop atoms, respectively (CHARMM/GB energy). The system is then relaxed by 50 steps of the steepest descent minimization, followed by a more aggressive adopted basis Newton-Raphson minimization of up to 2000 steps or until the energy decrease between the steps became less than 10-4 kcal/mol. The relaxed conformations are ranked by the CHARMM/GB energy and the conformation with the lowest energy or the center of the largest cluster is the final prediction. A small but probably significant improvement is observed in the ranking of loop conformations based on the CHARMM/GB energy relative to that based on the MODELLER energy. The average main-chain RMS error of the best scoring models improved from 2.36 to 1.87 Å for global superposition and from 1.29 to 1.07 Å for local superposition of 8-residue loops. These improvements encourage us to continue exploring different solvation models and optimization protocols for refining and ranking loop conformations as well as whole protein structures.

In addition to different solvation terms, we are also testing the distance-dependent dielectric model of charge-charge interactions, different variations of the non-bonded Lennard-Jones term, distance-dependent atomic statistical potentials for non-bonded interactions, statistical potentials for mainchain dihedral angles, and an accessible surface area (ASA) solvation model for hydrophobic interactions. It is expected that the improved MODELLER objective function will also be applicable to other aspects of the comparative modeling problem, such as the modeling of sidechains and rigid body shifts or distortions.

There are two distinct scenarios in which we envision employing the loop prediction algorithms. First, we will complete experimentally determined structures if they miss coordinates for some loops. For example, some of the ligand binding loops may not be present in the PDB file, potentially because they are disordered in the absence of a ligand. Second, we will use loop modeling to refine comparative models in preparation for docking. We will refine the critical loops in the comparative models using multiple algorithms, and provide several distinct refined models for each protein for docking.

D.1.6 Model Assessment

Model assessment plays a particularly important role in large-scale, automated comparative protein structure modeling: (i) It is the final filter eliminating incorrect fold assignments proposed by the matching of sequence profiles; and (ii) it enables judicious use of a given model, even if the model has significant errors.

The first step in model evaluation is to determine if the model has the correct fold106. A model will have the correct fold if the correct template is picked and if that template is aligned at least approximately correctly with the target sequence. MODBASE currently provides three ways to automatically assess a given fold assignment: First, the confidence in the model fold is generally increased by a high sequence similarity to the closest template. Second, the fold of a model is also evaluated using the GA341 composite scoring scheme described below75. Third, the conservation of the residues in the target sequence that bind a ligand in the template structure also increases our confidence in the fold assignment and alignment. 

Once the fold of a model is accepted, a more detailed evaluation of the overall model accuracy can be obtained based on the similarity between the target and template sequences106 (Figure 36). Sequence identity above 30% is a relatively good predictor of the expected accuracy. The reasons are the well known relationship between structural and sequence similarities of two proteins263, the “geometrical” nature of modeling that forces the model to be as close to the template as possible73, and the inability of any current modeling procedure to recover from an incorrect alignment264. If the target-template sequence identity falls below 30%, the sequence identity becomes unreliable as a measure of expected accuracy of a single model. It is in such cases that model assessment methods are particularly useful. 

Recently, we developed and optimized four types of residue-level statistical potentials, including distance-dependent, contact,  dihedral angle, and accessible surface statistical potentials78. Approximately 10,000 test models with the correct and incorrect folds were built by automated comparative modeling of protein sequences of known structure. The criterion used to discriminate between the correct and incorrect models was the Z-score of the model energy. The performance of a Z-score was determined as a function of many variables in the derivation and use of the corresponding statistical potential. The most discriminating combination of any one of the four tested potentials was the sum of the normalized distance dependent and accessible surface potentials. 

Additionally, we developed a genetic algorithm to select and combine different model assessment scores into a single, more powerful composite score. The composite GA341 score combines a Z-score calculated with a statistical potential function78, target-template sequence identity, and a measure of structural compactness75. The GA341 score ranges from 0 for models that tend to have an incorrect fold to 1 for models that tend to be comparable to low-resolution X-ray structures. Comparison of models with their corresponding experimental structures indicates that models with GA341 scores greater than 0.7 generally have the correct fold with more than 35% of the backbone atoms superposable within 3.5 Å. Reliable models (GA341 score ≥0.7) based on alignments with more than 40% sequence identity have a median overlap of more than 90% with the corresponding experimental structure. In the 30–40% sequence identity range, the overlap is usually between 75 and 90% and below 30% it drops to 50–75%, or even less in the worst cases.

To further improve assessment of fold assignment, we are testing a large number of different scores, including properties of the model, properties of the template structure(s), and the properties of the alignment used to compute the model. Models and structures are characterized by energies from different molecular mechanics force fields, various statistical potentials extracted from known protein structures, and geometric features, such as compactness. We use a variety of machine learning approaches to maximize the discrimination between the models with the correct and incorrect folds, respectively. 

Our new preliminary method relies on a Support Vector Machine method for discrimination, and uses the following four terms: the physical solvation model EEF1200, the non-bonded statistical score DFIRE265, the statistical potential Z-score78, and the GA341 score.

D.2 Implement and Improve a Module for Refining Comparative Models (Jacobson)

Critical to lowering the barriers to entry to structural biology is achieving the highest possible accuracy of modeled structures generated in our pipeline. Our second Aim is to refine the structures produced by comparative modeling, both to improve their accuracy and to sample alternate conformations. Prior work by investigators including Gerhard Klebe266, Reuben Abagyan25 and Shaomeng Wang23, has established that computational docking screens can be successful using homology models, in the sense that significant enrichment of ligands libraries can be achieved in many cases.  Unsurprisingly, however, docking into homology models is usually less successful than docking into holo or apo crystal structures of the same protein—this is attested to by a recent comparison undertaken by the Shoichet lab175.  It seems clear that the degradation in docking enrichment factors for homology models relative to crystal structures is caused by inaccuracies in the homology models in and near the binding site.  Even a single misplaced sidechain in a binding site can be disastrous for docking, eg, if it blocks ligand binding by occluding a portion of the binding site, or is inappropriately positioned to form critical hydrogen bonds with the ligand.   

As discussed in Section C.2, we believe that the physics-based protein model refinement algorithms developed by the Jacobson group are particularly appropriate for improving the accuracy of binding sites for docking.  These algorithms, which include side chain, loop, and helix sampling, utilize an all-atom force field (OPLS) and a Generalized Born implicit solvent model.  The improved treatment of electrostatics and solvation afforded by these algorithms—relative to many competing methods that use statistical or heuristic scoring functions—permits accurate reconstruction of hydrogen bonding networks and other fine structural details critical for successful docking.  One anecdotal example of the success of this approach, obtained from blind predictions submitted to CASP5, was discussed in Section ‎C.2.5.  The computation pipeline to be constructed under this support will permit much more extensive testing and refinement of these methods.  

One key technical challenge will be the automation of model refinement, which is necessary in order to incorporate this technology into the overall pipeline.  As with most current-generation docking methods, most current protein model refinement work, including our own, is “artisanal”.  An expert user identifies portions of the protein model for refinement, often using visual inspection, knowledge of relevant biological facts, and “gut instincts”.  Applying refinement algorithms to portions of the model that are already accurate is computationally wasteful and can degrade accuracy.  However, we believe that, by focusing on a specific, well-defined (by the methods in Section ‎D.3) binding site, it will be possible to automate this process.  Only residues within 5 Å of the defined binding site will be subjected to refinement.  Conserved side chains in the binding site (ie, those that are the same between target and template) will not be sampled.  Only those loops that contain insertions/gaps relative to the template (or low sequence identity, <50%) will be subjected to refinement.  In prior work, all refinement steps have been applied iteratively until the all-atom energy stops decreasing significantly (<5 kcal/mol per iteration).  The criterion for terminating the refinement protocol will be revisited in this work (ie, it is not clear that rigorously converging the all-atom energy will necessarily result in improved accuracy).  

Ultimately, the success of the comparative model refinement strategies will be assessed by the enrichment factors obtained in the subsequent docking stages of the protocol.  That is, for proteins with several known inhibitors, we will perform docking into refined and unrefined homology models and compare the ability to discriminate ligands that bind from those that do not.  In cases where an experimental structure exists for the protein target, homology models will be constructed and refined based on templates (other experimentally solved structures) with varying levels of sequence identity.  This will permit us to 1) evaluate the success of the docking, as measured by enrichment, as a function of similarity between protein target and template, and 2) correlate docking enrichment with detailed assessment of structural accuracy of the protein models in the active site region.  

Even with the relatively sophisticated, all-atom energy functions used in the refinement algorithms; incorrect (decoy) structures occasionally are assigned lower energies than the correct (native) structure.  There are several possible sources of these errors:  inadequacies of the implicit solvent model, neglect of entropic contributions to free energy, incorrect protonation states, etc.  In addition, protein receptors can change conformation (“induced fit”) upon binding of ligands; that is, the “correct” conformation for docking a particular ligand may not correspond to the global energy minimum of the unliganded structure, although it is likely to correspond to some relatively low energy structure.  Due to these limitations, it may be advantageous to perform docking using several different low-energy models of the same protein.  The Shoichet group has developed methods for docking into “ensembles” of structures (Section D.5.2.2).  In past work, they have used multiple crystal structures of the same protein (lysozyme) to test the approach.  Here, we will attempt to improve the robustness of docking into homology modeled proteins by employing several low-energy structures generated by the refinement algorithms.   

Typically, the refinement protocols will require tens or hundreds of CPU-hours per target, depending on the complexity of the strategy applied.  Thus, even with ~1000 CPUs available to the project, it may not be possible to apply refinement to all homology models generated in the pipeline once large-scale production runs are underway.  Models generated for the Driving Biological Projects and other collaborations will be prioritized for refinement.  More generally, refinement is likely to have the largest impact for homology models constructed from templates with sequence identity that is neither too high nor too low.  If the sequence identity between target and template is very high (eg, 90%), then extensive refinement is likely unnecessary and may even be detrimental to accuracy.  If the sequence identity is very low (<30%) then the structural errors in the models may be too large for the refinement algorithms to correct.  In particular, our experience suggests that serious alignment errors stymie the refinement algorithms; errors in core structural regions, caused by misalignment, tend to propagate to nearby loops.  As a starting point, we will focus our effort on homology models constructed from templates with overall sequence identity in the 30-70% range (ultimately, sequence identity in the binding site region may provide a more useful cutoff).  Only ~20% of the models in MODBASE currently satisfy this criterion.   

Finally, we note that the assessment and tuning of the protein model refinement methodologies will be tightly integrated with development of the rescoring/refinement algorithms for protein-ligand complexes discussed in Section ‎D.6.  That is, although we expect to be able to significantly improve the quality of protein models in and near binding sites, we recognize that it will difficult, in most cases, to achieve accuracy comparable to that of experimental structures.  Some errors in details of the binding sites will persist, with negative consequences on enrichment factors obtainable from docking. Refinement of protein-ligand complexes after docking may represent a complementary method of improving the success of docking into homology models.  If errors in the binding site are relatively small, then the docking methods may succeed in predicting correct conformations of ligands that bind to the site, but give them poor docking scores due to, eg, minor steric clashes or imperfect hydrogen bonding arrangements.  In this situation, refinement of the binding site with the ligand in place may improve both the conformation and score of the protein-ligand complex.  The simplest refinement protocol would consist of direct energy minimization (Section ‎C.2.1) of both the ligand and amino acids in the binding site, to relieve strain caused by imperfections in the model used for docking.  More sophisticated (and computationally expensive) protocols would consist of side chain and/or loop optimization on the protein, again with the ligand in the binding site.  

Expected Outcomes & Alternative Approaches: We expect that refinement of protein binding sites will permit more accurate and robust ligand docking into homology models.  However, the modularity of the computational pipeline will permit rapid assessment of alternate approaches, including loop modeling efforts of the Sali group.  The Modeller loop prediction algorithm employs molecular dynamics simulated annealing as the conformational search algorithm and a combination of knowledge-based and physics-based energy terms.  By contrast, the loop prediction algorithm of the Jacobson group relies on dihedral-angle sampling and scoring with an all-atom force field and implicit solvation.  Published results indicate that the physics-based methods of the Jacobson group are capable of achieving high accuracy under controlled conditions, but an early priority will be evaluating their utility for preparing models for docking as part of the pipeline, ie, simply testing the pipeline with and without the additional refinement stage.  In the later years of this project (years 4/5), we also anticipate aiding scientists outside the Center to test their alternative approaches to model refinement in our pipeline.

D.3 Develop and Implement a Module for Identifying Ligand Binding Sites on Protein Models (Babbitt, Sali, Kortemme)

Two views of the protein structural universe are presented in this proposal: that of the protein and that of the protein docked with a ligand (or another protein). This section represents a requisite element for achieving the latter view and the third primary deliverable for the proposal, eg, providing a comprehensive map of protein-ligand interactions. To achieve this, ligand binding sites must be identified, since virtual screening works best when one has a clear idea of the site into which the ligands will dock.  Whereas docking has traditionally targeted well-studied enzymes where the binding site is unambiguous, this will rarely be the case for the proteins targeted in the ligand-docking pipeline, many of which will not even have a known function.  Thus we need to develop methods for binding site predictions; this is the focus of Aim 3.  To annotate the modeled proteins and to facilitate subsequent docking calculations, several approaches to identifying ligand binding sites in the modeled protein structures will be used: (i) Ligand binding sites will be predicted based on the alignments of the modeled sequence to the related proteins with structurally defined binding sites, relying on LIGBASE (Section ‎D.3.1). (ii) Ligand binding sites will be predicted by optimization of scoring functions designed to capture physical properties that distinguish binding sites (Section D.3.2). Ligand binding sites will also be predicted based on family/superfamily contexts using methods that take advantage of similarities across multiple protein sequence alignments or multiple structure alignments using Evolutionary Trace (Section ‎D.3.3) and active site templates (Section ‎D.3.4) methods respectively. New approaches will be developed for identification of ligand binding sites using electrostatic calculations (Section ‎D.3.5), initially evaluated using the Gold Standard set of enzyme superfamilies provided by the Babbitt group (Section ‎C.3.3). These tasks will be implemented in scripts that will deposit their results into the database for subsequent use by the pipeline.

D.3.1 Predicting the Location of Binding Sites by Homology (Sali)

We describe here a simple method for predicting the location of binding sites for small ligands on protein structures. The approach relies on the same principles that underlie comparative modeling: If a known binding site in the template structure and the corresponding region in another target structure of the same fold share sufficiently high sequence and structure similarity, an equivalent binding site can be predicted in the target sequence. We will develop a protocol for both unannotated experimentally determined structures as well as protein structure models. 

We illustrate the idea by describing the sequence and structure conservation of the ATP binding sites. Currently, MODBASE contains 340 different chains that have at least 1 residue in contact with ATP; a residue is in contact with a ligand if it has at least one atom at less than 6 Å to any of the ligand atoms. Each known ATP binding site (in a template structure) was structurally mapped to the corresponding residues in all related structures in the PDB (targets); two structures were considered related if the program MAMMOTH superposed them with an RMSD smaller than 3.5 Å and a p-value higher than ten253. Next, the sequence and structure identities were calculated for all comparisons of the actual ATP binding sites with the equivalent sites in the related structures. The percentage sequence identity is the percentage of the template binding site residues that are conserved in the target. The percentage structure identity is the percentage of the template C atoms that are within 3.5 Å of the target C atoms in a global superposition of the whole structures by the MAMMOTH program.
The 340 ATP-binding chains gave rise to 16,013 pairwise comparisons to related chains, of which 5,170 bound ATP, ADP, AMP, GTP, GDP or GMP in the region aligned to the template ATP binding site; and 10,834 did not contain any one of these ligands in the corresponding position (Table 9). The conservation of sequence and structure in the ATP binding sites is shown in Figure 38. A putative ATP-like binding site can be reasonably assigned on a structure that shares the overall fold similarity to a known ATP binding protein, as well as sequence identity of at least 20% and structure identity of at least 30% with a known ATP binding site. With these thresholds, only 2.5% of known ATP binding sites are missed. However, the lack of experimental data about what proteins do and do not bind ATP makes it difficult to estimate the percentage of false positives.

We will extend a detailed analysis outlined above from ATP to a larger number of different ligand types. This work will allow us to select robust and accurate thresholds for “extrapolating” binding sites from template structures to target structures. We will also explore the impact of the errors in comparative models on the accuracy of these extrapolations. We will implement our protocols in a robust and efficient program that will be used as one of the modules in the large-scale modeling and docking pipeline.

A major resource in the development, testing, and application of the method will be the MODBASE database that contains definitions of approximately 50,000 small ligand binding sites found in PDB (Section ‎C.3.1)132,185. In addition, we will rely on our comprehensive database of all pairwise protein structure superpositions created by MAMMOTH and stored in DBALI133. Using a preliminary version of the method, we predicted at least one binding site for a small ligand for 44% of the models deposited in MODBASE. The predicted binding sites were inherited from any related known structure if at least 75% of the binding site residues were within 4 Å of the template residues in a global superposition of the two structures and if at least 75% of the binding site residue types were invariant. 
	Ligand
	Number of matches
	Average Sequence Identity
	Average Structure identity

	ATP
	2917
	85.7
	95.3

	ADP
	2074
	68.0
	87.0

	AMP
	179
	43.8
	81.7

	GTP
	2
	16.3
	44.8

	GDP
	9
	99.8
	100.0

	GMP
	0
	--
	--

	Table 9. The distribution of the ligand types for the known binding sites that occur in structures related overall to the known ATP binding structures. See text for the definition of the sequence and structure identities.


D.3.2 Predicting the Location of Binding Sites by Optimization (Sali)

We developed a preliminary version of a method for predicting the locations of binding sites on protein structures by optimization134. The input is the protein structure to be annotated. The output is a list of putative binding site locations. First, the scoring function is constructed that encodes a number of binding site properties, such as sequence conservation and cavity shape. The function is constructed by contrasting the sample binding sites to random surface patches, potentially also relying on sample protein structures with known binding sites of the required type. The binding sites are then predicted by a Monte Carlo search algorithm that finds the patches on the molecular surface of the protein that optimize the scoring function. Next, we describe the scoring function and the optimizer in more detail. 

D.3.2.1 Scoring Function

The scoring function depends on a selection of residues and returns a scalar value that quantifies how well the selected residues correspond to the binding site encoded by the scoring function. The encoding is flexible and can incorporate a number of binding site properties, such as sequence conservation, cavity shape, geometric features, polarity, hydrophobicity, and electrostatic patterns. 

The scoring function is defined to be a weighted sum of Z-scores corresponding to the individual properties of a binding site (Figure 39). Each Z-score is defined by the value of the property for the current residue selection relative to the background distribution of these values for random surface patches of the same size. For example, the sequence conservation Z-score fcns is (Scns – Acns ) / cns, where Scns is the average conservation of residues in the current patch, and  Acns  and cns are the average and standard deviation, respectively, of the distribution of the conservation scores for random surface patches of the same size. The properties of a patch can be either absolute in the sense that they do not depend on sample binding sites of known structure (such as the residue conservation Z-score above) or relative in the sense that they do depend on structurally defined examples of the binding site. In the latter case, for example, the residue conservation Z-score is modified to penalize the deviation of the residue conservation of a patch from the residue conservations of the template binding sites, as opposed to reward maximum residue conservation. In either case, the use of Z-scores facilitates incorporation of different features because all the properties are expressed on similar scales and can be added to the scoring function with similar weights. 

To increase the speed and flexibility of the program, the patch properties are pre-calculated independently from the main program that optimizes the scoring function. For example, the electrostatic potential on a grid is calculated by the program DELPHI267; and the pockets and cavities on protein structures are calculated by the program PASS268. 

D.3.2.2 Optimization of the Scoring Function

The optimizer finds surface patches of residues that optimize the scoring function defined above. It employs a Monte Carlo Simulated Annealing search algorithm. A patch, defined as a contiguous set of residues with at least one exposed atom, is first defined randomly. Then, modifications of the patch that retain the contiguous nature of its residues are proposed randomly. These changes are accepted or rejected according to the Metropolis criterion. Typically, 10,000 such steps are sufficient to find a good optimum of the scoring function. Due to the stochastic nature of the optimizer, we check the quality of the minima by running hundreds of independent runs, each one starting from a different randomly identified patch. 
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Figure 38. Sequence and structure conservation of binding sites. See text for the definition of the sequence and structure identities. The left panel shows the sequence and structure similarities for 10,834 comparisons of the actual ATP binding sites with the corresponding regions in structurally related chains in PDB. The right panel shows a similar comparison for 5,170 pairs of actual ATP binding sites and actual binding sites for ATP (red), ADP (yellow), AMP (green), GTP (brown), and GDP (violet), respectively. The dashed red lines indicate reasonable thresholds for the prediction of putative binding sites. 
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Figure 39. The scoring function for predicting the location of binding sites on protein models by optimization.

D.3.2.3 Development, Testing and Application of the Method

The framework described above provides a good starting point for development of specific methods for identification of binding sites. The approach is general in that it can in principle emulate methods for locating binding sites by their generic properties (eg, the scoring function is cavity size), geometric patterns (eg, the scoring is a root-mean-square deviation between a 3D motif and a putative binding site), as well as physical docking (eg, the scoring function is energy). 

The method needs to be improved and tested rigorously. We will select the most informative features of binding sites, with methods such as support vector machines269. We will maximize the use of features that rely minimally on the structurally defined examples of different binding sites. However, it is expected that scoring functions that are specialized for certain binding sites will perform better than more general scoring functions. In such cases, we need to pre-calculate the scoring functions associated with binding sites of a certain type for efficient application of the method on large-scale. We will also test the methods described in this section in the context of the large-scale modeling and docking pipeline (Section C.13.1); for example, we will asses the speed, robustness, coverage, accuracy, and sensitivity to errors in the protein structure models. We will use the EVA-LIG tools to assess the prediction accuracy relative to that of the other methods for identifying binding sites (Sections D.15.2).

Finally, we will apply the method to all protein structure models in MODBASE and deposit the predictions in MODBASE for subsequent scanning and use by other modules of the pipeline (Section D.11.1) and external users (eg, Section D.20.4).

D.3.3 Identification of Ligand Binding Sites by the Evolutionary Trace Method (Babbitt)

The Babbitt laboratory will apply the evolutionary trace method in conjunction with other bioinformatics approaches for identification of functional binding sites and active site residues in available protein structures derived from experiment and from modeling. Although this method was originally developed for identification of ligand binding sites on the surface of a protein, the approach has been used by others270,271 and routinely in our laboratory to distinguish subgroups and families within a superfamily. In consultation with Fred Cohen (see letter of collaboration), we will implement a version of this method that can be integrated with other modules in the pipeline for identification of functionally important residues. Sequence alignments for protein families and superfamilies required as input for the method will be generated by the Babbitt or Sali groups, taken from the SFLD, or from other superfamily/family compilations of sequences such as those provided by Pfam272. The approach will be used both with experimentally obtained and modeled structures available through the pipeline. Evaluation of the utility of this automated implementation will initially be performed by comparing those results to the information available in the SFLD and to the results from other ligand binding site predictions to be generated as described in section D.3.

D.3.4 Using Active Site Templates for Identification of Functionally Important Residues (Babbitt)

As described in Section C.3.3, the Babbitt group has shown that active site templates generated from functionally important residues distinguished at the superfamily, subgroup and family levels are both sensitive and specific for identifying homologs at all of these levels159. We will investigate extension of this approach for automated generation of active site templates without the need for expert knowledge. This will provide an alternative approach for identification of functionally important residues for large-scale analysis of protein models in the pipeline. Constellations of residues in modeled structures that score well for a given active site template (and that are shown to be in the same fold class as the superfamily associated with the template) can be presumed to serve analogous functional roles. We propose a two-fold strategy, automated determination of initial templates followed by use of a genetic algorithm to improve the template definition. Initial motifs for active site templates will be identified using an implementation of the previously published DRESPAT algorithm developed by Wangikar et al.273. This approach identifies sidechain patterns presumed to be functionally important using a graph theoretic approach by identifying statistically significant recurring patterns among protein sets comprising five or more proteins. It requires no expert knowledge. Although DRESPAT performs only moderately well on several of our highly diverse Gold Standard superfamily sets, we have preliminary data that shows we can improve its performance using a genetic algorithm to maximize the separation between true and false positives. Multiple sequence alignments will be used to define true positives in the training step.

As an initial proof of concept, we will extend this analysis to a set of validated superfamilies derived from several sources, including SCOP274,275 and CATH276. Motifs for each of these superfamilies found by DRESPAT will be assessed for specificity using SPASM155 to search for other instances of the motif across the entire PDB. For all cases where sensitivity and specificity are not adequate for a motif found by DRESPAT, we will use a genetic algorithm to find an improved motif. These motifs will then be used to search the proteins in MODBASE as an aid to their superfamily classification and functional annotation. Additional methods for generating large numbers of superfamilies for which active site templates can be built have been implemented in our laboratory. These include use of our Shotgun277 and Intersect278 programs for congruence and clustering analysis of PSIBLAST search results starting from divergent seeds in a superfamily. Alignments generated for use by the modeling elements of the pipeline by the Sali lab can also be used for this purpose.

D.3.5 Identification of Functionally Important Residues in Enzyme Active Sites Using Electrostatic Calculations (Babbitt, Kortemme)

To complement binding site identification by optimization (Section D.3.2), we propose another physics-based alternative for identification of functionally important residues for use in the pipeline. This approach is based on work by Elcock279 which shows that electrostatic energy calculations can be used to identify residues in an enzyme active site predicted to be destabilizing and therefore likely to participate in enzyme chemistry280. These and other studies281,282 have shown that such residues are also likely to be conserved. Patterned after the methods of Elcock, we will employ electrostatic energy calculations to identify functionally important residues in enzyme active sites. Initial development and validation of this approach will be applied to the proteins in our Gold Standard set of superfamilies, which will allow assessment of the method with respect to windows of functional and structural divergence most appropriate for use with this method. We will compare the predictions generated for each superfamily to determine the generality of the correlation between the calculated electrostatic energy of a charged residue and the degree of conservation of each. We will determine whether these calculations can be used to distinguish functionally important residues conserved at the family and/or the superfamily levels in order to assess the predictive value of the method at each level. These studies will provide an estimate of the importance of conservation in filtering results from electrostatic calculations and provide direction for implementation of this approach for large-scale analysis in the pipeline. The ligand binding sites predicted from these methods will be compared to those generated using the other methods described in this section (below) and to those generated by the Sali group and to docking results from the Shoichet and Jacobson groups to gain insight into the strengths and limitations of all of the methods. While such methods may be slower to implement on a large scale than simple homology-based methods, the generality of such approaches makes it worthwhile to consider them for implementation in the Center.

D.4 Develop and Implement a Module for Building Virtual Ligand Libraries (Shoichet)

Generation of large and accessible virtual ligand libraries represents a fundamental prerequisite for delivering a comprehensive map of protein-ligand interactions. Creating such a database and making them widely available to the community is the focus of Aim 3 of this Core.

D.4.1 Create a Production-Level Relational Dockable Database

As trivial as it may first seem, database construction is the first and perhaps most formidable of the barriers to entry for molecular docking.  Large, diverse, and up-to-date molecule libraries are essential for molecular docking, but they are hard to construct and curate and are essentially out-of-reach of the non-expert.  We will build three compound databases.  The most useful for inhibitor discovery will be a library of 500,000 purchasable compounds using free supplier catalogs (Table 10).  Because all of these compounds may be purchased, any docking hit can be rapidly acquired and tested.  This rapid cycle of docking prediction and experimental testing has always been central to making the docking enterprise work.  We will also build two activity annotated databases, one of 8,000 metabolites and another of 180,000 drugs and drug-analogs. These databases are typically not as useful for lead discovery, because they are hard to acquire and test, but they can be very informative for functional inference.  

We will build the purchasable database using libraries provided by commercial vendors, using a process largely described in the Preliminary Results (Section C.4.1).  Briefly, two dimensional SDF format source databases are converted to isomeric SMILES using Daylight’s tool MOL2SMI. We filter out non-“drug-like” molecules using OpenEye’s Filter program, as well as identifying the largest molecular fragment in a purchasable compound (eg, penicillin ammonium reduces to penicillin).  We remove copies of molecules, which frequently occur owing to the use of multiple catalogs, using our own perl script.  Depending on the source database, these steps alone can remove half the compounds.  We generate trial 3D structures using OpenEye’s omicron program. We then use OpenEye’s Filter to assign correct protonation and charge at neutral pH, resulting in a clean, filtered collection of good 3D structures.  

The database is broken up into slices of 400 molecules, and each is processed in coarse grain parallel on our cluster.  For each slice, we run AMSOL171 via our own scripts16 to compute partial atomic charges, polar and apolar desolvation energies.  We also run OpenEye’s Omega program to generate up to 2500 conformations per molecule. We combine the AMSOL result and the conformations generated by Omega into a hierarchically formatted dockable database169 using our own program MOL2DB.

	Supplier
	Web Site
	Total #

mols


	Specs

+Biospecs
	Specs.net
	175,000

	ChemBridge
	Chembridge

.com
	330,000

	Sigma-Aldrich
	Sigma-aldrich.com
	185,000

	Ryan/

Maybridge
	Ryansci.com
	303,000

	ComGenex
	Comgenex.

com
	160,000

	ChemDiv
	ChemDiv.com
	350,000

	Total
	>1.5 M

	Table 10. Sources of small molecules for docking databases.


Molecules containing groups titratable in the range physiological pH, such as imidazoles, thiols, 2- and 4-aminopyridines, and sulfonamides, are generated in multiple protonation states. The alternately charged forms of these molecules are processed as before (AMSOL, Omega, MOL2DB) into a dockable database.  We typically dock both the protonated and unprotonated forms of all ligands.

We also use the Daylight program “chiralify” to generate alternate configurational- and stereo-isomers for molecules in which the stereochemistry is ambiguous.  If there are multiple chiral centers (R/S) or double bonds (E/Z) we truncate at 4 the number of isomers we generate to limit combinatorial explosion.

Finally, we write a record for each new molecule into our relational database implemented in MySQL. This allows us to subselect molecules easily based on functional group, charge, size, number of rotatable bonds. This database also allows us to add, remove and correct entries easily and incrementally. Important subsets are the 50,000 compound collection used for standard docking runs, as well as collections of 100,000, 250,000 and our complete 500,000 commercially available collections, all of which will be made available free on our website (http://blaster.docking.org/databases/) and linked from the Center’s web site.  

A similar procedure is used for building the annotated metabolite and drug databases.  The sources for the metabolites library is the KEGG database283 of about 8,000 molecules.  Examples of the molecules contained in this database include sugars, amino acids, nucleic acids, and their metabolites.  These metabolites start as SMILES strings, which may be fed directly into Omicron (OpenEye Scientific Software, Santa Fe, NM) for initial three-dimensional structure calculation.  Unlike the purchasable compounds, we leave the metabolites unfiltered for “drug-likeness,” although we do remove polymers, metal ions, and molecules with fewer than 6 or more than 70 non-hydrogen atoms because they are unsuitable for docking Thus although we have already calculated a version of KEGG suitable for docking we need to go back and ensure that the stereochemistries are correct. This involves some hand curation and, often, simply calculating multiple configurations of each stereo-isomer, ensuring that at least one structure for any given molecule is correct.  This leads to multiple representations of many molecules, each in different stereochemistries, which has the slight drawback of increasing computation time and the more serious possibility of finding decoy, stereochemically incorrect metabolites as “hits.”  We do not currently know how serious an impact this might have on our ability to enrich likely metabolites for a given binding site, but this should emerge in our control calculations (Section D.18.1.1).  

In our own laboratories, we use the proprietary MDL Drug Data Report (MDDR) as a library of drugs and drug-like molecules; we find this library very useful because of its large size (about 100,000 molecules) and its extensive annotation for target binding.  We will use this database for many of the functional annotation efforts that we will ourselves undertake as part of this proposal.  Unfortunately, the MDDR is a commercial product of MDL, and we cannot publicly distribute it.  We have therefore begun to assemble a library of drugs and drug-like molecules that may be distributed.  One source of this is the ChemIDplus database from NIH which contains about 180,000 drugs and drug-like compounds. We obtained this library from the Specialized Information Services of the National Library of Medicine at the NIH. It is distributed in three dimensional SD format.  It can thus be easily fed into our database building pipeline, once again with the exception that we will not remove “non-drug-like” compounds from this list of real, small molecule drugs (the protein drugs will be excluded).   

Once built, each of these three libraries will be maintained and curated: adding new compounds that have become available, removing those no longer available, and fixing any problems that have been discovered.  Based on our experience with the prototype databases (Table 3), typical errors include incorrect protonation state, incorrect charge, insufficiently sampled torsion angles, and insufficiently sampled ring geometries.  Curating these errors is rule based and, admittedly, it is a key aspect of making the enterprise work.  Two features work in our favor: we have devoted much energy to curation over the past five years, and by now have an extensive, completely automated expert system for catching errors.  Also, a single incorrect molecule generally indicates a systemic error affecting a class of molecules, all of which can be corrected with the right rule or set of rules.  Each update that results from this process will be identified as a new “release.”  The previous version of the database will continue to be available for download on our website, so that users who began a project with the previous database version may continue to access it.

We will make the three dockable databases available on the Internet in Tripos’s mol2 and Daylight’s SMILES format as well as in our own hierarchical dockable format167.  Both SMILES and mol2 are standards in the field and are widely used. This will enable investigators to use these databases with other docking programs, should they wish to.  We know of no free, well-curated, three-dimensional, purchasable compound collection available today.

Expected Outcomes & Alternative Approaches: Preliminary results suggest that we will be able to construct large, community accessible small molecule databases for docking.  We have already posted a curated database (ZINC) of about 500,000 compounds with structures, suppliers, and molecular property values (eg, ClogP) on our website (http://blaster.docking.org/zinc).  We have permission—indeed, encouragement—from the suppliers to distribute these data.  Expanding this collection and keeping it up-to-date should be feasible.  Thus, bringing this resource to the community seems well within our grasp.

Bringing a functionally annotated database to the community may be more challenging.  We hope that the NIH’s ChemIDplus database may serve this purpose, but this remains to be seen.  Other options include analyzing public enzyme-ligand database such as BRENDA (http://www.brenda.uni-koeln.de/) for ligands with known binding patterns.  At the very least, we will be able to distribute a dockable version of the KEGG metabolites database.  For our own purposes, we have access to the MDDR drug-like database, which will enable our own explorations of ligand-based functional annotation of proteins.    

D.5 Implement and Improve a Module for Docking Ligands against Protein Structure Models (Shoichet) 

Aim 5, docking of large ligand libraries, is at the heart of a large part of this project and directly represents one of its primary deliverables, a comprehensive map of protein-ligand interactions.  What we are creating is a module that begins with a structure from homology modeling and refinement (Sections ‎D.1 and ‎D.2) and outputs a list of likely ligands for that target.  Because of the molecular databases to be docked, many of these potential ligands will be purchasable and so can be easily tested experimentally.  The goal here is to automate our current docking procedures to the point where they can be easily used by the general community.  
D.5.1 Easy and Robust Preparation of Protein and Docking Input Files 

If database construction is the first barrier to entry to molecular docking screens for the general community, the second is the complexity of operating a docking screening program: the sheer number of scripts, options and preparation steps that must be run, selected or performed before docking can start. In our prototype of automated docking tool, the user need only supply a receptor structure and a binding site to start docking (eg, ligand coordinates or active site residues; Section D.3).  Were this to work reliably, this would be sufficiently simplified.  Currently, it does not.  Whereas the automated procedure can treat certain targets from start to finish (recognizing the binding site, preparing the energy grids, preparing the input files, docking the databases, analyzing the results), for others it either falls over at some point or it gets unimpressive final results. Here, we consider possible improvements to each input option (Figure 40).

D.5.1.1 Receptor Structures

A current problem is the heterogeneous representation of atoms in the Protein Data Bank (PDB), the major archive of experimental protein structures.  Some atoms have multiple placements in the structure (multiple conformations), whereas some are not be represented at all, owing to poor electron density.  Scripts need to be improved to recognize and respond to these contingencies gracefully.  When multiple conformations are present, this should be propagated in the docking calculations, by building multi-conformational receptor scoring grids.  When ligand atoms are missing the residues should be converted to alanines, or simply eliminated, but in a manner that will not confound downstream programs that expect a fixed number of residue and atom types.  

Correspondingly, dictionaries of atom types must be improved to handle the chemical entities found in the PDB.  These include non-displaceable groups such post-translational modifications and co-factors.  Displaceable groups, such as waters and metal ions, may often be included as part of the receptor, as defined by the user.  Alerts to the user must be improved to identify all groups that were not recognized.  

Ironically, many of these problems are eliminated with homology-modeled structures, which typically represent single conformations of the polypeptide alone.  This makes the formatting and atom recognition issues easier, but at the cost of missing sometimes key information.  Since many proteins that will be targeted will, of necessity, only available as homology models, it makes sense to spend some effort on improving these features.  We will add the ability to include co-factors and functionally important metal ions to homology models, built using MODELER.

D.5.1.2 Ligand
In addition to the receptor structure, the only other piece of information required by the pipeline is an identification of the binding site.  This can be provided in two forms: either through coordinates of a ligand as bound to the receptor structure, or through identification of active-site residues.  Here again, our current scripts work for some ligands but fall-over for others.  We will improve the scripts that handle the ligand or binding site specification file, checking for: a) unrecognized atom types; b) that the ligand or binding site location file is in the same frame of reference as the receptor. 

D.5.1.3 Co-factor Parameters

Whereas we will do our best to improve recognition of co-factors in receptor files, and have corresponding parameter files for them, the number of co-factors is large enough that it is sensible to give the users the facility to supply both coordinates and parameters for co-factors that they know, from their own expert experience, are associated with their receptors.  Whereas the facility currently exists to do this, its reliability must be improved.  This will be done by checking that the parameters supplied by the user actually correspond to the coordinates uploaded.  Reports for discrepancies will be developed.

D.5.1.4 Database to Dock

We take up the question of fair-share scheduling of web-originated requests in section D.11.2. There are three choices: the commercially available compound library, the metabolites library, or the drug library.  If the user is interested in exploring the possible function of the binding site, she will likely choose either the metabolites or the drug libraries.  If she is interested in discovering novel ligands, she will choose to dock the commercially available ligands, which can be easily tested experimentally.  Because this library is very large, we will offer the user the option of running on a smaller, 50,000 compound library first. 

Expected Outcomes & Alternative Approaches (Preparation of Docking Input Files): Automating the preparation of structures and input files for docking is at once completely necessary and completely do-able.  Where we expect to have problems is handling the many idiosynchracies of protein structures, co-factors, and hydrogen atom placements.  We are approaching these problems through expert systems that catalog previous problems and solutions.  This part of the pipeline will almost inevitably fall down for certain pathological cases.  Our strategy is to look for these cases aggressively, and continue to improve the expert system.  But at some level, we will have to accept a certain failure rate at recognizing important features of particular receptors.   Investigators interested in particular targets will always be able to return to an expert mode, and solve these problems by hand, as is currently done.  

D.5.2 Algorithm Improvements to the Docking Engine

The automated docking engine is built on existing algorithms developed in the Shoichet lab, and before that the Kuntz lab, over many years.  Much of our effort has gone into automating what has been an artisanal process that has had, in the hands of experts, important successes at predicting novel ligands. Notwithstanding these successes, there is clearly much room for fundamental improvements in the underlying docking algorithms.  Here we consider three such: a). Improving the structures of modeled proteins for docking; b). Allowing for receptor flexibility during docking calculations; and c). Accounting for receptor desolvation in docking calculations.

D.5.2.1 Docking of the Ligand Libraries against Refined Protein Structure Models 

It is essential for the current ligand docking methods that the input protein structure models be as accurate as possible. A variety of methods for refinement of crystallographic structures and comparative models will be explored. In particular, the existing loop and sidechain modeling methods of the Sali and Jacobson groups will be used to increase the accuracy of the conformations of loops and sidechains, which generally define ligand binding sites284. The refinement protocols that are most useful will be incorporated into the modeling-docking pipeline. A key goal of this proposal is docking against the large number of targets for which relatively high-quality homology-modeled structures may be calculated.  There are about 525,000 proteins in SwissProt and Trembl that have 30% or greater sequence identity to proteins for which experimental structures have been determined, enabling the calculation of relatively reliable structures. We will make structures of these targets available for docking by outside users, and will ourselves undertake docking screens against these targets using functionally annotated ligand databases (such as the metabolites and drug databases).  
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It is a simple technical matter to make these homology-modeled structures available for docking.  The structures have been calculated already using Modeller (developed by the PI), and are available on the ModBase web site (http://www.salilab.org/modbase, developed and maintained by the Sali lab).  This database is updated regularly.  As described above, it is even easier, from a formatting standpoint, to work with these modeled structures than it is to work with experimental structures, the latter of which often have idiosyncracies.  
From a scientific standpoint, docking against homology-modeled structures is ambitious, and requires further development.  Because some sort of structure is so desperately needed, modeled structures have become popular docking targets22,23,25,30,266,285, even though the errors that are introduced by these structures remain relatively uncontrolled.  As discussed in Section ‎C.5.2, the Shoichet group has performed preliminary work comparing crystallographic and modeled structures as targets for docking.   Although the homology modeled structures usually performed worse than the x-ray structures, they nevertheless often significantly enriched the known ligands.  In four targets this enrichment was better than 20-fold over random for top-scoring molecules175.  
We believe that it will be possible to significantly improve enrichment factors for docking into homology models by application of refinement algorithms to binding site conformations.  Preliminary results by Jacobson (Section ‎C.2.5) suggest that it is possible to use physics-based methods to increase the accuracy of the conformations of loops and sidechains, which generally define ligand binding sites284.  As a practical procedure for the computational pipeline, we believe it will be advantageous to generate an “ensemble” of models, each one of which will be used for subsequent ligand docking. In this way, we will minimize the impact of the induced fit and the errors in the input protein structure models, thus increasing the chances that at least some docking calculations are accurate. This approach depends on significant computing resources and underlines the need for methods to assess the accuracy of docking calculations.  As we settle on the appropriate strategies, we will make them part of our automated procedures that are available to the public and are used in building the database of docked complexes.  We note that, irrespective of these new techniques, the ability to dock against homology modeled structures will be available to the community from the start.   
We will return to the ten enzymes we have previously investigated where x-ray structures may be compared directly to candidate homology-modeled structures (Table 8)175.  For these enzymes one may directly compare the results of the homology-modeled structures to those of the “best-case” structures, those determined by crystallography.  As in the preliminary studies, both the x-ray and modeled structures will be used to screen the MDDR database of about 100,000 annotated drugs and drug analogs.  The quality of the structures as templates for docking will be evaluated based by their ability to enrich the known ligands from among the large number of decoys in the database175.  We will thus have a “gold-standard” in the performance of the crystallographic holo-conformations of the targets, so docking-related pathologies should drop out in the comparison.  Unlike our previous studies, we will use loop-building and residue-sampling techniques115,284 to propose alternate, low-energy receptor conformations (within 5 kcal/mol of the lowest energy minimum identified).  Using new algorithms developed to dock against multiple receptor conformations236, the Shoichet group will dock against both single refined conformations as well as ensembles of alternate conformations.  

In targets like Poly(ADP-ribose) polymerase (PARP, Table 8), the conformation of a single residue, Tyr906, appears to account for the poor performance of the modeled structure relative to the x-ray structures175.  In this and similar cases, calculating alternate conformations and refining the modeled structures is almost certain to be helpful.  In other structures, where larger errors are present in the homology modeled structures, it’s not clear that the refinement techniques will have the radius of convergence to significantly improve docking results, but even in these cases we would hope to learn about the limits on the reliability of the structures and the refinement techniques.  

D.5.2.2 Receptor Flexibility in Molecular Docking

Modeling receptor flexibility remains a frontier area for docking screens.  In addition to the problem of the exponential growth of conformations, most docking programs, including our own, use pre-calculated energy potential grids for the receptor.  These greatly speed scoring calculations, but multiple receptor conformations mean multiple grids, each of which occupies a large amount of memory (about 45 MB/receptor conformation).  As more conformational degrees of freedom are sampled, the memory needed quickly becomes unsupportable.  

Several strategies are under active investigation.  Side chain accommodation has been treated by both by optimization of torsions during docking286-288 and through pre-calculated rotamer libraries.289-291  Molecular dynamics simulation have been used to sample backbone movements,292,293 and to refine the results of docking screening calculations.292,294 Ensembles of experimentally determined structures have been used to calculate averaged potential energy grids, which simplifies the docking calculations considerably, though there is some concern about the energies derived from such averaged grids.295,296  The FlexE algorithm, recently introduced by Lengauer297, samples discrete receptor conformations in a combinatorial fashion.  This method can be used to treat both side chain and backbone movements efficiently. 

Our first interest is large-scale docking screens where we are conscious of calculation time.  We are therefore exploring an ensemble strategy, using a method conceptually similar to that of Lengauer.297  The receptor is divided into a rigid part and multiple flexible parts, each of which can move independently.  As long as these flexible parts are more than 5.8 Å apart, we find that their contributions to the potential energy grids are approximately additive, allowing for recombination (non-additivity remains a concern, see Wei, 2003).  Thus, if one has three movable regions, each with three conformations, the number of grids to calculate is nine, but through recombination 27 conformations are represented.  Consequently, the cost of calculation for this method grows linearly with the number of flexible regions and only slowly with the number of conformations (Figure 41).  
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Our preliminary testing of this method suggests that it is worth pursuing.  We predicted flexible ligands, and flexible receptor accommodations, in a cavity site where the predictions may be easily tested by x-ray crystallography.  We predicted 14 novel ligands and, in collaboration with the group of Brian Matthews (Univ. of Oregon) determined seven crystal structures.  In each of these seven, the predicted geometry of the ligand corresponded closely with the experimental result, as did many of the receptor accommodations (Figure 42).236  

There is one important caveat that we have discovered with this, and we would argue, any docking method that uses receptor flexibility—it is sensitive to the internal energy of the receptor conformations that are used.  We have found that unless one normalizes the docking energy scores for receptor internal energies, then the highest energy receptor conformation (eg, the receptor conformation that exposes the most hydrophobic surface area) will dominate the docking calculations, to the detriment of what are often much more sensible receptor conformations.  One of our ongoing research goals is therefore to develop general methods whereby internal receptor conformational energy may be calculated and integrated with the docking energies. 

D.5.2.3 Accounting for Receptor Desolvation in Molecular Docking

A frontier area in docking calculations, especially for large database screens, is the issue of calculating receptor desolvation energies on ligand binding.  Until now the field has entirely ignored receptor desolvation in docking, reasoning that any docked ligand desolvate the receptor equally, since all bind to basically the same site.  This is a gross approximation.

Many methods to calculate receptor desolvation have been explored, outside of docking, often based on surface area burial298.  As successful as these methods have been, a purely surface-area based approach will not mesh well with the continuum electrostatic models that we now use in the docking energies.  A better way forward would be to calculate how the introduction of a ligand in the active site changes the electrostatic self-energy of the receptor.  This occurs because the ligand displaces high-dielectric aqueous medium, thereby changing the protein’s interaction with itself.  As with ligand desolvation, calculating this using full PB or GB for every orientation of every ligand during docking would take too long.  

Here again, our strategy is to put as much as possible on a pre-calculated grid.  A way to do so has been suggested by Caflisch299, who finds that the effect on receptor self-energy of introducing a ligand is essentially additive with the volume of each ligand atom.  Thus, the active site may be broken up into individual volume elements and the effect of changing the dielectric of any single element, due to ligand binding, pre-calculated and stored on a grid.  For any docked ligand orientation, the effect on receptor desolvation is then the sum of all grid points occupied by the ligand atoms, multiplied by the desolvation energy corresponding with each point.  Generating such a receptor desolvation grid would require a separate PB calculation for each grid element in the active site, which would be a longish calculation but one that need only be done once, before docking.  
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The new algorithm will be tested in stages similar to those used for ligand desolvation.  First, the method will be compared to full PB calculations for characteristic complexes.  Second, retrospective docking screens of the MDDR will be conducted and the enrichment factors of the new method will be compared to those from our current scoring function.  Finally, the algorithm will be tested experimentally for its ability to predict novel ligands for the model systems, especially for the “open cavity” and for AmpC, where such corrections should be most important.

Expected Outcomes & Alternative Approaches   (New Docking Algorithms): Scoring-function development for docking is inherently risky because what we are implicitly trying to do, calculate relative rankings through absolute binding affinities, is well beyond the limits of the field.  The reason why docking has had as large an impact as it has is that it tolerates high false positive rates, focuses on available compounds, and benefits from cancellation of errors.  Whereas the sampling and scoring algorithms we propose should, in principle, be better than those we have used in the past, there is always the possibility that they will not improve our ability to discover novel ligands.  This would be the case if they removed a formerly canceling error or if a key problem, for instance relaxation of the system, remains unaddressed by the improvements proposed.  In parallel with efforts to improve our docking algorithms directly, we will therefore pursue a complementary strategy of post-docking refinement of high-scoring hits.  This subject is taken up in the next section of this proposal.
D.6 Develop and Implement a Module for Rescoring Protein-Ligand Complexes (Jacobson, Dill)

To be useful, a comprehensive map of protein-ligand interactions must provide credible predictions of protein-ligand complexes. This is an especially important issue for docking technologies since first pass docking hits, which are the primary output of the previous module, are notoriously unreliable, though they are widely used.  The reliability of the whole docking pipeline would be much improved by methods to assess the accuracy of the predicted complexes and the likelihood that the predicted docking “hits” will, in fact, be ligands.  One way to do so would be to improve our “on-the-fly” docking algorithms, as discussed in the previous section.  A second, and, in the short term, arguably more effective alternative would be to use post-docking re-scoring of the docked complexes from Section D.5.  Because many fewer structures are involved, we can use more computationally intensive techniques that would be expected to be more accurate.  This is the focus of Aim 6 of this Core.  

It is essential for the utility of the whole docking pipeline to develop methods for assessment of the accuracy of the predicted complex structures and their affinities.  Several complementary approaches will be pursued.  One approach, described in this section, pursued by the Jacobson and Dill groups, is the application of more accurate, physics-based energy models to protein-ligand docking.  The testing of the pipeline, discussed in Section ‎D.15 and the Driving Biological Projects, will permit extensive testing and tuning of these approaches.  A second approach, pursued by the Babbitt and Sali groups and described in Section D.18.2, compares ligand binding profiles across proteins that are known to belong to the same superfamily. Although this approach is pertinent for rescoring and assessment of protein-ligand complexes, it is described in D.20 because of its expected usefulness for functional annotation.   

D.6.1 Energy-Based Refinement and Rescoring of Protein-Ligand Complexes (Jacobson)

Improving docking scoring functions remains an area of active research300,301,24,302,303.  Since hundreds of thousands of molecules are screened, each in many thousands of configurations, the accuracy of these scoring functions is often sacrificed for speed.  Docking scoring functions are unlikely to be truly accurate in the foreseeable future.  And yet, especially for automated docking, it is upon the docked energies that decisions are based.  There is no sure way out of this dilemma, but one strategy that deserves further investigation would be a two-stage approach where the initial docking screen is followed by high-quality energy calculations on a small number of high-ranking docked molecules each in a small number of possible configurations.  

An example of this that we are now implementing would be to take the top 1500 docked complexes from a large database screen and re-rank them by refining the geometry and energy through classic minimization coupled to Generalized-Born/Surface Area (GB/SA) solvation calculations.  These re-ranking calculations take about 1 CPU minute per complex, or about 1 CPU day for 1500 compounds each in one complex.  This is about the CPU time it takes to screen a large database, and so would only double the overall calculation time, which would be quite bearable, especially if the quality of the calculations improved.  Thus, we believe that it will ultimately be possible to apply at least some level of refinement and rescoring to all high-ranking (eg, top 25% of hits) protein-ligand complexes generated by the docking.  Our preliminary studies  (Section ‎C.6) suggest that such re-ranking will, in fact, improve the reliability of docking rankings in most complexes, but admittedly this is an area of active research.  

We will first test this re-ranking protocol in the 20 protein systems with which the Shoichet group has worked extensively in past studies (Table 11).  These systems have the advantage of having multiple, typically hundreds, of annotated ligands in the MDDR database, and x-ray structures of multiple ligand complexes.  We will compare enrichment factors for the raw docking results to those of the re-ranked hits, giving us a quantitative metric for whether the detailed energy calculations are improving rankings, and how much they improve them.  More extensive testing will be possible with the complete pipeline, as discussed in Section ‎D.15.  

D.6.2 Improving Solvation Models for Folding and Docking (Dill)

The Dill group is developing methods to improve physical-principles-based predictions of protein structures and of ligand-protein interactions.  One bottleneck to faster and more accurate docking algorithms is the error incurred in current solvation energy functions.  We are developing methods to improve all-atom energy functions: (a) a new approach for treating the aqueous solvation of biomolecules, based on density functional theory, and (b) a parameter optimization method for the complex nonlinear models that are typically used in biopolymer simulations. 
	Target
	No. of ligands in the MDDR
	Target
	No. of ligands in the MDDR

	Xanthine Oxidase
	75
	AchE
	680

	NO synthase
	50+
	Adometdc
	14

	ABL kinase
	50+
	AR
	908

	Retinoic acid receptor
	50+
	DHFR
	142

	CDK4
	50+
	GART
	50

	SRC kinase
	50+
	PARP
	45

	Estrogen receptor
	50+
	PNP
	35

	Adenosine deaminase
	30
	SAHH
	51

	EGFr kinase
	50+
	Thrombin
	699

	Neutral endopeptidase
	20
	TS
	235

	Cyclooxygenase-2
	830
	MMP-3
	400

	PPAR gamma
	50+
	CA-II
	243

	HIV integrase
	50+
	L99A
	57

	Table 11.  26 protein binding site targets to use to test automation. 


D.6.2.1 Better Solvation Models 

The accuracy of computational docking could be improved through accurate treatment of the solvation free energies of both the docked and unbound states of the receptor-ligand pair, allowing important desolvation effects to be properly captured. The Dill group has been actively developing a statistical mechanical theory of aqueous solvation304-310.

Current methods in solvation modeling involve the use of either all-atom simulations with explicit solvent or implicit solvation models, such as Generalized Born (GB) or Poisson-Boltzmann (PB) augmented with a term to penalize exposed solute surface area.  Explicit solvent simulations are prohibitively expensive for most docking studies.  While implicit solvent models are fast, they often neglect important physical effects; GB and PB oversimplify by separating solvation into: (1) an electrostatics term that treats the solvent as a continuum and (2) a surface-area-additivity model for hydrophobic and short-ranged effects. Our strategy here is to develop more accurate implicit solvation models that avoid such drastic simplifying assumptions.  In particular, we will include waters and orientation-dependent hydrogen bonding explicitly.  We will extend our recent integral equation methods311,312 to the form of a density functional theory in which water positions and orientations near complex solutes and receptors will be treated as field variables.  The network structure of water molecules at or near ligand and receptor surfaces will be treated in the form of a differential equation that can be solved by finite difference methods in much the same way that the Poisson-Boltzmann treatment now handles electrostatics.  We believe this strategy will be much more faithful to water-structure physics than current implicit solvation models, but at little or no extra computational cost.

D.6.2.2 Improving Scoring Functions for Folding and Docking

The Dill group, in collaboration with the Shoichet group, aims to improve the energy parameters in docking models.  We have developed some new methods for parameter optimization313-315.  Also, with Matt Jacobson and Professor Vageli Coutsias from the Department of Applied Mathematics at the University of New Mexico, we have developed an analytical and computationally efficient method for determining the conformations of small protein loops126.

Here, we are applying a systematic nonlinear parameter optimization method, called MOPED (Method for Optimizing Physical Energy parameters using Decoys).  MOPED is a general and powerful method for improving the parameters in any biomolecule model; it has already been tested in folding and loop modeling313.  The input to MOPED is: (1) any model energy function, (2) an initial set of adjustable parameters of the model, and (3) a set of natives (ligands docked into the correct structures in receptors) and a set of decoys (a set of non-native incorrectly docked structures).  MOPED then iterates through conformational and parameter spaces to find improved sets of energetic and structural parameters.  It can do this even for nonlinear models and even for large, complex, continuum models. The Shoichet group has provided a small database of native and decoy structures.  As a first docking experiment, the Dill group is using MOPED to optimize the balance between the internal energies and the solvation term in DOCK.

D.7 Develop and Implement a Module for Collecting Known Protein-Protein Interactions from the Reference Resources on the Web (Sali)

The second overarching Aim of Core 1&2 is the creation of a software pipeline for protein-protein docking.  This pipeline draws on many of the same modules as does the ligand docking pipeline, including structure prediction by comparative modeling and energy-based refinement of these structures (Figure 35). The first module specific to this protein-protein docking pipeline is Aim 7, collecting known protein-protein interactions from the reference resources on the web. Such a collection is important to the function of this pipeline because it reduces the staggering number of potential protein-protein complexes to a much smaller, and much more biologically interesting group.  

D.7.1 Collection of Protein-Protein Interactions from Primary Databases

In recent years, experimental advances in fields from analytical chemistry to structural biology316-319 have allowed numerous large-scale studies of protein320-323 2,324 and gene interactions325-329. While each experimental method has its own limitations, these can be recognized and partially overcome by integrating multiple sources of data330-332. These large datasets have been stored in generally available databases, often times supplemented by manually curated data from traditional small scale experiments333-336. 

We aim to combine protein interaction data from across a range of experimental resolutions, from yeast-two hybrid experiments to x-ray crystallographic snapshots of protein complexes. This aim will be achieved by an automated integration of the data in multiple databases assembled on the web with our existing structure databases, MODBASE (Section C.11.1) and BASE (Section D.7.2). The primary source databases include the Protein Data Bank20 (PDB), the PQS database182, the Biomolecular Interaction Database (BIND335), the Database of Interacting Proteins (DIP)334, and the Kyoto Encyclopedia of Genes and Genomes (KEGG283).

Data standardization efforts, such as the Proteomics Standards Initiative337,338, are developing open file formats that will help simplify the challenge of data integration. As evidenced by the community-wide participation and adoption of these standards, we are moving closer to a seamless automated integration of the multiple sources of data. 

This integration of physical and functional protein interaction data together with our existing structure databases will provide a comprehensive view of protein interaction space at the highest resolution possible. This resource will prove invaluable in testing and applying our protein-protein docking pipeline.

D.7.2 Base: A Database of Domain Interfaces in Proteins

BASE is a comprehensive database of protein structural domain interfaces which serves as the data core for several of our developing methodologies. This database is unique in the range of observations it allows, from a systems-wide view of the domain “interactome” to an atomic-level view of individual interfaces. 

The construction of the database is now briefly described. Domain interfaces are extracted from the Protein DataBank (PDB)20, and the derivative Protein Quaternary Structure (PQS) server182, using domain definitions from the CATH339 and SCOP274 systems of protein structure classification. The interfaces are initially identified by a simple distance criterion: any two domains that have an atomic contact below 5.5 Ǻ are extracted as a putative domain interface. Mining the PDB and PQS with the latest SCOP release (1.63, May 2003) in this fashion yields approximately 140,000 potential domain-domain interfaces, representing 2939 unique SCOP family pairs. A variety of sequence, geometric, and physiochemical properties are then calculated for each interface. These include number of residues, change in surface area (total, polar, nonpolar), atomic contact vectors, structurally contiguous patches, and number of sequence segments at the interface. Using a subset of these properties, the multiple interfaces associated with each PDB entry are hierarchically clustered to remove redundancy. This clustering reduces the size of the set to 40,000 interfaces. Filtering this set based on a minimal surface area of 300 Ǻ2, to help remove crystallographic artifacts and ensure extensive contact, reduces it to 8,000 interfaces (representing 2210 unique SCOP family pairs). Further clustering is currently being performed across different PDB entries to generate a non-redundant set of domain interfaces. 

The range of possible queries is large. A few simple examples are: What domain interfaces exist in PDB entry X? Has an interface been observed between domains A and B? How many unique binding modes have been observed for the interface between domains A and B? 

The database, implemented in MySQL, is built in an automated fashion by a suite of Perl, C programs, and MODELLER73, in a matter of hours on the Sali group's Linux cluster. It is currently accessible through two interfaces: the command line MySQL client, and a Perl library. The MySQL client is a convenient and powerful interface for simple queries. For more complicated queries, however, the Perl library provides a set of functions that simplifies BASE access. Programs developed using this Perl library are currently being implemented on a publicly accessible web server. BASE is updated regularly to reflect new releases of CATH and SCOP domain definitions. 

We now list several future improvements of BASE that will enhance its utility to the proposed Center. Within the Sali group, BASE is currently being used in a variety of studies of protein interfaces. Examples, discussed in detail separately, include predictions of protein interactions and structural modeling of protein assemblies (Section D.9). 

D.7.2.1 Developing an Interface Similarity Scoring Function

A good interface similarity function is paramount in producing a non-redundant set of interfaces and classifying them appropriately. As discussed above, a variety of properties have been calculated that describe the interfaces. Work is being done to determine the optimal combination of properties to use in the interface clustering procedure. Traditionally, most studies have clustered interfaces based on a combination of geometric/physiochemical properties (surface area, hydrophobicity, hydrogen bonds, salt bridges) and evolutionary information (residues at the interface, residue pair preferences)340-343. A recent study has introduced the concept of an atomic contact vector that efficiently captures the atom contact preferences at the interface344. 

D.7.2.2 Linking the Base to Other Sources of Protein Interaction Data 

The high-resolution structural data currently stored in BASE will be linked to lower-resolution sources of protein interaction data, such as BIND335 and DIP334. Though these links would be useful for many different applications, the most immediate is an assessment of the structural coverage of the domain interface space. By comparing the domain interfaces that have been structurally characterized to the complete set of protein interactions that have been observed experimentally, we will be able to assess, and perhaps help direct, structural sampling of the domain interface space.

D.7.2.3 Timely Annotation of Newly Deposited PDB Structures 

While we will not classify new folds which have not been previously annotated by CATH or SCOP, most of the structures deposited in the PDB contain domains which have already been annotated. By annotating new PDB depositions using the current domain definitions, we will be able to extract domain interfaces from new structures prior to their official CATH or SCOP classification. Though mainly a technical consideration, this feature would allow a weekly update of BASE to coincide with PDB releases, rather than a bi-annual update with each SCOP release. 

D.7.2.4 Developing the Web Interface

A range of queries is currently being implemented on a web server. As the interface is developed further, we look forward to making BASE available as a tool for the structural biology community. We believe this database will serve as a unique tool for the structural biology community, and hope to release it in February 2004.

