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1. Introduction

Pharmaceutical substances have been discovered by means
ranging from serendipitous observation (Fleming, 1929; Fleming et al.,
1950) to specific engineering (Schneider and Fechner, 2005). The
purpose is nearly always to combat one particular disease, and the
approach is most often trial and error. The efficiency of these
pharmaceutical hunts has been improved greatly by high throughput
pharma platforms, but the requirement of physical experiment makes
these screens scale in expense linearly at best. The expense of
discovering a new chemical entity is estimated at US$0.5B to US$2B
(DiMasi et al.,, 2003; Adams and Brantner, 2006).

Recent successes in computational modeling of compound to
protein docking open the possibility of nonphysical prelaboratory
screens. In our experience this has vastly increased the success rate of
bench experiments (Jenwitheesuk et al., 2008; Costin et al., 2010;
Table 1). Computational modeling of protein ligand interactions has
been applied to find pharmacologic targets in known drug-disease
pairs (Jenwitheesuk and Samudrala, 2007; Keiser et al., 2009). The
more obvious use of these docking methods is to guide discovery of a
drug for a disease, as modeling enables design (Schneider and
Fechner, 2005). Design does not need to be limited to one protein
target. Searching for one compound for multiple targets in the same
pathogen increases odds for successful inhibition of at least one target,
and facilitates discovery of multitarget lead inhibitors [Note 1], which
vastly decreases the probability of developing resistance (or
habituation) and decreases toxicity via lowered effective dose
(Rogawski, 2000; Nezami et al., 2003; Csermely et al., 2005;
Jenwitheesuk et al., 2008; Table 1).

Thus far the search for multitarget inhibitors has focused on one
organism at a time (Nezami et al,, 2003; Jenwitheesuk et al., 2008;
Keiser et al., 2009), but modeling multidisease effects has explained
clinical patterns of elimination for two diseases by one drug
(Samudrala and Jenwitheesuk, 2007). The advent of computational
multidisease screens will enable access to the most accurate aspects of
computational screening, bearing the possibility of vastly reducing
barriers to drug development.

In this chapter we elaborate the conceptual framework
underlying rational drug discovery, describe contemporary
computational approaches, discuss emerging concepts, and introduce
a pipeline to integrate the array of promising techniques and ideas
which are already transforming drug discovery.

2. The pharmacologic hunt of yesteryear

2.a. Ethnopharmacy

Since before written history humans have sought available
substances (mineral, animal, plant) to cure specific ailments. The
hundreds of medicinal substances catalogued in the materia medica of
various cultures before and during the time of Socrates (DeVos, 2010;
Campbell et al., 2005; Manniche, 1989) demonstrates that the hunt for
pharmacologic activity may predate the technology of the scientific
method itself. Whether disproving hypotheses or embarking on fishing
expeditions, experiences with curative and toxic substances may have
conceptually secured the intuitive approach of trial and error
investigation.

For thousands of years humans have applied trial and error
experiments, separating out extracts of active agents to increase
potency and remove unwanted properties. The earliest records
describing pharmacologic safety include descriptions of animal
models and progressive increases in dosage to test safety and efficacy
(Huff, 2003). Nonetheless, technological improvements were limited
to purifications and altering the design of the trial itself.

For two hundred years we have isolated specific
pharmacologically active molecules (Hamilton and Baskett, 2000). For
a century we have knowingly modified the chemical structure of
natural compounds to tune desirable and undesirable effects. These
attempts of drug discovery and design have led to one specific
molecule at a time to combat microbial infection (Ehrlich, 1910; Lloyd
etal, 2005) and noninfectious diseases (Strebhardt and Ullrich, 2008).
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Figure 1. Computational multidisease multitarget screening pipeline. The schematic view of our computational multidisease multitarget
screening pipeline relates emerging concepts and techniques described in this chapter, which are already transforming drug discovery. The contemporary weaknesses
of computational modeling can be overcome to find pharmacologically active substances by careful selection of the protein and compound sets to be used in
computational screening (shown on the sides at top). To maximize the chance of bioactivity and safety in humans, compounds to be considered for screening (top left)
should be selected from existing drugs (section 6.c) or natural compounds (section 6.a). The selection of protein targets (upper right) that can be exploited to stop a
disease is a nontrivial problem requiring extensive analysis (sections 2.b, 3.a). The probability of finding pharmacologically active compounds is heightened by targeting
multiple proteins relating to a disease (section 6.j), which can be in the same signaling network (network targeting, section 5.d), or in different disease associated
pathogens (section 6.k); screening against antitarget host proteins can also be performed to control off-target effects (section 6.d). The protein structure (section 5.c)



and binding sites (section 5.a) can be predicted using knowledge based methods (section 4.a). Next, target proteins are prioritized based on the susceptibility of the
binding site (sections 3.b, 3.c), the accessibility of the subcellular location, and the similarity of physiologic substrates to the compound set (section 4.f). The set of
potential pharmacologic compounds are then prioritized (top center) based on features of the target protein and disease site (sections 3a, 3b) and similarity to target
substrates (sections 2.d, 4.f). Finally, the compounds are computationally docked to the active sites of the target proteins (upper middle; sections 4.b, 4.e) with small
bursts of molecular dynamics (section 5.b), scored (section 4.c), and ranked with respect to each other (section 4.d). Initially a large compound set is evaluated, with
subsequent cycling between directed fragment based optimization, and cycling back to evaluate many similar compounds, which mimics the bench process for discovery
of a new chemical entity (section 2.e). The profiles of predicted binding affinities for each compound are compared to titrate selectivity and minimize untoward side
effects (lower middle; section 6.j). The use of compounds of known human safety profiles comes to fruition when approaching validation (section 6.a): for diseases with
no sufficient model system and no existing cure, existing pharmacologic agents may progress directly to initial clinical trials (center bottom; section 6.c). As well, the
multitarget approach of using compounds which are predicted to be active against multiple pathogen proteins increases the odds of success: if a compound is predicted
to inhibit six proteins, there is a good chance that it will actually inhibit at least one (section 6.j). As an extension, computational screens of targets for multiple diseases
increases the odds of finding a target for the inhibitor; allowing the discovery process to drive disease selection enables access to the most accurate computational
predictions (section 6.k). There are initial indications that computational simulations can be more accurate than high throughput screens, possibly because they model
bioactivity in an explicitly physiological manner whereas the implicit physical interaction model of bench screens are susceptible to nonspecific aggregation, covalent
bonding, and promiscuous binding (section 6.f). Meanwhile, sophisticated bench analysis techniques offer the pinnacle of accuracy, particularly the dissection of
enthalpic and entropic contributions to the free energy of binding by isothermal titration calorimetry (section 6.e). Protein, whole pathogen, whole animal, and clinical
analysis (center bottom) feeds back to improve the accuracy of simulations (large arrow) by integration with existing pharmacologic data (middle right). Modeling the
impact of genetic variance on protein structure allows design of generalized inhibitors for rapidly mutating pathogens and cancers, and specification to individual
human differences to control side effects (bottom right; section 6.h). Our group and others have demonstrated the early maturity of computational modeling of protein-
ligand interactions by predicting compounds for desired pharmacologic activity and testing them in prospective experiments. A philosophy of freely available open
source software has been embraced by many publicly funded groups (section 6.i). These methods not only save time and resources but are beginning to be more
accurate than in vitro screening methods (section 6.f). The combination of computational multitarget drug discovery and stringent bench experimentation will lead a

new era of effective selective drugs.

2.b. Protein targets

With the advent of molecular biology we found the key to
rational drug discovery: inhibiting specific protein "targets" essential
to the progression of the disease causing agent. Targets are carefully
identified by the consensus of extensive experimentation verified by
multiple independent research groups. Thus the major goal of
pharmacologic development has emerged as discovering or designing
compounds that demonstrate favorable therapeutic activity towards a
specific protein target..

Under the current paradigm, an attractive target is a protein
essential to the infection, onset, or replication of the disease causing
agent, or a protein able to control one of these processes. The protein
target should be different enough from homeostatic host proteins that
a drug which inhibits its action would not kill the host. A target should
be essential to the metabolism, growth, or reproduction of a pathogen
or the progression of a neoplasm, and maximally different from all
other antitarget human proteins.

2.c. Hitting the target

Tests of pharmacologic efficacy have been refined from
observing the signs and symptoms of a disease, to growth of the
disease causing agent (e.g. proliferation of pathogens or cancer cells),
to functional assays of specific target proteins. Meanwhile the search
for target protein inhibitors have always been governed by the same
two approaches:

Random screens. Whether one at a time or run in parallel by brute
force, many available substances are tested for efficacy. Often a
wide net is cast by screening an enormous and diverse compound
library (as many as 1.7 million compounds; Plouffe et al., 2008).
There is a tendency to test only representatives from a given group
of substances; an intelligent step to increase the efficiency of the
pharmacologic hunt wherein the "hit" group is explored in further
screening. But reduced screens increase the odds of missing subtle
differences that might allow target binding by nonsampled
members of the group. Thus where resources permit, large screens
are conducted. From the 1960s to the 1980s "high throughput
screens," enabled by extraneous technology such as assembly lines
and robotics, permitted the pharmaceutical industry to blossom
almost strictly based on the paradigm of vast screens (Strebhardt
and Ullrich, 2008). This is still the most common approach used by
the pharmaceutical industry today. Without deep understanding of
the target chemistry, sampling nature's pharmacopeia may well be
the most efficient approach to finding a starting place: a hit
compound (Chong et al.,, 2006; Weisman et al., 2006; Jenwitheesuk
etal., 2008; Table 1).

Directed exploration. Intuitively, the response to finding an agent
that has any noticeable desired effect is to seek better effects by
similar agents. Intelligent searches for pharmacologically active
substances generally follow explorative sampling around successful
compounds already discovered in random screens (Schreiber,

2000). Similar existing compounds can be tested for more desirable
activity, or chemical modifications can be made by substituting,
converting, and adding moieties (Abdi et al., 2010).

