To get J. comp aid mol des 7 23-43 1993 j mol biol 161 269-288 1982 %Z The standard way to sort the database is with "sortbib -sA+DJT Ind" %Z This will sort on all authors then date then title, the problem is %Z that authors with funny characters in their name will be in the wrong %Z place, Before sorting put %K on the line between %X and %A, for all %Z 26 letters of the alphabet %Z %Z You are welcome to use this data for non-profit purposes, however if its %Z use makes you any money it is expected that you will pass on some benefit %Z to me (John Overington). %Z %Z PDB main references are denoted by PDBnABC in the %K field %Z %Z Names with funny characters in are also in ASCII in the %K field %T Nucleic acid and protein sequence analysis: A practical approach %I IRL Press %C Oxford %E M.J. Bishop & C.J. Rawlings %D 1987 %T Computer simulation of biomolecular systems: Theoretical and experimental applications %E W.F. van\0Gunsteren and P.K. Weiner %I ESCOM %C Leiden %D 1989 %B Protein Engineering: A practical approach %E A.R. Rees, M.J.E. Sternberg & R. Wetzel %I IRL Press %D 1992 %C Oxford %A C. Abad-Zapatero %A S.S. Abdel-Meguid %A J.E. Johnson %A A.G.W. Leslie %A I. Rayment %A M.G. Rossmann %A D. Suck %A T. Tsukihara %T Southern bean mosaic virus at 2.8\(Ao resolution %J Nature %V 286 %P 33-39 %D 1980 %K 4SBV %A C. Abad-Zapatero %A S.S. Abdel-Meguid %A J.E. Johnson %A A.G.W. Leslie %A I. Rayment %A M.G. Rossmann %A D. Suck %A T. Tsukihara %T A description of techniques used in the structure determination of southern bean mosaic virus at 2.8\(Ao resolution %J Acta Cryst. %V B 37 %P 2002-? %D 1981 %K 4SBV %A C. Abad-Zapatero %A J.P. Griffith %A J.L. Sussman %A M.G. Rossmann %T Refined crystal structure of dogfish M\d\s-24\s0\u \f2apo\f1-lactate dehydrogenase %J J. Mol. Biol. %V 198 %D 1987 %P 445-467 %K PDB6LDH PDB8LDH PDB1LDM %A C. Abad-Zapatero %A C.T. Lin %T Statistical descriptors for the size and shape of globular proteins %J Biopolymers %V 29 %P 1745-1754 %D 1990 %A C. Abad-Zapatero %A T.J. Rydel %A J. Erickson %T Revised 2.3\(Ao structure of porcine pepsin: evidence for a flexible subdomain %J Proteins %V 8 %P 62-81 %D 1990 %K PDB3PEP %A R.A. Abagyan %A V.N. Maiorov %T A simple qualitative representation of polypeptide chain folds: Comparison of protein tertiary structures %J J. Biol. Struct. Dyn. %V 5 %P 1267-1279 %D 1988 %A R.A. Abagyan %A V.N. Maiorov %T An automatic search of similar spatial arrangements of \(*a-helices and \(*b-strands in globular proteins %J J. Biol. Struct. Dyn. %V 6 %P 1045-1060 %D 1989 %A R. Abagyan %A P. Argos %T Optimal protocol and trajectory visualization for conformational searches of peptides and proteins %J J. Mol. Biol. %V 225 %P 519-532 %D 1992 %A P.R. Abarbanel %A R.M. Wieneke %A E. Mansfield %A D.A. Jaffe %A D.L. Brutlag %T Rapid searches for complex patterns in biological sequences %J Nucl. Acids Res. %V 12 %D 1984 %P 263-280 %A M.A. Abdallah %A J.-F. Biellmann %A B. Nordstr\(o:m %A C.-I. Br\(a:nd\(e'n %T The conformation of adenosine diphosphoribose and 8-bromoadenosine diphosphoribose when bound to liver alcohol dehydrogenase %J Eur. J. Biochem. %V 50 %P 475-? %D 1975 %K Branden Nordstrom %A S.S. Abdel-Meguid %A H.-S. Shih %A W.W. Smith %A H.E. Dayringer %A B.N. Violand %A L.A. Bentle %T Three-dimensional structure of a genetically engineered variant of porcine growth hormone %J Proc. Natl. Acad. Sci. USA %V 84 %P 6434-6437 %D 1987 %K PNAS %A E.E. Abola %A F.C. Bernstein %A S.H. Bryant %A T.F Koetzle %A J. Weng %T Protein data bank %B Crystallographic databases \(em Information, content, software systems, scientific applications %E F.H. Allen, G. Bergerhoff and R. Sievers %I Data Commission of the International Union of Crystallography %C Cambridge %P 107-132 %D 1987 %A E.E. Abola %A K.R. Ely %A A.B. Edmundson %T Marked structural differences of the McG Bence-Jones dimer in two crystal systems %J Biochemistry %V 19 %P 432-? %D 1980 %K 2MCG 3MCG %A D.J. Abraham %T X-ray crystallography and drug design %P 93-132 %B Computer-aided drug design: Methods and applications %E T.J. Perun & C.L. Propst %I Marcel Dekker Inc. %D 1989 %C New York %A A. Achari %A S.P. Hale %A A.J. Howard %A G.M. Clore %A A.M. Gronenborn %A K.D. Hardman %A M. Whitlow %T 1.67\(Ao X-ray structure of the B2 immunoglobulin-binding domain of streptococcal protein G and comparison to the NMR structure of the B1 domain %J Biochemistry %V 31 %P 10449-10457 %D 1992 %A A. Achari %A S.E. Marshall %A H. Muirhead %A R.H. Palmieri %A E.A. Noltmann %T Glucose-6-phosphate isomerase %J Phil. Trans. Roy. Soc. Lond. %V B 293 %P 145-? %D 1981 %K 1PGI %A K.R. Acharya %A E.F. Passalacqua %A E.Y. Jones %A K. Ahrlos %A D.I. Stuart %A R.D. Brehm %A H.S. Tranter %T Structural basis of superantigen action inferred from crystal structure of toxic-shock syndrome toxin-1 %J Nature %V 367 %P 94-97 %D 1994 %A K.R. Acharya %A J. Ren %A D.I. Stuart %A D.C. Phillips %A R.E. Fenna %T Crystal structure of human \(*a-lactalbumin at 1.7\(Ao resolution %J J. Mol. Biol. %V 221 %P 571-581 %D 1991 %A K.R. Acharya %A R. Shapiro %A S.C. Allen %A J.F. Riordan %A B.L. Vallee %T Crystal structure of human angiogenin reveals the structural basis for its functional divergence from ribonuclease %J Proc. Natl. Acad. Sci. USA %V 91 %P 2915-2919 %D 1994 %A K.R. Acharya %A D.I. Stuart %A D.C. Phillips %A H.A. Scheraga %T A critical evaluation of the predicted and X-ray structures of \(*a-lactalbumin %J J. Prot. Chem. %V 9 %P 549-563 %D 1991 %A K.R. Acharya %A D.I. Stuart %A N.P.C. Walker %A M. Lewis %A D.C. Phillips %T Refined structure of baboon \(*a-lactalbumin at 1.7\(Ao resolution: comparison with C-type lysozyme %J J. Mol. Biol. %V 208 %P 99-127 %D 1989 %A A.D. Adams %A M.J. Adams %A M.G. Rossmann %T A crystalline form of testes-specific lactate dehydrogenase %J J. Mol. Biol. %V 78 %P 721-? %D 1973 %K 2LDX %A D.M. Adams %T Inorganic Solids: an introduction to concepts in solid-state structural chemistry %D 1974 %I J. Wiley %C London %A M.D. Adams %A M. Dubnick %A A.R. Kerlavage %A R. Moreno %A J.M. Kelley %A T.R. Utterback %A J.W. Nagle %A C. Fields %A J.C. Venter %T Sequence identification of 2,375 human brain genes %J Nature %V 355 %P 632-634 %D 1992 %A M.D. Adams %A J.M. Kelley %A J.D. Gocayne %A M. Dubnick %A M.H. Polymeropoulos %A H. Xiao %A C.R. Merril %A A. Wu %A B. Olde %A R.F. Moreno %A A.R. Kervelage %A W.R. McCombie %A J.C. Venter %T Complementary DNA sequencing: expressed sequence tags and human genome project %J Science %V 252 %P 1651-1656 %D 1992 %A M.J. Adams %A T.L. Blundell %A E.J. Dodson %A G.G. Dodson %A M. Vijayan %A E.N. Baker %A M.M. Harding %A D.C. Hodgkin %A B. Rimmer %A S. Sheat %T Structure of rhombohedral 2 zinc insulin crystals %J Nature %V 224 %P 491-495 %D 1969 %K 4INS %A M.J. Adams %A M. Buehner %A K. Chandrasekhar %A G.C. Ford %A M.L. Hackert %A A. Liljas %A M.G. Rossmann %A I.E. Smiley %A W.S. Allison %A J. Everse %A N.O. Kaplan %A S.S. Taylor %T Structure-function relationships in lactate dehydrogenase %J Proc. Natl. Acad. Sci. USA %V 70 %P 1968-1972 %D 1973 %K 3LDH PNAS %A M.J. Adams %A G.C. Ford %A R. Koekoek %A P.J. Lentz,\0Jr. %A A. McPherson,\0Jr. %A M.G. Rossmann %A I.E. Smiley %A R.W. Schevitz %A A.J. Wonacott %T Structure of lactate dehydrogenase at 2.8\(Ao resolution %J Nature %V 227 %P 1098-1103 %D 1970 %K 3LDH %A M.J. Adams %A G.C. Ford %A A. Liljas %A M.G. Rossmann %T Atomic co-ordinates for dogfish M\d\s-24\s0\u \f2apo\f1-lactate dehydrogenase %J Biochem. Biophys. Res. Comm. %V 53 %P 46-? %D 1973 %K 1LDM %A M.J. Adams %A S. Gover %A R. Leabeck %A C. Phillips %A D.O.N. Somers %T The structure of 6-phosphogluconate dehydrogenase refined at 2.5\(Ao resolution %J Acta Cryst. %V B 47 %P 817-820 %D 1991 %A M.J. Adams %A D.J. Haas %A B.A. Jeffery %A A. McPherson,\0Jr. %A H.L. Mermall %A M.G. Rossmann %A R.W. Schevitz %A A.J. Wonacott %T Low resolution study of crystalline \s-2L\s0-lactate dehydrogenase %J J. Mol. Biol. %V 41 %P 159-? %D 1969 %K 3LDH %A M.J. Adams %A A. Liljas %A M.G. Rossmann %T Functional anion binding sites in dogfish M\d\s-24\s0\u lactate dehydrogenase %J J. Mol. Biol. %V 76 %P 519-? %D 1973 %K 3LDH 1LDM %A P.S. Adams %A I.T. Arkin %A D.M. Engelman %A A.T. Brunger %T Computational searching and mutagenesis suggest a structure for the pentameric transmembrane domain of phospholamban %J Nature Struct. Biol. %V 2 %P 154-162 %D 1995 %A S.E. Adams %A J. Mellor %A K. Gull %A R.B. Sim %A M.F. Tuite %A S.M. Kingsman %A A.J. Kingsman %T The functions and relationships of Ty-VLP proteins in yeast reflect those of mammalian retroviral proteins %J Cell %V 49 %D 1987 %P 111-119 %K transposon retrovirus protease %A A.W. Addison %A R.E. Bruce %T Chemistry of \f2Phascolosoma lurco\f1 hemerythrin %J Arch. Biochem. Biophys. %V 183 %P 328-? %D 1977 %K 1HR3 %A M. Adler %A R.A. Lazarus %A M.S. Dennis %A G. Wagner %T Solution structure of kistrin, a potent platelet aggregation inhibitor and GP IIb-IIIa antagonist %J Science %V 253 %P 445-448 %D 1991 %A E.T. Adman %T Structure and function of copper-containing proteins %J Curr. Opin. Struct. Biol. %V 1 %P 895-904 %D 1991 %A E.T. Adman %A G.W. Canters %A H.A.O. Hill %A N.A. Kitchen %T The effect of pH and temperature on the structure of the active site of azurin from \f2Pseudomonas aeruginosa\f1 %J FEBS Lett. %V 143 %P 287-? %D 1982 %K 1AZU %A E.T. Adman %A L.H. Jensen %T Structural features of azurin at 2.7\(Ao resolution %J Isr. J. Chem. %V 21 %P 8-13 %D 1981 %K PDB1AZU %A E.T. Adman %A L.C. Siecker %A L.H. Jensen %T Structure of rubredoxin from \f2Desulfovibrio vulgaris\f1 at 1.5\(Ao resolution %J J. Mol. Biol. %V 217 %P 337-352 %D 1991 %A 7RXN %A E.T. Adman %A L.C. Sieker %A L.H. Jensen %T The structure of a bacterial ferredoxin %J J. Biol. Chem. %V 248 %D 1973 %P 3987-3996 %A E.T. Adman %A L.C. Sieker %A L.H. Jensen %T Structure of \f2Peptococcus aerogenes\f1 ferredoxin: refinement at 2\(Ao resolution %J J. Biol. Chem. %V 251 %D 1976 %P 3801-3806 %K PDB1FDX %A E.T. Adman %A L.C. Sieker %A L.H. Jensen %T A structural model of rubredoxin from \f2Desulfovibrio vulgaris\f1 at 2\(Ao resolution %J J. Mol. Biol. %V 112 %D 1977 %P 113-120 %K 7RXN %A E.T. Adman %A R.E. Stenkamp %A L.C. Sieker %A L.H. Jensen %T A crystallographic model for azurin at 3\(Ao resolution %J J. Mol. Biol. %V 123 %P 35-? %D 1978 %K 1AZU %A E.T. Adman %A S. Turley %A R. Bramson %A K. Petratos %A D. Banner %A D. Tsernoglou %A T. Beppu %A H. Watanabe %T A 2.0\(Ao structure of the blue copper protein (cupredoxin) from \f2Alcaligenes faecalis\f1 S-6 %J J. Biol. Chem. %D 1989 %V 264 %P 87-89 %K PDB2PAZ %A E.T. Adman %A K.D. Watenpaugh %A L.H. Jensen %T NH\(emS hydrogen bonds in \f2Peptococcus aerogenes\f1 ferredoxin, \f2Clostridium pasteurianum\f1 rubredoxin, and chromatium high potential iron protein %J Proc. Natl. Acad. Sci. USA %V 72 %P 4854-4858 %D 1975 %K PNAS %A M. Affolter %A A. Percival-Smith %A M. Muller %A M. Billeter %A Y.Q. Qian %A G. Otting %A K. W\(u:thrich %A W.J. Gehring %T Similarities between the homeodomain and the \f2Hin\f1 recombinase DNA-binding domain %J Cell %V 64 %P 879-880 %D 1991 %K Wuthrich %A D.A. Agard %A R.M. Stroud %T \(*a-bungarotoxin structure revealed by a rapid method for averaging electron density of non-crystallographically translationally related molecules %J Acta Cryst. %V A 38 %P 186-? %D 1982 %K 2ABX %A A.K. Aggarwal %A D.W. Rodgers %A M. Drottar %A M. Ptashne %A S.C. Harrison %T Recognition of a DNA operator by the repressor of phage 434: a view at high resolution %J Science %V 242 %P 899-907 %D 1988 %K 2OR1 3CRO %A A.A. Agranovsky %A V.P. Boyko %A A.V. Karasev %A E.G. Koonin %A V.V. Dolja %T Putative 65kDa protein of beet yellows closterovirus is a homologue of HSP70 heat shock proteins %J J. Mol. Biol. %V 217 %P 603-610 %D 1991 %A C.F. Aguilar %A V. Dhanaraj %A K. Guruprasad %A C. Dealwis %A M. Badasso %A J.B. Cooper %A S.P. Wood %A T.L. Blundell %T Comparison of the three-dimensional structures, specificities and glycosylation of renins, yeast proteinase A and cathepsin D %B Aspartic Proteinases: Structure, Function, Biology and Biomedical Implications %P 155-165 %D 1995 %I Plenum Press %E K. Takahashi %C New York %A F.R. Ahmed %A M. Przybylska %A D.R. Rose %A G.I. Birnbaum %A M.E. Pippy %A J.P. MacManus %T Structure of oncomodulin refined at 1.85\(Ao resolution: An example of extensive molecular aggregation \f2via\f1 Ca\u\s-22\(pl\s0\d %J J. Mol. Biol. %V 216 %P 127-? %D 1990 %K 1OMD %A S.A. Ahmed %A E.W. Miles %A D.R. Davies %T Crystallization and preliminary X-ray crystallographic data of the tryptophan synthase \(*a\d\s-22\s0\u\(*b\d\s-22\s0\u complex from \f2Salmonella typhimurium\f1 %J J. Biol. Chem. %V 260 %P 3716-? %D 1985 %K 1WSY %A K. Akahane %A H. Umeyama %T Binding specificity of papain and cathepsin B %J Enzyme %P 141-149 %V 36 %D 1986 %A K. Akahane %A H. Umeyama %A S. Nakagawa %A I. Moriguchi %A S. Hirose %A K. Iizuka %A K. Murakami %T Three-dimensional structure of human renin %J Hypertension %V 7 %D 1985 %P 3-12 %A J. Akins %A P. Brick %A H.B. Jones %A N. Hirayama %A P.