D.8 Develop and Implement a Module for Identifying Protein Binding Sites on Protein Models (Sali, Babbitt)

Aim 8 of this core addresses the problem of identifying interacting domains or proteins, and sometimes even their interacting modes. This aim contributes to the core theme of building a software pipeline for large-scale protein-protein docking. This information will be used in subsequent protein-protein docking calculations, both to inform what proteins or domains need to be docked and to impose low-resolution spatial restraints on their relative orientations.

D.8.1 MODTIE: Identification of Interacting Proteins by Homology (Sali)

MODBASE, our repository of comparative models, contains models for domains in ~650,000 of the ~1.3 million sequences in SP/TrEMBL. We attempted to predict interactions among the modeled proteins using structural considerations akin to the Rosetta Stone approach for predicting interactions between sequences187. Proteins, whose models were constructed, based on template structures (or their homologs) that form a part of a multi-domain complex, are grouped together. These potential interacting partners are then scored for the conservation of binding properties and are assigned Z-scores for the significance of the interaction186. This task is accomplished on a genomic scale and may facilitate reconstructing protein networks and complexes in newly available genomes and perhaps sometimes even discovering of a new network. The results add value to MODBASE models, by linking potential interacting protein partners with each other. 

Models that were built using different domains of the same multi-domain structure were clustered together. Such a cluster can be enriched by considering models that used as templates homologs of domains contained in multi-domain structures. Potential interacting partners are identified by filtering these clusters for models of sequences from the same organism. The interactions are then validated by a scoring scheme using residue-based interaction potentials. The interaction potentials were derived from ~8000 inter-domain interfaces found in BASE. Propensity of residues to occur across the interface was computed from the data. A Z-score is calculated by computing the score for the interface and comparing it with the score obtained for 1000 randomly shuffled interfaces. The scoring scheme was tested over a set of 100 protein domain interfaces that were not used in the creation of the potential. Care was taken to see that the test set contained a diverse range of interface classes. This test gave us a measure of the false positive rate and the effectiveness of the potential based scoring scheme. Similar work on recognizing interacting partners using structural considerations has been reported earlier188,189.

The scoring scheme performs with an error rate of ~25% over the test. Links between ~160,000 models in MODBASE, accounting for about ~500,000 domain-domain interactions (~200,000 unique interactions), were evaluated by the scoring scheme. The scoring scheme validated about 50,000 interactions involving 35,000 domains. The interaction map hence formed serves as a valuable source of information for assembling larger multi-domain protein complexes. The many pair-wise and multi-domain interactions will form the basic building blocks for constructing such assemblies.

D.8.2 Identification of Protein Binding Patches by Analogy (Sali)

We propose a comparative patch analysis, an approach to prediction of binary interfaces between domains in multi-domain proteins and protein assemblies. The prediction of interacting patches in a binary complex is achieved based on structural information about interactions involving each of the two potential partners and any other protein.

The protocol is as follows.  First, we calculate the residue interaction density, 1(r), independently for each of the two potentially interacting domains (Figure 43). All members of the domain fold family are collected from the SCOP database274, for each one of the two potentially interacting domains. A representative structure of the family is selected arbitrarily; more robust protocols that do not depend on the selection of a family representative can be introduced if necessary. Then, each of the fold family members is superposed on the representative. Next, BASE is queried for inter-domain contacts between the superposed family member and any other structure or peptide in PDB. These contacts are mapped on the representative structure, using the structure-based alignment, and define the residue interaction density 1(r) upon normalization to the range from 0 to 1.

Second, independently for each of the two potentially interacting domains, we cluster the residues with contacts to other domains or peptides into interaction patches based on their proximity in space. 

Finally, we rank all pairs of interaction patches of domains for their complementarity with each other. In general, this may be achieved by a reconstruction, refinement, and assessment of the pairwise domain-domain complexes at the atomic level of detail using methods described below (Sections D.9.2.3). From the perspective of these methods, the comparative patch analysis may be seen as a source of low-resolution restraints on the location of the binary interfaces.
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Figure 43. A sample comparative patch analysis. Actual interaction patches of all members in a family, irrespective of the other partner, are mapped on the representative structure. The interaction density of a residue, 1(r), is indicated by a color scheme ranging from 0 (white) to 1 (dark violet) in steps of 0.25.
D.8.3 Identification of Protein Binding Sites by the Evolutionary Trace Method (Babbitt)

In consultation with Professor Cohen (see the collaboration letter), we will apply our implementation of the Evolutionary Trace method developed for identification of ligand binding residues to the identification of protein binding sites. Since the Evolutionary Trace method was originally designed for analysis of protein binding sites162,163, application of ET to this Aim should be straightforward. This approach can be further leveraged by comparing the Evolutionary Trace results for families of proteins known to interact with each other. Thus, proteins known to interact would be expected to have congruent phylogenetic trees. Eisenberg and co-workers have applied the general notion of congruent trees for identification of functionally and structurally interacting families of proteins345. We will combine both ideas to compare phylogenetic profiles of proteins known to interact and their cognate evolutionary traces to enhance the accuracy of protein binding site prediction. This will provide a new approach for identification of protein binding sites to complement the homology-based approaches proposed by the Sali lab in Section D.8.1. This implementation of the ET method will be designed for use with the pipeline.

D.9 Implement and Improve a Module for Building Binary and Higher Order Protein Complexes (Baker, Sali)

An important aspect of protein-protein docking is the tendency of proteins to form multimeric complexes.  Aim 9 of this Core focuses on techniques to build such multimeric complexes to complement and extend the limited amount of experimental information currently available.  We will use low resolution modeling techniques and high resolution protein-protein docking to model assemblies incorporating experimental data. These complexes are components of one of our core deliverables, a comprehensive map of protein-ligand interactions.
D.9.1 Low-Resolution Prediction of the Structure of Protein-Protein Complexes (Sali)

In distinction to structure determination of the individual proteins, structural characterization of macromolecular assemblies usually requires diverse sources of information346. This information may vary greatly in terms of its accuracy and resolution, and includes data from both experimental and computational methods, such as X-ray crystallography, NMR spectroscopy, electron microscopy, chemical cross-linking, affinity purification, yeast two hybrid system experiments, calorimetry, computational docking, and bioinformatics analysis of protein sequences and structures. Structural genomics will bring us closer to a comprehensive dictionary of proteins in the foreseeable future, while electron microscopy techniques and other approaches will allow us to assemble proteins into complexes. A comprehensive description of large complexes will generally require the use of a number of experimental methods, underpinned by a variety of theoretical approaches to maximize efficiency, completeness, accuracy, and resolution of the experimental determination of assembly composition and structure. 

We aim to formulate and implement a computational framework for calculating all 3D models of a given assembly that are consistent with all available information about its structure. Our approach relies on a hierarchical representation of protein structure and expression of structural information in terms of spatial restraints. The approach will be validated by simulations of assemblies of known structure, and applied to biologically important assemblies of unknown structure.

Three dimensional models of complexes that are consistent with input information will be calculated by satisfaction of spatial restraints (Figure 44). The three components of this approach are (i) representation of an assembly; (ii) a scoring function consisting of individual spatial restraints; and (iii) optimization of the scoring function to obtain a model. A good starting point is provided by our program MODELLER for protein structure modeling by satisfaction of spatial restraints.67,73
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Figure 44. Hierarchical modeling of macro-molecular complexes. The scheme illustrates the integration of a diverse set of structures varying in reliability and resolution into a hypothetical hybrid assembly structure.

D.9.1.1 Hierarchical Representation of Molecular Assemblies

Each protein in an assembly will be represented by a set of points that depend on what is known about the protein. If an experimentally determined structure of a protein is available or a comparative model can be calculated4, each atom will be represented by its own point, as in the modeling of the yeast ribosome197. Otherwise, the whole domain or protein will be represented by a single point, as in the modeling of the yeast Nuclear Pore Complex. In addition, the representation will be hierarchical, to facilitate and optimize the use of information from a variety of experiments. For example, a protein might be represented simultaneously as a sphere to restrain protein-protein contacts as well as a constellation of amino acid residues to restrain both intra- and inter-molecular residue-residue distances.

D.9.1.2 Scoring Function Consisting of Individual Spatial Restraints

The most important aspect of modeling is to accurately capture all the experimental and theoretical information about the structure of the modeled assembly. This aim will be achieved by defining the scoring function as a sum of spatial restraints corresponding to conditional probability density functions for the restrained spatial features. The following spatial restraints will be imposed, depending on the available information about the modeled complex: (i) Excluded volume restraints for atoms, residues, domains, and proteins; (ii) symmetry restraints corresponding to a distance root-mean-square term on the parts of the model that need to have a similar conformation or configuration; (iii) a protein localization restraint, such as those from immuno-labeling experiments, can be readily expressed as a distance restraint on the labeled protein, relative to a reference point such as a gravity center of the complex or another labeled protein; (iv) protein proximity restraints, such as those from the affinity purification experiments, chemical cross-linking, foot-printing, or yeast two hybrid system assays, can be translated into weak upper bounds on the protein-protein distances; (v) shape and volume restraints, such as those from electron microscopy images, will be incorporated by calculating a correlation coefficient between the model and the density map; and (vi) intra-molecular restraints will be used when the structure of a protein is known from X-ray crystallography, NMR-spectroscopy, or comparative protein structure modeling.

D.9.1.3 Optimization of the Scoring Function

An “ensemble” of models that minimize violations of the input restraints will be obtained by optimization of the scoring function, relying on a combination of the conjugate gradients and simulated annealing with molecular dynamics, applied in the Cartesian space. Since the optimization is stochastic, a large number of models is generally calculated (eg, 50,000). Other optimization schemes, such as hierarchical and adaptive annealing, will be attempted if necessary. 

D.9.2 Comparative Protein Docking (Sali)

Recently solved macromolecular structures, such as the bacterial flagellar filament347, T4 Bacteriophage baseplate348, and ribosome349-351, highlight the progress of experimental structural biology in addressing larger systems. They also highlight the need for computational methodologies to assist, not only in bridging resolution gaps346,352 of experimental techniques such as X-ray crystallography and cryo-electron microscopy, but in providing predictive power for structures of large biological systems. As large scale protein interaction and complex data also becomes available at a staggering pace2,321,322,324, the time is ripe for development of computational methods to aid in the structural interpretation of protein interactions. 

A recent review of docking techniques353 and the ongoing community-wide protein docking assessment experiment, CAPRI59, have showcased significant progress in the field over the past few years, as well as emphasized common weaknesses in the methods. 

We are currently developing a novel technique for low-resolution protein docking, termed comparative docking. In analogy to comparative modeling73, which infers the 3D structure of a protein sequence based on its sequence similarity to a known structure, comparative docking infers the structure of a protein interaction based on similarity of the constituent domains to interfaces of known structure. 

The protocol takes as input the individual structures (experimental or computational) of two proteins known to interact. The constituent structural domains of the proteins are then retrieved from the SCOP274 or CATH339 domain definition and classification systems. BASE, our in-house structure database of experimentally observed domain interfaces (Section D.7.2), is then queried to identify interfaces between domains that are similar to those of the target proteins. Depending on the query results, either a single or multiple possible interfaces and binding modes will be available for use as interface templates. Spatial restraints are then extracted from the templates and used as input for MODELLER73, which generates models of the target interface. The generated models are then assessed and ranked to identify the best model(s). 

Current work on comparative docking is focused on three areas, outlined below.

D.9.2.1 Establishing Domain Similarity Levels at Which Known Interfaces Can Be Used as Templates 

A recent study354 which attempted to establish such levels described a 30 - 40% sequence identity level required to ensure interface similarity, which is slightly higher than the cutoff that ensures structure similarity at the level of the fold263. By analyzing BASE in a more rigorous fashion, we hope to provide a more comprehensive answer to this question.

D.9.2.2 Refining the Scoring Scheme Used to Assess the Models

Currently, a statistical potential is generated from interfaces in BASE that captures the propensity of residues to interact across domain interfaces. This potential is used to score the models generated by MODELLER. Previous studies188,189,355,356, and our MODTIE project (Section D.8.1), use similar scoring schemes to predict protein interactions. 

Besides pairwise amino acid residue and atom contacts, other scoring schemes currently used by protein docking algorithms fall into four broad categories353: (1) geometric complementarity, (2) physiochemical complementarity (eg, electrostatics, interface hydrogen bonding), (3) contact extent (eg, buried surface area (total, nonpolar), and in some cases (4) physical energy calculations. These scoring schemes are being explored and their performance tested. 

D.9.2.3 Assessing Structural Coverage of Protein Interface Space

For large scale structural modeling of protein interactions and assemblies to be feasible, in addition to adequate structural coverage of protein fold space357-359, a minimal coverage of protein interface space will also be necessary. This coverage is currently being assessed by comparing the structurally characterized interfaces in Base to all potential domain interfaces that exist in protein interaction databases such as DIP334 and BIND335. This integration of data sources across a range of resolutions is discussed in detail separately (Section D.7.2). This assessment may also serve as a guide for target selection in structural genomics efforts. 

By combining the structural coverage of protein space by MODBASE and interface space by Base together with databases of protein interactions, we are moving towards a comprehensive structural view of protein interactions and assemblies. 

D.9.3 High-Resolution Prediction of the Structure of Protein-Protein Complexes (Baker)

We aim to take the low resolution models produced in Section ‎D.9.1 and refine them to high resolution using a detailed physically based energy function (Section ‎C.9.3), a rotameric description of the sidechains (Section ‎C.9.4), and a powerful Monte Carlo minimization based optimization strategy.

We will develop and apply a protein-protein docking method that is, to our knowledge, the first to employ a full conformational sampling procedure involving simultaneous optimization of all sidechain conformations and rigid body degrees of freedom. Our approach extends previous approaches both in the level of detail and accuracy of the free energy function (for example, the treatment of explicit bound water molecules) and the coupling of the optimization of rigid body, sidechain, and backbone degrees of freedom. 

The starting point for the calculations will be the low resolution models that satisfy the experimental constraints generated in Section ‎D.9.1. In the first stage of the algorithm, we will employ a rigid-body Monte Carlo search, translating and rotating the proteins relative to one another while preserving the agreement with the experimental data.  The low-resolution, residue-scale interaction potentials include residue environment and residue-residue interaction terms derived from a database of interfaces, a contact score to reward contacting residues, a “bump” score to penalize overlapping residues, and any constraint scores representing available knowledge about a particular target.  After the low-resolution search, explicit side chains are added to the protein backbones using a Monte Carlo backbone-dependent rotamer packing algorithm. A Monte Carlo minimization method360 is then used to iteratively optimize both the relative orientation of the proteins and the packing of the sidechains.  Each step consists of a small random rigid body displacement, repacking of the sidechains, and finally, rigid body minimization using a modified version of Newton’s method.  We find Monte Carlo minimization, in which the sampling essentially involves jumps between local minima, to be much more efficient than either standard Monte Carlo or straight minimization.  In the refinement steps (packing and minimization) and to discriminate among the models generated in different runs, the potential function is dominated by an orientation-dependent hydrogen bonding potential, a Lennard Jones potential, and an implicit solvent model. Both the energy function and the Monte Carlo minimization procedure are very similar to that used in our high resolution protein structure prediction work and notably the recent design of a globular protein with a novel fold361.  In fact, the different applications, which are part of the ROSETTA program, utilize much of the same underlying code. Shown below are flow charts illustrating (a) the overall docking procedure and (b) the Monte Carlo minimization protocol used for high resolution refinement.
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Figure 45. ROSETTA protocol for protein-protein docking.

D.10 Develop and Implement a Module for Modeling Specificity of Protein Interactions (Kortemme)

The protein-protein complexes assembled in Section D.9 are based on alignments to experimentally-determined complexes.  But it often may happen that more than one sequence aligns to the template structures in this complex.  This raises the issue of specificity in partner prediction and docking.  This module (Aim 10) therefore considers a specific path through the protein-protein interaction pipeline, ie, the path followed when several homologous sequences in an organism align to the partners in an experimentally determined protein complex structure.  The question becomes: which of the several aligned sequences are most likely to be found in the complex represented by the template? This module will help to construct one of our core deliverables, a comprehensive map of protein-ligand interactions.
Many protein-protein interactions are mediated by families of specialized protein recognition domains362. The number of related sequences for each of these domain families in a given organism can be quite large (Table 12). It has also become clear from recent genome-wide studies that the interactions formed by many of these domains make up complex interaction networks that organize proteins and other cellular components into functional modules214.  Therefore, a functional understanding of biological complexity and regulation within the network requires knowledge of the extent of specificity and cross-reactivity of all sequences within each domain family. High-resolution structures are available for most of the known recognition domain families, alone and in complex with an interacting partner. For some of the domains, experimental information is also available about sequence determinants of high-affinity binding partners211,212,214,215,217,219. However, it is clear that the goal of generating a comprehensive and predictive description of all possible interactions of all members of protein recognition domain families in a given organism is not reachable by experimental means alone. 

There is therefore a need for computational methods to predict protein-protein interaction specificity. The large-scale application of the pipeline to the simultaneous specificity prediction for all homologous sequences of a given domain in a given genome, as opposed to the study of isolated sequences, will be critical for the usefulness of the pipeline as a tool to generate experimentally testable hypotheses about the function of proteins on the systems level.
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Table 12. Estimated number of occurrences of selected protein interaction domains according to the SMART database363 43.

We recognize that this goal is very ambitious, as the accurate prediction of even relative binding energies necessary for accurate specificities is a challenging problem. However, even initial classification of protein pairs into predicted strong and weak binders will enable prioritization of experiments and may in itself provide biological insights. We also expect that this work will be aided by the large-scale application of automated specificity prediction: Consistent patterns of predicted specificities and cross-reactivities in related organisms may lend support to the predictions. Such a comparative analysis may also yield interesting, and, importantly, testable, hypotheses about the evolution of protein interaction networks. 

We will first describe methods for the automated modeling of protein-protein interaction specificity (outlined in Figure 46) and then summarize validation procedures, expected outcomes, and alternative approaches (Section ‎D.10.1).

The pipeline will consist of modules that will, for each sequenced organism, (i) generate sequence alignments for the set of homologs associated with each of the partner proteins in complexes with known PDB structure; (ii) automatically build comparative models of all resulting possible protein-protein complexes; (iii) refine the comparative protein complex models using side-chain repacking techniques, small perturbation docking, loop building and molecular mechanics methods; (iv) rank the refined interfaces by their estimated binding energies; (v) identify potential unknown binding partners using protein design methods; (vi) store the resulting models of protein – protein complexes and predicted patterns of specificities and cross-reactivities in a database and (vii) display the results using a graphical user interface.

The pipeline for automated specificity prediction will both incorporate largely existing methods and drive technology development, mainly in the implementation and validation of the modules in the context of the pipeline. The approach relies on modeling of protein-protein complexes using modules for protein-protein docking and comparative modeling of protein complexes (Section ‎D.9), loop and sidechain refinement (Sections ‎C.2 and ‎C.9.4), and protein interface design (Section ‎C.9.4). Different scoring schemes will be applied using satisfaction of spatial restraints, simple pairwise-additive free energy functions (Section ‎C.9.3), and more sophisticated physics-based energy models (Section ‎C.2).

Technology development will include the extension of existing protocols to high-accuracy refinement of protein-protein interfaces based on homologous structures, including large-scale computations using families of protein backbones and large libraries of sidechain conformations. These calculations will profit from the complementarity of state-of-the-art physics-based but computationally costly free energy functions and sampling techniques (Section ‎C.2) and simplified pairwise-additive scoring functions (Section ‎C.9.3) that allow the exploration of vast numbers of possible protein complex conformations and sequences more rapidly.

In summary, the input of the specificity prediction pipeline will be a collection of all sequences in an organism that align to at least one partner in a protein-protein complex with an available experimentally determined structure. The output will be a database of annotated models of as many protein sequences as possible mapped to the existing protein complex structures for each organism and matrices of predicted specificities and cross-reactivities.  The results will be integrated and visualized as a structure-based wiring diagram of protein-protein interactions. 

Different possible paths through the specificity prediction pipeline, dependent of the available input information, are illustrated in Figure 46.  These represent directions we will explore in attempting to develop this methodology further.  
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· Comparative modeling of protein-protein complexes with known specificity (cyan path in Figure 46). The interaction specificities of protein pairs or assembly components within one organism that are known from experimental data: The pipeline with generate structural models as described in Section ‎D.9.

· Generation of cross-reactivity matrices (red paths in Figure 46). Several homologous sequences within one organism exist for both or multiple partners in a protein-protein complex, but interaction specificities are unknown or only partially known. An example would be a case where several specificity types for a certain receptor class have been characterized, but experimental data are only available for some but not all homologous sequences. All-against-all model building and refinement of the homologous sequences using existing structures will yield a ranking and a structural model for of each of the interactions. 

· Prediction of additional binding partners for known and modeled complexes (dark blue path in Figure 46). An example for this application would be the case where several homologous sequences within one organism exist for at least one partner in a protein complex with available structures; these sequences might have different or additional binding partners with recognition sequences that do not align to the partner in the known complex structure. The design methodology will be used to create a family of sequences likely to bind to the uncharacterized sequence that can be used as a sequence motif to search for additional interacting partners. 

Driving Biological Project 2, in Core 3, provides an example of the application of these methodogies and experimental testing of the predictions; further details of the methodology are presented there.  
D.10.1 

D.10.2 

D.10.3 
  

D.10.4 Validation, Expected Outcomes and Alternative Approaches

The prediction of even relative binding affinities to yield accurately ranked protein-protein interaction specificities and cross-reactivities is a challenging problem. Moreover, the models of protein-protein complexes generated by the interaction pipeline will have varied resolution and accuracy, and we do not expect that the high-resolution modeling approaches will be applicable in all cases. Hence, it is also important to evaluate the performance of scoring schemes at different resolution, from all-atom to residue- and shape-based metrics. As mentioned above, consistent patterns of predicted specificities and cross-reactivities in related organisms may lend support to the predictions. We generally expect more reliable predictions for protein families with a large amount of available structural information.

A wealth of experimental and structural information is available on a number of families of protein interaction modules such as PDZ and SH3 domains364-367. Different types of recognition motifs have been characterized by peptide screening experiments211,212,219 and the structures of both canonical and alternative binding modes have been determined at high resolution. Such data will be used for validation and testing of the computational methods, and to develop measures of confidence using different amounts of available structural information. In particular, the iteration between prediction, formulation of hypotheses, generation of experimental data, and refinement of computational methods described for the prediction of specificity in the SH3 domain network in yeast (Core 3, Driving Biological Project 2) will be critical for the development and testing of improved, more accurate algorithms. 

Although still difficult, cases of reasonably reliable computational classifications of protein domains into strong and weak binders will already generate biologically relevant and experimentally testable hypothesis about protein-protein interaction specificity and the assembly of proteins into higher-order structures. Success will be measured largely by the extent at which the pipeline can help to provide biologically relevant insights into the function of protein-protein interaction networks. 

D.11 Develop a Central Database for all the Data and Results (Ferrin, Sali, Shoichet)

The third overarching Aim of Core 1&2 is to create technologies and environments to facilitate development and application of the pipeline.  This amounts to the creation of databases for archiving and relating results of pipeline calculations, developing GUIs for accessing these databases, investigating fundamental algorithms for improving the performance of the pipeline (Global Optimization), and developing a cluster for undertaking and distributing the many calculations involved.  The first module in this overarching aim represents Aim 11, to develop a central database for all of the data and results of this project. This aim provides a structure for and examples of one of our core deliverables, a comprehensive map of protein-ligand interactions.  

The CCPR currently uses several databases to support existing software packages.  These include a database of protein structure models (MODBASE), our ZINC database of small molecules, and the Structure-Function Linkage Database (SFLD).  To this we will add a new database that will store the output from our docking calculations, the “top hits collection” (THC) database.  Each of these databases is or will be implemented using MySQL (http://www.mysql.com/), which has several advantages.  It is open-source software and is well suited for common Web-related tasks.  It is fast, especially when running SQL SELECT statements. The core of the MySQL engine is stable, very small and streamlined, and this lightweight approach matches our environment well.  The few standard query language features not supported by MySQL (eg, sub-selects, stored procedures, and views) do not affect our projects.

We will continue to use our existing databases for their original purposes.  However, to meet the aims of the CCPR center, we must also implement a “master” or central database that can provide a portal to the entire collection of data available at our center.  We have designed such a database, which we call “CCPR Central,” for this purpose.  We chose a central database type of architecture for several reasons.  First and most important, a central architecture, as opposed, for instance, to a federated architecture, enables a modular design.  The ensures the independence of the component databases while still allowing us to relate their contents from a common location.  This approach allows these individual modules to be both enhanced and distributed to outside users independently of other modules.  Secondly, the implementation of CCPR Central can be optimized for queries (ie, read only, pre-joined in a data warehouse), rather than transactions that must take into account frequent writes to the database.  Thirdly, the central database approach dramatically simplifies the overall design, implementation, and maintenance of the master database.  CCPR Central can be updated in an easily controlled manner, since the database contents will be based on snapshots from the individual databases.  These snapshots need be taken only when the individual databases are in a stable state.  This decouples undesirable dependencies and incompatibilities that could arise from time to time as individual software modules are modified or enhanced.    Lastly, as will become evident from the detailed discussion below, our central database design minimizes the replication of the bulk of the data we have stored or will create with this project.  Although relational database tables are replicated in CCPR Central, the majority of our data storage requirements (several terabytes) arise from the storage of structure coordinate data and our design avoids the replication of these data.  We describe the details of MODBASE, ZINC, THC, SFLD, and GenMAPP below, followed by our design for CCPR Central.

There are two major software engineering tasks represented in this section: the design and implementation of a database that will store the binding site annotations and the results from ligand docking (the THC database), and the design and implementation of the CCPR Central database. Both will also require extensive but facile web-based interfaces as well as application programmer interfaces to allow for efficient and flexible querying by humans and programs respectively.  For example, it will be possible to query the THC database to list easily all ligands that bind only to a subset of protein family members.  The senior-level TBN programmer listed in the Cores 1/2 budget will be tasked with interface development in support of this activity (as well as tasks in Aims 12 and 13).   Responsibilities for database design and implementation will be shared among co-investigators, postgraduate researchers, and the TBN programmer listed in the Core 4 budget.

D.11.1 MODBASE

MODBASE (http://salilab.org/modbase) is a relational database of annotated comparative protein structure models for all available protein sequences matched to at least one known protein structure. The models are calculated by MODPIPE, an automated modeling pipeline that relies on the MODELLER package for fold assignment, sequence-structure alignment, model building, and model assessment (http:/salilab.org/modeller). MODBASE uses the MySQL relational database management system for flexible querying and CHIMERA for viewing the sequences and structures (http://www.cgl.ucsf.edu/chimera/). MODBASE is updated regularly to reflect the growth in protein sequence and structure databases, as well as improvements in the software for calculating the models.

To integrate MODBASE into the large-scale modeling and docking pipeline, we will introduce the following functionalities and features:

The database structure and interface will be changed and further improved to accommodate the output of the enhanced MODPIPE results. Currently, MODBASE models are based on one template PDB structure each. We will change the database schema (described in the following subsection), and subsequently the search and display capabilities, to enable MODBASE to deal with multiple templates and multiple alignments. We will also add an interface that allows the user to view the sequence profile on which the models are based, to make the modeling process more transparent.
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Figure 47. MODBASE models in the sequence space: Percentages of reliable models and fold assignments compared to all sequences in SwissProt/TrEMBL.

We plan to streamline the different MODBASE web pages, enabling a better interconnectivity between different types of information stored. In particular, the search mechanism in MODBASE will be more flexible and will include more specific capabilities for querying and displaying protein function and putative ligand binding sites. 

Currently, MODBASE information and models can be retrieved only using the web interface or direct queries of the MySQL database. We plan to develop an XML dictionary for defining MODBASE models, putative ligand binding sites, and additional information about the quality, range, modeling procedure, etc. of each model, and implement an XML retrieval procedure to facilitate large-scale access of MODBASE information without reliance on the database schema.

We also plan to improve and enhance the communication between MODBASE information (eg, models, alignments, ligand binding sites) and the molecular graphics program CHIMERA. By enhancing the existing CHIMERA-MODBASE extension to accept CHIMERA scripts written in Python, we will be able to visually highlight putative ligand binding sites in protein structure models.  We will explore the possibilities of graphically displaying model quality score information, coverage and other model features, using the MODBASE-CHIMERA connection.  Whereas we have yet to work out the details of how we will graphically represent these features, the inherent extensibility of CHIMERA will make this new functionality relatively easy to add. 

Finally, we will develop tables and interfaces for conveniently searching and displaying the modeling and functional annotation results for proteins with mutations (Section D.18), in collaboration with the Haussler group at UC Santa Cruz.  We will also continue to add links to other resources, preferentially bi-directional. The inter-linking with the SwissProt database has been in place for some time now and we are currently introducing interlinks with the Genome Browser and PIR.

D.11.1.1 MODBASE Data Organization

MODBASE is organized in three sections: Compressed text files, database tables, and interface.

The MODBASE models are calculated using our automated comparative modeling pipeline MODPIPE. MODPIPE processes a given number of protein sequences (run) and assigns unique identifiers to each input or output entities (sequence, alignment, model). These identifiers are MD5 digests for the sequence-structure alignments (align_id) and for the model coordinates (model_id). (MD5 digests are used as a convenient method of generating unique identifiers for instances of the sequence and coordinate data.)  The identifier for the sequence (seq_id) is comprised of the MD5 digest of the amino acid sequence, and the first and last 4 amino acid residue identifiers.

The sequence, alignment and model files are stored by MODPIPE as compressed text files, in the following directory structure:

Root-directory/run/entity/XX/entity_id/entity_id.extension

Where XX are the first two letters of the identifier and the file extension is dependent on the content of the file (“fas” for sequences in fasta format, “pdb” for a coordinate file in PDB format, etc.). 

The detailed information about the models and runs is stored in relational database tables using MYSQL in a data warehouse style schema:
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Figure 48 . Entity-relationship diagram of some key tables in MODBASE.

The data model shows the MODBASE core tables, and the relationship between them. The primary keys are highlighted in blue. The MODBASE table structure is not completely normalized in order to speed up searches and avoid table joins between large tables in common queries. Lines indicate connections between tables using foreign keys. The referential integrity for these is not enforced by the database engine, but rather by our PERL/CGI data loading scripts.

Information about models is stored in the MODELS table. Here, comparative modeling details for each model can be accessed. The models are connected to the RUNS table using the “run” column as a foreign key. The RUNS table contains mostly date and path information for a particular MODPIPE run. The USERS table manages the access permissions for the different runs. 

The three tables NR, SYNONYMS and SYNONYMS_NEW organize database synonyms:

For the NR table, all database identifiers found in the NCBI database of non-redundant protein sequences (nr) have been collected (database_name, database_id), and their sequence id (seq_id) has been calculated and added.  We then assign a primary identifier (pri_name, pri_id) to each sequence, which is, in order of preference, a SWISSPROT ID, TrEMBL ID or GENPEPT ID.   Additionally, we can include custom synonyms for runs that include private sequences. This table is used as a translation table to get from an unspecified database synonym to our sequence identifier, and to identify a corresponding database id with reliable annotation information.  All of the synonyms from the three above-mentioned sequence databases are collected in the SYNONYMS table, including organism name, annotation and sequence length.  In many cases there are several database synonyms per amino acid sequence. 

The SYNONYMS_NEW table contains exactly one synonym (the primary synonym from the NR table) per sequence and run, plus the information about how many models, if any, where calculated for the given sequence/run. 

Several additional database tables are also included in MODBASE, which we briefly describe here.  The SEQUENCEVIEW table is a digest of the MODELS table, where the total model coverage for each sequence/run, and the minimum/maximum quality criteria are stored. This table has become necessary to speed up a particular type of search when several models per sequence are available. The LIGBASE tables include information about ligand binding sites in PDB files.  And the SEQUENCES table contains the original information about protein sequences when processed by MODPIPE, for reference purposes. 

The MODBASE interface is written in PERL/GCI, and is accessible through the web (http://salilab.org/modbase/).  Accessible data includes data from the database tables and the text files, with the access information retrievable from the database tables. 

The bulk of MODBASE’s data storage requirements are not the MySQL relational tables, but rather the various ASCII-formatted text files referenced by these tables.   Currently MODBASE relational tables require ~10GB of storage, while the associated coordinate, sequence, and other text files require ~600GB.  Although these storage requirements will certainly grow in the future as we generate additional models, this ratio is expected to remain about the same.

The MODBASE data model will be enhanced significantly in the future as part of the CCPR project, in order to accommodate our planned enhancements to MODPIPE (Section D.1). Additionally, the LIGBASE tables will be restructured and fully integrated into MODBASE. The NR table will include additional database identifiers from other sequence databases like PIR.  We plan to substitute organism names in the MODELS table with NCBI taxonomy ids, and a taxonomy table will be added.  Finally, we will develop tables and interfaces for conveniently searching and displaying the modeling and functional annotation results for proteins with mutations.

D.11.2 The ZINC Database

Our database of small molecules is implemented as ten tables in MySQL.  Each unique chemical entity has a single row in the substance table.  Each substance may have one or more tautomeric forms (eg guanine), or protonation states (eg imidazole), which appear as rows in the protomer table.  Molecules with alternative protonation states are annotated with the ph_model table, which describes each protonation model.  Conformational flexibility is pre-computed and stored in a “flexibase”, with each molecule decomposed into a rigid “anchor” with flexible fragments that branch off it368.  This “flexibase” is stored as an ASCII file.  Each anchor choice expansion appears as a separate row in the fragmer table.

We acquire compound information from supplier catalogs, each of which has a row in the catalog table. A single purchasable product in a catalog, describing a single compound, is recorded in the catalog_item table. A substance that is available from more than one supplier will have one entry in catalog_item for each supplier. Similarly, a purchasable item that describes a mixture of compounds (eg DL-lysine) will appear as a row in catalog_item that points to two separate rows in substance.

Molecules are annotated based on annotations from many sources. Each source of annotation (eg the KEGG database or the NCI database) corresponds to a unique row in the anno_source table. Each annotation type, (eg DHFR inhibitor), appears as a row in the annotation table. The note table then connects individual substances with specific annotations. Again, a single substance may be annotated more than once, with one row in the note table for each.

The subset table describes each database subset that is prepared, often based on criteria such as the rule-of-5 369 or containing a particular functional group, although the criteria may also be completely arbitrary. The presence of each molecule in a subset is recorded in the mol_choice table. Since the properties of a substance may differ at the protomer level (eg xlogP, number of H-donors, net charge), the mol_choice table refers to molecules at the protomer level. The mol_choice and subset tables are linked directly to tables in the collection of top hits database (see the THC database, below).

The ZINC database is complemented by compressed molecule structure files in various formats stored in the Unix file system. Molecules in mol2 format correspond to entries at the protomer level, while DOCK version 3.5.54 flexibase files correspond to entries at the fragmer level. 

The current ZINC database has the dimensions shown in the Table 13.  We list the current number of rows, and the anticipated number of rows in years 1 and 5 of the project.  We also list our estimated data storage requirements for the SQL tables and compressed ASCII files. 
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Figure 49 Entity-relationship diagram of the ZINC database of small molecules.

	Table Name
	Now (Year 0)
	Year 1
	Year 5

	
	# rows
	MB
	# rows
	MB
	# rows
	MB

	Substance
	1,000,000
	400
	2,000,000
	800
	5,000,000
	2,000

	Protomer
	1,100,000
	220
	2,500,000
	500
	7,000,000
	1,400

	Fragmer
	1,500,000
	180
	4,000,000
	480
	10,000,000
	1,200

	Catalog
	20
	<1
	100
	<1
	500
	<1

	Catalog_item
	1,300,000
	156
	2,600,000
	312
	6,500,000
	780

	Anno_source
	10
	<1
	20
	<1
	30
	<1

	Annotation
	10,000
	2
	50,000
	10
	100,000
	20

	Note
	250,000
	15
	500,000
	30
	1,500,000
	90

	Ph_model
	6
	<1
	10
	<1
	20
	<1

	Subset
	30
	<1
	100
	<1
	500
	<1

	Mol_choice
	10,000,000
	600
	20,000,000
	1,200
	250,000,000
	15,000

	Mol2 files
	
	1,100
	
	2,500
	
	7,000

	Flexibase
	
	150GB
	
	400GB
	
	1.0TB

	Total space
	
	153GB
	
	406GB
	
	1.1TB


Table 13. Estimated storage requirements for the ZINC database.

D.11.3 The “Top Hits Collection” (THC) Database

In a perfect world, biologists and chemists would be able to look up a list of likely ligands for their target protein, and simply purchase them for use as reagents or candidate drug leads. This is not currently possible, with many receptors having no known ligands, or too few. Whereas we cannot provide investigators with bona fide lists of true ligands, we can provide lists of likely candidates for all receptors of known structure and for many of the proteins in the genome.

Using the automated docking tools described in other sections, we will dock the database of 500,000 commercial compounds and the annotated databases of 8,000 metabolites and 100,000 drug analogs against every unique target in the PDB database (about 5500 structures370).  We will also dock against the set of unique, reliably modeled structures in MODBASE.  We estimate that there are about 200,000 such structures, each of which bears 30% or greater sequence identity to a protein whose structure has been experimentally determined.  We will:

1. Design and implement a relational database to store top scoring hits;

2. Build tools to load and query the database;

3. Load the database by performing many docking runs against many targets;

4. Design and implement an interface that supports inference-rich queries from users.

The database will initially be designed using Oracle Designer and implemented in MySQL.  Query tools will be implemented in PERL using the DBD and DBI libraries, and Python and the MySQLdb Python module. We will load the database by docking against many targets using our automated tools.  We understand that a database of unlikely complexes will be worthless and, especially at the early stages, we will curate what we are putting into the database.  We will first use the automated scripts (and follow up re-ranking, if justified) to dock against 26 well-studied targets (Table 11); this work has already begun.  For these targets we can compare the performance of the automated scripts to that of a human expert—this leverages our work on improving the automated tools themselves.  We will then expand to dock against about 100 PDB targets for which at least one ligand-bound crystal structure and 20 ligands are known.  Here we will evaluate performance based on the enrichment of the known ligands versus the large number of decoys in the database, and based on the predicted geometries.  Prediction of half of the known ligands in the top 1 to 2% of the ranked database would constitute a successful screen, making it likely that many of the top-scoring ligands will at least be reasonable.  Even as we expand to screen against the thousands of PDB and MODBASE targets we ultimately anticipate, we will select characteristic cases for detailed analysis, reasoning that poor performance against a particular target will be informative about an entire class of targets.  Ideally we will be able to correct problems, improving the reliability of the hits, but even if we cannot we can at least identify the hits for a particular target as being, more or less, reliable.  

We will dock the database of 500,000 purchasable compounds, the KEGG LIGANDS database of metabolic intermediates, and the MDDR database of 100,000 drugs and drug-like compounds, and store the results in the database of top dock hits.  The top scoring docking hits and associated diagnostic information for a single binding site require on average 20MB.  To dock against about 100,000 targets will therefore require about 2TB of disk space.  Each docking run against our database of 500,000 compounds takes about 2 CPU days, whereas docking against the metabolites and drug databases takes less five hours.  To dock against 100,000 targets will thus require 615 CPU years, or less than four months on the 2000 CPU cluster we anticipate for this project.  Whereas this is a substantial amount of time, we will build and re-build this database incrementally, absorbing spare CPU cycles during periods of otherwise low usage.

The loaded database will be available, via a web page query tool, as a public resource.  (Some results based on proprietary data such as the MDDR will only be visible to members of our research groups.  We will investigate ways in which others licensed to access this proprietary data may do so.)  Each hit list obtained by docking purchasable compounds represents specific, experimentally testable predictions, and as such will be useful in and of itself.  

[image: image53.emf] 

ZINC.subset

subset_id 

date date 

n_mols 

dock_version

dock_ver_id

date 

notes 

Hit

hit_id

run_fk 

vdw_score 

elec_score 

pds_score

ads_score 

net_score 

contact_score 

polar_contacts 

sub_fk int(10)

run

run_id

dock_ver_fk 

params_fk

db_sub_fk

scr_ver_fk

target_fk

cputime 

notes

params

params_id 

notes

scripts_version

scr_ver_id 

date date 

notes 

Target

Target_id

modbase_fk

Pdb_fk

ZINC.Substance

sub_id

modbase

n

1

1

1

1

1

1

1

n

n

n

n

n

n

ZINC.subset

subset_id 

date date 

n_mols 

dock_version

dock_ver_id

date 

notes 

Hit

hit_id

run_fk 

vdw_score 

elec_score 

pds_score

ads_score 

net_score 

contact_score 

polar_contacts 

sub_fk int(10)

run

run_id

dock_ver_fk 

params_fk

db_sub_fk

scr_ver_fk

target_fk

cputime 

notes

params

params_id 

notes

scripts_version

scr_ver_id 

date date 

notes 

Target

Target_id

modbase_fk

Pdb_fk

ZINC.Substance

sub_id

modbase

n

1

1

1

1

1

1

1

n

n

n

n

n

n


Figure 50.  Schema for our Top Hits Collection database.

The THC database will also enable novel questions about relationships among proteins, ligands, and pathways.  The natural ones are from the target side—what targets have similar hit lists, which annotated ligands are hits for which targets?  These are the sorts of questions one might ask if one was looking to understand what sort of chemical functionality different receptors recognized, how much functional overlap they had, and how many targets a drug or reagent might be likely to affect.  The database will also allow questions from the ligand side.  An investigator might ask which targets a particular reagent or drug scores well against in the hit-list database.  Since this could well-be a large number, the investigator might follow up by asking which of these targets are found in the same pathway, have a certain amount of sequence identity, or are functionally related.  We will construct the database to anticipate this sort of inquiry.

D.11.3.1 THC Data Organization

The THC database is currently implemented as six tables in MySQL, shown in a Universal Modeling Language diagram below.  Each completed run of the docking software creates a single row in the run table. In addition to a unique run identifier, each run points to the conditions and results associated with that run.  The “run” table contains links to the version of the dock software that was used, stored in the dock_version table, and to the version of the scripts that were used, stored in the scripts_version table.  “Run” also links to the params table, which contains information about the parameters that were used for a particular docking run.  Run also points to the protein target that was docked, as recorded in the target table.  Target in turn points to the protein, as referenced by its MODBASE, PDB, or other ID code.  Target also points to the description of the binding site that was used, which may also be recorded in MODBASE, the PDB, or elsewhere.

The run table points to the database subset that was docked, as recorded in the subset table (described above).  The hit table records the top scoring hits, each of which points to the run entry to which it corresponds.  There is a performance and storage trade-off between storing hits in the database versus storing them in an ASCII file.  If they are stored in the database, they may be searched using SQL SELECT statements, but they take up more disk space than compressed ASCII. On the other hand, recording hits in compressed ASCII is harder to search.  Section D.11.3.2 below summarizes this trade-off.  Our plan is to begin by storing all hits in compressed ASCII files, and store only the top 2000 hits in a MySQL hit table. We will review this decision from time to time.  Given the growth of computer capabilities, the number of top hits retained in MySQL tables will certainly grow with time. 
D.11.3.2 Possible Problems & Alternative Approaches

We understand that many possible functional inferences will be missed because of weaknesses in our current docking algorithms.  Nevertheless, we believe that constructing databases to enable comparisons of ligand lists for different targets is worthwhile. Our docking protocols have improved considerably over the past five years and continue to do so. A database that is properly constructed will only benefit from any such improvement. However, the structure of the database will be developed in such a way that any information of which molecules bind to what targets, irrespective of the source, could be used. For instance, we could also include experimental ligand binding data in the database, for instance referencing the BIND335 database. Whatever the source of information, the database will be structured to allow easy identification of which ligands bind to which targets, for comparisons of different ligand lists, and hence for ligand-based inference of activity.
D.11.4 The Structure-Function Linkage Database (SFLD)

To aid in the assessment of prediction methods on a larger scale, the Babbitt lab has developed a highly curated “gold standard” set of enzyme superfamilies, stored in the SFLD, in which conserved chemical capabilities have been correlated to protein sequence and structural motifs (see C.6.2).  For many members of these superfamilies, these correlations have been experimentally verified, providing a high quality set of highly divergent homologs for use in assessment and evaluation of modeling and docking results.  This information is represented in a form that lends itself to storage and querying using relational methods.  MySQL provides the engine for the implementation. The SFLD was designed to provide flexibility when adding new information, such as docking hit lists associated with the families and superfamilies or modeled structures, such as those provided by MODBASE.  A web-based user interface provides access to the data (http://sfld.rbvi.ucsf.edu/).
The overall schema of the SFLD is based on the classification of individual enzyme functional domains into superfamilies and families. A simplified schema is shown below:

Each enzyme entry includes basic primary information (eg sequence, species), as well identifiers allowing reference to outside databases (eg GenBank). The schema also takes into account the ability of some enzymes to perform multiple reactions. Reactions are broken down into their partial reactions, via an expert analysis of available literature. Each reaction and partial reaction is stored as a SMILES string, allowing flexibility in searching (see section C.3.3.1). Conserved residues involved in delivering function are stored at both the structural level (ConservedResidue table above) and sequence level (table not shown). 

Each Family and Superfamily table entry includes a field consisting of a hidden Markov model generated using members of the family/superfamily (built using the HMMER package: http://hmmer.wustl.edu/). This allows users to rapidly search the SFLD with a new sequence and then quickly view it in the context of a multiple sequence alignment with members of a family/superfamily. In these alignments, the conserved residues that deliver function are highlighted. 

Each major table includes evidence codes that provide users extra information regarding how categorizations were made and the primary sources of information used. Also included in all major tables is a metadata field that allows curators to enter free-text details and explanations when needed. 

The SFLD is implemented in MySQL and utilizes a web-based interface (publicly available at http://sfld.rbvi.ucsf.edu) implemented in Python. This interface includes integration with CHIMERA to allow users to open and view structures (with colored functional residues) from the SFLD with a single mouse click. 
[image: image54.jpg]Reaction
1D

smiles
name

ec
metadata
date
family_id
image_file

alignment_file
hmm_file
metadata

date
superfarnily_id

PartialReaction |
ID

smarts
name
order
_code
reference
metadata
date
reaction_id
image_file

EnzymeReaction

D

efd
ol 01
reaction_id
o_code
reference

date

metadata

id

Superfamily

D

name
alignment_file
hmm_file

fold

metadata

date
partial_reaction_id

EnzymeFunctionalDomain
D

gi

accession

accession_type

name

species

sequence_file

start_num

end_num

metadata

date

canonical_nan_id
fam_assgnmnt_e_code
fam_assgnmnt_ref

family_id
superfam_assgnmnt_e_code
superfam_assgnmnt_ref
superfamily_id

Structure

ID

pdb_id
protein_name
het_name
structure_file
sequence_file
chain_residue_interval
metadata
date

efd_id
structure_ref

ConservedResidue
ID

residue_num
amino_acid_type

ffunction_reference
metadata
date
structure_id





D.11.5 GenMAPP

We mention GenMAPP only briefly here, as it is described more fully in Core 4.  GenMAPP (Gene MicroArray Pathway Profiler) is a computer application that is used for organizing, analyzing, and sharing genomic scale data in the context of biological pathways.  GenMAPP was originally designed to visualize gene expression data.  As part of this proposal, we plan to enhance GenMAPP so that it can be used to display and browse pathways of interest and then query our CCPR Central database about the proteins that are associated with these pathways.  GenMAPP utilizes a relational database to store all of the gene identifications required to link gene objects on MAPPs to expression data contained in an expression dataset. The GenMAPP database is currently designed to integrate several public sources of data, including SwissProt, model organism databases, Unigene, LocusLink, and GenBank, and to store annotations for each gene object that is derived from these data sources. The GenMAPP master database is assembled using an SQL server, then extracted to make smaller organism-specific databases that run on a desktop JET database engine (or Microsoft Access).  Because the GenMAPP database is already in a relational format, it will be relatively straightforward to migrate it to MySQL, which is being used as the primary database engine for the CCPR.

D.11.6 The “CCPR Central” Database

One of the main products of the CCPR project is the creation of a database that provides an integrated view of all data available at our Center.  Our existing databases, eg, MODBASE and ZINC, are optimized to manage data from different stages of modeling.  Because they are already in production or developmental use, it is undesirable to merge these databases together and then retrofit all applications that access or update them.  Doing so would also complicate the very desirable goal of distributing individual software packages from our Center.  Instead, a new central database will be constructed and updated from the component databases.

Separation of the central database from component databases provides several advantages:

· Component databases may remain unchanged.  This minimizes disruption and maintains continuity for ongoing development and research.

· Development of the central database may proceed independently of component databases.  Since the central database will only be updated from component databases that are in consistent states, users of the central database are guaranteed consistent database content, which greatly facilitates application development.  Meanwhile, developers of component databases are free to experiment, with alternative data schema for example, as long as the central database update process is temporarily disabled.  By enabling parallel development, improvements to all databases may be made efficiently.

· Most component databases are used for both updates and queries of modeling results, while the central database will be used primarily for queries (eg, data mining and web browsing).  Thus, optimization strategies for these databases will likely be quite different.  For example, component databases can use normalized schema to facilitate data updates, while the central database may contain pre-joined tables (computed during the update process) designed to answer frequent queries.

· The user interface for each database may be optimized for its data content, with the interfaces cross-linked to provide easy access across all databases.  This approach distributes interface design opportunities to developers who are most familiar with the data being presented.  By using a common display style, the collection of databases may be presented as a cohesive, integrated unit.

While the creation of a large new database is normally a daunting task, the existing setup of the component databases suggests a relatively simple solution.  All of our component databases use (or will use) MySQL as their database engine; thus, a single dump-and-load procedure will suffice for updating the central database from component databases.  By placing a snapshot of each component database in the same MySQL server instance, we can take advantage of the multi-database capabilities of MySQL.  For example, we can precompute new tables containing answers to common queries by joining existing tables from multiple databases.

Another important concern is the storage requirements for storing multiple copies of databases.  For most existing component databases, information is split into management data, which are kept in MySQL tables, and auxiliary data, which are kept in flat files.  The management data contain information on how to access auxiliary data.  When we construct the central database, we will only replicate the management data from each component database.  Auxiliary data will be retrieved from the component databases via file services (eg, a network utility such as wget or Network File System). Figure 51 illustrates this architecture.

Our aims are to
1. Design and implement a relational database to store/reference all data from the CCPR pipeline;

2. Build tools to load and query this database;

3. Load the database based on snapshots from our component databases;

4. Design and implement an interface that supports inference-rich queries from users.

The value of CCPR Central is not just the co-location of a variety of component databases, but also the additional relationships derived from component databases.  For example, CCPR Central will incorporate pathway information from GenMapp, structural models from MODBASE, small molecule models from ZINC, and computational docking results from THC.  By identifying interrelationships among GenMapp, MODBASE, ZINC and THC, CCPR Central can provide a multi-resolution view of proteins from pathway information (eg, reactions) to molecular mechanisms (eg, theoretical binding affinities).

D.12 Develop a Web-Based Graphical User Interface for Flexible Access to the Central Database (Ferrin)

The databases described in the previous section require good interfaces to interrogate them.  In Aim 12 we develop web-based graphical user interfaces for flexible access to the database. These interfaces are critical to facilitate access to the structures and relationships that the pipelines produce, one of our core themes. We will use our existing program CHIMERA to facilitate visual inspection of the results in THC. This functionality will be added via a new program that will provide a link between the sequence and structure graphical representations generated by CHIMERA and the information stored in MODBASE and THC. The linking program will allow us to accomplish a variety of tasks, such as (i) retrieve sequences, alignments, and 3D coordinates directly from MODBASE and display them in CHIMERA; (ii) display predicted ligand binding sites retrieved from MODBASE, using the alignment viewer in combination with the structure viewer; and (iii) retrieve protein sequences, structures, and functional annotations from additional sources such as SRS (http://www.lionbioscience.com) or the new distributed CORBA-based application interface to the Protein Data Bank. We will adapt CHIMERA, MODBASE, and THC to make maximal use of their linking. A particularly convenient feature of the linked resource will be the ability to query, display, and analyze the sequence, structure, and ligand binding information at once.

Use of web-based technology is critical to the success of our proposed Center.  This will be the primary method that we use within the Center to drive our pipeline and retrieve results of calculations, and it will serve as the primary means by which outside users will access our Center.
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Full details of our web interfaces have yet to be worked out.  This is only to be expected, given the early state of the overall project.  However, we have considerable experience in this area and several examples to illustrate the high likelihood of achieving success for this aim.  Examples include the Sali group’s MODBASE185, Ferrin’s and Babbitt’s BayGenomics (http://baygenomics.ucsf.edu)227, and Babbitt’s and Ferrin’s Structure Superposition Database (http://ssd.rbvi.ucsf.edu)371.  We will use the expertise gained in building web-based interfaces to these databases for the project we propose here.  This includes providing a facile means of navigating through the wealth of data we expect to create with the CCPR pipeline, as well as visualizing specific data contained within our CCPR Central database, such as relevant pathway info (Section ‎D.11.5) and relevant references (Section ‎D.16.2). For visualizing sequence and structure data contained within CCPR Central we will make heavy use of Chimera.
D.12.1 CHIMERA

Chimera (http://www.cgl.ucsf.edu/chimera) will be the basis for visual inspection of results from the CCPR pipeline.  Chimera’s existing functionality will be extended to provide links between the sequence and structure graphical representations generated by CHIMERA and the information stored in, for example, MODBASE and THC.  A prototype link to MODBASE has already been implemented372. Additional Chimera extensions will allow us to accomplish a variety of tasks, such as (i) retrieve sequences, alignments, and 3-D coordinates directly from MODBASE and display them in CHIMERA; (ii) display predicted ligand binding sites retrieved from MODBASE, using

Figure 51.  The CCPR central database is constructed from snapshots of individual component databases.  MODBASE and ZINC are shown; other component databases such as THC and SFLD will be incorporated analogously.  The separation between central and component databases facilitates independent, cooperative development.  The “Custom” database contains the pre-computed tables described in the main text.
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the alignment viewer in combination with the structure viewer; and (iii) retrieve protein sequences, structures, and functional annotations from additional sources such as SRS (http://www.lionbioscience.com) or the new distributed CORBA-based application programmer interface to the Protein Data Bank. We will adapt CHIMERA, MODBASE, and THC to make the maximal use of their linking. A particularly convenient feature of the linked resource will be the ability to query, display, and analyze sequence, structure, and ligand binding information simultaneously.

Chimera is well suited to these tasks.  As described in Section C.12, Chimera is a highly extensible interactive molecular visualization tool for depicting and manipulating three-dimensional structural models and their associated sequences.  More than 30 extensions to Chimera’s core functionality have been written to date.  Examples include MultAlign Viewer, which displays multiple sequence alignments, calculates and shows a consensus sequence and conservation histogram, and allows regions to be defined and colored.  Structures opened in Chimera are automatically associated with a matching sequence. Structures can be superimposed based on their sequence alignment, and actual/predicted secondary structure features can be depicted on the alignment. When a region is defined by dragging within the sequence, the corresponding residues of the structure are highlighted. The sequences and corresponding structures are shown in matching colors.  An example display from MultAlign Viewer is shown below (Figure 53).  Currently, MultAlign Viewer requires that explicit sequence and structure files be opened to produce these displays.  As part of the CCPR project, we will extend MultAlign Viewer to access sequence and structure data directly from MODBASE. For example, MODBASE users will be able to search for protein models using a standard web browser and then click on a link from a search results page to view a sequence alignment and the corresponding structures in Chimera using the MultAlign Viewer tool.  The same mechanism utilized in the integration of MODBASE and Chimera can be used to communicate with any web service that provides alignments and/or structures as long as the service can generate a command file that describes how the alignments and structures may be retrieved.

A second example Chimera extension is ViewDock.  ViewDock was developed for use with the UCSF DOCK program173 and provides interactive selection of promising compounds from DOCK output. Candidate molecules can be viewed in the context of the binding site and, optionally, screened by number of hydrogen bonds to the receptor.

[image: image55.wmf]
Figure 53. Three structures in Chimera associated with sequences in an alignment shown by MultAlign Viewer.  The sequences with color swatches behind their names are associated with the pectate lyase structures 1jta, 1bn8, and 2pec (shown in yellow, magenta, and cyan, respectively).  The structures were superimposed using the sequence alignment; the fits were refined by iteratively removing bad residue pairings.  The sequences are colored by secondary structure (strand and helix regions are pink and gold, respectively) and “selected” structure regions are green (indicated on the structures with a green outline). Chimera’s “zone” selection method was used to select all residues within 3.25 Å of the active-site metal ion in one of the structures.

The framework used to couple Chimera to a web browser is quite flexible. It is implemented using Multipurpose Internet Mail Exchange (MIME) types. Chimera defines a special MIME type, ‘application/x-chimerax,’ to identify files coming from the web. These files contain data conforming to a predefined Extensible Markup Language (XML) format, specific to a particular web service (eg, MODBASE). Each format has a corresponding parser. Chimera parses the XML files and performs the requested action. Actions can instruct Chimera, for example, to download and open PDB structure files or to execute arbitrary Chimera commands to create a suitable visual representation of the downloaded data.

Both MultiAlign Viewer and ViewDock illustrate the extension capabilities of Chimera as applied to a specific problem domain.  The exact nature of the new extension capabilities we will develop as part of the CCPR project will be driven primarily by the needs of our scientist users.  It is easy to envision a facile and seamless interface to MODBASE and THC, and of course we will implement these. As described earlier, the interface to the SFLD already exists. But likely of more importance will be new visualization methods for depicting explicit aspects of data relationships found in these databases.  For example, in drug design applications, it may prove critical to visualize the differences among a group of ligand candidates predicted to bind with different affinities to a protein target.  New visualization strategies may also be required as part of the work aimed at identifying functionally important residues in enzyme active sites (Section ‎D.3.3).  Chimera will serve as the basis for all of our 3-D structure visualization needs.  New technological developments to Chimera’s core capabilities will remain an activity that is focused in (and funded by) the Resource for Biocomputing, Visualization, and Informatics, but extensions to Chimera that are implemented to explicitly benefit the CCPR will be part of the project proposed here.  This approach maximizes the synergy between the two Centers and leverages our funding. It would not be possible subsume either software development activity completely within one Center, given the realities of limited funding, but splitting the activities between Centers in a well-defined way (core capabilities versus extensions) creates a cooperative interaction.
D.13 Create a Software Backplane for Integrating the Modules into the Pipeline (Ferrin, Sali, Shoichet)

Much of the CCPR project seeks to create public access tools for modeling and docking.  There is thus a need for software engineering to create a job-control system to make the tools work smoothly together.  This is the focus of Aim 13, creating a software backplane to integrate the modules in the pipeline.  This module confronts the challenges of integrating what have been largely separate applications into an automated software pipeline, one of our core themes.
D.13.1 
D.13.2 Data Flow in the CCPR Pipeline (Ferrin)

Key to the success of creating a pipeline for automated large-scale protein structure modeling and docking is a pipeline control infrastructure.  To address this need we plan to use DASH, the data sharing infrastructure that was the subject of a grant application from the Resource for Biocomputing, Visualization, and Informatics (RBVI) to NIH in September 2003.  Although the RBVI’s DASH proposal is still under review, we believe that the data flow technology proposed in that application is ideally suited to the CCPR pipeline.

DASH is an infrastructure for facilitating the construction, maintenance, and dissemination of shared data among researchers in a small-to-mid sized informatics unit such as the CCPR.  Specific aims of the DASH proposal include (aims not relevant to the CCPR are excluded here):

· Design and implement an infrastructure that allows multiple maintainers of a centralized database to describe the inherent data relationships in computational biology terms, to add new data and computational protocols, and to invoke these protocols automatically in the presence of data updates. 

· Design and implement software tools for managing this data network. These will include graphical user interfaces that will enable users to view the topology of a data network, view the amount and nature of data available, and monitor any running computational protocols.

· Design and implement software tools and libraries for constructing web interfaces to present data from the database in a semantically meaningful manner.  The tools can be either protocols that generate static web pages or CGI (Common Gateway Interface) scripts invoked by a web server to retrieve current information. 

· Disseminate, as documented source code, this new software so that others can utilize these tools for their own collaborative projects.

Since the DASH proposal predates the current proposal, we now must expand some of these aims to specifically address the needs of the CCPR pipeline.  We provide details of DASH below as well as specific application of DASH technology to the CCPR project.

D.13.2.1 DASH Overview

The Center will maintain component databases for each stage our pipeline, as well as a central database (CCPR Central) that interrelates the component databases and will be used primarily for browsing and searching data.  Because CCPR Central will be updated using snapshots of component databases taken during consistent states, rather than continuously with the individual database in arbitrary states, the databases are effectively decoupled. However, without an efficient mechanism for data sharing, data consistency within and across these databases could be easily compromised. For example, all components of the pipeline must be able to update CCPR Central to provide it with the newest data.  However, each update potentially invalidates previously computed results based on earlier versions of data.  To encourage frequent data updates to CCPR Central, re-computation required by data updates must be automatically invoked (as much as possible) so that the update process does not become a burden to researchers.

DASH will provide a solution to the data management problems associated with multiple modules within the pipeline by providing an infrastructure that can monitor various data for changes and then automatically invoke any processing protocols necessitated by those changes. The diagram in Figure 54 illustrates this infrastructure. One way to conceptualize the relationship between data and computational protocols is by viewing them as a network, and applying the paradigms of “data flow” to govern the movement of data within that network. “Data flow” refers to the path taken by data as it moves through a chain of processing tasks, and is only a single component of a more generalized theory of system design known as Structured Systems Analysis and Design Methodology (SSADM)373. Data flow modeling attempts to dissect a system into its modular components and then to define the relationships between those components in a standardized manner. The advantage of applying the theories of data flow is that they extract a precise definition of the system that can be understood readily by both the developers and users of that system. In addition, breaking a system into component parts adds flexibility, enabling system developers to swap components easily as the demands placed on the system evolve.  As is readily apparent, this environment will serve the needs of the CCPR project well.
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Figure 54.  Overview of DASH software components.
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Our solution is feasible given the relatively small number of mutually trusted groups within our Center.  Each database will be managed by its own instance of DASH, which can accept data from software modules in the most convenient format, convert and add them to MySQL database tables, and trigger follow-up processing to generate input data required by other modules.  Thus, developers can focus on the functionality of software modules rather than worry about data version management.  In addition, DASH can provide an overall view of data and processes for each database when a global perspective is needed.