Those of us who develop computational techniques for drug
discovery tend to consider targets from infectious and noninfectious
diseases as the same, but the reality is that they are not. Generally, the
goal is to inhibit targets of infectious diseases (increase the
therapeutic index), but a human disorder that is not directly caused by
a pathogen may be caused by the malfunction of a protein, so
inhibition is not always the goal. For malfunctioning proteins, the goal
may be to discover a drug that promotes the active conformation or
overcomes the loss of effective signal activity. While computational
drug discovery techniques are quite robust, molecular etiology must
be considered to select the target and to specify the desired
pharmacologic effect.

2.d. Similar active substances for rational selection

Sophistication in understanding the similarity of pharmacologic
agents was first developed in the ancient processes of chemical
extraction. Similar separation in organic solvents indicates similar
polarity and hydrophilicity, and often foretells identical chemical
moieties. Comparison of compounds with similar chemical properties
to compounds with similar pharmacologic effects resulted in the
concepts of pharmacophores (Cammarata and Menon, 1976) and
quantitative structure activity relationships (QSAR; Hansch, 1969).
These concepts enable intelligent exploration of the chemical and
structural space around the natural substrate.

In a case for which the activity profile of a vast drug bank is
known for a particular pathogen, analysis of similarly active
compounds can facilitate understanding of the basis of molecular
recognition between a small molecule and its protein target (Plouffe et
al, 2008).

2.e. Cycling between random and directed searches

Directed exploration requires either identification of the
physiologic substrate, a hit compound, or deep knowledge of the
target (discussed later in this chapter). Sampling around successful
compounds with similar active substances represents an additional
round of screening, which can be iterated to attempt improvement.
The process of following up an initial hit with rational design is
termed "lead optimization,” and is discussed further in section 3.c.

By modifying functional and structural groups to enhance
targeting by initial hits, the pharmaceutical industry and the field of
organic synthesis generally have massively exploded the available
pharmacopeia (Cupido et al,, 2007). Thus directed exploration can
optimize a hit compound for a desired effect, and the process also
feeds back more bioavailable compounds for random screens
generally. Chaotically cycling between the two approaches for the
gamut of medical purposes during the past century of drug discovery
has clearly resulted in enormous productivity (Schneider and Fechner,
2005), and an evolution of the available pharmacopeia.



2.f. Screening in current Pharma

Very generally, the approach of major pharmaceutical companies
is to run a large chemical compound library against target proteins of
interest using a simple protein based in vitro reporter system, or
simply: high throughput screening (HTS). The initial hits are then
assessed in progressively complex and representative in vitro and in
vivo model systems, whereupon active compounds are considered
"leads” to a drug. Finally the long and arduous process of three phases
of clinical trials is undertaken to obtain approval from a governing
agency (FDA in the US).

The traditional cycling between random and directed searches is
inefficient since the blinded screens result in a vast number of hits and
leads that fail to be effective or safe in humans. The pharmaceutical
industry (Pharma) sets prices to derive profit beyond the tremendous
overhead (Adams and Brantner, 2006), and as a result therapeutics
are often out of reach to those who need it most. For many infectious
diseases there is little or no profit to be made, as the sole prevalence is
in impoverished peoples. As a result many potential drug targets for
these diseases are ignored by Pharma (Orti et al.,, 2009).

Although much of Pharma follows traditional methods, the
economic opportunities within increasingly complex diseases have
driven it to make some of the most significant advancements (Borisy
etal, 2003; Becker et al., 2004; Plouffe et al., 2008; Natoli et al., 2010).

3. Established technological advancements

3.a. The exploitable niche

Many proteins have an enzymatic cleft relatively specific to its
substrate(s) by patterns of charge, flexibility, and space (Jensen, 1974;
Khersonsky et al,, 2006). Metabolites enter the cleft and emerge with
some chemical alteration. Reaction products have lower affinity for
the active site, so they dissipate. The physiologic substrate will not
bind to the enzyme irreversibly, as the purpose of the interaction is
generally to modify ligand, target, or both, and thereafter distribute
this change as a signal to the cell or environment. This requirement of
physiologic ligand expulsion creates the quintessential exploitable
niche for drug discovery.

The protein target is evolved to stabilize a thermodynamically
unstable substrate ligand transition state. The protein might binds the
ground state but it stabilizes the reaction intermediate, which
decreases the activation energy for the reaction and thereby
promulgates the ligand product state. Yet the protein is also evolved to
favor egress of the product after the reaction. The protein is most fit to
bind the intermediate (rather than ground or product states), but as
this state is by its very nature transient it should be possible to find
substances which are similar to the reaction intermediate but stable in
this form. As the transition state is the thermodynamically least
favored state, applying a ligand which is thermodynamically stable in a
similar form will kinetically overwhelm the protein and thereby
inhibit target protein activity (Keiser et al.,, 2009; Abdi et al., 2010).

3.b. Target dissection for inhibitor design

Proteins fold into complex structures. Some parts are evolved to
stabilize the topologic fold, while others carry out physiologic
interactions, and others yet do both (Horst et al., 2010). The chemical
structure of the active cleft dictates the function and the range of
adoptable structural conformations. Modeling the pattern of tolerated
and optimal moieties across the active cleft enables design and virtual
selection of pharmacologic inhibitors (Jenwitheesuk et al,, 2005). The
presentation of hydrophobicity, polarity, and charge across the surface
dictates where complimentary functional groups should be placed.

Affinity can be understood as change in free energy upon
binding, which represents the sum entropy and enthalpy changes for
protein, ligand, and solvent. Significant conformational constraints can
decrease entropy of the ligand and protein during binding. The protein
attracts binders by the potential energy stored in the hydrated
hydrophobic pocket. Matching any nitrogen, oxygen, or fluorine
moieties with a hydrogen bond adds further enthalpic drive to the
reaction, resulting in a more strongly binding and therefore a more
effective inhibitor (see section 6.e. for further understanding of
enthalpy and entropy in computational drug discovery). Thus
knowledge of the three dimensional chemical structure of the target

active site enables design of strong binders which might be used
pharmacologically as inhibitors.

3.c. Rational design and optimization

As discussed above, the affinity of a hit compound can be
improved by strengthening contacts identified by analysis of the active
cleft of the protein structure (enthalpic improvement). Successful
inhibitors bind a range of active site conformations, or induce a
particularly stable conformation. The natural substrate of the target
protein can be studied to understand the contacts which stabilize the
physiologic interaction, but the chemical scaffold of the metabolite
cannot often be used to design a stable inhibitor. In part for this very
reason, a good inhibitor generally avoids covalent modification by the
target protein, but the inhibitor may be modified by other proteins to
increase affinity (e.g. partial breakdown during first pass metabolism,
or phosphorylation by other enzymes in the targeted pathway).

The goal of optimization is to improve the therapeutic index: to
increase activity (efficacy) and decrease toxicity (specificity).
Optimization steps can increase affinity or specificity, but seldom
improve both simultaneously. Goals for efficacy include outcompeting
the physiologic ligand (metabolite), while the more complex goals for
toxicity include minimizing other reactions (specificity) and producing
a favorable absorption, distribution, metabolism, and excretion profile
(ADME). To balance pharmacokinetic properties during lead
optimization the ADME profile is considered in the context of the
clinical indication (Ekins, 2005).

Possible modifications to optimize organic inhibitors are nearly
infinite. They include adding any chemical group from a single carbon
(methyl group) to a heterocyclic, tethering components to force a
particular conformation, or swapping atoms to alter ionic or hydrogen
bonding, or patterns of hydrophobicity. Changes made to bioactive
peptides alone include multimerisation and additions of lipid,
polyethylene glycol, or peptidomimetic features (Bellmann-Sickert
and Beck-Sickinger, 2010).

Of course much of the understanding of protein ligand
interactions comes from analysis using computational graphics
programs. In accord, exploration of affinity optimization can be
carried out "by hand" at the computer terminal, applying experience
and intuition to fit specific chemical moieties to concavity forms and
electrochemical contacts (Noble et al., 2004; Abdi et al., 2010). The
optimization process can also be applied by cyclically testing
alterations of virtual hits from computational docking (Becker et al.,
2006). Alternatively, computational methods can be used to produce a
group of virtual hits, of which enough compounds are tested at the
bench to secure multiple submicromolar hit compounds for follow up
animal experiments (Becker et al., 2004; Desai et al., 2004; Desai et al,,
2006; Jenwitheesuk et al,, 2008; Table 1). Improvements to the latter
approach are the subject of sections 4-6 of this chapter.

While many examples of structure based drug optimization exist,
a quintessential example of computationally guided optimization is
found in the work of Becker and colleagues, in the production of PRX-
00023 as a lead compound for major depressive disorder and
generalized anxiety disorder (Becker et al., 2006; Table 1). The 1nM K;
hit arylpiperazinylsulfonamide (PRX-93009) was found using purely
computational methods by modeling the 5-HT1a GPCR (serotonin
receptor 1A), docking a library of 40,000 compounds, and running 78
virtual hits in an in vitro reporter system (Becker et al., 2004; Table 1).
While the magnitude of target activity demonstrated great success, the
compound presented suboptimal selectivity and pharmokinetics. The
same group ran the compound, arylpiperazinylsulfonamide, against
fifty other GPCRs in vitro, modeled the experimentally derived
interactions (ou- and az-adrenergic receptors and hERG), and
optimized selectivity for 5-HT1a by removing or substituting moieties
that strengthened off-target contacts, and by adding many
compensatory on-target contacts (Becker et al., 2006). The resulting
compound, PRX-00023, was sufficiently selective to 5-HT1a, and
presented a pharmacologic availability profile similar to existing drugs
for the same indication. The entire process from the computational
screen through entry into phase III clinical trials took only two years
(Becker et al,, 2006). Unfortunately while it was tolerated, the efficacy
was not enough (de Paulis et al., 2007; Rickels et al.,, 2008).
Nonetheless, this adventure demonstrates that computational
methods can facilitate lead compound discovery and catalyze the
process of getting to the question of real clinical efficacy.



