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!LP is kinetically stable

• Native state not
thermodynamically stable

• Native state persists due to
high barrier to unfolding

• Why would !LP evolve such
an extreme folding landscape?
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Folding
•  constantly samples U state
•  susceptible to proteolysis

•  rarely samples U state
•  resistant to proteolysis
•  longer functional lifetime

• partial unfolding much faster
than global unfolding
• N* can be protease sensitive

Kinetic Stability as a path
to protease resistance
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!LP unfolding cooperativity

much higher than trypsin
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SS Jaswal et al, Nature 415:343 (2002)

SME Truhlar et al, Protein Science 13:381 (2004)

• Trypsin unfolding rate similar to !LP (Stephanie Truhlar)
• Rapid degradation of trypsin due to partial unfolding
• Trypsin unfolding not as cooperative as !LP

What is the structural basis of !LP’s

kinetic stability and extreme cooperativity?

Simulation Details:
5 500K sims, 1 298K sim, NVE ensemble
NAMD software, CHARMM forcefield

198 protein residues, ~30,000 total atoms

• Mapping unfolding landscape requires high
structural resolution

• Molecular dynamics (MD) simulations give
best structural resolution

• Valerie Daggett’s lab (and others) have
shown unfolding MD is highly
complementary to and consistent with
experiment

• Requires high temperature to achieve in
silico unfolding
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!LP unfolds rapidly and completely at 500K

• 298K control averages <1.0 Å
RMSD

• 500K simulation shows several
large jumps in RMSD

298K (Control)

500K (Unfolding)

• How do we analyze the trajectories
for relevant information?

• How can we find the Transition
State Ensemble (TSE)?

Determining the TSE by MD unfolding

• Nativeness
• RMSD
• # native contacts

• Structural Properties
• radius of gyration
• solvent accessible surface area

• Configurational Entropy
• Divergence within a simulation
• Divergence between simulations
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Because the RMSD plot is ambiguous, we need to
integrate many parameters in order to find the TSE
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The !LP TSE deviates from

native in several key areas
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Deviation from native Dispersion within TSE

Based on TSE with 100 structures, 5 sims

inter-domain

intra-domain

Unfolding involves
splitting the domain

interface

Figure courtesy of Brian Kelch

• “Cracked egg” model for !LP unfolding was proposed (Sheila Jaswal)
• Model postulates split at domain interface during unfolding
• Model based on thermodynamics and pH dependence of unfolding

A new metric for cooperativity

!LP

trypsin

!LP
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!LP unfolding in silico is significantly more cooperative than trypsin

Cooperativity

RMSD

Landscapes for the native
states !LP and trypsin
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Multiscale Monte Carlo Modeling

of Proteins
Jerome Nilmeier

Matt Jacobson Group

UCSF

Biophysics Retreat

October 6, 2006

What are we doing?

We are using physics based methods for high resolution

 structure refinement to aid in drug design

• Large energy
and/or dynamical

barriers make MD

difficult

• Global ptimization

methods often
neglect entropic

components

• Perhaps a Monte

Carlo approach

will give the best
of both worlds?

A key challenge:

How to identify multiple low free energy structures
starting from a close packed protein state?

Practical Considerations for Monte Carlo

Monte Carlo is a discrete sampling
algorithm

– Moves do not need to be connected
temporally or spatially.

– The states do need to be connected
topologically, however.

– The efficiency of the scheme depends
entirely on the choice of move set.

A clever choice of move set will traverse energy
barriers efficiently

Protein Local Optimization Program

Jacobson, M.P., et al., A hierarchical approach to all-atom protein loop
prediction. Proteins, 2004. 55(2): p. 351-67.

!"###!
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Protein Local Optimization Program

We can adapt many of the existing routines to a
Monte Carlo Sampling Strategy

Backbone sampling Sidechain sampling

A key feature of PLOP is the hierarchical
decomposition of coordinates.
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Xiang, Z. and B. Honig, Extending the accuracy limits of prediction for side-chain conformations. J
Mol Biol, 2001. 311(2): p. 421-30.
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Sidechain Monte Carlo

• Rotamers can be chosen from random for
our move set and accepted with the
Metropolis Criterion

• This corresponds to a random
perturbation of the dihedrals of the
sidechain

• Polar hydrogens are added, with the
torsion selected randomly

Multiple “time step” Monte Carlo (MTSMC)

‘Multiple “time step” Monte Carlo’, B. Hetenyi, K. Bernacki, and B. Berne , JCP 117 8203

DV
L
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Implicit Solvation Energies Are treated
as ‘long range’ energies
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Ab DB3 / progesterone

Estrogen Receptor/4-hydroxytamoxifen

Concerted Rotation:

The basis for protein Monte Carlo

Coutsias, E.A., ,Seok, C., Jacobson, M. and Dill, K.A., A kinematic view of
loop closure. Journal of Computational Chemistry, 2004. 25: p. 510-528.