D.13.2.2 DASH Data Flow Concepts

A standard set of graphical components is used to visualize DASH data flow in a Data Flow Diagram. The set of symbols in Figure 55, which have been adapted from the Gane and Sarson method of process notation374, are used in the subsequent discussion to illustrate some important characteristics and considerations related to data networks. Note that for our purposes, an “External Entity” and a “Data Store” can be considered nearly identical in function. Additionally, we use the terms “Process” and “Protocol” interchangeably.

DASH’s software infrastructure is composed of three primary components: Data Store, Protocol, and Controller, which are described in detail below:

Data Store 

While data in a computer system is ultimately stored on a disk somewhere, factors such as size, intended use, and content will lead to the choice of one particular data storage method over another. For example, data that are intended to be easily searchable in real time should probably be stored in a relational database, while a large amount of data used for archival purposes can most likely be stored in flat files. We have adopted this approach for several of the component databases used within the CCPR pipeline (Section ‎D.11), and DASH was designed to accommodate these different types of data storage systems. 

Figure 55.  Data Flow Diagram Components.
We will implement a set of software modules that correspond to the abstract notion of a Data Store. This can be any information-storing mechanism, located either locally (with respect to other parts of the system) or remotely (accessible via a web-based service, ftp, or networked file system). For CCPR, we will focus on locally accessible MySQL tables and files because most existing databases are arranged in such a manner. One factor in deciding whether raw data can serve as a suitable Data Store within this infrastructure is the requirement of a means to determine if the data has changed, and if so, when the most recent change occurred. Since MySQL supports timestamp columns, it is easy to create new or retrofit existing tables to serve as data stores in DASH.  This minimizes the number of changes required for existing MySQL databases for use with DASH.

Protocol

The role of bioinformatics and computational biology in scientific research has expanded in recent years to such a degree that it has become essential for researchers to become familiar with a dizzying array of software tools. A researcher’s “toolkit” can consist of literally dozens of these programs, varying widely in their purpose, range of applicability, required parameters, and mode of operation. On one end of the spectrum may be a rather complex web service, requiring a request (input) to be sent to a [possibly remote] server, eg, NCBI BLAST. The request could contain data adhering to a strict format and requiring that several option parameters be specified in order to carry out the analysis. Once the analysis is complete, the web service could return (output) a formatted text file containing several results. At the other end of the spectrum may be a simple script to parse an XML (Extensible Markup Language) file (input) that returns the value of a specific tag (output).
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Despite the differences mentioned above, a very simple pattern arises from examining these tools. We have taken the notion of a Protocol to be a software tool that takes some data as input, processes that data, and then produces some form of output. In our initial design, a Protocol must be some executable program that can be invoked through the operating system. This requirement actually affords a high level of flexibility, because it lets the operating system cope with any variability due to implementation language.  Scripting languages such as Python, Perl, and various Unix shells have become indispensable tools in resolving varying file formats often associated with different bioinformatics utilities.  Thus it is important to maintain a flexible definition to enable both simple scripts and complex programs to be classified as Protocols.

Controller

The Controller module is the key component for controlling the flow of data.  It is responsible for managing the overall structure of data networks, monitoring the data stores for modification, and scheduling the necessary protocols to execute.  It operates based on a set of data flow rules, which we define below.  We build up these rules by describing several sample data networks. By discussing some of the idiosyncrasies associated with each successive network, we progressively introduce a set of rules that will govern the behavior of the DASH Controller. The following examples use the letter (D) to represent a Data Store, the letter (P) to represent a Protocol, and (E) to represent an External Entity. For each diagram, components of each type are numbered sequentially, starting with 1.

For any particular data network, the chain of events that results from a data modification is determined by the structure of the network. In the presence of a data modification, all computational nodes (Protocols) “downstream” of the modification are queued to run. The domino effect that occurs as the result of a single data modification will be referred to as a “cascade”.

In Example 1, a change in E1 (marked by the red star), which can be due to either new or modified data, causes P1 to run. Only when P1 has completed and presumably modified D1 should P2 be invoked to process any new data in D1. 

This illustrates our first DASH data flow rule:

1) The system must keep track of when each data store is being read from or written to, and ensure that no protocol is reading from a data store while that data is being written to, or writing to a data store while that data is being read from.

Note that while P1 has the potential to affect (ie, write to) D1, it is important to consider the situation where it does not. For example, P1 may find that, although there was a modification in E1, no further processing needs to take place, and thus D1 is left unchanged. In this case, the cascade should end; P2 and any subsequent protocols (although there are none in this example) do not need to be run, for there is no modified data for them to process.  Our second rule deals with this situation where data is left unmodified:

2) A protocol should only be invoked if the data it uses as input has been modified.

Example 2 introduces several new structural configurations, leading to more complex data flow situations. In this network structure, a single data store can trigger multiple protocols, and different protocols use the same data store as output. Such a network imposes several additional requirements on the workflow management system. For example, consider a situation where P3 and P4 are running simultaneously. Because they both deposit output into D3, this could result in a race condition. If synchronization mechanisms such as database transactions or locking are not used, there is a possibility of data loss or corruption due to both protocols simultaneously writing to the same location: 
3) Data store updates by multiple running protocols must be synchronized. In the absence of synchronization primitives, the system must ensure that no two protocols that could potentially write to the same data store are active at the same time. 

Another potentially harmful situation arises when any of several protocols that write to the same data store have not completed running before subsequent protocols are started. In Example 2, assuming a modification in E1, it would be harmful for P5 to run if P3 has completed, but P4 has not. The problem is that P5 would be using an inconsistent set of data as input—some updated data from P3’s recent output, and some “old” data from the last time P4 ran:
4) To maintain internal consistency, if a data modification would require several protocols that write to the same data store to run (at different times, of course), any subsequent protocols should not be triggered until all the previous ones have completed. 

Assuming a modification in E1, we can apply the above set of rules to determine the proper sequence in which the protocols should be run:

P1, P2, P3, P4, P5, or

P1, P2, P4, P3, P5, or

P2, P1, P3, P4, P5, or

P2, P1, P4, P3, P5.

Note that there are several different orders that satisfy all of the rules. In fact, it is not possible to determine the exact order ahead of time, because it is not possible to know how long each protocol will run. The management system must be flexible enough to run the proper protocols in the most efficient manner despite varying run times.
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To improve efficiency, it is important to run protocols in parallel when possible. Two protocols can be safely run in parallel as long as they will not alter the same data store. In Example 2, it is possible for P1 and P2 to run simultaneously because they are only reading from the same External Entity and will not actually alter the data contained in it.  

5) To maintain a high level of efficiency, the management system should, when possible, run protocols in parallel. 

Running protocols in a strictly linear sequence is inefficient if they can be run safely (ie, in accordance with rules 1-4) in parallel. Thus, the sequence described above must be revised to account for the parallel nature of the network presented in Example 2. For non-linear data networks, it makes more sense to impose general restrictions, rather than forcing each individual protocol into a specific element of a sequence. For example:

· P1 must complete before P3 can be run

· P2 must complete before P4 can be run

· P5 can only run when P3 and P4 have both completed

Using a notation similar to the simple sequences derived above, we must add another ‘dimension’ to denote which protocols can be run in parallel:
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Using this notation, the horizontal axis represents time, and the vertical axis represents parallelism, in the sense that sequences (defined by square brackets) that are aligned in the same vertical plane can be run in parallel.  Protocols within a sequence must be run sequentially, and a sequence cannot start until all previous sequences (to the left, in all rows) have completed.

The previous discussions dealt with a single data modification that affects every node in the data network. However, based on the topology of the network and the data that has been modified, this will usually not be the case. In Example 3, a red star represents a data modification, and the yellow shaded regions represent the cascade of affected network nodes. Addition of data to E2 (Example 3a) causes a certain sequence of protocols to be triggered, while a modification to D1 (Example 3b) queues a different set of protocols to run. It is crucial that only those protocols deemed necessary are actually run. A system in which a single modification of any node would cause every protocol to run would be egregiously inefficient. 
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Only those protocols that lie “downstream” of a data modification should be queued to run as part of that cascade. 

In non-linear networks, it is possible for individual cascades to overlap, such as those illustrated in Example 3a and 3b. While it is important for the disparate portions of each cascade to be executed, they can be “joined” at the overlap to prevent multiple executions of a potentially time- and compute-intensive protocol.  In Example 3, P5 could be required to run on two separate occasions as the result of two separate data modifications. Assuming P3 has completed in cascade 3b and actually modified data in D3, P5 is the next protocol in the queue for cascade 3b. However, if P2 is still running in cascade 3a, it would be a waste of time and resources to run P5 as part of cascade 3b, because P5 will need to run again as part of cascade 3a. Instead, at this point, cascade 3b can halt, leaving 3a to run to completion without any competition for resources.

7) In the case of simultaneously running cascades, if at any time in its lifespan one cascade’s remaining portion represents a subset of the remaining portion of any of the other current cascades, it should be terminated as soon as its active processes have completed. 

The Controller software module (Figure 54) implemented for DASH will be responsible for managing the overall structure of data networks such as those described above, monitoring the data stores for modification, and scheduling the necessary protocols. Thus, the Controller can logically be broken down into two sub-components, a data monitor, and a process scheduler. The data monitor will periodically poll each Data Store for any modifications that have occurred since the last check (the frequency of checking is configurable). This information is passed to the process scheduler, which will first determine which protocols should run in response to the modifications, and then uses the seven rules stated above to determine the best order in which to run them. Provisions must be made for overriding certain rules, which may be necessary depending on the requirements of a particular data network. For example, a protocol in one cascade may require several days to complete and should not delay any data updates by other cascades as described by rule (7). The Controller will store the overall structure of the data network and state information about its component Data Stores and Protocols on disk. Thus, in the case of a hardware failure, it will be able to reload all of the information associated with the data network at the time of the failure, and then continue to monitor for changes.

D.13.2.3 Implementation Plan

We have chosen to use the Python programming language to implement DASH, based on our very positive experience with its use in developing our Chimera molecular visualization system. Python (www.python.org) is an open-source, dynamically typed, strongly object-oriented language that is well suited to the rapid development and deployment of software tools. These characteristics stem in part from Python’s nature as an interpreted language and its support of run-time loading of modules without the need for source code recompilation.  In Chimera (Section ‎D.12), the dynamic, extensible quality of the language is clearly present at the application level, allowing both developers and users to extend the program’s base capabilities without modifying the source code. Similarly, in the planning and implementation of DASH, we desire to propagate this flexibility up to the application level, ultimately enabling DASH to adapt to a variety of environments. Python’s robust object-oriented capabilities also facilitate writing of modular software that can be revised easily to meet evolving needs.  If particular DASH modules impose performance limitations because of the interpreted nature of the Python language, these modules will be re-implemented in a compiled language such as C++.  We have used this approach with good results in Chimera, and we have implemented a C++ to Python wrapper application (Wrappy,http://www.cgl.ucsf.edu/home/gregc/wrappy/paper.pdf) that facilitates access to C++ classes from Python.

D.13.2.4 DASH Use in the CCPR Pipeline

We will adapt DASH for use within the CCPR to control data flow within the pipeline.  In particular, the design described above must be refined to work within the database environment we have designed for the pipeline (Section ‎D.11).  Separate instances of DASH will be used to maintain both component databases and CCPR Central. For example, the Top Hits Collection database (Section ‎D.11.3) will be updated by at least three distinct protocols.  Conceptually these are a receptor “finder” protocol, a ligand finder protocol, and the DOCK protocol.  DASH will periodically invoke the receptor finder protocol to discover new protein models that have become available in MODBASE and retrieve and store references to these models.  The ligand finder protocol performs a similar function with the ZINC database.  When either finder protocol stores new data, DASH will then invoke the DOCK protocol on the new receptors and/or ligands. 

We will also augment DASH to include the ability to invoke a protocol when no more protocols are due to run (ie, when DASH becomes idle). For component databases, this is a useful trigger mechanism for updating CCPR Central with database snapshots, assuming that a database is in a consistent state when no updates are scheduled for it.  When a component database is undergoing a major overhaul, this automated upload feature can be disabled and snapshot uploads invoked manually.

Thus, DASH provides a straightforward and effective control mechanism for managing the CCPR pipeline.  Automating data updates increases data consistency and decreases the amount of manual bookkeeping required to maintain the various databases, and only minimal alterations are needed to existing database schemas to retrofit existing databases for use with DASH.

D.13.3 Near Term Job Control & Performance for Docking (Shoichet)

Nowhere is the need for job control more evident than in the public access docking service we are creating.  The tool is meant to give users a simple interface for docking several large compound databases against protein targets of their choosing (Figure 40).  We will undertake to make such job control as smooth as possible for the users, and for the site administrators.  We envision the process working as follows.  Once users have successfully launched a docking screen, they are assigned a job id number and given a URL where results may be browsed.  From the time a job is accepted until it has finished, this page reports the status of the calculation and gives access to any results that may be available. The possible job states are:

· Submitted. The job has been accepted, but has not yet started. An estimated wait time based on priority and system load is displayed. The only action possible here is to cancel the job.

· Preparation. The docking site preparation has started. Job start time, run time, and estimated completion time are displayed. The only action possible here is to cancel the job.

· Docking Queued. Preparation completed normally, and jobs to dock the requested database(s) have been queued. The user may review the results of job preparation. The queued jobs may be cancelled.

· Preparation failed. An error occurred during site preparation that could not be resolved. No docking job was queued. A full report of preparation, including a diagnosis of the error, is available. The user is offered the option to resubmit the job and advice on how to avoid the error. The system administrator is informed that a failure has occurred. 

· Docking. One or more coarse-grain parallel docking jobs are running. After a few minutes in this state, preliminary results will start to become available via the results browser. Numerous reports are now available. If the results do not look right, the job may be cancelled.

· Complete. This is the normal final form of a docking run. All eligible reports in this section are now available, including enrichment plots. If the results look particularly interesting, the job may be re-run against a larger database.

· Incomplete. One or more docking calculations terminated abnormally and could not be restarted.  Error reports, together with all results generated are available.  The system administrator is informed.

D.13.4 Expected Outcomes and Alternative Approaches

DASH will provide the foundation for us to control the flow of data within the CCPR pipeline.  It will act as the “traffic cop,” deciding when different components within the pipeline need to process data.  Scheduling a pipeline stage to execute may be the result of new data added, existing data that has been modified, or a software component that has been updated.  Regardless of the reason, DASH will ensure the smooth and orderly flow of data within the CCPR pipeline.

Although we have considered alternatives to DASH, none have been found to be as satisfactory. For example, BioPipe375 is a workflow framework that seeks to address some of the complexity involved in carrying out large scale bioinformatics analysis. However, this type of system, designed to "integrate data from disparate sources into a common analysis framework," is more suitable for data mining than for collaborative data sharing as required for our project. While BioPipe provides excellent facilities for interfacing with bioinformatics web services and fetching data from databases distributed across the web (for use in a local processing pipeline), it does not contain functionality specifically intended to facilitate the subsequent sharing of that data.  It is also not especially oriented to the control of data flow as our needs demand.  Another alternative is myGrid376, whose stated goal is to deliver a collaborative and supportive environment that allows geographically distributed scientists to achieve research goals more effectively. An associated project, Taverna (http://taverna.sourceforge.net/), has been in development since early 2003.  The Taverna project "aims to provide a language and software tools to facilitate easy use of workflow and distributed compute technology within the eScience community." Both of these projects are targeted at large-scale computation, large-scale data sets and large-scale collaborations. Taverna could potentially be the most promising alternative to DASH for use in the CCPR pipeline infrastructure; however it is still in an early stage of development (version 0.1 beta 7 was released in December 2003).

D.14 Improve Global Optimization Algorithms for Protein Structure Prediction and Docking (Rosen and Dill)

D.14.1 
Most of the modules outlined throughout this Core anticipate improvements to and integration of specific algorithms for modeling, docking, and related technologies.  There is also a call for more global efforts to develop algorithms that could be broadly useful to the pipeline and, indeed, the field.  Aim 14 investigates just such an area, specifically global optimization algorithms for protein structure prediction and docking. 
A primary objective of the research is to develop a conformational global optimization method.  We aim to develop and improve global search algorithms, based on our recent work on the Convex Global Underestimator (CGU) algorithm. The CGU algorithm has been used to speed up the conformational sampling of energy landscapes to identify native states of proteins, and more recently to identify binding sites in protein-ligand docking calculations. This algorithm will be incorporated into the protein-ligand and protein-protein pipelines.
D.14.2 Global Optimization Using the Convex Global Underestimator (CGU)
The CGU algorithm is intended to be an efficient search method for finding the global minimum of complex landscapes that have a large number of local minima and a general funnel shape, as in protein folding and docking.  This works represents a long-term collaboration between the groups of Rosen and Dill. In this algorithm a set of local minima are first computed, and then the landscape is approximated with a strictly convex, quadratic function which underestimates all the local minima, and minimizes the error of the approximation in the L1 norm. The unique minimum of this convex function then gives an estimate of the location of the global minimum of the original landscape energy function. The search domain is then reduced to a smaller domain containing the global minimum estimate, and additional local minima are computed within this reduced domain. This process is iterated until it finds an estimator of the location of the global minimum.

Our first proof of principle was to show that the CGU algorithm can compute the global minimum energy of small model proteins, and identify their native conformations, with considerable computational efficiency228-231.  More recently, we have used the CGU algorithm to predict binding sites in a protein-ligand docking model377,378. In both tests so far, we have used what we call the "diagonal CGU": the convex quadratic approximation function was limited to a diagonal Hessian matrix so that the function is separable in the coordinate space.

However, the diagonal method is significantly limited when we apply the CGU to all-atom modeling. Hence, we have recently gone beyond this approximation, to what we call the "off-diagonal CGU", where we now also permit off-diagonal terms to be included in the Hessian matrix232,233. This allows for a better treatment of coupled degrees of freedom. We have applied the off-diagonal CGU to three docking model problems from the CAPRI docking competition (similar to CASP for folding)233,379. The six-dimensional energy landscape for these models contains thousands of local minima; nevertheless the improved CGU algorithm was able to correctly locate the global minimum of this energy landscape in each test case. We intend to further increase the effectiveness and speed of the CGU algorithm, particularly now for flexible ligands, and possibly for protein flexibility too, and test it on the many protein-ligand docking test cases currently being provided to us by Brian Shoichet's group.

Finally, we have also been interested in improving the parameters in the types of complex energy models of the type that are widely used in computational biology—Charmm, Amber, Gromos, etc.—for folding and docking313,315. We will refine these methods and validate them on a large number of examples developed by Shoichet and others. Efficient software implementations of all the algorithms will be made readily available to the broad community of biomedical researchers and computational biologists.

D.15 Develop and Apply a Module for Testing of the Pipeline (Shoichet, Sali)

D.15.1 Control Calculations to Improve Automation (Shoichet)  

In any effort as involved as the pipelines described in this application, tests of usefulness and quality are needed.  Aim 15 of Core 1&2 is directed at such tests, which will probe the weaknesses and strengths of the pipeline, how to fix the former and build on the latter. This aim represents an important engineering effort towards building one of our core themes, that of automated pipelines for structural modeling and docking.   

In preliminary studies, we compared results of automated docking versus expert docking for twelve targets (these targets have a long pedigree in the Shoichet lab, acting as controls for new docking algorithms)167,170,175,380.  In ten of the twelve, the automated scripts enriched known ligands to a degree comparable to that of the expert in large database screens (Section ‎C.15.2). The two systems where the automated scripts were outperformed by the experts had metals in the binding site, and are the subject of current study in the lab. We have augmented our test set to a total of 26 targets (Table 11, Section ‎D.6.1). These new cases will help identify problem areas for our automated scripts, such as improper parameterization, poor definition of binding sites, and possible under-sampling of orientations and conformations in the docking calculation owing to improper parameter choices.  We will investigate each system for which the automated scripts do not do as well as an expert, reasoning that any problem that we can correct will also affect other targets. By this admittedly bootstrapping method, we hope to discover many of the liabilities in the automated procedures. 

D.15.2 EVA-LIG: Automated Testing of Docking Predictions (Sali)

To facilitate the development and improvement of the methods for predicting the location of binding sites on protein models and ligand docking methods, we will develop a suite of automated tests.

These tests will be employed in the offline and online modes. The offline mode will depend on a frozen set of test cases that will be processed by a supplied assessment program, for display of the standard test results using text files, graphics, and a standard web-based interface. 

The online mode will implemented by adding a new module, EVA-LIG, to the existing EVA web server for evaluation of the accuracy of automated protein structure prediction methods (Section ‎C.15.1) (http://salilab.org/eva/)234,235. EVA is a large-scale and continuously running web server that automatically assesses protein structure prediction servers. The test cases for the prediction programs are collected automatically from the PDB database every week, and the predictions are assessed against the actual structures. The aims of EVA are (i) to evaluate continuously and automatically blind predictions by prediction servers/programs; (ii) to update the results on the web on a weekly basis; (iii) to enable developers, non-expert users, and reviewers to determine the performance of the tested prediction servers; and (iv) to compare prediction methods based on identical and sufficiently large data sets. EVA-LIG will use the MySQL relational database management system for flexible and efficient querying. For ease of access, EVA-LIG will use the existing organization of EVA-CM (http://salilab.org/eva/) to display the results on the web.

D.15.2.1 Accuracy Measures

The intent for EVA-LIG is to define a small number of simple criteria, arranged in a hierarchical manner from coarser to finer, measuring the main aspects of the predicted location of the binding site and the predicted geometry of the protein-ligand complex. We also wish to identify ways to estimate the accuracy of a prediction when the actual structure is not known. There are many ways to compare a predicted receptor-ligand complex with its actual 3D structure. Moreover, most binding site prediction and docking programs will return a set of ranked solutions, not just a single prediction. 

EVA-LIG will include a series of measures described by Nussinov and coworkers in the Docking Results Unified Format (DRUF)353. The evaluation of a binding site prediction starts by superimposing the coordinates of the unbound receptor with those of the bound receptor. Then, several measures of RMSD and residue contacts are collected, as well as comparison of the overall properties of the binding site and the ligand. The levels of evaluation that will be implemented in EVA-LIG are outlined here and are derived from those used in the DRUF protocol:

· Accuracy of Binding Site Location: The fraction of residues that are correctly predicted to be part of the binding site, which is defined by a distance cutoff from any of the ligand atoms in the actual structure of the complex.

· Highest Rank RMSD: The RMSD of the highest-ranking solution with RMSD less than 5 Å from the complex.

· Highest Rank: The rank of the highest-ranking solution with RMSD less than 5 Å. 

· Best RMSD: The RMSD of the lowest RMSD solution. 

· Rank of Best RMSD: The rank of the lowest RMSD solution. 

· N10: The number of solutions with RMSD less than 3 Å among the 10 highest ranked solutions. 

· N50: The number of solutions with RMSD less than 4 Å among the 50 highest ranked solutions.

· N100: The number of solutions with RMSD less than 5 Å among the 100 highest ranked solutions. 

· Complex Rank: The rank of the known complex.

· Unbound RMSD: The RMSD of the unbound ligand after superimposition on the bound ligand, a measure of the difficulty of the case under study.  A high unbound RMSD indicates significant changes between the bound and the unbound states.
· Hyper Highest Rank RMSD: The difference between the highest rank RMSD and the unbound RMSD.

· Hyper Best RMSD: The difference between the best RMSD and the unbound RMSD.

· 
The Highest Rank combined with the Highest Rank RMSD indicate the optimal performance that can be achieved from the method. The Best RMSD is an indication of the optimal performance that can be expected from the search algorithm. The Rank of Best RMSD, just like the Complex Rank, is an indication of the scoring function quality. Finally, N10, N50, and N100 are best for evaluating the entire docking scheme, including the search and scoring aspects.

Molecular properties of the ligand and the binding site, such as electrostatics, polarity, hydrophobicity and concavity, will be correlated with the assessment scores in an attempt to develop rules for assessing the predictions in the absence of actual structures.  
Similar measures will be developed for assessing protein-protein docking methods.

D.15.2.2 Ranking of Two Competitive Prediction Methods or Protocols

To find out which of two protocols performs better than the other, we will define the statistical significance of the ranking between two prediction methods based on a prediction quality criterion. While a comprehensive characterization of prediction methods usually requires multiple quality criteria, the test of statistical significance may be repeated independently for each criterion. Separate consideration of the individual criteria is useful because different aspects of a prediction may be predicted best by different methods.

Prediction methods can be compared most reliably when they are tested under identical circumstances; for example, two prediction methods cannot be ranked by comparing the quality of easy predictions by one method with the quality of difficult predictions by another method. Thus, the best way to rank two methods is to assess their predictions for the same problems. Such a comparison is quantified by the distribution of the pairwise prediction quality differences, one difference for each of the common predictions381.

D.16 Develop Information Navigation and Search Strategies for Maximizing the Utility of the Central Database (Hearst)

This proposal aims to increase scientific understanding of protein function by generating a large collection of information about the interactions of proteins with other proteins and small molecules.  Scientists who use the pipeline will want to consult the published literature to make sense of the results they obtain. In Aim 16, the Hearst group will focus on supporting these information search and navigation needs by integrating querying, retrieval, and organization of biomedical literature into the proteomics pipeline, both for specifying input and interpreting output. The system will support a number of facilities that are currently either not possible or very time-consuming to execute in existing search systems such as PubMed. These facilities include retrieving documents that refer to entities and relations between entities within the text, grouping of intermediate result sets for more detailed processing, incorporation of subhierarchies of ontologies into queries, searching over well-motivated subsets of the literature, and using entities retrieved from one query as input into subsequent queries.  This aim speaks to one of the reccuring themes in this project—that of reducing barriers to entry to understand the results of structural modeling and docking for the community.
The technologies being developed under Dr. Hearst's BioText research project (http://biotext.berkeley.edu) will be extended and applied to the specific needs of the proteomics pipeline. This goal requires work in several areas: improved natural language processing algorithms, needs assessment of proteomics researchers, and development of new search user interfaces.

D.16.1 Improved NLP Algorithms 

We will train our natural language processing (NLP) algorithms to cover domains of interest to proteomics researchers, emphasizing proteins, ligands, and the relations that hold between them.  We already have a robust gene/protein name recognizer and normalizer240; we will build a similar tool for ligand terminology. 

In addition to normalization of names of entities, the concepts need to be organized to allow generalization both in NLP algorithms and in search interfaces.  Numerous ontologies and libraries already exist; the Gene Ontology, for example, has been shown useful in many different applications.  We will survey the existing resources and select and combine those that are of most meaningful to the pipeline's user community.  

More challenging is the development of NLP tools for recognition of relations between entities: binding, regulation, stabilization, hybridization, and so on. We have already done work in this area239,382, as have other researchers.  For this project, we will focus on those types of relations that are of most interest to the proteomics researchers.  The techniques that we develop are for the most part domain-independent, but do require training data that is specific to the domain under consideration.   

Therefore, training and testing of these algorithms requires marking up of text with the appropriate labels.  Creating such marked-up text by hand is expensive; for this reason, we are actively engaged in developing semi-automated means to generate labels.  We will explore one new idea in particular as part of this project: First, start with facts that are known to hold from the data (eg, protein P has strong affinity with protein Q).  Then scan the literature to find co-occurrences of mentions of P and Q within the same document.  Do this for as many combinations of P and Q as are available with strong certainty values in the affinities database, gathering up a collection of candidate passages of text.  Finally, use the syntactic and semantic annotations (described in Section C.16.1) to automatically infer patterns of expression that characterize the affinities with strong certainty. Exploit the resulting patterns to label training data for use in further algorithm development.

D.16.2 Improved Search User Interfaces   

As discussed elsewhere in this proposal, the output of the proteomics pipeline will be annotated ligand-complex models and affinities and links to the CHIMERA structure visualization program. If desired by the user, the output of the pipeline will also be annotated with relevant references from the literature, automatically produced based on the entities specified in the input and output. This information would allow researchers to ask questions about whether or not the predicted associations had been hypothesized or discussed previously in the literature. 

The NLP components of this project will be used to extract and highlight relevant passages from the retrieved documents.  Additionally, if there are a large number of relevant references, it may be useful to organize them along several dimensions, as is done in the Flamenco interface discussed above245,246.  For example, relevant articles could be organized according to protein function, role within a pathway, or name of the journal in which they were published.  In one scenario, the system can organize retrieved documents according to relevant pathway information, using the GenMAPP component (Core 4).  GenMAPP pathways can also be used to help enter queries into the system by identifying names of entities that are expected to influence one another.  Retrieved articles that do not fit into the pathway may contain important, previously overlooked information.  

More generally, if an experiment is run that finds strong affinities between some members of protein family P and some members of ligand family L, a query could be run to retrieve all documents that discuss interactions among any combination of entities from these two families. Using the NLP components of the project discussed above, the text results could be summarized according to which combinations the documents discuss. These in turn could be automatically compared to the predictions produced by the pipeline. The researcher could read the papers that contain information about the predicted affinities, in order to better understand them. More interesting still would be those predictions for which references in the literature are lacking, since these may suggest a new discovery or insight. 

To develop a new user interface, it is standard practice in the field of human-computer interaction (HCI) to perform what is known as user-centered design. The main idea is to find out what the needs of the user base are before designing the interface (this process is called a needs assessment) and then incorporate user feedback into different iterations of the design.  As part of this project, we will conduct needs assessments with members of the proteomics community to learn what their user needs are, using well-known discovery methods.  We will first prototype the interfaces and test them with prospective users, and will not create a full-fledged implementation until we achieve strong usability and preference results.  This methodology allows us to posit innovative interface features while remaining confident that only those that are acceptable to users will be retained in the system.   

D.16.3 Supporting New Methods of Hypotheses Generation

The standard way to query the proteomics pipeline will be to select protein sequences and ligand libraries of interest. This setup requires a researcher to know in advance which combinations of proteins and ligands are of interest.  In some cases, however, a scientist may want help hypothesizing which combinations would be promising to look at for a particular question.  

As part of this project, we will explore alternative methods of specifying queries to the system that make use of co-occurrences of mentions of entities within and across related documents.  For example, a researcher may want to select a set of documents that discuss some aspect of a particular disease and have the system extract out the different ligands and proteins that are mentioned within those documents. The system could determine what the commonalities are among those entities (eg, chemically similar along some dimension) by looking them up in a library or ontology.  These could then be turned into a query to the pipeline. Alternatively, a researcher could deliberately query on ligand libraries that have not yet been mentioned in tandem with the proteins or pathway of interest in the hopes of uncovering some new insight. 

This idea has some precedence, as other researchers have shown the power of using commonalities across texts to uncover known and new relations. For example, a number of researchers have extracted protein-protein interactions383-386, one group has extracted molecular pathway information387, and one group has shown that the literature can be used to make predictions about gene-drug interactions388.  The results generated by these efforts are not comprehensive nor error free, but they do uncover previously unreported interactions that could well be of interest to researchers.   

D.16.4 Obtaining Text Collections  

Medline abstracts and citation information are freely available for research purposes from the National Library of Medicine, and we have created a relational database schema that indexes along with MeSH, the Gene Ontology, and the LocusLink collection389. However, many of the algorithms described in this proposal would perform best if access to full text articles were available.  Fortunately, an important subset of journals do make their full text available; this collection is called PubMedCentral (http://www.pubmedcentral.nih.gov).  We are optimistic that at a future date a large proportion of the relevant literature will appear in this collection, and will experiment on PubMedCentral in anticipation of that situation.      

D.16.5   Expected outcomes and Alternative Approaches
This work is expected to result in intuitive search interfaces that make use of the scientific literature in innovative and powerful ways.  It should widen the scope of scientists who make use of the pipeline by providing multiple entry points for querying the databases and providing context for understanding the results of the queries.

Alternative approaches require some kind of translation of the query terms into terms recognizable by PubMed or to other experimental information retrieval systems that are oriented towards the bioinformatics literature.
D.17 Develop Hardware and Software Environments for the Pipeline (Sali, Ferrin, Pitera, IBM, Intel)

Enormous hardware resources, supported by a sophisticated software environment, are needed for the development, testing, and especially application of our pipeline for large-scale protein structure modeling, protein-ligand docking, and protein-protein docking. Aim 17 focuses on developing such resources and is a nuts-and-bolts component of one of our core themes, that of building the automated pipeline. Our existing computing capacity includes 900 Intel Pentium CPUs housed in Genentech Hall (Section ‎D.17.1, ‎D.17.2), and another 650 CPUs in the D. Baker group at University of Washington, Seattle. Based on the funding already in hand, we can count on just over 1,800 CPUs by the time the National Centers for Biomedical Computing grants are awarded. This number is certainly sufficient for our initial development and testing efforts. Plans for expanding our hardware capabilities are described in the Program Introduction.

To provide the best possible hardware configuration and software environment, we initiated a collaboration with both IBM and Intel (see letters of collaboration from Robert Germain and Jed Pitara of IBM, and Tim Mattson of Intel). We aim to optimize performance of our software on the IBM’s BlueGene architecture as well as on distributed clusters with Intel nodes, especially nodes with the new 64 bit Itanium CPUs.

D.17.1  Intel Hardware and Software Environment (Intel, Sali)

We will collaborate with the Intel CPU architecture team headed by Allan Knies to make sure our software executes optimally on 64 and 32 bit Intel CPUs, both on single nodes and on a cluster. We will also work with the Intel compiler team to make sure the Fortran 95 compiler produces the fastest possible executable of our software. We will establish and maintain Intel software development environment on our systems. And finally, with Intel’s help, we will optimize our cluster software environment, including load balancing, queing, file propagation, and cluster/node management. Our Intel collaborators include Tim Matson (Director, Intel Worldwide Life Sciences) and Allan Knies (Principal Engineer, Intel).

We describe below a set of specific efforts on MODELLER, but similar efforts will be invested into optimizing DOCK. Other programs will also be optimized if they create a CPU time bottleneck in the pipeline.

D.17.1.1 Improving the Speed of Sequence Alignment Routines in MODELLER

Dynamic programming algorithms are used to derive the optimal alignments that relate two protein sequences or structures. There are two main variants of the algorithm that are used in computational biology: the Needleman-Wunsch390 implementation to derive globally optimal alignments and the Smith-Waterman252 implementation to get locally optimal alignments. Though these algorithms enumerate the most optimal paths to convert one sequence to another, they are usually expensive computationally. They have a time complexity of O(n2) since the search for the optimal solution is conducted in a space defined by the product of the lengths of the two sequences being aligned.

The BUILD_PROFILE module of MODELLER is used to build profiles for sequences, an important and time consuming step in large-scale comparative protein structure modeling (Section C.1.1). For a single iteration in building a profile for a single sequence, local dynamic programming has to be performed for each sequence in a large non-redundant database of sequences, such as the SP/TrEMBL database with 1.3 million entries. Typically, about 10 iterations are required to build a profile, resulting in about 107 executions of the dynamic programming routine. Since we aim to calculate the profiles for all known protein sequences, about 1013 executions of the dynamic programming routine are required. This number is reduced  in practice by clustering of the sequences, but it does highlight the need for efficient dynamic programming. There are hardware accelerators that are very fast (1000 times faster than a general purpose CPU), but they are not general purpose and one cannot easily change the algorithms. 

An optimized version of the Smith-Waterman algorithm by Gotoh391 is implemented in MODELLER. This code can be further optimized for better performance on 64-bit Itanium architectures392 as described below.

D.17.1.1.1 Cache Misses

The algorithm stores the value of the indel penalties for each cell of the score matrix in one-dimensional arrays. This storage leads to many cache misses. To avoid these cache misses we will store frequently used array elements as scalar variables that are readily accessible during the execution step.

D.17.1.1.2 Software-pipelining

Software pipelining reduces loop execution time by using Instruction Level Parallelism (ILP). The IPF (Itanium Processor Family) architecture executes loops of the form (ABC)n as A(BCA)nBC, where A,B,C are instructions within a loop that is executed n times. This can be used to pipeline the loops that populate the score matrix.

D.17.1.1.3 Predication

The IPF architecture introduces the use of 64 predicate registers that enable efficient processing of branched constructs (if-then-else statements) simultaneously. This architecture facilitates the alignment algorithms that have to evaluate three branches, substitution, insertion and deletion, for each cell in the score matrix.  We will explore code optimization to exploit this architecture.

D.17.1.1.4 Loop interchange

The interchange of nested loops to execute the more complex inner loop before the outer loop drastically reduces the total execution time.  We will look for opportunities to do so, which we expect to be legion throughout the code.

D.17.1.1.5 Code simplification

Apart from architecture level optimizations, the software can be simplified by removing redundant execution steps.

In preliminary studies, the code was compiled using Intel Fortran Compiler V.7.1 with static libraries and was tested on a variety of hardware platforms (Table 14). The baseline for the measurement was the un-optimized code that had a performance of 54 alignments/sec on an Itanium 2 architecture workstation. Thus a five-fold speedup of the algorithm was achieved only by architecture level optimizations.

D.17.1.2 Improving the Speed of Structure Calculation Routines in MODELLER by Parallelization

The availability of large numbers of protein structures, coupled with the comparatively low per-structure computational cost of comparative modeling, reduces the need for conventional supercomputing solutions; it is generally more efficient to run large numbers of individual calculations, each on a single commodity processor. However, even processors of the IA32 family, are beginning to incorporate aspects of traditional vector processing, such as the IA32 MMX and SSE extensions. These extensions allow the same instruction to be carried out simultaneously on multiple data sets, utilizing the multiple integer and floating point arithmetic units on modern CPUs. Thus, to achieve maximum performance on such a system, code must be written with SIMD (Single Instruction Multiple Data) parallelism in mind. The most obvious application of this approach to MODELLER lies in the evaluation of the objective function, which evaluates a large number of so-called ‘dynamic’ restraints between atom pairs. These can include soft-sphere, Lennard-Jones, Coulombic and spline-fitted pseudo-energy terms. These codes in molecular modeling and quantum mechanical packages, such as CHARMM, AMBER and GAMESS, are typically vectorized by partitioning the system, calculating the energy of each partition separately and only then adding in any inter-partition terms. A similar approach should also be possible for MODELLER. Such re-factoring of the code has the additional bonus that the future adoption of OpenMP or MPI paradigms becomes straightforward, should parallelization over multiple processors become necessary in conventional supercomputing, or NUMA cluster environments, respectively.

D.17.1.3  Optimization of the Intel Cluster Environment

MODELLER is currently deployed on a large (~700 CPU) Linux cluster. To efficiently use this environment for the processing of large data sets, the cluster environment needs to be stable and easy to maintain and monitor. Large amounts of fast storage are necessary to provide the protein structures and sequences required for comparative modeling. Stability is achieved by having each cluster node install an essentially identical copy of the operating system software, obtained on boot from a single central server. Whereas completely diskless solutions are deployed in some other parallel environments, this solution is avoided in the current case to reduce network load (even at 100Mbit/sec, a few hundred nodes can easily overload a server with multi-gigabit network links). Local disk storage is inexpensive, and the operating system can be customized for optimum performance across a heterogeneous environment of IA32, IA64 and AMD processors. We will evaluate monitoring and maintenance systems, such as Ganglia (http://ganglia.sourceforge.net) and PowerCockpit (http://www.cockpit.com) to help us manage this resource. Similarly, network accessible storage systems, such as that of Network Appliance (http://www.netapp.com), to take the available storage into the multi-terabyte range will also be tested.
D.17.2 IBM Hardware and Software Environment (Pitera, IBM)

We aim to optimize the performance of UCSF software on high-density IBM computer architectures.  IBM has an active research program to develop power-, space- and cost-efficient architectures for next-generation computing. There are two main architectures we will explore as solutions for the Center’s computational requirements: BlueGene/L and POWER BladeCenter. Our IBM collaborators include Jed Pitera (Research Staff Member in Science & Technology at the IBM Almaden Research Center in San Jose and Adjunct Assistant Professor in the Department of Pharmaceutical Chemistry at UCSF), Dr. Bill Swoop, Dr. Robert Germain, and Dr. Ajay K. Royyuru.

D.17.2.1 IBM BlueGene

BlueGene/L (“BG/L”) is a prototype research supercomputer being developed in a collaboration between IBM and Lawrence Livermore National Laboratory (http://www.research.ibm.com/bluegene/). The project was initiated in 1999 with the goal of developing a next-generation supercomputer architecture capable of scaling to 100,000+ processors and at the same time delivering order of magnitude improvements in price/performance, power consumption, and footprint (http://sc-2002.org/paperpdfs/pap.pap207.pdf). 

	CPU
	PIII

500MHz
	PIII

600MHz
	PIII

933MHz
	AMD

1.6GHz
	Xeon

2.4GHz
	AMD

2.1GHz
	IT2

900MHz
	IT2

1.2GHz
	OPT (32-bit code)

1.8GHz

	Alignments/sec
	15
	18
	27
	51
	67
	53
	112
	245
	67


Table 14. Benchmarking the speed of the optimized dynamic alignment routine in MODELLER.

IBM has recently demonstrated a working 512-node prototype of the BlueGene/L architecture.  This air-cooled system packs 1024 customized 32-bit PowerPC 440 processors in a volume roughly the same as a 19U rack, and delivered over 1.4 TeraFLOPS performance on the LINPACK benchmark. This performance ranks it as the 73rd fastest supercomputer in the world (http://www.top500.org/list/2003/11). The prototype is 1/128th of the eventual system that will be deployed at LLNL in 2005-6. The full LLNL system will consist of 64 1024-node (2048-processor) cabinets for a total of 131,072 processors with an estimated peak performance of 360 TeraFLOPS. The system will occupy a floor area of roughly 15 x 15 square meters and consume approximately 1.4 MW of power. The processors within the machine will be connected by three different high-performance networks (3-D torus, global tree, I/O), enabling parallel applications to scale to very large (10,000+) numbers of processors.

Within IBM, the BlueGene/L machine will be applied to atomistic molecular dynamics simulations of protein folding thermodynamics and kinetics393. Molecular dynamics of fixed size systems (10-100,000 particles), for instance a protein solvated by water molecules, are a challenging example of a tightly-coupled parallel application. The synchronous nature of molecular dynamics requires a high-performance low-latency network for parallel scalability. LLNL also has a separate suite of applications that have been targeted for the BG/L machine.  IBM has an active program (chaired by Gyan Bhanot and Robert Germain, IBM Research) to allow external researchers to evaluate the suitability of their applications for BG/L, and then port, test, and tune those codes on prototype hardware as appropriate. Whereas there are no current plans to commercialize the machine, IBM is interested in exploring other (ie, beyond high performance computing) application areas for BG/L, including data-intensive computing (where very large databases could be distributed entirely in memory) and intrinsically parallel applications (where the high processor density of the machine enables 100,000+ tasks to be performed at once in a small footprint).

The BG/L architecture differs from the current cluster hardware at UCSF (i.e, IA32 machines connected by gigabit Ethernet) in that it is a tightly coupled supercomputer with no on-node permanent storage.  Applications are expected to run in parallel (e.g, MPI) by default.  However, the high processor density and relatively low power and cooling requirements may make BG/L an ideal choice for physical plant-limited computer facilities such as the current UCSF site.  Researchers at IBM will work with the UCSF team to evaluate the suitability of different applications for BG/L and to test the performance of suitable applications on the BG/L hardware.

D.17.2.2  IBM POWER BladeCenter

A second high-density architecture that IBM and UCSF will work to explore together is the IBM POWER BladeCenter. Blade designs offer roughly twice the processor density of standard 1U dual-processor hardware and have advantages of reduced power consumption, simplified networking, and improved manageability.  IBM currently offers both Intel-based (HS20, dual processor 3.2 GHz Xeon) and POWER-based (JS20, dual processor 1.6 GHz PowerPC 970) blades for a standard 7U blade chassis.  The 64-bit PowerPC 970 is a derivative of IBM’s POWER4 processor that is currently shipping in Apple’s G5 series of personal workstations.  A large cluster of 2200 2.0 GHz PowerPC 970 processors (in 1100 dual-processor Apple G5s) is currently the third fastest supercomputer in the world (http://www.top500.org/list/2003/11). The PowerPC 970 has extensive single instruction multiple data (SIMD) capabilities for exceptional floating-point performance on appropriately structured applications, including molecular simulation codes such as GROMACS (Erik Lindahl, personal communication). Again, IBM will work with researchers at UCSF to evaluate the suitability of the POWER BladeCenter for the UCSF computational workload and assist with the tuning of applications for the 970 and its SIMD floating point unit as appropriate.

The POWER BladeCenter architecture has the advantage that it would be relatively straightforward to integrate with the current UCSF cluster. In addition, little additional development would be required to parallelize applications (using MPI or similar) since each dual-processor blade can be used as a fully independent machine.

D.18 Develop and Implement a Module for Annotation of Function Based on Ligand Binding Profiles (Babbitt, Kortemme, Shoichet, Sali)

The final overarching Aim of Core 1&2 is the application of the automated pipelines to questions that could not be properly even posed in their absence. Thus, a goal of the CCPR is to apply a large-scale computational pipeline to identify binding sites for ligands and proteins, identify likely ligands, and deduce geometries of complexes for as many proteins as possible. The targets for the pipeline are all known protein sequences and structures, known small ligands, and all known protein interactions. With these technologies in place, it should be possible to annotate the activities of proteins of unknown function based on their structures and the ligands that dock to them. 

The three specific aims described here (Aims 18 to 20) explore four important applications in functional inference: (i) using docking hit lists to annotate the function of protein sequences and structures, including their potential to bind drug candidates (ii) assessing the contribution of family/superfamily relationships to improve functional annotation, especially when combined with docking results, (iii) providing functional annotation for targets and homologs of the Protein Structure Initiative, (iv) prediction of functional consequences of mutations in proteins associated with single nucleotide polymorphisms. Sections ‎D.18.1 and ‎D.18.2 combine a ligand-centric view of protein function with a structure- and homology-centric view and explore, together, how to leverage both types of information for functional inference. In section ‎D.19, application of the pipeline to functional annotation of Initiative targets and their families provides an important avenue for the community to evaluate the generalizability of these computational methods for functional inference. Finally, section ‎D.20 applies the pipeline to the problem of annotating the functional consequences of SNPs, a central problem in genomic era clinical investigation and one that could help to showcase the translational potential of the human genome project to improve human health.

D.18.1 Docking Hit Lists for Functional Annotation

An area of much current interest is predicting the activity of a protein based on its structure, as described in several sections of this proposal.  Aim 18 investigates an approach complementary to these protein-informatics methods, annotation of a protein’s activity based on the ligands that it recognizes.  This brings us to our last theme, applying the automated pipeline to problems of functional annotation that can only be considered on a large-scale.  The idea of annotating protein function based on ligand binding has recently been explored by experimentally identifying ligands in of libraries of annotated small molecules394.  In principle, it should be possible to do this computationally on a much larger scale.  We consider two ways of doing so here.  

D.18.1.1 Docking Functionally Annotated Libraries

This is the simplest approach—the idea is to look for consensus patterns among the high scoring docking hits, all from databases of functionally annotated molecules.  In particular, we focus on the 8,000 molecules of the KEGG metabolite database and the 100,000 molecules of the MDL Drug Data Report (MDDR), which are annotated based on what they do or what they bind.  For instance, 143 of the MDDR molecules are annotated as DHFR substrates or inhibitors, 908 are annotated as aldose reductase inhibitors, 235 are annotated as thymidylate synthase inhibitors, and so forth.  If, in docking the MDDR to a new target, we found that 20 of the top 100 docking “hits” were thrombin inhibitors, we would consider the possibility that this target is a protease or at least recognizes cationic peptides.

As part of a collaboration with the Babbitt lab and their experimental collaborators, we used this approach in docking against phosphotriesterase (PTE), a zinc dependent amido-hydrolase that recognizes thiophosphate insecticides.  We screened the Available Chemicals Directory (ACD), a 250,000 compound database relatively rich in these and related molecules, and looked for high-scoring novel substrates.  Of the top 20 highest ranked molecules, eight resembled known ligands.  All eight were tested experimentally in the laboratory of Frank Raushel (Texas A&M University) and four were shown to be substrates (Table 15).  Whereas these molecules did not identify a novel activity for this enzyme—we already knew it was a phosphotriesterase—they did identify genuinely novel substrates.  This suggests that docking hits may directly lead to activity identification. 
D.18.1.2 Tanimoto Coefficients

Unfortunately, one cannot count on ligand annotation to predict function in the general case.  Often no single ligand class dominates the top ranking molecules to the extent that one can reliably infer protein activity. Moreover, small changes can lead to different annotations in the databases.  For instance, a small change in chemical structure can change annotation from “Dihydrofolate Reductase Inhibitor” to “Thymidylate Synthase Inhibitor,” even though both of the molecules are folates.  What is often conserved in the docking hit lists are the sorts of functional groups, often even the same core structures, that continuously re-appear in the high-scoring molecules. Whereas particular ligands are often missed in docking hit lists, the lists overall look sensible.  Thus, in docking against dihydrofolate reductase, one might find many hits that are annotated as thymidylate synthase inhibitors. If one puts aside their direct annotation and simply focuses on the type of functionality that these folates represent, one will find that these hits closely resemble dihydrofolate reductase ligands.

One can exploit this feature quantitatively, by comparing docking hit lists from one target to those from other targets.  This could be done using one of several chemical similarity metrics; we will focus on the widely-used Tanimoto co-efficient here380,395-397.  The Tanimoto coefficient is a quantitative index of chemical similarity that ranges between 0 and 1, where a coefficient of 1 indicates the two molecules are identical.  It is computed by comparing bit strings representations of molecules.  These bit-strings can take several forms, but typically represent the presence or absence within the molecule of one of a large number of functional groups.  If a particular functional group, such as an amide, is present in a molecule a particular bit is set to 1, if it is absent, 0.  By pre-defining many functional groups, one arrives at a molecular “fingerprint” made up of bit strings—the fingerprints used by Daylight software, for instance, are 2048 bits long.  The chances of two molecular bit strings being the same without the molecules being the same is negligible. The Tanimoto coefficient is computed as the number of bits shared between two “fingerprints” divided by the total number of bits. Thus, the Tanimoto coefficient measures the number of substructures shared by two molecules.  

We can extend this pair-wise Tanimoto to lists of molecules by comparing each possible pair of molecules in the two lists.  The more molecules the two lists have in common, the more elements of this table will have a high Tanimoto coefficient. We construct a Tanimoto histogram by binning all table elements into 100 bins between 0 and 1. Two lists with similar molecules will have features at high Tanimoto values, whereas lists having few molecules in common will have a Tanimoto histogram that is featureless towards 1.
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	Table 15.  Top docking hits against PTE.  Four molecules subsequently shown by experiment to be substrates are highlighted.


Consider a comparison of known ligands and docking hit lists for thrombin, Factor VII, and DHFR (Figure 56).  When about 150 annotated thrombin ligands from the MDDR are compared with themselves there are about 10,000 overall pairs to consider (y-axis, Figure 56).  The curve of Tanimoto coefficients for these pairs (black) is strongly peaked towards high values, suggesting high overall similarity (Figure 56).  If one then compares the thrombin ligands to the top-ranking 500 hits from docking the MDDR against the thrombin structure, the curve that results shows less overall similarity, but nevertheless is skewed towards high Tanimoto coefficients, suggesting that the top-scoring hits resemble, and in some cases are identical to, members of the known thrombin ligands in the MDDR.  Taking this one step further, one can compare the docking hit list of Factor VIIa, which also recognizes cationic peptides and inhibitors, to the thrombin ligands.  The Tanimoto curve here shows less similarity again, but still has a substantial number of pairs that show high similarity.  The significance of this similarity emerges when one compares the thrombin ligands to the docking hit list of a dissimilar enzyme, DHFR.  Here, the Tanimoto curve (purple) is dominated by pairs with lower coefficients, with no pairs of molecules sharing coefficients higher than 0.54.  
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Figure 56. Histogram of the pairwise Tanimoto coefficients between thrombin ligands and the top 500 docking hits against thrombin, DHFR and Factor VIIa.

Whereas these preliminary studies are encouraging, it must be admitted that we do not know how reliable comparing docking hit lists will be in a large scale, automated environment.  To show that this is a useful method, we will first conduct more control calculations, by an expert, to see if the Tanimoto histograms can reliably distinguish proteins with related activities from proteins with unrelated activities.  We anticipate undertaking these comparisons for 26 related and unrelated proteins, most of which we are already familiar with as docking targets (Table 11).  Subsequently, we will undertake the same calculations with the automated tools.  In these calculations, we hope to explore some of the algorithmic issues in comparing hit lists.  These include controlling for the effects of comparing larger or smaller hit lists, and how molecules that ranked well in many docking screens, often for artifactual reasons, affect signal to noise in these comparisons.  We will also explore using Tanimoto comparisons, with their focus on ligand chemistry, in conjunction with bioinformatic methods that focus more on protein structure, sequence identity, and linkages.  

In summary, we will propose activities for proteins of unknown function based on their docking hit lists.  These hit lists will be quantitatively compared to those of proteins of annotated function, drawing on the database of docking hit-lists (Section D.11.3).  Hit lists with histograms biased to large Tanimoto coefficients suggest that similar ligands are recognized, and correspondingly that the proteins have similar activities.  Similarities to a group of related enzymes will further strengthen such an annotation.  A unique feature of this approach is that it brings to the problem of annotating the proteome a ligand-based view, which should complement the protein-based bio-informatics that is now widely used.  In the next section, we investigate combining this ligand based view with enzyme-based mechanistic constraints, which will greatly strengthen both types of analyses. 
D.18.2 Family-Based Functional Annotation (Babbitt, Sali)

The aim of this section is to use the family/superfamily context to improve functional annotation of pipeline targets through comparison of results from different tools and methods.

D.18.2.1 Family Ligand Binding Profile Analysis (Babbitt, Sali, Shoichet)

Ligand list comparisons of Tanimoto coefficients expand on an existing technology to build a model-free engine for functional annotation, which is appealing. This comparison does not, however, take advantage of bioinformatic or structural information of the protein target. The Babbitt and Sali labs, therefore, are developing a "functional distance metric" that compares ligand lists for different targets across different proteins of the same family/superfamily such that bioinformatic and structural knowledge can be applied. This should significantly improve the reliability of docking hit lists for functional annotation. We will begin by applying superfamily and functional constraints in systems we know well–the enolase and amidohydrolase superfamilies (see collaboration letter from John Gerlt)–using an existing framework for such information, the SFLD. The hypothesis is that high-scoring ligands across several related proteins might be expected to share moieties that can be correlated with common functional capabilities of the related proteins. 

We hope to generate quantifiable definitions of function that can be compared across proteins as an aid to assessment of ligand complexes and in functional annotation. Development of such a quantitative metric would allow functional information to be correlated with sequence and structure information, enabling new types of computation. A useful analogy for what is envisioned is the clustering of expression profiles generated from genomics studies. Here, ligand binding profiles will be clustered using similar methods. Because families and superfamilies of proteins are expected to exhibit fundamental similarities in some aspect of their functional capabilities, comparison of ligand binding profiles across members of such superfamilies may be useful for assessing the accuracy of docking approaches. Therefore, during initial development, this metric will be applied to members of the superfamilies in the SFLD. We will examine binding energies, rate constants, and docking scores to determine the value and contribution of each toward creating ligand binding profiles for proteins in the available enzyme superfamilies. For known substrates, binding energies and rate constants will be obtained from the BRENDA398 and LIGAND399 databases and stored in the SFLD. The SFLD schema will be extended to store docking results. The goal is to develop a metric that can quantitatively describe specificity and that can be used to compare proteins expected to have similar and dissimilar elements in their ligand binding profiles. One application of this approach would be to evaluate docking results for a group of related proteins with the expectation that all ligands that score well in docking might be expected to share moieties that can be correlated with common activities of the related proteins. Additionally, the orientation of ligands in such active sites should be similar with respect to the common moities in all substrates of superfamily members, however different other moities of these ligands may be. Sharing of other moieties or substructures in the docking results will also be examined to determine how well these cluster with specific families within a superfamily. Once validated, the metric will be investigated for application on a large scale via the pipeline. 

An example is provided by comparison of the ligand binding positions of several members of the enolase superfamily. Figure 57 shows a superposition of substrates, products or substrate analogs for different members of the enolase superfamily generated by superimposing the liganded crystal structures, then displaying only the ligands (in color) surrounded by the sidechains of conserved residues associated with the fundamental partial reaction common to all members of the superfamily. Note that all of these proteins abstract a proton alpha to a carboxylate group despite great differences in their overall reactions, substrates and products (See Figure 10 in Section C.3.3). We can expect the best-scoring ligands determined from docking studies with enolase superfamily members to contain the superfamily specific moiety necessarily oriented in the active site such that proton abstraction can occur. These constraints provide a useful platform for assessment of docking results.

[image: image70.png]



Figure 57. Protein residues associated with the fundamental proton abstraction step common to all enolase superfamily members are shown in grey with the C for each designated by a ball. Substrates/products, or inhibitors for each enzyme are shown in color: S-atrolactate (mandelate racemase, gold), glucarate (glucarate dehydratase, green), methylaspartate (-methylaspartate ammonia lyase, red), o-succinylbenzoate (o-succinylbenzoate synthase, pink), phosphoglycerate (enolase, cyan), and the product: phophoenolpyruvate (enolase, blue). Other sidechains shown are involved with the proton abstraction step    common to all members of the superfamily. The carbon  to the carboxylate, from which the proton is abstracted in each substrate is designated by a colored ball.
These bioinformatic and mechanistic metrics complement the ligand-directed metrics developed based on Tanimoto coefficients.  To Evaluate this approach, we will compare the ligand superpositions to the ligand lists from the Tanimoto analyses for well-characterized superfamilies (Shoichet, D.18.1.2) and vice versa.  At the simplest level, the mechanistic information and knowledge of protein structure may be used as constraints or filters on the ligands present in the Tanimoto comparisons.  For instance, only ligands that have the appropriate functionality for a particular reaction would be compared–all others would be removed from the ligand lists. This should improve the signal-to-noise in the ligand versus ligand list comparisons.  At a more nuanced level, one could imagine adding to the bit-string fingerprints that the Tanimoto coefficients compare the functionality recognized in the microscopic kinetic step defined in the SFLD.  For instance, for the enolase superfamily, one would add to the fingerprints a bit for "hydrogen alpha to a carboxylate."  Taking this a step further, one could set a bit that was conditional on the correct placement of such a functionality in the binding site.  These bits would probably be weighted more strongly than the other 2048 bits that are set in these fingerprints–in the limit they could be treated as necessary conditions.  In this way we could begin to build in bioinformatic and mechanistic information into the ligand-oriented annotations of protein function.
D.18.2.2 Functional Annotation of Proteins of Unknown Function (Babbitt) 

Functional annotation can be achieved in part for any sequence or structure that can be matched to a superfamily that has been characterized and stored in the SFLD (Sections C.3.3.1, C.11.2). Because these superfamily descriptions capture common functional capabilities of even highly divergent proteins, they provide useful information for developing hypotheses about a new protein’s function, especially when combined with docking hits lists. The pipeline will provide integrated views of these multiple types of information through the data sharing infrastructure (DASH) described in Section C.13.2, enabling comparison of functional inferences from these different approaches. Active site template matching (Section D.3.5) can also be used as an aid in assigning modeled proteins to superfamilies of known functional capabilities, thereby allowing inference of some of their functional characteristics. Only functional characteristics common to the superfamily/subgroup, or families to which the unknown sequence/structure can be matched can be annotated in this manner, however. Prediction of substrate specificity will often be a much harder problem. As an initial step in developing approaches for enhanced prediction of substrate specificities of proteins in chemistry constrained superfamilies, we propose to extend the schema of the SFLD to include and annotate where possible docking results for superfamily members. This will allow us to examine whether and to what extent we can use the commonalities across results from different modules in the pipeline for related proteins to predict functions for new sequences and structures. (See Sections D.18.1.2 and D.18.2.1.) Successful application of these approaches will provide preliminary direction for scale-up and automation. 

D.19 Annotate the Functions of all Protein Structure Initiative Targets and Their Homologs (Babbitt, Jacobson, Shoichet, Sali)

As the structural genomics projects move beyond the initial implementation phase, functional assignment for Initiative targets and their homologs is an increasingly more important and frequent problem. For example, for the Midwest Center for Structural Genomics, it was estimated that approximately one-third of the solved structures are hypothetical proteins for which no functional information is available in sequence databases 400. Similar estimates apply to the New York Structural Genomics Research Consortium (A. Sali, data not shown) and likely also to other pilot centers in structural genomics. Moreover, because the core Initiative currently does not include functional characterization, there is no large-scale infrastructure to address the critical need for functional annotation of functionally uncharacterized protein structures. To explore and exploit the CCPR to provide such a service, the Babbitt, Jacobson, Shoichet, and Sali groups will collaborate to apply the methods described in section D.18 for inference of functional characteristics for protein structure initiative targets and their families (Aim 19). This is a focused implementation of our final core theme, applying the automated pipeline technologies to the problem of functional annotation. Structures of the initiative targets and their homologs will be submitted to the modeling, binding site identification, docking, and rescoring modules of the pipeline. Consensus patterns will be identified among the high-scoring hits (Section D.18.2), focusing especially on metabolites, to provide clues about function. High scoring hits that emerge from these filters will be provided on the CCPR web pages devoted to the results for Initiative targets. We will also work with Helen Berman of the PDB to make these pages widely accessible from the master Protein Structure Initiative web site401 (see Letter of Collaboration from Helen Berman). The ligand docking hits will also be examined further using superfamily derived functional constraints, including comparisons of Tanimoto coefficients (Section D.18.1.2) and superfamily/family based ligand binding profiles (Section D.18.2.1). For structures with no close sequences in the databases, active site template matching and other tools available in the SFLD will also be applied (Section D.18.2.2). 

These efforts will be facilitated by the membership of Andrej Sali in the New York Structural Genomics Research Consortium, (NYSGXRC)402, one of the nine pilot centers in the Protein Structure Initiative. We will work with Stephen Burley (the leader of the consortium), Chris Lima and Steven Almo (crystallographer members of the consortium interested in enzymes) to make sure that our tools meet the needs of the structural genomics centers (see Letters of Collaboration).  We will also work with our collaborators in a Program Project proposal recently submitted to identify structural determinants of specificity in the enolase (500+ sequences) and amidohydrolase superfamilies (2500+ sequences). This collaboration will provide new structures for clades in each superfamily with no currently available structures (beyond the 30% sequence identity cut-off rule for structural genomics targets). These will be generated by Steve Almo as a member of NYSGXRC. The functional inferences we make through the pipeline for these targets and their families will be experimentally tested by John Gerlt, Univ. of IL (enolase superfamily proteins) and Frank Raushel, Texas A & M University (amidohydrolase superfamily proteins). (See letter of collaboration from the PI of this Program Project proposal, John Gerlt). We expect this type of synergy with experimental and structural biologists to provide additional functional information for proteins targeted by the pipeline. Moreover, these scientists will act as alpha and beta testers to aid in the development and optimization of the pipeline infrastructure, described in Core 4.