-C. Shaw %A D.M. Blow %T The crystallization of glucose isomerase from \f2Arthrobacter\f1 B3728 %J Biochim. Biophys. Acta %V 874 %P 375-377 %D 1986 %K 5XIA %A D. Akrigg %A A.J. Bleasby %A N.I.M. Dix %A J.B.C. Findlay %A A.C.T. North %A D. Parry-Smith %A J.C. Wooton %A T.L. Blundell %A S.P. Gardner %A F. Hayes %A S. Islam %A M.J.E. Sternberg %A J.M. Thornton %A I.J. Tickle %T A protein sequence/structure database %J Nature %D 1988 %V 335 %P 745-746 %A G. Akusjarvi %A P. Alestrom %A M. Pettersson %A M. Lager %A H. J\(o:rnvall %A U. Pettersson %T The gene for the adenovirus 2 hexon polypeptide %J J. Biol. Chem. %V 259 %P 13976-? %D 1984 %K 0AD2 Jornvall %A D. Al-Hilal %A E. Baker %A C.H. Carlisle %A B. Gorinsky %A R.C. Horsburgh %A P.F. Lindley %A D.S. Moss %A H. Schneider %A R. Stimpson %T Crystallization and preliminary X-ray investigation of rabbit plasma transferrin %J J. Mol. Biol. %V 108 %P 255-? %D 1976 %K 0TFD %A T. Alber %T Mutational effects on protein stability %J Annu. Rev. Biochem. %V 58 %D 1989 %P 765-798 %K mutation protein folding stabilization free energy %A T.C. Alber %A R.C. Davenport,\0Jr. %A D.A. Giammona %A E. Lolis %A G.A. Petsko %A D. Ringe %T Crystallography and site-directed mutagenesis of yeast triosephosphate isomerase: what can we learn about catalysis from a ``simple'' enzyme ? %J Cold Spring Harbor Symp. Quant. Biol. %V 52 %P 603-? %D 1987 %K 2YPI 1YPI %A T. Alber %A D.W. Banner %A A.C. Bloomer %A G.A. Petsko %A D. Phillips %A P.S. Rivers %A I.A. Wilson %T On the three-dimensional structure and catalytic mechanism of triose phosphate isomerase %J Phil. Trans. Roy. Soc. Lond. %V B 293 %P 159-? %D 1981 %K 2YPI 1YPI 1TIM %A T. Alber %A J.A. Bell %A S. Dao-Pin %A H. Nicholson %A J.A. Wozniak %A S. Cook %A B.W. Matthews %T Replacements of Pro\d\s-286\s0\u in phage T4 lysozyme extend an \(*a-helix but do not alter protein stability %J Science %V 239 %P 631-635 %D 1988 %K 3LZM PDB1L25 PDB1L26 PDB1L27 PDB1L28 PDB1L29 PDB1L30 PDB1L31 PDB1L32 %K 1L36 1L37 1L38 1L39 1L40 1L41 1L42 1L43 1L44 1L45 1L46 1L47 1L48 1L49 1L50 1L51 1L52 1L53 1L54 1L55 1L56 1L57 1L58 1L59 1L60 1L61 1L62 1L63 1L64 1L65 1L66 1L67 1L68 1L69 1L70 1L71 1L72 1L73 1L74 1L75 1L76 %A T. Alber %A S. Dao-Pin %A J.A. Nye %A D.C. Muchmore %A B.W. Matthews %T Temperature sensitive mutations of bacteriophage T4 lysozyme occur at sites with low mobility and low solvent accessibility in the folded protein %J Biochemistry %V 26 %D 1987 %P 3754-3758 %K mutation substitution stability protein folding %K 1L36 1L37 1L38 1L39 1L40 1L41 1L42 1L43 1L44 1L45 1L46 1L47 1L48 1L49 1L50 1L51 1L52 1L53 1L54 1L55 1L56 1L57 1L58 1L59 1L60 1L61 1L62 1L63 1L64 1L65 1L66 1L67 1L68 1L69 1L70 1L71 1L72 1L73 1L74 1L75 1L76 %A T. Alber %A S. Dao-Pin %A K. Wilson %A J.A. Wozniak %A S.P. Cook %A B.W. Matthews %T Contributions of hydrogen bonds of Thr 157 to the thermodynamic stability of phage T4 lysozyme %J Nature %V 330 %P 41-46 %D 1987 %K 3LZM PDB1L02 PDB1L03 PDB1L04 PDB1L05 PDB1L06 PDB1L07 PDB1L08 PDB1L09 PDB1L11 PDB1L12 PDB1L13 PDB1L14 PDB1L15 %K 1L36 1L37 1L38 1L39 1L40 1L41 1L42 1L43 1L44 1L45 1L46 1L47 1L48 1L49 1L50 1L51 1L52 1L53 1L54 1L55 1L56 1L57 1L58 1L59 1L60 1L61 1L62 1L63 1L64 1L65 1L66 1L67 1L68 1L69 1L70 1L71 1L72 1L73 1L74 1L75 1L76 %A T. Alber %A M. Fahnestock %A S.L. Mowbray %A G.A. Petsko %T Preliminary X-ray data for the galactose binding protein from \f2Salmonella typhimurium\f1 %J J. Mol. Biol. %V 147 %P 471-? %D 1981 %K 1GBP 3GBP %A T. Alber %A F.C. Hartman %A R.M. Johnson %A G.A. Petsko %A D. Tsernoglou %T Crystallization of yeast triose phosphate isomerase from polyethylene glycol: protein crystal formation following phase separation %J J. Biol. Chem. %V 256 %P 1356-? %D 1981 %K 0YPI %A T. Alber %A G.A. Petsko %A D. Tsernoglou %T Crystal structure of an elastase-substrate complex at -55\(dgC %J Nature %V 263 %P 297-300 %D 1976 %A D.G. Alberg %A S.L. Schreiber %T Structure-based design of a cyclophilin-calcineurin bridging ligand %J Science %V 262 %P 248-250 %D 1993 %A B. Alberts %A D. Bray %A J. Lewis %A M. Raff %A K. Roberts %A J.D. Watson %T Molecular Biology of the Cell %I Garland Publishing Inc. %C New York %D 1983 %A R.A. Alden %A J.J. Birktoft %A J. Kraut %A J.D. Robertus %A C.S. Wright %T Atomic coordinates for subtilisin BPN\(fm (or Novo) %J Biochem. Biophys. Res. Comm. %V 45 %D 1971 %P 337-344 %K PDB1SBT %A R.A. Alden %A C.S. Wright %A J. Kraut %T A hydrogen-bond network at the active site of subtilisin BPN %J Phil. Trans. Roy. Soc. Lond. %V B 257 %P 119-? %D 1970 %K 1SBT %A T.L. Aldrich %A B. Frantz %A J.F. Gill %A J.J. Kilbane %A A.M. Chakrabarty %T Cloning and complete nucleotide sequence determination of the \f2cal\f1B gene encoding \f2cis,cis\f1-muconate lactonizing enzyme %J Gene %V 52 %P 185-? %D 1987 %K 1MLE %A A. Aleshin %A A. Golubev %A L.M. Firsov %A R.B. Honzatko %T Crystal structure of glucoamylase from \f2Aspergillus awamori\f1 var. \f2X100\f1 to 2.2\(Ao resolution %J J. Biol. Chem. %V 267 %P 19291-19298 %D 1992 %A F. Alexander %A J. Leis %A D.A. Soltis %A R.M. Crowl %A W. Danho %A M.S. Poonian %A Y.-C.E. Pan %A A.M. Skalka %T Proteolytic processing of avian sarcoma and leukosis viruses \f2pol-endo\f1 recombinant proteins reveals another \f2pol\f1 gene product %J J. Virol. %V 61 %D 1987 %P 534-542 %K AMV protease processing retrovirus %A P. Alexander %A S. Fahnestock %A T. Lee %A J. Orban %A P. Bryan %T Thermodynamic analysis of the folding of the streptococcal protein G IgG-binding domains B1 and B2: Why small proteins tend to have high denaturation temperatures %J Biochemistry %V 31 %P 3597-3603 %D 1992 %A S. Ali %A A.J. Clark %T Characterization of the gene encoding ovine \(*b-lactoglobulin: Similarity to the genes for retinol binding protein and other secretory proteins %J J. Mol. Biol. %V 199 %P 415-426 %D 1991 %K lipocalin %A M. Alizon %A S. Wain-Hobson %A L. Montagnier %A P. Sonigo %T Genetic variability of the AIDS virus: nucleotide sequence analysis of two isolates from African patients %J Cell %V 46 %D 1986 %P 63-74 %A M. Allaire %A M.M. Chernaia %A B.A. Malcolm %A M.N.G. James %T Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases %J Nature %V 369 %P 72-76 %D 1994 %A M. Allaire %A M. James %T Deduction of the 3C proteinases' fold %J Nature Struct. Biol. %V 1 %P 505-506 %D 1994 %A B. Allen %A M. Blum %A A. Cunningham %A G.-C. Tu %A T. Hofmann %T A ligand-induced, temperature dependent conformational change in penicillopepsin: evidence from non-linear Arrhenius plots and from circular dichroism studies %J J. Biol. Chem. %V 265 %P 5060-5065 %D 1990 %A F.H. Allen %A D. Rogers %T The use of a `connectivity' or `bonding' array in molecular geometry calculations %J Acta Cryst. %P 1326-1330 %V B 25 %D 1969 %A J.P. Allen %A G. Feher %T Crystallization of reaction center from \f2Rhodopseudomonas sphaeroides\f1: preliminary characterization %J Proc. Natl. Acad. Sci. USA %V 81 %P 4795-? %D 1984 %K 0RCR %A J.P. Allen %A G. Feher %A T.O. Yeates %A H. Komiya %A D.C. Rees %T Structure of the reaction center from \f2Rhodobacter sphaeroides\f1 R-26: the protein subunits %J Proc. Natl. Acad. Sci. USA %V 84 %P 6162-6166 %D 1987 %K 0RCR %A J.P. Allen %A G. Feher %A T.O. Yeates %A H. Komiya %A D.C. Rees %T Structure of the reaction center from \f2Rhodobacter sphaeroides\f1 R-26: the cofactors %J Proc. Natl. Acad. Sci. USA %V 84 %P 5730-5734 %D 1987 %K 0RCR %A J.P. Allen %A G. Feher %A T.O. Yeates %A H. Komiya %A D.C. Rees %T Structure of the reaction center from \f2Rhodobacter sphaeroides\f1 R26: protein-cofactor (quinones and Fe\u\s-22\(pl\s0\d) interactions %J Proc. Natl. Acad. Sci. USA %V 85 %P 8487-8491 %D 1988 %A J.P. Allen %A G. Feher %A T.O. Yeates %A D.C. Rees %A J. Deisenhofer %A H. Michel %A R. Huber %T Structural homology of reaction centers from \f2Rhodopseudomonas sphaeroides\f1 and \f2Rhodopseudomonas viridis\f1 as determined by X-ray diffraction %J Proc. Natl. Acad. Sci. USA %V 83 %P 8589-8593 %D 1986 %K 0RCR %A N. Allewell %T Tertiary templates and compact units in protein design %J Trends Biochem. Sci. %P 417-418 %V 12 %D 1987 %K TIBS %A N.M. Allewell %A H.W. Wyckoff %T Crystallographic analysis of the interaction of cupric ion with ribonuclease S %J J. Biol. Chem. %V 246 %P 4657-? %D 1971 %K 1RNS %A V.S. Allured %A R.J. Collier %A S.F. Carroll %A D.B. McKay %T Structure of exotoxin A of \f2Pseudomonas aeruginosa\f1 at 3.0\(Ao resolution %J Proc. Natl. Acad. Sci. USA %V 83 %P 1320-? %D 1986 %K 0EXA %A R.J. Almassy %A R.E. Dickerson %T \f2Pseudomonas\f1 cytochrome \f2c\f1\d\s-2551\s0\u at 2.0\(Ao resolution: enlargement of the cytochrome \f2c\f1 family %J Proc. Natl. Acad. Sci. USA %V 75 %D 1978 %P 2674-2678 %K PNAS %A R.J. Almassy %A J.C. Fontecilla-Camps %A F.L. Suddath %A C.E. Bugg %T Structure of variant-3 scorpion neurotoxin from \f2Centruroides sculpturatus ewing\f1, refined at 1.8\(Ao resolution %J J. Mol. Biol. %V 170 %P 497-527 %D 1983 %K PDB1SN3 %A R.J. Almassy %A C.A. Janson %A R. Hamlin %A N.-H. Xuong %A D. Eisenberg %T Novel subunit-subunit interactions in the structure of glutamine synthetase %J Nature %V 323 %P 304-309 %D 1986 %K 2GLS %A R.J. Almassy %A C.A. Janson %A C.-C. Kan %A Z. Hostomska %T Structures of apo and complexed \f2Escherichia coli\f1 glycinamide ribonucleotide transformylase %J Proc. Natl. Acad. Sci. USA %V 89 %P 6114-6118 %D 1992 %A D.C. Alteri %A O.R. Etingin %A D.S. Fair %A T.K. Brunck %A J.E. Geltosky %A D.P. Hajjar %A T.S. Edgington %T Structurally homologous ligand binding of integrin Mac-1 and viral glycoprotein C receptors %J Science %V 254 %P 1200-1202 %D 1991 %A D. Altschuh %A A.M. Lesk %A A.C. Bloomer %A A. Klug %T Correlation of co-ordinated amino acid substitutions with function in viruses related to tobacco mosaic virus %J J. Mol. Biol. %V 193 %D 1987 %P 693-707 %K virus substitutions coupling phylogeny %A D. Altschuh %A O. Vix %A B. Rees %A J.-C. Thierry %T A conformation of cyclosporin A in aqueous environment revealed by the X-ray structure of a cyclosporin-Fab complex %J Science %V 256 %V 92-94 %D 1992 %A S.F. Altschul %T Gap costs for multiple sequence alignment %J J. Theor. Biol. %P 297-309 %V 138 %D 1989 %A S.F. Altschul %T Amino acid substitution matrices from an information theoretic perspective %J J. Mol. Biol. %V 219 %P 555-565 %D 1991 %A S.F. Altschul %A M.S. Boguski %A W. Gish %A J.C. Wooton %T Issues in searching molecular sequence databases %J Nature Genetics %V 6 %P 119-129 %D 1994 %A S.F. Altschul %A R.J. Carrol %A D.J. Lipman %T Weights for data connected by a tree %J J. Mol. Biol. %V 207 %D 1989 %P 647-653 %K statistics alignment multiple alignment %A S.F. Altschul %A B.W. Erickson %T Optimal sequence alignment using affine gap costs %D 1986 %J Bull. Math. Biol. %V 48 %P 603-616 %A S.F. Altschul %A W. Gish %A W. Miller %A E.W. Myers %A D.J. Lipman %T Basic local alignment search tool %J J. Mol. Biol. %V 215 %D 1990 %P 403-410 %K BLAST %A R.P. Ambler %T Sequence variability in bacterial cytochromes \f2c\f1 %J Biochim. Biophys. Acta %V 1058 %P 42-47 %D 1991 %A A.G. Amit %A R.A. Mariuzza %A S.E.V. Phillips %A R.J. Poljak %T Three-dimensional structure of an antigen-antibody complex at 6\(Ao resolution %J Nature %V 313 %P 156-? %D 1985 %K 0FDL %A A.G. Amit %A R.A. Mariuzza %A S.E.V. Phillips %A R.J. Poljak %T Three-dimensional structure of an antigen-antibody complex at 2.8\(Ao resolution %J Science %V 233 %D 1986 %P 747-753 %K structure immunoglobulin %A L.M. Amzel %A R.J. Poljak %T Three-dimensional structure of immunoglobulins %J Annu. Rev. Biochem. %V 48 %D 1979 %P 961-997 %K structure immunoglobulin review %A W. An-Zhi %A I. Mayr %A W. Bode %T The refined 2.3\(Ao crystal structure of human leukocyte elastase in a complex with a valine chloromethyl ketone inhibitor %J FEBS Lett. %V 234 %P 367-? %D 1988 %K 0EVC %A A.G. Anderson %A J. Hermans %T Microfolding: conformational probability map for the alanine dipeptide in water from molecular dynamics simulations %J Proteins %V 3 %D 1988 %P 262-265 %K free energy protein folding simulation %A B.F. Anderson %A H.M. Baker %A E.J. Dodson %A G.E. Norris %A S.V. Rumball %A J.M. Waters %A E.N. Baker %T Structure of human lactoferrin at 3.2\(Ao resolution %J Proc. Natl. Acad. Sci. USA %V 84 %P 1769-1773 %D 1987 %A B.F. Anderson %A H.M. Baker %A G.E. Norris %A S.V. Rumball %A E.N. Baker %T Apolactoferrin structure demonstrates ligand-induced conformational change in transferrins %J Nature %V 344 %D 1990 %P 785-787 %K allostery %A C.M. Anderson %A R.E. Stenkamp %A T.A. Steitz %T Sequencing a protein by X-ray crystallography: II. Refinement of yeast hexokinase B. Coordinates and sequence at 2.1\(Ao resolution %J J. Mol. Biol. %V 123 %P 15-? %D 1978 %K PDB2YHX %A C.M. Anderson %A F.H. Zucker %A T.A. Steitz %T Space-filling models of kinase clefts and conformation changes %J Science %P 375-180 %V 204 %D 1979 %A D. Anderson %A T.C. Terwilliger %A W. Wickner %A D. Eisenberg %T Melittin forms crystals which are suitable for high resolution X-ray structural analysis and which reveal a molecular 2-fold axis of symmetry %J J. Biol. Chem. %V 255 %P 2578-? %D 1980 %K 1MLT 2MLT %A J.E. Anderson %A M. Ptashne %A S.C. Harrison %T Structure of the repressor-operator complex of bacteriophage 434 %J Nature %V 326 %P 846-? %D 1987 %K 2OR1 3CRO %A W.F. Anderson %A M. Cygler %A M. Vandonnelaar %A D.H. Ohlendorf %A B.W. Matthews %A J. Kim %A Y. Takeda %T Crystallographic data for complexes of the \f2Cro\f1 repressor with DNA %J J. Mol. Biol. %V 168 %P 903-? %D 1983 %K 1CRO %A W.F. Anderson %A M.G. Gr\(u:tter %A S.J. Remington %A L.H. Weaver %A B.W. Matthews %T Crystallographic determination of the mode of binding of oligosaccharides to T4 bacteriophage lysozyme: implications for the mechanism of catalysis %J J. Mol. Biol. %V 147 %P 523-? %D 1981 %K 3LZM Grutter %K 1L36 1L37 1L38 1L39 1L40 1L41 1L42 1L43 1L44 1L45 1L46 1L47 1L48 1L49 1L50 1L51 1L52 1L53 1L54 1L55 1L56 1L57 1L58 1L59 1L60 1L61 1L62 1L63 1L64 1L65 1L66 1L67 1L68 1L69 1L70 1L71 1L72 1L73 1L74 1L75 1L76 %A W.F. Anderson %A B.W. Matthews %A Y. Takeda %A H. Echols %T The structure of a repressor: crystallographic data for the \f2Cro\f1 regulatory protein of bacteriophage \(*l %J J. Mol. Biol. %V 130 %P 507-? %D 1979 %K 1CRO %A W.F. Anderson %A B.W. Matthews %A R.G. Woodbury %T Covalent structure of a group-specific protease from rat small intestine: appendix. Crystallographic data for a group specific protease from rat intestine %J Biochemistry %V 17 %P 819-? %D 1978 %K 3RP2 %A W.F. Anderson %A D.H. Ohlendorf %A Y. Takeda %A B.W. Matthews %T Structure of the \f2Cro\f1 repressor from bacteriophage \(*l and its interaction with DNA %J Nature %V 290 %P 754-758 %D 1981 %K 1CRO 4CRO %A W.F. Anderson %A Y. Takeda %A D.H. Ohlendorf %A B.W. Matthews %T Proposed \(*a-helical super-secondary structure associated with protein-DNA recognition %J J. Mol. Biol. %V 159 %P 745-? %D 1982 %K 1CRO %A I. Andersson %A S. Knight %A G. Schneider %A Y. Lindqvist %A T. Lindqvist %A C.-I. Br\(a:nd\(e'n %A G.H. Lorimer %T Crystal structure of the active site of ribulose-biphosphate carboxylase %J Nature %D 1989 %V 337 %P 229-234 %K Branden PDB2RUB 1RUS 2RUS 5RUB %A N.S. Andreeva %A A.A. Federov %A A.E. Gutschina %A R.R. Riskulov %A N.E. Schutzkever %A M.G. Safro %T X-ray crystallographic studies of pepsin: conformation of the main chain of the enzyme %J Mol. Biol. (Moscow) %V 12 %P 922-? %D 1978 %K PDB1PEP %A N.S. Andreeva %A A.S. Zdanov %A A.E. Gustchina %A A.A. Federov %T Structure of ethanol-inhibited porcine pepsin at 2\(Ao resolution and binding of the methyl ester of phenylalanine di-iodotyrosine to the enzyme %J J. Biol. Chem %V 259 %P 11353-11365 %D 1984 %A N.S. Andreeva %A A.S. Zdanov %A A.E. Gustchina %A A.A. Fedorov %T Structure of ethanol-inhibited porcine pepsin at 2\(Ao resolution and binding of the methyl ester of phenylalanyl-diiodotyrosine to the enzyme %J J. Biol. Chem. %P 11353-11365 %V 259 %D 1984 %A N.S. Andreeva %A A.S. Zdanov %A E.E. Gustchina %A A.A. Fedorov %T X-ray diffraction analysis of porcine pepsin structure %B Aspartic proteinases and their inhibitors %E V. Kostka %P 137-150 %I Walter de\0Gruyter %C Berlin %D 1985 %A L.C. Andrews %A R.W. Harrsion %T Modeling conformational change in macromolecules as an elastic deformation %J Proteins %V 10 %P 162-170 %D 1991 %A P. Andrews %T Functional groups, drug-receptor interactions and drug design %J Trends Pharm. Sci. %V ? %P 148-150 %D 1986 %A P.R. Andrews %A D.J. Craik %A J.L. Martin %T Functional group contributions to drug-receptor interactions %J J. Med. Chem. %V 27 %P 1648-1657 %D 1984 %A C.B. Anfinsen %T Principles that govern the folding of protein chains %J Science %V 181 %D 1973 %P 223-230 %K protein folding protein structure secondary structure %A C.B. Anfinsen %A E. Haber %A M. Sela %A F.H. White %T The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain %J Proc. Natl. Acad. Sci. USA %V 47 %D 1961 %P 1309-1314 %K PNAS %A C.B. Anfinsen %A H.A. Scheraga %T Experimental and theoretical aspects of protein folding %J Adv. Prot. Chem. %V 29 %D 1975 %P 205-300 %K prediction pathway %A K.J. Angelides %A A.J. Fink %T Mechanism of thiol protease catalysis: detection and stabilization of a tetrahedral intermediate in papain catalysis %J Biochemistry %V 18 %P 2363-2369 %D 1979 %A K.J. Angelides %A A.L. Fink %T Cryoenzymology of papain: reaction mechanism with an ester substrate %J Biochemistry %P 2659-2668 %V 17 %D 1978 %A K.J. Angelides %A A.L. Fink %T Mechanism of action of papain with a specific anilide substrate %J Biochemistry %V 18 %P 2355-2363 %D 1979 %A S.J. Anthony-Cahill %A P.A. Benfield %A R. Fairman %A Z.R. Wasserman %A S.L. Brenner %A W.F. Stafford\0III %A C. Altenbach %A W.L. Hubbell %A W.F. DeGrado %T Molecular characterization of helix-loop-helix peptides %J Science %V 255 %P 979-983 %D 1992 %A V.K. Antonov %T Chemical approaches to the mechanism of aspartic proteinases %B Aspartic proteinases and their inhibitors %E V. Kostka %P 263-220 %C Berlin %I Walter de\0Gruyter %D 1985 %A V.K. Antonov %A L.M. Ginodman %A Y.V. Kapitannikov %A T.N. Barshevskaya %A A.G. Gurova %A L.D. Rumsh %T Mechanism of pepsin catalysis: general base catalysis by the active-site carboxylate ion %J FEBS Lett. %P 87-90 %V 88 %D 1978 %A V.K. Antonov %A L.M. Ginodman %A L.D. Rumsh %A Y.V. Kapitannikov %A T.N. Barshevskaya %A L.B. Yavashev %A A.G. Gurova %A L.I. Volkova %T Studies on the mechanism of action of proteolytic enzymes using heavy oxygen exchange %J Eur. J. Biochem. %P 195-200 %V 117 %D 1981 %A A.A. Antson %A J. Otridge %A A.M. Brzozowski %A E.J. Dodson %A G.G Dodson %A K.S. Wilson %A T.M. Smith %A M. Yang %A T. Kurecki %A P. Gollnick %T The crystal structure of \f2trp\f1 RNA-binding attenuation protein %J Nature %V 374 %P 693-700 %D 1995 %A W. Antuch %A P. G\(:untert %A M. Billeter %A T. Hawthorne %A H. Grossenbacher %A K. W\(:uthrich %T NMR solution structure of the recombinant tick anticoagulant protein (rTAP), a factor Xa inhibitor from the tick \f2Ornithodrus moubata\f1 %J FEBS Letts. %V 352 %P 251-257 %D 1994 %A E. Appella %A E.A. Robinson %A S.J. Ullrich %A M.P. Stoppelli %A A. Corti %A G. Cassani %A F. Blasi %T The receptor-binding sequence of urokinase: a biological function for the growth factor module of proteases %J J. Biol. Chem. %V 262 %D 1987 %P 4437-4440 %K receptor ligand binding urokinase EGF %A K. Appelt %T Crystal structures of HIV-1 protease-inhibitor complexes %J Perspectives Drug Disc. Design %V 1 %P 23-48 %D 1993 %A K. Appelt %A R.J. Bacquet %A C.A. Bartlett %A C.L.J. Booth %A S.T. Freer %A M.A.M. Fuhry %A M.R. Gehring %A S.M. Herrmann %A E.F. Howland %A C.A. Janson %A T.R. Jones %A C.-C. Kan %A V. Kathardekar %A K.K. Lewis %A G.P. Marzoni %A D.A. Matthews %A C. Mohr %A E.W. Moomaw %A C.A. Morse %A S.J. Oatley %A R.D. Ogden %A M.R. Reddy %A S.H. Rich %A W.S. Schoettlin %A W.W. Smith %A M.D. Varney %A J.E. Villafranca %A R.W. Ward %A S. Webber %A S.E. Webber %A K.M. Welsh %A J. White %T Design of enzyme inhibitors using iterative protein crystallographic analysis %J J. Med. Chem. %V 34 %P 1925-1934 %D 1991 %A K. Appelt %A J. Dijk %A S. White %A K. Wilson %A K. Bartels %T Proteins of the \f2Bacillus stearothermophilus\f1 ribosome: a low resolution crystal analysis of protein L30 %J FEBS Lett. %V 160 %P 72-? %D 1983 %K 0RPL %A K. Appelt %A S.W. White %A K.S. Wilson %T Proteins of the \f2Bacillus stearothermophilus\f1 ribosome: crystallization of proteins L30 and S5 %J J. Biol. Chem. %V 258 %P 13328-? %D 1983 %K 0RPL %A H. Aquila %A T.A. Link %A M. Klingenberg %T The uncoupling protein from brown fat mitochondria is related to the mitochondrial ADP/ATP carrier: analysis of sequence homologies and of the folding of the protein in the membrane %J EMBO J. %V 4 %D 1985 %P 2369-2376 %K nucleotide-binding membrane-spanning %A H. Arai %A S. Hori %A I. Aramori %A H. Ohkubo %A S. Nakanishi %T Cloning and expression of a cDNA encoding an endothelin receptor %J Nature %V 348 %P 730-732 %D 1990 %A K. Arai %A B.F.C. Clark %A L. Duffy %A M.D. Jones %A Y. Kaziro %A R.A. Laursen %A J. L'Italien %A D.L. Miller %A S. Nagarkatti %A S. Nakamura %A K.M. Nielsen %A T.E. Petersen %A K. Takahashi %A M. Wade %T Primary structure of elongation factor Tu from \f2Escherichia coli\f1 %J Proc. Natl. Acad. Sci. USA %V 77 %P 1326-1330 %D 1980 %K 1EFM PNAS %A J.P. Arcoleo %A J. Greer %T Hemoglobin binding and its relationship to the serine protease-like active site of haptoglobin %J J. Biol. Chem. %V 257 %P 10063-10068 %D 1982 %A J.H. Arevalo %A M.J. Taussig %A I.A. Wilson %T Molecular basis of crossreactivity and the limits of antibody-antigen complementarity %J Nature %V 365 %P 859-863 %D 1993 %A P. Argos %T Secondary-structure predictions of calcium-binding proteins %J Biochemistry %V 16 %D 1977 %P 665-672 %A P. Argos %T Analysis of sequence similar pentapeptides in unrelated protein tertiary structures %J J. Mol. Biol. %V 197 %D 1987 %P 331-348 %K comparison substitutions secondary structure prediction %A P. Argos %T A sensitive procedure to compare amino acid sequences %J J. Mol. Biol. %V 193 %D 1987 %P 385-396 %A P. Argos %T An investigation of protein subunit and domain interfaces %J Prot. Eng. %V 2 %D 1988 %P 101-113 %A P. Argos %T An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion %J J. Mol. Biol. %V 211 %P 943-958 %D 1990 %A P. Argos %T The language of protein folding: many forked tongues %J Computers Chem. %V 16 %P 93-102 %D 1992 %A P. Argos %A G.C. Ford %A M.G. Rossmann %T An application of the molecular replacement technique in direct space to a known protein structure %J Acta Cryst. %V A 31 %D 1975 %P 499-506 %A P. Argos %A R.M. Garavito %A W. Eventoff %A M.G. Rossmann %T Evolution in the catalytic geometry of enzymes %B Biomolecular structure, conformation, function, and evolution %E R. Srinivasan %P 205-225 %V 1 %I Pergamon Press %C Oxford %D 1978 %A P. Argos %A R.M. Garavito %A W. Eventoff %A M.G. Rossmann %T Similarities in active center geometries of zinc-containing enzymes, proteases and dehydrogenases %J J. Mol. Biol. %V 126 %P 141-158 %D 1978 %A P. Argos %A M. Hanei %A R.M. Garavito %T The Chou-Fasman secondary structure prediction method with an extended data base %J FEBS Lett. %V 93 %D 1978 %P 19-24 %A P. Argos %A M. Hanei %A J.M. Wilson %A W.N. Kelley %T A possible nucleotide-binding domain in the tertiary fold of phosphoribosyltransferases %J J. Biol. Chem. %V 258 %D 1983 %P 6450-6457 %A P. Argos %A A. Landy %A K. Abremski %A J.B. Egan %A E. Haggard-Ljugquist %A R.H. Hoess %A M.L. Kahn %A B. Kalionis %A S.V.L. Narayana %A L.S. Pierson\0III %A N. Sternberg %A J.M. Leong %T The integrase family of site-specific recombinases: regional similarities and global diversities %J EMBO J. %V 5 %D 1986 %P 433-440 %A P. Argos %A R. Leberman %T Homologies and anomalies in primary structural patterns of nucleotide binding proteins %J Eur. J. Biochem. %V 152 %P 651-656 %D 1985 %A P. Argos %A W.C. Mahoney %A M.A. Hermondson %A M. Hanei %T Structural prediction of sugar-binding proteins functional in chemotaxis and transport %J J. Biol. Chem. %V 256 %P 4357-4361 %D 1981 %A P. Argos %A J. Palau %T Amino acid distribution in protein secondary structures %J Int. J. Pept. Prot. Res. %V 19 %D 1982 %P 380-392 %A P. Argos %A J.K.M. Rao %A P.A. Hargrave %T Structural prediction of membrane-bound proteins %J Eur. J. Biochem. %V 128 %D 1982 %P 565-575 %A P. Argos %A M.G. Rossmann %T Structural comparison of heme binding proteins %J Biochemistry %V 18 %D 1979 %P 4951-4960 %A P. Argos %A M.G. Rossmann %A U.M. Grau %A H. Zuber %A G. Frank %A J.D. Gratschin %T Thermal stability and protein structure %J Biochemistry %V 18 %D 1979 %P 5698-5703 %K thermostability substitutions folding stability %A P. Argos %A M.G. Rossmann %A U.M. Grau %A H. Zuber %A G. Frank %A J.D. Tratschin %T Thermal stability and protein structure %P 159-169 %B The evolution of protein structure and function %E D.S. Sigman & M.A.B. Brazier %I Academic Press %C New York %D 1980 %A P. Argos %A M.G. Rossmann %A J.E. Johnson %T A four-helical super-secondary structure %J Biochem. Biophys. Res. Commun. %V 75 %P 83-86 %D 1977 %A P. Argos %A J. Schwarz %T An assessment of protein secondary structure prediction methods based on amino acid sequence %J Biochim. Biophys. Acta %V 439 %P 261-273 %D 1976 %A P. Argos %A T. Tsukihara %A M.G. Rossmann %T A structural comparison of concanavalin A and tomato bushy stunt virus protein %J J. Mol. Evol. %V 15 %D 1980 %P 169-179 %K comparison structure %A P. Argos %A A.D. Tucker %A L. Philipson %T Primary structural relationships may reflect similar DNA replication strategies %J Virology %V 149 %D 1986 %P 208-216 %K sequence alignment analysis %A P. Argos %A M. Vingron %T Sensitive comparison of protein amino acid sequences %J Methods Enzymol. %D 1990 %V 183 %P 352-365 %A P. Argos %A M. Vingron %A G. Vogt %T Protein sequence comparison: Methods and significance %J Prot. Eng. %V 4 %P 375-383 %D 1991 %A I.T. Arjin %A P.D. Adams %A K.R. MacKenzie %A M.A. Lemmon %A A.T. Br\(:unger %A D.M. Engelman %T Structural organization of the pentameric transmembrane \(*a-helices of phospholamban, a cardiac ion channel %J EMBO J. %V 13 %P 4757-4764 %D 1994 %A M.S. Johnson %A N. Srinivasan %A R. Sowdhamini %A T.L. Blundell %T Knowledge-based protein modelling %J Crit. Rev. Biochem. Mol. Biol. %V 29 %P 1-68 %D 1994 %A I.T. Arkin %A P.D. Adams %A K.R. MacKenzie %A M.A. Lemmon %A A.T. Brunger %A D.M. Engelman %T Structural organization of the pentameric transmembrane \(*a-helices of phospholamban, a calcium ion channel %J EMBO J. %V 13 %P 4757-4764 %D 1994 %A R.K. Arni %A K. Padmanabhan %A K.P. Padmanabhan %A T.-P. Wu %A A. Tulinsky %T Structures of the noncovalent complexes of human and bovine prothrombin fragment 2 with human PPACK-thrombin %J Biochemistry %P 4727-4737 %D 1993 %A R.K. Arni %A P.K.P. Padmanabhan %A T.-P. Wu %A A. Tulinsky %T Structures of the noncovalent complexes of human and bovine prothrombin fragment 2 with human PPACK-thrombin %J Biochemistry %V 32 %P 4727-4737 %D 1993 %A R. Arni %A U. Heinemann %A M. Maslowska %A R. Tokuoka %A W. Saenger %T Restrained least-squares refinement of the crystal structure of the ribonuclease T\d\s-21\s0\u*2\(fm-guanylic acid complex at 1.9\(Ao resolution %J Acta Cryst. %V B 43 %P 549-? %D 1987 %K 3RNT PDB1RNT %A R. Arni %A U. Heinemann %A R. Tokuoka %A W. Saenger %T Three-dimensional structure of the ribonuclease T\d\s-21\s0\u*2\(fm-/GMP complex at 1.9\(Ao resolution %J J. Biol. Chem. %V 263 %P 15358-? %D 1988 %K 3RNT %A E. Arnold %A J.W. Erickson %A G.S. Fout %A E.A. Frankenberger %A H.-J. Hecht %A M. Luo %A M.G. Rossmann %A R.R. Rueckert %T Virion orientation in cubic crystals of the human common cold virus HRV14 %J J. Mol. Biol. %V 177 %P 417-430 %D 1984 %K 4RHV 1R09 %A E. Arnold %A A. Jacobo-Molina %A R.G. Nanni %A R.L. Williams %A X. Lu %A J. Ding %A A.D. Clark,\0Jr. %A A. Zhang %A A.L. Ferris %A P. Clark %A A. Hizi %A S.H. Hughes %T Structure of HIV-1 reverse transcriptase/DNA complex at 7\(Ao resolution showing active site locations %J Nature %V 357 %P 85-89 %D 1992 %A E. Arnold %A M. Luo %A G. Vriend %A M.G. Rossmann %A A.C. Palmenberg %A G.D. Parks %A M.J.H. Nicklin %A E. Wimmer %T Implications of the picornavirus capsid structure for polyprotein structure %J Proc. Natl. Acad. Sci. USA %V 84 %P 21-25 %D 1987 %K 4RHV PNAS 1R09 %A E. Arnold %A M.G. Rossmann %T The use of molecular-replacement phases for the refinement of the human rhinovirus 14 structure %J Acta Cryst. %V A 44 %P 270-? %D 1988 %K 4RHV 1R09 %A E. Arnold %A M.G. Rossmann %T Analysis of the structure of a common cold virus, human rhinovirus 14, refined at a resolution of 3.0\(Ao %J J. Mol. Biol. %V 211 %P 763-? %D 1990 %K 1990 1R09 %A E. Arnold %A G. Vriend %A M. Luo %A J.P. Griffith %A G. Kamer %A J.W. Erickson %A J.E. Johnson %A M.G. Rossmann %T The structure determination of a common cold virus, human rhinovirus 14 %J Acta Cryst. %V A 43 %P 346-? %D 1987 %K 4RHV 1R09 %A S. Arnott %A A. Fulmer %A W.E. Scott %A I.C.M. Dea %A R. Moorhouse %A D.A. Rees %T The agarose double helix and its function in agarose gel structure %J J. Mol. Biol. %V 90 %P 269-284 %D 1974 %K PDB1AGA %A S. Arnott %A J.M. Guss %A D.W.L. Hukins %A I.C.M. Dea %A D.A. Rees %T Conformation of keratan sulphate %J J. Mol. Biol. %V 88 %P 175-184 %D 1974 %K PDB1KES %A S. Arnott %A W.E. Scott %T Accurate X-ray diffraction analysis of fibrous polysaccharides containing pyranose rings: I. The linked-atom approach %J J. Chem. Soc. Perkins Trans. %V 2 %P 324-? %D 1972 %K 1CAR %A R.V. Aroian %A M. Koga %A J.E. Mendel %A Y. Ohshima %A P.W. Sternberg %T The \f2let-23\f1 gene necessary for \f2Caenorhabditis elegans\f1 vulval induction encodes a tyrosine kinase of the EGF receptor subfamily %J Nature %V 348 %P 693-699 %D 1990 %A P. Artymiuk %T Hard facts on soft centres %J Nature %V 332 %P 582 %D 1988 %K molecular-dynamics crystallography %A P.J. Artymiuk %A C.C.F. Blake %T Refinement of human lysozyme at 1.5\(Ao resolution: analysis of non-bonded and hydrogen-bond interactions %J J. Mol. Biol. %V 152 %P 737-762 %D 1981 %K PDB1LZ1 %A P.J. Artymiuk %A C.C.F. Blake %A D.E.P. Grace %A S.J. Oatley %A D.C. Phillips %A M.J.E. Sternberg %T Crystallographic studies of the dynamic properties of lysozyme %J Nature %V 280 %P 563-568 %D 1979 %K 1LZ1 %A P.J. Artymiuk %A C.C.F. Blake %A D.W. Rice %A K.S. Wilson %T The structures of the monoclinic and orthorhombic forms of hen egg-white lysozyme at 6\(Ao resolution %J Acta Cryst. %V B 38 %P 778-? %D 1982 %K PDB1LZH PDB2LZH %A P.J. Artymiuk %A H.M. Grindley %A J.E. Park %A D.W. Rice %A P. Willett %T Three-dimensional structural resemblance between leucine aminopeptidase and carboxypeptidase A revealed by graph-theoretical techniques %J FEBS Letts. %V 303 %P 48-52 %D 1992 %A P.J. Artymiuk %A D.W. Rice %A E.M. Mitchell %A P. Willet %T Structural resemblance between the families of bacterial signal-transduction proteins and of G proteins revealed by graph theoretical techniques %J Prot. Eng. %V 4 %P 39-43 %D 1990 %A E.G. Arutyunyan %A I.P. Kuranova %A A.I. Grebenko %A A.A. Voronova %T X-ray structural study of leghemoglobin: III. crystallographic data on the structure of the first component %J Kristallografiya %V 22 %P 634-? %D 1977 %K 2LH1 %A E.G. Arutyunyan %A I.P. Kuranova %A A.I. Grebenko %A A.A. Voronova %T X-ray structural study of leghemoglobin: III. crystallographic data regarding the structure of the first component %J Sov. Phys. Cryst. (English trans.) %V 22 %P 362-? %D 1977 %K 2LH2 %A E.G. Arutyunyan %A I.P. Kuranova %A B.K. Vainshtein %A W. Steigemann %T X-ray structural investigation of leghemoglobin: VI. structure of acetate-ferrileghemoglobin at a resolution of 2.0\(Ao %J Sov. Phys. Cryst. (English trans.) %V 25 %P 43-? %D 1980 %K PDB1LH1 PDB2LH1 PDB1LH2 PDB2LH2 PDB1LH3 PDB2LH3 PDB1LH4 PDB2LH4 PDB1LH5 PDB2LH5 PDB1LH6 PDB2LH6 PDB1LH7 PDB2LH7 %A E.G. Arutyunyan %A S.S. Terzyan %A A.A. Voronova %A I.P. Kuranova %A E.A. Smirnova %A B.K. Vainshtein %A W.E. Hoehne %A G. Hansen %T X-ray structural investigation of inorganic pyrophosphatase from baker's yeast at 3\(Ao resolution %J Dokl. Biochem. (English trans.) %V 258 %P 189-? %D 1981 %K PDB1PYP %A E.G. Arutyunyan %A S.S. Terzyan %A A.A. Voronova %A I.P. Kuranova %A E.A. Smirnova %A B.K. Vainshtein %A W.E. H\(o:hne %A G. Hansen %T X-ray diffraction study of inorganic pyrophosphatase from baker's yeast at the 3\(Ao resolution %J Dokl. Akad. Nauk. SSSR %V 258 %P 1481-? %D 1981 %K 1PYP Hohne %A E.G. Arutyunyan %A V.N. Zaitsev %A G.Y.A. Zhiznevskaya %A L.I. Borodenko %T Cell parameters of crystalline plant (\f2Lupinus luteus (lupine\f1)) hemoglobin %J Kristallografiya %V 16 %P 237-? %D 1971 %K 2LH1 %A E.G. Arutyunyan %A V.N. Zaitsev %A G.Y.A. Zhiznevskaya %A L.I. Borodenko %T Unit-cell parameters of crystalline plant hemoglobin %J Sov. Phys. Cryst. (English trans.) %V 16 %P 193-? %D 1971 %K 2LH1 %A S.K. Arya %A B. Beaver %A L. Jagodzinski %A B. Ensoli %A P.J. Kanki %A J. Albert %A E.