3.d. Multitarget dosing

In many cases, no single drug is sufficiently effective in the
therapeutic range to cure the disease, or even to reduce symptoms or
recurrence effectively. Thus multiple drugs can be combined to
heighten the effect. Simultaneous effects on multiple targets can
decrease therapeutic doses, so that less efficacious and slightly more
toxic compounds can be used safely. As well, pathogens often develop
resistance to single drug therapy, but simultaneous occurrence of
multiple resistant mutations are exponentially less prevalent. The
"multitarget" concept of targeting more than one protein in a single
dose emerged to address these issues.

Perhaps the most successful application of intentional
multitarget drug administration is presented in dosing with inhibitors
of HIV reverse transcriptase, protease, and integrase in the fight
against HIV/AIDS (Hirschel and Francioli, 1998). Multidosing is
titrated in a trial-and-error manner, using patient suffering as the
error. Because of this undesirable situation, novel approaches have
emerged to model synergistic effects of polypharmacology. For
example, combinatorial effects have been tested in vitro using an
automated robotics and informatics pipeline. Pairs of substances that
display synergistic inhibition of Candida albicans growth, cytokine
production, and tumor growth, exhibit complex efficacy patterns:
highly nonlinear effects are observed in plots of the concentration of
one compound versus the other. The complexity is evident of either
single protein targeting by different inhibitors, or more likely:
inhibition of multiple proteins involved in the same physiologic
process (Borisy et al., 2003). Further examples, design, and benefits of
polypharmacology are discussed throughout this book.

4. Computational drug discovery

The structure guided computational approach to evaluating
protein-ligand interactions generally consists of three steps: (a)
conformational sampling of the rotation, translation, and torsion angle
degrees of freedom between the protein and ligand, (b) scoring the
resulting interactions with a discriminatory function to identify native
and near-native complexes from a set of incorrect conformations, and
(c) ranking possible ligands to distinguish between strong, weak, and
non-binders. Despite previous successes, limitations persist in
structure-guided drug screening and design implementations to date.
The principle disconnect between what computational drug discovery
is hoped to be and the reality of what it provides, is that computational
predictions enrich for compound-protein activity rather than design it.
In the best reported cases there are still many false positives and false
negatives (Table 1); structure guided discovery is a rational starting
point, but does not yet provide a comprehensive view of biologic
interactions.

4.a. Principles and data sources

As successful approaches to protein structure prediction do not
model any part of the folding process, modeling the physiologic
conformation of a bound ligand has little if anything to do with the
actual physical process of binding. While the hypothetical situation of
modeling the wave function for each atom in the system could produce
a descriptive simulation of ligand binding, this approach is
computationally intractable. Again analogous to the example of
protein structure prediction (Moult, 2005), the methods most
successful for modeling the stable end state conformations are those
that directly consider many measurements of other end state
conformations (Kitchen et al.,, 2004; Bernard and Samudrala, 2009). In
essence, physical properties such as interatomic distances, repulsion,
or attraction are taken to build models to estimate stability of the
protein-ligand system. The strength of computational methods is in
automating these analyses across enormous amounts of ligand to
protein pairs.

4.b. Docking

The term "docking" describes placement of a ligand onto the
molecular surface of a protein, in a manner that mimics the real
physical interaction as closely as possible. The interaction of any two
particles above absolute zero temperature are dynamic, so the
protein-ligand physical interaction includes a distribution of
conformations that may be clustered extremely tightly (<0.1 A root
mean squared deviation) or include significantly dynamic protein and

ligand movements, as can be found in the range of holo PDB structures
(Berman et al., 2000).

Docking can be performed in a manner to offer alternative
molecules to an initial hit or known physiologic substrate, in which a
base molecule provides a starting conformation. Our group recently
demonstrated the utility of this approach to peptide inhibitor design,
wherein we took as the starting conformation a strand from the
physiologic substrate protein (in the PDB structure), and substituted
alternate residue side chains, following a greedy search protocol
(Costin et al,, 2010; Table 1).

The complexity of the docking problem expands with the degrees
of freedom of each ligand. Unfortunately, while proteins are often
treated as rigid surfaces on which to dock a ligand, they are dynamic
as well, including movements in response to ligand binding, termed
"induced fit" (Koshland, 1958).

Translation. In the most simple case of docking, a roughly spherical
ligand (such as a metal ion) is translated about the protein. The
translation space sampled can be a grid, limited to a region of the
protein or a defined space surrounding the protein, or can be
continuous, in which case movements from a starting point must be
guided by a scoring function. In either case it is tractable to sample
within 0.1 A of the binding site in a suitable model of the protein
structure, and so selection of the real binding site is left to the
scoring function (discussed in the next section).

Orientation. For the anisotropic case of all multiple atom ligands,
orientation must be considered. The rigid ligand is rotated about
the grid or starting point. To achieve the same 0.1 A resolution as
described above for the isotropic translation search, the requisite
search space would be increased 51-fold for a hydrogen molecule
(the number of nonredundant 0.1 A square grid points on a 0.76 A
diameter hemisphere) and exponentially more for ligands of
greater size. However, this search is still tractable, and has been
applied in various attempts to break down more complex molecules
into rigid fragments.

Bond rotation. Nonrigid ligands contain rotatable single (sigma)
bonds that dramatically increase the sample space. Simplifications
can be made to some rotatable bonds to decrease the impact on
sample space, for example removing bond angles that produce
eclipsing of large repulsive chemical groups. However, multiple
rotatable bonds in a ligand generally breaks the tractability of the
docking search, and heuristic strategies must be employed. The
earliest versions of docking methods simplified flexible ligands as
rigid (Kuntz et al., 1982), yet even now rotatable bonds not only
increase the search space but decrease the accuracy of all docking
methods (Kitchen et al., 2004; Plewczynski et al., 2010)!

Most docking methods combine the three types of movements
(translation, orientation, rotation). The combined movement is
generally guided by a scoring function, but the way they are applied
can be very different (Ewing et al., 2001; Kitchen et al., 2004). For
example the movements from one sampled conformation to the next
might be decided by comparing scores for the first and a stochastic
progression (Metropolis Monte Carlo approach), or the trajectory
resulting from an estimate of forces in the system (molecular
dynamics approach). Therefore, at the heart of the docking protocol is
the scoring function.

4.c. Scoring and discriminatory functions

Functions for evaluating protein-ligand interactions are generally
referred to as 'scoring functions.' Scoring functions applied to the
problem of selecting the most realistic ligand conformation amongst a
set of docked poses is a 'discriminatory function.' Protein-ligand
scoring functions are categorized into molecular dynamics force fields,
empirical functions, and knowledge-based functions. Force fields are
commonly built to explicitly model physical forces (acceleration) of
idealized gas phase enthalpy including electrostatics and van der
Waals forces (shape complementarity; Lennard-Jones, 1924). Often
left out are the contributions of entropy (e.g. torsional) and solvation,
while heuristic considerations such as number of hydrogen bonds are
most often included (Kitchen et al., 2004).

The assignment of the terms "knowledge-based" and "empirical”
are historical; both use experimental data to build scores and
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coefficients. Both perform statistical comparisons of the query case to
many bench laboratory derived binding affinities and/or structural
conformations. Generally, empirical functions combine physical terms
by regression analysis of experimental binding data, whereas
knowledge-based functions derive scores for ranges of spatial
parameters (distance, torsion angles, or voxels) from experimentally
derived structures without any attempt to divide the underlying
physical forces (Kitchen et al,, 2004; Bernard & Samudrala, 2009).

The molecular dynamics force field assisted model building with
energy refinement program (AMBER) represents the flagship
molecular dynamics function. AMBER models the potential energy of
each conformation with a set of terms for covalent bonds, bond angles,
torsion angles, electrostatics, and van der Waals energies (Weiner et
al,, 1984). AMBER has gone through continual updating by many
contributors, to progressively incorporate physics-based models of
diverse systems and optimize the coefficients of the formula for
specific types of interactions (Ponder and Case, 2003; Case et al,,
2005). Although molecular dynamics force field functions
hypothetically have the capacity to direct ligand docking into the
lowest energy conformation, using these functions to model an entire
protein-ligand system has the tendency to result in models continually
expanding out from the physiologically compact state; artificial
constraints can be used to hold the model together, but these
constraints represent a deviation from the goal of physics based
modeling, are not generalizable, and the results are usually not
predictive. Nonetheless, judicious use of a limited progression of
molecular dynamics steps guided by these functions can be highly
useful for modeling protein-ligand systems (Jenwitheesuk and
Samudrala, 2003a).

Increased success in developing discriminatory functions have
often arisen from specifying the type of protein target, with the
presumption that different forces dominate ligand binding by proteins
such as transmembrane receptors and transcription factors. However,
our group recently developed a generalized knowledge based
discriminatory function score to select optimal poses for any type of
ligand, within a margin of error which can be sampled by a course
lattice method. This knowledge-based function outperforms more
than 20 other published ones in several docking decoy tests, by
analyzing interatomic distance distributions from the repeating units
of high resolution small molecule crystallography structures (Bernard
& Samudrala, 2009). In part the strength of this method is the quality
of the intermolecular contacts: the crystals of small molecules are
much more regular than those of proteins, and so more accurate
structures are modeled from the electron density maps. However,
exhaustive consideration of the statistical derivation makes this
function even better. We considered radial versus normalized
frequency distributions, mean versus cumulative reference state,
reduced versus complete composition, and the maximum interatomic
distance to be considered (cutoff). Across a diverse set of protein
interactions with small molecules, other proteins, and DNA, the radial

mean reduced derivation performed with the most accuracy (Bernard
& Samudrala, 2009). The result is a highly accurate discriminatory
function with perhaps fine enough resolution to make a continuous
function that could act as a force field.