Even with success of structural genomics, most protein sequences will still be characterized structurally by comparative protein structure modeling rather than by x-ray crystallography or NMR spectroscopy. Currently, the number of protein sequences characterized by comparative modeling is almost two orders of magnitude larger than that of the experimentally determined structures (Table 16)185. Therefore, to maximize our inference of functional characteristics of Initiative targets, we will also apply our docking and family/superfamily-based analyses to the modeled structures of target family members, in addition to the experimentally determined structures. MODBASE currently provides the basis for target selection and structure-based annotation by New York Structural Genomics Research Consortium. Relying on the 53 NYSGXRC structures, MODPIPE produced models for domains in 24,113 sequences in SwissProt/TrEMBL); the average target-template sequence identity was 18.9%. Only 10% of the sequences are modeled based on >30% sequence identity over more than 75 residues. However, 81% of the sequences have models that are predicted to have the correct fold based on the model score or the PSI-BLAST E-value. The modeled sequences come from many different organisms. Because the structures determined by NYSGXRC were selected by avoiding more than 30% sequence identity to any of the previously determined structures, most of the modeled sequences have been characterized structurally for the first time, providing a greatly extended set of homologous structures for functional analysis via our pipeline. The large number of models calculated based on the newly determined Initiative structures illustrates and justifies the premise of structural genomics. Importantly for the Center, the annotation of both the targets and their homologs will enhance the likelihood of success of the family/superfamily based comparative approaches for functional prediction (Section D.3).

To provide easy access to our results pertinent to the Protein Structure Initiative, a separate section of the CCPR web site will be devoted to these results. They will be tabulated for presentation and summarized to include results from the methods described in Section D.18. Links between the CCPR and the master structural genomics site at PDB will allow users to navigate between all the pilot center sites to obtain functional information available for any target. This approach will also allow us to continue providing the annotation service even if the contributing centers are re-organized for the second phase of the Initiative beginning in 2005. The service component of this effort is described further in Core 4. 

Using the structures generated by the Initiative will help to evaluate and assess the pipeline. As feedback about the accuracy of the pipeline becomes available through publications from the many investigators working on functional characterization of Initiative targets, we will gain important information about the applicability and accuracy of our approaches on a large scale. 
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Table 16. Summary of the automated modeling by MODPIPE for 7 of the 53 structures determined by NYSGXRC. The complete table is accessible at http://salilab.org/modbase/models_nysgxrc.html. The “PDB Code”, “Database Accession Number”, and “Annotation” columns define the template structure. “Total Sequences” is the number of sequences that could be modeled reliably using the NYSGXRC structure as a template. A sequence is modeled reliably if it has a reliable PSI-BLAST E-value of ≤ 10-4 (“Fold”), a reliable model with model score ≥ 0.7 (“Model”), or both (“Fold & Model”).
D.20 Develop, Implement, and Apply a Module for Predicting Functional Consequences of Point Mutations (Sali)

The protein-protein and ligand-docking pipelines will generate data that can be used for annotating mutations in proteins, which is the focus of the last aim of this Core (Aim 20).  This aim represents a third, and clinically-relevant, instance of our core theme of annotating protein function, here based on changes in structure. Specifically, we will identify the sequence- and structure-based features of protein variants resulting from non-synonymous single nucleotide polymorphisms (nsSNPs) that are most informative in predicting functional effects and determine how to best combine these features in a predictive algorithm. We will validate our method and apply it to all known nsSNPs extracted from the UCSC Genome Browser, as well as make these results available to the biologists via our MODBASE database crosslinked with the Genome Browser.

The Sali lab has developed a method (SNPWeb, Section C.18.2) for predicting whether a nsSNP will destroy protein function, by classification according to a set of hierarchical rules implemented in a decision tree.  The method is simple and intuitive.  Any predicted loss-of-function is directly associated with a series of decisions based on attributes of the nsSNP.  For example, loss-of-function will be predicted if the residue is buried and the change in side-chain produces a large volume change at a rigid position in the protein structure. The rules and thresholds were selected in an ad hoc manner.

We will work to improve this method by substantially extending the current set of attributes (or “features”) and quantitatively identifying the attributes that contribute to the most accurate predictions.  We will identify the best way to combine attributes and incorporate them into a predictive algorithm. This will be done through iterated rounds of algorithm design, feature selection, and training and testing on examples of naturally occurring and engineered point mutations that have been functionally characterized.
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Figure 58. Development of an algorithm to predict the effects of nsSNPs on protein function involves iterative rounds of design, feature selection, and training and testing on naturally occurring and engineered point mutations that have been functionally characterized. 
D.20.1 Feature Selection

It has been shown that the conservation and site-mutability of an amino acid residue, which can be computed from multiple sequence alignments, are strong predictors of functional effects403,404.  However, to understand the mechanisms underlying these effects and how they contribute to disease phenotypes requires mapping nsSNPs onto protein structures.  Of particular interest is whether a nsSNP lies at or near a ligand binding site or at an oligomeric interface.  Such efforts are limited by the number of proteins for which experimental structures are available. A recent attempt to predict the functional consequences of all protein-coding SNPs in the human genome reported that less than 10% of the nsSNPs had structural information405. 


Mapping nsSNPs onto high-accuracy, validated comparative protein structure models can provide information about relevant structural features in the absence of high-resolution structures determined by experiment.  This option has not been rigorously explored in published studies and we propose to do so.  

Figure 59 shows a comparative model, built with MODPIPE4,185, of an ATP-binding domain in P-glycoprotein.  Five nsSNPs appear in ball-and-stick format.  We used this model to get a rough estimate of which nsSNPs are closest to the ATP-binding site or “P-loop”.  The closest position, shown in Figure 59, contains both proline and alanine variants and lies at a distance of approximately 8.2 Å from the P-loop.

[image: image75]
Figure 59.  A comparative model, built with MODPIPE, of an ATP-binding domain in P-glycoprotein. Five nsSNPs appear in ball-and-stick format.  Shown is a rough estimate of the distance between the ATP-binding site or “P-loop” and the closest of the nsSNPs.

The MODBASE database of comparative models currently contains models for some 50% of the 1.2 million proteins in SWISS-PROT/TREMBL185.  Two-thirds of these models are based on less than 30% sequence identity to the closest structural template in PDB and are not accurate enough for many applications of comparative modeling.  However, a number of structural features useful in mutational analysis (eg, residue burial, location of binding pockets, and interaction interfaces) can be extracted from these models100,374,403. We are interested in learning the relationship between comparative model quality and the predictive value of extracted structural features and in finding out what is an acceptable threshold of model quality in this setting.

A recent review reports that attempts to automatically extract structural information about nsSNP positions from experimental structures in the Protein Data Bank frequently miss information about interaction interfaces and ligand-binding pockets that are not explicitly represented in PDB structure files, even though this information is available elsewhere in the PDB. The x-ray crystal structure of a protein of interest (or close homolog) may have been deposited several times, with and without oligomeric partners or ligands406.  We have a set of tools that allows us to access this information132,185 and also to predict the location of binding sites and protein interfaces not found in the PDB (Sections C.3.1 and C.3.2).

D.20.2 Predictor Development and Testing

The predictor will be trained with experimental mutagenesis data. Although there is considerable targeted mutagenesis data available, it is biased towards a particular context—residue positions that were interesting to experimentalists a priori.  In the interest of developing predictors that are suited to a wide variety of contexts, we will train on laboratory data from comprehensive amber suppressor and saturation random mutagenesis assays403,404. These provide measurements of functional effects when amino acid residue replacements are applied to every residue position. The lac repressor407,408, barnase409, T4 lysozyme410, and HIV protease411 datasets have been commonly used. These proteins yield on the order of 4000 mutated positions. If these data are insufficient to yield good predictor generalization, we will augment it with mutant sets for BCR-ABL kinase412, C-terminal domain of M13 Gene-3 minor coat protein (P3)413, and p53 tumor suppressor protein414.  

The predictor will be tested with the experimental mutation data set, using a cross-validation protocol, and also on a set that includes targeted mutagenesis data and known disease mutations, mined from online databases, such as Protein Mutation Database (PMD)415, SWISS-PROT416, Online Mendelian Inheritance in Man (OMIM)417, and Human Gene Mutation Database (HGMD)418.

Preliminary results suggest that the accuracy of SNPWeb can be substantially improved by using pattern-recognition algorithms developed according to rigorous mathematical principles. In the field of secondary structure prediction, moving from the rule-based predictions prevalent in the 1970’s419 to pattern-recognition methods (such as neural networks and support vector machines) has increased prediction accuracy from 50% to over 75%420.

Pattern-recognition algorithms learn to discriminate between examples from two or more classes, such as nsSNPs that are deleterious or tolerated. Each example consists of a list of numerically-encoded descriptive attributes and a class label. Learning consists of a training phase in which the algorithm learns a mapping function between the attributes and the labels. To avoid over-fitting the mapping function to a particular set of examples, training is done on a randomly-selected subset of available examples. The remaining examples are used to test the accuracy of the learned mapping. Support vector machines are a class of algorithms that compute generalized inner products between all pairs of attribute lists in a training set, producing a kernel matrix421,422. The class labels and kernel matrix are used to optimize the mapping function.

Table 17 shows preliminary results comparing the accuracy of current SNPWeb rule-based prediction and a radial-basis-kernel support vector machine421 on some 3500 functionally characterized point mutations in lac repressor, T4 lysozyme, and HIV-protease. Each mutation was predicted to be either tolerated or deleterious and results were compared with published experimental assays407,408,410,411. Both the rule-based and support vector machine predictions relied on nineteen sequence- and structure-based attributes.  A well-established method (SIFT404) that relies on sequence conservation and mutation likelihood and does not use any structural information was also included in the comparison. 
Supervised-learning methods, such as support vector machines, are most often evaluated with a cross-validation protocol.  Here, support vector machine performance was measured by randomly partitioning the 3500 point mutations into two sets, training on one and testing on the other.  The process was repeated 500 times, varying the size of the training set from 10% to 90% of the data.  Shown is the best result when the support vector machine was trained on 50% of the data and tested on the remaining 50%.  The support vector machine substantially improves over SNPWeb and published results of SIFT.
	
	Total prediction error

	
	E. coli lac repressor
	Bacteriophage
T4 lysozyme
	HIV 
protease

	SNPWeb
	35.0%
	24.3%
	43.1%

	SIFT
	32.0%
	19.0%
	37.0%

	SVM
	15.4%
	8.9%
	10.2%


Table 17. Comparison of prediction errors on the experimental mutation data set for support vector machine (SVM) and decision tree using 19 sequence- and structure-based features, as well as published results of SIFT404.
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Figure 60. An automated pipeline for genome-wide prediction of nsSNP functional effects.

D.20.3 Tools for Interpreting Predictions by Support Vector Machines

Although pattern-recognition methods, such as support vector machines and neural networks, have been shown to be highly accurate on a variety of biological problems423-437, they are often criticized for lack of transparency.  Many biologists want to understand the reasons underlying computational predictions and are unsatisfied with “black box” mapping functions. 

Recent work in the machine learning field has made it possible to better understand the predictions of support vector machines.  We will apply these methods to our support vector machine predictions of nsSNP functional effects by ranking the importance of each attribute to the learned mapping function. The ranking can be done geometrically by computing, for each attribute, the angle between a bit-vector encoding the attribute and the gradient of the mapping-function surface learned by the support vector machine269. The relative importance of attributes from heterogeneous sources can be evaluated by computing a kernel matrix for each class of attributes, and using semi-definite programming to learn how much each class contributes to the final mapping function438.

D.20.4 Large-scale Annotation of nsSNPs for Biologists

We will maximize the utility of the method to biologists by fully automating our prediction method, providing genome-wide functional predictions for nsSNPs in multiple genomes, making these available via a web server and MODBASE, and keeping MODBASE up-to-date with respect to the sources of nsSNPs and our software. MODBASE will include nsSNP mappings to available experimental structures and comparative models and will be bi-directionally cross-linked with the Genome Browser at University of California, Santa Cruz439 (see Letter of Collaboration).

To apply our method to genome-wide prediction of nsSNP effects, we will design a software system for automatic feature extraction and functional predictions. The input to this system will be a list of nsSNPs mapped onto all protein sequences for a genome of interest in SwissProt/TREMBL. We will begin with the human genome, then apply the system to nsSNPs found in chimp and mouse. This comprehensive approach will allow us to make cross-genome comparisons of nsSNP effects and provide new features for understanding the functional effects of nsSNPs in humans. Our collaborators in the Genome Bioinformatics Group at University of California, Santa Cruz, will produce the lists, by aligning all proteins in the organism of interest from SwissProt/TrEMBL and TrEMBL-NEW to the UCSC Genome Browser “Known Genes” list and mapping the nsSNPs in dbSNP440 onto the aligned positions.  They will also provide updates on a regular basis to keep our data synchronized with dbSNP. 

An automated pipeline will generate multiple sequence alignments, find experimental structures in the PDB, build comparative models when necessary, map the nsSNPs onto structures and models, extract the predictive features, and predict the functional effects. Because we are interested in looking at amino acid residue conservation and site-mutability at both the protein superfamily and subfamily levels, multiple sequence alignments will be built with two well-established methods: SAM-T2K for superfamily alignments and BETE/SATCHMO for subfamily alignments441,442.

Each nsSNP will have its own web page containing predicted functional effects, a list of the features used to make the functional prediction, annotations about the protein’s function, and available structural information.  

If an experimental structure or comparative model is available, the page will link to a file of atomic coordinates in the PDB format, and graphically display the nsSNP mapped onto protein structure, highlighting binding and active sites and residues at protein-protein interfaces. The structural presentation will be implemented within MODBASE (Section ‎D.11.1)185. Structure display will be handled by CHIMERA molecular modeling software from the UCSF Computer Graphics Laboratory (Section ‎D.12.1)443. 

The functional predictions and structure displays will also be linked to the UCSC Genome Browser using a bi-directional link-structure mechanism that has already been established between MODBASE and the Browser’s Gene Details pages.

The automated prediction pipeline will be rerun on a regular basis to keep current with updates in its external data sources and our software.
D.21 Timetable

The timetable is shown in Table 18. For the individual software modules, work in progress indicates that no working version of the module is yet available; preliminary indicates at least a rudimentary alpha version of the software module; mature indicates tested and essentially operational software that runs on our system and can be distributed to expert users; and complete indicates an optimized, robust, validated, documented, and supported version that routinely runs on our system, can be used by others with ease, and is widely distributed. Complete does not indicate perfect accuracy.

For the pipeline software, we will implement the first prototype of the automated protein-ligand and protein-protein docking pipeline by the end of year 1. At least a rudimentary version of each module in the pipeline and all of the interfaces between the modules will exist (except for the module for re-scoring protein-protein complexes), so that the entire process of model building and docking can be performed automatically at least in some cases. In later years, we will continue improving the robustness and accuracy of the pipeline, through work on all of its modules and interfaces. 
E HUMAN SUBJECTS

None.

F VERTEBRATE ANIMALS

None.
	Aim
	Year 1
	Year 2
	Year 3
	Year 4
	Year 5

	1. Implement and improve a module for comparative protein structure modeling.
	
	
	
	
	

	2. Implement and improve a module for refining comparative models.
	
	
	
	
	

	3. Develop and implement a module for identifying ligand binding sites on protein models.
	
	
	
	
	

	4. Develop and implement a module for building of virtual ligand libraries.
	
	
	
	
	

	5. Implement and improve a module for docking ligands against protein structure models.
	
	
	
	
	

	6. Develop and implement a module for rescoring protein-ligand complexes.
	
	
	
	
	

	7. Develop and implement a module for collecting known protein-protein interactions from the reference resources on the web.
	
	
	
	
	

	8. Develop and implement a module for identifying protein binding sites on protein models.
	
	
	
	
	

	9. Implement and improve a module for building binary and higher order protein complexes.
	
	
	
	
	

	10. Develop and implement a module for modeling specificity of protein interactions.
	
	
	
	
	

	11. Develop a central database for all the data and results.
	
	
	
	
	

	12. Develop a web-based graphical user interface for flexible access to the central database.
	
	
	
	
	

	13. Create a software backplane for integrating the modules into the pipeline.
	
	
	
	
	

	14. Improve global optimization algorithms for protein structure prediction and docking.
	
	
	
	
	

	15. Develop and apply a module for testing the pipeline.
	
	
	
	
	

	16. Develop information navigation and search strategies for maximizing the utility of the central database.
	
	
	
	
	

	17. Develop hardware and software environments for the pipeline.
	
	
	
	
	

	18. Develop and implement a module for annotation of function based on ligand binding profiles.
	
	
	
	
	

	19. Annotate the functions of all Protein Structure Initiative targets and their homologs.
	
	
	
	
	

	20. Develop, implement, and apply a module for predicting functional consequences of point mutations.
	
	
	
	
	


Table 18. Timetable for Aims 1-20. The timetable for progress and completion of each Aim is indicated as follows: __ work in progress; __ preliminary; __ mature; __ complete. See text for details.
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Figure � SEQ Figure \* ARABIC �13�.  Ligand enrichment by holo (blue), apo (magenta), and modeled (orange) structures of SAHH.  Gray line represents random selection.   
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Figure � SEQ Figure \* ARABIC �14�.  Ligand enrichment by holo (blue), apo (magenta), and modeled (orange) structures of PNP. 





Figure � SEQ Figure \* ARABIC �17�. Chimera 3D molecular viewer with a top scoring docking hit (ball and stick) in the binding site of DHFR.





Figure � SEQ Figure \* ARABIC �18�. The Viewdock results browser of Chimera.





Figure � SEQ Figure \* ARABIC �2323�.  Close matching of computationally expensive DFT calculations and the simple database-derived orientation-dependent hydrogen bonding potential. Shown is the dependence of the dimerization energy of a formamide dimer on the angle  at the acceptor atom of a hydrogen bond (H…A-AB, H: hydrogen, A: acceptor, AB: acceptor base) computed using DFT calculations (solid green line) or a combination of a Lennard-Jones Potential and a Coulomb electrostatics terms (red dotted line), compared with the orientation-dependent hydrogen bonding potential for sidechain-sidechain hydrogen bonds derived from high resolution protein crystal structures (cyan solid line with filled circles).





Figure � SEQ Figure \* ARABIC �3131�. Enrichment plots for 9 enzymes systems comparing the performance of an expert (dark blue), our automated procedures (magenta), and random enrichment (black). The wide range of targets represented here indicates that our protocol performs well on a diverse range of binding sites.
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Figure � SEQ Figure \* ARABIC �3737�. A flowchart depicting the steps involved in automated comparative modeling, as implemented in MODPIPE. The various modules are streamlined for large-scale operation on a cluster using scripts written in PERL.





Figure � SEQ Figure \* ARABIC �4040�. The DOCK Blaster graphical user interface start page.
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Figure � SEQ Figure \* ARABIC �4141�. Run time scaling with receptor conformations. ACD screens vs L99A (diamond) & thymidylate synthase (triangle) with receptor ensembles (open symbols) or sequentially against each receptor conformation (closed symbols).  





Figure � SEQ Figure \* ARABIC �4242�.  Docking against a flexible cavity site.  Three (of 7) structures representing the range of divergence between the apo (yellow carbons), predicted (green carbons), and x-ray structures (gray carbons).  Circled residues were predicted to change conformation.  A. 2-n-propyl aniline, B. 3-fluoro-2-methyl aniline, and C. 4-fluorophenethyl alcohol.  Stereo view.
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Figure � SEQ Figure \* ARABIC �4646�. Flowchart illustrating paths through the protein-protein docking pipeline for automated modeling of protein interaction specificity.





��


Figure � SEQ Figure \* ARABIC �5252�.  The ViewDock interface (above, right) lists the docked molecules, and clicking on a line displays that molecule in the Chimera graphics window and shows information such as scores in the lower panel of the ViewDock window. The target structure in this example is H-Ras (PDB entry 121p), which is often mutated in malignant tumors in humans. The docked molecule is ribose monophosphate. Oxygens are red, nitrogens are blue, and phosphate is cyan. Hydrogens are not shown. Potential hydrogen bonds are shown as dashed yellow lines between donor and acceptor.
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Figure � SEQ Figure \* ARABIC �58�. Development of an algorithm to predict the effects of nsSNPs on protein function involves iterative rounds of design, feature selection, and training and testing on naturally occurring and engineered point mutations that have been functionally characterized. 








Figure � SEQ Figure \* ARABIC �5959�.  A comparative model, built with MODPIPE, of an ATP-binding domain in P-glycoprotein. Five nsSNPs appear in ball-and-stick format.  Shown is a rough estimate of the distance between the ATP-binding site or “P-loop” and the closest of the nsSNPs.





Figure � SEQ Figure \* ARABIC �60�. An automated pipeline for genome-wide prediction of nsSNP functional effects.





Figure � SEQ Figure \* ARABIC �23�.23.  Close matching of computationally expensive DFT calculations and the simple database-derived orientation-dependent hydrogen bonding potential. Shown is the dependence of the dimerization energy of a formamide dimer on the angle  at the acceptor atom of a hydrogen bond (H…A-AB, H: hydrogen, A: acceptor, AB: acceptor base) computed using DFT calculations (solid green line) or a combination of a Lennard-Jones Potential and a Coulomb electrostatics terms (red dotted line), compared with the orientation-dependent hydrogen bonding potential for sidechain-sidechain hydrogen bonds derived from high resolution protein crystal structures (cyan solid line with filled circles).
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		20.29		20.29		20.29		20.29

		20.39		20.39		20.39		20.39

		20.49		20.49		20.49		20.49

		20.59		20.59		20.59		20.59

		20.69		20.69		20.69		20.69

		20.79		20.79		20.79		20.79

		20.89		20.89		20.89		20.89

		20.99		20.99		20.99		20.99

		21.09		21.09		21.09		21.09

		21.19		21.19		21.19		21.19

		21.29		21.29		21.29		21.29

		21.39		21.39		21.39		21.39

		21.49		21.49		21.49		21.49

		21.59		21.59		21.59		21.59

		21.7		21.7		21.7		21.7

		21.8		21.8		21.8		21.8

		21.9		21.9		21.9		21.9

		22		22		22		22

		22.1		22.1		22.1		22.1

		22.2		22.2		22.2		22.2

		22.3		22.3		22.3		22.3

		22.4		22.4		22.4		22.4

		22.5		22.5		22.5		22.5

		22.6		22.6		22.6		22.6

		22.7		22.7		22.7		22.7

		22.8		22.8		22.8		22.8

		22.9		22.9		22.9		22.9

		23		23		23		23

		23.1		23.1		23.1		23.1

		23.2		23.2		23.2		23.2

		23.3		23.3		23.3		23.3

		23.4		23.4		23.4		23.4

		23.5		23.5		23.5		23.5

		23.6		23.6		23.6		23.6

		23.7		23.7		23.7		23.7

		23.8		23.8		23.8		23.8

		23.9		23.9		23.9		23.9

		24.01		24.01		24.01		24.01

		24.11		24.11		24.11		24.11

		24.21		24.21		24.21		24.21

		24.31		24.31		24.31		24.31

		24.41		24.41		24.41		24.41

		24.51		24.51		24.51		24.51

		24.61		24.61		24.61		24.61

		24.71		24.71		24.71		24.71

		24.81		24.81		24.81		24.81

		24.91		24.91		24.91		24.91

		25.01		25.01		25.01		25.01

		25.11		25.11		25.11		25.11

		25.21		25.21		25.21		25.21

		25.31		25.31		25.31		25.31

		25.41		25.41		25.41		25.41

		25.51		25.51		25.51		25.51

		25.61		25.61		25.61		25.61

		25.71		25.71		25.71		25.71

		25.81		25.81		25.81		25.81

		25.91		25.91		25.91		25.91

		26.01		26.01		26.01		26.01

		26.11		26.11		26.11		26.11

		26.21		26.21		26.21		26.21

		26.32		26.32		26.32		26.32

		26.42		26.42		26.42		26.42

		26.52		26.52		26.52		26.52

		26.62		26.62		26.62		26.62

		26.72		26.72		26.72		26.72

		26.82		26.82		26.82		26.82

		26.92		26.92		26.92		26.92

		27.02		27.02		27.02		27.02

		27.12		27.12		27.12		27.12

		27.22		27.22		27.22		27.22

		27.32		27.32		27.32		27.32

		27.42		27.42		27.42		27.42

		27.52		27.52		27.52		27.52

		27.62		27.62		27.62		27.62

		27.72		27.72		27.72		27.72

		27.82		27.82		27.82		27.82

		27.92		27.92		27.92		27.92

		28.02		28.02		28.02		28.02

		28.12		28.12		28.12		28.12

		28.22		28.22		28.22		28.22

		28.32		28.32		28.32		28.32

		28.42		28.42		28.42		28.42

		28.53		28.53		28.53		28.53

		28.63		28.63		28.63		28.63

		28.73		28.73		28.73		28.73

		28.83		28.83		28.83		28.83

		28.93		28.93		28.93		28.93

		29.03		29.03		29.03		29.03

		29.13		29.13		29.13		29.13

		29.23		29.23		29.23		29.23

		29.33		29.33		29.33		29.33

		29.43		29.43		29.43		29.43

		29.53		29.53		29.53		29.53

		29.63		29.63		29.63		29.63

		29.73		29.73		29.73		29.73

		29.83		29.83		29.83		29.83

		29.93		29.93		29.93		29.93

		30.03		30.03		30.03		30.03

		30.13		30.13		30.13		30.13

		30.23		30.23		30.23		30.23

		30.33		30.33		30.33		30.33

		30.43		30.43		30.43		30.43

		30.53		30.53		30.53		30.53

		30.63		30.63		30.63		30.63

		30.73		30.73		30.73		30.73

		30.84		30.84		30.84		30.84

		30.94		30.94		30.94		30.94

		31.04		31.04		31.04		31.04

		31.14		31.14		31.14		31.14

		31.24		31.24		31.24		31.24

		31.34		31.34		31.34		31.34

		31.44		31.44		31.44		31.44

		31.54		31.54		31.54		31.54

		31.64		31.64		31.64		31.64

		31.74		31.74		31.74		31.74

		31.84		31.84		31.84		31.84

		31.94		31.94		31.94		31.94

		32.04		32.04		32.04		32.04

		32.14		32.14		32.14		32.14

		32.24		32.24		32.24		32.24

		32.34		32.34		32.34		32.34

		32.44		32.44		32.44		32.44

		32.54		32.54		32.54		32.54

		32.64		32.64		32.64		32.64

		32.74		32.74		32.74		32.74

		32.84		32.84		32.84		32.84

		32.94		32.94		32.94		32.94

		33.04		33.04		33.04		33.04

		33.15		33.15		33.15		33.15

		33.25		33.25		33.25		33.25

		33.35		33.35		33.35		33.35

		33.45		33.45		33.45		33.45

		33.55		33.55		33.55		33.55

		33.65		33.65		33.65		33.65

		33.75		33.75		33.75		33.75

		33.85		33.85		33.85		33.85

		33.95		33.95		33.95		33.95

		34.05		34.05		34.05		34.05

		34.15		34.15		34.15		34.15

		34.25		34.25		34.25		34.25

		34.35		34.35		34.35		34.35

		34.45		34.45		34.45		34.45

		34.55		34.55		34.55		34.55

		34.65		34.65		34.65		34.65

		34.75		34.75		34.75		34.75

		34.85		34.85		34.85		34.85

		34.95		34.95		34.95		34.95

		35.05		35.05		35.05		35.05

		35.15		35.15		35.15		35.15

		35.25		35.25		35.25		35.25

		35.36		35.36		35.36		35.36

		35.46		35.46		35.46		35.46

		35.56		35.56		35.56		35.56

		35.66		35.66		35.66		35.66

		35.76		35.76		35.76		35.76

		35.86		35.86		35.86		35.86

		35.96		35.96		35.96		35.96

		36.06		36.06		36.06		36.06

		36.16		36.16		36.16		36.16

		36.26		36.26		36.26		36.26

		36.36		36.36		36.36		36.36

		36.46		36.46		36.46		36.46

		36.56		36.56		36.56		36.56

		36.66		36.66		36.66		36.66

		36.76		36.76		36.76		36.76

		36.86		36.86		36.86		36.86

		36.96		36.96		36.96		36.96

		37.06		37.06		37.06		37.06

		37.16		37.16		37.16		37.16

		37.26		37.26		37.26		37.26

		37.36		37.36		37.36		37.36

		37.46		37.46		37.46		37.46

		37.56		37.56		37.56		37.56

		37.67		37.67		37.67		37.67

		37.77		37.77		37.77		37.77

		37.87		37.87		37.87		37.87

		37.97		37.97		37.97		37.97

		38.07		38.07		38.07		38.07

		38.17		38.17		38.17		38.17

		38.27		38.27		38.27		38.27

		38.37		38.37		38.37		38.37

		38.47		38.47		38.47		38.47

		38.57		38.57		38.57		38.57

		38.67		38.67		38.67		38.67

		38.77		38.77		38.77		38.77

		38.87		38.87		38.87		38.87

		38.97		38.97		38.97		38.97

		39.07		39.07		39.07		39.07

		39.17		39.17		39.17		39.17

		39.27		39.27		39.27		39.27

		39.37		39.37		39.37		39.37

		39.47		39.47		39.47		39.47

		39.57		39.57		39.57		39.57

		39.67		39.67		39.67		39.67

		39.77		39.77		39.77		39.77

		39.87		39.87		39.87		39.87

		39.98		39.98		39.98		39.98

		40.08		40.08		40.08		40.08

		40.18		40.18		40.18		40.18

		40.28		40.28		40.28		40.28

		40.38		40.38		40.38		40.38

		40.48		40.48		40.48		40.48

		40.58		40.58		40.58		40.58

		40.68		40.68		40.68		40.68

		40.78		40.78		40.78		40.78

		40.88		40.88		40.88		40.88

		40.98		40.98		40.98		40.98

		41.08		41.08		41.08		41.08

		41.18		41.18		41.18		41.18

		41.28		41.28		41.28		41.28

		41.38		41.38		41.38		41.38

		41.48		41.48		41.48		41.48

		41.58		41.58		41.58		41.58

		41.68		41.68		41.68		41.68

		41.78		41.78		41.78		41.78

		41.88		41.88		41.88		41.88

		41.98		41.98		41.98		41.98

		42.08		42.08		42.08		42.08

		42.18		42.18		42.18		42.18

		42.29		42.29		42.29		42.29

		42.39		42.39		42.39		42.39

		42.49		42.49		42.49		42.49

		42.59		42.59		42.59		42.59

		42.69		42.69		42.69		42.69

		42.79		42.79		42.79		42.79

		42.89		42.89		42.89		42.89

		42.99		42.99		42.99		42.99

		43.09		43.09		43.09		43.09

		43.19		43.19		43.19		43.19

		43.29		43.29		43.29		43.29

		43.39		43.39		43.39		43.39

		43.49		43.49		43.49		43.49

		43.59		43.59		43.59		43.59

		43.69		43.69		43.69		43.69

		43.79		43.79		43.79		43.79

		43.89		43.89		43.89		43.89

		43.99		43.99		43.99		43.99

		44.09		44.09		44.09		44.09

		44.19		44.19		44.19		44.19

		44.29		44.29		44.29		44.29

		44.39		44.39		44.39		44.39

		44.5		44.5		44.5		44.5

		44.6		44.6		44.6		44.6

		44.7		44.7		44.7		44.7

		44.8		44.8		44.8		44.8

		44.9		44.9		44.9		44.9

		45		45		45		45

		45.1		45.1		45.1		45.1

		45.2		45.2		45.2		45.2

		45.3		45.3		45.3		45.3

		45.4		45.4		45.4		45.4

		45.5		45.5		45.5		45.5

		45.6		45.6		45.6		45.6

		45.7		45.7		45.7		45.7

		45.8		45.8		45.8		45.8

		45.9		45.9		45.9		45.9

		46		46		46		46

		46.1		46.1		46.1		46.1

		46.2		46.2		46.2		46.2

		46.3		46.3		46.3		46.3

		46.4		46.4		46.4		46.4

		46.5		46.5		46.5		46.5

		46.6		46.6		46.6		46.6

		46.7		46.7		46.7		46.7

		46.81		46.81		46.81		46.81

		46.91		46.91		46.91		46.91

		47.01		47.01		47.01		47.01

		47.11		47.11		47.11		47.11

		47.21		47.21		47.21		47.21

		47.31		47.31		47.31		47.31

		47.41		47.41		47.41		47.41

		47.51		47.51		47.51		47.51

		47.61		47.61		47.61		47.61

		47.71		47.71		47.71		47.71

		47.81		47.81		47.81		47.81

		47.91		47.91		47.91		47.91

		48.01		48.01		48.01		48.01

		48.11		48.11		48.11		48.11

		48.21		48.21		48.21		48.21

		48.31		48.31		48.31		48.31

		48.41		48.41		48.41		48.41

		48.51		48.51		48.51		48.51

		48.61		48.61		48.61		48.61

		48.71		48.71		48.71		48.71

		48.81		48.81		48.81		48.81

		48.91		48.91		48.91		48.91

		49.01		49.01		49.01		49.01

		49.12		49.12		49.12		49.12

		49.22		49.22		49.22		49.22

		49.32		49.32		49.32		49.32

		49.42		49.42		49.42		49.42

		49.52		49.52		49.52		49.52

		49.62		49.62		49.62		49.62

		49.72		49.72		49.72		49.72

		49.82		49.82		49.82		49.82

		49.92		49.92		49.92		49.92

		50.02		50.02		50.02		50.02

		50.12		50.12		50.12		50.12

		50.22		50.22		50.22		50.22

		50.32		50.32		50.32		50.32

		50.42		50.42		50.42		50.42

		50.52		50.52		50.52		50.52

		50.62		50.62		50.62		50.62

		50.72		50.72		50.72		50.72

		50.82		50.82		50.82		50.82

		50.92		50.92		50.92		50.92

		51.02		51.02		51.02		51.02

		51.12		51.12		51.12		51.12

		51.22		51.22		51.22		51.22

		51.33		51.33		51.33		51.33

		51.43		51.43		51.43		51.43

		51.53		51.53		51.53		51.53

		51.63		51.63		51.63		51.63

		51.73		51.73		51.73		51.73

		51.83		51.83		51.83		51.83

		51.93		51.93		51.93		51.93

		52.03		52.03		52.03		52.03

		52.13		52.13		52.13		52.13

		52.23		52.23		52.23		52.23

		52.33		52.33		52.33		52.33

		52.43		52.43		52.43		52.43

		52.53		52.53		52.53		52.53

		52.63		52.63		52.63		52.63

		52.73		52.73		52.73		52.73

		52.83		52.83		52.83		52.83

		52.93		52.93		52.93		52.93

		53.03		53.03		53.03		53.03

		53.13		53.13		53.13		53.13

		53.23		53.23		53.23		53.23

		53.33		53.33		53.33		53.33

		53.43		53.43		53.43		53.43

		53.53		53.53		53.53		53.53

		53.64		53.64		53.64		53.64

		53.74		53.74		53.74		53.74

		53.84		53.84		53.84		53.84

		53.94		53.94		53.94		53.94

		54.04		54.04		54.04		54.04

		54.14		54.14		54.14		54.14

		54.24		54.24		54.24		54.24

		54.34		54.34		54.34		54.34

		54.44		54.44		54.44		54.44

		54.54		54.54		54.54		54.54

		54.64		54.64		54.64		54.64

		54.74		54.74		54.74		54.74

		54.84		54.84		54.84		54.84

		54.94		54.94		54.94		54.94

		55.04		55.04		55.04		55.04

		55.14		55.14		55.14		55.14

		55.24		55.24		55.24		55.24

		55.34		55.34		55.34		55.34

		55.44		55.44		55.44		55.44

		55.54		55.54		55.54		55.54

		55.64		55.64		55.64		55.64

		55.74		55.74		55.74		55.74

		55.84		55.84		55.84		55.84

		55.95		55.95		55.95		55.95

		56.05		56.05		56.05		56.05

		56.15		56.15		56.15		56.15

		56.25		56.25		56.25		56.25

		56.35		56.35		56.35		56.35

		56.45		56.45		56.45		56.45

		56.55		56.55		56.55		56.55

		56.65		56.65		56.65		56.65

		56.75		56.75		56.75		56.75

		56.85		56.85		56.85		56.85

		56.95		56.95		56.95		56.95

		57.05		57.05		57.05		57.05

		57.15		57.15		57.15		57.15

		57.25		57.25		57.25		57.25

		57.35		57.35		57.35		57.35

		57.45		57.45		57.45		57.45

		57.55		57.55		57.55		57.55

		57.65		57.65		57.65		57.65

		57.75		57.75		57.75		57.75

		57.85		57.85		57.85		57.85

		57.95		57.95		57.95		57.95

		58.05		58.05		58.05		58.05

		58.16		58.16		58.16		58.16

		58.26		58.26		58.26		58.26

		58.36		58.36		58.36		58.36

		58.46		58.46		58.46		58.46

		58.56		58.56		58.56		58.56

		58.66		58.66		58.66		58.66

		58.76		58.76		58.76		58.76

		58.86		58.86		58.86		58.86

		58.96		58.96		58.96		58.96

		59.06		59.06		59.06		59.06

		59.16		59.16		59.16		59.16

		59.26		59.26		59.26		59.26

		59.36		59.36		59.36		59.36

		59.46		59.46		59.46		59.46

		59.56		59.56		59.56		59.56

		59.66		59.66		59.66		59.66

		59.76		59.76		59.76		59.76

		59.86		59.86		59.86		59.86

		59.96		59.96		59.96		59.96

		60.06		60.06		60.06		60.06

		60.16		60.16		60.16		60.16

		60.26		60.26		60.26		60.26

		60.36		60.36		60.36		60.36

		60.47		60.47		60.47		60.47

		60.57		60.57		60.57		60.57

		60.67		60.67		60.67		60.67

		60.77		60.77		60.77		60.77

		60.87		60.87		60.87		60.87

		60.97		60.97		60.97		60.97

		61.07		61.07		61.07		61.07

		61.17		61.17		61.17		61.17

		61.27		61.27		61.27		61.27

		61.37		61.37		61.37		61.37

		61.47		61.47		61.47		61.47

		61.57		61.57		61.57		61.57

		61.67		61.67		61.67		61.67

		61.77		61.77		61.77		61.77

		61.87		61.87		61.87		61.87

		61.97		61.97		61.97		61.97

		62.07		62.07		62.07		62.07

		62.17		62.17		62.17		62.17

		62.27		62.27		62.27		62.27

		62.37		62.37		62.37		62.37

		62.47		62.47		62.47		62.47

		62.57		62.57		62.57		62.57

		62.67		62.67		62.67		62.67

		62.78		62.78		62.78		62.78

		62.88		62.88		62.88		62.88

		62.98		62.98		62.98		62.98

		63.08		63.08		63.08		63.08

		63.18		63.18		63.18		63.18

		63.28		63.28		63.28		63.28

		63.38		63.38		63.38		63.38

		63.48		63.48		63.48		63.48

		63.58		63.58		63.58		63.58

		63.68		63.68		63.68		63.68

		63.78		63.78		63.78		63.78

		63.88		63.88		63.88		63.88

		63.98		63.98		63.98		63.98

		64.08		64.08		64.08		64.08

		64.18		64.18		64.18		64.18

		64.28		64.28		64.28		64.28

		64.38		64.38		64.38		64.38

		64.48		64.48		64.48		64.48

		64.58		64.58		64.58		64.58

		64.68		64.68		64.68		64.68

		64.78		64.78		64.78		64.78

		64.88		64.88		64.88		64.88

		64.98		64.98		64.98		64.98

		65.09		65.09		65.09		65.09

		65.19		65.19		65.19		65.19

		65.29		65.29		65.29		65.29

		65.39		65.39		65.39		65.39

		65.49		65.49		65.49		65.49

		65.59		65.59		65.59		65.59

		65.69		65.69		65.69		65.69

		65.79		65.79		65.79		65.79

		65.89		65.89		65.89		65.89

		65.99		65.99		65.99		65.99

		66.09		66.09		66.09		66.09

		66.19		66.19		66.19		66.19

		66.29		66.29		66.29		66.29

		66.39		66.39		66.39		66.39

		66.49		66.49		66.49		66.49

		66.59		66.59		66.59		66.59

		66.69		66.69		66.69		66.69

		66.79		66.79		66.79		66.79

		66.89		66.89		66.89		66.89

		66.99		66.99		66.99		66.99

		67.09		67.09		67.09		67.09

		67.19		67.19		67.19		67.19

		67.3		67.3		67.3		67.3

		67.4		67.4		67.4		67.4

		67.5		67.5		67.5		67.5

		67.6		67.6		67.6		67.6

		67.7		67.7		67.7		67.7

		67.8		67.8		67.8		67.8

		67.9		67.9		67.9		67.9

		68		68		68		68

		68.1		68.1		68.1		68.1

		68.2		68.2		68.2		68.2

		68.3		68.3		68.3		68.3

		68.4		68.4		68.4		68.4

		68.5		68.5		68.5		68.5

		68.6		68.6		68.6		68.6

		68.7		68.7		68.7		68.7

		68.8		68.8		68.8		68.8

		68.9		68.9		68.9		68.9

		69		69		69		69

		69.1		69.1		69.1		69.1

		69.2		69.2		69.2		69.2

		69.3		69.3		69.3		69.3

		69.4		69.4		69.4		69.4

		69.5		69.5		69.5		69.5

		69.61		69.61		69.61		69.61

		69.71		69.71		69.71		69.71

		69.81		69.81		69.81		69.81

		69.91		69.91		69.91		69.91

		70.01		70.01		70.01		70.01

		70.11		70.11		70.11		70.11

		70.21		70.21		70.21		70.21

		70.31		70.31		70.31		70.31

		70.41		70.41		70.41		70.41

		70.51		70.51		70.51		70.51

		70.61		70.61		70.61		70.61

		70.71		70.71		70.71		70.71

		70.81		70.81		70.81		70.81

		70.91		70.91		70.91		70.91

		71.01		71.01		71.01		71.01

		71.11		71.11		71.11		71.11

		71.21		71.21		71.21		71.21

		71.31		71.31		71.31		71.31

		71.41		71.41		71.41		71.41

		71.51		71.51		71.51		71.51

		71.61		71.61		71.61		71.61

		71.71		71.71		71.71		71.71

		71.81		71.81		71.81		71.81

		71.92		71.92		71.92		71.92

		72.02		72.02		72.02		72.02

		72.12		72.12		72.12		72.12

		72.22		72.22		72.22		72.22

		72.32		72.32		72.32		72.32

		72.42		72.42		72.42		72.42

		72.52		72.52		72.52		72.52

		72.62		72.62		72.62		72.62

		72.72		72.72		72.72		72.72

		72.82		72.82		72.82		72.82

		72.92		72.92		72.92		72.92

		73.02		73.02		73.02		73.02

		73.12		73.12		73.12		73.12

		73.22		73.22		73.22		73.22

		73.32		73.32		73.32		73.32

		73.42		73.42		73.42		73.42

		73.52		73.52		73.52		73.52

		73.62		73.62		73.62		73.62

		73.72		73.72		73.72		73.72

		73.82		73.82		73.82		73.82

		73.92		73.92		73.92		73.92

		74.02		74.02		74.02		74.02

		74.13		74.13		74.13		74.13

		74.23		74.23		74.23		74.23

		74.33		74.33		74.33		74.33

		74.43		74.43		74.43		74.43

		74.53		74.53		74.53		74.53

		74.63		74.63		74.63		74.63

		74.73		74.73		74.73		74.73

		74.83		74.83		74.83		74.83

		74.93		74.93		74.93		74.93

		75.03		75.03		75.03		75.03

		75.13		75.13		75.13		75.13

		75.23		75.23		75.23		75.23

		75.33		75.33		75.33		75.33

		75.43		75.43		75.43		75.43

		75.53		75.53		75.53		75.53

		75.63		75.63		75.63		75.63

		75.73		75.73		75.73		75.73

		75.83		75.83		75.83		75.83

		75.93		75.93		75.93		75.93

		76.03		76.03		76.03		76.03

		76.13		76.13		76.13		76.13

		76.23		76.23		76.23		76.23

		76.33		76.33		76.33		76.33

		76.44		76.44		76.44		76.44

		76.54		76.54		76.54		76.54

		76.64		76.64		76.64		76.64

		76.74		76.74		76.74		76.74

		76.84		76.84		76.84		76.84

		76.94		76.94		76.94		76.94

		77.04		77.04		77.04		77.04

		77.14		77.14		77.14		77.14

		77.24		77.24		77.24		77.24

		77.34		77.34		77.34		77.34

		77.44		77.44		77.44		77.44

		77.54		77.54		77.54		77.54

		77.64		77.64		77.64		77.64

		77.74		77.74		77.74		77.74

		77.84		77.84		77.84		77.84

		77.94		77.94		77.94		77.94

		78.04		78.04		78.04		78.04

		78.14		78.14		78.14		78.14

		78.24		78.24		78.24		78.24

		78.34		78.34		78.34		78.34

		78.44		78.44		78.44		78.44

		78.54		78.54		78.54		78.54

		78.64		78.64		78.64		78.64

		78.75		78.75		78.75		78.75

		78.85		78.85		78.85		78.85

		78.95		78.95		78.95		78.95

		79.05		79.05		79.05		79.05

		79.15		79.15		79.15		79.15

		79.25		79.25		79.25		79.25

		79.35		79.35		79.35		79.35

		79.45		79.45		79.45		79.45

		79.55		79.55		79.55		79.55

		79.65		79.65		79.65		79.65

		79.75		79.75		79.75		79.75

		79.85		79.85		79.85		79.85

		79.95		79.95		79.95		79.95

		80.05		80.05		80.05		80.05

		80.15		80.15		80.15		80.15

		80.25		80.25		80.25		80.25

		80.35		80.35		80.35		80.35

		80.45		80.45		80.45		80.45

		80.55		80.55		80.55		80.55

		80.65		80.65		80.65		80.65

		80.75		80.75		80.75		80.75

		80.85		80.85		80.85		80.85

		80.96		80.96		80.96		80.96

		81.06		81.06		81.06		81.06

		81.16		81.16		81.16		81.16

		81.26		81.26		81.26		81.26

		81.36		81.36		81.36		81.36

		81.46		81.46		81.46		81.46

		81.56		81.56		81.56		81.56

		81.66		81.66		81.66		81.66

		81.76		81.76		81.76		81.76

		81.86		81.86		81.86		81.86

		81.96		81.96		81.96		81.96

		82.06		82.06		82.06		82.06

		82.16		82.16		82.16		82.16

		82.26		82.26		82.26		82.26

		82.36		82.36		82.36		82.36

		82.46		82.46		82.46		82.46

		82.56		82.56		82.56		82.56

		82.66		82.66		82.66		82.66

		82.76		82.76		82.76		82.76

		82.86		82.86		82.86		82.86

		82.96		82.96		82.96		82.96

		83.06		83.06		83.06		83.06

		83.16		83.16		83.16		83.16

		83.27		83.27		83.27		83.27

		83.37		83.37		83.37		83.37

		83.47		83.47		83.47		83.47

		83.57		83.57		83.57		83.57

		83.67		83.67		83.67		83.67

		83.77		83.77		83.77		83.77

		83.87		83.87		83.87		83.87

		83.97		83.97		83.97		83.97

		84.07		84.07		84.07		84.07

		84.17		84.17		84.17		84.17

		84.27		84.27		84.27		84.27

		84.37		84.37		84.37		84.37

		84.47		84.47		84.47		84.47

		84.57		84.57		84.57		84.57

		84.67		84.67		84.67		84.67

		84.77		84.77		84.77		84.77

		84.87		84.87		84.87		84.87

		84.97		84.97		84.97		84.97

		85.07		85.07		85.07		85.07

		85.17		85.17		85.17		85.17

		85.27		85.27		85.27		85.27

		85.37		85.37		85.37		85.37

		85.47		85.47		85.47		85.47

		85.58		85.58		85.58		85.58

		85.68		85.68		85.68		85.68

		85.78		85.78		85.78		85.78

		85.88		85.88		85.88		85.88

		85.98		85.98		85.98		85.98

		86.08		86.08		86.08		86.08

		86.18		86.18		86.18		86.18

		86.28		86.28		86.28		86.28

		86.38		86.38		86.38		86.38

		86.48		86.48		86.48		86.48

		86.58		86.58		86.58		86.58

		86.68		86.68		86.68		86.68

		86.78		86.78		86.78		86.78

		86.88		86.88		86.88		86.88

		86.98		86.98		86.98		86.98

		87.08		87.08		87.08		87.08

		87.18		87.18		87.18		87.18

		87.28		87.28		87.28		87.28

		87.38		87.38		87.38		87.38

		87.48		87.48		87.48		87.48

		87.58		87.58		87.58		87.58

		87.68		87.68		87.68		87.68

		87.78		87.78		87.78		87.78

		87.89		87.89		87.89		87.89

		87.99		87.99		87.99		87.99

		88.09		88.09		88.09		88.09

		88.19		88.19		88.19		88.19

		88.29		88.29		88.29		88.29

		88.39		88.39		88.39		88.39

		88.49		88.49		88.49		88.49

		88.59		88.59		88.59		88.59

		88.69		88.69		88.69		88.69

		88.79		88.79		88.79		88.79

		88.89		88.89		88.89		88.89

		88.99		88.99		88.99		88.99

		89.09		89.09		89.09		89.09

		89.19		89.19		89.19		89.19

		89.29		89.29		89.29		89.29

		89.39		89.39		89.39		89.39

		89.49		89.49		89.49		89.49

		89.59		89.59		89.59		89.59

		89.69		89.69		89.69		89.69

		89.79		89.79		89.79		89.79

		89.89		89.89		89.89		89.89

		89.99		89.99		89.99		89.99

		90.1		90.1		90.1		90.1

		90.2		90.2		90.2		90.2

		90.3		90.3		90.3		90.3

		90.4		90.4		90.4		90.4

		90.5		90.5		90.5		90.5

		90.6		90.6		90.6		90.6

		90.7		90.7		90.7		90.7

		90.8		90.8		90.8		90.8

		90.9		90.9		90.9		90.9

		91		91		91		91

		91.1		91.1		91.1		91.1

		91.2		91.2		91.2		91.2

		91.3		91.3		91.3		91.3

		91.4		91.4		91.4		91.4

		91.5		91.5		91.5		91.5

		91.6		91.6		91.6		91.6

		91.7		91.7		91.7		91.7

		91.8		91.8		91.8		91.8

		91.9		91.9		91.9		91.9

		92		92		92		92

		92.1		92.1		92.1		92.1

		92.2		92.2		92.2		92.2

		92.3		92.3		92.3		92.3

		92.41		92.41		92.41		92.41

		92.51		92.51		92.51		92.51

		92.61		92.61		92.61		92.61

		92.71		92.71		92.71		92.71

		92.81		92.81		92.81		92.81

		92.91		92.91		92.91		92.91

		93.01		93.01		93.01		93.01

		93.11		93.11		93.11		93.11

		93.21		93.21		93.21		93.21

		93.31		93.31		93.31		93.31

		93.41		93.41		93.41		93.41

		93.51		93.51		93.51		93.51

		93.61		93.61		93.61		93.61

		93.71		93.71		93.71		93.71

		93.81		93.81		93.81		93.81

		93.91		93.91		93.91		93.91

		94.01		94.01		94.01		94.01

		94.11		94.11		94.11		94.11

		94.21		94.21		94.21		94.21

		94.31		94.31		94.31		94.31

		94.41		94.41		94.41		94.41

		94.51		94.51		94.51		94.51

		94.61		94.61		94.61		94.61

		94.72		94.72		94.72		94.72

		94.82		94.82		94.82		94.82

		94.92		94.92		94.92		94.92

		95.02		95.02		95.02		95.02

		95.12		95.12		95.12		95.12

		95.22		95.22		95.22		95.22

		95.32		95.32		95.32		95.32

		95.42		95.42		95.42		95.42

		95.52		95.52		95.52		95.52

		95.62		95.62		95.62		95.62

		95.72		95.72		95.72		95.72

		95.82		95.82		95.82		95.82

		95.92		95.92		95.92		95.92

		96.02		96.02		96.02		96.02

		96.12		96.12		96.12		96.12

		96.22		96.22		96.22		96.22

		96.32		96.32		96.32		96.32

		96.42		96.42		96.42		96.42

		96.52		96.52		96.52		96.52

		96.62		96.62		96.62		96.62

		96.72		96.72		96.72		96.72

		96.82		96.82		96.82		96.82

		96.93		96.93		96.93		96.93

		97.03		97.03		97.03		97.03

		97.13		97.13		97.13		97.13

		97.23		97.23		97.23		97.23

		97.33		97.33		97.33		97.33

		97.43		97.43		97.43		97.43

		97.53		97.53		97.53		97.53

		97.63		97.63		97.63		97.63

		97.73		97.73		97.73		97.73

		97.83		97.83		97.83		97.83

		97.93		97.93		97.93		97.93

		98.03		98.03		98.03		98.03

		98.13		98.13		98.13		98.13

		98.23		98.23		98.23		98.23

		98.33		98.33		98.33		98.33

		98.43		98.43		98.43		98.43

		98.53		98.53		98.53		98.53

		98.63		98.63		98.63		98.63

		98.73		98.73		98.73		98.73

		98.83		98.83		98.83		98.83

		98.93		98.93		98.93		98.93

		99.03		99.03		99.03		99.03

		99.13		99.13		99.13		99.13

		99.24		99.24		99.24		99.24

		99.34		99.34		99.34		99.34

		99.44		99.44		99.44		99.44

		99.54		99.54		99.54		99.54

		99.64		99.64		99.64		99.64

		99.74		99.74		99.74		99.74

		99.84		99.84		99.84		99.84

		99.94		99.94		99.94		99.94
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		12409 unique molecules scored