-M. Fenyo %A G. Biberfeld %A J.F. Zagury %A F. Laure %A M. Essex %A E. Norrby %A F. Wong-Staal %A R.C. Gallo %T New human and simian HIV-related retroviruses possess functional transactivator (\f2tat\f1) gene %J Nature %V 328 %D 1987 %P 548-550 %K HIV retrovirus sequence %A S.K. Arya %A R.C. Gallo %A B.H. Hahn %A G.M. Shaw %A M. Popovic %A S.Z. Salahuddin %A F. Wong-Staal %T Homology of genome of AIDS-associated virus with genomes of human T-cell leukemia viruses %J Science %V 225 %D 1984 %P 927-930 %K HTLV HIV AIDS homology sequence alignment %A R. Aschaffenburg %A C.C.F. Blake %A H.M. Dickie %A S.K. Gayen %A R. Keegan %T The crystal structure of tortoise egg-white lysozyme at 6\(Ao resolution %J Biochim. Biophys. Acta %V 625 %P 64-? %D 1980 %K 0TEL %A R. Aschaffenburg %A R.E. Fenna %A D.C. Phillips %A S.G. Smith %A D.H. Buss %A R. Jeness %A M.P. Thompson %T Crystallography of \(*a-lactalbumin. III. Crystals of baboon milk \(*a-lactalbumin %J J. Mol. Biol. %V 127 %P 135-? %D 1979 %K PDB1ALC %A T. Ashida %A N. Tanaka %A T. Yamane %A T. Tsukihara %A M. Kakudo %T The crystal structure of bonito (katsuo) ferrocytochrome \f2c\f1 at 2.3\(Ao resolution %J J. Biochem. (Tokyo) %V 73 %P 463-? %D 1973 %K 1CYC %A T. Ashida %A T. Ueki %A T. Tsukihara %A A. Sugihara %A T. Takano %A M. Kakudo %T The crystal structure of bonito (katsuo) ferrocytochrome \f2c\f1 at 4\(Ao resolution %J J. Biochem. (Tokyo) %V 70 %P 913-? %D 1971 %K 1CYC %A P.L. Ashley %A R.J. MacDonald %T Kallikrein-related mRNAs of the rat submaxillary gland: nucleotide sequences of four distinct types including tonin %J Biochemistry %V 24 %P 4512-? %D 1985 %K 1TON %A N. Assa-Munt %A R.J. Mortishire-Smith %A R. Aurora %A W. Herr %A P.E. Wright %T The solution structure of the Oct-1 POU-specific domain reveals a striking similarity to the bacteriophage \(*l repressor DNA-binding domain %J Cell %V 73 %P 193-205 %D 1993 %A P. Astolfi %A K.K. Kidd %A L.L. Cavalli-Sforza %D 1981 %T A comparison of methods of reconstructing evolutionary trees %J System. Zool. %V 30 %P 156-169 %A A. Aszodi %A W.R. Taylor %T Folding polypeptide \(*a-carbon backbones by distance geometry methods %J Biopol. %V 34 %P 489-505 %D 1994 %A A. Aszodi %A W.R. Taylor %T Secondary structure formation in model polypeptide chains %J Prot. Eng. %V 7 %P 633-644 %D 1994 %A P.W. Atkins %T Physical Chemistry %I Oxford University Press %C London %D 1982 %A R.A. Atkinson %A R.J.P. Williams %T Solution structure of the kringle 4 domain from human plasminogen by \u\s-21\s0\dH NMR spectroscopy and distance geometry %J J. Mol. Biol. %V 212 %D 1990 %P 541-552 %A M.R. Attwood %A C.H. Hassall %A A. Kr\(o:hn %A G. Lawton %A S. Radshaw %T The design and synthesis of the angiotensinogen converting enzyme inhibitor Cilazapril and related bicyclic compounds %J J. Chem. Soc. Perkin Trans. I %V ? %P 1011-1019 %D 1986 %K Krohn %A T.K. Attwood %A E.E. Eliopoulos %A J.B.C. Findlay %T Multiple sequence alignment of protein families showing low sequence homology: A methodological approach using database pattern-matching discriminators for G-protein-linked receptors %J Gene %V 98 %P 153-159 %D 1991 %A H.E. Auer %A D.M. Glick %T Early events of pepsinogen activation %J Biochemistry %P 2735-2739 %V 23 %D 1984 %A F. Avbelj %T Use of a potential of mean force to analyze free energy contributions in protein folding %J Biochemsitry %V 31 %P 6290-6297 %D 1992 %A F.X. Avil\(e's %A J. Vendrell %A A. Guasch %A M. Coll %A R. Huber %T Advances in metallo-carboxypeptidases: Emerging details on the inhibition mechanism and on the activation process %J Eur. J. Biochem. %V 211 %P 381-389 %D 1993 %K Aviles %A J. Aymani %A M. Coll %A G.A. van\0der\0Marel %A J.H. van\0Boom %A A.H.-J. Wang %A A. Rich %T Molecular structure of nicked DNA: a substrate for DNA repair enzymes %J Proc. Natl. Acad. Sci. USA %V 87 %P 2526-? %D 1990 %K PDB1NDN %A Y.S. Babu %A C.E. Bugg %A W.J. Cook %T Structure of calmodulin refined at 2.2\(Ao resolution %J J. Mol. Biol. %V 204 %D 1988 %P 191-204 %K calcium-binding PDB3CLN %A Y.S. Babu %A J.A. Cox %A W.J. Cook %T Crystallization and preliminary X-ray investigation of sarcoplasmic calcium-binding protein from \f2Nereis diversicolor\f1 %J J. Biol. Chem. %V 262 %P 11884-? %D 1987 %K 1SCP %A Y.S. Babu %A J.S. Sack %A T.J. Greenhough %A C.E. Bugg %A A.R. Means %A W.J. Cook %T Three-dimensional structure of calmodulin %J Nature %V 315 %P 37-40 %D 1985 %K 3CLN %A D.J. Bacon %A W.F. Anderson %T Multiple sequence alignment %J J. Mol. Biol. %V 191 %D 1986 %P 153-161 %A D.J. Bacon %A J. Moult %T Docking by least-squares fitting of molecular surface patterns %J J. Mol. Biol. %V 225 %P 849-858 %D 1992 %A M. Badasso %A C. Frazao %A B.L. Sibanda %A V. Dhanaraj %A C. DeAlwis %A J.B. Cooper %A S.P. Wood %A T.L. Blundell %A K. Murakami %A H. Miyazaki %A P.M. Hobart %A K.F. Geoghegan %A M.J. Ammirati %A A.J. Lanzetti %A D.E. Danley %A B.A. O'Connor %A D.J. Hoover %A J. Sueras-Diaz %A D.M. Jones %A M. Szelke %T Crystallization and preliminary X-ray analysis of complexes of peptide inhibitors with recombinant and mouse submandibular renins %J J. Mol. Biol. %V 223 %P 447-453 %D 1992 %A J. Badger %A D.L.D. Caspar %T Water structure in cubic insulin crystals %J Proc. Natl. Acad. Sci. USA %V 88 %P 622-? %D 1991 %K 9INS %A J. Badger %A M.R. Harris %A C.D. Reynolds %A A.C. Evans %A E.J. Dodson %A G.G. Dodson %A A.C.T. North %T Structure of the pig insulin dimer in the cubic crystal %J Acta Cryst. %V B 47 %P 127-? %D 1991 %K 9INS %A J. Badger %A S. Krishnaswamy %A M.J. Kremer %A M.A. Oliveira %A M.G. Rossmann %A B.A. Heinz %A R.R. Rueckert %A F.J. Dutko %A M.A. McKinlay %T Three-dimensional structures of drug-resistant mutants of human rhinovirus 14 %J J. Mol. Biol. %V 207 %P 163-? %D 1989 %K 2R04 PDB1RMU PDB2RMU 1R09 %A J. Badger %A I. Minor %A M.J. Kremer %A M.A. Oliveira %A T.J. Smith %A J.P. Griffith %A D.M.A. Guerin %A S. Krishnaswamy %A M. Luo %A M.G. Rossmann %A M.A. McKinlay %A G.D. Diana %A F.J. Dutko %A M. Fancher %A R.R. Rueckert %A B.A. Heinz %T Structural analysis of a series of antiviral agents complexed with human rhinovirus 14 %J Proc. Natl. Acad. Sci. USA %V 85 %P 3304-3308 %D 1988 %K 2R04 PNAS 1R09 %A J. Badger %A I. Minor %A M.A. Oliveira %A T.J. Smith %A M.G. Rossmann %T Structural analysis of antiviral agents that interact with the capsid of human rhinoviruses %J Proteins %V 6 %P 1-? %D 1989 %K PDB2R04 PDB2R06 PDB2R07 PDB2R08 PDB2RM2 PDB2RR1 PDB2RS1 PDB2RS3 PDB2RS5 %A F.A. Baglia %A B.A. Jameson %A P.N. Walsh %T Fine mapping of the high moelcular weight kininogen binding site on blood coagulation factor XI through the use of rationally designed synthetic analogues %J J. Biol. Chem. %V 267 %P 4247-4252 %D 1992 %A S. Bailey %A R.W. Evans %A R.C. Garratt %A B. Gorinsky %A S. Hasnain %A C. Horsburgh %A H. Jhoti %A P.F. Lindley %A A. Mydin %A R. Sarra %A J.L. Watson %T Molecular structure of serum transferrin at 3.3\(Ao resolution %J Biochemistry %V 27 %P 5804-? %D 1988 %K 0TFD %A B.S. Baines %A K. Brocklehurst %T A necessary modification to the preparation of papain from any high-quality latex of carica papaya and evidence for the structural integrity of the enzyme produced by traditional methods %J Biochem. J. %P 541-548 %V 177 %D 1979 %A W. Bains %T Sequence \(em so what ? %J Bio/Technology %V 10 %P 751-752 %D 1992 %A A. Bairoch %T Prosite: A dictionary of protein sites and patterns %O 5th edition %C University of Geneva %A A. Bairoch %T \s-2PROSITE\s0: A dictionary of sites and patterns in proteins %J Nucl. Acids Res. %V 19 %P 2241-2245 %D 1991 %A A. Bairoch %A B. Boeckmann %T The \s-2SWISS-PROT\s0 protein sequence data bank %J Nucl. Acids Res. %V 19 %P 2247-2249 %D 1991 %A M. Bajaj %A T.L. Blundell %T Evolution and the tertiary structure of proteins %J Annu. Rev. Biophys. Bioeng. %V 13 %D 1984 %P 453-492 %A J. Bajorath %A S. Raghunathan %A W. Hinrichs %A W. Saenger %T Long-range structural changes in proteinase K triggered by calcium ion removal %J Nature %D 1989 %V 337 %P 481-484 %K serine proteinase allostery ions subtilisin %A J. Bajorath %A R. Stenkamp %A A. Aruffo %T Knowledge-based model building of proteins: Concepts and examples %J Prot. Sci. %V 2 %P 1798-1810 %D 1993 %A E.N. Baker %T Structure of actinidin. Details of the polypeptide chain conformation and active site from an electron density map at 2.8\(Ao resolution %J J. Mol. Biol. %V 115 %P 263-? %D 1977 %K 2ACT %A E.N. Baker %T Structure of actinidin after refinement at 1.7\(Ao resolution %J J. Mol. Biol. %V 141 %D 1980 %P 441-484 %K thiol proteinase structure refinement %A E.N. Baker %T Structure of azurin from \f2Alcaligenes denitrificans\f1: refinement at 1.8\(Ao resolution and comparison of the two crystallographically independent molecules %J J. Mol. Biol. %V 203 %D 1988 %P 1071-1095 %K PDB2AZA %A E.N. Baker %A T.L. Blundell %A J.F. Cutfield %A S.M. Cutfield %A E.J. Dodson %A G.G. Dodson %A D.M. Crowfoot-Hodgkin %A R.E. Hubbard %A N.W. Isaacs %A C.D. Reynolds %A K. Sakabe %A N. Sakabe %A N.M. Vijayan %T The structure of 2 Zn pig insulin crystals at 1.5\(Ao resolution %J Phil. Trans. Roy. Soc. Lond. %V B 319 %P 369-? %D 1988 %K PDB4INS %A E.N. Baker %A E.J. Dodson %T Crystallographic refinement of the structure of actinidin at 1.7\(Ao resolution by fast Fourier least-squares methods %J Acta Cryst. %V A 36 %P 559-572 %D 1980 %K PDB2ACT %A E.N. Baker %A G. Dodson %T X-ray diffraction data on some crystalline varieties of insulin %J J. Mol. Biol. %V 54 %P 605-? %D 1970 %K 2INS %A E.N. Baker %A R.E. Hubbard %T Hydrogen bonding in globular proteins %J Prog. Biophys. Mol. Biol. %V 44 %D 1984 %P 97-139 %A E.P. Baldwin %A O. Hajiseyedjavadi %A W.A. Baase %A B.W. Matthews %T The role of backbone flexibility in the accomodation of variants that repack the core of T4 lysozyme %J Science %V 262 %P 1715-1718 %D 1993 %A E.T. Baldwin %A T.N. Bhat %A S. Gulnik %A M.V. Hosur %A R.C. Sowder,\0II %A R.E. Cachau %A J. Collins %A A.M. Silva %A J.W. Erickson %T Crystal structures of native and inhibited forms of human cathepsin D: Implications for lysosomal targeting and drug design %J Proc. Natl. Acad. Sci. USA %V 90 %P 6796-6800 %D 1993 %A E.T. Baldwin %A I.T. Weber %A R. St.\0Charles %A J.-C. Xuan %A E. Appella %A M. Yamada %A K. Matsushima %A B.F.P. Edwards %A G.M. Clore %A A.M. Gronenborn %A A. Wlodawer %T Crystal structure of interleukin 8: symbiosis of NMR and crystallography %J Proc. Natl. Acad. Sci. USA %V 88 %P 502-506 %D 1991 %K PNAS Gronenborn %A J.E. Baldwin %A G.M. Morris %A W.G. Rishards %T Electron transport in cytochrome P-450 by covalent switching %J Proc. R. Soc. Lond. %V B 245 %P 43-51 %D 1991 %A J.J. Baldwin %A G.S. Ponticello %A P.S. Anderson %A M.E. Christy %A M.A. Murcko %A W.C. Randall %A H. Schwam %A M.F. Sugrue %A J.P. Springer %A P. Gautheron %A J. Grove %A P. Mallorga %A M.-P. Viader %A B.M. McKeever %A M.A. Navia %T Thienothiopyran-2-sulfonamides: Novel topically active carbonic anhydrase inhibitors for the treatment of glaucoma %J J. Med. Chem. %V 32 %P 2510-2513 %D 1989 %A J.M. Baldwin %T The structure of human carbonmonoxy haemoglobin at 2.7\(Ao resolution %J J. Mol. Biol. %V 136 %P 103-? %D 1980 %K PDB1HCO PDB2HCO %A J. Baldwin %A C. Chothia %T Haemoglobin: the structural changes related to ligand binding and its allosteric mechanism %J J. Mol. Biol. %V 129 %P 175-? %D 1979 %K 2HCO %A R.L. Baldwin %T Temperature dependence of the hydrophobic interaction in protein folding %J Proc. Natl. Acad. Sci. USA %V 83 %P 8069-8072 %D 1986 %K PNAS %A R.L. Baldwin %T How does protein folding get started ? %J Trends Biochem. Sci. %V 14 %D 1989 %P 291-294 %K protein folding TIBS %A R.L. Baldwin %T Matching speed and stability %J Nature %V 369 %P 183-184 %D 1994 %A J.D. Baleja %A R. Marmorstein %A S.C. Harrison %A G. Wagner %T Solution structure of the DNA-binding domain of Cd\d\s-42\s0\u-GAL4 from \f2S. cerevisiae\f1 %J Nature %V 356 %P 450-453 %D 1992 %A A. Balfour %A D.H. Marwick %T Programming in Standard Fortran 77 %I Heinemann Educational Books %C London %D 1979 %A J.B. Ball %A P.R. Andrews %A P.F. Alewood %A R.A. Hughes %T A one-letter topographical descriptor for the \(*b-turns of peptides and proteins %J FEBS Letts. %V 273 %P 15-18 %D 1991 %K beta-turns %A R. Bally %A J. Delttre %T Structure and refinement of the oxidized P2\d\s-41\s0\u form of uterglobin at 1.64\(Ao resolution %J J. Mol. Biol. %V 206 %P 501-? %D 1989 %K PDB2UTG %A D. Baltimore %T Retroviruses and retrotransposons: the role of reverse transcription in shaping the eukaryotic genome %J Cell %V 40 %D 1985 %P 481-482 %A L.J. Banaszak %A L.E. Webb %T Nicotinamide adenine dinucleotide and the active site of cytoplasmic malate dehydrogenase %B Structure and conformation of nucleic acids and protein-nucleic acid interactions %C Baltimore, MD %I University Park Press %E M. Sundralingham and S.T. Rao %P 375-? %D 1975 %K 4MDH %A S. Bando %A Y. Matsuura %A N. Tanaka %A N. Yasuoka %A M. Kakudo %A T. Yagi %A H. Inokuchi %T Crystallographic data for cytochrome \f2c\f1\d\s-23\s0\u from two strains of \f2Desulfovibrio vulgaris, miyazaki\f1 %J J. Biochem. (Tokyo) %V 86 %P 269-? %D 1979 %K 2CDV %A R. Banerjee %A S.C. Mande %A V. Ganesh %A K. Das %A V. Dhanaraj %A S.K. Mahanta %A K. Suguna %A A. Suriola %A M. Vijayan %T Crystal structure of peanut lectin, a protein with an unusual quaternary structure %J Proc. Natl. Acad. Sci. USA %V 91 %P 227-231 %D 1994 %A D.W. Banner %A A.C. Bloomer %A G.A. Petsko %A D.C. Phillips %T Crystallographic studies of chicken triose phosphate isomerase %J Cold Spring Harbor Symp. Quant. Biol. %V 36 %P 151-? %D 1972 %K 1TIM %A D.W. Banner %A A.C. Bloomer %A G.A. Petsko %A D.C. Phillips %A C.I. Pogson %A I.A. Wilson %A P.H. Corran %A A.J. Furth %A J.D. Milman %A R.E. Offord %A J.D. Priddle %A S.G. Waley %T Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5\(Ao resolution using amino acid sequence data %J Nature %V 255 %P 609-614 %D 1975 %K PDB1TIM %A D.W. Banner %A A.C. Bloomer %A G.A. Petsko %A D.C. Phillips %A I.A. Wilson %T Atomic coordinates for triose phosphate isomerase from chicken muscle %J Biochem. Biophys. Res. Comm. %V 72 %P 146-155 %D 1976 %K 1TIM %A D.W. Banner %A P. Hadvary %T Crystallographic analysis at 3.0\(oA resolution of the binding to human thrombin of four active site-directed inhibitors %J J. Biol. Chem. %V 266 %P 20085-20093 %D 1991 %A D.W. Banner %A M. Kokkinidis %A D. Tsernoglou %T Structure of the col1E \f2rop\f1 protein at 1.7\(Ao resolution %J J. Mol. Biol. %V 196 %P 657-675 %D 1987 %A S.H. Banyard %A D.K. Stammers %A P.M. Harrison %T Electron density map of apoferritin at 2.8\(Ao resolution %J Nature %V 271 %P 282-? %D 1978 %K 0AF1 %A S.H. Banyard %A D.K. Stammers %A P.M. Harrison %A G.A. Clegg %T Apoferritin at 2.8\(Ao resolution %J Acta Cryst. %V A 34 %P 62-? %D 1978 %K 0AF1 %A J.A. Banzon %A J.W. Kelly %T \(*b-sheet rearrangements: serpins and beyond %J Prot. Eng. %V 5 %P 113-115 %D 1992 %A C.F. Barbas\0III %A A.S. Kang %A R.A. Lerner %A S.J. Benkovic %T Assembly of combinatorial antibody libraries on phage surfaces: The gene III site %J Proc. Natl. Acad. Sci. USA %V 88 %P 7978-7982 %D 1991 %A D. Barford %A S.