Future work to improve scoring functions includes efforts to
bolster the accuracy of knowledge-based or empirical functions to
address the goals of molecular dynamics approaches. If forces are to
be divided into physical contributions, proper handling of entropic
and solvation contributions are needed (section 6.e). Further
improvements include representing three dimensionality to model the
physical intricacies of electron sharing through hydribidized orbitals
(e.g. sp3), and multi-body potentials that can account for resonance
patterns (Ngan et al,, 2005); there are enough high resolution
structures in the Cambridge structure database (Allen, 2002) to
approach these goals (Bernard and Samudrala, 2009).

4.d. Relative affinity ranking

Ultimately there are two roles for the ligand pose selected by a
scoring function: to be the representative for ranking amongst the best
scoring poses of other ligands, and to identify the pattern of contacts
that might be retained or improved during optimization. Ideally,
protein-ligand scoring functions should be able to identify the native
or near-native ligand pose from a set of incorrect conformations (i.e.
discrimination), and to distinguish between small molecules that do
and do not bind a target protein (i.e., relative affinity ranking). This is
unfortunately not the case with current methods, as discriminatory
functions perform poorly at correlating scores with experimental
binding energies. An ideal ranking function would accurately calculate
the free energy of binding. Relation to the affinity estimation for
another ligand (another drug or physiologic substrate) would be
sufficient to estimate biological activity: this thermodynamic
understanding would indicate which ligand would outcompete the
others by binding strength. The kinetic considerations (e.g. target
tissue concentration) could be designed around this understanding.
Clearly ranking functions could be extremely useful to computational
drug discovery, but currently no function has been shown to
consistently reach these goals. An accurate relative affinity ranking
function is needed in the field of structure-guided drug screening and
design if these predictive methods are to serve as a useful an
complementary tool to prospective experimental investigation.

Knowledge-based functions perform quite well at discrimination
(Bernard and Samudrala, 2009) but inaccurately provide scores
proportional to the size of the ligand, due to their simple additive
nature, and therefore may be of limited utility for relative affinity
ranking. Empirical scoring functions fitted to experimental binding
energies perform rather poorly, especially for classes of molecules not
included in the training set, and significantly lack in discriminatory
ability. Often experimental complexes are used to correlate scores
with experimental binding affinities; in practice this is not useful, as

Table 1. Summary of recent prospective drug discovery screens.
bench experiments

disease protocol in silico targets in vitro — hit best (uM) type Group Year
DiabetesII throughput: 1 400,000 — 85 <100uM 4.2 IC50 Schoichet/Doman 2002
Malaria throughput: organism 2,687 — 19 <1luM 0.003 IC50 Sullivan 2006
Malaria throughput: organism 2,160 — 36 <1luM 0.010 IC50 DeRisi 2006
f-lactamase throughput: 1 70,563 — 0 <30uM nonet IC50 Schoichet/Roth 2008
Malaria throughput: organism 1,700,000 — 5973 <1.25uM nr IC50 Winzeler/Shultz 2008
648 <100nM nr IC50
Malaria throughput: organism 1,986,056 — 13533 <2uM nr IC80 Garcia-Bustos 2010
DiabetesII docking: 150,000 1 7 - 5 <100uM 21 Ki Zzhang 2000
Cancer docking: 100,000 1 2 - 2 <100pM 0.00003 Kd Shakhnovich 2001
DiabetesII docking: 235,000 1 365 — 127 <100uM 1.7 IC50 Schoichet/Doman 2002
Malaria QSAR: 12 1t 12 — 3 <100uM 5.7 IC50 Freire 2002
Malaria QSAR: 9 4 9 — 2 <1uM 0.3 IC50 Freire 2003
Malaria docking: 241,000 1 100 — 5 <10uM 1.0 IC50 Avery 2004
HumanGPCRs docking: 150,000 5 309 — 50 <5uM 0.021 EC50 Becker 2004
Malaria docking: 355,000 2 84 — 7 <10uM 9.5 IC50 Avery 2006
Depression dock,QSAR: 40,000 1 78 — 9 <1uM(Ki) 0.3 IC50 Becker 2006
f-lactamase docking: 70,563 1 18 — 4 <200uM 70t IC50 Schoichet/Austin 2008
Malaria docking: 2,344 14 16 — 7 <1luM <1 IC50 Samudrala/vanVoorhis 2008
Tropical QSAR: 3,665 11,714 2 - 1 NMR nr NMR Sali/Marti-Renom 2009
HumanMany QSAR:* 3,665 1,133 30 — 20 <1uM 0.001 Ki Schoichet/Roth 2009
Dengue peptides: 14 1 14 — 2 <1uM 7.0 IC50 Samudrala/Michaels 2010

+
nr notreported.

* search for target, in vivo activity already known.
t extensive reversibility studies.

the human homolog was also considered as an antitarget.



the objective is to find new compounds that bind to a protein target.
The most relevant experiment is to test known inhibitors against
alternative protein structures that are not bound by the small
molecule of interest, and then evaluate the correlation coefficient
(which is invariably lower; Fan et al.,, 2009).

The ability to accurately discriminate the correct binding mode
of individual ligands and that to rank the relative binding affinity
between different ligands can be treated as distinct computational
modeling problems. All protein ligand scoring functions can be applied
as ranking functions, but dissecting apart docking and ranking allows
for considerations more important to each problem. For example,
counting hydrogen bonds and calculating loss of torsional entropy is
essential to ranking ligands, but many conformations of the same
ligand can be equivalent for these factors (Kitchen et al., 2004).
Therefore, the methods used for discrimination and relative affinity
ranking should be separated into distinct functions and developed
independently, which has not previously been the case.

4.e. Comparison of docking methods

Many methods have been created to dock ligands to proteins
(Kitchen et al., 2004). But bias and overtraining have impeded
attempts of evaluation in the field of computational biology, as
demonstrated for protein structure prediction with the solution of the
CASP experiments (Moult, 2005). Blinded or independent
examinations are proper means for unbiasing assessments of
predictive methods. Minimizing bias optimizes the estimation of the
accuracy in prospective experimentation, which is the purpose of
these methods. A recent experiment performed such an independent
test between seven docking programs (Surflex, LigandFit, Glide, GOLD,
FlexX, eHiTS, and AutoDock) on 1300 holo structures from the
PDBbind database. Ligand conformations were converted through
SMILE strings using two different tools (Corina, Omega2). Two
commercial products (GOLD, eHITS) outperformed the other methods,
with mean accuracy <3.0 A RMSD and >55% of cases <2 A RMSD. The
use of holo rather than apo structures is a caveat to the relevance of
these findings to prospective drug discovery. As well, it is likely that
the examined methods were trained on some of the same structures as
those used to test them, which gives unfair advantage. While
prospective experimentation is the only true test of a computational
method, this study describes the most independent comparison of
methods for drug discovery known to us (Plewczynski et al.,, 2010).

4.f. Ligand comparison

Small molecule structure activity relationships are applied to find
active substances similar to initial hits found through bench or
computational techniques (Hansch, 1969). The underlying concept
follows that the activity of the substrate transition state can be
analogized by chemical similarity to any other compound (Abdel-
Rahman et al,, 2004). It follows that the activity of a hit ligand can be
analogized by chemical similarity to any other compound. The ligand
comparison is calculated by comparing the geometric distribution of
electronegativity and hyrophobicity for the hit ligand against a
database of existing small molecules. Improvement accurate
predictions of the similar active substance are found when limiting the
database to known bioactive molecules. This approach is powerful in
part because of the small requirement for computational resources
compared to docking.

While the structure activity relationship of small molecule
organics has been applied to ligand optimization traditionally, the
concept of similar chemical structures having similar bioactivity has
recently been applied to discover initial hits (Nezami et al., 2002;
Nezami et al,, 2003; Orti et al., 2009; Keiser et al., 2009; Table 1). The
rationale here is to use known substrates or predicted ligands in place
of the initial hit. It is logical that the physiologic substrate would be a
productive starting place for detection of similar active substances.
This brand of applications of structure activity relationship will make
a large impact in making drug discovery more efficient, and expanding
our understanding of the co-evolution of proteins by their similar
physiologic substrates.

Other computational methods compare structural and chemical
properties among protein-ligand binding sites directly without
considering ligands (Gold et al.,, 2006; Das et al,, 2009; Weill et al,,
2009; Chen and Honig, 2010). For example, the method of Das and
colleagues dissects a binding site into a profile of probabilities that a
surface patch with a particular physicochemical property will present

at a specific distance to another on the binding site surface (Das et al.,
2009). When the binding site and tertiary structure is known or
predicted, this analysis enables rapid detection of target identification,
understanding of multitarget effects, and suggests compounds to
screen for pharmacologic inhibition. Binding sites can be predicted by
sequence analysis (Wang et al,, 2008; Horst and Samudrala, 2010) or
mapping by structural similarity (Orti et al,, 2009).

5. Recent technical Improvements

5.a. Automated binding site identification

A variety of sequence and structure based approaches are used
to predict protein-ligand binding sites. For many globular soluble
enzymes the binding pocket is easily identified by its characteristic
narrowness and depth, which allows harbor of small molecules. This
analysis can be automated by geometric measurements, for example
surface concavities can be found by comparing the accessibility of
different sized spheres to the solvent exposed surface (Greaves and
Warwicker, 2005). Meanwhile, many protein active sites are not as
obvious from the protein structure; these harder problems demand
sophisticated bioinformatic tools (Gutteridge and Thornton, 2005).

Often a ligand can be mapped to the query structure from a holo
template protein identified by sequence or structural similarity (Lopez
etal, 2009; Orti et al,, 2009; Roy et al.,, 2010). Where ligand mapping is
not available and when results are not consistent, conservation
analysis is useful. Particularly, proteins from poorly characterized
families cannot always be understood by direct similarity analysis.
Sequence analysis can evaluate multiple aspects of evolutionary
conservation and residue identity to predict binding sites with
comparable accuracy to structure-based methods (Berezin et al., 2004;
Fischer et al,, 2008; Wang et al., 2008). Structural analysis or structure
prediction can be combined with conservation calculations to improve
interpretation (Landau et al,, 2005; Roy et al., 2010; Horst and
Samudrala, 2010; Horst et al., 2010). Our group has found across many
protein active sites that hidden Markov model estimates of relative
conservation entropy is the most accurate single predictor of residue
functional importance (Wang and Samudrala, 2006; Horst et al.,, 2010).