		51 ligands

		% of db		holo		apo		model		random				% of db		holo		apo		model

		0		0		0		0		0				0		0		0		0

		0.1		1.96		0		0		0.1				0.1		19.52		0		0

		0.2		5.88		0		0		0.2				0.2		29.28		0		0

		0.3		7.84		0		0		0.3				0.3		26.03		0		0

		0.4		9.8		0		0		0.4				0.4		24.4		0		0

		0.5		13.73		0		0		0.5				0.5		27.33		0		0

		0.6		15.69		1.96		0		0.6				0.6		26.03		3.25		0

		0.7		17.65		1.96		0		0.7				0.7		25.1		2.79		0

		0.8		19.61		1.96		0		0.8				0.8		24.4		2.44		0

		0.9		21.57		1.96		0		0.9				0.9		23.86		2.17		0

		1		21.57		1.96		0		1				1		21.47		1.95		0

		1.1		27.45		3.92		0		1.1				1.1		24.85		3.55		0

		1.21		27.45		3.92		0		1.21				1.21		22.78		3.25		0

		1.31		29.41		3.92		0		1.31				1.31		22.53		3		0

		1.41		31.37		5.88		0		1.41				1.41		22.31		4.18		0

		1.51		33.33		5.88		0		1.51				1.51		22.12		3.9		0

		1.61		37.25		7.84		0		1.61				1.61		23.18		4.88		0

		1.71		39.22		7.84		0		1.71				1.71		22.97		4.59		0

		1.81		39.22		7.84		0		1.81				1.81		21.69		4.34		0

		1.91		39.22		9.8		0		1.91				1.91		20.55		5.14		0

		2.01		39.22		9.8		0		2.01				2.01		19.52		4.88		0

		2.11		41.18		9.8		0		2.11				2.11		19.52		4.65		0

		2.21		41.18		9.8		0		2.21				2.21		18.63		4.44		0

		2.31		41.18		9.8		0		2.31				2.31		17.82		4.24		0

		2.41		41.18		9.8		0		2.41				2.41		17.08		4.07		0

		2.51		45.1		9.8		0		2.51				2.51		17.96		3.9		0

		2.61		47.06		9.8		1.96		2.61				2.61		18.02		3.75		0.75

		2.71		47.06		11.76		3.92		2.71				2.71		17.35		4.34		1.45

		2.81		50.98		11.76		3.92		2.81				2.81		18.13		4.18		1.39

		2.91		50.98		11.76		3.92		2.91				2.91		17.5		4.04		1.35

		3.01		50.98		11.76		5.88		3.01				3.01		16.92		3.9		1.95

		3.11		50.98		11.76		7.84		3.11				3.11		16.37		3.78		2.52

		3.21		50.98		11.76		7.84		3.21				3.21		15.86		3.66		2.44

		3.31		50.98		11.76		7.84		3.31				3.31		15.38		3.55		2.37

		3.41		50.98		11.76		7.84		3.41				3.41		14.93		3.45		2.3

		3.52		50.98		11.76		7.84		3.52				3.52		14.5		3.35		2.23

		3.62		50.98		11.76		9.8		3.62				3.62		14.1		3.25		2.71

		3.72		50.98		11.76		9.8		3.72				3.72		13.72		3.17		2.64

		3.82		52.94		13.73		9.8		3.82				3.82		13.87		3.6		2.57

		3.92		52.94		13.73		11.76		3.92				3.92		13.52		3.5		3

		4.02		54.9		13.73		11.76		4.02				4.02		13.67		3.42		2.93

		4.12		56.86		13.73		11.76		4.12				4.12		13.81		3.33		2.86

		4.22		56.86		13.73		11.76		4.22				4.22		13.48		3.25		2.79

		4.32		56.86		13.73		13.73		4.32				4.32		13.17		3.18		3.18

		4.42		58.82		13.73		13.73		4.42				4.42		13.31		3.11		3.11

		4.52		58.82		13.73		13.73		4.52				4.52		13.01		3.04		3.04

		4.62		58.82		13.73		13.73		4.62				4.62		12.73		2.97		2.97

		4.72		58.82		13.73		13.73		4.72				4.72		12.46		2.91		2.91

		4.82		58.82		13.73		15.69		4.82				4.82		12.2		2.85		3.25

		4.92		58.82		13.73		15.69		4.92				4.92		11.95		2.79		3.19

		5.02		60.78		15.69		15.69		5.02				5.02		12.1		3.12		3.12

		5.12		64.71		15.69		15.69		5.12				5.12		12.63		3.06		3.06

		5.22		66.67		15.69		15.69		5.22				5.22		12.76		3		3

		5.32		68.63		15.69		15.69		5.32				5.32		12.89		2.95		2.95

		5.42		72.55		15.69		15.69		5.42				5.42		13.38		2.89		2.89

		5.52		72.55		15.69		15.69		5.52				5.52		13.13		2.84		2.84

		5.62		72.55		15.69		15.69		5.62				5.62		12.9		2.79		2.79

		5.73		72.55		15.69		15.69		5.73				5.73		12.67		2.74		2.74

		5.83		72.55		17.65		15.69		5.83				5.83		12.45		3.03		2.69

		5.93		72.55		17.65		15.69		5.93				5.93		12.24		2.98		2.65

		6.03		72.55		17.65		15.69		6.03				6.03		12.04		2.93		2.6

		6.13		72.55		17.65		17.65		6.13				6.13		11.84		2.88		2.88

		6.23		72.55		19.61		17.65		6.23				6.23		11.65		3.15		2.83

		6.33		72.55		19.61		19.61		6.33				6.33		11.47		3.1		3.1

		6.43		72.55		19.61		19.61		6.43				6.43		11.29		3.05		3.05

		6.53		72.55		19.61		19.61		6.53				6.53		11.11		3		3

		6.63		72.55		19.61		19.61		6.63				6.63		10.94		2.96		2.96

		6.73		74.51		19.61		19.61		6.73				6.73		11.07		2.91		2.91

		6.83		74.51		19.61		19.61		6.83				6.83		10.91		2.87		2.87

		6.93		74.51		19.61		19.61		6.93				6.93		10.75		2.83		2.83

		7.03		74.51		19.61		19.61		7.03				7.03		10.6		2.79		2.79

		7.13		76.47		19.61		19.61		7.13				7.13		10.72		2.75		2.75

		7.23		76.47		19.61		19.61		7.23				7.23		10.57		2.71		2.71

		7.33		76.47		19.61		19.61		7.33				7.33		10.43		2.67		2.67

		7.43		78.43		19.61		19.61		7.43				7.43		10.55		2.64		2.64

		7.53		78.43		19.61		19.61		7.53				7.53		10.41		2.6		2.6

		7.63		78.43		19.61		19.61		7.63				7.63		10.27		2.57		2.57

		7.73		78.43		19.61		19.61		7.73				7.73		10.14		2.54		2.54

		7.83		78.43		19.61		19.61		7.83				7.83		10.01		2.5		2.5

		7.93		78.43		19.61		19.61		7.93				7.93		9.88		2.47		2.47

		8.04		78.43		19.61		19.61		8.04				8.04		9.76		2.44		2.44

		8.14		78.43		19.61		19.61		8.14				8.14		9.64		2.41		2.41

		8.24		78.43		19.61		19.61		8.24				8.24		9.52		2.38		2.38

		8.34		78.43		19.61		19.61		8.34				8.34		9.41		2.35		2.35

		8.44		78.43		19.61		19.61		8.44				8.44		9.3		2.32		2.32

		8.54		78.43		19.61		19.61		8.54				8.54		9.19		2.3		2.3

		8.64		78.43		19.61		19.61		8.64				8.64		9.08		2.27		2.27

		8.74		78.43		19.61		19.61		8.74				8.74		8.98		2.24		2.24

		8.84		78.43		19.61		19.61		8.84				8.84		8.87		2.22		2.22

		8.94		78.43		19.61		19.61		8.94				8.94		8.77		2.19		2.19

		9.04		78.43		23.53		19.61		9.04				9.04		8.68		2.6		2.17

		9.14		78.43		23.53		19.61		9.14				9.14		8.58		2.57		2.15

		9.24		78.43		23.53		19.61		9.24				9.24		8.49		2.55		2.12

		9.34		78.43		23.53		19.61		9.34				9.34		8.4		2.52		2.1

		9.44		78.43		23.53		19.61		9.44				9.44		8.31		2.49		2.08

		9.54		78.43		23.53		19.61		9.54				9.54		8.22		2.47		2.05

		9.64		80.39		23.53		19.61		9.64				9.64		8.34		2.44		2.03

		9.74		80.39		25.49		19.61		9.74				9.74		8.25		2.62		2.01

		9.84		82.35		25.49		19.61		9.84				9.84		8.37		2.59		1.99

		9.94		82.35		25.49		19.61		9.94				9.94		8.28		2.56		1.97

		10.04		82.35		25.49		19.61		10.04				10.04		8.2		2.54		1.95

		10.14		82.35		25.49		19.61		10.14				10.14		8.12		2.51		1.93

		10.24		82.35		27.45		19.61		10.24				10.24		8.04		2.68		1.91

		10.35		82.35		27.45		19.61		10.35				10.35		7.96		2.65		1.9

		10.45		82.35		27.45		19.61		10.45				10.45		7.88		2.63		1.88

		10.55		82.35		27.45		19.61		10.55				10.55		7.81		2.6		1.86

		10.65		82.35		27.45		19.61		10.65				10.65		7.74		2.58		1.84

		10.75		82.35		27.45		19.61		10.75				10.75		7.66		2.55		1.82

		10.85		82.35		27.45		19.61		10.85				10.85		7.59		2.53		1.81

		10.95		82.35		27.45		19.61		10.95				10.95		7.52		2.51		1.79

		11.05		82.35		27.45		19.61		11.05				11.05		7.45		2.48		1.77

		11.15		82.35		27.45		19.61		11.15				11.15		7.39		2.46		1.76

		11.25		82.35		27.45		19.61		11.25				11.25		7.32		2.44		1.74

		11.35		82.35		27.45		19.61		11.35				11.35		7.26		2.42		1.73

		11.45		82.35		27.45		19.61		11.45				11.45		7.19		2.4		1.71

		11.55		82.35		27.45		19.61		11.55				11.55		7.13		2.38		1.7

		11.65		82.35		27.45		19.61		11.65				11.65		7.07		2.36		1.68

		11.75		82.35		29.41		19.61		11.75				11.75		7.01		2.5		1.67

		11.85		82.35		29.41		19.61		11.85				11.85		6.95		2.48		1.65

		11.95		82.35		29.41		19.61		11.95				11.95		6.89		2.46		1.64

		12.05		82.35		29.41		19.61		12.05				12.05		6.83		2.44		1.63

		12.15		82.35		29.41		21.57		12.15				12.15		6.78		2.42		1.77

		12.25		82.35		29.41		21.57		12.25				12.25		6.72		2.4		1.76

		12.35		82.35		29.41		21.57		12.35				12.35		6.67		2.38		1.75

		12.45		82.35		29.41		21.57		12.45				12.45		6.61		2.36		1.73

		12.56		82.35		29.41		21.57		12.56				12.56		6.56		2.34		1.72

		12.66		82.35		29.41		21.57		12.66				12.66		6.51		2.32		1.7

		12.76		82.35		29.41		21.57		12.76				12.76		6.46		2.31		1.69

		12.86		82.35		29.41		21.57		12.86				12.86		6.41		2.29		1.68

		12.96		82.35		29.41		21.57		12.96				12.96		6.36		2.27		1.66

		13.06		82.35		29.41		21.57		13.06				13.06		6.31		2.25		1.65

		13.16		82.35		29.41		21.57		13.16				13.16		6.26		2.24		1.64

		13.26		82.35		29.41		21.57		13.26				13.26		6.21		2.22		1.63

		13.36		82.35		29.41		21.57		13.36				13.36		6.16		2.2		1.61

		13.46		82.35		29.41		21.57		13.46				13.46		6.12		2.19		1.6

		13.56		82.35		29.41		21.57		13.56				13.56		6.07		2.17		1.59

		13.66		82.35		29.41		21.57		13.66				13.66		6.03		2.15		1.58

		13.76		82.35		29.41		21.57		13.76				13.76		5.98		2.14		1.57

		13.86		82.35		29.41		21.57		13.86				13.86		5.94		2.12		1.56

		13.96		82.35		29.41		21.57		13.96				13.96		5.9		2.11		1.54

		14.06		82.35		29.41		21.57		14.06				14.06		5.86		2.09		1.53

		14.16		82.35		29.41		21.57		14.16				14.16		5.82		2.08		1.52

		14.26		82.35		31.37		21.57		14.26				14.26		5.77		2.2		1.51

		14.36		82.35		31.37		21.57		14.36				14.36		5.73		2.18		1.5

		14.46		82.35		35.29		21.57		14.46				14.46		5.69		2.44		1.49

		14.56		82.35		35.29		21.57		14.56				14.56		5.65		2.42		1.48

		14.66		82.35		35.29		21.57		14.66				14.66		5.62		2.41		1.47

		14.76		82.35		35.29		21.57		14.76				14.76		5.58		2.39		1.46

		14.87		82.35		35.29		23.53		14.87				14.87		5.54		2.37		1.58

		14.97		82.35		35.29		23.53		14.97				14.97		5.5		2.36		1.57

		15.07		82.35		35.29		23.53		15.07				15.07		5.47		2.34		1.56

		15.17		82.35		35.29		23.53		15.17				15.17		5.43		2.33		1.55

		15.27		82.35		35.29		23.53		15.27				15.27		5.39		2.31		1.54

		15.37		82.35		35.29		23.53		15.37				15.37		5.36		2.3		1.53

		15.47		82.35		35.29		23.53		15.47				15.47		5.32		2.28		1.52

		15.57		82.35		35.29		23.53		15.57				15.57		5.29		2.27		1.51

		15.67		82.35		35.29		23.53		15.67				15.67		5.26		2.25		1.5

		15.77		82.35		35.29		23.53		15.77				15.77		5.22		2.24		1.49

		15.87		82.35		35.29		23.53		15.87				15.87		5.19		2.22		1.48

		15.97		82.35		35.29		23.53		15.97				15.97		5.16		2.21		1.47

		16.07		82.35		35.29		23.53		16.07				16.07		5.12		2.2		1.46

		16.17		82.35		35.29		23.53		16.17				16.17		5.09		2.18		1.46

		16.27		82.35		35.29		23.53		16.27				16.27		5.06		2.17		1.45

		16.37		82.35		35.29		23.53		16.37				16.37		5.03		2.16		1.44

		16.47		82.35		35.29		23.53		16.47				16.47		5		2.14		1.43

		16.57		82.35		35.29		23.53		16.57				16.57		4.97		2.13		1.42

		16.67		82.35		35.29		23.53		16.67				16.67		4.94		2.12		1.41

		16.77		82.35		35.29		23.53		16.77				16.77		4.91		2.1		1.4

		16.87		82.35		35.29		23.53		16.87				16.87		4.88		2.09		1.39

		16.97		82.35		35.29		23.53		16.97				16.97		4.85		2.08		1.39

		17.07		82.35		35.29		23.53		17.07				17.07		4.82		2.07		1.38

		17.18		82.35		35.29		23.53		17.18				17.18		4.79		2.05		1.37

		17.28		82.35		35.29		23.53		17.28				17.28		4.77		2.04		1.36

		17.38		82.35		35.29		23.53		17.38				17.38		4.74		2.03		1.35

		17.48		82.35		37.25		23.53		17.48				17.48		4.71		2.13		1.35

		17.58		82.35		37.25		23.53		17.58				17.58		4.69		2.12		1.34

		17.68		82.35		37.25		23.53		17.68				17.68		4.66		2.11		1.33

		17.78		82.35		39.22		23.53		17.78				17.78		4.63		2.21		1.32

		17.88		82.35		39.22		23.53		17.88				17.88		4.61		2.19		1.32

		17.98		82.35		39.22		23.53		17.98				17.98		4.58		2.18		1.31

		18.08		82.35		39.22		23.53		18.08				18.08		4.56		2.17		1.3

		18.18		82.35		39.22		23.53		18.18				18.18		4.53		2.16		1.29

		18.28		82.35		39.22		23.53		18.28				18.28		4.51		2.15		1.29

		18.38		82.35		39.22		23.53		18.38				18.38		4.48		2.13		1.28

		18.48		82.35		39.22		23.53		18.48				18.48		4.46		2.12		1.27

		18.58		82.35		39.22		23.53		18.58				18.58		4.43		2.11		1.27

		18.68		82.35		39.22		23.53		18.68				18.68		4.41		2.1		1.26

		18.78		82.35		39.22		23.53		18.78				18.78		4.38		2.09		1.25

		18.88		82.35		43.14		23.53		18.88				18.88		4.36		2.28		1.25

		18.98		82.35		43.14		23.53		18.98				18.98		4.34		2.27		1.24

		19.08		82.35		43.14		23.53		19.08				19.08		4.32		2.26		1.23

		19.18		82.35		43.14		23.53		19.18				19.18		4.29		2.25		1.23

		19.28		82.35		43.14		23.53		19.28				19.28		4.27		2.24		1.22

		19.39		82.35		43.14		23.53		19.39				19.39		4.25		2.23		1.21

		19.49		82.35		43.14		23.53		19.49				19.49		4.23		2.21		1.21

		19.59		82.35		43.14		23.53		19.59				19.59		4.2		2.2		1.2

		19.69		82.35		43.14		23.53		19.69				19.69		4.18		2.19		1.2

		19.79		82.35		43.14		23.53		19.79				19.79		4.16		2.18		1.19

		19.89		82.35		43.14		23.53		19.89				19.89		4.14		2.17		1.18

		19.99		82.35		43.14		23.53		19.99				19.99		4.12		2.16		1.18

		20.09		82.35		43.14		23.53		20.09				20.09		4.1		2.15		1.17

		20.19		82.35		43.14		23.53		20.19				20.19		4.08		2.14		1.17

		20.29		82.35		43.14		23.53		20.29				20.29		4.06		2.13		1.16

		20.39		82.35		43.14		23.53		20.39				20.39		4.04		2.12		1.15

		20.49		82.35		43.14		25.49		20.49				20.49		4.02		2.11		1.24

		20.59		82.35		43.14		25.49		20.59				20.59		4		2.1		1.24

		20.69		82.35		43.14		25.49		20.69				20.69		3.98		2.08		1.23

		20.79		82.35		43.14		25.49		20.79				20.79		3.96		2.07		1.23

		20.89		82.35		43.14		25.49		20.89				20.89		3.94		2.06		1.22

		20.99		82.35		43.14		25.49		20.99				20.99		3.92		2.05		1.21

		21.09		82.35		43.14		25.49		21.09				21.09		3.9		2.05		1.21

		21.19		82.35		43.14		25.49		21.19				21.19		3.89		2.04		1.2

		21.29		82.35		43.14		25.49		21.29				21.29		3.87		2.03		1.2

		21.39		82.35		43.14		25.49		21.39				21.39		3.85		2.02		1.19

		21.49		82.35		43.14		25.49		21.49				21.49		3.83		2.01		1.19

		21.59		82.35		43.14		25.49		21.59				21.59		3.81		2		1.18

		21.7		82.35		43.14		25.49		21.7				21.7		3.8		1.99		1.17

		21.8		82.35		43.14		25.49		21.8				21.8		3.78		1.98		1.17

		21.9		82.35		43.14		25.49		21.9				21.9		3.76		1.97		1.16

		22		82.35		43.14		25.49		22				22		3.74		1.96		1.16

		22.1		82.35		43.14		25.49		22.1				22.1		3.73		1.95		1.15

		22.2		82.35		43.14		25.49		22.2				22.2		3.71		1.94		1.15

		22.3		82.35		47.06		25.49		22.3				22.3		3.69		2.11		1.14

		22.4		82.35		47.06		25.49		22.4				22.4		3.68		2.1		1.14

		22.5		82.35		47.06		25.49		22.5				22.5		3.66		2.09		1.13

		22.6		82.35		47.06		25.49		22.6				22.6		3.64		2.08		1.13

		22.7		82.35		47.06		25.49		22.7				22.7		3.63		2.07		1.12

		22.8		82.35		47.06		25.49		22.8				22.8		3.61		2.06		1.12

		22.9		82.35		47.06		25.49		22.9				22.9		3.6		2.05		1.11

		23		82.35		47.06		25.49		23				23		3.58		2.05		1.11

		23.1		82.35		49.02		25.49		23.1				23.1		3.56		2.12		1.1

		23.2		82.35		49.02		25.49		23.2				23.2		3.55		2.11		1.1

		23.3		82.35		49.02		27.45		23.3				23.3		3.53		2.1		1.18

		23.4		82.35		49.02		27.45		23.4				23.4		3.52		2.09		1.17

		23.5		82.35		49.02		27.45		23.5				23.5		3.5		2.09		1.17

		23.6		82.35		49.02		27.45		23.6				23.6		3.49		2.08		1.16

		23.7		82.35		49.02		27.45		23.7				23.7		3.47		2.07		1.16

		23.8		82.35		49.02		27.45		23.8				23.8		3.46		2.06		1.15

		23.9		82.35		50.98		27.45		23.9				23.9		3.45		2.13		1.15

		24.01		82.35		50.98		27.45		24.01				24.01		3.43		2.12		1.14

		24.11		82.35		50.98		27.45		24.11				24.11		3.42		2.11		1.14

		24.21		82.35		50.98		27.45		24.21				24.21		3.4		2.11		1.13

		24.31		82.35		50.98		27.45		24.31				24.31		3.39		2.1		1.13

		24.41		82.35		50.98		27.45		24.41				24.41		3.37		2.09		1.12

		24.51		82.35		52.94		27.45		24.51				24.51		3.36		2.16		1.12

		24.61		82.35		52.94		27.45		24.61				24.61		3.35		2.15		1.12

		24.71		82.35		54.9		29.41		24.71				24.71		3.33		2.22		1.19

		24.81		82.35		54.9		29.41		24.81				24.81		3.32		2.21		1.19

		24.91		82.35		54.9		29.41		24.91				24.91		3.31		2.2		1.18

		25.01		82.35		54.9		29.41		25.01				25.01		3.29		2.2		1.18

		25.11		82.35		54.9		29.41		25.11				25.11		3.28		2.19		1.17

		25.21		82.35		54.9		29.41		25.21				25.21		3.27		2.18		1.17

		25.31		82.35		54.9		29.41		25.31				25.31		3.25		2.17		1.16

		25.41		82.35		54.9		29.41		25.41				25.41		3.24		2.16		1.16

		25.51		82.35		54.9		29.41		25.51				25.51		3.23		2.15		1.15

		25.61		82.35		54.9		29.41		25.61				25.61		3.22		2.14		1.15

		25.71		82.35		54.9		29.41		25.71				25.71		3.2		2.14		1.14

		25.81		82.35		54.9		29.41		25.81				25.81		3.19		2.13		1.14

		25.91		82.35		56.86		29.41		25.91				25.91		3.18		2.19		1.13

		26.01		82.35		56.86		29.41		26.01				26.01		3.17		2.19		1.13

		26.11		82.35		56.86		29.41		26.11				26.11		3.15		2.18		1.13

		26.21		82.35		58.82		31.37		26.21				26.21		3.14		2.24		1.2

		26.32		82.35		58.82		31.37		26.32				26.32		3.13		2.24		1.19

		26.42		82.35		58.82		31.37		26.42				26.42		3.12		2.23		1.19

		26.52		82.35		58.82		31.37		26.52				26.52		3.11		2.22		1.18

		26.62		82.35		60.78		31.37		26.62				26.62		3.09		2.28		1.18

		26.72		82.35		62.75		31.37		26.72				26.72		3.08		2.35		1.17

		26.82		82.35		62.75		31.37		26.82				26.82		3.07		2.34		1.17

		26.92		82.35		62.75		31.37		26.92				26.92		3.06		2.33		1.17

		27.02		82.35		64.71		31.37		27.02				27.02		3.05		2.39		1.16

		27.12		82.35		64.71		31.37		27.12				27.12		3.04		2.39		1.16

		27.22		82.35		64.71		35.29		27.22				27.22		3.03		2.38		1.3

		27.32		82.35		64.71		35.29		27.32				27.32		3.01		2.37		1.29

		27.42		82.35		64.71		35.29		27.42				27.42		3		2.36		1.29

		27.52		82.35		64.71		35.29		27.52				27.52		2.99		2.35		1.28

		27.62		82.35		64.71		35.29		27.62				27.62		2.98		2.34		1.28

		27.72		82.35		66.67		35.29		27.72				27.72		2.97		2.4		1.27

		27.82		82.35		66.67		35.29		27.82				27.82		2.96		2.4		1.27

		27.92		82.35		66.67		35.29		27.92				27.92		2.95		2.39		1.26

		28.02		82.35		66.67		35.29		28.02				28.02		2.94		2.38		1.26

		28.12		82.35		66.67		35.29		28.12				28.12		2.93		2.37		1.25

		28.22		82.35		66.67		35.29		28.22				28.22		2.92		2.36		1.25

		28.32		82.35		66.67		35.29		28.32				28.32		2.91		2.35		1.25

		28.42		82.35		66.67		35.29		28.42				28.42		2.9		2.35		1.24

		28.53		82.35		66.67		35.29		28.53				28.53		2.89		2.34		1.24

		28.63		82.35		66.67		35.29		28.63				28.63		2.88		2.33		1.23

		28.73		82.35		66.67		35.29		28.73				28.73		2.87		2.32		1.23

		28.83		82.35		66.67		37.25		28.83				28.83		2.86		2.31		1.29

		28.93		82.35		66.67		37.25		28.93				28.93		2.85		2.3		1.29

		29.03		82.35		68.63		37.25		29.03				29.03		2.84		2.36		1.28

		29.13		82.35		68.63		37.25		29.13				29.13		2.83		2.36		1.28

		29.23		82.35		68.63		37.25		29.23				29.23		2.82		2.35		1.27

		29.33		82.35		68.63		39.22		29.33				29.33		2.81		2.34		1.34

		29.43		82.35		68.63		39.22		29.43				29.43		2.8		2.33		1.33

		29.53		82.35		68.63		39.22		29.53				29.53		2.79		2.32		1.33

		29.63		82.35		68.63		39.22		29.63				29.63		2.78		2.32		1.32

		29.73		82.35		68.63		39.22		29.73				29.73		2.77		2.31		1.32

		29.83		82.35		70.59		39.22		29.83				29.83		2.76		2.37		1.31

		29.93		82.35		70.59		39.22		29.93				29.93		2.75		2.36		1.31

		30.03		82.35		70.59		39.22		30.03				30.03		2.74		2.35		1.31

		30.13		82.35		70.59		39.22		30.13				30.13		2.73		2.34		1.3

		30.23		82.35		70.59		41.18		30.23				30.23		2.72		2.33		1.36

		30.33		82.35		70.59		41.18		30.33				30.33		2.71		2.33		1.36

		30.43		82.35		70.59		41.18		30.43				30.43		2.71		2.32		1.35

		30.53		82.35		70.59		43.14		30.53				30.53		2.7		2.31		1.41

		30.63		82.35		70.59		43.14		30.63				30.63		2.69		2.3		1.41

		30.73		82.35		72.55		43.14		30.73				30.73		2.68		2.36		1.4

		30.84		82.35		72.55		43.14		30.84				30.84		2.67		2.35		1.4

		30.94		82.35		72.55		43.14		30.94				30.94		2.66		2.35		1.39

		31.04		82.35		72.55		43.14		31.04				31.04		2.65		2.34		1.39

		31.14		82.35		72.55		43.14		31.14				31.14		2.64		2.33		1.39

		31.24		82.35		72.55		43.14		31.24				31.24		2.64		2.32		1.38

		31.34		82.35		72.55		43.14		31.34				31.34		2.63		2.32		1.38

		31.44		82.35		72.55		43.14		31.44				31.44		2.62		2.31		1.37

		31.54		82.35		74.51		45.1		31.54				31.54		2.61		2.36		1.43

		31.64		82.35		74.51		45.1		31.64				31.64		2.6		2.36		1.43

		31.74		82.35		74.51		47.06		31.74				31.74		2.59		2.35		1.48

		31.84		82.35		74.51		47.06		31.84				31.84		2.59		2.34		1.48

		31.94		82.35		74.51		47.06		31.94				31.94		2.58		2.33		1.47

		32.04		82.35		74.51		47.06		32.04				32.04		2.57		2.33		1.47

		32.14		82.35		74.51		49.02		32.14				32.14		2.56		2.32		1.53

		32.24		82.35		74.51		49.02		32.24				32.24		2.55		2.31		1.52

		32.34		82.35		74.51		49.02		32.34				32.34		2.55		2.3		1.52

		32.44		82.35		74.51		49.02		32.44				32.44		2.54		2.3		1.51

		32.54		82.35		74.51		49.02		32.54				32.54		2.53		2.29		1.51

		32.64		82.35		74.51		49.02		32.64				32.64		2.52		2.28		1.5

		32.74		82.35		74.51		49.02		32.74				32.74		2.52		2.28		1.5

		32.84		82.35		74.51		49.02		32.84				32.84		2.51		2.27		1.49

		32.94		82.35		74.51		50.98		32.94				32.94		2.5		2.26		1.55

		33.04		82.35		74.51		50.98		33.04				33.04		2.49		2.25		1.54

		33.15		82.35		74.51		50.98		33.15				33.15		2.48		2.25		1.54

		33.25		82.35		74.51		50.98		33.25				33.25		2.48		2.24		1.53

		33.35		82.35		74.51		50.98		33.35				33.35		2.47		2.23		1.53

		33.45		82.35		74.51		50.98		33.45				33.45		2.46		2.23		1.52

		33.55		82.35		74.51		52.94		33.55				33.55		2.45		2.22		1.58

		33.65		82.35		74.51		52.94		33.65				33.65		2.45		2.21		1.57

		33.75		82.35		74.51		54.9		33.75				33.75		2.44		2.21		1.63

		33.85		82.35		74.51		54.9		33.85				33.85		2.43		2.2		1.62

		33.95		82.35		74.51		54.9		33.95				33.95		2.43		2.19		1.62

		34.05		82.35		76.47		54.9		34.05				34.05		2.42		2.25		1.61

		34.15		82.35		76.47		54.9		34.15				34.15		2.41		2.24		1.61

		34.25		82.35		76.47		54.9		34.25				34.25		2.4		2.23		1.6

		34.35		82.35		76.47		54.9		34.35				34.35		2.4		2.23		1.6

		34.45		82.35		76.47		54.9		34.45				34.45		2.39		2.22		1.59

		34.55		82.35		76.47		54.9		34.55				34.55		2.38		2.21		1.59

		34.65		82.35		76.47		54.9		34.65				34.65		2.38		2.21		1.58

		34.75		82.35		76.47		54.9		34.75				34.75		2.37		2.2		1.58

		34.85		82.35		76.47		54.9		34.85				34.85		2.36		2.19		1.58

		34.95		82.35		78.43		54.9		34.95				34.95		2.36		2.24		1.57

		35.05		82.35		78.43		54.9		35.05				35.05		2.35		2.24		1.57

		35.15		82.35		78.43		56.86		35.15				35.15		2.34		2.23		1.62

		35.25		82.35		78.43		58.82		35.25				35.25		2.34		2.22		1.67

		35.36		82.35		78.43		58.82		35.36				35.36		2.33		2.22		1.66

		35.46		82.35		80.39		58.82		35.46				35.46		2.32		2.27		1.66

		35.56		82.35		80.39		58.82		35.56				35.56		2.32		2.26		1.65

		35.66		82.35		80.39		60.78		35.66				35.66		2.31		2.25		1.7

		35.76		82.35		80.39		60.78		35.76				35.76		2.3		2.25		1.7

		35.86		82.35		80.39		60.78		35.86				35.86		2.3		2.24		1.7

		35.96		82.35		80.39		60.78		35.96				35.96		2.29		2.24		1.69

		36.06		82.35		80.39		60.78		36.06				36.06		2.28		2.23		1.69

		36.16		82.35		80.39		60.78		36.16				36.16		2.28		2.22		1.68

		36.26		82.35		80.39		60.78		36.26				36.26		2.27		2.22		1.68

		36.36		82.35		80.39		60.78		36.36				36.36		2.26		2.21		1.67

		36.46		82.35		80.39		60.78		36.46				36.46		2.26		2.2		1.67

		36.56		82.35		80.39		60.78		36.56				36.56		2.25		2.2		1.66

		36.66		82.35		80.39		60.78		36.66				36.66		2.25		2.19		1.66

		36.76		82.35		80.39		60.78		36.76				36.76		2.24		2.19		1.65

		36.86		82.35		80.39		60.78		36.86				36.86		2.23		2.18		1.65

		36.96		82.35		80.39		60.78		36.96				36.96		2.23		2.17		1.64

		37.06		82.35		80.39		60.78		37.06				37.06		2.22		2.17		1.64

		37.16		82.35		80.39		60.78		37.16				37.16		2.22		2.16		1.64

		37.26		82.35		80.39		60.78		37.26				37.26		2.21		2.16		1.63

		37.36		82.35		80.39		62.75		37.36				37.36		2.2		2.15		1.68

		37.46		82.35		80.39		64.71		37.46				37.46		2.2		2.15		1.73

		37.56		82.35		80.39		64.71		37.56				37.56		2.19		2.14		1.72

		37.67		82.35		80.39		64.71		37.67				37.67		2.19		2.13		1.72

		37.77		82.35		80.39		64.71		37.77				37.77		2.18		2.13		1.71

		37.87		82.35		80.39		64.71		37.87				37.87		2.17		2.12		1.71

		37.97		82.35		80.39		64.71		37.97				37.97		2.17		2.12		1.7

		38.07		82.35		80.39		64.71		38.07				38.07		2.16		2.11		1.7

		38.17		82.35		80.39		64.71		38.17				38.17		2.16		2.11		1.7

		38.27		82.35		80.39		64.71		38.27				38.27		2.15		2.1		1.69

		38.37		82.35		80.39		64.71		38.37				38.37		2.15		2.1		1.69

		38.47		82.35		82.35		64.71		38.47				38.47		2.14		2.14		1.68

		38.57		82.35		82.35		64.71		38.57				38.57		2.14		2.14		1.68

		38.67		82.35		82.35		64.71		38.67				38.67		2.13		2.13		1.67

		38.77		82.35		82.35		64.71		38.77				38.77		2.12		2.12		1.67

		38.87		82.35		82.35		64.71		38.87				38.87		2.12		2.12		1.66

		38.97		82.35		82.35		64.71		38.97				38.97		2.11		2.11		1.66

		39.07		82.35		82.35		64.71		39.07				39.07		2.11		2.11		1.66

		39.17		82.35		82.35		64.71		39.17				39.17		2.1		2.1		1.65

		39.27		82.35		82.35		66.67		39.27				39.27		2.1		2.1		1.7

		39.37		82.35		84.31		66.67		39.37				39.37		2.09		2.14		1.69

		39.47		82.35		84.31		66.67		39.47				39.47		2.09		2.14		1.69

		39.57		82.35		84.31		68.63		39.57				39.57		2.08		2.13		1.73

		39.67		82.35		84.31		68.63		39.67				39.67		2.08		2.13		1.73

		39.77		82.35		84.31		68.63		39.77				39.77		2.07		2.12		1.73

		39.87		82.35		84.31		68.63		39.87				39.87		2.07		2.11		1.72

		39.98		82.35		86.27		70.59		39.98				39.98		2.06		2.16		1.77

		40.08		82.35		86.27		70.59		40.08				40.08		2.05		2.15		1.76

		40.18		82.35		86.27		70.59		40.18				40.18		2.05		2.15		1.76

		40.28		82.35		86.27		70.59		40.28				40.28		2.04		2.14		1.75

		40.38		82.35		86.27		70.59		40.38				40.38		2.04		2.14		1.75

		40.48		82.35		86.27		70.59		40.48				40.48		2.03		2.13		1.74

		40.58		82.35		86.27		70.59		40.58				40.58		2.03		2.13		1.74

		40.68		82.35		86.27		70.59		40.68				40.68		2.02		2.12		1.74

		40.78		82.35		86.27		72.55		40.78				40.78		2.02		2.12		1.78

		40.88		82.35		86.27		72.55		40.88				40.88		2.01		2.11		1.77

		40.98		82.35		88.24		72.55		40.98				40.98		2.01		2.15		1.77

		41.08		82.35		88.24		72.55		41.08				41.08		2		2.15		1.77

		41.18		82.35		88.24		74.51		41.18				41.18		2		2.14		1.81

		41.28		82.35		88.24		74.51		41.28				41.28		1.99		2.14		1.8

		41.38		82.35		88.24		74.51		41.38				41.38		1.99		2.13		1.8

		41.48		82.35		88.24		74.51		41.48				41.48		1.99		2.13		1.8

		41.58		82.35		88.24		74.51		41.58				41.58		1.98		2.12		1.79

		41.68		82.35		88.24		74.51		41.68				41.68		1.98		2.12		1.79

		41.78		82.35		88.24		74.51		41.78				41.78		1.97		2.11		1.78

		41.88		82.35		88.24		74.51		41.88				41.88		1.97		2.11		1.78

		41.98		82.35		88.24		74.51		41.98				41.98		1.96		2.1		1.77

		42.08		82.35		88.24		76.47		42.08				42.08		1.96		2.1		1.82

		42.18		82.35		88.24		76.47		42.18				42.18		1.95		2.09		1.81

		42.29		82.35		88.24		76.47		42.29				42.29		1.95		2.09		1.81

		42.39		82.35		88.24		76.47		42.39				42.39		1.94		2.08		1.8

		42.49		82.35		88.24		76.47		42.49				42.49		1.94		2.08		1.8

		42.59		82.35		88.24		76.47		42.59				42.59		1.93		2.07		1.8

		42.69		82.35		88.24		76.47		42.69				42.69		1.93		2.07		1.79

		42.79		82.35		88.24		76.47		42.79				42.79		1.92		2.06		1.79

		42.89		82.35		88.24		76.47		42.89				42.89		1.92		2.06		1.78

		42.99		82.35		88.24		76.47		42.99				42.99		1.92		2.05		1.78

		43.09		82.35		88.24		78.43		43.09				43.09		1.91		2.05		1.82

		43.19		82.35		88.24		78.43		43.19				43.19		1.91		2.04		1.82

		43.29		82.35		88.24		78.43		43.29				43.29		1.9		2.04		1.81

		43.39		82.35		88.24		78.43		43.39				43.39		1.9		2.03		1.81

		43.49		82.35		88.24		78.43		43.49				43.49		1.89		2.03		1.8

		43.59		82.35		88.24		78.43		43.59				43.59		1.89		2.02		1.8

		43.69		82.35		88.24		78.43		43.69				43.69		1.88		2.02		1.8

		43.79		82.35		88.24		78.43		43.79				43.79		1.88		2.01		1.79

		43.89		82.35		88.24		80.39		43.89				43.89		1.88		2.01		1.83

		43.99		82.35		88.24		80.39		43.99				43.99		1.87		2.01		1.83

		44.09		82.35		88.24		80.39		44.09				44.09		1.87		2		1.82

		44.19		82.35		88.24		80.39		44.19				44.19		1.86		2		1.82

		44.29		82.35		88.24		80.39		44.29				44.29		1.86		1.99		1.81

		44.39		82.35		88.24		82.35		44.39				44.39		1.86		1.99		1.86

		44.5		82.35		88.24		82.35		44.5				44.5		1.85		1.98		1.85

		44.6		82.35		88.24		82.35		44.6				44.6		1.85		1.98		1.85

		44.7		82.35		88.24		84.31		44.7				44.7		1.84		1.97		1.89

		44.8		82.35		88.24		84.31		44.8				44.8		1.84		1.97		1.88

		44.9		82.35		88.24		84.31		44.9				44.9		1.83		1.97		1.88

		45		82.35		88.24		84.31		45				45		1.83		1.96		1.87

		45.1		82.35		88.24		84.31		45.1				45.1		1.83		1.96		1.87

		45.2		82.35		88.24		84.31		45.2				45.2		1.82		1.95		1.87

		45.3		82.35		88.24		84.31		45.3				45.3		1.82		1.95		1.86

		45.4		82.35		88.24		84.31		45.4				45.4		1.81		1.94		1.86

		45.5		82.35		88.24		84.31		45.5				45.5		1.81		1.94		1.85

		45.6		82.35		88.24		84.31		45.6				45.6		1.81		1.93		1.85

		45.7		82.35		88.24		84.31		45.7				45.7		1.8		1.93		1.84

		45.8		82.35		88.24		84.31		45.8				45.8		1.8		1.93		1.84

		45.9		82.35		88.24		86.27		45.9				45.9		1.79		1.92		1.88

		46		82.35		88.24		86.27		46				46		1.79		1.92		1.88

		46.1		82.35		88.24		86.27		46.1				46.1		1.79		1.91		1.87

		46.2		82.35		88.24		86.27		46.2				46.2		1.78		1.91		1.87

		46.3		82.35		88.24		86.27		46.3				46.3		1.78		1.91		1.86

		46.4		82.35		88.24		86.27		46.4				46.4		1.77		1.9		1.86

		46.5		82.35		88.24		86.27		46.5				46.5		1.77		1.9		1.86

		46.6		82.35		88.24		86.27		46.6				46.6		1.77		1.89		1.85

		46.7		82.35		88.24		86.27		46.7				46.7		1.76		1.89		1.85

		46.81		82.35		88.24		86.27		46.81				46.81		1.76		1.89		1.84

		46.91		82.35		88.24		86.27		46.91				46.91		1.76		1.88		1.84

		47.01		82.35		88.24		86.27		47.01				47.01		1.75		1.88		1.84

		47.11		82.35		88.24		86.27		47.11				47.11		1.75		1.87		1.83

		47.21		82.35		88.24		86.27		47.21				47.21		1.74		1.87		1.83

		47.31		82.35		88.24		86.27		47.31				47.31		1.74		1.87		1.82

		47.41		82.35		88.24		86.27		47.41				47.41		1.74		1.86		1.82

		47.51		82.35		90.2		86.27		47.51				47.51		1.73		1.9		1.82

		47.61		82.35		90.2		86.27		47.61				47.61		1.73		1.89		1.81

		47.71		82.35		90.2		86.27		47.71				47.71		1.73		1.89		1.81

		47.81		82.35		90.2		86.27		47.81				47.81		1.72		1.89		1.8

		47.91		82.35		90.2		86.27		47.91				47.91		1.72		1.88		1.8

		48.01		82.35		90.2		86.27		48.01				48.01		1.72		1.88		1.8

		48.11		82.35		90.2		86.27		48.11				48.11		1.71		1.87		1.79

		48.21		82.35		90.2		86.27		48.21				48.21		1.71		1.87		1.79

		48.31		82.35		90.2		86.27		48.31				48.31		1.7		1.87		1.79

		48.41		82.35		90.2		86.27		48.41				48.41		1.7		1.86		1.78

		48.51		82.35		90.2		86.27		48.51				48.51		1.7		1.86		1.78

		48.61		82.35		90.2		86.27		48.61				48.61		1.69		1.86		1.77

		48.71		82.35		90.2		86.27		48.71				48.71		1.69		1.85		1.77

		48.81		82.35		90.2		86.27		48.81				48.81		1.69		1.85		1.77

		48.91		82.35		90.2		86.27		48.91				48.91		1.68		1.84		1.76

		49.01		82.35		90.2		86.27		49.01				49.01		1.68		1.84		1.76

		49.12		82.35		90.2		86.27		49.12				49.12		1.68		1.84		1.76

		49.22		82.35		90.2		86.27		49.22				49.22		1.67		1.83		1.75

		49.32		82.35		90.2		86.27		49.32				49.32		1.67		1.83		1.75

		49.42		82.35		90.2		86.27		49.42				49.42		1.67		1.83		1.75

		49.52		82.35		90.2		86.27		49.52				49.52		1.66		1.82		1.74

		49.62		82.35		90.2		86.27		49.62				49.62		1.66		1.82		1.74

		49.72		82.35		90.2		86.27		49.72				49.72		1.66		1.81		1.74

		49.82		82.35		90.2		86.27		49.82				49.82		1.65		1.81		1.73

		49.92		82.35		90.2		86.27		49.92				49.92		1.65		1.81		1.73

		50.02		82.35		90.2		86.27		50.02				50.02		1.65		1.8		1.72

		50.12		82.35		90.2		86.27		50.12				50.12		1.64		1.8		1.72

		50.22		82.35		90.2		86.27		50.22				50.22		1.64		1.8		1.72

		50.32		82.35		90.2		86.27		50.32				50.32		1.64		1.79		1.71

		50.42		82.35		90.2		88.24		50.42				50.42		1.63		1.79		1.75

		50.52		82.35		90.2		88.24		50.52				50.52		1.63		1.79		1.75

		50.62		82.35		90.2		88.24		50.62				50.62		1.63		1.78		1.74

		50.72		82.35		90.2		88.24		50.72				50.72		1.62		1.78		1.74

		50.82		82.35		90.2		88.24		50.82				50.82		1.62		1.77		1.74

		50.92		82.35		90.2		88.24		50.92				50.92		1.62		1.77		1.73

		51.02		82.35		92.16		88.24		51.02				51.02		1.61		1.81		1.73

		51.12		82.35		92.16		88.24		51.12				51.12		1.61		1.8		1.73

		51.22		82.35		92.16		88.24		51.22				51.22		1.61		1.8		1.72

		51.33		82.35		92.16		88.24		51.33				51.33		1.6		1.8		1.72

		51.43		82.35		92.16		88.24		51.43				51.43		1.6		1.79		1.72

		51.53		82.35		92.16		88.24		51.53				51.53		1.6		1.79		1.71

		51.63		82.35		92.16		88.24		51.63				51.63		1.6		1.79		1.71

		51.73		82.35		92.16		88.24		51.73				51.73		1.59		1.78		1.71

		51.83		82.35		92.16		88.24		51.83				51.83		1.59		1.78		1.7

		51.93		82.35		92.16		88.24		51.93				51.93		1.59		1.77		1.7

		52.03		82.35		92.16		88.24		52.03				52.03		1.58		1.77		1.7

		52.13		82.35		92.16		88.24		52.13				52.13		1.58		1.77		1.69

		52.23		82.35		92.16		88.24		52.23				52.23		1.58		1.76		1.69

		52.33		82.35		92.16		88.24		52.33				52.33		1.57		1.76		1.69

		52.43		82.35		92.16		88.24		52.43				52.43		1.57		1.76		1.68

		52.53		82.35		92.16		88.24		52.53				52.53		1.57		1.75		1.68

		52.63		82.35		92.16		88.24		52.63				52.63		1.56		1.75		1.68

		52.73		82.35		92.16		88.24		52.73				52.73		1.56		1.75		1.67

		52.83		82.35		92.16		88.24		52.83				52.83		1.56		1.74		1.67

		52.93		82.35		92.16		88.24		52.93				52.93		1.56		1.74		1.67

		53.03		82.35		92.16		88.24		53.03				53.03		1.55		1.74		1.66

		53.13		82.35		92.16		88.24		53.13				53.13		1.55		1.73		1.66

		53.23		82.35		92.16		88.24		53.23				53.23		1.55		1.73		1.66

		53.33		82.35		92.16		88.24		53.33				53.33		1.54		1.73		1.65

		53.43		82.35		92.16		88.24		53.43				53.43		1.54		1.72		1.65

		53.53		82.35		92.16		90.2		53.53				53.53		1.54		1.72		1.68

		53.64		82.35		92.16		90.2		53.64				53.64		1.54		1.72		1.68

		53.74		82.35		92.16		90.2		53.74				53.74		1.53		1.72		1.68

		53.84		82.35		92.16		90.2		53.84				53.84		1.53		1.71		1.68

		53.94		82.35		92.16		90.2		53.94				53.94		1.53		1.71		1.67

		54.04		82.35		92.16		90.2		54.04				54.04		1.52		1.71		1.67

		54.14		82.35		92.16		90.2		54.14				54.14		1.52		1.7		1.67

		54.24		82.35		92.16		90.2		54.24				54.24		1.52		1.7		1.66

		54.34		82.35		92.16		90.2		54.34				54.34		1.52		1.7		1.66

		54.44		82.35		92.16		90.2		54.44				54.44		1.51		1.69		1.66

		54.54		82.35		92.16		90.2		54.54				54.54		1.51		1.69		1.65

		54.64		82.35		92.16		90.2		54.64				54.64		1.51		1.69		1.65

		54.74		82.35		92.16		90.2		54.74				54.74		1.5		1.68		1.65

		54.84		82.35		92.16		90.2		54.84				54.84		1.5		1.68		1.64

		54.94		82.35		92.16		90.2		54.94				54.94		1.5		1.68		1.64

		55.04		82.35		92.16		90.2		55.04				55.04		1.5		1.67		1.64

		55.14		82.35		92.16		90.2		55.14				55.14		1.49		1.67		1.64

		55.24		82.35		92.16		90.2		55.24				55.24		1.49		1.67		1.63

		55.34		82.35		92.16		90.2		55.34				55.34		1.49		1.67		1.63

		55.44		82.35		92.16		90.2		55.44				55.44		1.49		1.66		1.63

		55.54		82.35		92.16		90.2		55.54				55.54		1.48		1.66		1.62

		55.64		82.35		92.16		90.2		55.64				55.64		1.48		1.66		1.62

		55.74		82.35		92.16		90.2		55.74				55.74		1.48		1.65		1.62

		55.84		82.35		92.16		90.2		55.84				55.84		1.47		1.65		1.62

		55.95		82.35		92.16		90.2		55.95				55.95		1.47		1.65		1.61

		56.05		82.35		92.16		90.2		56.05				56.05		1.47		1.64		1.61

		56.15		82.35		92.16		90.2		56.15				56.15		1.47		1.64		1.61

		56.25		82.35		92.16		90.2		56.25				56.25		1.46		1.64		1.6

		56.35		82.35		92.16		90.2		56.35				56.35		1.46		1.64		1.6

		56.45		82.35		92.16		90.2		56.45				56.45		1.46		1.63		1.6

		56.55		82.35		92.16		90.2		56.55				56.55		1.46		1.63		1.6

		56.65		82.35		92.16		90.2		56.65				56.65		1.45		1.63		1.59

		56.75		82.35		92.16		90.2		56.75				56.75		1.45		1.62		1.59

		56.85		82.35		92.16		90.2		56.85				56.85		1.45		1.62		1.59

		56.95		82.35		92.16		90.2		56.95				56.95		1.45		1.62		1.58

		57.05		82.35		92.16		92.16		57.05				57.05		1.44		1.62		1.62

		57.15		82.35		92.16		92.16		57.15				57.15		1.44		1.61		1.61

		57.25		82.35		92.16		92.16		57.25				57.25		1.44		1.61		1.61

		57.35		82.35		92.16		92.16		57.35				57.35		1.44		1.61		1.61

		57.45		82.35		92.16		92.16		57.45				57.45		1.43		1.6		1.6

		57.55		82.35		92.16		92.16		57.55				57.55		1.43		1.6		1.6

		57.65		82.35		92.16		92.16		57.65				57.65		1.43		1.6		1.6

		57.75		82.35		92.16		92.16		57.75				57.75		1.43		1.6		1.6

		57.85		82.35		92.16		92.16		57.85				57.85		1.42		1.59		1.59

		57.95		82.35		92.16		92.16		57.95				57.95		1.42		1.59		1.59

		58.05		82.35		92.16		92.16		58.05				58.05		1.42		1.59		1.59

		58.16		82.35		92.16		92.16		58.16				58.16		1.42		1.58		1.58

		58.26		82.35		92.16		92.16		58.26				58.26		1.41		1.58		1.58

		58.36		82.35		92.16		92.16		58.36				58.36		1.41		1.58		1.58

		58.46		82.35		92.16		92.16		58.46				58.46		1.41		1.58		1.58

		58.56		82.35		92.16		92.16		58.56				58.56		1.41		1.57		1.57

		58.66		82.35		92.16		92.16		58.66				58.66		1.4		1.57		1.57

		58.76		82.35		92.16		92.16		58.76				58.76		1.4		1.57		1.57

		58.86		82.35		92.16		92.16		58.86				58.86		1.4		1.57		1.57

		58.96		82.35		92.16		92.16		58.96				58.96		1.4		1.56		1.56

		59.06		82.35		92.16		92.16		59.06				59.06		1.39		1.56		1.56

		59.16		82.35		92.16		92.16		59.16				59.16		1.39		1.56		1.56

		59.26		82.35		92.16		92.16		59.26				59.26		1.39		1.56		1.56

		59.36		82.35		92.16		92.16		59.36				59.36		1.39		1.55		1.55

		59.46		82.35		92.16		92.16		59.46				59.46		1.38		1.55		1.55

		59.56		82.35		92.16		92.16		59.56				59.56		1.38		1.55		1.55

		59.66		82.35		92.16		92.16		59.66				59.66		1.38		1.54		1.54

		59.76		82.35		92.16		92.16		59.76				59.76		1.38		1.54		1.54

		59.86		82.35		92.16		92.16		59.86				59.86		1.38		1.54		1.54

		59.96		82.35		92.16		92.16		59.96				59.96		1.37		1.54		1.54

		60.06		82.35		92.16		92.16		60.06				60.06		1.37		1.53		1.53

		60.16		82.35		92.16		92.16		60.16				60.16		1.37		1.53		1.53

		60.26		82.35		92.16		92.16		60.26				60.26		1.37		1.53		1.53

		60.36		82.35		92.16		92.16		60.36				60.36		1.36		1.53		1.53

		60.47		82.35		92.16		92.16		60.47				60.47		1.36		1.52		1.52

		60.57		82.35		92.16		92.16		60.57				60.57		1.36		1.52		1.52

		60.67		82.35		92.16		92.16		60.67				60.67		1.36		1.52		1.52

		60.77		82.35		92.16		92.16		60.77				60.77		1.36		1.52		1.52

		60.87		82.35		92.16		92.16		60.87				60.87		1.35		1.51		1.51

		60.97		82.35		92.16		92.16		60.97				60.97		1.35		1.51		1.51

		61.07		82.35		92.16		92.16		61.07				61.07		1.35		1.51		1.51

		61.17		82.35		92.16		92.16		61.17				61.17		1.35		1.51		1.51

		61.27		82.35		92.16		92.16		61.27				61.27		1.34		1.5		1.5

		61.37		82.35		92.16		92.16		61.37				61.37		1.34		1.5		1.5

		61.47		82.35		92.16		92.16		61.47				61.47		1.34		1.5		1.5

		61.57		82.35		92.16		92.16		61.57				61.57		1.34		1.5		1.5

		61.67		82.35		92.16		92.16		61.67				61.67		1.34		1.49		1.49

		61.77		82.35		92.16		92.16		61.77				61.77		1.33		1.49		1.49

		61.87		82.35		92.16		92.16		61.87				61.87		1.33		1.49		1.49

		61.97		82.35		92.16		92.16		61.97				61.97		1.33		1.49		1.49

		62.07		82.35		92.16		92.16		62.07				62.07		1.33		1.48		1.48

		62.17		82.35		92.16		92.16		62.17				62.17		1.32		1.48		1.48

		62.27		82.35		92.16		92.16		62.27				62.27		1.32		1.48		1.48

		62.37		82.35		92.16		92.16		62.37				62.37		1.32		1.48		1.48

		62.47		82.35		92.16		92.16		62.47				62.47		1.32		1.48		1.48

		62.57		82.35		92.16		92.16		62.57				62.57		1.32		1.47		1.47

		62.67		82.35		92.16		92.16		62.67				62.67		1.31		1.47		1.47

		62.78		82.35		92.16		92.16		62.78				62.78		1.31		1.47		1.47

		62.88		82.35		92.16		92.16		62.88				62.88		1.31		1.47		1.47

		62.98		82.35		92.16		92.16		62.98				62.98		1.31		1.46		1.46

		63.08		82.35		92.16		92.16		63.08				63.08		1.31		1.46		1.46

		63.18		82.35		92.16		92.16		63.18				63.18		1.3		1.46		1.46

		63.28		82.35		92.16		92.16		63.28				63.28		1.3		1.46		1.46

		63.38		82.35		92.16		92.16		63.38				63.38		1.3		1.45		1.45

		63.48		82.35		92.16		92.16		63.48				63.48		1.3		1.45		1.45

		63.58		82.35		92.16		92.16		63.58				63.58		1.3		1.45		1.45

		63.68		82.35		92.16		92.16		63.68				63.68		1.29		1.45		1.45

		63.78		82.35		92.16		92.16		63.78				63.78		1.29		1.44		1.44

		63.88		82.35		92.16		92.16		63.88				63.88		1.29		1.44		1.44

		63.98		82.35		92.16		92.16		63.98				63.98		1.29		1.44		1.44

		64.08		82.35		92.16		92.16		64.08				64.08		1.29		1.44		1.44

		64.18		82.35		92.16		92.16		64.18				64.18		1.28		1.44		1.44

		64.28		82.35		92.16		92.16		64.28				64.28		1.28		1.43		1.43

		64.38		82.35		92.16		92.16		64.38				64.38		1.28		1.43		1.43

		64.48		82.35		92.16		92.16		64.48				64.48		1.28		1.43		1.43

		64.58		82.35		92.16		92.16		64.58				64.58		1.28		1.43		1.43

		64.68		82.35		92.16		92.16		64.68				64.68		1.27		1.42		1.42

		64.78		82.35		92.16		92.16		64.78				64.78		1.27		1.42		1.42

		64.88		82.35		92.16		92.16		64.88				64.88		1.27		1.42		1.42

		64.98		82.35		92.16		92.16		64.98				64.98		1.27		1.42		1.42

		65.09		82.35		92.16		92.16		65.09				65.09		1.27		1.42		1.42

		65.19		82.35		92.16		92.16		65.19				65.19		1.26		1.41		1.41

		65.29		82.35		92.16		92.16		65.29				65.29		1.26		1.41		1.41

		65.39		82.35		92.16		92.16		65.39				65.39		1.26		1.41		1.41

		65.49		82.35		92.16		92.16		65.49				65.49		1.26		1.41		1.41

		65.59		82.35		92.16		92.16		65.59				65.59		1.26		1.41		1.41

		65.69		82.35		92.16		92.16		65.69				65.69		1.25		1.4		1.4

		65.79		82.35		92.16		92.16		65.79				65.79		1.25		1.4		1.4

		65.89		82.35		92.16		92.16		65.89				65.89		1.25		1.4		1.4

		65.99		82.35		92.16		92.16		65.99				65.99		1.25		1.4		1.4

		66.09		82.35		92.16		92.16		66.09				66.09		1.25		1.39		1.39

		66.19		82.35		92.16		92.16		66.19				66.19		1.24		1.39		1.39

		66.29		82.35		92.16		92.16		66.29				66.29		1.24		1.39		1.39

		66.39		82.35		92.16		92.16		66.39				66.39		1.24		1.39		1.39

		66.49		82.35		92.16		92.16		66.49				66.49		1.24		1.39		1.39

		66.59		82.35		92.16		92.16		66.59				66.59		1.24		1.38		1.38

		66.69		82.35		92.16		92.16		66.69				66.69		1.23		1.38		1.38

		66.79		82.35		92.16		92.16		66.79				66.79		1.23		1.38		1.38

		66.89		82.35		92.16		92.16		66.89				66.89		1.23		1.38		1.38

		66.99		82.35		92.16		92.16		66.99				66.99		1.23		1.38		1.38

		67.09		82.35		92.16		92.16		67.09				67.09		1.23		1.37		1.37

		67.19		82.35		92.16		92.16		67.19				67.19		1.23		1.37		1.37

		67.3		82.35		92.16		92.16		67.3				67.3		1.22		1.37		1.37

		67.4		82.35		92.16		92.16		67.4				67.4		1.22		1.37		1.37

		67.5		82.35		92.16		92.16		67.5				67.5		1.22		1.37		1.37

		67.6		82.35		92.16		92.16		67.6				67.6		1.22		1.36		1.36

		67.7		82.35		92.16		92.16		67.7				67.7		1.22		1.36		1.36

		67.8		82.35		92.16		92.16		67.8				67.8		1.21		1.36		1.36

		67.9		82.35		92.16		92.16		67.9				67.9		1.21		1.36		1.36

		68		82.35		92.16		92.16		68				68		1.21		1.36		1.36

		68.1		82.35		92.16		92.16		68.1				68.1		1.21		1.35		1.35

		68.2		82.35		92.16		92.16		68.2				68.2		1.21		1.35		1.35

		68.3		82.35		92.16		92.16		68.3				68.3		1.21		1.35		1.35

		68.4		82.35		92.16		92.16		68.4				68.4		1.2		1.35		1.35

		68.5		82.35		92.16		92.16		68.5				68.5		1.2		1.35		1.35

		68.6		82.35		92.16		92.16		68.6				68.6		1.2		1.34		1.34

		68.7		82.35		92.16		92.16		68.7				68.7		1.2		1.34		1.34

		68.8		82.35		92.16		92.16		68.8				68.8		1.2		1.34		1.34

		68.9		82.35		92.16		92.16		68.9				68.9		1.2		1.34		1.34

		69		82.35		92.16		92.16		69				69		1.19		1.34		1.34

		69.1		82.35		92.16		92.16		69.1				69.1		1.19		1.33		1.33

		69.2		82.35		92.16		92.16		69.2				69.2		1.19		1.33		1.33

		69.3		82.35		92.16		92.16		69.3				69.3		1.19		1.33		1.33

		69.4		82.35		92.16		92.16		69.4				69.4		1.19		1.33		1.33

		69.5		82.35		92.16		92.16		69.5				69.5		1.18		1.33		1.33

		69.61		82.35		92.16		92.16		69.61				69.61		1.18		1.32		1.32

		69.71		82.35		92.16		92.16		69.71				69.71		1.18		1.32		1.32

		69.81		82.35		92.16		92.16		69.81				69.81		1.18		1.32		1.32

		69.91		82.35		92.16		92.16		69.91				69.91		1.18		1.32		1.32

		70.01		82.35		92.16		92.16		70.01				70.01		1.18		1.32		1.32

		70.11		82.35		92.16		92.16		70.11				70.11		1.17		1.31		1.31

		70.21		82.35		92.16		92.16		70.21				70.21		1.17		1.31		1.31

		70.31		82.35		92.16		92.16		70.31				70.31		1.17		1.31		1.31

		70.41		82.35		92.16		92.16		70.41				70.41		1.17		1.31		1.31

		70.51		82.35		92.16		92.16		70.51				70.51		1.17		1.31		1.31

		70.61		82.35		92.16		92.16		70.61				70.61		1.17		1.31		1.31

		70.71		82.35		92.16		92.16		70.71				70.71		1.16		1.3		1.3

		70.81		82.35		92.16		92.16		70.81				70.81		1.16		1.3		1.3

		70.91		82.35		92.16		92.16		70.91				70.91		1.16		1.3		1.3

		71.01		82.35		92.16		92.16		71.01				71.01		1.16		1.3		1.3

		71.11		82.35		92.16		92.16		71.11				71.11		1.16		1.3		1.3

		71.21		82.35		92.16		92.16		71.21				71.21		1.16		1.29		1.29

		71.31		82.35		92.16		92.16		71.31				71.31		1.15		1.29		1.29

		71.41		82.35		92.16		92.16		71.41				71.41		1.15		1.29		1.29

		71.51		82.35		92.16		92.16		71.51				71.51		1.15		1.29		1.29

		71.61		82.35		92.16		92.16		71.61				71.61		1.15		1.29		1.29

		71.71		82.35		92.16		92.16		71.71				71.71		1.15		1.29		1.29

		71.81		82.35		92.16		92.16		71.81				71.81		1.15		1.28		1.28

		71.92		82.35		92.16		92.16		71.92				71.92		1.15		1.28		1.28

		72.02		82.35		92.16		92.16		72.02				72.02		1.14		1.28		1.28

		72.12		82.35		92.16		92.16		72.12				72.12		1.14		1.28		1.28

		72.22		82.35		92.16		92.16		72.22				72.22		1.14		1.28		1.28

		72.32		82.35		92.16		92.16		72.32				72.32		1.14		1.27		1.27

		72.42		82.35		92.16		92.16		72.42				72.42		1.14		1.27		1.27

		72.52		82.35		92.16		92.16		72.52				72.52		1.14		1.27		1.27

		72.62		82.35		92.16		92.16		72.62				72.62		1.13		1.27		1.27

		72.72		82.35		92.16		92.16		72.72				72.72		1.13		1.27		1.27

		72.82		82.35		92.16		92.16		72.82				72.82		1.13		1.27		1.27

		72.92		82.35		92.16		92.16		72.92				72.92		1.13		1.26		1.26

		73.02		82.35		92.16		92.16		73.02				73.02		1.13		1.26		1.26

		73.12		82.35		92.16		92.16		73.12				73.12		1.13		1.26		1.26

		73.22		82.35		92.16		92.16		73.22				73.22		1.12		1.26		1.26

		73.32		82.35		92.16		92.16		73.32				73.32		1.12		1.26		1.26

		73.42		82.35		92.16		92.16		73.42				73.42		1.12		1.26		1.26

		73.52		82.35		92.16		92.16		73.52				73.52		1.12		1.25		1.25

		73.62		82.35		92.16		92.16		73.62				73.62		1.12		1.25		1.25

		73.72		82.35		92.16		92.16		73.72				73.72		1.12		1.25		1.25

		73.82		82.35		92.16		92.16		73.82				73.82		1.12		1.25		1.25

		73.92		82.35		92.16		92.16		73.92				73.92		1.11		1.25		1.25

		74.02		82.35		92.16		92.16		74.02				74.02		1.11		1.24		1.24

		74.13		82.35		92.16		92.16		74.13				74.13		1.11		1.24		1.24

		74.23		82.35		92.16		92.16		74.23				74.23		1.11		1.24		1.24

		74.33		82.35		92.16		92.16		74.33				74.33		1.11		1.24		1.24

		74.43		82.35		92.16		92.16		74.43				74.43		1.11		1.24		1.24

		74.53		82.35		92.16		92.16		74.53				74.53		1.11		1.24		1.24

		74.63		82.35		92.16		92.16		74.63				74.63		1.1		1.23		1.23

		74.73		82.35		92.16		92.16		74.73				74.73		1.1		1.23		1.23

		74.83		82.35		92.16		92.16		74.83				74.83		1.1		1.23		1.23

		74.93		82.35		92.16		92.16		74.93				74.93		1.1		1.23		1.23

		75.03		82.35		92.16		92.16		75.03				75.03		1.1		1.23		1.23

		75.13		82.35		92.16		92.16		75.13				75.13		1.1		1.23		1.23

		75.23		82.35		92.16		92.16		75.23				75.23		1.09		1.23		1.23

		75.33		82.35		92.16		92.16		75.33				75.33		1.09		1.22		1.22

		75.43		82.35		92.16		92.16		75.43				75.43		1.09		1.22		1.22

		75.53		82.35		92.16		92.16		75.53				75.53		1.09		1.22		1.22

		75.63		82.35		92.16		92.16		75.63				75.63		1.09		1.22		1.22

		75.73		82.35		92.16		92.16		75.73				75.73		1.09		1.22		1.22

		75.83		82.35		92.16		92.16		75.83				75.83		1.09		1.22		1.22

		75.93		82.35		92.16		92.16		75.93				75.93		1.08		1.21		1.21

		76.03		82.35		92.16		92.16		76.03				76.03		1.08		1.21		1.21

		76.13		82.35		92.16		92.16		76.13				76.13		1.08		1.21		1.21

		76.23		82.35		92.16		92.16		76.23				76.23		1.08		1.21		1.21

		76.33		82.35		92.16		92.16		76.33				76.33		1.08		1.21		1.21

		76.44		82.35		92.16		92.16		76.44				76.44		1.08		1.21		1.21

		76.54		82.35		92.16		92.16		76.54				76.54		1.08		1.2		1.2

		76.64		82.35		92.16		92.16		76.64				76.64		1.07		1.2		1.2

		76.74		82.35		92.16		92.16		76.74				76.74		1.07		1.2		1.2

		76.84		82.35		92.16		92.16		76.84				76.84		1.07		1.2		1.2

		76.94		82.35		92.16		92.16		76.94				76.94		1.07		1.2		1.2

		77.04		82.35		92.16		92.16		77.04				77.04		1.07		1.2		1.2

		77.14		82.35		92.16		92.16		77.14				77.14		1.07		1.19		1.19

		77.24		82.35		92.16		92.16		77.24				77.24		1.07		1.19		1.19

		77.34		82.35		92.16		92.16		77.34				77.34		1.06		1.19		1.19

		77.44		82.35		92.16		92.16		77.44				77.44		1.06		1.19		1.19

		77.54		82.35		92.16		92.16		77.54				77.54		1.06		1.19		1.19

		77.64		82.35		92.16		92.16		77.64				77.64		1.06		1.19		1.19

		77.74		82.35		92.16		92.16		77.74				77.74		1.06		1.19		1.19

		77.84		82.35		92.16		92.16		77.84				77.84		1.06		1.18		1.18

		77.94		82.35		92.16		92.16		77.94				77.94		1.06		1.18		1.18

		78.04		82.35		92.16		92.16		78.04				78.04		1.06		1.18		1.18

		78.14		82.35		92.16		92.16		78.14				78.14		1.05		1.18		1.18

		78.24		82.35		92.16		92.16		78.24				78.24		1.05		1.18		1.18

		78.34		82.35		92.16		92.16		78.34				78.34		1.05		1.18		1.18

		78.44		82.35		92.16		92.16		78.44				78.44		1.05		1.17		1.17

		78.54		82.35		92.16		92.16		78.54				78.54		1.05		1.17		1.17

		78.64		82.35		92.16		92.16		78.64				78.64		1.05		1.17		1.17

		78.75		82.35		92.16		92.16		78.75				78.75		1.05		1.17		1.17

		78.85		82.35		92.16		92.16		78.85				78.85		1.04		1.17		1.17

		78.95		82.35		92.16		92.16		78.95				78.95		1.04		1.17		1.17

		79.05		82.35		92.16		92.16		79.05				79.05		1.04		1.17		1.17

		79.15		82.35		92.16		92.16		79.15				79.15		1.04		1.16		1.16

		79.25		82.35		92.16		92.16		79.25				79.25		1.04		1.16		1.16

		79.35		82.35		92.16		92.16		79.35				79.35		1.04		1.16		1.16

		79.45		82.35		92.16		92.16		79.45				79.45		1.04		1.16		1.16

		79.55		82.35		92.16		92.16		79.55				79.55		1.04		1.16		1.16

		79.65		82.35		92.16		92.16		79.65				79.65		1.03		1.16		1.16

		79.75		82.35		92.16		92.16		79.75				79.75		1.03		1.16		1.16

		79.85		82.35		92.16		92.16		79.85				79.85		1.03		1.15		1.15

		79.95		82.35		92.16		92.16		79.95				79.95		1.03		1.15		1.15

		80.05		82.35		92.16		92.16		80.05				80.05		1.03		1.15		1.15

		80.15		82.35		92.16		92.16		80.15				80.15		1.03		1.15		1.15

		80.25		82.35		92.16		92.16		80.25				80.25		1.03		1.15		1.15

		80.35		82.35		92.16		92.16		80.35				80.35		1.02		1.15		1.15

		80.45		82.35		92.16		92.16		80.45				80.45		1.02		1.15		1.15

		80.55		82.35		92.16		92.16		80.55				80.55		1.02		1.14		1.14

		80.65		82.35		92.16		92.16		80.65				80.65		1.02		1.14		1.14

		80.75		82.35		92.16		92.16		80.75				80.75		1.02		1.14		1.14

		80.85		82.35		92.16		92.16		80.85				80.85		1.02		1.14		1.14

		80.96		82.35		92.16		92.16		80.96				80.96		1.02		1.14		1.14

		81.06		82.35		92.16		92.16		81.06				81.06		1.02		1.14		1.14

		81.16		82.35		92.16		92.16		81.16				81.16		1.01		1.14		1.14

		81.26		82.35		92.16		92.16		81.26				81.26		1.01		1.13		1.13

		81.36		82.35		92.16		92.16		81.36				81.36		1.01		1.13		1.13

		81.46		82.35		92.16		92.16		81.46				81.46		1.01		1.13		1.13

		81.56		82.35		92.16		92.16		81.56				81.56		1.01		1.13		1.13

		81.66		82.35		92.16		92.16		81.66				81.66		1.01		1.13		1.13

		81.76		82.35		92.16		92.16		81.76				81.76		1.01		1.13		1.13

		81.86		82.35		92.16		92.16		81.86				81.86		1.01		1.13		1.13

		81.96		82.35		92.16		92.16		81.96				81.96		1		1.12		1.12

		82.06		82.35		92.16		92.16		82.06				82.06		1		1.12		1.12

		82.16		82.35		92.16		92.16		82.16				82.16		1		1.12		1.12

		82.26		82.35		92.16		92.16		82.26				82.26		1		1.12		1.12

		82.36		82.35		92.16		92.16		82.36				82.36		1		1.12		1.12

		82.46		82.35		92.16		92.16		82.46				82.46		1		1.12		1.12

		82.56		82.35		92.16		92.16		82.56				82.56		1		1.12		1.12

		82.66		82.35		92.16		92.16		82.66				82.66		1		1.11		1.11

		82.76		82.35		92.16		92.16		82.76				82.76		1		1.11		1.11

		82.86		82.35		92.16		92.16		82.86				82.86		0.99		1.11		1.11

		82.96		82.35		92.16		92.16		82.96				82.96		0.99		1.11		1.11

		83.06		82.35		92.16		92.16		83.06				83.06		0.99		1.11		1.11

		83.16		82.35		92.16		92.16		83.16				83.16		0.99		1.11		1.11

		83.27		82.35		92.16		92.16		83.27				83.27		0.99		1.11		1.11

		83.37		82.35		92.16		92.16		83.37				83.37		0.99		1.11		1.11

		83.47		82.35		92.16		92.16		83.47				83.47		0.99		1.1		1.1

		83.57		82.35		92.16		92.16		83.57				83.57		0.99		1.1		1.1

		83.67		82.35		92.16		92.16		83.67				83.67		0.98		1.1		1.1

		83.77		82.35		92.16		92.16		83.77				83.77		0.98		1.1		1.1

		83.87		82.35		92.16		92.16		83.87				83.87		0.98		1.1		1.1

		83.97		82.35		92.16		92.16		83.97				83.97		0.98		1.1		1.1

		84.07		82.35		92.16		92.16		84.07				84.07		0.98		1.1		1.1

		84.17		82.35		92.16		92.16		84.17				84.17		0.98		1.09		1.09

		84.27		82.35		92.16		92.16		84.27				84.27		0.98		1.09		1.09

		84.37		82.35		92.16		92.16		84.37				84.37		0.98		1.09		1.09

		84.47		82.35		92.16		92.16		84.47				84.47		0.97		1.09		1.09

		84.57		82.35		92.16		92.16		84.57				84.57		0.97		1.09		1.09

		84.67		82.35		92.16		92.16		84.67				84.67		0.97		1.09		1.09

		84.77		82.35		92.16		92.16		84.77				84.77		0.97		1.09		1.09

		84.87		82.35		92.16		92.16		84.87				84.87		0.97		1.09		1.09

		84.97		82.35		92.16		92.16		84.97				84.97		0.97		1.08		1.08

		85.07		82.35		92.16		92.16		85.07				85.07		0.97		1.08		1.08

		85.17		82.35		92.16		92.16		85.17				85.17		0.97		1.08		1.08

		85.27		82.35		92.16		92.16		85.27				85.27		0.97		1.08		1.08

		85.37		82.35		92.16		92.16		85.37				85.37		0.96		1.08		1.08

		85.47		82.35		92.16		92.16		85.47				85.47		0.96		1.08		1.08

		85.58		82.35		92.16		92.16		85.58				85.58		0.96		1.08		1.08

		85.68		82.35		92.16		92.16		85.68				85.68		0.96		1.08		1.08

		85.78		82.35		92.16		92.16		85.78				85.78		0.96		1.07		1.07

		85.88		82.35		92.16		92.16		85.88				85.88		0.96		1.07		1.07

		85.98		82.35		92.16		92.16		85.98				85.98		0.96		1.07		1.07

		86.08		82.35		92.16		92.16		86.08				86.08		0.96		1.07		1.07

		86.18		82.35		92.16		92.16		86.18				86.18		0.96		1.07		1.07

		86.28		82.35		92.16		92.16		86.28				86.28		0.95		1.07		1.07

		86.38		82.35		92.16		92.16		86.38				86.38		0.95		1.07		1.07

		86.48		82.35		92.16		92.16		86.48				86.48		0.95		1.07		1.07

		86.58		82.35		92.16		92.16		86.58				86.58		0.95		1.06		1.06

		86.68		82.35		92.16		92.16		86.68				86.68		0.95		1.06		1.06

		86.78		82.35		92.16		92.16		86.78				86.78		0.95		1.06		1.06

		86.88		82.35		92.16		92.16		86.88				86.88		0.95		1.06		1.06

		86.98		82.35		92.16		92.16		86.98				86.98		0.95		1.06		1.06

		87.08		82.35		92.16		92.16		87.08				87.08		0.95		1.06		1.06

		87.18		82.35		92.16		92.16		87.18				87.18		0.94		1.06		1.06

		87.28		82.35		92.16		92.16		87.28				87.28		0.94		1.06		1.06

		87.38		82.35		92.16		92.16		87.38				87.38		0.94		1.05		1.05

		87.48		82.35		92.16		92.16		87.48				87.48		0.94		1.05		1.05

		87.58		82.35		92.16		92.16		87.58				87.58		0.94		1.05		1.05

		87.68		82.35		92.16		92.16		87.68				87.68		0.94		1.05		1.05

		87.78		82.35		92.16		92.16		87.78				87.78		0.94		1.05		1.05

		87.89		82.35		92.16		92.16		87.89				87.89		0.94		1.05		1.05

		87.99		82.35		92.16		92.16		87.99				87.99		0.94		1.05		1.05

		88.09		82.35		92.16		92.16		88.09				88.09		0.93		1.05		1.05

		88.19		82.35		92.16		92.16		88.19				88.19		0.93		1.05		1.05

		88.29		82.35		92.16		92.16		88.29				88.29		0.93		1.04		1.04

		88.39		82.35		92.16		92.16		88.39				88.39		0.93		1.04		1.04

		88.49		82.35		92.16		92.16		88.49				88.49		0.93		1.04		1.04

		88.59		82.35		92.16		92.16		88.59				88.59		0.93		1.04		1.04

		88.69		82.35		92.16		92.16		88.69				88.69		0.93		1.04		1.04

		88.79		82.35		92.16		92.16		88.79				88.79		0.93		1.04		1.04

		88.89		82.35		92.16		92.16		88.89				88.89		0.93		1.04		1.04

		88.99		82.35		92.16		92.16		88.99				88.99		0.93		1.04		1.04

		89.09		82.35		92.16		92.16		89.09				89.09		0.92		1.03		1.03

		89.19		82.35		92.16		92.16		89.19				89.19		0.92		1.03		1.03

		89.29		82.35		92.16		92.16		89.29				89.29		0.92		1.03		1.03

		89.39		82.35		92.16		92.16		89.39				89.39		0.92		1.03		1.03

		89.49		82.35		92.16		92.16		89.49				89.49		0.92		1.03		1.03

		89.59		82.35		92.16		92.16		89.59				89.59		0.92		1.03		1.03

		89.69		82.35		92.16		92.16		89.69				89.69		0.92		1.03		1.03

		89.79		82.35		92.16		92.16		89.79				89.79		0.92		1.03		1.03

		89.89		82.35		92.16		92.16		89.89				89.89		0.92		1.03		1.03

		89.99		82.35		92.16		92.16		89.99				89.99		0.92		1.02		1.02

		90.1		82.35		92.16		92.16		90.1				90.1		0.91		1.02		1.02

		90.2		82.35		92.16		92.16		90.2				90.2		0.91		1.02		1.02

		90.3		82.35		92.16		92.16		90.3				90.3		0.91		1.02		1.02

		90.4		82.35		92.16		92.16		90.4				90.4		0.91		1.02		1.02

		90.5		82.35		92.16		92.16		90.5				90.5		0.91		1.02		1.02

		90.6		82.35		92.16		92.16		90.6				90.6		0.91		1.02		1.02

		90.7		82.35		92.16		92.16		90.7				90.7		0.91		1.02		1.02

		90.8		82.35		92.16		92.16		90.8				90.8		0.91		1.01		1.01

		90.9		82.35		92.16		92.16		90.9				90.9		0.91		1.01		1.01

		91		82.35		92.16		92.16		91				91		0.9		1.01		1.01

		91.1		82.35		92.16		92.16		91.1				91.1		0.9		1.01		1.01

		91.2		82.35		92.16		92.16		91.2				91.2		0.9		1.01		1.01

		91.3		82.35		92.16		92.16		91.3				91.3		0.9		1.01		1.01

		91.4		82.35		92.16		92.16		91.4				91.4		0.9		1.01		1.01

		91.5		82.35		92.16		92.16		91.5				91.5		0.9		1.01		1.01

		91.6		82.35		92.16		92.16		91.6				91.6		0.9		1.01		1.01

		91.7		82.35		92.16		92.16		91.7				91.7		0.9		1		1

		91.8		82.35		92.16		92.16		91.8				91.8		0.9		1		1

		91.9		82.35		92.16		92.16		91.9				91.9		0.9		1		1

		92		82.35		92.16		92.16		92				92		0.9		1		1

		92.1		82.35		92.16		92.16		92.1				92.1		0.89		1		1

		92.2		82.35		92.16		92.16		92.2				92.2		0.89		1		1

		92.3		82.35		92.16		92.16		92.3				92.3		0.89		1		1

		92.41		82.35		92.16		92.16		92.41				92.41		0.89		1		1

		92.51		82.35		92.16		92.16		92.51				92.51		0.89		1		1

		92.61		82.35		92.16		92.16		92.61				92.61		0.89		1		1

		92.71		82.35		92.16		92.16		92.71				92.71		0.89		0.99		0.99

		92.81		82.35		92.16		92.16		92.81				92.81		0.89		0.99		0.99

		92.91		82.35		92.16		92.16		92.91				92.91		0.89		0.99		0.99

		93.01		82.35		92.16		92.16		93.01				93.01		0.89		0.99		0.99

		93.11		82.35		92.16		92.16		93.11				93.11		0.88		0.99		0.99

		93.21		82.35		92.16		92.16		93.21				93.21		0.88		0.99		0.99

		93.31		82.35		92.16		92.16		93.31				93.31		0.88		0.99		0.99

		93.41		82.35		92.16		92.16		93.41				93.41		0.88		0.99		0.99

		93.51		82.35		92.16		92.16		93.51				93.51		0.88		0.99		0.99

		93.61		82.35		92.16		92.16		93.61				93.61		0.88		0.98		0.98

		93.71		82.35		92.16		92.16		93.71				93.71		0.88		0.98		0.98

		93.81		82.35		92.16		92.16		93.81				93.81		0.88		0.98		0.98

		93.91		82.35		92.16		92.16		93.91				93.91		0.88		0.98		0.98

		94.01		82.35		92.16		92.16		94.01				94.01		0.88		0.98		0.98

		94.11		82.35		92.16		92.16		94.11				94.11		0.88		0.98		0.98

		94.21		82.35		92.16		92.16		94.21				94.21		0.87		0.98		0.98

		94.31		82.35		92.16		92.16		94.31				94.31		0.87		0.98		0.98

		94.41		82.35		92.16		92.16		94.41				94.41		0.87		0.98		0.98

		94.51		82.35		92.16		92.16		94.51				94.51		0.87		0.98		0.98

		94.61		82.35		92.16		92.16		94.61				94.61		0.87		0.97		0.97

		94.72		82.35		92.16		92.16		94.72				94.72		0.87		0.97		0.97

		94.82		82.35		92.16		92.16		94.82				94.82		0.87		0.97		0.97

		94.92		82.35		92.16		92.16		94.92				94.92		0.87		0.97		0.97

		95.02		82.35		92.16		92.16		95.02				95.02		0.87		0.97		0.97

		95.12		82.35		92.16		92.16		95.12				95.12		0.87		0.97		0.97

		95.22		82.35		92.16		92.16		95.22				95.22		0.86		0.97		0.97

		95.32		82.35		92.16		92.16		95.32				95.32		0.86		0.97		0.97

		95.42		82.35		92.16		92.16		95.42				95.42		0.86		0.97		0.97

		95.52		82.35		92.16		92.16		95.52				95.52		0.86		0.96		0.96

		95.62		82.35		92.16		92.16		95.62				95.62		0.86		0.96		0.96

		95.72		82.35		92.16		92.16		95.72				95.72		0.86		0.96		0.96

		95.82		82.35		92.16		92.16		95.82				95.82		0.86		0.96		0.96

		95.92		82.35		92.16		92.16		95.92				95.92		0.86		0.96		0.96

		96.02		82.35		92.16		92.16		96.02				96.02		0.86		0.96		0.96

		96.12		82.35		92.16		92.16		96.12				96.12		0.86		0.96		0.96

		96.22		82.35		92.16		92.16		96.22				96.22		0.86		0.96		0.96

		96.32		82.35		92.16		92.16		96.32				96.32		0.85		0.96		0.96

		96.42		82.35		92.16		92.16		96.42				96.42		0.85		0.96		0.96

		96.52		82.35		92.16		92.16		96.52				96.52		0.85		0.95		0.95

		96.62		82.35		92.16		92.16		96.62				96.62		0.85		0.95		0.95

		96.72		82.35		92.16		92.16		96.72				96.72		0.85		0.95		0.95

		96.82		82.35		92.16		92.16		96.82				96.82		0.85		0.95		0.95

		96.93		82.35		92.16		92.16		96.93				96.93		0.85		0.95		0.95

		97.03		82.35		92.16		92.16		97.03				97.03		0.85		0.95		0.95

		97.13		82.35		92.16		92.16		97.13				97.13		0.85		0.95		0.95

		97.23		82.35		92.16		92.16		97.23				97.23		0.85		0.95		0.95

		97.33		82.35		92.16		92.16		97.33				97.33		0.85		0.95		0.95

		97.43		82.35		92.16		92.16		97.43				97.43		0.85		0.95		0.95

		97.53		82.35		92.16		92.16		97.53				97.53		0.84		0.94		0.94

		97.63		82.35		92.16		92.16		97.63				97.63		0.84		0.94		0.94

		97.73		82.35		92.16		92.16		97.73				97.73		0.84		0.94		0.94

		97.83		82.35		92.16		92.16		97.83				97.83		0.84		0.94		0.94

		97.93		82.35		92.16		92.16		97.93				97.93		0.84		0.94		0.94

		98.03		82.35		92.16		92.16		98.03				98.03		0.84		0.94		0.94

		98.13		82.35		92.16		92.16		98.13				98.13		0.84		0.94		0.94

		98.23		82.35		92.16		92.16		98.23				98.23		0.84		0.94		0.94

		98.33		82.35		92.16		92.16		98.33				98.33		0.84		0.94		0.94

		98.43		82.35		92.16		92.16		98.43				98.43		0.84		0.94		0.94

		98.53		82.35		92.16		92.16		98.53				98.53		0.84		0.94		0.94

		98.63		82.35		92.16		92.16		98.63				98.63		0.83		0.93		0.93

		98.73		82.35		92.16		92.16		98.73				98.73		0.83		0.93		0.93

		98.83		82.35		92.16		92.16		98.83				98.83		0.83		0.93		0.93

		98.93		82.35		92.16		92.16		98.93				98.93		0.83		0.93		0.93

		99.03		82.35		92.16		92.16		99.03				99.03		0.83		0.93		0.93

		99.13		82.35		92.16		92.16		99.13				99.13		0.83		0.93		0.93

		99.24		82.35		92.16		92.16		99.24				99.24		0.83		0.93		0.93

		99.34		82.35		92.16		92.16		99.34				99.34		0.83		0.93		0.93

		99.44		82.35		92.16		92.16		99.44				99.44		0.83		0.93		0.93

		99.54		82.35		92.16		92.16		99.54				99.54		0.83		0.93		0.93

		99.64		82.35		92.16		92.16		99.64				99.64		0.83		0.92		0.92

		99.74		82.35		92.16		92.16		99.74				99.74		0.83		0.92		0.92

		99.84		82.35		92.16		92.16		99.84				99.84		0.82		0.92		0.92

		99.94		82.35		92.16		92.16		99.94				99.94		0.82		0.92		0.92
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		24.01		24.01		24.01		24.01