-H. Hu %A L.N. Johnson %T Structural mechanism for glycogen phosphorylase control by phosphorylation and AMP %J J. Mol. Biol. %V 218 %P 233-260 %D 1991 %A V. Barkholt %T Amino acid sequence of endothiapepsin %J Eur. J. Biochem. %V 167 %D 1987 %P 327-338 %K sequence aspartic proteinase endothiapepsin %A D.J. Barlow %A J.M. Thornton %T Ion-pairs in proteins %J J. Mol. Biol. %V 168 %P 867-885 %D 1983 %A D.J. Barlow %A J.M. Thornton %T The distribution of charged groups in proteins %J Biochemistry %V 25 %P 1717-1733 %D 1986 %A D.J. Barlow %A J.M. Thornton %T Helix geometry in proteins %J J. Mol. Biol. %V 201 %D 1988 %P 601-619 %A P.N. Barlow %A M. Baron %A D.G. Norman %A A.J. Day %A A.C. Willis %A R.B. Sim %A I.D. Campbell %T Secondary structure of a complement control protein module by two-dimensional \u\s-41\s0\dH NMR %J Biochemistry %V 30 %P 997-1004 %D 1991 %A P.N. Barlow %A D.G. Norman %A A. Steinkasserer %A T.J. Horne %A J. Pearce %A P.C. Driscoll %A R.B. Sim %A I.D. Campbell %T Solution structure of the fifth repeat of factor H: A second example of the complement control protein module %J Biochemistry %V 31 %P 3626-3634 %D 1992 %A A.K. Barnes %A C.H. Wynn %T Homology of lysozymal enzymes and related proteins: Prediction of posttranslational modification sites including phosphorylation of mannose and potential epitopic and substrate binding sites in the \(*a- and \(*b-subunits of hexosaminidases, \(*a-glucosidase, and rabbit and human isomaltose %J Proteins %V 4 %P 182-189 %D 1988 %A M. Baron %A A.L. Main %A P.C. Driscoll %A H.J. Mardon %A J. Boyd %A I.D. Campbell %T \u\s-21\s0\dH NMR assignments and secondary structure of the cell adhesion type III module of fibronectin %J Biochemistry %V 31 %P 2068-2073 %D 1992 %A M. Baron %A D.G. Norman %A I.D. Campbell %T Protein modules %J Trends Biochem. Sci. %V 16 %P 13-17 %D 1991 %K TIBS %A M. Baron %A D. Norman %A A. Willis %A I.D. Campbell %T Structure of the fibronectin type-1 module %J Nature %V 345 %D 1990 %P 642-646 %K NMR distance geometry mosaic module domain tPA %A A.J. Barrett %T Nomenclature and classification of the proteins homologous with cysteine-proteinase inhibitor chicken cystatin %J FEBS Lett. %P 312-312 %D 1986 %A A.J. Barrett %A A.A. Kembhavi %A M.A. Brown %A H. Kirshke %A C.G. Knight %A M. Tamai %A K. Hanada %T \s-2L\s0-trans-Epoxysuccinyl-leucylamido(4-guanido)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins including cathepsins B,H and L %J Biochem. J. %P 19-198 %V 201 %D 1982 %A P.A. Bartlett %A C.K. Marlowe %T Evaluation of intrinsic binding energy from a hydrogen bonding group in an enzyme inhibitor %J Science %V 235 %P 569-571 %D 1987 %A G.J. Barton %T Protein multiple sequence alignment and flexible pattern matching %J Methods Enzymol. %D 1990 %V 183 %P 403-428 %A G.J. Barton %T \s-2ALSCRIPT\s0: a tool to format multiple sequence alignments %J Prot. Eng. %V 6 %P 37-40 %D 1992 %A G.J. Barton %A R.B. Russell %A C.D. Livingstone %T Prediction of protein structure from multiple sequence alignment %J Methods in Protein Sequence Analysis %P 209-220 %E K. Imahori & F. Sakiyama %I Plenum Press %C New York %D 1993 %A G.J. Barton %A M.J.E. Sternberg %T Evaluation and improvements in the automatic alignment of protein sequences %J Prot. Eng. %V 1 %D 1987 %P 89-94 %K sequences comparison alignment accuracy %A G.J. Barton %A M.J.E. Sternberg %T A strategy for the rapid multiple alignment of protein sequences %J J. Mol. Biol. %V 198 %D 1987 %P 327-337 %K sequence comparison multiple alignment %A G.J. Barton %A M.J.E. Sternberg %T \s-2LOPAL\s0 and \s-2SCAMP\s0: techniques for the comparison and display of protein structures %J J. Mol. Graph. %V 6 %D 1988 %P 190-196 %K loops structure clustering graphics %A G.J. Barton %A M.J.E. Sternberg %T Flexible protein sequence patterns: a sensitive method to detect weak structural similarities %J J. Mol. Biol. %V 212 %D 1990 %P 389-402 %K alignment templates sequences %A H.D. Bartunik %A L.J. Summers %A H.H. Bartsch %T Crystal structure of bovine \(*b-trypsin at 1.5\(Ao resolution in a crystal form with low molecular packing density: active site geometry, ion pairs and solvent structure %J J. Mol. Biol. %V 210 %P 813-? %D 1989 %K PDB1TLD %A V.V. Barynin %A V.R. Melik-Adamyan %T The mechanism of crystallization of proteins in an ultracentrifuge %J Sov. Phys. Cryst. (English trans.) %V 27 %P 588-? %D 1982 %K 4CAT %A P.A. Bash %A U.C. Singh %A F.K. Brown %A R. Langridge %A P.A. Kollman %T Calcualtion of the relative change in binding free energy of a protein-inhibitor complex %J Science %V 235 %P 574-576 %D 1987 %A P.A. Bash %A U.C. Singh %A F.K. Brown %A R. Langridge %A P.A. Kollman %T Calculation of the relative change in binding free energy of a protein-inhibitor complex %J Science %V 235 %D 1987 %P 574-576 %A D. Bashford %A C. Chothia %A A.M. Lesk %T Determinants of a protein fold: unique features of the globin amino acid sequences %J J. Mol. Biol. %V 196 %D 1987 %P 199-216 %A D. Bashford %A F.E. Cohen %A M. Karplus %A I.D. Kuntz %A D.L. Weaver %T Diffusion collision model for the folding kinetics of myoglobin %J Proteins %V 4 %D 1988 %P 211-227 %A M.B. Bass %A D.F. Hopkins %A W.A.N. Jaquysh %A R.L. Ornstein %T A method for determining the positions of polar hydrogens added to a protein structure that maximizes protein hydrogen bonding %J Proteins %V 12 %P 266-277 %D 1992 %A P. Basset %A J.P. Bellocq %A C. Wolf %A I. Stoll %A P. Hutin %A J.M. Limacher %A O.L. Podhajcer %A M.P. Chenard %A M.C. Rio %A P. Chambon %T A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas %J Nature %V 348 %P 699-704 %D 1990 %A D. Bassolino-Klimas %A R.E. Bruccoleri %T Application of a directed conformaitonal search for generating 3-D coordinates for protein structures from \(*a-carbon coordinates %J Proteins %V 14 %P 465-474 %D 1992 %A P.A. Bates %A J. Luo %A M.J.E. Sternberg %T A predicted three-dimensional structure for the carcinoembryonic antigen %J FEBS Lett. %V 301 %P 207-214 %D 1992 %A P.A. Bates %A M.J. McGregor %A S.A. Islam %A Q.J. Sattentau %A M.J.E. Sternberg %T A predicted three-dimensional structure for the human immunodeficiency virus binding domains of CD4 antigen %J Prot. Eng. %V 3 %D 1989 %P 13-21 %K modelling HIV receptor alignment immunoglobulin %A P.A. Bates %A M.J.E. Sternberg %T From protein sequence to structure %P 117-141 %B Protein Engineering: A practical approach %E A.R. Rees, M.J.E. Sternberg and R. Wetzel %I IRL Press %C Oxford %D 1992 %A M. Baudy\(sv %A M. Ghosh %A K. Harlos %A M. Mare\(sv %A M. Fusek %A V. Kostka %A C.C.F. Blake %T Crystallization and preliminary crystallographic study of cathepsin D inhibitor from potatoes %J J. Mol. Biol. %V 218 %P 21-22 %D 1991 %K Baudys Mares %A M. Baudy\(sv %A V. Kostka %T Covalent structure of chicken pepsinogen %J Eur. J. Biochem. %V 136 %D 1983 %P 89-99 %K Baudys %A A.J. Bauer %A I. Rayment %A P.A. Frey %A H.M. Holden %T The molecular structure of UDP-galactose 4-epimerase from \f2Escherichia coli\f1 determined at 2.5\(Ao resolution %J Proteins %V 12 %P 372-381 %D 1992 %A J. Baum %A C.M. Dobson %A P.A. Evans %A C. Hanley %T Characterization of a partly folded protein by NMR methods: Studies on the molten globule state of guinea-pig \(*a-lactalbumin %J Biochemistry %V 28 %P 7-13 %D 1989 %A G. Baumann %A C. Fr\(o:mmel %A C. Sander %T Polarity as a criterion in protein design %J Prot. Eng. %V 2 %D 1989 %P 329-334 %K Frommel %A U. Baumann %A W. Bode %A R. Huber %A J. Travis %A J. Potempa %T Crystal structure of cleaved equine leucocyte elastase inhibitor determined at 1.95\(Ao resolution %J J. Mol. Biol. %V 226 %P 1207-1218 %D 1992 %A U. Baumann %A R. Huber %A W. Bode %A D. Grosse %A M. Lesjak %A C.B. Laurell %T Crystal structure of cleaved human \(*a\d\s-21\s0\u-antichymotrypsin at 2.7\(Ao resolution and its comparison with other serpins %J J. Mol. Biol. %V 218 %P 595-606 %D 1991 %A U. Baumann %A R. Huber %A W. Bode %A D. Grosse %A M. Lesjak %A C.B. Laurell %T Crystal structure of cleaved human \(*a\d\s-41\s0\u-antichymotrypsin at 2.7\(Ao resolution and its comparison with other serpins %J J. Mol. Biol. %V 218 %P 595-606 %D 1991 %A U. Baumann %A S. Wu %A K.M. Flaherty %A D.B. McKay %T Three-dimensional structure of the alkaline protease of \f2Psedomonas aeruginosa\fP: A two domain protein with a calcium binding parallel beta roll motif %J EMBO J. %V 12 %P 3357-3364 %D 1993 %A A. Bax %T Two-dimensional NMR and protein structure %J Annu. Rev. Biochem. %V 58 %D 1989 %P 223-256 %K 2D distance geometry restrained dynamics %A B. Bax %A R. Lapatto %A V. Nalini %A H. Driessen %A P.F. Lindley %A D. Mahadevan %A T.L. Blundell %A C. Slingsby %T X-ray analysis of \(*bB2-crystallin and evolution of oligomeric lens proteins %J Nature %V 347 %P 776-780 %D 1990 %A J.F. Bazan %T Haemopoietic receptors and helical cytokines %J Immunol. Today %V 11 %D 1990 %P 350-354 %A J.F. Bazan %T Structural design and molecular evolution of a cytokine receptor superfamily %J Proc. Natl. Acad. Sci. USA %D 1990 %V 87 %P 6934-6938 %K PNAS %A J.F. Bazan %T Helical fold prediction for the cyclin box %J Proteins %V 24 %P 1-17 %D 1996 %A J.F. Bazan %A R.J. Fletterick %T Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structure and functional implications %J Proc. Natl. Acad. Sci. USA %V 85 %P 7872-7876 %D 1988 %K Modelling prediction picornavirus alignment PNAS %A J.F. Bazan %A R.J. Fletterick %T Detection of trypsin-like serine protease domain in flaviviruses and pestiviruses %J Virology %V 171 %P 627-639 %D 1992 %A J.F. Bazan %A D.B. McKay %T Unravelling the structure of IL-2 %J Science %V 257 %P 410-413 %D 1992 %A R.S. Bear %A J.B. Adams %A J.W. Poult %T Disclosure by Fourier methods of a long-range pattern of non-polar residues in the \(*a1(I) sequence of collagen %J J. Mol. Biol. %V 118 %D 1978 %P 123-126 %K periodicity patterns %A J.W. Becker %A A.I. Marcy %A L.L. Rokosz %A M.G. Axel %A J.J. Burbaum %A P.M.D. Fitzgerald %A P.M. Cameron %A C.K. Esser %A W.K. Hagmann %A J.D. Hermes %A J.P. Springer %T Stromelysin-1: Three-dimensional structure of the inhibited catalytic domain and of the C-truncated proenzyme %J Prot. Sci. %V 4 %P 1966-1976 %D 1995 %A J.W. Becker %A G.N. Reeke %T Three-dimensional structure of \(*b\d\s-22\s0\u-microglobulin %J Proc. Natl. Acad. Sci. USA %V 82 %D 1985 %P 4225-4229 %K immunoglobulin comparison PNAS %A J.W. Becker %A G.N. Reeke,\0Jr. %A J.L. Wang %A B.A. Cunningham %A G.M. Edelman %T The covalent and three-dimensional structure of concanavalin A: III. structure of the monomer and its interactions with metals and saccharides %J J. Biol. Chem. %V 250 %P 1513-1524 %D 1975 %K 2CNA %A J.W. Becker %A J.A. Ziffer %A G.M. Edelman %A B.A. Cunningham %T Crystallographic studies of bovine \(*b\d\s-22\s0\u-microglobulin %J Proc. Natl. Acad. Sci. USA %V 74 %P 3345-? %D 1977 %K 0B2M %A G. Beckmann %A P. Bork %T An adhesive domain detected in functionally diverse receptors %J Trends Biochem. Sci. %V 18 %P 40-41 %D 1993 %A S. Bedarkar %A W.G. Turnell %A T.L. Blundell %A C. Schwabe %T Relaxin has conformational homology with insulin %D 1977 %V 270 %J Nature %P 449-451 %A C.R. Beddell %A C.C.F. Blake %A S.J. Oatley %T An X-ray study of the structure and binding properties of iodine-inactivated lysozyme %J J. Mol. Biol. %V 97 %P 643-? %D 1975 %K PDB8LYZ 2LYZ %A M.J. Behe %A E.E. Lattman %A G.D. Rose %T The protein folding problem: The native fold determines packing, but does packing determine the native fold ? %J Proc. Natl. Acad. Sci. USA %V 88 %P 4195-4199 %D 1991 %A D. Belin %A J.-D. Vassalli %A C. Comb\(e'pine %A F. Godeau %A Y. Nagamine %A E. Reich %A H.P. Kocher %A R.M. Duvoisin %T Cloning nucleotide sequencing and expression of cDNAs encoding mouse urokinase-type plasminogen activator %J Eur. J. Biochem. %V 148 %D 1985 %P 225-232 %K Combepine %A A. Ben-Naim %T Solvation: from small to macro molecules %J Curr. Opin. Struct. Biol. %V 4 %P 264-268 %D 1994 %A T. Benchetrit %A V. Bissery %A J.P. Mornon %A A. Devault %A P. Crine %A B.P. Roques %T Primary structure homologies between two zinc metallopeptidases the neutral endopeptidase 24.11 (enkephalinase) and thermolysin through clustering analysis %J Biochemistry %V 27 %D 1988 %P 592-596 %K metalloproteases thermolysin alignment cluster analysis %A S.A. Benner %T Patterns of divergence in homologous proteins as indicators of tertiary and quaternary structure %J Adv. Enzym. Reg. %V 29 %P 219-236 %D 1989 %A S.A. Benner %A M.A. Cohen %A D. Gerloff %T Correct structure prediction ? %J Nature %V 359 %P 781 %D 1992 %A S.A. Benner %A M.A. Cohen %A G.H. Gonnert %T Empirical and structural models for insertiosn and deletions in the divergent evolution of proteins %J J. Mol. Biol. %V 229 %P 1065-1082 %D 1993 %A S.A. Benner %A M.A. Cohen %A G.H. Gonnet %T Amino acid substitution during functionally constrained divergent evolution of protein sequences %J Prot. Eng. %V 7 %P 1323-1332 %D 1994 %A S.A. Benner %A D. Gerloff %T Patterns of divergence in homologous proteins as indicators of secondary and tertiary structure: A prediction of the structure of the catalytic domain of protein kinases %J Adv. Enzym. Reg. %V 31 %P 121-181 %D 1990 %A S.A. Benner %A D. Gerloff %A G. Chelvanagam %T The phospho-\(*b-galactosidase and synaptotagmin predictions %J Proteins %V 23 %P 446-453 %D 1995 %A D. Benner-Luger %A W. Boos %T The mg1B sequence of \f2Salmonella typhimurium\f1 LT2; promoter analysis by gene fusions and evidence for a divergently oriented gene coding for the MG1 repressor %J Mol. Gen. Genet. %V 214 %P 579-? %D 1988 %K 3GBP %A W.S. Bennet %A R. Huber %T Structural and functional aspects of domain motions in proteins %J CRC Crit. Rev. Biochem. %V 15 %D 1984 %P 291-384 %K domains dynamics association %A C.D. Bennett %A J.A. Rodkey %A J.M. Sondey %A R. Hirschmann %T Dihydrofolate reductase: the amino acid sequence of the enzyme from a methotrexate-resistant mutant of \f2Escherichia coli\f1 %J Biochemistry %V 17 %P 1328-? %D 1978 %K 4DFR 5DFR 6DFR 7DFR %A M.J. Bennett %A S. Choe %A D. Eisenberg %T Domain swapping: Entangling aliiances between proteins %J Proc. Natl. Acad. Sci. USA %V 91 %P 3127-3131 %D 1994 %A W.S. Bennett,\0Jr. %A T.A. Steitz %T Glucose-induced conformational change in yeast hexokinase %J Proc. Natl. Acad. Sci. USA %V 75 %P 4848-4852 %D 1978 %K 1HKG PNAS %A W.S. Bennett,\0Jr. %A T.A. Steitz %T Structure of a complex between yeast hexokinase A and glucose: II. detailed comparisons of conformation and active site configuration with the native hexokinase B monomer and dimer %J J. Mol. Biol. %V 140 %P 211-? %D 1980 %K 1HKG %A W.S. Bennett,\0Jr. %A T.A. Steitz %T Structure of a complex between yeast hexokinase A and glucose: I. structure determination and refinement at 3.5\(Ao resolution %J J. Mol. Biol. %V 140 %P 183-? %D 1980 %K 1HKG %A M.M. Benning %A A.F. Smith %A M.A. Wells %A H.M. Holden %T Crystallization, structure determination and least-squares refinement to 1.75\(Ao resolution of the fatty-acid-binding protein isolated from \f2Manduca sexta\f1 L. %J J. Mol. Biol. %V 228 %P 208-219 %D 1992 %A M.M. Benning %A G. Wesenberg %A M.S. Caffrey %A R.G. Bartsch %A T.E. Meyer %A M.A. Cusanovich %A I. Rayment %A H.M. Holden %T Molecular structure of cytochrome \f2c\f1\d\s-42\s0\u isolated from \f2Rhodobacter capsulatus\f1 determined at 2.5\(Ao resolution %J J. Mol. Biol. %V 220 %P 673-685 %D 1991 %A D.A. Benson %A M. Boguski %A D.J. Lipman %A J. Ostell %T GenBank %J Nucl. Acids Res. %V 22 %P 3441-3444 %D 1994 %A G.A. Bentley %A G. Boulot %A M.M. Riottot %A R.J. Poljak %T Three-dimensional structure of an idiotype\(emanti-idiotype complex %J Nature %V 348 %D 1990 %P 254-257 %A G.A. Bentley %A E.D. Duee %A S.A. Mason %A A.C. Nunes %T Protein structure determination by neutron diffraction: lysozyme %J J. Chim. Phys. Phys.