Differences in residue identity within otherwise similar binding
sites control metabolite specificity and variation in enzymatic
reactions (Ashworth et al., 2006; Jiang et al., 2008). Thus the residues
that specify ligands are often not conserved. More advanced analysis is
indicated to find these residues; function prediction methods may be
useful to select atomic contacts to targets during computational drug
discovery. Our group has demonstrated that machine learning can be
used to transfer dissections of structure and function from many
proteins to predict the active sites of highly different query proteins
(Wang et al.,, 2008; Horst and Samudrala, 2010; Horst et al., 2010). Our
methods predict protein-ligand binding sites de novo using an
algorithm that generates meta-functional signatures (MFS) by
combining multiple sources of information reflecting functional
importance. MFS can be applied to a protein sequence or structure and
has been shown to be more effective in identifying functional sites
than other popular methods (Wang et al., 2008; Horst and Samudrala,
2010; Horst et al,, 2010).

5.b. Docking with protein target dynamics

Biologically active proteins are in continuous motion, yet the
majority of protein structure information is limited to the most stable
form of a protein when crystallised in artificial conditions. Induced fit
is a widely recognized challenge in computational drug screening,
wherein the protein undergoes significant conformational changes
upon ligand binding (Koshland, 1958). As a consequence, traditional
rigid protein-ligand docking is insufficient for structure guided drug
screening, and is often misleading. The active cleft surface is treated as
rigid, though a conformational shift occurs upon binding a physiologic
substrate, inhibitor, or interacting protein. This conformational shift
brings together the mediator functional groups of the catalytic
reaction. The energetic force to bind the reagent metabolite is
generally enthalpic, so the bound holo conformational state of the
protein is closest to the optimal pharmacologic target. Dynamics
simulations increase the possibility of surveying a physiologically
relevant conformation beyond using the static crystal structure alone.
For example, our group showed that for a group of HIV-1 protease
inhibitors, using molecular dynamics to model changes in the target
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protein improves the correlation coefficient of predicted score versus
measured affinity from 0.35 to 0.88 (Jenwitheesuk and Samudrala,
2003a).

Modeling target and ligand flexibility aids the multitarget
approach. Multiple stable conformations or highly flexible portions of
a ligand increase the range of possible target clefts in which the ligand
might fit. The benefit of ligand flexibility for action on multiple
proteins is exemplified in the difference between first and second
generation HIV protease inhibitors (Freire, 2002).

Along with our work demonstrating the importance of target
protein dynamics in computational docking, many other groups have
incorporate target flexibility into their software. But as for the
rotatable bonds of ligands discussed in section 4.b, each additional
bond considered for rotation dramatically increases the sample space,
and so slows down the search. Therefore our approach of using short
spans of molecular dynamics (200 steps) appears to be most
computationally reasonable, and is used widely (Jenwitheesuk et al.,
2008).

5.c. Structure modeling for target docking

The concept of template based modeling can be understood and
applied in different ways. One approach that has been shown to work
is to model the query protein based on a template, and then dock to
this model. However, this is not the only way to make use of a
template. It is not always necessary to build a structural model. If
there is a known drug or ligand interaction for a template protein, this
information may be transferred directly based on the similarity
between the proteins (Orti et al., 2009). If docking is indicated, it may
be more relevant to dock to the template itself rather than a model
built using the template - the accuracy of the template is known, while
the model built with the template is guaranteed to be less accurate
(Fan etal., 2009). A good template will have a highly similar binding
site, sufficiently similar that the differences in residue identity can be
modeled after docking.

The structures of all human GPCRs have been modeled with I-
TASSER (Zhang, 2008), the best existing protein structure prediction
method (albeit an older version), and are freely available (Zhang et al.,
2006). Various publicly available methods are capable of modeling
structure and ligand docking for GPCRs. For example, our group
combined I-TASSER with our consensus refinement method (Liu et al.,
2009) to perform amongst the very best groups in a prospective
prediction experiment to predict structure and ligand conformation
for the second human GPCR Xray structure (Michino et al.,, 2009).
Meanwhile, the proof of concept for all modeling drug discovery for
GPCRs was accomplished in 2004 by Becker and colleagues, as
discussed above in section 3c. Briefly: the authors modeled five GPCRs
based on the bovine rhodopsin structure (PDB id 1f88; the only GPCR
structure known at the time), used the anchor and grow approach in
DOCK4.0 (Ewing et al., 2001) for ~150,000 compounds selected from
~1,600,000 based on physical properties, and ranked the resulting
protein-compound pair conformations using in house software. The
outcome of this study includes 50 substances with EC50 <5uM activity,
anovel EC50 <100nM compound for four of the five target GPCRs, and
an agonist lead compound (Becker et al., 2004; Table 1). However,
there was no comparison performed to check for enrichment versus
docking to the template rhodopsin structure.

A recent study explored the opportunity of template based
modeling and docking for 38 proteins, 2950 ligands of known
bioactivity, and 95,316 decoy ligands (Fan et al., 2009). The
exploration was relatively thorough for protein structure modeling,
using templates across a broad range of sequence identity (20-99%).
In this study the consensus result of docking against multiple template
based models was better than docking to the single best model or even
the apo structure of the protein (in most cases), and in many cases the
consensus model accuracy approached that of docking against the
target holo structure. Meanwhile, this study also compared bioactive
ligand selection enrichment for docking to the homology model
templates versus the models. There was a slight trend for holo
templates of sequence identity below 40% to more accurately select
the bioactive ligands than models derived from the holo template
(R=0.22 across sequence identity range). There was no clear range for
which it would be better to use homology models. When using apo
templates or models derived from them, the correlation for sequence
identity dropped (R=0.07): sequence identity is not predictive of
whether it is better to use the apo template itself or a model derived

from it (Fan et al,, 2009). On average, docking to templates produced
insignificantly higher enrichment for bioactive ligand selection than
docking to models of the target protein (Student's paired 1 tailed t-test
p=0.29). So, based on this study using the latest versions of
MODELLER and DOCK, it appears that for the purposes of docking,
there is no great benefit to spending the computational resources to
build all atom models of target proteins. Meanwhile, the success of the
consensus of models suggests that clustering may be useful for finding
the best template on which to dock, and that improvement in
structure prediction methods may breach the accuracy of docking to
homolog holo structures. Nevertheless, the high resolution of the
template is for now a better data source of analysis, whereupon our
ability to detect the evolutionary connection between homologous
proteins is the most powerful tool.

5.d. Ligand-target networks

Metabolic systems bring an environmental substrate through a
series of reactions that add or remove chemical moieties. The majority
of the substrate is often maintained through the process, such that
each protein controlling the metabolic network will recognize similar
features of the substrate. Therefore if a drug is selected or designed to
inhibit a particular protein target, it is highly likely that the drug will
inhibit multiple proteins of the metabolic network (Csermely et al.,
2005; Hopkins, 2008). Thus many drugs achieve higher efficacy by
unintentional pathway multitargeting (Kohanski et al.,, 2010), with
benefits described throughout this text.

Network targeting involves activity of a compound across
multiple pathways. Multiple routes of attack may be necessary to
effectively stop neoplasms or pathogens that have multiple
compensatory pathways to allow survival and proliferation. More and
more we are learning that simple linear or cyclic pathways are the
exception rather than the rule, so even to inhibit a single pathway it
seems that multiple indirectly connected proteins must be inhibited
(Hopkins, 2008). If one adopts a multitarget philosophy, the principle
difference is a need to monitor the interconnectivity of the targets,
maximizing relevance to the clinical question.

6. Emerging concepts

6.a. Starting with nature

The current drug discovery process itself both mimics and
expedites the natural evolution of bioactive products. Living
organisms have influenced the creation and relative abundance of
chemicals on Earth. For example the production of oxygen by conifers
which enabled aerobic metabolism: the cyclic feedback between life
and that which is traditionally considered nonlife (small molecule
organic compounds) describes a co-evolutionary pattern which can be
exploited in drug discovery.

The current diversity of natural chemicals emerged within the
same evolutionary soup. This shared evolutionary chemical context
sets the stage for various organisms to use the same compounds to
control different processes, making one molecule relevant to diverse
physiological activity. The observation that structural folds are largely
conserved, even when sequence and function are not, provides logical
evidence that one compound can be an excellent initial candidate for
many different protein targets. The topological forms of proteins
(folds), present much more consistency than those of small molecules.
For example, the proteins of various metabolic pathways appear to
have evolved from the same template protein, with mutations
conferring the ability to perform different chemical alterations.
Meanwhile the binding site within a particular pathway is relatively
conserved, and a ligand which gets in the way of a reaction in one
protein will be promiscuous to the pathway. The result of these
patterns of evolutionary divergence is that natural chemicals are
highly multitargeting (Jenwitheesuk et al., 2008; Dancik et al., 2010).

The network of targets for existing drugs reveals physiologic
relationships between the proteins within or between proteomes
(Keiser et al., 2009). Particularly, not all human disease targets are
predicted to be bound by natural small molecules, and it may be that
the respective interaction networks are distinct (Dancik et al., 2010).
The relatively unique human drug target network may be explained as
bearing those more unique protein functions for which there are
minimal compensatory self-righting mechanisms. The uniqueness of
the target proteins seems to coincide with constrictions in the protein
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interaction network, rather than network hubs which tend to be
targetable by natural compounds. Presumably these network
constriction human targets are not canonical enzymes, receptors, or
channels - i.e. natural compounds are not their substrates. Thus for
these targets, natural products and perhaps their derivatives may be
insufficient.