		24.11		24.11		24.11		24.11

		24.21		24.21		24.21		24.21

		24.31		24.31		24.31		24.31

		24.41		24.41		24.41		24.41

		24.51		24.51		24.51		24.51

		24.61		24.61		24.61		24.61

		24.71		24.71		24.71		24.71

		24.81		24.81		24.81		24.81

		24.91		24.91		24.91		24.91

		25.01		25.01		25.01		25.01

		25.11		25.11		25.11		25.11

		25.21		25.21		25.21		25.21

		25.31		25.31		25.31		25.31

		25.41		25.41		25.41		25.41

		25.51		25.51		25.51		25.51

		25.61		25.61		25.61		25.61

		25.71		25.71		25.71		25.71

		25.81		25.81		25.81		25.81

		25.91		25.91		25.91		25.91

		26.01		26.01		26.01		26.01

		26.11		26.11		26.11		26.11

		26.21		26.21		26.21		26.21

		26.32		26.32		26.32		26.32

		26.42		26.42		26.42		26.42

		26.52		26.52		26.52		26.52

		26.62		26.62		26.62		26.62

		26.72		26.72		26.72		26.72

		26.82		26.82		26.82		26.82

		26.92		26.92		26.92		26.92

		27.02		27.02		27.02		27.02

		27.12		27.12		27.12		27.12

		27.22		27.22		27.22		27.22

		27.32		27.32		27.32		27.32

		27.42		27.42		27.42		27.42

		27.52		27.52		27.52		27.52

		27.62		27.62		27.62		27.62

		27.72		27.72		27.72		27.72

		27.82		27.82		27.82		27.82

		27.92		27.92		27.92		27.92

		28.02		28.02		28.02		28.02

		28.12		28.12		28.12		28.12

		28.22		28.22		28.22		28.22

		28.32		28.32		28.32		28.32

		28.42		28.42		28.42		28.42

		28.53		28.53		28.53		28.53

		28.63		28.63		28.63		28.63

		28.73		28.73		28.73		28.73

		28.83		28.83		28.83		28.83

		28.93		28.93		28.93		28.93

		29.03		29.03		29.03		29.03

		29.13		29.13		29.13		29.13

		29.23		29.23		29.23		29.23

		29.33		29.33		29.33		29.33

		29.43		29.43		29.43		29.43

		29.53		29.53		29.53		29.53

		29.63		29.63		29.63		29.63

		29.73		29.73		29.73		29.73

		29.83		29.83		29.83		29.83

		29.93		29.93		29.93		29.93

		30.03		30.03		30.03		30.03

		30.13		30.13		30.13		30.13

		30.23		30.23		30.23		30.23

		30.33		30.33		30.33		30.33

		30.43		30.43		30.43		30.43

		30.53		30.53		30.53		30.53

		30.63		30.63		30.63		30.63

		30.73		30.73		30.73		30.73

		30.84		30.84		30.84		30.84

		30.94		30.94		30.94		30.94

		31.04		31.04		31.04		31.04

		31.14		31.14		31.14		31.14

		31.24		31.24		31.24		31.24

		31.34		31.34		31.34		31.34

		31.44		31.44		31.44		31.44

		31.54		31.54		31.54		31.54

		31.64		31.64		31.64		31.64

		31.74		31.74		31.74		31.74

		31.84		31.84		31.84		31.84

		31.94		31.94		31.94		31.94

		32.04		32.04		32.04		32.04

		32.14		32.14		32.14		32.14

		32.24		32.24		32.24		32.24

		32.34		32.34		32.34		32.34

		32.44		32.44		32.44		32.44

		32.54		32.54		32.54		32.54

		32.64		32.64		32.64		32.64

		32.74		32.74		32.74		32.74

		32.84		32.84		32.84		32.84

		32.94		32.94		32.94		32.94

		33.04		33.04		33.04		33.04

		33.15		33.15		33.15		33.15

		33.25		33.25		33.25		33.25

		33.35		33.35		33.35		33.35

		33.45		33.45		33.45		33.45

		33.55		33.55		33.55		33.55

		33.65		33.65		33.65		33.65

		33.75		33.75		33.75		33.75

		33.85		33.85		33.85		33.85

		33.95		33.95		33.95		33.95

		34.05		34.05		34.05		34.05

		34.15		34.15		34.15		34.15

		34.25		34.25		34.25		34.25

		34.35		34.35		34.35		34.35

		34.45		34.45		34.45		34.45

		34.55		34.55		34.55		34.55

		34.65		34.65		34.65		34.65

		34.75		34.75		34.75		34.75

		34.85		34.85		34.85		34.85

		34.95		34.95		34.95		34.95

		35.05		35.05		35.05		35.05

		35.15		35.15		35.15		35.15

		35.25		35.25		35.25		35.25

		35.36		35.36		35.36		35.36

		35.46		35.46		35.46		35.46

		35.56		35.56		35.56		35.56

		35.66		35.66		35.66		35.66

		35.76		35.76		35.76		35.76

		35.86		35.86		35.86		35.86

		35.96		35.96		35.96		35.96

		36.06		36.06		36.06		36.06

		36.16		36.16		36.16		36.16

		36.26		36.26		36.26		36.26

		36.36		36.36		36.36		36.36

		36.46		36.46		36.46		36.46

		36.56		36.56		36.56		36.56

		36.66		36.66		36.66		36.66

		36.76		36.76		36.76		36.76

		36.86		36.86		36.86		36.86

		36.96		36.96		36.96		36.96

		37.06		37.06		37.06		37.06

		37.16		37.16		37.16		37.16

		37.26		37.26		37.26		37.26

		37.36		37.36		37.36		37.36

		37.46		37.46		37.46		37.46

		37.56		37.56		37.56		37.56

		37.67		37.67		37.67		37.67

		37.77		37.77		37.77		37.77

		37.87		37.87		37.87		37.87

		37.97		37.97		37.97		37.97

		38.07		38.07		38.07		38.07

		38.17		38.17		38.17		38.17

		38.27		38.27		38.27		38.27

		38.37		38.37		38.37		38.37

		38.47		38.47		38.47		38.47

		38.57		38.57		38.57		38.57

		38.67		38.67		38.67		38.67

		38.77		38.77		38.77		38.77

		38.87		38.87		38.87		38.87

		38.97		38.97		38.97		38.97

		39.07		39.07		39.07		39.07

		39.17		39.17		39.17		39.17

		39.27		39.27		39.27		39.27

		39.37		39.37		39.37		39.37

		39.47		39.47		39.47		39.47

		39.57		39.57		39.57		39.57

		39.67		39.67		39.67		39.67

		39.77		39.77		39.77		39.77

		39.87		39.87		39.87		39.87

		39.98		39.98		39.98		39.98

		40.08		40.08		40.08		40.08

		40.18		40.18		40.18		40.18

		40.28		40.28		40.28		40.28

		40.38		40.38		40.38		40.38

		40.48		40.48		40.48		40.48

		40.58		40.58		40.58		40.58

		40.68		40.68		40.68		40.68

		40.78		40.78		40.78		40.78

		40.88		40.88		40.88		40.88

		40.98		40.98		40.98		40.98

		41.08		41.08		41.08		41.08

		41.18		41.18		41.18		41.18

		41.28		41.28		41.28		41.28

		41.38		41.38		41.38		41.38

		41.48		41.48		41.48		41.48

		41.58		41.58		41.58		41.58

		41.68		41.68		41.68		41.68

		41.78		41.78		41.78		41.78

		41.88		41.88		41.88		41.88

		41.98		41.98		41.98		41.98

		42.08		42.08		42.08		42.08

		42.18		42.18		42.18		42.18

		42.29		42.29		42.29		42.29

		42.39		42.39		42.39		42.39

		42.49		42.49		42.49		42.49

		42.59		42.59		42.59		42.59

		42.69		42.69		42.69		42.69

		42.79		42.79		42.79		42.79

		42.89		42.89		42.89		42.89

		42.99		42.99		42.99		42.99

		43.09		43.09		43.09		43.09

		43.19		43.19		43.19		43.19

		43.29		43.29		43.29		43.29

		43.39		43.39		43.39		43.39

		43.49		43.49		43.49		43.49

		43.59		43.59		43.59		43.59

		43.69		43.69		43.69		43.69

		43.79		43.79		43.79		43.79

		43.89		43.89		43.89		43.89

		43.99		43.99		43.99		43.99

		44.09		44.09		44.09		44.09

		44.19		44.19		44.19		44.19

		44.29		44.29		44.29		44.29

		44.39		44.39		44.39		44.39

		44.5		44.5		44.5		44.5

		44.6		44.6		44.6		44.6

		44.7		44.7		44.7		44.7

		44.8		44.8		44.8		44.8

		44.9		44.9		44.9		44.9

		45		45		45		45

		45.1		45.1		45.1		45.1

		45.2		45.2		45.2		45.2

		45.3		45.3		45.3		45.3

		45.4		45.4		45.4		45.4

		45.5		45.5		45.5		45.5

		45.6		45.6		45.6		45.6

		45.7		45.7		45.7		45.7

		45.8		45.8		45.8		45.8

		45.9		45.9		45.9		45.9

		46		46		46		46

		46.1		46.1		46.1		46.1

		46.2		46.2		46.2		46.2

		46.3		46.3		46.3		46.3

		46.4		46.4		46.4		46.4

		46.5		46.5		46.5		46.5

		46.6		46.6		46.6		46.6

		46.7		46.7		46.7		46.7

		46.81		46.81		46.81		46.81

		46.91		46.91		46.91		46.91

		47.01		47.01		47.01		47.01

		47.11		47.11		47.11		47.11

		47.21		47.21		47.21		47.21

		47.31		47.31		47.31		47.31

		47.41		47.41		47.41		47.41

		47.51		47.51		47.51		47.51

		47.61		47.61		47.61		47.61

		47.71		47.71		47.71		47.71

		47.81		47.81		47.81		47.81

		47.91		47.91		47.91		47.91

		48.01		48.01		48.01		48.01

		48.11		48.11		48.11		48.11

		48.21		48.21		48.21		48.21

		48.31		48.31		48.31		48.31

		48.41		48.41		48.41		48.41

		48.51		48.51		48.51		48.51

		48.61		48.61		48.61		48.61

		48.71		48.71		48.71		48.71

		48.81		48.81		48.81		48.81

		48.91		48.91		48.91		48.91

		49.01		49.01		49.01		49.01

		49.12		49.12		49.12		49.12

		49.22		49.22		49.22		49.22

		49.32		49.32		49.32		49.32

		49.42		49.42		49.42		49.42

		49.52		49.52		49.52		49.52

		49.62		49.62		49.62		49.62

		49.72		49.72		49.72		49.72

		49.82		49.82		49.82		49.82

		49.92		49.92		49.92		49.92

		50.02		50.02		50.02		50.02

		50.12		50.12		50.12		50.12

		50.22		50.22		50.22		50.22

		50.32		50.32		50.32		50.32

		50.42		50.42		50.42		50.42

		50.52		50.52		50.52		50.52

		50.62		50.62		50.62		50.62

		50.72		50.72		50.72		50.72

		50.82		50.82		50.82		50.82

		50.92		50.92		50.92		50.92

		51.02		51.02		51.02		51.02

		51.12		51.12		51.12		51.12

		51.22		51.22		51.22		51.22

		51.33		51.33		51.33		51.33

		51.43		51.43		51.43		51.43

		51.53		51.53		51.53		51.53

		51.63		51.63		51.63		51.63

		51.73		51.73		51.73		51.73

		51.83		51.83		51.83		51.83

		51.93		51.93		51.93		51.93

		52.03		52.03		52.03		52.03

		52.13		52.13		52.13		52.13

		52.23		52.23		52.23		52.23

		52.33		52.33		52.33		52.33

		52.43		52.43		52.43		52.43

		52.53		52.53		52.53		52.53

		52.63		52.63		52.63		52.63

		52.73		52.73		52.73		52.73

		52.83		52.83		52.83		52.83

		52.93		52.93		52.93		52.93

		53.03		53.03		53.03		53.03

		53.13		53.13		53.13		53.13

		53.23		53.23		53.23		53.23

		53.33		53.33		53.33		53.33

		53.43		53.43		53.43		53.43

		53.53		53.53		53.53		53.53

		53.64		53.64		53.64		53.64

		53.74		53.74		53.74		53.74

		53.84		53.84		53.84		53.84

		53.94		53.94		53.94		53.94

		54.04		54.04		54.04		54.04

		54.14		54.14		54.14		54.14

		54.24		54.24		54.24		54.24

		54.34		54.34		54.34		54.34

		54.44		54.44		54.44		54.44

		54.54		54.54		54.54		54.54

		54.64		54.64		54.64		54.64

		54.74		54.74		54.74		54.74

		54.84		54.84		54.84		54.84

		54.94		54.94		54.94		54.94

		55.04		55.04		55.04		55.04

		55.14		55.14		55.14		55.14

		55.24		55.24		55.24		55.24

		55.34		55.34		55.34		55.34

		55.44		55.44		55.44		55.44

		55.54		55.54		55.54		55.54

		55.64		55.64		55.64		55.64

		55.74		55.74		55.74		55.74

		55.84		55.84		55.84		55.84

		55.95		55.95		55.95		55.95

		56.05		56.05		56.05		56.05

		56.15		56.15		56.15		56.15

		56.25		56.25		56.25		56.25

		56.35		56.35		56.35		56.35

		56.45		56.45		56.45		56.45

		56.55		56.55		56.55		56.55

		56.65		56.65		56.65		56.65

		56.75		56.75		56.75		56.75

		56.85		56.85		56.85		56.85

		56.95		56.95		56.95		56.95

		57.05		57.05		57.05		57.05

		57.15		57.15		57.15		57.15

		57.25		57.25		57.25		57.25

		57.35		57.35		57.35		57.35

		57.45		57.45		57.45		57.45

		57.55		57.55		57.55		57.55

		57.65		57.65		57.65		57.65

		57.75		57.75		57.75		57.75

		57.85		57.85		57.85		57.85

		57.95		57.95		57.95		57.95

		58.05		58.05		58.05		58.05

		58.16		58.16		58.16		58.16

		58.26		58.26		58.26		58.26

		58.36		58.36		58.36		58.36

		58.46		58.46		58.46		58.46

		58.56		58.56		58.56		58.56

		58.66		58.66		58.66		58.66

		58.76		58.76		58.76		58.76

		58.86		58.86		58.86		58.86

		58.96		58.96		58.96		58.96

		59.06		59.06		59.06		59.06

		59.16		59.16		59.16		59.16

		59.26		59.26		59.26		59.26

		59.36		59.36		59.36		59.36

		59.46		59.46		59.46		59.46

		59.56		59.56		59.56		59.56

		59.66		59.66		59.66		59.66

		59.76		59.76		59.76		59.76

		59.86		59.86		59.86		59.86

		59.96		59.96		59.96		59.96

		60.06		60.06		60.06		60.06

		60.16		60.16		60.16		60.16

		60.26		60.26		60.26		60.26

		60.36		60.36		60.36		60.36

		60.47		60.47		60.47		60.47

		60.57		60.57		60.57		60.57

		60.67		60.67		60.67		60.67

		60.77		60.77		60.77		60.77

		60.87		60.87		60.87		60.87

		60.97		60.97		60.97		60.97

		61.07		61.07		61.07		61.07

		61.17		61.17		61.17		61.17

		61.27		61.27		61.27		61.27

		61.37		61.37		61.37		61.37

		61.47		61.47		61.47		61.47

		61.57		61.57		61.57		61.57

		61.67		61.67		61.67		61.67

		61.77		61.77		61.77		61.77

		61.87		61.87		61.87		61.87

		61.97		61.97		61.97		61.97

		62.07		62.07		62.07		62.07

		62.17		62.17		62.17		62.17

		62.27		62.27		62.27		62.27

		62.37		62.37		62.37		62.37

		62.47		62.47		62.47		62.47

		62.57		62.57		62.57		62.57

		62.67		62.67		62.67		62.67

		62.78		62.78		62.78		62.78

		62.88		62.88		62.88		62.88

		62.98		62.98		62.98		62.98

		63.08		63.08		63.08		63.08

		63.18		63.18		63.18		63.18

		63.28		63.28		63.28		63.28

		63.38		63.38		63.38		63.38

		63.48		63.48		63.48		63.48

		63.58		63.58		63.58		63.58

		63.68		63.68		63.68		63.68

		63.78		63.78		63.78		63.78

		63.88		63.88		63.88		63.88

		63.98		63.98		63.98		63.98

		64.08		64.08		64.08		64.08

		64.18		64.18		64.18		64.18

		64.28		64.28		64.28		64.28

		64.38		64.38		64.38		64.38

		64.48		64.48		64.48		64.48

		64.58		64.58		64.58		64.58

		64.68		64.68		64.68		64.68

		64.78		64.78		64.78		64.78

		64.88		64.88		64.88		64.88

		64.98		64.98		64.98		64.98

		65.09		65.09		65.09		65.09

		65.19		65.19		65.19		65.19

		65.29		65.29		65.29		65.29

		65.39		65.39		65.39		65.39

		65.49		65.49		65.49		65.49

		65.59		65.59		65.59		65.59

		65.69		65.69		65.69		65.69

		65.79		65.79		65.79		65.79

		65.89		65.89		65.89		65.89

		65.99		65.99		65.99		65.99

		66.09		66.09		66.09		66.09

		66.19		66.19		66.19		66.19

		66.29		66.29		66.29		66.29

		66.39		66.39		66.39		66.39

		66.49		66.49		66.49		66.49

		66.59		66.59		66.59		66.59

		66.69		66.69		66.69		66.69

		66.79		66.79		66.79		66.79

		66.89		66.89		66.89		66.89

		66.99		66.99		66.99		66.99

		67.09		67.09		67.09		67.09

		67.19		67.19		67.19		67.19

		67.3		67.3		67.3		67.3

		67.4		67.4		67.4		67.4

		67.5		67.5		67.5		67.5

		67.6		67.6		67.6		67.6

		67.7		67.7		67.7		67.7

		67.8		67.8		67.8		67.8

		67.9		67.9		67.9		67.9

		68		68		68		68

		68.1		68.1		68.1		68.1

		68.2		68.2		68.2		68.2

		68.3		68.3		68.3		68.3

		68.4		68.4		68.4		68.4

		68.5		68.5		68.5		68.5

		68.6		68.6		68.6		68.6

		68.7		68.7		68.7		68.7

		68.8		68.8		68.8		68.8

		68.9		68.9		68.9		68.9

		69		69		69		69

		69.1		69.1		69.1		69.1

		69.2		69.2		69.2		69.2

		69.3		69.3		69.3		69.3

		69.4		69.4		69.4		69.4

		69.5		69.5		69.5		69.5

		69.61		69.61		69.61		69.61

		69.71		69.71		69.71		69.71

		69.81		69.81		69.81		69.81

		69.91		69.91		69.91		69.91

		70.01		70.01		70.01		70.01

		70.11		70.11		70.11		70.11

		70.21		70.21		70.21		70.21

		70.31		70.31		70.31		70.31

		70.41		70.41		70.41		70.41

		70.51		70.51		70.51		70.51

		70.61		70.61		70.61		70.61

		70.71		70.71		70.71		70.71

		70.81		70.81		70.81		70.81

		70.91		70.91		70.91		70.91

		71.01		71.01		71.01		71.01

		71.11		71.11		71.11		71.11

		71.21		71.21		71.21		71.21

		71.31		71.31		71.31		71.31

		71.41		71.41		71.41		71.41

		71.51		71.51		71.51		71.51

		71.61		71.61		71.61		71.61

		71.71		71.71		71.71		71.71

		71.81		71.81		71.81		71.81

		71.92		71.92		71.92		71.92

		72.02		72.02		72.02		72.02

		72.12		72.12		72.12		72.12

		72.22		72.22		72.22		72.22

		72.32		72.32		72.32		72.32

		72.42		72.42		72.42		72.42

		72.52		72.52		72.52		72.52

		72.62		72.62		72.62		72.62

		72.72		72.72		72.72		72.72

		72.82		72.82		72.82		72.82

		72.92		72.92		72.92		72.92

		73.02		73.02		73.02		73.02

		73.12		73.12		73.12		73.12

		73.22		73.22		73.22		73.22

		73.32		73.32		73.32		73.32

		73.42		73.42		73.42		73.42

		73.52		73.52		73.52		73.52

		73.62		73.62		73.62		73.62

		73.72		73.72		73.72		73.72

		73.82		73.82		73.82		73.82

		73.92		73.92		73.92		73.92

		74.02		74.02		74.02		74.02

		74.13		74.13		74.13		74.13

		74.23		74.23		74.23		74.23

		74.33		74.33		74.33		74.33

		74.43		74.43		74.43		74.43

		74.53		74.53		74.53		74.53

		74.63		74.63		74.63		74.63

		74.73		74.73		74.73		74.73

		74.83		74.83		74.83		74.83

		74.93		74.93		74.93		74.93

		75.03		75.03		75.03		75.03

		75.13		75.13		75.13		75.13

		75.23		75.23		75.23		75.23

		75.33		75.33		75.33		75.33

		75.43		75.43		75.43		75.43

		75.53		75.53		75.53		75.53

		75.63		75.63		75.63		75.63

		75.73		75.73		75.73		75.73

		75.83		75.83		75.83		75.83

		75.93		75.93		75.93		75.93

		76.03		76.03		76.03		76.03

		76.13		76.13		76.13		76.13

		76.23		76.23		76.23		76.23

		76.33		76.33		76.33		76.33

		76.44		76.44		76.44		76.44

		76.54		76.54		76.54		76.54

		76.64		76.64		76.64		76.64

		76.74		76.74		76.74		76.74

		76.84		76.84		76.84		76.84

		76.94		76.94		76.94		76.94

		77.04		77.04		77.04		77.04

		77.14		77.14		77.14		77.14

		77.24		77.24		77.24		77.24

		77.34		77.34		77.34		77.34

		77.44		77.44		77.44		77.44

		77.54		77.54		77.54		77.54

		77.64		77.64		77.64		77.64

		77.74		77.74		77.74		77.74

		77.84		77.84		77.84		77.84

		77.94		77.94		77.94		77.94

		78.04		78.04		78.04		78.04

		78.14		78.14		78.14		78.14

		78.24		78.24		78.24		78.24

		78.34		78.34		78.34		78.34

		78.44		78.44		78.44		78.44

		78.54		78.54		78.54		78.54

		78.64		78.64		78.64		78.64

		78.75		78.75		78.75		78.75

		78.85		78.85		78.85		78.85

		78.95		78.95		78.95		78.95

		79.05		79.05		79.05		79.05

		79.15		79.15		79.15		79.15

		79.25		79.25		79.25		79.25

		79.35		79.35		79.35		79.35

		79.45		79.45		79.45		79.45

		79.55		79.55		79.55		79.55

		79.65		79.65		79.65		79.65

		79.75		79.75		79.75		79.75

		79.85		79.85		79.85		79.85

		79.95		79.95		79.95		79.95

		80.05		80.05		80.05		80.05

		80.15		80.15		80.15		80.15

		80.25		80.25		80.25		80.25

		80.35		80.35		80.35		80.35

		80.45		80.45		80.45		80.45

		80.55		80.55		80.55		80.55

		80.65		80.65		80.65		80.65

		80.75		80.75		80.75		80.75

		80.85		80.85		80.85		80.85

		80.96		80.96		80.96		80.96

		81.06		81.06		81.06		81.06

		81.16		81.16		81.16		81.16

		81.26		81.26		81.26		81.26

		81.36		81.36		81.36		81.36

		81.46		81.46		81.46		81.46

		81.56		81.56		81.56		81.56

		81.66		81.66		81.66		81.66

		81.76		81.76		81.76		81.76

		81.86		81.86		81.86		81.86

		81.96		81.96		81.96		81.96

		82.06		82.06		82.06		82.06

		82.16		82.16		82.16		82.16

		82.26		82.26		82.26		82.26

		82.36		82.36		82.36		82.36

		82.46		82.46		82.46		82.46

		82.56		82.56		82.56		82.56

		82.66		82.66		82.66		82.66

		82.76		82.76		82.76		82.76

		82.86		82.86		82.86		82.86

		82.96		82.96		82.96		82.96

		83.06		83.06		83.06		83.06

		83.16		83.16		83.16		83.16

		83.27		83.27		83.27		83.27

		83.37		83.37		83.37		83.37

		83.47		83.47		83.47		83.47

		83.57		83.57		83.57		83.57

		83.67		83.67		83.67		83.67

		83.77		83.77		83.77		83.77

		83.87		83.87		83.87		83.87

		83.97		83.97		83.97		83.97

		84.07		84.07		84.07		84.07

		84.17		84.17		84.17		84.17

		84.27		84.27		84.27		84.27

		84.37		84.37		84.37		84.37

		84.47		84.47		84.47		84.47

		84.57		84.57		84.57		84.57

		84.67		84.67		84.67		84.67

		84.77		84.77		84.77		84.77

		84.87		84.87		84.87		84.87

		84.97		84.97		84.97		84.97

		85.07		85.07		85.07		85.07

		85.17		85.17		85.17		85.17

		85.27		85.27		85.27		85.27

		85.37		85.37		85.37		85.37

		85.47		85.47		85.47		85.47

		85.58		85.58		85.58		85.58

		85.68		85.68		85.68		85.68

		85.78		85.78		85.78		85.78

		85.88		85.88		85.88		85.88

		85.98		85.98		85.98		85.98

		86.08		86.08		86.08		86.08

		86.18		86.18		86.18		86.18

		86.28		86.28		86.28		86.28

		86.38		86.38		86.38		86.38

		86.48		86.48		86.48		86.48

		86.58		86.58		86.58		86.58

		86.68		86.68		86.68		86.68

		86.78		86.78		86.78		86.78

		86.88		86.88		86.88		86.88

		86.98		86.98		86.98		86.98

		87.08		87.08		87.08		87.08

		87.18		87.18		87.18		87.18

		87.28		87.28		87.28		87.28

		87.38		87.38		87.38		87.38

		87.48		87.48		87.48		87.48

		87.58		87.58		87.58		87.58

		87.68		87.68		87.68		87.68

		87.78		87.78		87.78		87.78

		87.89		87.89		87.89		87.89

		87.99		87.99		87.99		87.99

		88.09		88.09		88.09		88.09

		88.19		88.19		88.19		88.19

		88.29		88.29		88.29		88.29

		88.39		88.39		88.39		88.39

		88.49		88.49		88.49		88.49

		88.59		88.59		88.59		88.59

		88.69		88.69		88.69		88.69

		88.79		88.79		88.79		88.79

		88.89		88.89		88.89		88.89

		88.99		88.99		88.99		88.99

		89.09		89.09		89.09		89.09

		89.19		89.19		89.19		89.19

		89.29		89.29		89.29		89.29

		89.39		89.39		89.39		89.39

		89.49		89.49		89.49		89.49

		89.59		89.59		89.59		89.59

		89.69		89.69		89.69		89.69

		89.79		89.79		89.79		89.79

		89.89		89.89		89.89		89.89

		89.99		89.99		89.99		89.99

		90.1		90.1		90.1		90.1

		90.2		90.2		90.2		90.2

		90.3		90.3		90.3		90.3

		90.4		90.4		90.4		90.4

		90.5		90.5		90.5		90.5

		90.6		90.6		90.6		90.6

		90.7		90.7		90.7		90.7

		90.8		90.8		90.8		90.8

		90.9		90.9		90.9		90.9

		91		91		91		91

		91.1		91.1		91.1		91.1

		91.2		91.2		91.2		91.2

		91.3		91.3		91.3		91.3

		91.4		91.4		91.4		91.4

		91.5		91.5		91.5		91.5

		91.6		91.6		91.6		91.6

		91.7		91.7		91.7		91.7

		91.8		91.8		91.8		91.8

		91.9		91.9		91.9		91.9

		92		92		92		92

		92.1		92.1		92.1		92.1

		92.2		92.2		92.2		92.2

		92.3		92.3		92.3		92.3

		92.41		92.41		92.41		92.41

		92.51		92.51		92.51		92.51

		92.61		92.61		92.61		92.61

		92.71		92.71		92.71		92.71

		92.81		92.81		92.81		92.81

		92.91		92.91		92.91		92.91

		93.01		93.01		93.01		93.01

		93.11		93.11		93.11		93.11

		93.21		93.21		93.21		93.21

		93.31		93.31		93.31		93.31

		93.41		93.41		93.41		93.41

		93.51		93.51		93.51		93.51

		93.61		93.61		93.61		93.61

		93.71		93.71		93.71		93.71

		93.81		93.81		93.81		93.81

		93.91		93.91		93.91		93.91

		94.01		94.01		94.01		94.01

		94.11		94.11		94.11		94.11

		94.21		94.21		94.21		94.21

		94.31		94.31		94.31		94.31

		94.41		94.41		94.41		94.41

		94.51		94.51		94.51		94.51

		94.61		94.61		94.61		94.61

		94.72		94.72		94.72		94.72

		94.82		94.82		94.82		94.82

		94.92		94.92		94.92		94.92

		95.02		95.02		95.02		95.02

		95.12		95.12		95.12		95.12

		95.22		95.22		95.22		95.22

		95.32		95.32		95.32		95.32

		95.42		95.42		95.42		95.42

		95.52		95.52		95.52		95.52

		95.62		95.62		95.62		95.62

		95.72		95.72		95.72		95.72

		95.82		95.82		95.82		95.82

		95.92		95.92		95.92		95.92

		96.02		96.02		96.02		96.02

		96.12		96.12		96.12		96.12

		96.22		96.22		96.22		96.22

		96.32		96.32		96.32		96.32

		96.42		96.42		96.42		96.42

		96.52		96.52		96.52		96.52

		96.62		96.62		96.62		96.62

		96.72		96.72		96.72		96.72

		96.82		96.82		96.82		96.82

		96.93		96.93		96.93		96.93

		97.03		97.03		97.03		97.03

		97.13		97.13		97.13		97.13

		97.23		97.23		97.23		97.23

		97.33		97.33		97.33		97.33

		97.43		97.43		97.43		97.43

		97.53		97.53		97.53		97.53

		97.63		97.63		97.63		97.63

		97.73		97.73		97.73		97.73

		97.83		97.83		97.83		97.83

		97.93		97.93		97.93		97.93

		98.03		98.03		98.03		98.03

		98.13		98.13		98.13		98.13

		98.23		98.23		98.23		98.23

		98.33		98.33		98.33		98.33

		98.43		98.43		98.43		98.43

		98.53		98.53		98.53		98.53

		98.63		98.63		98.63		98.63

		98.73		98.73		98.73		98.73

		98.83		98.83		98.83		98.83

		98.93		98.93		98.93		98.93

		99.03		99.03		99.03		99.03

		99.13		99.13		99.13		99.13

		99.24		99.24		99.24		99.24

		99.34		99.34		99.34		99.34

		99.44		99.44		99.44		99.44

		99.54		99.54		99.54		99.54

		99.64		99.64		99.64		99.64

		99.74		99.74		99.74		99.74

		99.84		99.84		99.84		99.84

		99.94		99.94		99.94		99.94



holo

apo

model

random

% of database

% of known ligands found

0

0

0

0

5.71

0

5.71

0.1

8.57

0

5.71

0.2

8.57

0

5.71

0.3

17.14

0

8.57

0.4

17.14

0

11.43

0.5

20

0

11.43

0.6

20

0

17.14

0.7

20

0

17.14

0.8

20

0

20

0.9

20

0

22.86

1

20

0

22.86

1.1

20

0

25.71

1.21

20

0

25.71

1.31

20

0

25.71

1.41

20

0

25.71

1.51

20

0

25.71

1.61

20

0

25.71

1.71

20

0

25.71

1.81

20

0

25.71

1.91

20

0

25.71

2.01

20

0

28.57

2.11

20

0

28.57

2.21

20

0

28.57

2.31

20

0

28.57

2.41

20

0

28.57

2.51

22.86

0

28.57

2.61

22.86

0

28.57

2.71

25.71

0

28.57

2.81

25.71

0

28.57

2.91

28.57

0

28.57

3.01

28.57

0

28.57

3.11

28.57

0

28.57

3.21

28.57

0

28.57

3.31

28.57

0

28.57

3.41

28.57

0

28.57

3.52

28.57

0

31.43

3.62

28.57

0

31.43

3.72

28.57

0

31.43

3.82

28.57

0

31.43

3.92

28.57

0

31.43

4.02

31.43

0

34.29

4.12

31.43

0

34.29

4.22

31.43

0

34.29

4.32

31.43

0

34.29

4.42

31.43

0

34.29

4.52

37.14

0

34.29

4.62

37.14

0

34.29

4.72

37.14

0

34.29

4.82

37.14

0

34.29

4.92

37.14

0

34.29

5.02

37.14

0

34.29

5.12

37.14

0

34.29

5.22

37.14

0

34.29

5.32

37.14

0

34.29

5.42

37.14

0

34.29

5.52

37.14

0

34.29

5.62

37.14

0

34.29

5.73

37.14

0

34.29

5.83

37.14

0

34.29

5.93

37.14

0

34.29

6.03

37.14

0

34.29

6.13

37.14

0

34.29

6.23

37.14

0

34.29

6.33

37.14

0

34.29

6.43

37.14

0

34.29

6.53

37.14

2.86

34.29

6.63

40

2.86

34.29

6.73

40

2.86

34.29

6.83

40

2.86

34.29

6.93

40

2.86

34.29

7.03

40

2.86

34.29

7.13

40

2.86

34.29

7.23

40

2.86

34.29

7.33

40

2.86

34.29

7.43

42.86

2.86

34.29

7.53

42.86

2.86

37.14

7.63

42.86

2.86

37.14

7.73

42.86

2.86

37.14

7.83

42.86

2.86

37.14

7.93

45.71

2.86

37.14

8.04

45.71

2.86

37.14

8.14

45.71

5.71

37.14

8.24

45.71

8.57

37.14

8.34

48.57

8.57

37.14

8.44

48.57

11.43

37.14

8.54

48.57

11.43

37.14

8.64

48.57

11.43

37.14

8.74

51.43

11.43

37.14

8.84

51.43

11.43

37.14

8.94

51.43

11.43

37.14

9.04

51.43

11.43

37.14

9.14

51.43

11.43

37.14

9.24

54.29

14.29

37.14

9.34

54.29

14.29

37.14

9.44

57.14

14.29

37.14

9.54

57.14

17.14

37.14

9.64

57.14

17.14

37.14

9.74

57.14

17.14

37.14

9.84

57.14

17.14

37.14

9.94

57.14

17.14

37.14

10.04

57.14

17.14

37.14

10.14

57.14

17.14

37.14

10.24

57.14

17.14

37.14

10.35

57.14

17.14

37.14

10.45

57.14

20

37.14

10.55

57.14

20

37.14

10.65

57.14

20

37.14

10.75

57.14

20

37.14

10.85

57.14

20

37.14

10.95

57.14

20

37.14

11.05

57.14

22.86

40

11.15

57.14

22.86

40

11.25

57.14

22.86

40

11.35

57.14

22.86

40

11.45

57.14

22.86

40

11.55

57.14

22.86

40

11.65

57.14

22.86

40

11.75

57.14

22.86

40

11.85

57.14

22.86

40

11.95

57.14

22.86

40

12.05

57.14

22.86

40

12.15

57.14

22.86

40

12.25

57.14

22.86

40

12.35

57.14

22.86

40

12.45

57.14

22.86

40

12.56

57.14

22.86

40

12.66

57.14

22.86

40

12.76

57.14

22.86

40

12.86

57.14

22.86

40

12.96

57.14

25.71

40

13.06

57.14

25.71

40

13.16

57.14

28.57

40

13.26

57.14

28.57

40

13.36

57.14

28.57

40

13.46

57.14

28.57

40

13.56

57.14

28.57

40

13.66

57.14

28.57

40

13.76

57.14

28.57

40

13.86

57.14

31.43

40

13.96

57.14

31.43

42.86

14.06

57.14

31.43

42.86

14.16

57.14

31.43

42.86

14.26

57.14

31.43

42.86

14.36

57.14

31.43

42.86

14.46

60

34.29

45.71

14.56

60

34.29

45.71

14.66

60

34.29

45.71

14.76

60

34.29

45.71

14.87

60

34.29

45.71

14.97

60

34.29

45.71

15.07

60

34.29

45.71

15.17

60

34.29

45.71

15.27

60

34.29

45.71

15.37

60

34.29

45.71

15.47

60

34.29

45.71

15.57

60

37.14

45.71

15.67

60

37.14

45.71

15.77

60

37.14

45.71

15.87

60

37.14

45.71

15.97

60

37.14

45.71

16.07

60

37.14

45.71

16.17

60

37.14

45.71

16.27

60

40

45.71

16.37

60

42.86

48.57

16.47

60

45.71

48.57

16.57

60

45.71

54.29

16.67

60

45.71

54.29

16.77

60

45.71

54.29

16.87

60

45.71

54.29

16.97

60

48.57

54.29

17.07

60

48.57

54.29

17.18

60

48.57

54.29

17.28

60

48.57

54.29

17.38

60

48.57

54.29

17.48

60

48.57

54.29

17.58

60

48.57

54.29

17.68

60

48.57

54.29

17.78

60

48.57

54.29

17.88

60

48.57

57.14

17.98

60

48.57

57.14

18.08

60

48.57

57.14

18.18

60

48.57

57.14

18.28

60

48.57

57.14

18.38

60

48.57

57.14

18.48

60

48.57

57.14

18.58

60

48.57

57.14

18.68

60

48.57

57.14

18.78

60

48.57

57.14

18.88

60

48.57

57.14

18.98

62.86

48.57

57.14

19.08

62.86

51.43

57.14

19.18

62.86

51.43

57.14

19.28

62.86

51.43

57.14

19.39

62.86

54.29

57.14

19.49

62.86

54.29

57.14

19.59

62.86

54.29

57.14

19.69

62.86

54.29

57.14

19.79

62.86

54.29

57.14

19.89

62.86

54.29

57.14

19.99

62.86

57.14

57.14

20.09

62.86

57.14

57.14

20.19

62.86

57.14

57.14

20.29

62.86

57.14

57.14

20.39

62.86

60

57.14

20.49

62.86

60

57.14

20.59

65.71

62.86

57.14

20.69

65.71

62.86

57.14

20.79

65.71

62.86

57.14

20.89

65.71

65.71

57.14

20.99

65.71

68.57

57.14

21.09

65.71

68.57

57.14

21.19

65.71

68.57

57.14

21.29

65.71

68.57

60

21.39

65.71

68.57

60

21.49

65.71

71.43

60

21.59

65.71

77.14

60

21.7

65.71

77.14

60

21.8

65.71

80

60

21.9

65.71

80

60

22

65.71

80

60

22.1

65.71

80

60

22.2

65.71

82.86

60

22.3

65.71

82.86

60

22.4

65.71

82.86

60

22.5

65.71

85.71

60

22.6

65.71

85.71

60

22.7

65.71

85.71

60

22.8

65.71

85.71

60

22.9

65.71

85.71

60

23

65.71

85.71

60

23.1

65.71

85.71

60

23.2

65.71

85.71

60

23.3

65.71

85.71

60

23.4

65.71

85.71

60

23.5

65.71

85.71

60

23.6

68.57

85.71

60

23.7

68.57

85.71

60

23.8

68.57

85.71

60

23.9

68.57

85.71

60

24.01

68.57

85.71

60

24.11

68.57

85.71

60

24.21

68.57

88.57

60

24.31

74.29

88.57

60

24.41

74.29

88.57

60

24.51

74.29

88.57

60

24.61

74.29

88.57

60

24.71

74.29

91.43

60

24.81

74.29

91.43

60

24.91

77.14

91.43

60

25.01

77.14

91.43

60

25.11

77.14

91.43

60

25.21

77.14

91.43

60

25.31

77.14

91.43

60

25.41

77.14

91.43

60

25.51

77.14

91.43

60

25.61

77.14

91.43

60

25.71

77.14

91.43

60

25.81

77.14

91.43

60

25.91

77.14

91.43

60

26.01

77.14

91.43

60

26.11

77.14

91.43

60

26.21

77.14

91.43

60

26.32

77.14

91.43

60

26.42

77.14

91.43

60

26.52

77.14

91.43

60

26.62

77.14

91.43

62.86

26.72

77.14

91.43

65.71

26.82

77.14

91.43

65.71

26.92

77.14

91.43

65.71

27.02

80

91.43

65.71

27.12

80

91.43

65.71

27.22

80

91.43

65.71

27.32

80

91.43

65.71

27.42

80

91.43

65.71

27.52

80

91.43

65.71

27.62

80

91.43

65.71

27.72

80

91.43

65.71

27.82

80

91.43

65.71

27.92

82.86

91.43

65.71

28.02

82.86

91.43

68.57

28.12

82.86

91.43

68.57

28.22

82.86

91.43

68.57

28.32

82.86

91.43

68.57

28.42

82.86

91.43

68.57

28.53

82.86

91.43

68.57

28.63

82.86

91.43

68.57

28.73

82.86

91.43

68.57

28.83

82.86

91.43

68.57

28.93

82.86

91.43

68.57

29.03

82.86

91.43

68.57

29.13

82.86

91.43

68.57

29.23

82.86

91.43

68.57

29.33

82.86

91.43

68.57

29.43

82.86

91.43

71.43

29.53

82.86

91.43

74.29

29.63

82.86

91.43

74.29

29.73

82.86

91.43

74.29

29.83

82.86

91.43

77.14

29.93

82.86

91.43

77.14

30.03

82.86

91.43

77.14

30.13

82.86

91.43

77.14

30.23

85.71

91.43

77.14

30.33

85.71

91.43

77.14

30.43

85.71

91.43

77.14

30.53

85.71

91.43

77.14

30.63

85.71

91.43

77.14

30.73

85.71

91.43

77.14

30.84

85.71

91.43

77.14

30.94

85.71

91.43

77.14

31.04

85.71

91.43

77.14

31.14

85.71

91.43

77.14

31.24

88.57

91.43

77.14

31.34

88.57

91.43

77.14

31.44

88.57

91.43

77.14

31.54

91.43

91.43

77.14

31.64

91.43

91.43

77.14

31.74

91.43

91.43

77.14

31.84

91.43

91.43

77.14

31.94

91.43

91.43

77.14

32.04

91.43

91.43

77.14

32.14

91.43

91.43

77.14

32.24

91.43

91.43

77.14

32.34

91.43

91.43

77.14

32.44

91.43

91.43

77.14

32.54

91.43

91.43

77.14

32.64

91.43

91.43

77.14

32.74

91.43

94.29

77.14

32.84

91.43

94.29

77.14

32.94

91.43

94.29

77.14

33.04

91.43

97.14

77.14

33.15

91.43

97.14

77.14

33.25

91.43

97.14

80

33.35

91.43

97.14

80

33.45

91.43

97.14

80

33.55

91.43

97.14

80

33.65

91.43

97.14

80

33.75

91.43

97.14

80

33.85

91.43

97.14

80

33.95

91.43

97.14

80

34.05

91.43

97.14

82.86

34.15

91.43

97.14

82.86

34.25

91.43

97.14

82.86

34.35

91.43

97.14

82.86

34.45

91.43

97.14

82.86

34.55

91.43

97.14

82.86

34.65

91.43

97.14

82.86

34.75

91.43

97.14

82.86

34.85

91.43

97.14

82.86

34.95

91.43

97.14

82.86

35.05

91.43

97.14

82.86

35.15

91.43

97.14

82.86

35.25

91.43

97.14

82.86

35.36

91.43

97.14

82.86

35.46

91.43

97.14

82.86

35.56

91.43

97.14

82.86

35.66

91.43

97.14

82.86

35.76

91.43

97.14

82.86

35.86

91.43

97.14

82.86

35.96

91.43

97.14

82.86

36.06

91.43

97.14

82.86

36.16

91.43

97.14

82.86

36.26

91.43

97.14

85.71

36.36

91.43

97.14

85.71

36.46

91.43

97.14

85.71

36.56

91.43

97.14

85.71

36.66

91.43

97.14

85.71

36.76

91.43

97.14

85.71

36.86

91.43

97.14

85.71

36.96

91.43

97.14

88.57

37.06

91.43

97.14

88.57

37.16

91.43

97.14

88.57

37.26

91.43

97.14

88.57

37.36

91.43

97.14

88.57

37.46

91.43

97.14

88.57

37.56

91.43

97.14

88.57

37.67

91.43

97.14

88.57

37.77

91.43

97.14

88.57

37.87

91.43

97.14

88.57

37.97

91.43

97.14

88.57

38.07

91.43

97.14

88.57

38.17

91.43

97.14

88.57

38.27

91.43

97.14

88.57

38.37

91.43

97.14

88.57

38.47

91.43

97.14

88.57

38.57

91.43

97.14

88.57

38.67

91.43

97.14

88.57

38.77

91.43

97.14

88.57

38.87

91.43

97.14

88.57

38.97

91.43

97.14

88.57

39.07

91.43

97.14

88.57

39.17

91.43

97.14

88.57

39.27

91.43

97.14

88.57

39.37

91.43

97.14

88.57

39.47

91.43

97.14

88.57

39.57

91.43

97.14

88.57

39.67

91.43

97.14

88.57

39.77

91.43

97.14

88.57

39.87

91.43

97.14

88.57

39.98

91.43

97.14

88.57

40.08

91.43

97.14

88.57

40.18

91.43

97.14

88.57

40.28

91.43

97.14

88.57

40.38

91.43

97.14

88.57

40.48

91.43

97.14

88.57

40.58

91.43

97.14

88.57

40.68

91.43

97.14

88.57

40.78

91.43

97.14

91.43

40.88

91.43

97.14

91.43

40.98

91.43

97.14

91.43

41.08

91.43

97.14

91.43

41.18

91.43

97.14

91.43

41.28

91.43

97.14

91.43

41.38

91.43

97.14

91.43

41.48

91.43

97.14

91.43

41.58

91.43

97.14

91.43

41.68

91.43

97.14

91.43

41.78

91.43

97.14

91.43

41.88

91.43

97.14

91.43

41.98

91.43

97.14

91.43

42.08

91.43

97.14

91.43

42.18

91.43

97.14

91.43

42.29

91.43

97.14

91.43

42.39

91.43

97.14

91.43

42.49

91.43

97.14

91.43

42.59

91.43

97.14

91.43

42.69

91.43

97.14

91.43

42.79

91.43

97.14

91.43

42.89

91.43

97.14

91.43

42.99

91.43

97.14

91.43

43.09

91.43

97.14

91.43

43.19

91.43

97.14

91.43

43.29

91.43

97.14

91.43

43.39

91.43

97.14

91.43

43.49

91.43

97.14

91.43

43.59

91.43

97.14

91.43

43.69

91.43

97.14

91.43

43.79

91.43

97.14

91.43

43.89

91.43

97.14

91.43

43.99

91.43

97.14

91.43

44.09

91.43

97.14

91.43

44.19

91.43

97.14

91.43

44.29

91.43

97.14

91.43

44.39

91.43

97.14

91.43

44.5

91.43

97.14

91.43

44.6

91.43

97.14

91.43

44.7

91.43

97.14

91.43

44.8

91.43

97.14

91.43

44.9

91.43

97.14

91.43

45

91.43

97.14

91.43

45.1

91.43

97.14

91.43

45.2

91.43

97.14

91.43

45.3

91.43

97.14

91.43

45.4

91.43

97.14

91.43

45.5

91.43

97.14

91.43

45.6

91.43

97.14

91.43

45.7

91.43

97.14

91.43

45.8

91.43

97.14

91.43

45.9

91.43

97.14

91.43

46

91.43

97.14

91.43

46.1

91.43

97.14

91.43

46.2

91.43

97.14

91.43

46.3

91.43

97.14

91.43

46.4

91.43

97.14

91.43

46.5

91.43

97.14

91.43

46.6

91.43

97.14

91.43

46.7

91.43

97.14

91.43

46.81

91.43

97.14

91.43

46.91

91.43

97.14

91.43

47.01

91.43

97.14

91.43

47.11

91.43

97.14

91.43

47.21

91.43

97.14

91.43

47.31

91.43

97.14

91.43

47.41

91.43

97.14

91.43

47.51

91.43

97.14

91.43

47.61

91.43

97.14

91.43

47.71

91.43

97.14

91.43

47.81

91.43

97.14

91.43

47.91

91.43

97.14

91.43

48.01

91.43

97.14

91.43

48.11

91.43

97.14

91.43

48.21

91.43

97.14

91.43

48.31

91.43

97.14

91.43

48.41

91.43

97.14

91.43

48.51

91.43

97.14

91.43

48.61

91.43

97.14

91.43

48.71

91.43

97.14

91.43

48.81

91.43

97.14

91.43

48.91

91.43

97.14

91.43

49.01

91.43

97.14

91.43

49.12

91.43

97.14

91.43

49.22

91.43

97.14

91.43

49.32

91.43

97.14

91.43

49.42

91.43

97.14

91.43

49.52

91.43

97.14

91.43

49.62

91.43

97.14

91.43

49.72

91.43

97.14

91.43

49.82

91.43

97.14

91.43

49.92

91.43

97.14

91.43

50.02

91.43

97.14

91.43

50.12

91.43

97.14

91.43

50.22

91.43

97.14

91.43

50.32

91.43

97.14

91.43

50.42

91.43

97.14

91.43

50.52

91.43

97.14

91.43

50.62

91.43

97.14

91.43

50.72

91.43

97.14

91.43

50.82

91.43

97.14

91.43

50.92

91.43

97.14

91.43

51.02

91.43

97.14

91.43

51.12

91.43

97.14

91.43

51.22

91.43

97.14

91.43

51.33

91.43

97.14

91.43

51.43

91.43

97.14

91.43

51.53

91.43

97.14

91.43

51.63

91.43

97.14

91.43

51.73

91.43

97.14

91.43

51.83

91.43

97.14

91.43

51.93

91.43

97.14

91.43

52.03

91.43

97.14

91.43

52.13

91.43

97.14

91.43

52.23

91.43

97.14

91.43

52.33

91.43

97.14

91.43

52.43

91.43

97.14

91.43

52.53

91.43

97.14

91.43

52.63

91.43

97.14

91.43

52.73

91.43

97.14

91.43

52.83

91.43

97.14

91.43

52.93

91.43

97.14

91.43

53.03

91.43

97.14

91.43

53.13

91.43

97.14

91.43

53.23

91.43

97.14

91.43

53.33

91.43

97.14

91.43

53.43

91.43

97.14

91.43

53.53

91.43

97.14

91.43

53.64

91.43

97.14

91.43

53.74

91.43

97.14

91.43

53.84

91.43

97.14

91.43

53.94

91.43

97.14

91.43

54.04

91.43

97.14

91.43

54.14

91.43

97.14

91.43

54.24

91.43

97.14

91.43

54.34

91.43

97.14

91.43

54.44

91.43

97.14

91.43

54.54

91.43

97.14

91.43

54.64

91.43

97.14

91.43

54.74

91.43

97.14

91.43

54.84

91.43

97.14

91.43

54.94

91.43

97.14

91.43

55.04

91.43

97.14

91.43

55.14

91.43

97.14

91.43

55.24

91.43

97.14

91.43

55.34

91.43

97.14

91.43

55.44

91.43

97.14

91.43

55.54

91.43

97.14

91.43

55.64

91.43

97.14

91.43

55.74

91.43

97.14

91.43

55.84

91.43

97.14

91.43

55.95

91.43

97.14

91.43

56.05

91.43

97.14

91.43

56.15

91.43

97.14

91.43

56.25

91.43

97.14

91.43

56.35

91.43

97.14

91.43

56.45

91.43

97.14

91.43

56.55

91.43

97.14

91.43

56.65

91.43

97.14

91.43

56.75

91.43

97.14

91.43

56.85

91.43

97.14

91.43

56.95

91.43

97.14

91.43

57.05

91.43

97.14

91.43

57.15

91.43

97.14

91.43

57.25

91.43

97.14

91.43

57.35

91.43

97.14

91.43

57.45

91.43

97.14

91.43

57.55

91.43

97.14

91.43

57.65

91.43

97.14

91.43

57.75

91.43

97.14

91.43

57.85

91.43

97.14

91.43

57.95

91.43

97.14

91.43

58.05

91.43

97.14

91.43

58.16

91.43

97.14

91.43

58.26

91.43

97.14

91.43

58.36

91.43

97.14

91.43

58.46

91.43

97.14

91.43

58.56

91.43

97.14

91.43

58.66

91.43

97.14

91.43

58.76

91.43

97.14

91.43

58.86

91.43

97.14

91.43

58.96

91.43

97.14

91.43

59.06

91.43

97.14

91.43

59.16

91.43

97.14

91.43

59.26

91.43

97.14

91.43

59.36

91.43

97.14

91.43

59.46

91.43

97.14

91.43

59.56

91.43

97.14

91.43

59.66

91.43

97.14

91.43

59.76

91.43

97.14

91.43

59.86

91.43

97.14

91.43

59.96

91.43

97.14

91.43

60.06

91.43

97.14

91.43

60.16

91.43

97.14

91.43

60.26

91.43

97.14

91.43

60.36

91.43

97.14

91.43

60.47

91.43

97.14

91.43

60.57

91.43

97.14

91.43

60.67

91.43

97.14

91.43

60.77

91.43

97.14

91.43

60.87

91.43

97.14

91.43

60.97

91.43

97.14

91.43

61.07

91.43

97.14

91.43

61.17

91.43

97.14

91.43

61.27

91.43

97.14

91.43

61.37

91.43

97.14

91.43

61.47

91.43

97.14

91.43

61.57

91.43

97.14

91.43

61.67

91.43

97.14

91.43

61.77

91.43

97.14

91.43

61.87

91.43

97.14

91.43

61.97

91.43

97.14

91.43

62.07

91.43

97.14

91.43

62.17

91.43

97.14

91.43

62.27

91.43

97.14

91.43

62.37

91.43

97.14

91.43

62.47

91.43

97.14

91.43

62.57

91.43

97.14

91.43

62.67

91.43

97.14

91.43

62.78

91.43

97.14

91.43

62.88

91.43

97.14

91.43

62.98

91.43

97.14

91.43

63.08

91.43

97.14

91.43

63.18

91.43

97.14

91.43

63.28

91.43

97.14

91.43

63.38

91.43

97.14

91.43

63.48

91.43

97.14

91.43

63.58

91.43

97.14

91.43

63.68

91.43

97.14

91.43

63.78

91.43

97.14

91.43

63.88

91.43

97.14

91.43

63.98

91.43

97.14

91.43

64.08

91.43

97.14

91.43

64.18

91.43

97.14

91.43

64.28

91.43

97.14

91.43

64.38

91.43

97.14

91.43

64.48

91.43

97.14

91.43

64.58

91.43

97.14

91.43

64.68

91.43

97.14

91.43

64.78

91.43

97.14

91.43

64.88

91.43

97.14

91.43

64.98

91.43

97.14

91.43

65.09

91.43

97.14

91.43

65.19

91.43

97.14

91.43

65.29

91.43

97.14

91.43

65.39

91.43

97.14

91.43

65.49

91.43

97.14

91.43

65.59

91.43

97.14

91.43

65.69

91.43

97.14

91.43

65.79

91.43

97.14

91.43

65.89

91.43

97.14

91.43

65.99

91.43

97.14

91.43

66.09

91.43

97.14

91.43

66.19

91.43

97.14

91.43

66.29

91.43

97.14

91.43

66.39

91.43

97.14

91.43

66.49

91.43

97.14

91.43

66.59

91.43

97.14

91.43

66.69

91.43

97.14

91.43

66.79

91.43

97.14

91.43

66.89

91.43

97.14

91.43

66.99

91.43

97.14

91.43

67.09

91.43

97.14

91.43

67.19

91.43

97.14

91.43

67.3

91.43

97.14

91.43

67.4

91.43

97.14

91.43

67.5

91.43

97.14

91.43

67.6

91.43

97.14

91.43

67.7

91.43

97.14

91.43

67.8

91.43

97.14

91.43

67.9

91.43

97.14

91.43

68

91.43

97.14

91.43

68.1

91.43

97.14

91.43

68.2

91.43

97.14

91.43

68.3

91.43

97.14

91.43

68.4

91.43

97.14

91.43

68.5

91.43

97.14

91.43

68.6

91.43

97.14

91.43

68.7

91.43

97.14

91.43

68.8

91.43

97.14

91.43

68.9

91.43

97.14

91.43

69

91.43

97.14

91.43

69.1

91.43

97.14

91.43

69.2

91.43

97.14

91.43

69.3

91.43

97.14

91.43

69.4

91.43

97.14

91.43

69.5

91.43

97.14

91.43

69.61

91.43

97.14

91.43

69.71

91.43

97.14

91.43

69.81

91.43

97.14

91.43

69.91

91.43

97.14