•2 angles must be simultaneously perturbed

The alternative is to completely unfold the structure

and repack in the new configuration

Algorithm Development: POSH Monte Carlo Ab DB3- H3 Loop

(7 residues)

W100

Y97

Caveat:  Prototype Trajectory

Jerome Nilmeier 2
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Structural Investigations

of the Thyroid Hormone

Receptor

Eric Slivka

Biophysics Retreat

October 6, 2006

Nuclear Receptors

Olefsky, JM. 2001. J. Biol. Chem. 276:36863-36864

TR/RXR LBD Crystals
• Crystals! (Diffracting to 9Å)

– Hampton PEG/Ion #25
• (0.2M MgOAc, 20% w/v PEG 3350)

• Optimization
– Hampton detergent and additive screens

• 1-s-nonyl-!-d-thioglucoside was best

– Nextal OptiSalts with detergent
• More crystals

• Best diffraction ~ 7Å

TR LBD + Peptide Structure

v-erbA
• Avian erythroblastosis virus

– Retrovirus causing leukemia of red blood cells in
chickens

– Contains two genes (v-erbA and v-erbB) taken from
the chicken genome and subsequently mutated

• v-erbA: mutated thyroid hormone receptor a

• v-erbB: mutated epidermal growth factor-like receptor

Comparison of v-erbA and TR

Ligand Binding Domains

Eric Slivka 1
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Alignment of v-erbA LBD

Homology Model and TRa
Interesting v-erbA LBD

Mutations

TR DBD/LBD Homodimer with

DNA and Corepressor Peptide

• Aim: Determine the crystal structure of a

homodimer of a TR DBD/LBD construct

bound to DNA and a corepressor peptide

• Strategies:

– DNA: F2 everted palindrome best for TR

homodimer binding

– Peptide from NCoR to stabilize unliganded state

TR DBD/LBD Crystals

• Two crystals in Classics Lite #69

– 0.05 potassium phosphate monobasic

– 10% w/v PEG 8000

Eric Slivka 2



What is primary visual cortex (V1)?

! The first area of cortex to receive
visual information

! Neurons respond selectively to
oriented visual stimuli

A map of orientation preference

Bosking et al, 1997

! Prefered orientation is mapped
across the surface of V1

! Nearby neurons prefer similar
orientations

Structure of spontaneous activity in visual cortex

Tsodyks et al 1999

! Presenting an oriented stimulus
causes areas of cortex that prefer
that orientation light up

! Surprisingly similar patterns of
activity occur in the absence of a
visual stimulus

V1 physiology

Bosking et al, 1997

! Each neuron in V1 is recurrently connected to thousands of
other neurons

! Long range synaptic connections are made preferentially
between neurons with similar orientation preferences

Recurrent connectivity

A single neuron recurrently exciting itself

τ
dr

dt
= −r + λr + h

τ
dr

dt
= −(1− λ)r + h

r(t) = r(0)e−t/τ ′
+ h′(1− e−t/τ ′

)

τ ′ =
τ

1− λ
h′ =

h

1− λ

Patterns of activity: eigenvectors and eigenvalues

Similar equation for a network of neurons with arbitrary
connectivity

τ
dr
dt

= −r + Wr + h

r =




r1
r2
...



W =




w11 w12 . . .
w21 w22 . . .
...

...
. . .





Eigenvectors of W are patterns that grow or shrink independently

Wei = λiei
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Separate excitatory and inhibitory neurons

r =

(
e
i

)

W =

(
a −a
a −a

)

Properties of the weight matrix

Eigenvector
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Amplified patterns do not persist - no network time constant

A network of excitatory and inhibitory pairs

For N excitatory/inhibitory pairs: e and i are now N dimensional
vectors and A is an NxN matrix representing the pattern of
connectivity

W =

(
e2e i2e
e2i i2i

)
=

(
A −A
A −A

)

Patterns that are amplified most are the eigenvectors of the
sub-matrix A with the largest eigenvalues

(
A −A
A −A

) (
fi
−fi

)
=

(
2Afi
2Afi

)
=

(
2λi fi
2λi fi

)

Simulation results

Evoked

⇐ Correlation Coefficient ⇒

Spontaneous
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Both the linear and a more realistic biophysical model with spiking
neurons display strong patterns

Time constant of the activity is the longer of the input correlation
time and the cellular time constant

Conclusion

Spatial patterns can arise without a positive eigenvalue and
without a network time constant

Detailed biophysical simulations match other aspects of cortical
activity like membrane potential noise and spike statistics

Brendan Murphy 2
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The Grand Goal