Nonetheless, it is clear that there is some piece missing from the
immediately preceding argument and referenced data, as 614 of the
974 new chemical entities discovered from 1981 to 2006 were natural
products or derivatives thereof, many of which do target host proteins
(Newman and Cragg, 2007). Leaders in bench drug discovery look to
exotic organisms for drug leads continually (e.g. scorpion venom).
Natural compounds can be very difficult to make outside of the source
organism, and most exotic organisms are not cultivatable on a large
scale. These compounds are the products of intricate protein mediated
metabolic pathways not usually understood well enough to be
genetically engineered into E. coli or yeast. Computational aid to
retrosynthetic analysis enabled mass production of natural active
products via total synthesis (Corey et al., 1985).

Thus natural products may not be able to inhibit or activate all
host targets, but for any protein that acts upon a natural substrate,
they likely will be useful. Thousands of years ago we recognized the
pharmacologic capacity of many natural materials, and over the past
few decades nature has still been the greatest source for new drugs.
Natural compounds may not comprise ideal decoys for complex
substrates such as DNA or other proteins, but we can keep looking to
them as one principle source for bioactive compounds. The
evolutionary pressure of competition clearly selected for organisms
ready to fight other organisms - the resulting arsenal of molecular
weapons are a robust starting point for rational drug discovery.

6.b. Peptides and their derivatives

Peptides represent a natural modular scaffold that can be easily
designed to mimic natural substrates and binding partners for drug
discovery. Knowledge-based protein structure prediction methods can
be applied by reverse engineering the amino acid sequence of a
natural binding partner to optimize binding. For example, our group
created peptide inhibitors by redesigning the sequence of the dengue
viral entry protein substrate, which prevents infectivity of dengue
virus at the micromolar level (Costin et al.,, 2010; Table 1).

Peptides present some benefits for computational drug discovery
relative to standard organic small molecules. One benefit is the
modularity, which enables design, massive replication, and low
production cost. Another aspect is that the chemical nature of side
chain and main chain moieties are evolved to stabilize proteins, and
therefore in some cases bind active sites more tightly than organic
small molecules. The rapid degradation by endopeptidases is generally
seen as a disadvantage because of inactivation and clearance, but:
protease recognition is designable to some extent, peptide
degradation minimizes immunogenicity, and some clinical indications
call for rapid clearance.

Disadvantages of peptides also include susceptibility to
nonspecific endoproteases (which are nearly everywhere in the body)
and low oral bioavailability. Even with these disadvantages, peptide
inhibitor design can be useful as part of an in vitro model to find or
verify targets, and to identify specific binding site contacts to be
targeted by small molecules. However, modifications to overcome
disadvantages are chemically straightforward: multimerisation (e.g.
polyethylene glycol), lipidisation, and adding peptidomimetic moieties
(e.g. alternate atoms to substitute the amide bonds). Expressible
peptides can be modified chemically to produce vast functional
diversity suitable for many pharmacologic applications (Bellmann-
Sickert and Beck-Sickinger, 2010).

6.c. Off-label drug use

FDA approved drugs present similar advantages to natural
compounds due to their known bioactivity. Added benefits of
screening existing drugs include the known safety and ADME profile,
demonstration that the compound will get through first pass
metabolism and get to at least some sites of action, and a hint of
certainty that they will have the promiscuity of ligand-protein
interactions discussed for natural compounds. Perhaps most
importantly, since they are already approved for use in humans, the
only barrier to clinical trials is demonstration of efficacy
(Jenwitheesuk et al., 2008).

While it appears that use of existing drugs enriches screens for
hit compounds, no one has done the proper side by side background
control of testing a random sample of compounds. Current Pharma
compound databases are designed to optimize bioactivity and ADME
profiles in the case of presenting a hit inhibitor, e.g. following
Lipinski's rule of 5 (Lipinski et al., 1997). However, four bench screens
searching for inhibitors of Plasmodium falciparum demonstrate a
trend towards enrichment for existing drugs (Table 1). Massive
screens of ~2 million compounds from the chemical libraries of
Novartis (Plouffe et al., 2008) and GlaxoSmithKline (Gamo et al., 2010)
resulted in 0.35% and 0.68% micromolar hit rates, respectively. One
thousand-fold smaller bench screens of ~2 thousand existing drugs for
Plasmodium falciparum resulted in 0.71% (Chong et al,, 2006) and
1.7% (Weisman et al.,, 2006), suggesting slight enrichment. Meanwhile,
our computational screen of the same drug database selected 16
compounds, of which 44% are micromolar inhibitors (Jenwitheesuk et
al,, 2008; see Table 1 for further details of these studies). Although
these giant Pharma companies have put decades of data and analysis
into the design of their chemical libraries, similar if not better success
rates can be achieved on a 1000x smaller scale if these screens are
simply run with existing drugs. Moreover, our group has shown that
publicly available computational methods can vastly enrich this
search, and thus suggest existing drugs to be the starting set for any
computational drug discovery project.

Understanding the biologic activity of known drugs of course
makes it easier to repurpose them for desired physiologic effects. It is
important to note here within this chapter on automated tools for
drug discovery, that deep understanding of existing drugs and the
disease of interest enable enrichment far beyond that currently
available with contemporary computational methods.

Accordingly, off-label uses are continuously being discovered.
Carbamazepine, a widely used anticonvulsant and mood stabilizer,
seems to combat hepatic fibrosis (Hidvegi et al.,, 2010). A lead for
polycystic kidney disease was recently discovered by intuiting the
target, for which an inhibitor was already developed in effort to treat
diabetes (Natoli et al., 2010).

The trend for drugs approved for treatment of one disease to
effectively treat another underscores the importance of epidemiologic
studies to track disease patterns in medicated patients. Clinical
informatics is an emerging field meant to handle questions like this.
Meanwhile, the reward for repurposing an existing drug is highly
similar to discovering its first use. In the US, intellectual property and
patents are defined by the purpose; if you can figure out a new use for
a hula hoop, you can patent it. A new use for an existing chemical
entity is unique intellectual property. The only successful
generalization of profit for a drug has been through manufacture of
the physical drug itself. Thus, opportunity awaits in repurposing old
drugs to new tricks.

6.d. Off-target effects

Virtual drug screening methods have been employed to help
identify sources of off-target drug effects and investigate their
potential to cause adverse or desirable side effects (Jenwitheesuk and
Samudrala, 2007; Keiser et al., 2009). Desirable off-target effects
include unintended multitargeting of other proteins in the target
pathogen (Jenwitheesuk et al., 2008), fighting other infectious agents
(Jenwitheesuk and Samudrala, 2003b; Jenwitheesuk and Samudrala,
2005a; Jenwitheesuk and Samudrala, 2007), and balancing untoward
effects of other drugs being used in a polypharmacologic regimen.
Through proper screening of relevant host and pathogen proteins and
metabolites, current methods can enrich the design of off-target
pharmacology.

Off-target effects can be predicted by ligand docking methods
(Jenwitheesuk and Samudrala, 2003b; Jenwitheesuk and Samudrala,
2005a; Jenwitheesuk and Samudrala, 2007; Xie et al., 2007;
Jenwitheesuk et al., 2008), ligand structure activity relationships
(Keiser et al., 2007; Eckert and Bajorath, 2007; Keiser et al., 2009), and
comparison of protein binding sites (Gold et al.,, 2006; Xie et al., 2007;
Weill et al,, 2009; Das et al.,, 2009). After decades of development
(Hansch, 1969), SAR methods are emerging as clinically useful (Keiser
etal, 2009; Table 1). Meanwhile, methods to compare protein binding
sites and affinity ranking methods are still in their infancy, yet the
latter has already demonstrated clinically significant utility
(Jenwitheesuk and Samudrala, 2007).



Although virtual screening methods have been useful to inform
drug design, many current methods are not able to account for off-
target drug effects because they require structural information which
is not available for most of the human proteome (Xie and Bourne,
2005). Further, due to the difficulty of crystallizing membrane
proteins, structures for these proteins are highly underrepresented,
making up less than 1% of the structures in the PDB (Walian et al.,
2004). Nonetheless, nearly half of available drugs act on G protein-
coupled receptors, a major class of membrane signal receptors
(Gudermann et al,, 1995). Therefore it is important to consider
membrane proteins in the identification of off-target drug interactions.
Although structural data is lacking, protein sequence data covers
nearly the entire human proteome (UniProt Consortium 2007).
Therefore it may be useful to develop computational protein sequence
analysis methods to identify the similarity of protein ligand binding
sites through their meta-functional signatures (Wang et al., 2008),
which could model drug toxicity explicitly across human and pathogen
proteomes. The most useful off-target screening methods will combine
comparative analysis of ligand structure, protein structure, protein
sequence, and the types of interactions between protein and ligand.

6.e. Affinity, entropy, enthalpy, optimization

Dissecting the contributions of entropy and enthalpy to changes
in the free energy of a system through bench calorimetry has enabled
a much more rationalizable approach to computational drug
discovery. This work, led by the Freire group, stems from the universal
approach of balancing losses in entropy with gains in enthalpy. The
novelty is both the focus on enthalpic improvements, and using
isothermal titration calorimetry as a tool by which to separately
measure the enthalpic and entropic contributions to affinity (Luque
and Freire, 2002; Freire, 2009; Ladbury et al,, 2010).