91.43

70.01

91.43

97.14

91.43

70.11

91.43

97.14

91.43

70.21

91.43

97.14

91.43

70.31

91.43

97.14

91.43

70.41

91.43

97.14

91.43

70.51

91.43

97.14

91.43

70.61

91.43

97.14

91.43

70.71

91.43

97.14

91.43

70.81

91.43

97.14

91.43

70.91

91.43

97.14

91.43

71.01

91.43

97.14

91.43

71.11

91.43

97.14

91.43

71.21

91.43

97.14

91.43

71.31

91.43

97.14

91.43

71.41

91.43

97.14

91.43

71.51

91.43

97.14

91.43

71.61

91.43

97.14

91.43

71.71

91.43

97.14

91.43

71.81

91.43

97.14

91.43

71.92

91.43

97.14

91.43

72.02

91.43

97.14

91.43

72.12

91.43

97.14

91.43

72.22

91.43

97.14

91.43

72.32

91.43

97.14

91.43

72.42

91.43

97.14

91.43

72.52

91.43

97.14

91.43

72.62

91.43

97.14

91.43

72.72

91.43

97.14

91.43

72.82

91.43

97.14

91.43

72.92

91.43

97.14

91.43

73.02

91.43

97.14

91.43

73.12

91.43

97.14

91.43

73.22

91.43

97.14

91.43

73.32

91.43

97.14

91.43

73.42

91.43

97.14

91.43

73.52

91.43

97.14

91.43

73.62

91.43

97.14

91.43

73.72

91.43

97.14

91.43

73.82

91.43

97.14

91.43

73.92

91.43

97.14

91.43

74.02

91.43

97.14

91.43

74.13

91.43

97.14

91.43

74.23

91.43

97.14

91.43

74.33

91.43

97.14

91.43

74.43

91.43

97.14

91.43

74.53

91.43

97.14

91.43

74.63

91.43

97.14

91.43

74.73

91.43

97.14

91.43

74.83

91.43

97.14

91.43

74.93

91.43

97.14

91.43

75.03

91.43

97.14

91.43

75.13

91.43

97.14

91.43

75.23

91.43

97.14

91.43

75.33

91.43

97.14

91.43

75.43

91.43

97.14

91.43

75.53

91.43

97.14

91.43

75.63

91.43

97.14

91.43

75.73

91.43

97.14

91.43

75.83

91.43

97.14

91.43

75.93

91.43

97.14

91.43

76.03

91.43

97.14

91.43

76.13

91.43

97.14

91.43

76.23

91.43

97.14

91.43

76.33

91.43

97.14

91.43

76.44

91.43

97.14

91.43

76.54

91.43

97.14

91.43

76.64

91.43

97.14

91.43

76.74

91.43

97.14

91.43

76.84

91.43

97.14

91.43

76.94

91.43

97.14

91.43

77.04

91.43

97.14

91.43

77.14

91.43

97.14

91.43

77.24

91.43

97.14

91.43

77.34

91.43

97.14

91.43

77.44

91.43

97.14

91.43

77.54

91.43

97.14

91.43

77.64

91.43

97.14

91.43

77.74

91.43

97.14

91.43

77.84

91.43

97.14

91.43

77.94

91.43

97.14

91.43

78.04

91.43

97.14

91.43

78.14

91.43

97.14

91.43

78.24

91.43

97.14

91.43

78.34

91.43

97.14

91.43

78.44

91.43

97.14

91.43

78.54

91.43

97.14

91.43

78.64

91.43

97.14

91.43

78.75

91.43

97.14

91.43

78.85

91.43

97.14

91.43

78.95

91.43

97.14

91.43

79.05

91.43

97.14

91.43

79.15

91.43

97.14

91.43

79.25

91.43

97.14

91.43

79.35

91.43

97.14

91.43

79.45

91.43

97.14

91.43

79.55

91.43

97.14

91.43

79.65

91.43

97.14

91.43

79.75

91.43

97.14

91.43

79.85

91.43

97.14

91.43

79.95

91.43

97.14

91.43

80.05

91.43

97.14

91.43

80.15

91.43

97.14

91.43

80.25

91.43

97.14

91.43

80.35

91.43

97.14

91.43

80.45

91.43

97.14

91.43

80.55

91.43

97.14

91.43

80.65

91.43

97.14

91.43

80.75

91.43

97.14

91.43

80.85

91.43

97.14

91.43

80.96

91.43

97.14

91.43

81.06

91.43

97.14

91.43

81.16

91.43

97.14

91.43

81.26

91.43

97.14

91.43

81.36

91.43

97.14

91.43

81.46

91.43

97.14

91.43

81.56

91.43

97.14

91.43

81.66

91.43

97.14

91.43

81.76

91.43

97.14

91.43

81.86

91.43

97.14

91.43

81.96

91.43

97.14

91.43

82.06

91.43

97.14

91.43

82.16

91.43

97.14

91.43

82.26

91.43

97.14

91.43

82.36

91.43

97.14

91.43

82.46

91.43

97.14

91.43

82.56

91.43

97.14

91.43

82.66

91.43

97.14

91.43

82.76

91.43

97.14

91.43

82.86

91.43

97.14

91.43

82.96

91.43

97.14

91.43

83.06

91.43

97.14

91.43

83.16

91.43

97.14

91.43

83.27

91.43

97.14

91.43

83.37

91.43

97.14

91.43

83.47

91.43

97.14

91.43

83.57

91.43

97.14

91.43

83.67

91.43

97.14

91.43

83.77

91.43

97.14

91.43

83.87

91.43

97.14

91.43

83.97

91.43

97.14

91.43

84.07

91.43

97.14

91.43

84.17

91.43

97.14

91.43

84.27

91.43

97.14

91.43

84.37

91.43

97.14

91.43

84.47

91.43

97.14

91.43

84.57

91.43

97.14

91.43

84.67

91.43

97.14

91.43

84.77

91.43

97.14

91.43

84.87

91.43

97.14

91.43

84.97

91.43

97.14

91.43

85.07

91.43

97.14

91.43

85.17

91.43

97.14

91.43

85.27

91.43

97.14

91.43

85.37

91.43

97.14

91.43

85.47

91.43

97.14

91.43

85.58

91.43

97.14

91.43

85.68

91.43

97.14

91.43

85.78

91.43

97.14

91.43

85.88

91.43

97.14

91.43

85.98

91.43

97.14

91.43

86.08

91.43

97.14

91.43

86.18

91.43

97.14

91.43

86.28

91.43

97.14

91.43

86.38

91.43

97.14

91.43

86.48

91.43

97.14

91.43

86.58

91.43

97.14

91.43

86.68

91.43

97.14

91.43

86.78

91.43

97.14

91.43

86.88

91.43

97.14

91.43

86.98

91.43

97.14

91.43

87.08

91.43

97.14

91.43

87.18

91.43

97.14

91.43

87.28

91.43

97.14

91.43

87.38

91.43

97.14

91.43

87.48

91.43

97.14

91.43

87.58

91.43

97.14

91.43

87.68

91.43

97.14

91.43

87.78

91.43

97.14

91.43

87.89

91.43

97.14

91.43

87.99

91.43

97.14

91.43

88.09

91.43

97.14

91.43

88.19

91.43

97.14

91.43

88.29

91.43

97.14

91.43

88.39

91.43

97.14

91.43

88.49

91.43

97.14

91.43

88.59

91.43

97.14

91.43

88.69

91.43

97.14

91.43

88.79

91.43

97.14

91.43

88.89

91.43

97.14

91.43

88.99

91.43

97.14

91.43

89.09

91.43

97.14

91.43

89.19

91.43

97.14

91.43

89.29

91.43

97.14

91.43

89.39

91.43

97.14

91.43

89.49

91.43

97.14

91.43

89.59

91.43

97.14

91.43

89.69

91.43

97.14

91.43

89.79

91.43

97.14

91.43

89.89

91.43

97.14

91.43

89.99

91.43

97.14

91.43

90.1

91.43

97.14

91.43

90.2

91.43

97.14

91.43

90.3

91.43

97.14

91.43

90.4

91.43

97.14

91.43

90.5

91.43

97.14

91.43

90.6

91.43

97.14

91.43

90.7

91.43

97.14

91.43

90.8

91.43

97.14

91.43

90.9

91.43

97.14

91.43

91

91.43

97.14

91.43

91.1

91.43

97.14

91.43

91.2

91.43

97.14

91.43

91.3

91.43

97.14

91.43

91.4

91.43

97.14

91.43

91.5

91.43

97.14

91.43

91.6

91.43

97.14

91.43

91.7

91.43

97.14

91.43

91.8

91.43

97.14

91.43

91.9

91.43

97.14

91.43

92

91.43

97.14

91.43

92.1

91.43

97.14

91.43

92.2

91.43

97.14

91.43

92.3

91.43

97.14

91.43

92.41

91.43

97.14

91.43

92.51

91.43

97.14

91.43

92.61

91.43

97.14

91.43

92.71

91.43

97.14

91.43

92.81

91.43

97.14

91.43

92.91

91.43

97.14

91.43

93.01

91.43

97.14

91.43

93.11

91.43

97.14

91.43

93.21

91.43

97.14

91.43

93.31

91.43

97.14

91.43

93.41

91.43

97.14

91.43

93.51

91.43

97.14

91.43

93.61

91.43

97.14

91.43

93.71

91.43

97.14

91.43

93.81

91.43

97.14

91.43

93.91

91.43

97.14

91.43

94.01

91.43

97.14

91.43

94.11

91.43

97.14

91.43

94.21

91.43

97.14

91.43

94.31

91.43

97.14

91.43

94.41

91.43

97.14

91.43

94.51

91.43

97.14

91.43

94.61

91.43

97.14

91.43

94.72

91.43

97.14

91.43

94.82

91.43

97.14

91.43

94.92

91.43

97.14

91.43

95.02

91.43

97.14

91.43

95.12

91.43

97.14

91.43

95.22

91.43

97.14

91.43

95.32

91.43

97.14

91.43

95.42

91.43

97.14

91.43

95.52

91.43

97.14

91.43

95.62

91.43

97.14

91.43

95.72

91.43

97.14

91.43

95.82

91.43

97.14

91.43

95.92

91.43

97.14

91.43

96.02

91.43

97.14

91.43

96.12

91.43

97.14

91.43

96.22

91.43

97.14

91.43

96.32

91.43

97.14

91.43

96.42

91.43

97.14

91.43

96.52

91.43

97.14

91.43

96.62

91.43

97.14

91.43

96.72

91.43

97.14

91.43

96.82

91.43

97.14

91.43

96.93

91.43

97.14

91.43

97.03

91.43

97.14

91.43

97.13

91.43

97.14

91.43

97.23

91.43

97.14

91.43

97.33

91.43

97.14

91.43

97.43

91.43

97.14

91.43

97.53

91.43

97.14

91.43

97.63

91.43

97.14

91.43

97.73

91.43

97.14

91.43

97.83

91.43

97.14

91.43

97.93

91.43

97.14

91.43

98.03

91.43

97.14

91.43

98.13

91.43

97.14

91.43

98.23

91.43

97.14

91.43

98.33

91.43

97.14

91.43

98.43

91.43

97.14

91.43

98.53

91.43

97.14

91.43

98.63

91.43

97.14

91.43

98.73

91.43

97.14

91.43

98.83

91.43

97.14

91.43

98.93

91.43

97.14

91.43

99.03

91.43

97.14

91.43

99.13

91.43

97.14

91.43

99.24

91.43

97.14

91.43

99.34

91.43

97.14

91.43

99.44

91.43

97.14

91.43

99.54

91.43

97.14

91.43

99.64

91.43

97.14

91.43

99.74

91.43

97.14

91.43

99.84

91.43

97.14

91.43

99.94



1b8o-po4_lig+po4.forexcel

		/nirvana/people/susan/systems/pnp/1b8o/search/nopo4/OUTDOCK.full_contact

		../1b8o/ligands/pnp_lig_po4

		31781 unique molecules scored

		% of db		holo		apo		model		random				% of db		holo		apo		model

		0		0		0		0		0				0		0		0		0

		0.1		5.71		0		5.71		0.1				0.1		56.89		0		56.89

		0.2		8.57		0		5.71		0.2				0.2		42.67		0		28.45

		0.3		8.57		0		5.71		0.3				0.3		28.45		0		18.96

		0.4		17.14		0		8.57		0.4				0.4		42.67		0		21.33

		0.5		17.14		0		11.43		0.5				0.5		34.14		0		22.76

		0.6		20		0		11.43		0.6				0.6		33.19		0		18.96

		0.7		20		0		17.14		0.7				0.7		28.45		0		24.38

		0.8		20		0		17.14		0.8				0.8		24.89		0		21.33

		0.9		20		0		20		0.9				0.9		22.12		0		22.12

		1		20		0		22.86		1				1		19.91		0		22.76

		1.1		20		0		22.86		1.1				1.1		18.1		0		20.69

		1.21		20		0		25.71		1.21				1.21		16.59		0		21.33

		1.31		20		0		25.71		1.31				1.31		15.32		0		19.69

		1.41		20		0		25.71		1.41				1.41		14.22		0		18.29

		1.51		20		0		25.71		1.51				1.51		13.27		0		17.07

		1.61		20		0		25.71		1.61				1.61		12.45		0		16

		1.71		20		0		25.71		1.71				1.71		11.71		0		15.06

		1.81		20		0		25.71		1.81				1.81		11.06		0		14.22

		1.91		20		0		25.71		1.91				1.91		10.48		0		13.47

		2.01		20		0		25.71		2.01				2.01		9.96		0		12.8

		2.11		20		0		28.57		2.11				2.11		9.48		0		13.55

		2.21		20		0		28.57		2.21				2.21		9.05		0		12.93

		2.31		20		0		28.57		2.31				2.31		8.66		0		12.37

		2.41		20		0		28.57		2.41				2.41		8.3		0		11.85

		2.51		20		0		28.57		2.51				2.51		7.96		0		11.38

		2.61		22.86		0		28.57		2.61				2.61		8.75		0		10.94

		2.71		22.86		0		28.57		2.71				2.71		8.43		0		10.54

		2.81		25.71		0		28.57		2.81				2.81		9.14		0		10.16

		2.91		25.71		0		28.57		2.91				2.91		8.83		0		9.81

		3.01		28.57		0		28.57		3.01				3.01		9.48		0		9.48

		3.11		28.57		0		28.57		3.11				3.11		9.18		0		9.18

		3.21		28.57		0		28.57		3.21				3.21		8.89		0		8.89

		3.31		28.57		0		28.57		3.31				3.31		8.62		0		8.62

		3.41		28.57		0		28.57		3.41				3.41		8.37		0		8.37

		3.52		28.57		0		28.57		3.52				3.52		8.13		0		8.13

		3.62		28.57		0		31.43		3.62				3.62		7.9		0		8.69

		3.72		28.57		0		31.43		3.72				3.72		7.69		0		8.46

		3.82		28.57		0		31.43		3.82				3.82		7.49		0		8.23

		3.92		28.57		0		31.43		3.92				3.92		7.29		0		8.02

		4.02		28.57		0		31.43		4.02				4.02		7.11		0		7.82

		4.12		31.43		0		34.29		4.12				4.12		7.63		0		8.33

		4.22		31.43		0		34.29		4.22				4.22		7.45		0		8.13

		4.32		31.43		0		34.29		4.32				4.32		7.28		0		7.94

		4.42		31.43		0		34.29		4.42				4.42		7.11		0		7.76

		4.52		31.43		0		34.29		4.52				4.52		6.95		0		7.59

		4.62		37.14		0		34.29		4.62				4.62		8.04		0		7.42

		4.72		37.14		0		34.29		4.72				4.72		7.87		0		7.26

		4.82		37.14		0		34.29		4.82				4.82		7.7		0		7.11

		4.92		37.14		0		34.29		4.92				4.92		7.55		0		6.97

		5.02		37.14		0		34.29		5.02				5.02		7.4		0		6.83

		5.12		37.14		0		34.29		5.12				5.12		7.25		0		6.69

		5.22		37.14		0		34.29		5.22				5.22		7.11		0		6.56

		5.32		37.14		0		34.29		5.32				5.32		6.98		0		6.44

		5.42		37.14		0		34.29		5.42				5.42		6.85		0		6.32

		5.52		37.14		0		34.29		5.52				5.52		6.72		0		6.21

		5.62		37.14		0		34.29		5.62				5.62		6.6		0		6.1

		5.73		37.14		0		34.29		5.73				5.73		6.49		0		5.99

		5.83		37.14		0		34.29		5.83				5.83		6.38		0		5.89

		5.93		37.14		0		34.29		5.93				5.93		6.27		0		5.79

		6.03		37.14		0		34.29		6.03				6.03		6.16		0		5.69

		6.13		37.14		0		34.29		6.13				6.13		6.06		0		5.6

		6.23		37.14		0		34.29		6.23				6.23		5.96		0		5.51

		6.33		37.14		0		34.29		6.33				6.33		5.87		0		5.42

		6.43		37.14		0		34.29		6.43				6.43		5.78		0		5.33

		6.53		37.14		0		34.29		6.53				6.53		5.69		0		5.25

		6.63		37.14		2.86		34.29		6.63				6.63		5.6		0.43		5.17

		6.73		40		2.86		34.29		6.73				6.73		5.94		0.42		5.09

		6.83		40		2.86		34.29		6.83				6.83		5.86		0.42		5.02

		6.93		40		2.86		34.29		6.93				6.93		5.77		0.41		4.95

		7.03		40		2.86		34.29		7.03				7.03		5.69		0.41		4.88

		7.13		40		2.86		34.29		7.13				7.13		5.61		0.4		4.81

		7.23		40		2.86		34.29		7.23				7.23		5.53		0.4		4.74

		7.33		40		2.86		34.29		7.33				7.33		5.46		0.39		4.68

		7.43		40		2.86		34.29		7.43				7.43		5.38		0.38		4.61

		7.53		42.86		2.86		34.29		7.53				7.53		5.69		0.38		4.55

		7.63		42.86		2.86		37.14		7.63				7.63		5.61		0.37		4.87

		7.73		42.86		2.86		37.14		7.73				7.73		5.54		0.37		4.8

		7.83		42.86		2.86		37.14		7.83				7.83		5.47		0.36		4.74

		7.93		42.86		2.86		37.14		7.93				7.93		5.4		0.36		4.68

		8.04		45.71		2.86		37.14		8.04				8.04		5.69		0.36		4.62

		8.14		45.71		2.86		37.14		8.14				8.14		5.62		0.35		4.57

		8.24		45.71		5.71		37.14		8.24				8.24		5.55		0.69		4.51

		8.34		45.71		8.57		37.14		8.34				8.34		5.48		1.03		4.46

		8.44		48.57		8.57		37.14		8.44				8.44		5.76		1.02		4.4

		8.54		48.57		11.43		37.14		8.54				8.54		5.69		1.34		4.35

		8.64		48.57		11.43		37.14		8.64				8.64		5.62		1.32		4.3

		8.74		48.57		11.43		37.14		8.74				8.74		5.56		1.31		4.25

		8.84		51.43		11.43		37.14		8.84				8.84		5.82		1.29		4.2

		8.94		51.43		11.43		37.14		8.94				8.94		5.75		1.28		4.16

		9.04		51.43		11.43		37.14		9.04				9.04		5.69		1.26		4.11

		9.14		51.43		11.43		37.14		9.14				9.14		5.63		1.25		4.06

		9.24		51.43		11.43		37.14		9.24				9.24		5.57		1.24		4.02

		9.34		54.29		14.29		37.14		9.34				9.34		5.81		1.53		3.98

		9.44		54.29		14.29		37.14		9.44				9.44		5.75		1.51		3.93

		9.54		57.14		14.29		37.14		9.54				9.54		5.99		1.5		3.89

		9.64		57.14		17.14		37.14		9.64				9.64		5.93		1.78		3.85

		9.74		57.14		17.14		37.14		9.74				9.74		5.87		1.76		3.81

		9.84		57.14		17.14		37.14		9.84				9.84		5.81		1.74		3.77

		9.94		57.14		17.14		37.14		9.94				9.94		5.75		1.72		3.74

		10.04		57.14		17.14		37.14		10.04				10.04		5.69		1.71		3.7

		10.14		57.14		17.14		37.14		10.14				10.14		5.63		1.69		3.66

		10.24		57.14		17.14		37.14		10.24				10.24		5.58		1.67		3.63

		10.35		57.14		17.14		37.14		10.35				10.35		5.52		1.66		3.59

		10.45		57.14		17.14		37.14		10.45				10.45		5.47		1.64		3.56

		10.55		57.14		20		37.14		10.55				10.55		5.42		1.9		3.52

		10.65		57.14		20		37.14		10.65				10.65		5.37		1.88		3.49

		10.75		57.14		20		37.14		10.75				10.75		5.32		1.86		3.46

		10.85		57.14		20		37.14		10.85				10.85		5.27		1.84		3.42

		10.95		57.14		20		37.14		10.95				10.95		5.22		1.83		3.39

		11.05		57.14		20		37.14		11.05				11.05		5.17		1.81		3.36

		11.15		57.14		22.86		40		11.15				11.15		5.13		2.05		3.59

		11.25		57.14		22.86		40		11.25				11.25		5.08		2.03		3.56

		11.35		57.14		22.86		40		11.35				11.35		5.03		2.01		3.52

		11.45		57.14		22.86		40		11.45				11.45		4.99		2		3.49

		11.55		57.14		22.86		40		11.55				11.55		4.95		1.98		3.46

		11.65		57.14		22.86		40		11.65				11.65		4.9		1.96		3.43

		11.75		57.14		22.86		40		11.75				11.75		4.86		1.95		3.4

		11.85		57.14		22.86		40		11.85				11.85		4.82		1.93		3.37

		11.95		57.14		22.86		40		11.95				11.95		4.78		1.91		3.35

		12.05		57.14		22.86		40		12.05				12.05		4.74		1.9		3.32

		12.15		57.14		22.86		40		12.15				12.15		4.7		1.88		3.29

		12.25		57.14		22.86		40		12.25				12.25		4.66		1.87		3.26

		12.35		57.14		22.86		40		12.35				12.35		4.63		1.85		3.24

		12.45		57.14		22.86		40		12.45				12.45		4.59		1.84		3.21

		12.56		57.14		22.86		40		12.56				12.56		4.55		1.82		3.19

		12.66		57.14		22.86		40		12.66				12.66		4.52		1.81		3.16

		12.76		57.14		22.86		40		12.76				12.76		4.48		1.79		3.14

		12.86		57.14		22.86		40		12.86				12.86		4.44		1.78		3.11

		12.96		57.14		22.86		40		12.96				12.96		4.41		1.76		3.09

		13.06		57.14		25.71		40		13.06				13.06		4.38		1.97		3.06

		13.16		57.14		25.71		40		13.16				13.16		4.34		1.95		3.04

		13.26		57.14		28.57		40		13.26				13.26		4.31		2.16		3.02

		13.36		57.14		28.57		40		13.36				13.36		4.28		2.14		2.99

		13.46		57.14		28.57		40		13.46				13.46		4.25		2.12		2.97

		13.56		57.14		28.57		40		13.56				13.56		4.21		2.11		2.95

		13.66		57.14		28.57		40		13.66				13.66		4.18		2.09		2.93

		13.76		57.14		28.57		40		13.76				13.76		4.15		2.08		2.91

		13.86		57.14		28.57		40		13.86				13.86		4.12		2.06		2.89

		13.96		57.14		31.43		40		13.96				13.96		4.09		2.25		2.87

		14.06		57.14		31.43		42.86		14.06				14.06		4.06		2.24		3.05

		14.16		57.14		31.43		42.86		14.16				14.16		4.03		2.22		3.03

		14.26		57.14		31.43		42.86		14.26				14.26		4.01		2.2		3

		14.36		57.14		31.43		42.86		14.36				14.36		3.98		2.19		2.98

		14.46		57.14		31.43		42.86		14.46				14.46		3.95		2.17		2.96

		14.56		60		34.29		45.71		14.56				14.56		4.12		2.35		3.14

		14.66		60		34.29		45.71		14.66				14.66		4.09		2.34		3.12

		14.76		60		34.29		45.71		14.76				14.76		4.06		2.32		3.1

		14.87		60		34.29		45.71		14.87				14.87		4.04		2.31		3.08

		14.97		60		34.29		45.71		14.97				14.97		4.01		2.29		3.05

		15.07		60		34.29		45.71		15.07				15.07		3.98		2.28		3.03

		15.17		60		34.29		45.71		15.17				15.17		3.96		2.26		3.01

		15.27		60		34.29		45.71		15.27				15.27		3.93		2.25		2.99

		15.37		60		34.29		45.71		15.37				15.37		3.9		2.23		2.97

		15.47		60		34.29		45.71		15.47				15.47		3.88		2.22		2.96

		15.57		60		34.29		45.71		15.57				15.57		3.85		2.2		2.94

		15.67		60		37.14		45.71		15.67				15.67		3.83		2.37		2.92

		15.77		60		37.14		45.71		15.77				15.77		3.8		2.36		2.9

		15.87		60		37.14		45.71		15.87				15.87		3.78		2.34		2.88

		15.97		60		37.14		45.71		15.97				15.97		3.76		2.33		2.86

		16.07		60		37.14		45.71		16.07				16.07		3.73		2.31		2.84

		16.17		60		37.14		45.71		16.17				16.17		3.71		2.3		2.83

		16.27		60		37.14		45.71		16.27				16.27		3.69		2.28		2.81

		16.37		60		40		45.71		16.37				16.37		3.66		2.44		2.79

		16.47		60		42.86		48.57		16.47				16.47		3.64		2.6		2.95

		16.57		60		45.71		48.57		16.57				16.57		3.62		2.76		2.93

		16.67		60		45.71		54.29		16.67				16.67		3.6		2.74		3.26

		16.77		60		45.71		54.29		16.77				16.77		3.58		2.73		3.24

		16.87		60		45.71		54.29		16.87				16.87		3.56		2.71		3.22

		16.97		60		45.71		54.29		16.97				16.97		3.53		2.69		3.2

		17.07		60		48.57		54.29		17.07				17.07		3.51		2.84		3.18

		17.18		60		48.57		54.29		17.18				17.18		3.49		2.83		3.16

		17.28		60		48.57		54.29		17.28				17.28		3.47		2.81		3.14

		17.38		60		48.57		54.29		17.38				17.38		3.45		2.8		3.12

		17.48		60		48.57		54.29		17.48				17.48		3.43		2.78		3.11

		17.58		60		48.57		54.29		17.58				17.58		3.41		2.76		3.09

		17.68		60		48.57		54.29		17.68				17.68		3.39		2.75		3.07

		17.78		60		48.57		54.29		17.78				17.78		3.37		2.73		3.05

		17.88		60		48.57		54.29		17.88				17.88		3.36		2.72		3.04

		17.98		60		48.57		57.14		17.98				17.98		3.34		2.7		3.18

		18.08		60		48.57		57.14		18.08				18.08		3.32		2.69		3.16

		18.18		60		48.57		57.14		18.18				18.18		3.3		2.67		3.14

		18.28		60		48.57		57.14		18.28				18.28		3.28		2.66		3.13

		18.38		60		48.57		57.14		18.38				18.38		3.26		2.64		3.11

		18.48		60		48.57		57.14		18.48				18.48		3.25		2.63		3.09

		18.58		60		48.57		57.14		18.58				18.58		3.23		2.61		3.08

		18.68		60		48.57		57.14		18.68				18.68		3.21		2.6		3.06

		18.78		60		48.57		57.14		18.78				18.78		3.19		2.59		3.04

		18.88		60		48.57		57.14		18.88				18.88		3.18		2.57		3.03

		18.98		60		48.57		57.14		18.98				18.98		3.16		2.56		3.01

		19.08		62.86		48.57		57.14		19.08				19.08		3.29		2.55		2.99

		19.18		62.86		51.43		57.14		19.18				19.18		3.28		2.68		2.98

		19.28		62.86		51.43		57.14		19.28				19.28		3.26		2.67		2.96

		19.39		62.86		51.43		57.14		19.39				19.39		3.24		2.65		2.95

		19.49		62.86		54.29		57.14		19.49				19.49		3.23		2.79		2.93

		19.59		62.86		54.29		57.14		19.59				19.59		3.21		2.77		2.92

		19.69		62.86		54.29		57.14		19.69				19.69		3.19		2.76		2.9

		19.79		62.86		54.29		57.14		19.79				19.79		3.18		2.74		2.89

		19.89		62.86		54.29		57.14		19.89				19.89		3.16		2.73		2.87

		19.99		62.86		54.29		57.14		19.99				19.99		3.14		2.72		2.86

		20.09		62.86		57.14		57.14		20.09				20.09		3.13		2.84		2.84

		20.19		62.86		57.14		57.14		20.19				20.19		3.11		2.83		2.83

		20.29		62.86		57.14		57.14		20.29				20.29		3.1		2.82		2.82

		20.39		62.86		57.14		57.14		20.39				20.39		3.08		2.8		2.8

		20.49		62.86		60		57.14		20.49				20.49		3.07		2.93		2.79

		20.59		62.86		60		57.14		20.59				20.59		3.05		2.91		2.78

		20.69		65.71		62.86		57.14		20.69				20.69		3.18		3.04		2.76

		20.79		65.71		62.86		57.14		20.79				20.79		3.16		3.02		2.75

		20.89		65.71		62.86		57.14		20.89				20.89		3.15		3.01		2.74

		20.99		65.71		65.71		57.14		20.99				20.99		3.13		3.13		2.72

		21.09		65.71		68.57		57.14		21.09				21.09		3.12		3.25		2.71

		21.19		65.71		68.57		57.14		21.19				21.19		3.1		3.24		2.7

		21.29		65.71		68.57		57.14		21.29				21.29		3.09		3.22		2.68

		21.39		65.71		68.57		60		21.39				21.39		3.07		3.21		2.8

		21.49		65.71		68.57		60		21.49				21.49		3.06		3.19		2.79

		21.59		65.71		71.43		60		21.59				21.59		3.04		3.31		2.78

		21.7		65.71		77.14		60		21.7				21.7		3.03		3.56		2.77

		21.8		65.71		77.14		60		21.8				21.8		3.02		3.54		2.75

		21.9		65.71		80		60		21.9				21.9		3		3.65		2.74

		22		65.71		80		60		22				22		2.99		3.64		2.73

		22.1		65.71		80		60		22.1				22.1		2.97		3.62		2.72

		22.2		65.71		80		60		22.2				22.2		2.96		3.6		2.7

		22.3		65.71		82.86		60		22.3				22.3		2.95		3.72		2.69

		22.4		65.71		82.86		60		22.4				22.4		2.93		3.7		2.68

		22.5		65.71		82.86		60		22.5				22.5		2.92		3.68		2.67

		22.6		65.71		85.71		60		22.6				22.6		2.91		3.79		2.65

		22.7		65.71		85.71		60		22.7				22.7		2.89		3.78		2.64

		22.8		65.71		85.71		60		22.8				22.8		2.88		3.76		2.63

		22.9		65.71		85.71		60		22.9				22.9		2.87		3.74		2.62

		23		65.71		85.71		60		23				23		2.86		3.73		2.61

		23.1		65.71		85.71		60		23.1				23.1		2.84		3.71		2.6

		23.2		65.71		85.71		60		23.2				23.2		2.83		3.69		2.59

		23.3		65.71		85.71		60		23.3				23.3		2.82		3.68		2.57

		23.4		65.71		85.71		60		23.4				23.4		2.81		3.66		2.56

		23.5		65.71		85.71		60		23.5				23.5		2.8		3.65		2.55

		23.6		65.71		85.71		60		23.6				23.6		2.78		3.63		2.54

		23.7		68.57		85.71		60		23.7				23.7		2.89		3.62		2.53

		23.8		68.57		85.71		60		23.8				23.8		2.88		3.6		2.52

		23.9		68.57		85.71		60		23.9				23.9		2.87		3.59		2.51

		24.01		68.57		85.71		60		24.01				24.01		2.86		3.57		2.5

		24.11		68.57		85.71		60		24.11				24.11		2.84		3.56		2.49

		24.21		68.57		85.71		60		24.21				24.21		2.83		3.54		2.48

		24.31		68.57		88.57		60		24.31				24.31		2.82		3.64		2.47

		24.41		74.29		88.57		60		24.41				24.41		3.04		3.63		2.46

		24.51		74.29		88.57		60		24.51				24.51		3.03		3.61		2.45

		24.61		74.29		88.57		60		24.61				24.61		3.02		3.6		2.44

		24.71		74.29		88.57		60		24.71				24.71		3.01		3.58		2.43

		24.81		74.29		91.43		60		24.81				24.81		2.99		3.69		2.42

		24.91		74.29		91.43		60		24.91				24.91		2.98		3.67		2.41

		25.01		77.14		91.43		60		25.01				25.01		3.08		3.66		2.4

		25.11		77.14		91.43		60		25.11				25.11		3.07		3.64		2.39

		25.21		77.14		91.43		60		25.21				25.21		3.06		3.63		2.38

		25.31		77.14		91.43		60		25.31				25.31		3.05		3.61		2.37

		25.41		77.14		91.43		60		25.41				25.41		3.04		3.6		2.36

		25.51		77.14		91.43		60		25.51				25.51		3.02		3.58		2.35

		25.61		77.14		91.43		60		25.61				25.61		3.01		3.57		2.34

		25.71		77.14		91.43		60		25.71				25.71		3		3.56		2.33

		25.81		77.14		91.43		60		25.81				25.81		2.99		3.54		2.32

		25.91		77.14		91.43		60		25.91				25.91		2.98		3.53		2.32

		26.01		77.14		91.43		60		26.01				26.01		2.97		3.51		2.31

		26.11		77.14		91.43		60		26.11				26.11		2.95		3.5		2.3

		26.21		77.14		91.43		60		26.21				26.21		2.94		3.49		2.29

		26.32		77.14		91.43		60		26.32				26.32		2.93		3.47		2.28

		26.42		77.14		91.43		60		26.42				26.42		2.92		3.46		2.27

		26.52		77.14		91.43		60		26.52				26.52		2.91		3.45		2.26

		26.62		77.14		91.43		60		26.62				26.62		2.9		3.44		2.25

		26.72		77.14		91.43		62.86		26.72				26.72		2.89		3.42		2.35

		26.82		77.14		91.43		65.71		26.82				26.82		2.88		3.41		2.45

		26.92		77.14		91.43		65.71		26.92				26.92		2.87		3.4		2.44

		27.02		77.14		91.43		65.71		27.02				27.02		2.86		3.38		2.43

		27.12		80		91.43		65.71		27.12				27.12		2.95		3.37		2.42

		27.22		80		91.43		65.71		27.22				27.22		2.94		3.36		2.41

		27.32		80		91.43		65.71		27.32				27.32		2.93		3.35		2.41

		27.42		80		91.43		65.71		27.42				27.42		2.92		3.33		2.4

		27.52		80		91.43		65.71		27.52				27.52		2.91		3.32		2.39

		27.62		80		91.43		65.71		27.62				27.62		2.9		3.31		2.38

		27.72		80		91.43		65.71		27.72				27.72		2.89		3.3		2.37

		27.82		80		91.43		65.71		27.82				27.82		2.88		3.29		2.36

		27.92		80		91.43		65.71		27.92				27.92		2.87		3.27		2.35

		28.02		82.86		91.43		65.71		28.02				28.02		2.96		3.26		2.35

		28.12		82.86		91.43		68.57		28.12				28.12		2.95		3.25		2.44

		28.22		82.86		91.43		68.57		28.22				28.22		2.94		3.24		2.43

		28.32		82.86		91.43		68.57		28.32				28.32		2.93		3.23		2.42

		28.42		82.86		91.43		68.57		28.42				28.42		2.91		3.22		2.41

		28.53		82.86		91.43		68.57		28.53				28.53		2.9		3.21		2.4

		28.63		82.86		91.43		68.57		28.63				28.63		2.89		3.19		2.4

		28.73		82.86		91.43		68.57		28.73				28.73		2.88		3.18		2.39

		28.83		82.86		91.43		68.57		28.83				28.83		2.87		3.17		2.38

		28.93		82.86		91.43		68.57		28.93				28.93		2.86		3.16		2.37

		29.03		82.86		91.43		68.57		29.03				29.03		2.85		3.15		2.36

		29.13		82.86		91.43		68.57		29.13				29.13		2.84		3.14		2.35

		29.23		82.86		91.43		68.57		29.23				29.23		2.83		3.13		2.35

		29.33		82.86		91.43		68.57		29.33				29.33		2.83		3.12		2.34

		29.43		82.86		91.43		68.57		29.43				29.43		2.82		3.11		2.33

		29.53		82.86		91.43		71.43		29.53				29.53		2.81		3.1		2.42

		29.63		82.86		91.43		74.29		29.63				29.63		2.8		3.09		2.51

		29.73		82.86		91.43		74.29		29.73				29.73		2.79		3.08		2.5

		29.83		82.86		91.43		74.29		29.83				29.83		2.78		3.06		2.49

		29.93		82.86		91.43		77.14		29.93				29.93		2.77		3.05		2.58

		30.03		82.86		91.43		77.14		30.03				30.03		2.76		3.04		2.57

		30.13		82.86		91.43		77.14		30.13				30.13		2.75		3.03		2.56

		30.23		82.86		91.43		77.14		30.23				30.23		2.74		3.02		2.55

		30.33		85.71		91.43		77.14		30.33				30.33		2.83		3.01		2.54

		30.43		85.71		91.43		77.14		30.43				30.43		2.82		3		2.53

		30.53		85.71		91.43		77.14		30.53				30.53		2.81		2.99		2.53

		30.63		85.71		91.43		77.14		30.63				30.63		2.8		2.98		2.52

		30.73		85.71		91.43		77.14		30.73				30.73		2.79		2.97		2.51

		30.84		85.71		91.43		77.14		30.84				30.84		2.78		2.97		2.5

		30.94		85.71		91.43		77.14		30.94				30.94		2.77		2.96		2.49

		31.04		85.71		91.43		77.14		31.04				31.04		2.76		2.95		2.49

		31.14		85.71		91.43		77.14		31.14				31.14		2.75		2.94		2.48

		31.24		85.71		91.43		77.14		31.24				31.24		2.74		2.93		2.47

		31.34		88.57		91.43		77.14		31.34				31.34		2.83		2.92		2.46

		31.44		88.57		91.43		77.14		31.44				31.44		2.82		2.91		2.45

		31.54		88.57		91.43		77.14		31.54				31.54		2.81		2.9		2.45

		31.64		91.43		91.43		77.14		31.64				31.64		2.89		2.89		2.44

		31.74		91.43		91.43		77.14		31.74				31.74		2.88		2.88		2.43

		31.84		91.43		91.43		77.14		31.84				31.84		2.87		2.87		2.42

		31.94		91.43		91.43		77.14		31.94				31.94		2.86		2.86		2.42

		32.04		91.43		91.43		77.14		32.04				32.04		2.85		2.85		2.41

		32.14		91.43		91.43		77.14		32.14				32.14		2.84		2.84		2.4

		32.24		91.43		91.43		77.14		32.24				32.24		2.84		2.84		2.39

		32.34		91.43		91.43		77.14		32.34				32.34		2.83		2.83		2.39

		32.44		91.43		91.43		77.14		32.44				32.44		2.82		2.82		2.38

		32.54		91.43		91.43		77.14		32.54				32.54		2.81		2.81		2.37

		32.64		91.43		91.43		77.14		32.64				32.64		2.8		2.8		2.36

		32.74		91.43		91.43		77.14		32.74				32.74		2.79		2.79		2.36

		32.84		91.43		94.29		77.14		32.84				32.84		2.78		2.87		2.35

		32.94		91.43		94.29		77.14		32.94				32.94		2.78		2.86		2.34

		33.04		91.43		94.29		77.14		33.04				33.04		2.77		2.85		2.33

		33.15		91.43		97.14		77.14		33.15				33.15		2.76		2.93		2.33

		33.25		91.43		97.14		77.14		33.25				33.25		2.75		2.92		2.32

		33.35		91.43		97.14		80		33.35				33.35		2.74		2.91		2.4

		33.45		91.43		97.14		80		33.45				33.45		2.73		2.9		2.39

		33.55		91.43		97.14		80		33.55				33.55		2.73		2.9		2.38

		33.65		91.43		97.14		80		33.65				33.65		2.72		2.89		2.38

		33.75		91.43		97.14		80		33.75				33.75		2.71		2.88		2.37

		33.85		91.43		97.14		80		33.85				33.85		2.7		2.87		2.36

		33.95		91.43		97.14		80		33.95				33.95		2.69		2.86		2.36

		34.05		91.43		97.14		80		34.05				34.05		2.69		2.85		2.35

		34.15		91.43		97.14		82.86		34.15				34.15		2.68		2.84		2.43

		34.25		91.43		97.14		82.86		34.25				34.25		2.67		2.84		2.42

		34.35		91.43		97.14		82.86		34.35				34.35		2.66		2.83		2.41

		34.45		91.43		97.14		82.86		34.45				34.45		2.65		2.82		2.41

		34.55		91.43		97.14		82.86		34.55				34.55		2.65		2.81		2.4

		34.65		91.43		97.14		82.86		34.65				34.65		2.64		2.8		2.39

		34.75		91.43		97.14		82.86		34.75				34.75		2.63		2.8		2.38

		34.85		91.43		97.14		82.86		34.85				34.85		2.62		2.79		2.38

		34.95		91.43		97.14		82.86		34.95				34.95		2.62		2.78		2.37

		35.05		91.43		97.14		82.86		35.05				35.05		2.61		2.77		2.36

		35.15		91.43		97.14		82.86		35.15				35.15		2.6		2.76		2.36

		35.25		91.43		97.14		82.86		35.25				35.25		2.59		2.76		2.35

		35.36		91.43		97.14		82.86		35.36				35.36		2.59		2.75		2.34

		35.46		91.43		97.14		82.86		35.46				35.46		2.58		2.74		2.34

		35.56		91.43		97.14		82.86		35.56				35.56		2.57		2.73		2.33

		35.66		91.43		97.14		82.86		35.66				35.66		2.56		2.72		2.32

		35.76		91.43		97.14		82.86		35.76				35.76		2.56		2.72		2.32

		35.86		91.43		97.14		82.86		35.86				35.86		2.55		2.71		2.31

		35.96		91.43		97.14		82.86		35.96				35.96		2.54		2.7		2.3

		36.06		91.43		97.14		82.86		36.06				36.06		2.54		2.69		2.3

		36.16		91.43		97.14		82.86		36.16				36.16		2.53		2.69		2.29

		36.26		91.43		97.14		82.86		36.26				36.26		2.52		2.68		2.29

		36.36		91.43		97.14		85.71		36.36				36.36		2.51		2.67		2.36

		36.46		91.43		97.14		85.71		36.46				36.46		2.51		2.66		2.35

		36.56		91.43		97.14		85.71		36.56				36.56		2.5		2.66		2.34

		36.66		91.43		97.14		85.71		36.66				36.66		2.49		2.65		2.34

		36.76		91.43		97.14		85.71		36.76				36.76		2.49		2.64		2.33

		36.86		91.43		97.14		85.71		36.86				36.86		2.48		2.64		2.33

		36.96		91.43		97.14		85.71		36.96				36.96		2.47		2.63		2.32

		37.06		91.43		97.14		88.57		37.06				37.06		2.47		2.62		2.39

		37.16		91.43		97.14		88.57		37.16				37.16		2.46		2.61		2.38

		37.26		91.43		97.14		88.57		37.26				37.26		2.45		2.61		2.38

		37.36		91.43		97.14		88.57		37.36				37.36		2.45		2.6		2.37

		37.46		91.43		97.14		88.57		37.46				37.46		2.44		2.59		2.36

		37.56		91.43		97.14		88.57		37.56				37.56		2.43		2.59		2.36

		37.67		91.43		97.14		88.57		37.67				37.67		2.43		2.58		2.35

		37.77		91.43		97.14		88.57		37.77				37.77		2.42		2.57		2.35

		37.87		91.43		97.14		88.57		37.87				37.87		2.41		2.57		2.34

		37.97		91.43		97.14		88.57		37.97				37.97		2.41		2.56		2.33

		38.07		91.43		97.14		88.57		38.07				38.07		2.4		2.55		2.33

		38.17		91.43		97.14		88.57		38.17				38.17		2.4		2.55		2.32

		38.27		91.43		97.14		88.57		38.27				38.27		2.39		2.54		2.31

		38.37		91.43		97.14		88.57		38.37				38.37		2.38		2.53		2.31

		38.47		91.43		97.14		88.57		38.47				38.47		2.38		2.53		2.3

		38.57		91.43		97.14		88.57		38.57				38.57		2.37		2.52		2.3

		38.67		91.43		97.14		88.57		38.67				38.67		2.36		2.51		2.29

		38.77		91.43		97.14		88.57		38.77				38.77		2.36		2.51		2.28

		38.87		91.43		97.14		88.57		38.87				38.87		2.35		2.5		2.28

		38.97		91.43		97.14		88.57		38.97				38.97		2.35		2.49		2.27

		39.07		91.43		97.14		88.57		39.07				39.07		2.34		2.49		2.27

		39.17		91.43		97.14		88.57		39.17				39.17		2.33		2.48		2.26

		39.27		91.43		97.14		88.57		39.27				39.27		2.33		2.47		2.26

		39.37		91.43		97.14		88.57		39.37				39.37		2.32		2.47		2.25

		39.47		91.43		97.14		88.57		39.47				39.47		2.32		2.46		2.24

		39.57		91.43		97.14		88.57		39.57				39.57		2.31		2.45		2.24

		39.67		91.43		97.14		88.57		39.67				39.67		2.3		2.45		2.23

		39.77		91.43		97.14		88.57		39.77				39.77		2.3		2.44		2.23

		39.87		91.43		97.14		88.57		39.87				39.87		2.29		2.44		2.22

		39.98		91.43		97.14		88.57		39.98				39.98		2.29		2.43		2.22

		40.08		91.43		97.14		88.57		40.08				40.08		2.28		2.42		2.21

		40.18		91.43		97.14		88.57		40.18				40.18		2.28		2.42		2.2

		40.28		91.43		97.14		88.57		40.28				40.28		2.27		2.41		2.2

		40.38		91.43		97.14		88.57		40.38				40.38		2.26		2.41		2.19

		40.48		91.43		97.14		88.57		40.48				40.48		2.26		2.4		2.19

		40.58		91.43		97.14		88.57		40.58				40.58		2.25		2.39		2.18

		40.68		91.43		97.14		88.57		40.68				40.68		2.25		2.39		2.18

		40.78		91.43		97.14		88.57		40.78				40.78		2.24		2.38		2.17

		40.88		91.43		97.14		91.43		40.88				40.88		2.24		2.38		2.24

		40.98		91.43		97.14		91.43		40.98				40.98		2.23		2.37		2.23

		41.08		91.43		97.14		91.43		41.08				41.08		2.23		2.36		2.23

		41.18		91.43		97.14		91.43		41.18				41.18		2.22		2.36		2.22

		41.28		91.43		97.14		91.43		41.28				41.28		2.21		2.35		2.21

		41.38		91.43		97.14		91.43		41.38				41.38		2.21		2.35		2.21

		41.48		91.43		97.14		91.43		41.48				41.48		2.2		2.34		2.2

		41.58		91.43		97.14		91.43		41.58				41.58		2.2		2.34		2.2

		41.68		91.43		97.14		91.43		41.68				41.68		2.19		2.33		2.19

		41.78		91.43		97.14		91.43		41.78				41.78		2.19		2.32		2.19

		41.88		91.43		97.14		91.43		41.88				41.88		2.18		2.32		2.18

		41.98		91.43		97.14		91.43		41.98				41.98		2.18		2.31		2.18

		42.08		91.43		97.14		91.43		42.08				42.08		2.17		2.31		2.17

		42.18		91.43		97.14		91.43		42.18				42.18		2.17		2.3		2.17

		42.29		91.43		97.14		91.43		42.29				42.29		2.16		2.3		2.16

		42.39		91.43		97.14		91.43		42.39				42.39		2.16		2.29		2.16

		42.49		91.43		97.14		91.43		42.49				42.49		2.15		2.29		2.15

		42.59		91.43		97.14		91.43		42.59				42.59		2.15		2.28		2.15

		42.69		91.43		97.14		91.43		42.69				42.69		2.14		2.28		2.14

		42.79		91.43		97.14		91.43		42.79				42.79		2.14		2.27		2.14

		42.89		91.43		97.14		91.43		42.89				42.89		2.13		2.27		2.13

		42.99		91.43		97.14		91.43		42.99				42.99		2.13		2.26		2.13

		43.09		91.43		97.14		91.43		43.09				43.09		2.12		2.25		2.12

		43.19		91.43		97.14		91.43		43.19				43.19		2.12		2.25		2.12

		43.29		91.43		97.14		91.43		43.29				43.29		2.11		2.24		2.11

		43.39		91.43		97.14		91.43		43.39				43.39		2.11		2.24		2.11

		43.49		91.43		97.14		91.43		43.49				43.49		2.1		2.23		2.1

		43.59		91.43		97.14		91.43		43.59				43.59		2.1		2.23		2.1

		43.69		91.43		97.14		91.43		43.69				43.69		2.09		2.22		2.09

		43.79		91.43		97.14		91.43		43.79				43.79		2.09		2.22		2.09

		43.89		91.43		97.14		91.43		43.89				43.89		2.08		2.21		2.08

		43.99		91.43		97.14		91.43		43.99				43.99		2.08		2.21		2.08

		44.09		91.43		97.14		91.43		44.09				44.09		2.07		2.2		2.07

		44.19		91.43		97.14		91.43		44.19				44.19		2.07		2.2		2.07

		44.29		91.43		97.14		91.43		44.29				44.29		2.06		2.19		2.06

		44.39		91.43		97.14		91.43		44.39				44.39		2.06		2.19		2.06

		44.5		91.43		97.14		91.43		44.5				44.5		2.05		2.18		2.05

		44.6		91.43		97.14		91.43		44.6				44.6		2.05		2.18		2.05

		44.7		91.43		97.14		91.43		44.7				44.7		2.05		2.17		2.05

		44.8		91.43		97.14		91.43		44.8				44.8		2.04		2.17		2.04

		44.9		91.43		97.14		91.43		44.9				44.9		2.04		2.16		2.04

		45		91.43		97.14		91.43		45				45		2.03		2.16		2.03

		45.1		91.43		97.14		91.43		45.1				45.1		2.03		2.15		2.03

		45.2		91.43		97.14		91.43		45.2				45.2		2.02		2.15		2.02

		45.3		91.43		97.14		91.43		45.3				45.3		2.02		2.14		2.02

		45.4		91.43		97.14		91.43		45.4				45.4		2.01		2.14		2.01

		45.5		91.43		97.14		91.43		45.5				45.5		2.01		2.14		2.01

		45.6		91.43		97.14		91.43		45.6				45.6		2.01		2.13		2.01

		45.7		91.43		97.14		91.43		45.7				45.7		2		2.13		2

		45.8		91.43		97.14		91.43		45.8				45.8		2		2.12		2

		45.9		91.43		97.14		91.43		45.9				45.9		1.99		2.12		1.99

		46		91.43		97.14		91.43		46				46		1.99		2.11		1.99

		46.1		91.43		97.14		91.43		46.1				46.1		1.98		2.11		1.98

		46.2		91.43		97.14		91.43		46.2				46.2		1.98		2.1		1.98

		46.3		91.43		97.14		91.43		46.3				46.3		1.97		2.1		1.97

		46.4		91.43		97.14		91.43		46.4				46.4		1.97		2.09		1.97

		46.5		91.43		97.14		91.43		46.5				46.5		1.97		2.09		1.97

		46.6		91.43		97.14		91.43		46.6				46.6		1.96		2.08		1.96

		46.7		91.43		97.14		91.43		46.7				46.7		1.96		2.08		1.96

		46.81		91.43		97.14		91.43		46.81				46.81		1.95		2.08		1.95

		46.91		91.43		97.14		91.43		46.91				46.91		1.95		2.07		1.95

		47.01		91.43		97.14		91.43		47.01				47.01		1.95		2.07		1.95

		47.11		91.43		97.14		91.43		47.11				47.11		1.94		2.06		1.94

		47.21		91.43		97.14		91.43		47.21				47.21		1.94		2.06		1.94

		47.31		91.43		97.14		91.43		47.31				47.31		1.93		2.05		1.93

		47.41		91.43		97.14		91.43		47.41				47.41		1.93		2.05		1.93

		47.51		91.43		97.14		91.43		47.51				47.51		1.92		2.04		1.92

		47.61		91.43		97.14		91.43		47.61				47.61		1.92		2.04		1.92

		47.71		91.43		97.14		91.43		47.71				47.71		1.92		2.04		1.92

		47.81		91.43		97.14		91.43		47.81				47.81		1.91		2.03		1.91

		47.91		91.43		97.14		91.43		47.91				47.91		1.91		2.03		1.91

		48.01		91.43		97.14		91.43		48.01				48.01		1.9		2.02		1.9

		48.11		91.43		97.14		91.43		48.11				48.11		1.9		2.02		1.9

		48.21		91.43		97.14		91.43		48.21				48.21		1.9		2.01		1.9

		48.31		91.43		97.14		91.43		48.31				48.31		1.89		2.01		1.89

		48.41		91.43		97.14		91.43		48.41				48.41		1.89		2.01		1.89

		48.51		91.43		97.14		91.43		48.51				48.51		1.88		2		1.88

		48.61		91.43		97.14		91.43		48.61				48.61		1.88		2		1.88

		48.71		91.43		97.14		91.43		48.71				48.71		1.88		1.99		1.88

		48.81		91.43		97.14		91.43		48.81				48.81		1.87		1.99		1.87

		48.91		91.43		97.14		91.43		48.91				48.91		1.87		1.99		1.87

		49.01		91.43		97.14		91.43		49.01				49.01		1.87		1.98		1.87

		49.12		91.43		97.14		91.43		49.12				49.12		1.86		1.98		1.86

		49.22		91.43		97.14		91.43		49.22				49.22		1.86		1.97		1.86

		49.32		91.43		97.14		91.43		49.32				49.32		1.85		1.97		1.85

		49.42		91.43		97.14		91.43		49.42				49.42		1.85		1.97		1.85

		49.52		91.43		97.14		91.43		49.52				49.52		1.85		1.96		1.85

		49.62		91.43		97.14		91.43		49.62				49.62		1.84		1.96		1.84

		49.72		91.43		97.14		91.43		49.72				49.72		1.84		1.95		1.84

		49.82		91.43		97.14		91.43		49.82				49.82		1.84		1.95		1.84

		49.92		91.43		97.14		91.43		49.92				49.92		1.83		1.95		1.83

		50.02		91.43		97.14		91.43		50.02				50.02		1.83		1.94		1.83

		50.12		91.43		97.14		91.43		50.12				50.12		1.82		1.94		1.82

		50.22		91.43		97.14		91.43		50.22				50.22		1.82		1.93		1.82

		50.32		91.43		97.14		91.43		50.32				50.32		1.82		1.93		1.82

		50.42		91.43		97.14		91.43		50.42				50.42		1.81		1.93		1.81

		50.52		91.43		97.14		91.43		50.52				50.52		1.81		1.92		1.81

		50.62		91.43		97.14		91.43		50.62				50.62		1.81		1.92		1.81

		50.72		91.43		97.14		91.43		50.72				50.72		1.8		1.92		1.8

		50.82		91.43		97.14		91.43		50.82				50.82		1.8		1.91		1.8

		50.92		91.43		97.14		91.43		50.92				50.92		1.8		1.91		1.8

		51.02		91.43		97.14		91.43		51.02				51.02		1.79		1.9		1.79

		51.12		91.43		97.14		91.43		51.12				51.12		1.79		1.9		1.79

		51.22		91.43		97.14		91.43		51.22				51.22		1.78		1.9		1.78

		51.33		91.43		97.14		91.43		51.33				51.33		1.78		1.89		1.78

		51.43		91.43		97.14		91.43		51.43				51.43		1.78		1.89		1.78

		51.53		91.43		97.14		91.43		51.53				51.53		1.77		1.89		1.77

		51.63		91.43		97.14		91.43		51.63				51.63		1.77		1.88		1.77

		51.73		91.43		97.14		91.43		51.73				51.73		1.77		1.88		1.77

		51.83		91.43		97.14		91.43		51.83				51.83		1.76		1.87		1.76

		51.93		91.43		97.14		91.43		51.93				51.93		1.76		1.87		1.76

		52.03		91.43		97.14		91.43		52.03				52.03		1.76		1.87		1.76

		52.13		91.43		97.14		91.43		52.13				52.13		1.75		1.86		1.75

		52.23		91.43		97.14		91.43		52.23				52.23		1.75		1.86		1.75

		52.33		91.43		97.14		91.43		52.33				52.33		1.75		1.86		1.75

		52.43		91.43		97.14		91.43		52.43				52.43		1.74		1.85		1.74

		52.53		91.43		97.14		91.43		52.53				52.53		1.74		1.85		1.74

		52.63		91.43		97.14		91.43		52.63				52.63		1.74		1.85		1.74

		52.73		91.43		97.14		91.43		52.73				52.73		1.73		1.84		1.73

		52.83		91.43		97.14		91.43		52.83				52.83		1.73		1.84		1.73

		52.93		91.43		97.14		91.43		52.93				52.93		1.73		1.84		1.73

		53.03		91.43		97.14		91.43		53.03				53.03		1.72		1.83		1.72

		53.13		91.43		97.14		91.43		53.13				53.13		1.72		1.83		1.72

		53.23		91.43		97.14		91.43		53.23				53.23		1.72		1.82		1.72

		53.33		91.43		97.14		91.43		53.33				53.33		1.71		1.82		1.71

