UCSFBIOPHYSICS

ANNUAL STUDENT RETREAT 6 OCTOBER 2006

Neema Salimi

Neema Salimi

Jerome Nilmeier

Multiscale Monte Carlo Modeling of Proteins

Jerome Nilmeier Matt Jacobson Group

UCSF Biophysics Retreat October 6, 2006

What are we doing?

We are using physics based methods for high resolution structure refinement to aid in drug design

Jerome Nilmeier

Eric Slivka

Structural Investigations of the Thyroid Hormone Receptor

Eric Slivka **Biophysics Retreat** October 6, 2006

Nuclear Receptors

TR/RXR LBD Crystals

- Crystals! (Diffracting to 9Å) – Hampton PEG/Ion #25 • (0.2M MgOAc, 20% w/v PEG 3350)
- Optimization
 - Hampton detergent and additive screens • 1-s-nonyl-β-d-thioglucoside was best

- Nextal OptiSalts with detergent • More crystals
 - Best diffraction $\sim 7 \text{\AA}$

TR LBD + Peptide Structure

v-erbA

- Avian erythroblastosis virus
 - Retrovirus causing leukemia of red blood cells in chickens
 - Contains two genes (v-erbA and v-erbB) taken from the chicken genome and subsequently mutated
 - v-erbA: mutated thyroid hormone receptor a
 - v-erbB: mutated epidermal growth factor-like receptor

Comparison of v-erbA and TR **Ligand Binding Domains**

		202	210	220	230	240	250	260	
v-ErbA	LBD	EEMI	KSLQHRPSI	SAEEWELIHV	VTEAHRSTN	AQGSHWKQRRK	FLLEDIGQSE	MASMLDG	
c-ErbA	LBD	EEMI	KSLOHRPSI	SAEEWELIHV	VTEAHRSTN	AOGSHWKOKRK	FLPEDIGOSE	MASMPDG	
			270	200	200	200	210	300	
			270	280	290	300	310	320	
v-ErbA	LBD	DKVD	LEAFSEFTH	CIITPAITRVV	DFAKNLPMF	SELPCEDQIIL	LKGCCMEIM	LRAAVRY	
c-ErbA	LBD	DKVD	DKVDLEAFSEFTKIITPAITRVVDFAKKLPMFSELPCEDQIILLKGCCMEIMSLRAAVRY						
			330	340	350	360	370	380	
v-ErbA	LBD	DPES	ETLTLSGEN	AVKREQLKNG	GLGVVSDAI	FDLGKSLSAFN	LDDTEVALL	AVLLMSS	
c-ErbA	LBD	DPES	ETLTLSGEN	AVKREOLKNG	GLGVVSDAT	FDLGKSLSAFN	LDDTEVALLO	AVLIMSS	
			390	400	410	420	430	440	
w-Frha	T.BD	DPTC	LICUDETER	CORSTLARE	UV TNYDKUN	TONEWSKITMK	VADLENTCA	HACDFTH	
- Babb	TRD	DREG							
C-FIDM	TPD	DRIG	LICADKIE	CVP1111111	HIININGAN A	THEMENDLEIN	VIDLERII GR	HNORE TH	
			450						
			450	460					
v-ErbA	LBD	MKVE	CPTELSP	QEV					
c-ErbA	LBD	MKVE	MKVECPTELFPPLFLEVFEDQEV						

Eric Slivka

Alignment of v-erbA LBD Homology Model and TRa

Interesting v-erbA LBD Mutations

TR DBD/LBD Homodimer with DNA and Corepressor Peptide

- Aim: Determine the crystal structure of a homodimer of a TR DBD/LBD construct bound to DNA and a corepressor peptide
- Strategies:
 - DNA: F2 everted palindrome best for TR homodimer binding
 - Peptide from NCoR to stabilize unliganded state

TR DBD/LBD Crystals

Two crystals in Classics Lite #69

 0.05 potassium phosphate monobasic
 10% w/v PEG 8000

Brendan Murphy

What is primary visual cortex (V1)?

► The first area of cortex to receive visual information

 Neurons respond selectively to oriented visual stimuli

-1/11

920 5 (5) (5) (5) (0)

A map of orientation preference

- Prefered orientation is mapped across the surface of $\mathsf{V1}$ Nearby neurons prefer similar
- orientations

Structure of spontaneous activity in visual cortex

Tsodyks et al 1999

- Presenting an oriented stimulus causes areas of cortex that prefer that orientation light up
- Surprisingly similar patterns of activity occur in the absence of a
- visual stimulus

V1 physiology

- \blacktriangleright Each neuron in V1 is recurrently connected to thousands of other neurons
- Long range synaptic connections are made preferentially between neurons with similar orientation preferences

Recurrent connectivity

A single neuron recurrently exciting itself

$$\begin{aligned} r(t) &= r(0)e^{-t/\tau'} + h'(1 - e^{-t/\tau'}) \\ \tau' &= \frac{\tau}{1 - \lambda} \qquad h' = \frac{h}{1 - \lambda} \end{aligned}$$

Patterns of activity: eigenvectors and eigenvalues

Similar equation for a network of neurons with arbitrary connectivity ,

$$\tau \frac{d\mathbf{r}}{dt} = -\mathbf{r} + \mathbf{W}\mathbf{r} + \mathbf{h}$$
$$\mathbf{r} = \begin{pmatrix} r_1 \\ r_2 \\ \vdots \end{pmatrix} \mathbf{W} = \begin{pmatrix} w_{11} & w_{12} & \dots \\ w_{21} & w_{22} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