-Chem. Bio. %V 76 %P 817-? %D 1979 %K 0LZ5 %A G.A. Bentley %A S.A. Mason %T Neutron diffraction studies of proteins %J Phil. Trans. Roy. Soc. Lond. %V 290 %P 505-? %D 1980 %K 0LZ5 %A G. Bentley %A G. Dodson %A A. Lewitova %T Rhombohedral insulin crystal transformation %J J. Mol. Biol. %V 126 %P 871-? %D 1978 %K 2INS %A H. Berchtold %A L. Reshetikova %A C.O.A. Reiser %A N.K. Schirmer %A M. Sprinzl %A R. Hilgenfeld %T Crystal structure of active elongation factor Tu reveals major domain rearrangments %J Nature %V 365 %P 126-132 %D 1993 %A H.J.C. Berendsen %A J.P.M. Postma %A W.F. van\0Gunsteren %A A. DiNola %A J.R. Haak %T Molecular dynamics with coupling to an external bath %J J. Chem. Phys. %V 81 %P 3684-3690 %D 1984 %A J.M. Berg %T Proposed structure for the zinc-binding domains from transcription factor IIIA and related proteins %J Proc. Natl. Acad. Sci. USA %V 85 %D 1988 %P 99-102 %K PNAS %A O.G. Berg %T Statistical ensembles for sequence variability %J J. Mol. Biol. %V 202 %D 1988 %P 743-750 %A A. Berger %A E. Schiltz %A G.E. Schulz %T Guanylate kinase from \f2Saccharomyces cerevisiae\f1: Isolation and characterization, crystallization and preliminary X-ray analysis, amino acid sequence and comparison with adenylate kinases %J Eur. J. Biochem. %V 184 %P 433-? %D 1989 %K 1AK3 %A J.M. Berger %A S.J. Gamblin %A S.C. Harrison %A J.C. Wang %T Structure and mechanism of DNA topoisomerase II %J Nature %V 379 %P 225-232 %D 1996 %A S.A. Berger %A P.R. Evans %T Active-site mutants altering the cooperativity of \f2E. coli\f1 phosphofructokinase %J Nature %V 343 %D 1990 %P 575-576 %A T. Bergfors %A J. Rouvinen %A P. Lehtovaara %A X. Caldentey %A P. Tomme %A M. Claessens %A G. Pettersson %A T. Teeri %A J. Knowles %A T.A. Jones %T Crystallization of the core protein of cellobiohydrolase II from \f2Trichoderma reesei\f1 %J J. Mol. Biol. %V 209 %P 167-? %D 1989 %K 3CBH %A J. Bergman %A M. Green %A E. Sugg %A R. Anderegg %A D.S. Millington %A D.L. Norwood %A J. McGeehan %A J. Wiseman %T Rapid optimization of enzyme substrates using defined substrate mixtures %J J. Biol. Chem. %V 267 %P 1434-1437 %D 1992 %A J. Bergsma %A W.G.J. Hol %A J.N. Jansonius %A K.H. Kalk %A J.H. Ploegman %A J.D.G. Smit %T The double domain structure of rhodanese %J J. Mol. Biol. %V 98 %P 637-? %D 1975 %K 1RHD %A C.H. Berlot %A H.R. Bourne %T Identification of effector-activating residues of G\d\s-4S\(*a\s0\u %J Cell %V 68 %P 911-922 %D 1992 %A M.P. Bernard %A M.L. Chu %A J.C. Myers %A F. Ramirez %A E.F. Eikenberry %A D.J. Prockup %T Nucleotide sequences of complementary deoxyribonucleic acids for the pro-\(*a1 chain of human type-I procollagen: statistical evaluation of structures that are conserved during evolution %J Biochemistry %V 22 %D 1983 %P 5213-5223 %K phylogeny statistics collagen composition %A F.C. Bernstein %A T.F. Koetzle %A G.J.B. Williams %A E.F. Meyer,\0Jr. %A M.D. Brice %A J.R. Rodgers %A O. Kennard %A T. Shimanouchi %A M. Tasumi %T The Protein Data Bank: a computer based archival file for macromolecular structures %J J. Mol. Biol. %V 112 %D 1977 %P 535-542 %K PDB Brookhaven database %A H.D. Bernstein %A M.A. Poritz %A K. Strub %A P.J. Hoben %A S. Brenner %A P. Walter %T Model for signal sequence recognition from amino-acid sequence of 54K subunit of signal recognition particle %J Nature %V 340 %D 1989 %P 482-486 %K alignment modelling recognition %A J. Berthou %A P. Jolles %T A phase transition in a protein crystal: the example of hen lysozyme %J Biochim. Biophys. Acta %V 336 %P 222-? %D 1974 %K 0LZT %A J. Berthou %A A. Lifchitz %A P. Artymiuk %A P. Jolles %T An X-ray study of the physiological-temperature form of hen egg white lysozyme at 2\(Ao resolution %J Proc. Roy. Soc. Lond. %V B 217 %P 471-? %D 1983 %K 0LZT %A C. Betzel %A M. Bellemann %A G.P. Pal %A J. Bajorath %A W. Saenger %A K.S. Wilson %T X-ray and model building studies of the specificity of the active site of proteinase K %J Proteins %V 4 %D 1988 %P 157-164 %K serine proteinase modelling alignment %A C. Betzel %A S. Klupsch %A G. Papendorf %A S. Hastrup %A S. Branner %A K.S. Wilson %T Crystal structure of the alkaline proteinase savinase\u\s-4TM\s0\d from \f2Bacillus lentus\f1 at 1.4\(Ao resolution %J J. Mol. Biol. %V 223 %P 427-445 %D 1992 %A C. Betzel %A G.P. Pal %A W. Saenger %T Synchrotron X-ray data collection and restrained least-squares refinement of the crystal structure of proteinase K at 1.5\(Ao resolution %J Acta Cryst. %V B 44 %P 163-174 %D 1988 %K PDB2PRK %A C. Betzel %A G.P. Pal %A M. Struck %A K.-D. Jany %A W. Saenger %T Active-site geometry of proteinase K: crystallographic study of its complex with a dipeptide chloromethyl ketone inhibitor %J FEBS Lett. %V 197 %P 105-? %D 1986 %K 2PRK %A C. Betzel %A A.V. Teplyakov %A E.H. Harutyunyan %A W. Saenger %A K.S. Wilson %T Thermitase and proteinase K: a comparison of the refined three-dimensional structures of the native enzymes %J Prot. Eng. %V 3 %P 161-172 %D 1990 %K subtilisin %A L.L. Beuning %A T.W. Spriggs %A J.T. Christeller %T Evolution of the proteinase inhibitor I family and apparent lack of hypervariability in the proteinase contact loop %J J. Mol. Evol. %V 39 %P 644-654 %D 1994 %A A.J. Beveridge %A G.C. Heywood %T A quantum mechanical study of the active site of aspartic proteinases %J Biochemistry %V 32 %P 3325-3333 %D 1993 %A D.L. Beveridge %A F.M. DiCapua %T Free energy via molecular simulation %J Annu. Rev. Biophys. Biophys. Chem %V 18 %P 431-492 %D 1989 %A D.L. Beveridge %A F.M. DiCapua %T Free energy via molecular simulation: A primer %P 1-26 %B Computer simulation of biomolecular systems: Theoretical and experimental applications %E W.F. van\0Gunsteren and P.K. Weiner %I ESCOM %C Leiden %D 1989 %A T.N. Bhat %A G.A. Bently %A T.O. Fischmann %A G. Boulot %A R.J. Poljak %T Small rearrangements in structures of Fv and Fab fragments of antibody D1.3 on antigen binding %J Nature %D 1990 %V 347 %P 483-485 %A T.N. Bhat %A D.M. Blow %T A density-modification method for the improvement of poorly resolved protein electron-density maps %J Acta Cryst. %V A 38 %P 21-? %D 1982 %K 3TS1 %A T.N. Bhat %A D.M. Blow %A P. Brick %A J. Nyborg %T Tyrosyl-tRNA synthetase forms a mononucleotide-binding fold %J J. Mol. Biol. %V 158 %P 699-709 %D 1982 %K 3TS1 %A T.N. Bhat %A V. Sasisekharan %A M. Vijayan %T An analysis of side-chain conformation in proteins %J Int. J. Pept. Prot. Res. %V 13 %D 1979 %P 170-184 %A N. Bhogal %A D. Donnelly %A J.B.C. Findlay %T The ligand binding site of the neurokinin 2 receptor %J J. Biol. Chem. %V 269 %P 27269-27274 %D 1994 %A F. Bieber %A V. Brachvogel %A R. Arni %A M. Fusek %A P. Metcalf %T Crystallization and initial crystallographic results for pepstatin A inhibited bovine cathepsin D %J J. Mol. Biol. %V 227 %P 1265-1268 %D 1992 %A J.-F. Biellmann %A J.-P. Samama %A C.-I. Br\(a:nd\(e'n %A H. Eklund %T X-ray studies of the binding of cibacron blue FGA3 to liver alcohol dehydrogenase %J Eur. J. Biochem. %V 102 %P 107-? %D 1979 %K 5ADH Branden %A G. Biesecker %A J.I. Harris %A J.C. Thierry %A J.E. Walker %A A.J. Wonacott %T Sequence and structure of \s-2D\s0-glyceraldehyde 3-phosphate dehydrogenase from \f2Bacillus stearothermophilus\f1 %J Nature %V 266 %P 328-333 %D 1977 %K 2GD1 %A G. Biesecker %A A.J. Wonacott %T Coenzyme binding and co-operativity in \s-2D\s0-glyceraldehyde 3-phosphate dehydrogenase %J Biochem. Soc. Trans. %V 5 %P 647-? %D 1977 %K 2GD1 %A M. Billeter %A T.F. Havel %A I.D. Kuntz %T A new approach to the problem of docking two molecules: the ellipsoid algorithm %J Biopolymers %P 777-793 %V 26 %D 1987 %A M. Billeter %A T.F. Havel %A K. W\(u:thrich %T The ellipsoid algorithm as a method for the determination of polypeptide conformations from experimental distance constraints and energy minimization %J J. Comp. Chem. %V 8 %P 132-141 %D 1987 Wuthrich %A M. Billeter %A A.E. Howard %A I.D. Kuntz %A P.A. Kollman %T A new technique to calculate low-energy conformations of cyclic molecules utilizing the ellipsoid algorithm and molecular dynamics: application to 18-crown-6 ether %J J. Am. Chem. Soc. %P 8385-8391 %D 1988 %A M. Billeter %A A.D. Kline %A W. Braun %A R. Huber %A K. W\(u:thrich %T Comparison of the high-resolution structures of \(*a-amylase inhibitor tendamistat determined by nuclear magnetic resonance in solution and by X-ray diffraction in single crystals %J J. Mol. Biol. %V 206 %P 677-687 %D 1989 %K Wuthrich %A M. Bilzer %A R.L. Krauth-Siegel %A R.H. Schirmer %A T.P.M. Akerboom %A H. Sies %A G.E. Schulz %T Interaction of a glutathione S-conjugate with glutathione reductase: kinetic and X-ray crystallographic studies %J Eur. J. Biochem. %V 138 %P 373-? %D 1984 %K 3GRS %A J.J. Birktoft %A L.J. Banaszak %T The presence of a histidine-aspartic acid pair in the active site of 2-hydroxyacid dehydrogenases: X-ray refinement of cytoplasmic malate dehydrogenase %J J. Biol. Chem. %V 258 %P 472-? %D 1983 %K 4MDH %A J.J. Birktoft %A D.M. Blow %T Structure of crystalline \(*a-chymotrypsin: VI. the atomic structure of tosyl-\(*a-chymotrypsin at 2\(Ao resolution %J J. Mol. Biol. %V 68 %P 187-240 %D 1972 %K PDB2CHA %A J.J. Birktoft %A D.M. Blow %A R. Henderson %A T.A. Steitz %T The structure of \(*a-chymotrypsin %J Phil. Trans. Roy. Soc. Lond. %V B 257 %P 67-? %D 1970 %K 2CHA %A J.J. Birktoft %A R.A. Bradshaw %A L.J. Banaszak %T Structure of porcine heart cytoplasmic malate dehydrogenase: combining X-ray diffraction and chemical sequence data in structural studies %J Biochemistry %V 26 %P 2722-2734 %D 1987 %K 4MDH %A J.J. Birktoft %A R.T. Fernley %A R.A. Bradshaw %A L.J. Banaszak %T Amino acid sequence homology among the 2-hydroxy acid dehydrogenases: mitochondrial and cytoplasmic malate dehydrogenases form a homologous system with lactate dehydrogenase %J Proc. Natl. Acad. Sci. USA %V 79 %P 6166-6170 %D 1982 %K 4MDH PNAS %A J.J. Birktoft %A R.T. Fernley %A R.A. Bradshaw %A L.J. Banaszak %T The interactions of NAD/NADH with 2-hydroxy acid dehydrogenases %B Molecular structure and biological activity %P 37-? %D 1982 %K 4MDH %A J.J. Birktoft %A G. Rhodes %A L.J. Banaszak %T Refined crystal structure of cytoplasmic malate dehydrogenase at 2.5\(Ao resolution %J Biochemistry %V 28 %P 6065-6081 %D 1989 %K PDB4MDH %A Y.M.M. Bishop %A S.E. Fienberg %A P.W. Holland %T Discrete Multivariate Analysis %D 1975 %C Cambridge, Mass. %I MIT Press %A D. Bizub %A I.T. Weber %A C.E. Cameron %A J.P. Leis %A A.M. Skalka %T A range of catalytic efficiencies with avian retroviral protease subunits genetically linked to form single polypeptide chains %J J. Biol. Chem. %V 266 %P 4951-4958 %D 1991 %A P.J. Bjorkman %A M.A. Saper %A B. Samraoui %A W.S. Bennet %A J.L. Strominger %A D.C. Wiley %T The foreign antigen binding site and T-cell recognition regions of class I histocompatibility antigens %J Nature %V 329 %D 1987 %P 512-518 %K 1HLA %A P.J. Bjorkman %A M.A. Saper %A B. Samraoui %A W.S. Bennet %A J.L. Strominger %A D.C. Wiley %T Structure of the human class I histocompatibility antigen HLA-A2 %J Nature %V 329 %D 1987 %P 506-512 %K MHC %K PDB1HLA %A P.J. Bjorkman %A J.L. Strominger %A D.C. Wiley %T Crystallization and X-ray diffraction studies on the histocompatibility antigens HLA-A2 and HLA-A28 from human cell membranes %J J. Mol. Biol. %V 186 %P 205-210 %D 1985 %K 2HLA %A C.C.F. Blake %T X-ray studies of glycolytic enzymes %J Essays in Biochem. %V 11 %P 37-? %D 1975 %K 2PGK %A C.C.F. Blake %T Do genes-in-pieces imply proteins-in-pieces ? %J Nature %V 273 %P 267 %D 1978 %A C.C.F. Blake %T Exons \(em present from the beginning ? %J Nature %V 306 %P 535 %D 1983 %A C.C.F. Blake %A P.R. Evans %T Structure of horse muscle phosphoglycerate kinase, some results on the chain conformation, substrate binding and evolution of the molecule from a 3\(Ao Fourier map %J J. Mol. Biol. %V 84 %P 585-? %D 1974 %K 2PGK %A C.C.F. Blake %A P.R. Evans %A R.K. Scopes %T Structure of horse-muscle phosphoglycerate kinase at 6\(Ao resolution %J Nature, New Biol. %V 235 %P 195-198 %D 1972 %K 2PGK %A C.C.F. Blake %A M.J. Geisow %A S.J. Oatley %A B. Rerat %A C. Rerat %T Structure of prealbumin, secondary, tertiary and quaternary interactions determined by Fourier refinement at 1.8\(Ao %J J. Mol. Biol. %V 121 %P 339-356 %D 1978 %K PDB2PAB %A C.C.F. Blake %A M.J. Geisow %A I.D.A. Swan %A C. Rerat %A B. Rerat %T Structure of human plasma prealbumin at 2.5\(Ao resolution, a preliminary report on the polypeptide chain conformation, quaternary structure and thyroxine binding %J J. Mol. Biol. %V 88 %P 1-12 %D 1974 %K 2PAB %A C.C.F. Blake %A L.N. Johnson %T Protein structure %J Trends Biochem. Sci. %V 9 %P 147-151 %D 1984 %K TIBS %A C.C.F. Blake %A L.N. Johnson %A G.A. Mair %A A.C.T. North %A D.C. Phillips %A V.R. Sarma %T Crystallographic studies of the activity of hen egg-white lysozyme %J Proc. Roy. Soc. Lond. %V B 167 %P 378-? %D 1967 %K 3LYZ %A C.C.F. Blake %A D.F. Koenig %A G.A. Mair %A A.C.T. North %A D.C. Phillips %A V.R. Sarma %T Structure of hen egg-white lysozyme: a three-dimensional Fourier synthesis at 2\(Ao resolution %J Nature %V 206 %P 757-761 %D 1965 %K PDB1LYZ PDB2LYZ PDB3LYZ PDB4LYZ PDB5LYZ PDB6LYZ %A C.C.F. Blake %A G.A. Mair %A A.C.T. North %A D.C. Phillips %A V.R. Sarma %T On the conformation of the hen egg-white lysozyme molecule %J Proc. Roy. Soc. Lond. %V B 167 %P 365-? %D 1967 %K 3LYZ %A C.C.F. Blake %A S.J. Oatley %T Protein-DNA and protein-hormone interactions in prealbumin, a model of the thyroid hormone nuclear receptor ? %J Nature %V 268 %P 115-120 %D 1977 %K 2PAB %A C.C.F. Blake %A W.C.A. Pulford %A P.J. Artymiuk %T X-ray studies of water in crystals of lysozyme %J J. Mol. Biol. %V 167 %P 693-? %D 1983 %K 1LZ1 %A C.C.F. Blake %A D.W. Rice %T Phosphoglycerate kinase %J Phil. Trans. Roy. Soc. Lond. %V B 293 %P 93-? %D 1981 %K 2PGK %A C.C.F. Blake %A I.D.A. Swan %A C. Rerat %A J. Berthou %A A. Laurent %A B. Rerat %T An X-ray study of the subunit structure of prealbumin %J J. Mol. Biol. %V 61 %P 217-? %D 1971 %K 2PAB %A J.M. Blaney %A P.K. Weiner %A A. Dearing %A P.K. Kollman %A E.C. Jorgensen %A S.J. Oatley %A J.M. Burridge %A C.C.F. Blake %T Molecular mechanics simulation of protein-ligand interactions: binding of thyroid hormone analogues to prealbumin %J J. Am. Chem. Soc. %V 104 %P 6424-6434 %D 1982 %A R.L. Blanken %A L.C. Klotz %A A.G. Hinnebusch %T Computer comparison of new and existing criteria for constructing evolutionary trees from sequence data %J J. Mol. Evol. %D 1982 %V 19 %P 9-19 %A A.J. Bleasby %A J.C. Wooton %T Construction of validated, non-redundant composite protein sequence databases %J Prot. Eng. %V 3 %P 153-159 %D 1990 %A R.A. Blevins %A A. Tulinsky %T Comparison of the independent solvent structures of dimeric \(*a-chymotrypsin with themselves and with \(*g-chymotrypsin %J J. Biol. Chem. %V 260 %P 8865-? %D 1985 %K 5CHA %A R.A. Blevins %A A. Tulinsky %T The refinement and the structure of the dimer of \(*a-chymotrypsin at 1.67\(Ao resolution %J J. Biol. Chem. %V 260 %D 1985 %P 4264-4275 %K PDB5CHA %A A.C. Bloomer %A J.N. Champness %A G. Bricogne %A R. Staden %A A. Klug %T Protein disk of tobacco mosaic virus at 2.8\(Ao resolution showing the interactions within and between subunits %J Nature %V 276 %P 362-? %D 1978 %K 0TMV %A A.C. Bloomer %A J.N. Champness %A P.N.T. Unwin %T The hand of the stacked-disk aggregate of tobacco mosaic virus protein %J J. Mol. Biol. %V 105 %P 453-? %D 1976 %K 0TMV %A E.R. Blout %T The dependence of the conformation of polypeptides and proteins upon amino-acid composition %B Polyamino acids, polypeptides and proteins %E M.A. Stahmann %C Madison %I University of Wisconsin Press %D 1962 %P 275-279 %A E.R. Blout %A C. de\0Loze %A S.M. Bloom %A G.D. Fasman %T The dependence of the conformations of synthetic polypeptides on amino acid composition %J J. Am. Chem. Soc. %V 82 %D 1960 %P 3787-3789 %K protein structure secondary structure prediction peptide %A D.M. Blow %T The study of \(*a-chymotrypsin by X-ray diffraction %J Biochem. J. %V 112 %P 261-? %D 1969 %K 2CHA %A D.M. Blow %T The structure of chymotrypsin %J The Enzymes, Third edition %V 3 %P 185-? %D 1971 %K 2CHA %A D.M. Blow %T Structure and mechanism of chymotrypsin %J Acc. Chem. Res. %V 9 %D 1977 %P 145-152 %A D.M. Blow %T Computer cues to combat hypertension %J Nature %V 304 %P 213-214 %D 1983 %K renin modelling %A D.M. Blow %T More of the catalytic triad %J Nature %V 343 %P 694-695 %D 1990 %K convergent-evolution %A D.M. Blow %A J.J. Birktoft %A B.S. Hartley %T Role of a buried acid group in the mechanism of action of chymotrypsin %J Nature %V 221 %D 1969 %P 337-340 %K serine proteinase catalytic triad mechanism %A D.M. Blow %A M.J. Irwin %A J. Nyborg %T The peptide chain of tyrosyl tRNA synthetase: no evidence for a super-secondary structure of four \(*a-helices %J Biochem. Biophys. Res. Comm. %V 76 %P 728-? %D 1977 %K 3TS1 %A D.M. Blow %A J. Janin %A R.M. Sweet %T Mode of action of soybean trypsin inhibitor (Kunitz) as a model for specific protein-protein interactions %J Nature %P 54-57 %V 249 %D 1974 %A D.M. Blow %A C. Monteilhet %A J.R. Rubin %T Structure of aminoacyl tRNA synthetases %J Proc. FEBS Meet. %V 52 %P 59-? %D 1978 %K 3TS1 %A D.P. Bloxham %A D.C. Parmelee %A S. Kumar %A R.D. Wade %A L.H. Ericsson %A H. Neurath %A K.A. Walsh %A K. Titani %T Primary structure of porcine heart citrate synthase %J Proc. Natl. Acad. Sci. USA %V 78 %P 5381-5385 %D 1981 %K 3CTS PNAS %A M.L. Blum %A J.A. Down %A A.M. Gurnett %A M. Carrington %A M.J. Turner %A D.C. Wiley %T A structural motif in the variant surface glycoproteins of \f2Trypanosoma brucei\f1 %J Nature %V 362 %P 603-609 %D 1993 %A M. Blum %A A. Cunningham %A M. Bendiner %A T. Hofmann %T Penicillopepsin, the aspartic proteinase from \f2Penicillum janthinellum\f1: substrate binding and intermediates in transpeptidation reactions %J Biochemistry %P 1044-1046 %V 13 %D 1985 %A T.L. Blundell %T Diversity and invariance in the evolution of protein tertiary structure %J Chem. Scripta %V 26B %P 213-219 %D 1986 %A T.L. Blundell %T Comparative analysis of protein three-dimensional structures and an approach to the inverse folding problem %B Protein conformation %I Wiley %C Chichester %O Ciba Foundation symposium 161 %D 1991 %P 28-51 %A T.L. Blundell %T Metalloproteinase superfamilies and drug design %J Nature Structural Biology %V 1 %P 73-? %D 1994 %A T.L. Blundell %T Structural Molecular Biology and Drug Discovery %J Fd. Chem. Toxic. %V 33 %P 979-992 %D 1995 %A T.L. Blundell %A D. Barlow %A N. Borkakoti %A J. Thornton %T Solvent induced distortions and the curvature of \(*a-helices %J Nature %V 306 %D 1983 %P 281-283 %K protein structure alpha helices %A T.L. Blundell %A D. Barlow %A B.L. Sibanda %A J.M. Thornton %A W. Taylor %A I.J. Tickle %A M.J.E. Sternberg %A J.E. Pitts %A I. Haneef %A A.M. Hemmings %T Three-dimensional structural aspects of the design of new protein molecules %J Phil. Trans. Roy. Soc. Lond. %V A 317 %D 1986 %P 333-344 %K protein engineering modelling prediction %A T.L. Blundell %A S. Bedarkar %A R.E. Humbel %T Tertiary structures, receptor binding, and antigenicity of insulinlike growth factors %J Fed. Proc. %V 42 %P 2592-? %D 1983 %K PDB1GF1 PDB1GF2 %A T.L. Blundell %A S. Bedarkar %A E. Rindernecht %A R.E. Humbel %T Insulin-like growth factor: a model for tertiary structure accounting for immunoreactivity and receptor binding %J Proc. Natl. Acad. Sci. USA %V 75 %D 1978 %P 180-184 %K PNAS %A T.L. Blundell %A M. Brunori %A B. Curti %A M. Bolognesi %A A. Coda %A M. Fumagalli %A L. Ungaretti %T Crystallization and preliminary X-ray diffraction studies on met-myoglobin from \f2Aplysia limacina\f1 %J J. Mol. Biol. %V 97 %P 665-? %D 1975 %K 3MBA %A T.L. Blundell %A D. Carney %A S. Gardner %A F. Hayes %A B. Howlin %A T. Hubbard %A J.P. Overington %A D.A. Singh %A B.L. Sibanda %A M.J. Sutcliffe %T Knowledge-based protein modelling and design %J Eur. J. Biochem. %V 172 %D 1988 %P 513-520 %K modelling protein engineering %A T.L. Blundell %A D. Carney %A T. Hubbard %A M.S. Johnson %A A. McLeod %A J.P. Overington %A A. \(Svali %A M.J. Sutcliffe %A P. Thomas %E H. Bl\(o:cker, J. Collins, R.D. Schmid and D. Schomburg %B Advances in protein design: International workshop 1988, GBF Monographs %V 12 %D 1989 %P 39-43 %T Knowledge-based protein modelling and design Sali Blocker %A T.L. Blundell %A J. Cooper %A S.I. Foundling %T On the rational design of renin inhibitors: X-ray studies of aspartic proteinases complexed with transition state analogues %J Biochemistry %V 26 %P 5585-5590 %D 1987 %A T.L. Blundell %A J.F. Cutfield %A S.M. Cutfield %A E.J. Dodson %A G.G. Dodson %A D.C. Hodgkin %A D.A. Mercola %A M. Vijayan %T Atomic positions in rhombohedral 2-zinc insulin crystals %J Nature %V 231 %P 506-511 %D 1971 %K 3RLX %A T.L. Blundell %A J.F. Cutfield %A E.J. Dodson %A G.G. Dodson %A D.C. Hodgkin %A D.A. Mercola %T The crystal structure of rhombohedral 2 zinc insulin %J Cold Spring Harbor Symp. Quant. Biol. %V 36 %P 233-? %D 1972 %K 4INS %A T.L. Blundell %A G.G. Dodson %A E. Dodson %A D.C. Hodgkin %A M. Vijayan %T X-ray analysis and the structure of insulin %J Recent Prog. Horm. Res. %V 27 %P 1-? %D 1971 %K 4INS %A T.L. Blundell %A G. Elliot %A S.P. Gardner %A T. Hubbard %A S. Islam %A M. Johnson %A D. Mantafounis %A P. Murray-Rust %A J. Overington %A J.E. Pitts %A A. \(Svali %A B.L. Sibanda %A J. Singh %A M.J.E. Sternberg %A M.J. Sutcliffe %A J.M. Thornton %A P. Travers %T Protein engineering and design %J Phil. Trans. Roy. Soc. Lond. %V B 324 %D 1989 %P 447-460 %K modelling protein engineering %A T.L. Blundell %A R.E. Humbel %T Hormone families: pancreatic hormones and homologous growth factors %J Nature %V 287 %P 781-787 %D 1980 %K 1GF1 %A T.L. Blundell %A J.A. Jenkins %A G. Khan %A P. Roychowdhury %A T. Sewell %A I.J. Tickle %A E.A. Wood %T The three-dimensional structure of acid proteinases %J Proc. FEBS Meet. %V 52 %P 81-? %D 1979 %K 4APE 2ER9 4ER2 5ER1 2ER0 2ER6 2ER7 %A T.L. Blundell %A J.A. Jenkins %A B.T. Sewell %A L.H. Pearl %A J.B. Cooper %A I.J. Tickle %A B. Veerapandian %A S.P. Wood %T X-ray analyses of aspartic proteinases: I. the three-dimensional structure at 2.1\(Ao resolution of endothiapepsin %J J. Mol. Biol. %V 211 %D 1990 %P 919-941 %K PDB4APE %A T.L. Blundell %A J. Jenkins %A L.H. Pearl %A T. Sewell %T The high resolution structure of endothiapepsin %B Aspartic proteinases and their inhibitors %E V. Kostka %I Walter de Gruyter %C Berlin %P 151-161 %D 1985 %A T.L. Blundell %A L.N. Johnson %T Protein Crystallography %D 1976 %I Academic Press %C London %A T.L. Blundell %A M.S. Johnson %T Catching a common fold %J Protein Sci. %V 2 %P 877-883 %D 1993 %A T.L. Blundell %A M.S. Johnson %A J.P. Overington %A A. \(Svali %T Knowledge-based protein modeling and the design of novel molecules %B Protein design and the development of new therapeutics and vaccines, Proceedings of the sixth annual Smith, Kline and French research symposium %E G. Poste and G. Hook %I Plenum Press %C New York %D 1990 %P 209-227 %A T.L. Blundell %A H.B. Jones %A G. Khan %A G. Taylor %A T.S. Sewell %A L.H. Pearl %A S.P. Wood %T Active site of acid proteinases %J Proc. FEBS Meet. %V 60 %P 281-? %D 1979 %K 2ER9 4ER1 4ER2 5ER1 2ER0 2ER6 2ER7 4APE %A T.L. Blundell %A R. Lapatto %A A.F. Wilderspin %A A.M. Hemmings %A P.M. Hobart %A D.E. Danley %A P.J. Whittle %T The 3-D structure of HIV-1 proteinase and the design of antiviral agents for the treatment of AIDS %J Trends Biochem. Sci. %V 15 %P 425-430 %D 1990 %A T.L. Blundell %A P. Lindley %A L. Miller %A D. Moss %A C. Slingsby %A I. Tickle %A B. Turnell %A G. Wistow %T The molecular structure and stability of the eye lens: X-ray analysis of \(*g-crystallin II %J Nature %V 289 %D 1981 %P 771-777 %K structure crystallin %A T.L. Blundell %A L.H. Pearl %T Retroviral proteinases: a second front against AIDS %J Nature %D 1989 %V 337 %P 596-597 %K inhibitors design aspartic proteinases errors %A T.L. Blundell %A J.E. Pitts %A I.J. Tickle %A S.P. Wood %A C.-W. Wu %T X-ray analysis (1.4\(Ao resolution) of avian pancreatic polypeptide: small globular protein hormone %J Proc. Natl. Acad. Sci. USA %V 78 %P 4175-4179 %D 1981 %K PDB1PPT PNAS %A T.L. Blundell %A B.T. Sewell %A A.D. McLachlan %T Four-fold structural repeat in the acid proteases %J Biochim. Biophys. Acta %V 580 %P 24-31 %D 1979 %K 4APE %A T.L. Blundell %A T. Sewell %A J.A. Jenkins %A I.J. Tickle %A C. Slingsby %A D.S. Moss %A P.F. Lindley %A W.G. Turnell %A G. Wistow %T Structural evidence for gene duplication and fusion in the evolution of proteins %B Biomolecular structure, conformation, function, and evolution %E R. Srinivasan %P 251-256 %V 1 %I Pergamon Press %C Oxford %D 1978 %A T.L. Blundell %A B.L. Sibanda %A A. Hemmings %A S.I. Foundling %A I.J. Tickle %A L.H. Pearl %A S.P. Wood %T A rational approach to the design of renin inhibitors %J Topics Mol. Pharm. %V 3 %D 1986 %P 323-334 %A T.L. Blundell %A B.L. Sibanda %A L.H. Pearl %T Three-dimensional structure, specificity and catalytic mechanism of renin %J Nature %V 304 %D 1983 %P 273-275 %K modelling renin aspartic proteinase %A T.L. Blundell %A B.L. Sibanda %A M.J.E. Sternberg %A J.M. Thornton %T Knowledge-based prediction of protein structure and the design of novel molecules %J Nature %V 326 %D 1987 %P 347-352 %K modelling protein engineering prediction %A T.L. Blundell %A J. Singh %A J. Thornton %A S.K. Burley %A G. Petsko %T Aromatic interactions %J Science %V 234 %D 1986 %P 1005 %K sidechain sidechain aromatic rings packing %A T.L. Blundell %A M.J.E. Sternberg %T Computer-aided design in protein engineering %J Trends Biotech. %V 3 %D 1985 %P 228-235 %K modelling protein engineering prediction %A T. Blundell %A J. Cooper %A D. Donnelly %A H. Driessen %A Y. Edwards %A F. Eisenmenger %A C. Frazao %A M. Johnson %A K. Niefind %A M. Newman %A J. Overington %A A. \(Svali %A C. Slingsby %A V. Nalini %A Z. Zhu %T Patterns of sequence variation in families of homologous proteins %E H. J\(o:rnvall, ? H\(o:\(o:g, and ? Gustavsson %P 373-385 %D 1991 %I Birkh\(a:user Verlag %C Basel %B Methods in protein sequence analysis %K Sali Jornvall Hoog %A T. Blundell %A G. Dodson %A D. Hodgkin %A D. Mercola %T Insulin: the structure in the crystal and its reflection in chemistry and biology %J Adv. Prot. Chem. %V 26 %P 279-? %D 1972 %K 4INS %A J. Boberg %A T. Salakoski %A M. Vihinen %T Selection of a representative set of structures from Brookhaven Protein Data Bank %J Proteins %V 14 %P 265-276 %D 1992 %A L.C. Bock %A L.C. Griffin %A J.A. Latham %A E.H. Vermaas %A J.J. Toole %T Selection of single-stranded DNA molecules that bind and inhibit human thrombin %J Nature %V 355 %P 564-566 %D 1992 %A S.S. Boddupalli %A C.A. Hasemann %A K.G. Ravichandran %A J.-Y. Lu %A E.J. Goldsmith %A J. Deisenhofer %A J.A. Peterson %T Crystallization and preliminary X-ray diffraction analysis of p450\d\s-4terp\s0\u and the hemoprotein domain of p450\d\s-4BM-3\s0\u, enyzmes belonging to two distinct classes of the cytochrome p450 superfamily %J Proc. Natl. Acad. Sci. USA %V 89 %P 5567-5571 %D 1992 %A W. Bode %T The transition of bovine trypsinogen to a trypsin-like state upon strong ligand binding: II. the binding of the pancreatic trypsin inhibitor and of isoleucine-valine and of sequentially related peptides to trypsinogen and to \f2p\f1-guanidinobenzoate-trypsinogen %J J. Mol. Biol. %V 127 %P 357-? %D 1979 %K 3TPI %A W. Bode %A J. Brzin %A V. Turk %T Crystallization of chicken egg white cystatin, a low molecular weight protein inhibitor of cysteine proteinases, and preliminary X-ray diffraction data %J J. Mol. Biol. %V 181 %P 331-? %D 1985 %K 0CYS %A W. Bode %A Z. Chen %A K. Bartels %A C. Kutzbach %A G. Schmidt-Kastner %A H. Bartunik %T Refined 2\(Ao X-ray crystal structure of porcine pancreatic kallikrein A, a specific trypsin like serine protease: crystallization, structure determination, crystallographic refinement, structure and its comparison with bovine trypsin %J J. Mol. Biol. %V 164 %D 1983 %P 237-282 %K PDB2PKA %A W. Bode %A R. Engh %A D. Musil %A U. Thiele %A R. Huber %A A. Karshikov %A J. Brzin %A J. Kos %A V. Turk %T The 2.0\(Ao X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases %J EMBO J. %V 7 %P 2593-2599 %D 1988 %K 0CYS %A W. Bode %A O. Epp %A R. Huber %A M. Laskowski,\0Jr. %A W. Ardelt %T The crystal and molecular structure of the third domain of silver pheasant ovomucoid (OMSVP3) %J Eur. J. Biochem. %V 147 %D 1985 %P 387-395 %K PDB2OVO %A W. Bode %A H. Fehlhammer %A R. Huber %T Crystal structure of bovine trypsinogen at 1.8\(Ao resolution: I. data collection, application of Patterson search techniques and preliminary structural interpretation %J J. Mol. Biol. %V 106 %P 325-? %D 1976 %K 2CGA %A W. Bode %A F.