		53.43		91.43		97.14		91.43		53.43				53.43		1.71		1.82		1.71

		53.53		91.43		97.14		91.43		53.53				53.53		1.71		1.81		1.71

		53.64		91.43		97.14		91.43		53.64				53.64		1.7		1.81		1.7

		53.74		91.43		97.14		91.43		53.74				53.74		1.7		1.81		1.7

		53.84		91.43		97.14		91.43		53.84				53.84		1.7		1.8		1.7

		53.94		91.43		97.14		91.43		53.94				53.94		1.7		1.8		1.7

		54.04		91.43		97.14		91.43		54.04				54.04		1.69		1.8		1.69

		54.14		91.43		97.14		91.43		54.14				54.14		1.69		1.79		1.69

		54.24		91.43		97.14		91.43		54.24				54.24		1.69		1.79		1.69

		54.34		91.43		97.14		91.43		54.34				54.34		1.68		1.79		1.68

		54.44		91.43		97.14		91.43		54.44				54.44		1.68		1.78		1.68

		54.54		91.43		97.14		91.43		54.54				54.54		1.68		1.78		1.68

		54.64		91.43		97.14		91.43		54.64				54.64		1.67		1.78		1.67

		54.74		91.43		97.14		91.43		54.74				54.74		1.67		1.77		1.67

		54.84		91.43		97.14		91.43		54.84				54.84		1.67		1.77		1.67

		54.94		91.43		97.14		91.43		54.94				54.94		1.66		1.77		1.66

		55.04		91.43		97.14		91.43		55.04				55.04		1.66		1.76		1.66

		55.14		91.43		97.14		91.43		55.14				55.14		1.66		1.76		1.66

		55.24		91.43		97.14		91.43		55.24				55.24		1.66		1.76		1.66

		55.34		91.43		97.14		91.43		55.34				55.34		1.65		1.76		1.65

		55.44		91.43		97.14		91.43		55.44				55.44		1.65		1.75		1.65

		55.54		91.43		97.14		91.43		55.54				55.54		1.65		1.75		1.65

		55.64		91.43		97.14		91.43		55.64				55.64		1.64		1.75		1.64

		55.74		91.43		97.14		91.43		55.74				55.74		1.64		1.74		1.64

		55.84		91.43		97.14		91.43		55.84				55.84		1.64		1.74		1.64

		55.95		91.43		97.14		91.43		55.95				55.95		1.63		1.74		1.63

		56.05		91.43		97.14		91.43		56.05				56.05		1.63		1.73		1.63

		56.15		91.43		97.14		91.43		56.15				56.15		1.63		1.73		1.63

		56.25		91.43		97.14		91.43		56.25				56.25		1.63		1.73		1.63

		56.35		91.43		97.14		91.43		56.35				56.35		1.62		1.72		1.62

		56.45		91.43		97.14		91.43		56.45				56.45		1.62		1.72		1.62

		56.55		91.43		97.14		91.43		56.55				56.55		1.62		1.72		1.62

		56.65		91.43		97.14		91.43		56.65				56.65		1.61		1.71		1.61

		56.75		91.43		97.14		91.43		56.75				56.75		1.61		1.71		1.61

		56.85		91.43		97.14		91.43		56.85				56.85		1.61		1.71		1.61

		56.95		91.43		97.14		91.43		56.95				56.95		1.61		1.71		1.61

		57.05		91.43		97.14		91.43		57.05				57.05		1.6		1.7		1.6

		57.15		91.43		97.14		91.43		57.15				57.15		1.6		1.7		1.6

		57.25		91.43		97.14		91.43		57.25				57.25		1.6		1.7		1.6

		57.35		91.43		97.14		91.43		57.35				57.35		1.59		1.69		1.59

		57.45		91.43		97.14		91.43		57.45				57.45		1.59		1.69		1.59

		57.55		91.43		97.14		91.43		57.55				57.55		1.59		1.69		1.59

		57.65		91.43		97.14		91.43		57.65				57.65		1.59		1.68		1.59

		57.75		91.43		97.14		91.43		57.75				57.75		1.58		1.68		1.58

		57.85		91.43		97.14		91.43		57.85				57.85		1.58		1.68		1.58

		57.95		91.43		97.14		91.43		57.95				57.95		1.58		1.68		1.58

		58.05		91.43		97.14		91.43		58.05				58.05		1.57		1.67		1.57

		58.16		91.43		97.14		91.43		58.16				58.16		1.57		1.67		1.57

		58.26		91.43		97.14		91.43		58.26				58.26		1.57		1.67		1.57

		58.36		91.43		97.14		91.43		58.36				58.36		1.57		1.66		1.57

		58.46		91.43		97.14		91.43		58.46				58.46		1.56		1.66		1.56

		58.56		91.43		97.14		91.43		58.56				58.56		1.56		1.66		1.56

		58.66		91.43		97.14		91.43		58.66				58.66		1.56		1.66		1.56

		58.76		91.43		97.14		91.43		58.76				58.76		1.56		1.65		1.56

		58.86		91.43		97.14		91.43		58.86				58.86		1.55		1.65		1.55

		58.96		91.43		97.14		91.43		58.96				58.96		1.55		1.65		1.55

		59.06		91.43		97.14		91.43		59.06				59.06		1.55		1.64		1.55

		59.16		91.43		97.14		91.43		59.16				59.16		1.55		1.64		1.55

		59.26		91.43		97.14		91.43		59.26				59.26		1.54		1.64		1.54

		59.36		91.43		97.14		91.43		59.36				59.36		1.54		1.64		1.54

		59.46		91.43		97.14		91.43		59.46				59.46		1.54		1.63		1.54

		59.56		91.43		97.14		91.43		59.56				59.56		1.54		1.63		1.54

		59.66		91.43		97.14		91.43		59.66				59.66		1.53		1.63		1.53

		59.76		91.43		97.14		91.43		59.76				59.76		1.53		1.63		1.53

		59.86		91.43		97.14		91.43		59.86				59.86		1.53		1.62		1.53

		59.96		91.43		97.14		91.43		59.96				59.96		1.52		1.62		1.52

		60.06		91.43		97.14		91.43		60.06				60.06		1.52		1.62		1.52

		60.16		91.43		97.14		91.43		60.16				60.16		1.52		1.61		1.52

		60.26		91.43		97.14		91.43		60.26				60.26		1.52		1.61		1.52

		60.36		91.43		97.14		91.43		60.36				60.36		1.51		1.61		1.51

		60.47		91.43		97.14		91.43		60.47				60.47		1.51		1.61		1.51

		60.57		91.43		97.14		91.43		60.57				60.57		1.51		1.6		1.51

		60.67		91.43		97.14		91.43		60.67				60.67		1.51		1.6		1.51

		60.77		91.43		97.14		91.43		60.77				60.77		1.5		1.6		1.5

		60.87		91.43		97.14		91.43		60.87				60.87		1.5		1.6		1.5

		60.97		91.43		97.14		91.43		60.97				60.97		1.5		1.59		1.5

		61.07		91.43		97.14		91.43		61.07				61.07		1.5		1.59		1.5

		61.17		91.43		97.14		91.43		61.17				61.17		1.49		1.59		1.49

		61.27		91.43		97.14		91.43		61.27				61.27		1.49		1.59		1.49

		61.37		91.43		97.14		91.43		61.37				61.37		1.49		1.58		1.49

		61.47		91.43		97.14		91.43		61.47				61.47		1.49		1.58		1.49

		61.57		91.43		97.14		91.43		61.57				61.57		1.48		1.58		1.48

		61.67		91.43		97.14		91.43		61.67				61.67		1.48		1.58		1.48

		61.77		91.43		97.14		91.43		61.77				61.77		1.48		1.57		1.48

		61.87		91.43		97.14		91.43		61.87				61.87		1.48		1.57		1.48

		61.97		91.43		97.14		91.43		61.97				61.97		1.48		1.57		1.48

		62.07		91.43		97.14		91.43		62.07				62.07		1.47		1.56		1.47

		62.17		91.43		97.14		91.43		62.17				62.17		1.47		1.56		1.47

		62.27		91.43		97.14		91.43		62.27				62.27		1.47		1.56		1.47

		62.37		91.43		97.14		91.43		62.37				62.37		1.47		1.56		1.47

		62.47		91.43		97.14		91.43		62.47				62.47		1.46		1.55		1.46

		62.57		91.43		97.14		91.43		62.57				62.57		1.46		1.55		1.46

		62.67		91.43		97.14		91.43		62.67				62.67		1.46		1.55		1.46

		62.78		91.43		97.14		91.43		62.78				62.78		1.46		1.55		1.46

		62.88		91.43		97.14		91.43		62.88				62.88		1.45		1.54		1.45

		62.98		91.43		97.14		91.43		62.98				62.98		1.45		1.54		1.45

		63.08		91.43		97.14		91.43		63.08				63.08		1.45		1.54		1.45

		63.18		91.43		97.14		91.43		63.18				63.18		1.45		1.54		1.45

		63.28		91.43		97.14		91.43		63.28				63.28		1.44		1.54		1.44

		63.38		91.43		97.14		91.43		63.38				63.38		1.44		1.53		1.44

		63.48		91.43		97.14		91.43		63.48				63.48		1.44		1.53		1.44

		63.58		91.43		97.14		91.43		63.58				63.58		1.44		1.53		1.44

		63.68		91.43		97.14		91.43		63.68				63.68		1.44		1.53		1.44

		63.78		91.43		97.14		91.43		63.78				63.78		1.43		1.52		1.43

		63.88		91.43		97.14		91.43		63.88				63.88		1.43		1.52		1.43

		63.98		91.43		97.14		91.43		63.98				63.98		1.43		1.52		1.43

		64.08		91.43		97.14		91.43		64.08				64.08		1.43		1.52		1.43

		64.18		91.43		97.14		91.43		64.18				64.18		1.42		1.51		1.42

		64.28		91.43		97.14		91.43		64.28				64.28		1.42		1.51		1.42

		64.38		91.43		97.14		91.43		64.38				64.38		1.42		1.51		1.42

		64.48		91.43		97.14		91.43		64.48				64.48		1.42		1.51		1.42

		64.58		91.43		97.14		91.43		64.58				64.58		1.42		1.5		1.42

		64.68		91.43		97.14		91.43		64.68				64.68		1.41		1.5		1.41

		64.78		91.43		97.14		91.43		64.78				64.78		1.41		1.5		1.41

		64.88		91.43		97.14		91.43		64.88				64.88		1.41		1.5		1.41

		64.98		91.43		97.14		91.43		64.98				64.98		1.41		1.49		1.41

		65.09		91.43		97.14		91.43		65.09				65.09		1.4		1.49		1.4

		65.19		91.43		97.14		91.43		65.19				65.19		1.4		1.49		1.4

		65.29		91.43		97.14		91.43		65.29				65.29		1.4		1.49		1.4

		65.39		91.43		97.14		91.43		65.39				65.39		1.4		1.49		1.4

		65.49		91.43		97.14		91.43		65.49				65.49		1.4		1.48		1.4

		65.59		91.43		97.14		91.43		65.59				65.59		1.39		1.48		1.39

		65.69		91.43		97.14		91.43		65.69				65.69		1.39		1.48		1.39

		65.79		91.43		97.14		91.43		65.79				65.79		1.39		1.48		1.39

		65.89		91.43		97.14		91.43		65.89				65.89		1.39		1.47		1.39

		65.99		91.43		97.14		91.43		65.99				65.99		1.39		1.47		1.39

		66.09		91.43		97.14		91.43		66.09				66.09		1.38		1.47		1.38

		66.19		91.43		97.14		91.43		66.19				66.19		1.38		1.47		1.38

		66.29		91.43		97.14		91.43		66.29				66.29		1.38		1.47		1.38

		66.39		91.43		97.14		91.43		66.39				66.39		1.38		1.46		1.38

		66.49		91.43		97.14		91.43		66.49				66.49		1.38		1.46		1.38

		66.59		91.43		97.14		91.43		66.59				66.59		1.37		1.46		1.37

		66.69		91.43		97.14		91.43		66.69				66.69		1.37		1.46		1.37

		66.79		91.43		97.14		91.43		66.79				66.79		1.37		1.45		1.37

		66.89		91.43		97.14		91.43		66.89				66.89		1.37		1.45		1.37

		66.99		91.43		97.14		91.43		66.99				66.99		1.36		1.45		1.36

		67.09		91.43		97.14		91.43		67.09				67.09		1.36		1.45		1.36

		67.19		91.43		97.14		91.43		67.19				67.19		1.36		1.45		1.36

		67.3		91.43		97.14		91.43		67.3				67.3		1.36		1.44		1.36

		67.4		91.43		97.14		91.43		67.4				67.4		1.36		1.44		1.36

		67.5		91.43		97.14		91.43		67.5				67.5		1.35		1.44		1.35

		67.6		91.43		97.14		91.43		67.6				67.6		1.35		1.44		1.35

		67.7		91.43		97.14		91.43		67.7				67.7		1.35		1.43		1.35

		67.8		91.43		97.14		91.43		67.8				67.8		1.35		1.43		1.35

		67.9		91.43		97.14		91.43		67.9				67.9		1.35		1.43		1.35

		68		91.43		97.14		91.43		68				68		1.34		1.43		1.34

		68.1		91.43		97.14		91.43		68.1				68.1		1.34		1.43		1.34

		68.2		91.43		97.14		91.43		68.2				68.2		1.34		1.42		1.34

		68.3		91.43		97.14		91.43		68.3				68.3		1.34		1.42		1.34

		68.4		91.43		97.14		91.43		68.4				68.4		1.34		1.42		1.34

		68.5		91.43		97.14		91.43		68.5				68.5		1.33		1.42		1.33

		68.6		91.43		97.14		91.43		68.6				68.6		1.33		1.42		1.33

		68.7		91.43		97.14		91.43		68.7				68.7		1.33		1.41		1.33

		68.8		91.43		97.14		91.43		68.8				68.8		1.33		1.41		1.33

		68.9		91.43		97.14		91.43		68.9				68.9		1.33		1.41		1.33

		69		91.43		97.14		91.43		69				69		1.33		1.41		1.33

		69.1		91.43		97.14		91.43		69.1				69.1		1.32		1.41		1.32

		69.2		91.43		97.14		91.43		69.2				69.2		1.32		1.4		1.32

		69.3		91.43		97.14		91.43		69.3				69.3		1.32		1.4		1.32

		69.4		91.43		97.14		91.43		69.4				69.4		1.32		1.4		1.32

		69.5		91.43		97.14		91.43		69.5				69.5		1.32		1.4		1.32

		69.61		91.43		97.14		91.43		69.61				69.61		1.31		1.4		1.31

		69.71		91.43		97.14		91.43		69.71				69.71		1.31		1.39		1.31

		69.81		91.43		97.14		91.43		69.81				69.81		1.31		1.39		1.31

		69.91		91.43		97.14		91.43		69.91				69.91		1.31		1.39		1.31

		70.01		91.43		97.14		91.43		70.01				70.01		1.31		1.39		1.31

		70.11		91.43		97.14		91.43		70.11				70.11		1.3		1.39		1.3

		70.21		91.43		97.14		91.43		70.21				70.21		1.3		1.38		1.3

		70.31		91.43		97.14		91.43		70.31				70.31		1.3		1.38		1.3

		70.41		91.43		97.14		91.43		70.41				70.41		1.3		1.38		1.3

		70.51		91.43		97.14		91.43		70.51				70.51		1.3		1.38		1.3

		70.61		91.43		97.14		91.43		70.61				70.61		1.29		1.38		1.29

		70.71		91.43		97.14		91.43		70.71				70.71		1.29		1.37		1.29

		70.81		91.43		97.14		91.43		70.81				70.81		1.29		1.37		1.29

		70.91		91.43		97.14		91.43		70.91				70.91		1.29		1.37		1.29

		71.01		91.43		97.14		91.43		71.01				71.01		1.29		1.37		1.29

		71.11		91.43		97.14		91.43		71.11				71.11		1.29		1.37		1.29

		71.21		91.43		97.14		91.43		71.21				71.21		1.28		1.36		1.28

		71.31		91.43		97.14		91.43		71.31				71.31		1.28		1.36		1.28

		71.41		91.43		97.14		91.43		71.41				71.41		1.28		1.36		1.28

		71.51		91.43		97.14		91.43		71.51				71.51		1.28		1.36		1.28

		71.61		91.43		97.14		91.43		71.61				71.61		1.28		1.36		1.28

		71.71		91.43		97.14		91.43		71.71				71.71		1.27		1.35		1.27

		71.81		91.43		97.14		91.43		71.81				71.81		1.27		1.35		1.27

		71.92		91.43		97.14		91.43		71.92				71.92		1.27		1.35		1.27

		72.02		91.43		97.14		91.43		72.02				72.02		1.27		1.35		1.27

		72.12		91.43		97.14		91.43		72.12				72.12		1.27		1.35		1.27

		72.22		91.43		97.14		91.43		72.22				72.22		1.27		1.35		1.27

		72.32		91.43		97.14		91.43		72.32				72.32		1.26		1.34		1.26

		72.42		91.43		97.14		91.43		72.42				72.42		1.26		1.34		1.26

		72.52		91.43		97.14		91.43		72.52				72.52		1.26		1.34		1.26

		72.62		91.43		97.14		91.43		72.62				72.62		1.26		1.34		1.26

		72.72		91.43		97.14		91.43		72.72				72.72		1.26		1.34		1.26

		72.82		91.43		97.14		91.43		72.82				72.82		1.26		1.33		1.26

		72.92		91.43		97.14		91.43		72.92				72.92		1.25		1.33		1.25

		73.02		91.43		97.14		91.43		73.02				73.02		1.25		1.33		1.25

		73.12		91.43		97.14		91.43		73.12				73.12		1.25		1.33		1.25

		73.22		91.43		97.14		91.43		73.22				73.22		1.25		1.33		1.25

		73.32		91.43		97.14		91.43		73.32				73.32		1.25		1.32		1.25

		73.42		91.43		97.14		91.43		73.42				73.42		1.25		1.32		1.25

		73.52		91.43		97.14		91.43		73.52				73.52		1.24		1.32		1.24

		73.62		91.43		97.14		91.43		73.62				73.62		1.24		1.32		1.24

		73.72		91.43		97.14		91.43		73.72				73.72		1.24		1.32		1.24

		73.82		91.43		97.14		91.43		73.82				73.82		1.24		1.32		1.24

		73.92		91.43		97.14		91.43		73.92				73.92		1.24		1.31		1.24

		74.02		91.43		97.14		91.43		74.02				74.02		1.24		1.31		1.24

		74.13		91.43		97.14		91.43		74.13				74.13		1.23		1.31		1.23

		74.23		91.43		97.14		91.43		74.23				74.23		1.23		1.31		1.23

		74.33		91.43		97.14		91.43		74.33				74.33		1.23		1.31		1.23

		74.43		91.43		97.14		91.43		74.43				74.43		1.23		1.31		1.23

		74.53		91.43		97.14		91.43		74.53				74.53		1.23		1.3		1.23

		74.63		91.43		97.14		91.43		74.63				74.63		1.23		1.3		1.23

		74.73		91.43		97.14		91.43		74.73				74.73		1.22		1.3		1.22

		74.83		91.43		97.14		91.43		74.83				74.83		1.22		1.3		1.22

		74.93		91.43		97.14		91.43		74.93				74.93		1.22		1.3		1.22

		75.03		91.43		97.14		91.43		75.03				75.03		1.22		1.29		1.22

		75.13		91.43		97.14		91.43		75.13				75.13		1.22		1.29		1.22

		75.23		91.43		97.14		91.43		75.23				75.23		1.22		1.29		1.22

		75.33		91.43		97.14		91.43		75.33				75.33		1.21		1.29		1.21

		75.43		91.43		97.14		91.43		75.43				75.43		1.21		1.29		1.21

		75.53		91.43		97.14		91.43		75.53				75.53		1.21		1.29		1.21

		75.63		91.43		97.14		91.43		75.63				75.63		1.21		1.28		1.21

		75.73		91.43		97.14		91.43		75.73				75.73		1.21		1.28		1.21

		75.83		91.43		97.14		91.43		75.83				75.83		1.21		1.28		1.21

		75.93		91.43		97.14		91.43		75.93				75.93		1.2		1.28		1.2

		76.03		91.43		97.14		91.43		76.03				76.03		1.2		1.28		1.2

		76.13		91.43		97.14		91.43		76.13				76.13		1.2		1.28		1.2

		76.23		91.43		97.14		91.43		76.23				76.23		1.2		1.27		1.2

		76.33		91.43		97.14		91.43		76.33				76.33		1.2		1.27		1.2

		76.44		91.43		97.14		91.43		76.44				76.44		1.2		1.27		1.2

		76.54		91.43		97.14		91.43		76.54				76.54		1.19		1.27		1.19

		76.64		91.43		97.14		91.43		76.64				76.64		1.19		1.27		1.19

		76.74		91.43		97.14		91.43		76.74				76.74		1.19		1.27		1.19

		76.84		91.43		97.14		91.43		76.84				76.84		1.19		1.26		1.19

		76.94		91.43		97.14		91.43		76.94				76.94		1.19		1.26		1.19

		77.04		91.43		97.14		91.43		77.04				77.04		1.19		1.26		1.19

		77.14		91.43		97.14		91.43		77.14				77.14		1.19		1.26		1.19

		77.24		91.43		97.14		91.43		77.24				77.24		1.18		1.26		1.18

		77.34		91.43		97.14		91.43		77.34				77.34		1.18		1.26		1.18

		77.44		91.43		97.14		91.43		77.44				77.44		1.18		1.25		1.18

		77.54		91.43		97.14		91.43		77.54				77.54		1.18		1.25		1.18

		77.64		91.43		97.14		91.43		77.64				77.64		1.18		1.25		1.18

		77.74		91.43		97.14		91.43		77.74				77.74		1.18		1.25		1.18

		77.84		91.43		97.14		91.43		77.84				77.84		1.17		1.25		1.17

		77.94		91.43		97.14		91.43		77.94				77.94		1.17		1.25		1.17

		78.04		91.43		97.14		91.43		78.04				78.04		1.17		1.24		1.17

		78.14		91.43		97.14		91.43		78.14				78.14		1.17		1.24		1.17

		78.24		91.43		97.14		91.43		78.24				78.24		1.17		1.24		1.17

		78.34		91.43		97.14		91.43		78.34				78.34		1.17		1.24		1.17

		78.44		91.43		97.14		91.43		78.44				78.44		1.17		1.24		1.17

		78.54		91.43		97.14		91.43		78.54				78.54		1.16		1.24		1.16

		78.64		91.43		97.14		91.43		78.64				78.64		1.16		1.24		1.16

		78.75		91.43		97.14		91.43		78.75				78.75		1.16		1.23		1.16

		78.85		91.43		97.14		91.43		78.85				78.85		1.16		1.23		1.16

		78.95		91.43		97.14		91.43		78.95				78.95		1.16		1.23		1.16

		79.05		91.43		97.14		91.43		79.05				79.05		1.16		1.23		1.16

		79.15		91.43		97.14		91.43		79.15				79.15		1.16		1.23		1.16

		79.25		91.43		97.14		91.43		79.25				79.25		1.15		1.23		1.15

		79.35		91.43		97.14		91.43		79.35				79.35		1.15		1.22		1.15

		79.45		91.43		97.14		91.43		79.45				79.45		1.15		1.22		1.15

		79.55		91.43		97.14		91.43		79.55				79.55		1.15		1.22		1.15

		79.65		91.43		97.14		91.43		79.65				79.65		1.15		1.22		1.15

		79.75		91.43		97.14		91.43		79.75				79.75		1.15		1.22		1.15

		79.85		91.43		97.14		91.43		79.85				79.85		1.15		1.22		1.15

		79.95		91.43		97.14		91.43		79.95				79.95		1.14		1.22		1.14

		80.05		91.43		97.14		91.43		80.05				80.05		1.14		1.21		1.14

		80.15		91.43		97.14		91.43		80.15				80.15		1.14		1.21		1.14

		80.25		91.43		97.14		91.43		80.25				80.25		1.14		1.21		1.14

		80.35		91.43		97.14		91.43		80.35				80.35		1.14		1.21		1.14

		80.45		91.43		97.14		91.43		80.45				80.45		1.14		1.21		1.14

		80.55		91.43		97.14		91.43		80.55				80.55		1.14		1.21		1.14

		80.65		91.43		97.14		91.43		80.65				80.65		1.13		1.2		1.13

		80.75		91.43		97.14		91.43		80.75				80.75		1.13		1.2		1.13

		80.85		91.43		97.14		91.43		80.85				80.85		1.13		1.2		1.13

		80.96		91.43		97.14		91.43		80.96				80.96		1.13		1.2		1.13

		81.06		91.43		97.14		91.43		81.06				81.06		1.13		1.2		1.13

		81.16		91.43		97.14		91.43		81.16				81.16		1.13		1.2		1.13

		81.26		91.43		97.14		91.43		81.26				81.26		1.13		1.2		1.13

		81.36		91.43		97.14		91.43		81.36				81.36		1.12		1.19		1.12

		81.46		91.43		97.14		91.43		81.46				81.46		1.12		1.19		1.12

		81.56		91.43		97.14		91.43		81.56				81.56		1.12		1.19		1.12

		81.66		91.43		97.14		91.43		81.66				81.66		1.12		1.19		1.12

		81.76		91.43		97.14		91.43		81.76				81.76		1.12		1.19		1.12

		81.86		91.43		97.14		91.43		81.86				81.86		1.12		1.19		1.12

		81.96		91.43		97.14		91.43		81.96				81.96		1.12		1.19		1.12

		82.06		91.43		97.14		91.43		82.06				82.06		1.11		1.18		1.11

		82.16		91.43		97.14		91.43		82.16				82.16		1.11		1.18		1.11

		82.26		91.43		97.14		91.43		82.26				82.26		1.11		1.18		1.11

		82.36		91.43		97.14		91.43		82.36				82.36		1.11		1.18		1.11

		82.46		91.43		97.14		91.43		82.46				82.46		1.11		1.18		1.11

		82.56		91.43		97.14		91.43		82.56				82.56		1.11		1.18		1.11

		82.66		91.43		97.14		91.43		82.66				82.66		1.11		1.18		1.11

		82.76		91.43		97.14		91.43		82.76				82.76		1.1		1.17		1.1

		82.86		91.43		97.14		91.43		82.86				82.86		1.1		1.17		1.1

		82.96		91.43		97.14		91.43		82.96				82.96		1.1		1.17		1.1

		83.06		91.43		97.14		91.43		83.06				83.06		1.1		1.17		1.1

		83.16		91.43		97.14		91.43		83.16				83.16		1.1		1.17		1.1

		83.27		91.43		97.14		91.43		83.27				83.27		1.1		1.17		1.1

		83.37		91.43		97.14		91.43		83.37				83.37		1.1		1.17		1.1

		83.47		91.43		97.14		91.43		83.47				83.47		1.1		1.16		1.1

		83.57		91.43		97.14		91.43		83.57				83.57		1.09		1.16		1.09

		83.67		91.43		97.14		91.43		83.67				83.67		1.09		1.16		1.09

		83.77		91.43		97.14		91.43		83.77				83.77		1.09		1.16		1.09

		83.87		91.43		97.14		91.43		83.87				83.87		1.09		1.16		1.09

		83.97		91.43		97.14		91.43		83.97				83.97		1.09		1.16		1.09

		84.07		91.43		97.14		91.43		84.07				84.07		1.09		1.16		1.09

		84.17		91.43		97.14		91.43		84.17				84.17		1.09		1.15		1.09

		84.27		91.43		97.14		91.43		84.27				84.27		1.08		1.15		1.08

		84.37		91.43		97.14		91.43		84.37				84.37		1.08		1.15		1.08

		84.47		91.43		97.14		91.43		84.47				84.47		1.08		1.15		1.08

		84.57		91.43		97.14		91.43		84.57				84.57		1.08		1.15		1.08

		84.67		91.43		97.14		91.43		84.67				84.67		1.08		1.15		1.08

		84.77		91.43		97.14		91.43		84.77				84.77		1.08		1.15		1.08

		84.87		91.43		97.14		91.43		84.87				84.87		1.08		1.14		1.08

		84.97		91.43		97.14		91.43		84.97				84.97		1.08		1.14		1.08

		85.07		91.43		97.14		91.43		85.07				85.07		1.07		1.14		1.07

		85.17		91.43		97.14		91.43		85.17				85.17		1.07		1.14		1.07

		85.27		91.43		97.14		91.43		85.27				85.27		1.07		1.14		1.07

		85.37		91.43		97.14		91.43		85.37				85.37		1.07		1.14		1.07

		85.47		91.43		97.14		91.43		85.47				85.47		1.07		1.14		1.07

		85.58		91.43		97.14		91.43		85.58				85.58		1.07		1.14		1.07

		85.68		91.43		97.14		91.43		85.68				85.68		1.07		1.13		1.07

		85.78		91.43		97.14		91.43		85.78				85.78		1.07		1.13		1.07

		85.88		91.43		97.14		91.43		85.88				85.88		1.06		1.13		1.06

		85.98		91.43		97.14		91.43		85.98				85.98		1.06		1.13		1.06

		86.08		91.43		97.14		91.43		86.08				86.08		1.06		1.13		1.06

		86.18		91.43		97.14		91.43		86.18				86.18		1.06		1.13		1.06

		86.28		91.43		97.14		91.43		86.28				86.28		1.06		1.13		1.06

		86.38		91.43		97.14		91.43		86.38				86.38		1.06		1.12		1.06

		86.48		91.43		97.14		91.43		86.48				86.48		1.06		1.12		1.06

		86.58		91.43		97.14		91.43		86.58				86.58		1.06		1.12		1.06

		86.68		91.43		97.14		91.43		86.68				86.68		1.05		1.12		1.05

		86.78		91.43		97.14		91.43		86.78				86.78		1.05		1.12		1.05

		86.88		91.43		97.14		91.43		86.88				86.88		1.05		1.12		1.05

		86.98		91.43		97.14		91.43		86.98				86.98		1.05		1.12		1.05

		87.08		91.43		97.14		91.43		87.08				87.08		1.05		1.12		1.05

		87.18		91.43		97.14		91.43		87.18				87.18		1.05		1.11		1.05

		87.28		91.43		97.14		91.43		87.28				87.28		1.05		1.11		1.05

		87.38		91.43		97.14		91.43		87.38				87.38		1.05		1.11		1.05

		87.48		91.43		97.14		91.43		87.48				87.48		1.05		1.11		1.05

		87.58		91.43		97.14		91.43		87.58				87.58		1.04		1.11		1.04

		87.68		91.43		97.14		91.43		87.68				87.68		1.04		1.11		1.04

		87.78		91.43		97.14		91.43		87.78				87.78		1.04		1.11		1.04

		87.89		91.43		97.14		91.43		87.89				87.89		1.04		1.11		1.04

		87.99		91.43		97.14		91.43		87.99				87.99		1.04		1.1		1.04

		88.09		91.43		97.14		91.43		88.09				88.09		1.04		1.1		1.04

		88.19		91.43		97.14		91.43		88.19				88.19		1.04		1.1		1.04

		88.29		91.43		97.14		91.43		88.29				88.29		1.04		1.1		1.04

		88.39		91.43		97.14		91.43		88.39				88.39		1.03		1.1		1.03

		88.49		91.43		97.14		91.43		88.49				88.49		1.03		1.1		1.03

		88.59		91.43		97.14		91.43		88.59				88.59		1.03		1.1		1.03

		88.69		91.43		97.14		91.43		88.69				88.69		1.03		1.1		1.03

		88.79		91.43		97.14		91.43		88.79				88.79		1.03		1.09		1.03

		88.89		91.43		97.14		91.43		88.89				88.89		1.03		1.09		1.03

		88.99		91.43		97.14		91.43		88.99				88.99		1.03		1.09		1.03

		89.09		91.43		97.14		91.43		89.09				89.09		1.03		1.09		1.03

		89.19		91.43		97.14		91.43		89.19				89.19		1.03		1.09		1.03

		89.29		91.43		97.14		91.43		89.29				89.29		1.02		1.09		1.02

		89.39		91.43		97.14		91.43		89.39				89.39		1.02		1.09		1.02

		89.49		91.43		97.14		91.43		89.49				89.49		1.02		1.09		1.02

		89.59		91.43		97.14		91.43		89.59				89.59		1.02		1.08		1.02

		89.69		91.43		97.14		91.43		89.69				89.69		1.02		1.08		1.02

		89.79		91.43		97.14		91.43		89.79				89.79		1.02		1.08		1.02

		89.89		91.43		97.14		91.43		89.89				89.89		1.02		1.08		1.02

		89.99		91.43		97.14		91.43		89.99				89.99		1.02		1.08		1.02

		90.1		91.43		97.14		91.43		90.1				90.1		1.01		1.08		1.01

		90.2		91.43		97.14		91.43		90.2				90.2		1.01		1.08		1.01

		90.3		91.43		97.14		91.43		90.3				90.3		1.01		1.08		1.01

		90.4		91.43		97.14		91.43		90.4				90.4		1.01		1.07		1.01

		90.5		91.43		97.14		91.43		90.5				90.5		1.01		1.07		1.01

		90.6		91.43		97.14		91.43		90.6				90.6		1.01		1.07		1.01

		90.7		91.43		97.14		91.43		90.7				90.7		1.01		1.07		1.01

		90.8		91.43		97.14		91.43		90.8				90.8		1.01		1.07		1.01

		90.9		91.43		97.14		91.43		90.9				90.9		1.01		1.07		1.01

		91		91.43		97.14		91.43		91				91		1		1.07		1

		91.1		91.43		97.14		91.43		91.1				91.1		1		1.07		1

		91.2		91.43		97.14		91.43		91.2				91.2		1		1.07		1

		91.3		91.43		97.14		91.43		91.3				91.3		1		1.06		1

		91.4		91.43		97.14		91.43		91.4				91.4		1		1.06		1

		91.5		91.43		97.14		91.43		91.5				91.5		1		1.06		1

		91.6		91.43		97.14		91.43		91.6				91.6		1		1.06		1

		91.7		91.43		97.14		91.43		91.7				91.7		1		1.06		1

		91.8		91.43		97.14		91.43		91.8				91.8		1		1.06		1

		91.9		91.43		97.14		91.43		91.9				91.9		0.99		1.06		0.99

		92		91.43		97.14		91.43		92				92		0.99		1.06		0.99

		92.1		91.43		97.14		91.43		92.1				92.1		0.99		1.05		0.99

		92.2		91.43		97.14		91.43		92.2				92.2		0.99		1.05		0.99

		92.3		91.43		97.14		91.43		92.3				92.3		0.99		1.05		0.99

		92.41		91.43		97.14		91.43		92.41				92.41		0.99		1.05		0.99

		92.51		91.43		97.14		91.43		92.51				92.51		0.99		1.05		0.99

		92.61		91.43		97.14		91.43		92.61				92.61		0.99		1.05		0.99

		92.71		91.43		97.14		91.43		92.71				92.71		0.99		1.05		0.99

		92.81		91.43		97.14		91.43		92.81				92.81		0.99		1.05		0.99

		92.91		91.43		97.14		91.43		92.91				92.91		0.98		1.05		0.98

		93.01		91.43		97.14		91.43		93.01				93.01		0.98		1.04		0.98

		93.11		91.43		97.14		91.43		93.11				93.11		0.98		1.04		0.98

		93.21		91.43		97.14		91.43		93.21				93.21		0.98		1.04		0.98

		93.31		91.43		97.14		91.43		93.31				93.31		0.98		1.04		0.98

		93.41		91.43		97.14		91.43		93.41				93.41		0.98		1.04		0.98

		93.51		91.43		97.14		91.43		93.51				93.51		0.98		1.04		0.98

		93.61		91.43		97.14		91.43		93.61				93.61		0.98		1.04		0.98

		93.71		91.43		97.14		91.43		93.71				93.71		0.98		1.04		0.98

		93.81		91.43		97.14		91.43		93.81				93.81		0.97		1.04		0.97

		93.91		91.43		97.14		91.43		93.91				93.91		0.97		1.03		0.97

		94.01		91.43		97.14		91.43		94.01				94.01		0.97		1.03		0.97

		94.11		91.43		97.14		91.43		94.11				94.11		0.97		1.03		0.97

		94.21		91.43		97.14		91.43		94.21				94.21		0.97		1.03		0.97

		94.31		91.43		97.14		91.43		94.31				94.31		0.97		1.03		0.97

		94.41		91.43		97.14		91.43		94.41				94.41		0.97		1.03		0.97

		94.51		91.43		97.14		91.43		94.51				94.51		0.97		1.03		0.97

		94.61		91.43		97.14		91.43		94.61				94.61		0.97		1.03		0.97

		94.72		91.43		97.14		91.43		94.72				94.72		0.97		1.03		0.97

		94.82		91.43		97.14		91.43		94.82				94.82		0.96		1.02		0.96

		94.92		91.43		97.14		91.43		94.92				94.92		0.96		1.02		0.96

		95.02		91.43		97.14		91.43		95.02				95.02		0.96		1.02		0.96

		95.12		91.43		97.14		91.43		95.12				95.12		0.96		1.02		0.96

		95.22		91.43		97.14		91.43		95.22				95.22		0.96		1.02		0.96

		95.32		91.43		97.14		91.43		95.32				95.32		0.96		1.02		0.96

		95.42		91.43		97.14		91.43		95.42				95.42		0.96		1.02		0.96

		95.52		91.43		97.14		91.43		95.52				95.52		0.96		1.02		0.96

		95.62		91.43		97.14		91.43		95.62				95.62		0.96		1.02		0.96

		95.72		91.43		97.14		91.43		95.72				95.72		0.96		1.01		0.96

		95.82		91.43		97.14		91.43		95.82				95.82		0.95		1.01		0.95

		95.92		91.43		97.14		91.43		95.92				95.92		0.95		1.01		0.95

		96.02		91.43		97.14		91.43		96.02				96.02		0.95		1.01		0.95

		96.12		91.43		97.14		91.43		96.12				96.12		0.95		1.01		0.95

		96.22		91.43		97.14		91.43		96.22				96.22		0.95		1.01		0.95

		96.32		91.43		97.14		91.43		96.32				96.32		0.95		1.01		0.95

		96.42		91.43		97.14		91.43		96.42				96.42		0.95		1.01		0.95

		96.52		91.43		97.14		91.43		96.52				96.52		0.95		1.01		0.95

		96.62		91.43		97.14		91.43		96.62				96.62		0.95		1.01		0.95

		96.72		91.43		97.14		91.43		96.72				96.72		0.95		1		0.95

		96.82		91.43		97.14		91.43		96.82				96.82		0.94		1		0.94

		96.93		91.43		97.14		91.43		96.93				96.93		0.94		1		0.94

		97.03		91.43		97.14		91.43		97.03				97.03		0.94		1		0.94

		97.13		91.43		97.14		91.43		97.13				97.13		0.94		1		0.94

		97.23		91.43		97.14		91.43		97.23				97.23		0.94		1		0.94

		97.33		91.43		97.14		91.43		97.33				97.33		0.94		1		0.94

		97.43		91.43		97.14		91.43		97.43				97.43		0.94		1		0.94

		97.53		91.43		97.14		91.43		97.53				97.53		0.94		1		0.94

		97.63		91.43		97.14		91.43		97.63				97.63		0.94		1		0.94

		97.73		91.43		97.14		91.43		97.73				97.73		0.94		0.99		0.94

		97.83		91.43		97.14		91.43		97.83				97.83		0.93		0.99		0.93

		97.93		91.43		97.14		91.43		97.93				97.93		0.93		0.99		0.93

		98.03		91.43		97.14		91.43		98.03				98.03		0.93		0.99		0.93

		98.13		91.43		97.14		91.43		98.13				98.13		0.93		0.99		0.93

		98.23		91.43		97.14		91.43		98.23				98.23		0.93		0.99		0.93

		98.33		91.43		97.14		91.43		98.33				98.33		0.93		0.99		0.93

		98.43		91.43		97.14		91.43		98.43				98.43		0.93		0.99		0.93

		98.53		91.43		97.14		91.43		98.53				98.53		0.93		0.99		0.93

		98.63		91.43		97.14		91.43		98.63				98.63		0.93		0.98		0.93

		98.73		91.43		97.14		91.43		98.73				98.73		0.93		0.98		0.93

		98.83		91.43		97.14		91.43		98.83				98.83		0.93		0.98		0.93

		98.93		91.43		97.14		91.43		98.93				98.93		0.92		0.98		0.92

		99.03		91.43		97.14		91.43		99.03				99.03		0.92		0.98		0.92

		99.13		91.43		97.14		91.43		99.13				99.13		0.92		0.98		0.92

		99.24		91.43		97.14		91.43		99.24				99.24		0.92		0.98		0.92

		99.34		91.43		97.14		91.43		99.34				99.34		0.92		0.98		0.92

		99.44		91.43		97.14		91.43		99.44				99.44		0.92		0.98		0.92

		99.54		91.43		97.14		91.43		99.54				99.54		0.92		0.98		0.92

		99.64		91.43		97.14		91.43		99.64				99.64		0.92		0.97		0.92

		99.74		91.43		97.14		91.43		99.74				99.74		0.92		0.97		0.92

		99.84		91.43		97.14		91.43		99.84				99.84		0.92		0.97		0.92

		99.94		91.43		97.14		91.43		99.94				99.94		0.91		0.97		0.91
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		12		12		9		9

		24		24		18		18

		48		48		36		36

						72		72



M102Q_rigid

M102Q_flex

TS_rigid

TS_flex

Number of binding site conformations

Run time (hr)

10.4340359167

1.99275825

2.0081471389

1.9797277778

19.0625467778

3.0037250556

6.1529108611

3.4804277778

35.6408713611

3.4607025833

10.0876691389

4.3489553611

71.2817427222

3.9696082778

19.8240051389

5.5590109722

39.6480102778

6.9283468889



TS

		rconf		time (sec)		time (hr)		CPU		F176		77_83		C		H51		no coloring		time (sec)		time (hr)		CPU				Note: if still not good, dock more molecules:

		r1		4231.6001		1.1754444722		jerry		p2=1		p3=1		p4=1		1				11050.6201		3.0696166944				2.611451895		~/stephen/dockdb/match_1syn_subset.db: 2534 mol's, match 1SYN

		r2		4152.3599		1.1534333056		jerry		2		1		1		1				10584.9199		2.9402555278				2.5491335421

		r3		3344.8699		0.9291305278		jerry		3		1		1		1				stop		0				0

		r4		1383.09		0.3841916667		jerry		1		2		1		1						0				0

		r5		2121.0701		0.5891861389		jerry		2		2		1		1						0				0

		r6		1639.33		0.4553694444		jerry		3		2		1		1						0				0

		r7		1076.46		0.2990166667		jerry		1		3		1		1						0				0

		r8		732.4		0.2034444444		jerry		2		3		1		1						0				0

		r9		1149.2		0.3192222222		jerry		3		3		1		1						0				0

		r10		3053.21		0.8481138889		jerry		1		1		2		1						0				0

		r11		2225.8999		0.6183055278		jerry		2		1		2		1						0				0

		r12		3542.5698		0.9840471667		jerry		3		1		2		1						0				0

		r13		1064.49		0.2956916667		clash		1		2		2		1				2437.8599		0.6771833056				2.2901670283

		r14		1572.9199		0.4369221944		clash		2		2		2		1				3420.0698		0.9500193889				2.1743445423

		r15		1765.98		0.49055		clash		3		2		2		1						0				0

		r16		692.09		0.1922472222		clash		1		3		2		1						0				0

		r17		547.74		0.15215		clash		2		3		2		1						0				0

		r18		755.53		0.2098694444		clash		3		3		2		1						0				0

		r19		4260.7798		1.1835499444		clash		p2=1		p3=1		p4=1		2						0				0

		r20		4166.8198		1.1574499444		clash		2		1		1		2						0				0				28470.5488

		r21		4838.4097		1.3440026944		clash		3		1		1		2						0				0

		r22		1997.96		0.5549888889		clash		1		2		1		2						0				0

		r23		2104.0999		0.5844721944		clash		2		2		1		2						0				0				15316.0596

		r24		1630.84		0.4530111111		clash		3		2		1		2						0				0

		r25		1066.5399		0.2962610833		clash		1		3		1		2				4152.8501		1.1535694722				3.8937597178

		r26		958.41		0.266225		clash		2		3		1		2				3848.72		1.0690888889				4.0157343934				11795.4893

		r27		1126.62		0.31295		clash		3		3		1		2				4361.4399		1.2115110833				3.871260851

		r28		2039.83		0.5666194444		clash		1		1		2		2				4807.3501		1.3353750278				2.3567405617

		r29		2997.79		0.8327194444		clash		2		1		2		2				6690.1299		1.8583694167				2.2316873097

		r30		2424.1699		0.6733805278		clash		3		1		2		2				5440.6396		1.5112887778				2.244330977

		r31		1456.1599		0.4044888611		clash		1		2		2		2				3241.2		0.9003333333				2.2258544546

		r32		1559.72		0.4332555556		clash		2		2		2		2				3406.71		0.9463083333				2.1841804939

		r33		1762.14		0.4894833333		clash		3		2		2		2				3751.46		1.0420722222				2.1289227871

		r34		576.01		0.1600027778		clash		1		3		2		2				1712.64		0.4757333333				2.9732817139

		r35		610.6		0.1696111111		clash		2		3		2		2				1837.97		0.5105472222				3.0101048149

		r36		738.71		0.2051972222		clash		3		3		2		2				2211.8799		0.6144110833				2.994246592

		fr3		7127.02		1.9797277778		elvis		3		2.0081471389		r20,r23,r26		grids4/INV				18973.209		5.2703358333								55338.2305				1.0143551863		1.0044068485

		fr4		12529.54		3.4804277778		clash		9		6.1529108611		r19-r27		grids5/INV						0		clash										1.76786052

		fr1		15656.2393		4.3489553611		elvis		18		10.0876691389		r19-r36								0		elvis										2.3195614352

		fr2		20012.4395		5.5590109722		jerry		36		19.8240051389		r1-r36						48849.0781		13.5691883611				2.440935704		2.6253841833						3.5661028981

		fr5		24942.0488		6.9283468889				72		39.6480102778		r1-r36 double

		ATTN: watch for the CPU: if on elvis, db file name is different!

		TS/fr/grids4/ (for runtime stat)		1		2		3

		P2=V77_W83		1BID		1AXW		1SYN

		INV= INV+F176(1AXW)+C(1BID)+H51(1AXW)=INV_new+F176_2+C_1

		TS/fr/grids5/ (for runtime stat)		1		2		3

		P3=V77_W83		1BID		1AXW		1SYN

		P2=F176		1BID		1AXW		1SYN

		INV=INV+C(1BID)+H51(1AXW)=INV_new+C_1





AR cht

		6		6

		12		12

		24		24

		48		48



rigid

flexible

# of binding site conformations

Runtime (hr)

Computation Runtime (aldose reductase)

10.7335192778

6.1929248056

21.486808

8.1397667222

43.1393518889

9.7068023056

86.2787037778

11.7173969167



AR

		# of receptor conf				site=Ald red.				dir=/hole/scratch/wbq/korn_dock_copy1014/fr_runtime2

				dir(receptor conf)		elapsed time (s)		elapsed time(hr)		CPU		flex. Parts_# of alternative conformers

				r1		6450.6001		1.7918333611		clash		298_3, 309_2, 122_2, 115=115_1

				r2		5430.6499		1.5085138611		clash

				r3		6132.73		1.7035361111		clash

				r4		6462.3101		1.7950861389		clash

				r5		5429		1.5080555556		clash

				r6		6113.3896		1.6981637778		clash

				r7		7064.2397		1.9622888056		clash

				r8		6886.0098		1.9127805		clash

				r9		6741.3696		1.8726026667		clash

				r10		7073.5		1.9648611111		clash

				r11		6872.9297		1.9091471389		clash

				r12		6695.7803		1.8599389722		clash

				r13		6470.9897		1.7974971389		elvis		298_3, 309_2, 122_2, 115=115_2

				r14		5459.0801		1.5164111389		elvis

				r15		6218.9199		1.72747775		elvis

				r16		6482.8896		1.8008026667		elvis

				r17		5440.4897		1.5112471389		elvis

				r18		6144.29		1.7067472222		elvis

				r19		7072.3599		1.9645444167		elvis

				r20		6970.3496		1.9362082222		elvis

				r21		6847.4697		1.9020749167		elvis

				r22		7067.7197		1.9632554722		elvis

				r23		6977.27		1.9381305556		elvis

				r24		6797.3301		1.88814725		elvis

		6		fr4		22294.5293		6.1929248056		jerry		298_3, 122_2; 309=309_1(for 298_1 and 298_2) and =309_2 (for 298_3)

		12		fr (12 conf)		29303.1602		8.1397667222		clash		298_3; 309_2; 122_2; checked docking parameter and receptor conformation; but INV.cnt missed parts! To rerun

		24		fr3 (24 conf)		34944.4883		9.7068023056		clash		298_3, 309_2, 122_2, 115_2

		48		fr2 (48 conf)		42182.6289		11.7173969167		elvis		298_3, 309_2, 122_2, 115_2, 113_2

				also, to run r13-r24; use grids2/unused2/ parts

		6		r1,r2,r6,r7,r8,r12		38640.6694		10.7335192778		clash

		12		r1 to r12		77352.5088		21.486808		clash		298_3, 309_2, 122_2, 115=115_1

		24		r1 to r24		155301.6668		43.1393518889		elvis+clash

		48		r1 to r24 X 2		310603.3336		86.2787037778

				r13 to r24		77949.158		21.6525438889		elvis		298_3, 309_2, 122_2, 115=115_2

		database		/stephen/people/wbq/dockdb/ald_red.db

				/usr/db/acd_rand_3744.db





M102Q cht

		12		12

		24		24

		48		48

		3		3



rigid

flexible

# of binding site conformations

Runtime (hr)

Computation Runtime (lysozyme)

19.0625467778

3.0037250556

35.6408713611

3.4607025833

71.2817427222

3.9696082778

4.4182165556

1.99275825



M102Q

		# of conf				site=M102Q				dir=/hole/scratch/wbq/korn_dock_copy1014/fr_runtime1

				dir(receptor conf)		elapsed time (s)		elapsed tme(hr)		CPU		flex. Parts_# of alternative conformers

		3		fr4 (3 conf)		7173.9297		1.99275825		jerry		108_3; 84=84_1; 118=118_1

		12		fr (12 conf)		10813.4102		3.0037250556		jerry		108_3, 84_2, 118_2

		24		fr3 (24 conf)		12458.5293		3.4607025833		jerry		108_3, 84_2, 118_2, WAT_2

		48		fr2 (48 conf)		14290.5898		3.9696082778		jerry		108_3, 84_2, 118_2, WAT_2, 102_2

				r1		4678.0098		1.2994471667		jerry		r1 to r12: 108_3, 84_2, 118_2

				r2		5505.9897		1.5294415833		jerry		r13 to r24: 108_3, 84_2, 118_2, WAT

				r3		5721.5801		1.5893278056		jerry

				r4		4741.71		1.3171416667		jerry

				r5		5537.4199		1.5381721944		jerry

				r6		5977.6499		1.6604583056		jerry

				r7		5062.2197		1.4061721389		jerry

				r8		6103.7798		1.6954943889		jerry

				r9		6559.5898		1.8221082778		jerry

				r10		5131.8701		1.4255194722		jerry

				r11		6342.7998		1.7618888333		jerry

				r12		7262.5498		2.0173749444		jerry

				r13		4538.8901		1.2608028056		jerry

				r14		4983.9399		1.38442775		jerry

				r15		5186.6797		1.4407443611		jerry

				r16		4492.5898		1.2479416111		jerry

				r17		5039.3398		1.3998166111		jerry

				r18		5375.8896		1.4933026667		jerry

				r19		4395.3101		1.2209194722		jerry

				r20		4995.6499		1.3876805278		jerry

				r21		5373.9697		1.4927693611		jerry

				r22		4535.77		1.2599361111		jerry

				r23		5142.52		1.4284777778		jerry

				r24		5621.4199		1.5615055278		jerry

								0

		3		r1+r2+r3		37562.5293		10.4340359167		jerry

		12		r1 to r12		68625.1684		19.0625467778		jerry

		24		r1 to r24		128307.1369		35.6408713611		jerry

		48		r1_r4 X2		256614.2738		71.2817427222		extrapolate

				I checked the docking parameters, they are the same in all runs

		database		/stephen/people/wbq/dockdb/half_db.db: 29597 , half the molecules in the L99A subset





L99A_junk

		/korn/people/wbq/dock/test?; 0528

		notes		average time (s)		average nmatch		runtime (s)		runtime (hr)		CPU		# of molecules		database file

		to update, see test/subset3; FR; 10 parts, 12 R confs, L99A site						9771.46		2.7142944444		jerry		39029		/costello/wbq/stephen/dockdb/L99A_4confs.db

		RR, big rconf=9				1429.93		7848.6899		2.1801916389		jerry

		RR, rconf=7, small				1391.11		7271.6099		2.0198916389		elvis

		RR, rconf=3						7592.9297		2.1091471389		elvis

		RR, rconf=1; smallest rconf						6591.9302		1.8310917222		clash

		average runtime						7326.289925		2.0350805347		24.4209664167		8.9971692152		11.1146070067

		n=39028

		/korn/people/wbq/dock/test_n*

		FR; 10 parts, 12 R confs, L99A site						150331.4844		41.7587456667		jerry		39029		/costello/wbq/stephen/dockdb/L99A_4confs.db

		RR, rconf9						74227.3359		20.6187044167		clash

		RR, rconf7		1.39212		87533.7		63080.2461		17.5222905833		elvis

		RR, rconf12		1.87193		91751.3		78148.4375		21.7078993056		jerry

		RR, rconf1		1.32241		84772.7		61687.8477		17.13551325		clash

		RR, rconf3						69261.3281		19.2392578056		clash

		note: the RR runs are mostly using R ins.=108_3 which may biased to larger conf.

		average runtime						69281.03906		19.2447330722		230.9367968667		5.5302618213		18.082326521

		n=39028

		/korn/people/wbq/dock/test_n*

		FR, dephi, 12 confs						15672.9092		4.3535858889		jerry

		RR, rconf=9;rerun using code0107f(delphi)						13070.9795		3.6308276389		elvis

		RR, rconf=7						11660.4795		3.2390220833		elvis

		RR, rconf=3						12189.8799		3.38607775		clash

		RR, rconf=1; rerun using code0107f(delphi)						11057.9697		3.07165825		clash

		n=64768								3.3318964306		9.1838677787		10.8886585053

		~/elvis/work5

		new: running only on the 70 known ligands

		L99A/M102Q

		fr=12		no : to find the time on each mole. Not the total elaped time

		rr total 1-12





AR_junk

																runtime(s)		cpu		factor		% runtime (fr/sequential rigid dock)

		/fugazi/people/wbq/korn_dock_copy1014/1011_ar_apo/t0123.db.OTK														72390.1484		jerry		4.2849878493		35.7082320772

		/fugazi/people/wbq/korn_dock_copy1014/1011_ar_tol/t0123.db.OTK														116867.75		fugazi

		/fugazi/people/wbq/korn_dock_copy1014/1011_ar_zena/t0123.db.OTK														61591.418		clash

		/everclear/people/wbq/dock/1012_ar_fr/t0123.db.OTK														310190.9063		jerry

		~/clash/work3

		soly for the purpose of runtime comparison; check nmatch #

		avoid including molecules that timed_out
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