Affinity is improved with larger losses in free energy, such that
either gains in entropy or loss in enthalpy could drive a reaction.
Improvements in one (entropy or enthalpy) can overcome deleterious
effects on the other. Meanwhile, scientists traditionally measure only
affinity (Ka) or inhibition (IC50, EC50, Ki). These are one dimensional
measures of binding strength, which are highly useful, but it can be
difficult to interpret the correspondence of ligand structural changes
to whole affinity differences. By dissecting the contributions of
enthalpy and entropy to the gains or loss in affinity, one can see how
the changes are made; ligand changes that effect conformational
freedom represent entropic changes, while improved interactions and
fit are enthalpic (Freire, 2009). By separating the measurement of
these effects in bench studies, the optimization process gets direct
logical feedback. A change to the ligand designed to improve enthalpic
contributions might have much more severe entropic consequences
than anticipated. Attempts to gain affinity driven by entropy might not
make a significant change because of constraining the protein for an
entropic loss. Without the separation of analyses afforded by
calorimetry, the lack of improved affinity might be misinterpreted as
enthalpic losses, which would misdirect further attempts at
optimization. Thus the relatively simple concept of separating affinity
measures into enthalpic and entropic contributions through
isothermal titration calorimetry enables feedback for straight forward
rational design (Freire, 2009; Ladbury et al,, 2010).

Decrease of conformational restrictions in the protein or ligand
correspond to favorable entropic changes. Entropy estimations are
useful to interrelate affinities between different ligands (affinity
ranking). However, it has been argued that optimization efforts are
better spent on improving the enthalpy of binding (Freire, 2008).
Considerations for design include that every added hydrogen bond has
both enthalpy of desolvation and of binding, and that each 1.4
kcal/mol of enthalpy change drives the reaction thermodynamically
by an order of magnitude. These considerations are so important that
Freire has suggested that binding enthalpy should be measured by
isothermal titration calorimetry every time a new hydrogen bond
donor or acceptor is considered (Freire, 2008).

Separate measures of enthalpy and entropy can enable better
estimates of both contributions (Luque and Freire, 2002; Freire, 2009;
Kawasaki et al,, 2010; Ladbury et al., 2010), but what should go into
the enthalpy calculation? Many types of enthalpic contributions are
understood and well approximated. Details such as the contribution of
hydrogen bonds are modeled by comparing the docked donor-
acceptor distance to the ideal distance for proton sharing, in the
context of the similar interactions available in the solvent. Binding

enthalpy was estimated for 25 ligands in 7 proteins within a standard
error of 0.4 kcal/mol, by supplementing estimates of conformational
enthalpy change, with estimations of changes in solvent accessibility
for solvent molecules in shells up to 5-7A away from the ligand, and a
correction for protonation (Luque and Freire, 2002). Modeling
changes in enthalpy across different ligands may therefore be
possible, and useful for estimating affinity rank.

The contribution of space filling to enthalpy had not advanced
substantially since the shape complementarity analysis of Lennard-
Jones (1924). The Freire group recently presented a study on how
filling an empty protein cavity affects enthalpy (Kawasaki et al., 2010).
For the example of filling clefts in the binding pocket of HIV-1
protease, a pattern of effects emerged across a limited spectrum of
moiety size. When the cavity was not completely filled by the ligand
moiety van der Waals forces gave benefit for enthalpy but at the cost
of entropy. When the moiety was enlarged, the protein accommodated
more optimal filling of the cavity space, adjusting around the ligand to
reach a more enthalpically favored conformation. Entropy increased,
driving the reaction. The interactions enabled by optimal space filling
may have allowed the protein to stably go through pivot motions
around this region, such that stabilizing interactions at the ligand
interface allow other areas of the protein to be more flexible and thus
the reaction becomes entropically favored. There is an apparent
overstretching point at which the ligand pushes the protein into a
more strained set of conformations, which penalize by both entropy
and enthalpy. Thus proper filling of the space can add entropic and
enthalpic driving force to binding (Kawasaki et al., 2010).

Through the analysis provided by the Freire group in the past
decade, we have gained the ability to dissect very basic contributions
of designed ligand moieties. Bench isothermal titration calorimetry
analysis enables specific feedback to improve our estimates of entropy
and enthalpy, and inform changes for computational design. This
combination of a relatively simple but highly accurate bench
technique with computational modeling is an emerging tool which
can carry us forward to the next generation of drug discovery.

6.f. False hits

The concept of false hits was demonstrated elegantly by the
recent work of the Shoichet group, in showing that hit compounds can
inhibit protein activity by pathological mechanisms (Babaoglu et al.,
2008). The "false hit" inhibitory mechanisms of beta-lactamase
inhibitors discovered by high throughput techniques include many
aggregators, covalent bonders, and promiscuous inhibitors.
Poignantly, none of the 1,274 initial hits were found to be specific
reversible inhibitors, which are pharmacologically desirable.
Meanwhile, two of sixteen computationally derived hits were specific
reversible micromolar inhibitors (Table 1). Thus, the approach of
computational screens are bolstered by the fact that they model
bioactivity in an explicitly physiological manner, whereas wet lab
systems model the physical interaction and therefore can get side
tracked by irrelevant behavior - a behavior which could be highly
dangerous to the host (Babaoglu et al.,, 2008)!

6.g. Finding targets of known inhibition

Many drugs have no known mechanism. For many more drugs,
the mechanistic basis of side effects are not understood. Mechanisms
are the deep understanding of an interaction which enable improved
design and analogy to less understood cases. They let us understand
the exceptions, such as variable response.

Target elucidation allows us to understand clinical paired disease
patterns. Based on observations that the opportunistic pathogen CMV
is cleared from AIDS patients undergoing antiretroviral therapy, one
might anticipate the nonspecific mechanism of HIV-1 inhibition
allowing return of immunity and nonspecific clearing of CMV (Deayton
etal, 1999). However, CD4 T-lymphocyte counts do not correlate with
clearance (Reed and Morse, 1998). Our docking study predicts that
amprenavir and indinavir target the CMV protease specifically
(Jenwitheesuk & Samudrala, 2005a). Our group presented a similar
descriptive prediction for HIV-1 inhibition by the common antibiotic
minocycline being through HIV-1 integrase (Jenwitheesuk &
Samudrala, 2007).

As well, we can understand the interrelation of bioactive
compounds (metabolites and drugs) and the relevant proteome
through the network of overlapping target-ligand interactions. A
recent tour de force was applied to predict the interactions of all drugs
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to the human proteome. The resulting network is a road map for
polypharmacologic effects - leads and suggestions for caution (Keiser
etal,, 2009).

In the case for which the activity profile of a vast drug library is
known for a particular pathogen, which is becoming more common,
analysis of similarly active compounds can facilitate understanding of
the targetable aspects of the pathogen. Targets can be selected based
on the profile of activity across the library (Plouffe et al., 2008; Table
1). Depending upon the clinical indication, a target may be selected for
uniqueness of library activity relative to the host and commensal
organisms, or perhaps for similarity to targets of other diseases to
maximize the chances of discovery of an existing drug multitargeting
the disease of interest.

6.h. Personalized pharmacology

As the accuracy for models of protein-ligand interactions
improves, along with it comes the ability to personalize these
predictions. In models of individual susceptibility versus resistance, or
predictions of disease progression, differences in genotype have
already been modeled with high accuracy. The most common
difference relevant to this problem is the nonsynonymous single
nucleotide mutation or polymorphism. The change of one or more
residues by mutation alters specific contacts to increase or decrease
affinity, thereby making the mutant organism susceptible or resistant,
respectively.

Our group designed a sequence analysis tool to predict the
significance for this type of mutation (Horst et al., 2010), but much
work remains. Our group also created a group of tools to take a
patient's HIV-1 protease and reverse transcriptase sequence
mutations and predict the profile of resistance versus susceptibility to
the commonly used antiretroviral medications (Jenwitheesuk and
Samudrala, 2003; Wang et al,, 2004; Jenwitheesuk et al., 2004;
Jenwitheesuk and Samudrala, 2005b), and integrated them into a
freely available web server that uses the consensus of the structural
and logistic regression techniques to select the optimal drug for HIV-1
patients (this web server has handled over 1,000 separate queries;
<http://protinfo.compbio.washington.edu/pirspred>; Jenwitheesuk et
al., 2005).

Other personalization includes screening for untoward side
effects, such as inhibition of CYP450 proteins or monamine oxidases.
As well, we differ not only in our human genotype, but that of our
symbiotic bacteria. Personalized pharmacology may one day include
identifying E. coli strain by genotyping stool samples, so an antibiotic
regimen can be selected that will not cause imbalance to one's enteral
flora.

Finally, dosage can be prescribed based on models of enteral
uptake using the genes that code for microvilli intercellular junctions,
and models of metabolism based on the CYP450 genes, and
immunogenicity by the antibodies of memory T-cells and mast cells.
As well, dosage can be prescribed by gene copy number variant, and
relative susceptibility.

6.i. Open source drug discovery.

Through the development of robust, free, and publicly available
computational methods for drug discovery we can increase efficiency
and decrease costs for researchers and institutions involved in drug
discovery worldwide. Computational methods have demonstrated the
ability to greatly reduce the cost of hit and lead compound discovery
(Becker et al,, 2006; Jenwitheesuk et al., 2008; Babaoglu et al., 2008;
Orti et al,, 2009; Costin et al.,, 2010; Table 1). Therefore they have the
potential to enable the development and distribution of drugs to
combat diseases that disproportionately affect impoverished nations
(also known as tropical or third world diseases), such as malaria and
dengue fever. Since tropical diseases mostly affect the poor, the
historical perspective has been that there is little to no incentive for
pharmaceutical companies to invest in the development of these
drugs. Nonetheless it should be noted that some of the largest Pharma
companies have recently devoted massive resources to join the fight
against Malaria, including Novartis (Plouffe et al.,, 2008) and
GlaxoSmithKline (Gamo et al., 2010; Table 1). As well, from the
standpoint of computational methodology, in head-to-head
comparisons the best performing computational methods for drug
discovery are not freely available nor publicly funded software
(Michino et al., 2009; Plewczynski et al., 2010). Reasons for a partial
shift to open publication and application of resources to minimally

profitable diseases are intriguing, but beyond the scope of this text; for
now these are the exceptions rather than the rule. The importance of
reducing drug development costs through computation is unwavering.