E!cient physics"based
computer algorithms for protein

folding

Knowledge from protein
folding experiments

Physics"based theory

+

What We Know
macroscopic cooperativity

•highly cooperative
•two-state kinetics
•hydrophobic effect is
driving force

microscopic cooperativity

•protein folding is greedy: only a
small fraction conformational space
is searched

Baker D.  Baker D.  NatureNature (2000). (2000).

topology-dependent
folding rates

•topological “frustration”:
rate-limiting step is finding
the right topology
•loop-closure entropy

The ZIPSEARCH
algorithm searches
along topologically

local contacts

•measures topological localness

•is related to the entropy of loop
closure

Effective Contact
Order (ECO)

Zipping and
Assembly (Z&A)

zipping

assembly
27 out of 15037

microstates

+

+

+

+
75 out of 15037

microstates

The entire
ECO 3 subgraph

Z&A recapitulates known folding behavior
topological frustrationtopology"dependent folding rates

Hierarchical assembly is a result of optimal search efficiency

Proof of principle: Can a Z&A strategy be used
to fold more realistic all-atom models?

Ozkan et al.  PNAS, in press (2006)

Vincent Voelz 1
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Cooperativity is useful to quantify

• Can cooperativiy!based metrics
help identify zipping nuclei?

T0335 12-mers

Results
T0335

prediction
experimental

T0283

T0309

T0358

T0363

Conclusions

•Zipping and Assembly is a viable
Folding Principle
• fast and e"cient search strategy

• explains observed protein folding behavior

•Quantifying cooperativity can be
useful for all!atom protein folding

Vincent Voelz 2
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Xenopus oocyte maturation is bistable and irreversible
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Several important parameters remain undefined by 

biochemical and cell biological data, including:

 " •  the feedback term

" •  additional contributions to the Hill coefficient

" •  the progesterone and Mos EC50’s

%
M

non-linearity

(nH !9 in vitro)

feedback

mos

progesterone
GSK3!
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progesterone-independent

positive feedback

GSK-3! regulates Mos translation

Starkissian et al., Genes Dev 18(1): 48-61.
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GSK-3! inactivation and MAPK activation are concomitant
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GSK-3! inactivation is non-linear and correlates with cell-fate decision

individual cell fate decisions
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•  GSK-3! inactivation correlates with MAPK activation, 

    demonstrating that it is an M-phase event.

•  On the single oocyte level, GSK-3! phosphorylation    

    is non-linear with respect to [progesterone].  It is also    

    irreversible.

•  The feedback that stabilizes the OFF state of GSK-3! 

    during M-phase is MEK dependent.

•  Microinjection of Mos or cyclin B is sufficient to elicit full 

    GSK-3! inactivation.
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AAAAA

translation
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MAPK

Mos

interphase

meiosis
+

previous model

Summary

meiosis

mos

AAAAA

translation

MEK

MAPK

Mos

interphase

meiosis
GSK3!

new, non-mutually exclusive model

GSK-3! regulates the M-phase feedback loop.
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Conclusions: GSK-3!

!  M-phase GSK-3"  inactivation is bistable.

!  GSK-3" and MAPK regulate each other:

! In M-phase, GSK-3" inactivation is maintained 

! by MEK-dependent feedback.

! Residual GSK-3" activity sets an upper limit for 

    ! MAPK’s non-linearity.

!  GSK-3" regulates oocyte-to-oocyte variability.

A general approach to uncover non-essential but biologically relevant functions and relationships
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We recently discovered a self-organizing pattern formation system that generates polarity

in motile cells.

In previous work we identified a set of protein complexes that are essential for organizing
cell polarity. We now find that these complexes generate multiple propagating waves of

actin polymerization that collectively organize the front of migrating cells. Similar to
action potentials, these polarity waves are self-renewing and generate their own
inhibitors to produce directional movement.

This simple wave-generating circuit could account for several previously inexplicable

behaviors of motile cells including coordinated behavior of the leading edge, cells that
flow around boundaries, and dynamic polarity.  Waves represent a new framework for

understanding cell movement.

We are developing tools to test how the waves are born, how they move and die, and how
they talk to one another in our quest to understand the basic building blocks of cell

motility.

Biological waves have similar properties

B

Action potential

Destexhe lab

Cardiac myocyte 

calcium waves

Ernst Niggli lab

Intracellular ion waves

Dictyostelium spirals

Cornelis Weijer lab

Multicellular patterning

Orion Weiner 1
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Evidence that Hem-1 waves are similar to other biological waves

1. Activity, not protein, propagates

2. Refractory period between waves

3.  One of outputs of system (actin polymers)

inhibits the activator (removes Hem-1 from membranes)

Hem-1 kymograph Dictyostelium spiral wavesHem-1 FRAP

Orion Weiner 2