Eigenvectors of \boldsymbol{W} are patterns that grow or shrink independently

 $\mathbf{W}\mathbf{e}_{\mathbf{i}} = \lambda_{i}\mathbf{e}_{\mathbf{i}}$

Brendan Murphy

Separate excitatory and inhibitory neurons

Properties of the weight matrix								
Eigenvector	Generalized eigenvector							
$\left(\begin{array}{cc} a & -a \\ a & -a \end{array}\right) \left(\begin{array}{c} 1 \\ 1 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$	$\left(\begin{array}{cc} a & -a \\ a & -a \end{array}\right) \left(\begin{array}{c} 1 \\ -1 \end{array}\right) = 2a \left(\begin{array}{c} 1 \\ 1 \end{array}\right)$							
$\begin{pmatrix} a & -a \\ a & -a \end{pmatrix}^2 \begin{pmatrix} e \\ i \end{pmatrix} = \begin{pmatrix} a & -a \\ a & -a \end{pmatrix} \begin{pmatrix} a(e-i) \\ a(e-i) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ Amplified patterns do not persist - no network time constant								

(D) (B) (E) (E) E 940

A network of excitatory and inhibitory pairs

For N excitatory/inhibitory pairs: ${\bf e}$ and ${\bf i}$ are now N dimensional vectors and ${\bf A}$ is an NxN matrix representing the pattern of connectivity

 $\mathbf{W} = \begin{pmatrix} e2e & i2e \\ e2i & i2i \end{pmatrix} = \begin{pmatrix} \mathbf{A} & -\mathbf{A} \\ \mathbf{A} & -\mathbf{A} \end{pmatrix}$

Patterns that are amplified most are the eigenvectors of the sub-matrix ${\bf A}$ with the largest eigenvalues

$$\left(\begin{array}{cc} \textbf{A} & -\textbf{A} \\ \textbf{A} & -\textbf{A} \end{array}\right) \left(\begin{array}{c} \textbf{f}_i \\ -\textbf{f}_i \end{array}\right) = \left(\begin{array}{c} 2\textbf{A}\textbf{f}_i \\ 2\textbf{A}\textbf{f}_i \end{array}\right) = \left(\begin{array}{c} 2\lambda_i\textbf{f}_i \\ 2\lambda_i\textbf{f}_i \end{array}\right)$$

Simulation results

 $\Leftarrow \mathsf{Correlation} \ \mathsf{Coefficient} \Rightarrow$

(ロ)(個)(注)(注)(注)(注) き の(の)

mmmmm

Both the linear and a more realistic biophysical model with spiking neurons display strong patterns

Time constant of the activity is the longer of the input correlation time and the cellular time constant

Conclusion

Spatial patterns can arise without a positive eigenvalue and without a network time constant $% \left({{{\rm{D}}_{\rm{s}}}} \right)$

Detailed biophysical simulations match other aspects of cortical activity like membrane potential noise and spike statistics

Vincent Voelz

Vincent Voelz

Conclusions

- Zipping and Assembly is a viable Folding Principle
 - fast and efficient search strategy
 - $\bullet\,$ explains observed protein folding behavior
- Quantifying cooperativity can be useful for all-atom protein folding

Quincey Justman

GSK-3β regulates Mos translation

Starkissian et al., Genes Dev 18(1): 48-61.

GSK-3β inactivation is non-linear and correlates with cell-fate decisio

M-phase GSK-3 β inactivation is MEK-dependent

Mos or cyclin B is sufficient to induce GSK-3β inactivation

Quincey Justman

2

 DMSO
 inhibitor

 61 nM
 68 nM

 1.8
 7.0

 0.9354
 0.9502

-6.0

Orion Weiner

core elements of cell polarity in many systems such as yeas budding and eukaryotic chemotaxis. Although we can capture elements of polarity in these descriptions, there is still an incomplete understanding of how polarity is generated and signaling is linked to morphological change.

Our model system: human neutrophils bacteria

These cells from your immune system hunt and kill

They will orient and migrate towards a single bacterium

So-- one cell, no brain, but is able to spatially interpret its surroundings -- how?

We helped to uncover linked positive and negative feedback circuits used in a self-organizing system for polarity

We recently discovered a self-organizing pattern formation system that generates polarity in motile cells.

In previous work we identified a set of protein complexes that are essential for organizing cell polarity. We now find that these complexes generate multiple propagating waves of actin polymerization that collectively organize the front of migrating cells. Similar to action potentials, these polarity waves are self-enewing and generate their own inhibitors to produce directional movement.

This simple wave-generating circuit could account for several previously inexplicable This simple wave-generating circuit could account for several previously mexpincable behaviors of molitic cells including coordinated behavior of the leading edge, cells that flow around boundaries, and dynamic polarity. Waves represent a new framework for understanding cell movement.

We are developing tools to test how the waves are born, how they move and die, and how they talk to one another in our quest to understand the basic building blocks of cell motility.

Orion Weiner

Identify key missing components Using permeabilized cell system and biochemical reconstitutions Image: Components Spatially manipulating activators and inhibitors to determine spatial logic of polarity. Image: Components Polarity in Permeabilized cells Image: Components Image: Components Image: Components Polarity in Permeabilized cells Image: Components Image: Components