Although many existing tools used in drug discovery are freely
available, the skills necessary to use them and interpret the output
typically requires a large amount of knowledge, which comprises an
obstacle to wide spread use. It is rare even for medical scientists
capable of performing animal studies and clinicians capable of
performing clinical trials to possess the necessary knowledge to use
computational predictive methods. In response to these barriers, a
trend to release the identity of predicted compound-target
interactions has emerged amongst publicly funded computational
research groups (Jenwitheesuk and Samudrala, 2003b; Desai et al,,
2004; Jenwitheesuk and Samudrala, 2005a; Desai et al., 2006;
Jenwitheesuk and Samudrala, 2007; Xie et al., 2007; Jenwitheesuk et
al.,, 2008; Keiser et al., 2009; Orti et al., 2009; Costin et al., 2010; Table
1). Moreover, the trend has been to share the outcome for initial
experiments amongst these leads publicly. For example over the past
decade our group has been committed to making all of our software,
ideas, and data freely available to advance the science, and to release
our predicted hit compounds in a way that maximizes impact and
availability.

In addition to making all data publicly available, it would be
useful to develop an easily accessible public web sever usable by non-
scientists and scientists alike to expedite communication of knowledge
to advance the discovery of novel drugs. Using a web server could be
as simple as uploading the structure or sequence of a single target
protein or set of related target proteins. A comprehensive analysis of
the target(s) would predict inhibitors and substrates of the target(s).
Antitargets with the potential to interact with each of the lead
compounds could also be identified and presented to the user.
Potential compounds tested for activity against the target(s) would
come from a library of existing bioactive small molecules. When
available experimental data such as ADME, bioavailability, or binding
affinity could be stored for each compound and presented to the user
in a standardized way. A few open source drug discovery projects have
begun to address these goals to promote the discovery and
development of novel therapies to neglected diseases (Jenwitheesuk et
al, 2008; Orti et al., 2009).

6.j. Multitarget design

While we have argued that the search for a compound with a
desired activity can be expedited by evaluating multitargeting
compounds, we have not yet elaborated the principle of a single
compound multitargeting a single disease. This relates to the off-target
properties discussed above, by the concept that natural compounds
and known drugs are more likely to be multitargeting. Here we extend
the assertion that compounds can be selected to target other proteins
in the same disease. This concept was perhaps first formalized by
Erlich, who described a magic bullet that would inhibit cancer by
multiple mechanisms (Ehrlich, 1911). One such example is Gleevec
(a.k.a. imatinib, STI-571), which serendipitously targets both BCR-Abl
and c-Abl, inhibiting the two principle known causes of cell
proliferation in chronic myelogenous leukemia (CML; Kaelin, 2004).
Gleevec has been the most widely used treatment for CML for 8 years.

The most effective drugs in humans (e.g. aspirin, Gleevec)
inevitably interact with and bind to multiple proteins, a feature that
traditional models based on single target drugs fail to take into
account. Yetthere is substantial evidence that these multitarget
compounds have a higher incidence of untoward side effects than
single target compounds (Peters et al,, 2009). The multitarget
approach is necessary because every drug has to be effective at its site
of action (for example, HIV-1 protease inhibitors have to bind and
inhibit the protease molecule) and has to be readily metabolized by
the body (for example the cytochrome P450 enzymes, which are
responsible for metabolizing the majority of drugs). Computational
screening for multitarget binding and inhibition is effective because it
exploits the evolutionary fact that protein structure is conserved much
more in nature than is function or sequence.

It is ironic and surprising that reduced affinity sometimes
corresponds to higher efficacy. This appears to be due to "weak
linkage" of multiple target proteins within a particular physiologic
network (Rogawski, 2000). Low affinity multitarget drugs may
perturb networks more efficiently than high-affinity, single-hit drugs
(Csermely et al.,, 2005). Simultaneous effects on multiple targets can
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decrease the therapeutic dose, so that untoward side effects can be
handled by lower doses; simply, a compound with three targets of
similar affinity will be effective at one third the tissue concentration.
The effects of salicylates on multiple proinflammatory signals
exemplify that multiple mechanisms causing homeostatic imbalance
can be targeted by a single drug; the low effective dose facilitated by
multitargeting has made aspirin one of the most popular drugs in the
world (Huang, 2002).

Pathogens and cancers develop resistance to single drug therapy.
Inhibitor resistance is largely overcome in the multitargeting
approach by the exponentially decreased probability of resistant
mutations simultaneously arising in genes encoding proteins
corresponding to all targets. The multitarget approach can be
extended to incorporate the variability of target proteins across a
disease pathogen population (Freire, 2002).

Computational predictions are obviously not perfect. The
accuracy of recent docking with dynamics and structure activity
relationship predictions contain less than 50% true positive hits at
best (table 1). However, if one compound is predicted to hit multiple
targets, the odds increase for actually inhibiting at least one target.
Thus we have taken the approach to target as many essential proteins
as there are crystal structures for a pathogen or disease (Jenwitheesuk
etal, 2008). The complexity of possible multitarget effects indicate
that occasionally it may be relevant to test in whole disease organism
screens or even animal models of disease before evaluating which of
the predicted multitarget interactions actually occur physically.

6.k. Multidisease screens and reversing the disease-drug
search

0ld Western movies keep alive the iconography of "cure alls"
popularized into nostalgia by traveling salesman of the mid 19th
century. These tinctures were meant to solve any medical problem, or
at least a group of quite unrelated problems. In this chapter we share
some examples of single drugs that combat multiple diseases. We also
preach the repurposing of existing drugs, exploration of natural
compounds, and the use of chemical derivatives of each; i.e. we
continue with the concept of exploiting existing bioavailable, nontoxic,
nonimmunogenic, multitargeting compounds. So it would be logical to
test the ability of all these compounds to target any and all disease
targets.

Given the limited set of compounds we propose to be used, the
chance of finding a target for one particular disease might not be great,
but with contemporary methods the chance of finding a disease for a
particular drug is extremely probable. Multidisease screens can find
the "opportunities” that do exist; the screening process can drive the
drug-disease selection, rather than the disease (tradition). This
concept represents a reversal of the conceptual framework underlying
drug discovery, wherein we "play to our strengths."” At each point of
the modeling process we rely on the best scoring instances from the
scoring functions. While somewhat ambiguous instances arise for all
methods, scoring functions make it easy to know when the models are
of little or great utility. Thus if we scan for instances for which the
accuracy estimates indicate useful models, rather than searching for
the best model for one's pet project, we may truly access those
diseases, targets, and compounds which are most realistically modeled
with existing computational methods.

Obviously computational drug discovery methods work in some
cases. Obviously computational drug discovery methods do not work
in all cases. One approach to solving this problem is to improve the

methods; while that process goes on, should we not also work to find
the cases for which the methods work? One captivating feature of this
paradigm shift is that it minimizes the need for improved ranking
functions, which as discussed above is the part of drug modeling in
which the field has made the least progress.

The Sali group recently presented a project in which they let the
available pharmacopeia (FDA approved compounds in DrugBank) be
the driving force to choosing the organism and protein to target.
Specifically, they started with ten disease associated genomes,
modeled as many of the proteins as feasible with template based
modeling, predicted protein-ligand matches by ligand mapping from
template proteins, analogized protein-ligand matches to protein-drug
matches by QSAR analysis, and finally ran four protein-drug pairs that
appeared promising and relevant; three of the four demonstrate
specific reversible binding (Orti et al.,, 2009; Table 1). In abstraction,
the project used only the best scoring predictions of full modeling on a
widely cast net. While the analysis already done in this work may hold
other therapeutically relevant hits or leads, it already represents
evidence that bolstering computational predictions over many
possible targets can be expected to be productive if the decisions are
made by the scoring functions.

7. Summary

Incurable or untreatable diseases comprise a salient group of
applications for computational drug discovery. Etiologies for incurable
diseases include pathogens (e.g. acquired immunodeficiency
syndrome, ebola, polio, human papilloma virus), neoplasms (i.e.
cancers), genetic abnormalities (e.g. Down, Creutzfeldt-Jakob, and
Proteus syndromes), autoimmunity (e.g. lupus erythematosus, asthma,
multiple sclerosis), and inappropriate response to environment (e.g.
prions, type II diabetes mellitus). Of those for which treatment exists,
therapy manages symptoms but does not remove recurrence of
disease upon ceasing treatment (e.g. treatment of AIDS). Many life
threatening diseases have no treatment whatsoever. The motivation
for computational approaches to drug discovery is to spur the bench
and clinical studies to find cures for all diseases and alleviate human
suffering. Amidst these great successes in pharmacologic discovery, it
is important to consider that cures exist for many chronic and
opportunistic diseases in the form of proper preventive behaviors (e.g.
diet, exercise, hygiene), for which psychology is perhaps a more
relevant solution than pharmacology.

The opportunity addressed by computational techniques is to
abstract the knowledge from the many instances of physiologic
interactions chronicled over the past century, to the clinical situations
that plague humanity. The links that allow these abstractions are the
genetic code, which helps us to find the most relevant instances, and
the structural models which help us predict how the interactions will
occur.

Our research group, the groups of Shoichet, Freire, Becker, Avery,
Sali, and others have demonstrated the early maturity of
computational modeling of protein-ligand interactions by predicting
compounds for desired pharmacologic activity and testing them in
prospective experiments. These methods not only save time and
resources but are beginning to be more accurate than in vitro
screening methods (Doman et al,, 2002; Jenwitheesuk et al., 2008;
Babaoglu et al.,, 2008; Table 1).
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POST SCRIPT

Note 1: It should be noted that authors including ourselves often discuss the goal of drug discovery only in the context of inhibitors. However,
pharmacologic activators are desired, particularly for nonpathogenic ailments such as depression and pain, so all discussions of pharmacologic
inhibitors here and elsewhere should be understood to be generalized to all pharmacologically active substances. Meanwhile, depending upon the
target it may be more difficult to design an activator (agonist) or inhibitor (antagonist); for example the types of contacts and similarity to the
physiologic substrate may be exploited differently by each.
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