-X. Gomis-R\(u:th %A W. St\(o:ckler %T Astacins serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the `metzincins' %J FEBS Letts. %V 331 %P 134-140 %D 1993 %A W. Bode %A F.X. Gomis-R\(u:th %A R. Huber %A R. Zwilling %A W. Stocker %T Structure of astacin and implications for activation of astacins and zinc-ligation of collagenases %J Nature %V 358 %P 164-167 %D 1992 %K Gomis-Ruth %A W. Bode %A H.J. Greyling %A R. Huber %A J. Otlewski %A T. Wilusz %T The refined 2.0\(Ao X-ray crystal structure of the complex formed between bovine \(*b-trypsin and (CMTI-I), a trypsin inhibitor from squash seeds (\f2Cucurbita maxima\f1). Topological similarity of the squash seed inhibitors with the carboxypeptidase A inhibitor from potatoes %J FEBS Lett. %V 242 %P 285-292 %D 1989 %K 0TTI %A W. Bode %A R. Huber %T Crystal structure analysis and refinement of two variants of trigonal trypsinogen %J FEBS Lett. %V 90 %P 265-? %D 1978 %K 1TGB %A W. Bode %A R. Huber %T Natural protein proteinase inhibitors and their interaction with proteinases %J Eur. J. Biochem. %V 204 %P 433-451 %D 1992 %A W. Bode %A I. Mayr %A U. Baumann %A R. Huber %A S.R. Stone %A J. Hofsteenge %T The refined 1.9\(Ao crystal structure of human \(*a-thrombin: interaction with \s-2D\s0-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment %J EMBO J. %V 8 %D 1989 %P 3467-3475 %K structure serine proteinase thrombin comparison %A W. Bode %A E. Meyer,\0Jr. %A J.C. Powers %T Human leukeocyte and porcine pancreatic elastase: X-ray crystal structure, mechanism, substrate specificity, and mechanism-based inhibitors %J Biochemistry %V 28 %P 1951-1963 %D 1989 %A W. Bode %A E. Papamokos %A D. Musil %T The high-resolution X-ray crystal structure of the complex formed between subtilisin Carlsberg and eglin-C, an elastase inhibitor from the leach \f2Hirudo medicinalis\f1: structural analysis, subtilisin structure and interface geometry %J Eur. J. Biochem. %V 166 %D 1987 %P 673-692 %K PDB1CSE %A W. Bode %A P. Reinemer %A R. Huber %A T. Kleine %A S. Schnierer %A H. Tschesche %T The X-ray crystal structure of the catalytic domain of human neutrophil collagnease inhibited by a substrate analogue reveals the essentials for catalysis and specficity %J EMBO J. %V 13 %P 1263-1269 %D 1994 %A W. Bode %A P. Schwager %T The refined crystal structure of bovine \(*b-trypsin at 1.8\(Ao resolution: II. crystallographic refinement, calcium-binding site, benzamidine binding site and active site at pH 7.0 %J J. Mol. Biol. %V 98 %D 1975 %P 693-717 %K serine proteinase trypsin structure %A W. Bode %A P. Schwager %T The single calcium-binding site of crystalline bovine \(*b-trypsin %J FEBS Lett. %V 56 %P 139-143 %D 1975 %K 2PTC %A W. Bode %A P. Schwager %A R. Huber %T Structural studies on the pancreatic trypsin inhibitor-trypsin complex and its free components: structure and function relationships in serine protease inhibition and catalysis %J Miami Winter Symp. %V 11 %P 43-? %D 1976 %K 3PTB %A W. Bode %A P. Schwager %A R. Huber %T The transition of bovine trypsinogen to a trypsin-like state upon strong ligand binding: the refined crystal structures of the bovine trypsinogen-pancreatic trypsin inhibitor complex and of its ternary complex with Ile-Val at 1.9\(Ao resolution %J J. Mol. Biol. %V 118 %P 99-? %D 1978 %K 3TPI %A W. Bode %A D. Turk %A A. Karshikov %T The refined 1.9\(oA X-ray crystal structure of \s-2D\s0-Phe-Pro-Arg chloromethylketone-inhibited human \(*a-thrombin: Structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships %J Prot. Sci. %V 1 %P 426-471 %D 1993 %A W. Bode %A J. Walter %A R. Huber %A H.R. Wenzel %A H. Tschesche %T The refined 2.2\(Ao (0.22-nm) X-ray crystal structure of the ternary complex formed by bovine trypsinogen, valine-valine and the Arg\d\s-215\s0\u analogue of bovine pancreatic trypsin inhibitor %J Eur. J. Biochem. %V 144 %P 185-? %D 1984 %K PDB4TPI %A E. Boel %A A.-M. Bech %A K. Randrup %A B. Draeger %A N.P. Fiil %A B. Foltmann %T Primary structure of a precursor to the aspartic proteinase from \f2Rhizomucor miehei\f1 shows that the enzyme is synthesized as a zymogen %J Proteins %V 1 %D 1986 %P 363-369 %K sequence aspartic proteinase %A E. Boel %A B. Huge-Jensen %A M. Christensen %A L. Thim %A N.P. Fiil %T \f2Rhizomucor miehei\f1 triglyceride lipase is synthesized as a precursor %J Lipids %V 23 %P 701-? %D 1988 %K 1TGL %A J. Boger %T Renin inhibitors: design of angiotensinogen transition-state analogs containing statine %B Aspartic proteinases and their inhibitors %E V. Kostka %P 401-420 %I Walter de\0Gruyter %C Berlin %D 1985 %A J. Boger %A L.S. Payne %A D.S. Perlow %A N.S. Lohr %A M. Poe %A E.H. Blaine %A E.H. Ulm %A T.W. Schorn %A B.I. LaMont %A T.-Y. Lin %A M. Kawai %A D.H. Veber %A D. Rich %T Renin inhibitors: syntheses of subnanomolar, competitive, transition-state analogue inhibitors containing a novel analogue of statine %J J. Med. Chem. %P 1779-1790 %V 28 %D 1985 %A M.S. Boguski %A J. Ostell %A D.J. States %T Molecular sequence data-bases and their uses %P 57-88 %B Protein Engineering: A practical approach %E A.R. Rees, M.J.E. Sternberg and R. Wetzel %I IRL Press %C Oxford %D 1992 %A R.S. Bohacek %A C. McMArtin %T Calculation and display of steric, hydrophobic, and hydrogen-bonding properties of ligand binding sites in proteins using Lee and Richards accessible surface: Validation of a high resolution graphical tool for drug discovery %J J. Med. Chem. %V 35 %P 1671-1684 %D 1992 %A R.S. Bohacek %A C. McMartin %A W.C. Guida %T The art and practice of structure-based drug design: A molecular modeling perspective %J Med. Res. Rev. %V 16 %P 3-50 %D 1996 %A R.S. Bohacek %A C. McMartin %T Multiple highly diverse structures complementary to enzyme binding sites: Results of extensive application of a \f2de novo\f1 design method incorporating combinatorial growth %J J. Amer. Chem. Soc. %V 116 %P 5560-5571 %D 1994 %A M.J. Sutcliffe %A C.M. Dobson %A R.E. Oswald %T Solution structure of neuronal bungarotoxin determined by two-dimensional NMR spectroscopy: Calculation of tertiary structrue using systematic homologous model building, dynamical simulated annealing, and restrained molecular dynamics %J Biochemistry %V 31 %P 2962-2970 %D 1992 %A H. Bohr %A J. Bohr %A S. Brunak %A R.M.J. Cotterill %A H. Fredholm %A B. Lautrup %A S.B. Petersen %T A novel approach to prediction of the 3-dimensional structures of protein backbones by neural networks %J FEBS Lett. %V 261 %P 43-46 %D 1990 %A T. Boiwe %A C.-I. Br\(a:nd\(e'n %T X-ray investigation of the binding of 1,10-phenanthroline and imidazole to horse-liver alcohol dehydrogenase %J Eur. J. Biochem. %V 77 %P 173-? %D 1977 %K Branden %A J.T. Bolin %A D.J. Filman %A D.A. Matthews %A R.C. Hamlin %A J. Kraut %T Crystal structures of \f2Escherichia coli\f1 and \f2Lactobacillus casei\f1 dihydrofolate reductase refined at 1.7\(Ao resolution: I. general features and binding of methotrexate %J J. Biol. Chem. %V 257 %D 1982 %P 13650-13662 %K PDB3DFR PDB4DFR 5DFR 6DFR 7DFR %A G. Bolis %A J. Greer %T Role of computer-aided molecular modeling in the design of novel inhibitors of renin %P 297-326 %B Computer-aided drug design: Methods and applications %E T.J. Perun & C.L. Propst %I Marcel Dekker Inc. %D 1989 %C New York %A M.C. Bolognesi %A B.W. Matthews %T Binding of the biproduct analog \s-2L\s0-benzylsuccinic acid to thermolysin determined by X-ray crystallography %J J. Biol. Chem. %V 254 %P 634-? %D 1979 %K 3TLN %A M. Bolognesi %A E. Cannillo %A P. Ascenzi %A G.M. Giacometti %A A. Merli %A M. Brunori %T Reactivity of ferric \f2Aplysia\f1 and sperm whale myoglobins towards imidazole: X-ray and binding study %J J. Mol. Biol. %V 158 %P 305-? %D 1982 %K 3MBA 1MBI %A M. Bolognesi %A E. Cannillo %A R. Oberti %A G. Rossi %A L. Ungaretti %T The structure of \f2Aplysia limacina\f1 myoglobin at 3.6\(Ao resolution %J Acta Cryst. %V A 34 %P 62-? %D 1978 %K 3MBA %A M. Bolognesi %A A. Coda %A G. Gatti %A P. Ascenzi %A M. Brunori %T Crystal structure of ferric \f2Aplysia limacina\f1 myoglobin at 2.0\(Ao resolution %J J. Mol. Biol. %V 183 %P 113-115 %D 1985 %K 3MBA %A M. Bolognesi %A G. Gatti %A E. Menegatti %A M. Guarneri %A M. Marquart %A E. Papamokos %A R. Huber %T Three-dimensional structure of the complex between pancreatic secretory inhibitor (Kazal type) and trypsinogen at 1.8\(Ao resolution: structure solution, crystallographic refinement and preliminary structural interpretation %J J. Mol. Biol. %V 162 %P 839-? %D 1982 %K PDB1TGS %A M. Bolognesi %A S. Onesti %A G. Gatti %A A. Coda %A P. Ascenzi %A M. Brunori %T \f2Aplysia limacina\f1 myoglobin: crystallographic analysis at 1.6\(Ao resolution %J J. Mol. Biol. %V 205 %P 529-? %D 1989 %K PDB1MBA PDB2MBA PDB3MBA PDB4MBA 1MBI %A W. Bolton %A M.F. Perutz %T Three dimensional Fourier synthesis of horse deoxyhaemoglobin at 2.8\(Ao resolution %J Nature %V 228 %P 551-552 %D 1970 %K PDB2DHB %A R.A. Bond %A P. Leff %A T.D. Johnson %A C.A. Milano %A H.A. Rockman %A T.R. McMinn %a S. Apparsundaram %A M.F. Hyek %A T.P. Kenakin %A L.F. Allen %a R.J. Lefkowitz %T Physiological effects of inverse agonists in transgenic mice with myocardial overexpression of the \(*b\d\s-42\s0\u-adrenoreceptor %J Nature %V 374 %P 272-276 %A R. Bone %A D. Frank %A C. Kettner %A D.A. Agard %T Structure analysis of specificty: \(*a-lytic protease complexes with analogues of reaction intermediates %J Biocemistry %V 28 %P 7600-? %D 1989 %K PDB1P02 PDB1P03 PDB1P04 PDB1P05 PDB1P06 %A R. Bone %A A. Fujishige %A C.A. Kettner %A D.A. Agard %T Structural basis for broad specificity in \(*a-lytic protease mutants %J Biochemistry %V 30 %P 10388-10398 %D 1991 %A R. Bone %A A.B. Shenvi %A C.A. Kettner %A D.A. Agard %T Serine protease mechanism: structure of an inhibitory complex of \(*a-lytic protease and a tightly bound peptide boronic acid %J Biochemistry %V 26 %P 7609-7614 %D 1987 %K PDB1P01 %A R. Bone %A J.L. Silen %A D.A. Agard %T Structural plasticity broadens the specificity of an engineered protease %J Nature %V 339 %D 1989 %P 191-195 %K PDB1P07 PDB1P08 PDB1P09 PDB1P10 %A R. Bone %A J.P. Springer %A J.R. Atack %T Structure of inositol monophosphatase, the putative target of lithium therapy %J Proc. Natl. Acad. Sci. USA %V 89 %P 10031-10035 %D 1992 %A R. Bone %A J.P. Vacca %A P.S. Anderson %A M.K. Holloway %T X-rat crystal structure of the HIV protease complex with L-700,417, an inhibitor with pseudo C\d\s-42\s0\u symmetry %J J. Amer. Chem. Soc. %V 113 %P 9382-9384 %D 1991 %A F. Bontems %A C. Roumestand %A B. Gilquin %A A. Men\(e'z %A F. Toma %T Refined structure of charybdotoxin: Common motifs in scorpion toxins and insect defensins %J Science %V 254 %P 1521-1523 %D 1991 %K Menez %A G.W. Booker %A A.L. Breeze %A A.K. Downing %A G. Panayotou %A I. Gout %A M.D. Waterfield %A I.D. Campbell %T Structure of an SH2 domain of the p85\(*a subunit of phosphatidylinositol-3-OH kinase %J Nature %V 358 %P 684-687 %D 1992 %A B. Borah %A C.-W. Chen %A W. Egan %A M. Miller %A A. Wlodawer %A J.S. Cohen %T Nuclear magnetic resonance and neutron diffraction studies of the complex of ribonuclease A with uridine vanadate, a transition-state analogue %J Biochemistry %V 24 %P 2058-? %D 1985 %K 5RSA PDB6RSA %A J. Bordas %A G.G. Dodson %A H. Grewe %A M.H.J. Koch %A B. Krebs %A J. Randall %T A comparative assessment of the zinc-protein coordination in 2Zn-insulin as determined by X-ray absorption fine structure (EXAFS) and X-ray crystallography %J Proc. Roy. Soc. Lond. %V B 219 %P 21-39 %D 1983 %K PDB4INS %A D. Bordo %T \s-1ENVIRON\s0: A software package to compare protein three-dimensional structures with homologous sequences using local structural motifs %J CABIOS %V 9 %P 639-645 %D 1993 %A D. Bordo %A P. Argos %T Evolution of protein cores: constraints in point mutations as observed in globin tertiary structures %J J. Mol. Biol. %V 211 %D 1990 %P 975-988 %A D. Bordo %A P. Argos %T Suggestions for ``safe'' residue substitutions in site-directed mutagenesis %J J. Mol. Biol. %V 217 %P 721-729 %D 1991 %A G.E.O. Borgstahl %A H.E. Parge %A M.J. Hickey %A W.F. Beyer,\0Jr. %A R.A. Hallewell %A J.A. Tainer %T The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles %J Cell %V 71 %P 107-118 %D 1992 %A P. Bork %T Recognition of functional regions in primary structures using a set of property patterns %J FEBS Lett. %V 257 %D 1989 %P 191-195 %A P. Bork %A J. Gellerich %A H. Groth %A R. Hooft %A F. Martin %T Divergent evolution of a \(*b/\(*a-barrel subclass: Detection of numerous phosphate-binding sites by motif search %J Prot. Sci. %V 4 %P 268-274 %D 1995 %A P. Bork %A B. Margolis %T A phosphotyrosine interaction domain %J Cell %V 80 %P 693-694 %D 1995 %A P. Bork %A C. Ouzounis %A C. Sander %T From genome sequences to protein function %J Curr. Opin. Struct. Biol. %V 4 %P 393-403 %D 1994 %A P. Bork %A C. Ouzounis %A C. Sander %T From genome sequences to protein function %J ~Curr. Opin. Struct. Biol. %V 4 %P 393-403 %D 1994 %A P. Bork %A C. Ouzounis %A C. Sander %A M. Scharf %A R. Schneider %A E. Sonnhammer %T Comprehensive sequence analysis of the 182 predicted open reading frames of yeast chromosome III %J Prot. Sci. %V 1 %P 1677-1690 %D 1992 %A P. Bork %A C. Ouzounis %A C. Sander %A M. Scharf %A R. Schneider %A E. Sonnhammer %T What's in a genome %J Nature %V 358 %P 287 %D 1992 %A P. Bork %A C. Sander %A A. Valencia %T An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins %J Proc. Natl. Acad. Sci. USA %V 89 %P 7290-7294 %D 1992 %A P. Bork %A C. Sander %A A. Valencia %T Convergent evolution of similar enzymatic function on different protein folds: The hexokinase, ribokinase, and galactokinase families of sugar kinases %J Prot. Sci. %V 2 %P 31-40 %D 1993 %A N. Borkakoti %T The active site of ribonuclease A from the crystallographic studies of ribonuclease-A-inhibitor complexes %J Eur. J. Biochem. %V 132 %P 89-? %D 1983 %K 1RN3 3RN3 %A N. Borkakoti %A D.S. Moss %A R.A. Palmer %T Ribonuclease-A: least squares refinement of the structure at 1.45\(Ao resolution %J Acta Cryst. %V B 38 %P 2210-2217 %D 1982 %K PDB1RN3 3RN3 %A N. Borkakoti %A D.S. Moss %A M.J. Stanford %A R.A. Palmer %T The refined structure of ribonuclease-A at 1.45\(Ao resolution %J J. Crystallogr. Spectrosc. %V B 14 %P 467-? %D 1984 %K 3RN3 %A N. Borkakoti %A R.A. Palmer %A I. Haneef %A D.S. Moss %T Specificity of pancreatic ribonuclease-A: an X-ray study of a protein-nucleotide complex %J J. Mol. Biol. %V 169 %P 743-? %D 1983 %K 1RN3 3RN3 %A N. Borkakoti %A F.K. Winkler %A D.H. Williams %A A. D'Arcy %A M.J. Broadhurst %A P.A. Brown %A W.H. Johnson %A E.J. Murray %T Structure of the catalytic domain of human fibroblast collagenase complexed with an inhibitor %J Nature Structural Biology %V 1 %P 106-? %D 1994 %A S. Borman %T New 3-D search and \f2de novo\f1 design techniques aid drug development %J C. & E.N. %V ? %P 18-26 %D August 10, 1992 %A V.M. Borodina %A E.A. Kiryanova %A A.V. Zelenin %A P.D. Reshetov %A L.A. Chupova %T Effect of actinoxanthine, an antitumor antibiotic on cells cultivated in vitro %J Antibiotiki (Moscow) %V 26 %P 915-? %D 1981 %K 1ACX %A T. Borr\(a's %A B. Persson %A H. J\(o:rnvall %T Eye lens \(*z-crystallin relationships to the family of long-chain aldol-polyol dehydrogenases: Protein trimming and conservation of stable parts %J Biochemistry %V 26 %P 6133-6139 %D 1989 %K Jornvall Borras %A P. Bossart-Whitaker %A M. Carson %A Y.S. Babu %A C.D. Smith %A W.G. Laver %A G.M. Air %T Three-dimensional structure of influenza A N9 neuraminidase and its complex with the inhibitor 2-deoxy 2,3-dehydro-N-acetyl neuraminic acid %J J. Mol. Biol. %V 232 %P 1069-1083 %D 1993 %A D. Bossemeyer %T The glycine-rich sequence of protein kinases: A multifunctional element %J Trends Biochem. Sci. %V 19 %P 201-205 %D 1994 %A D. Botstein %A D. Shortle %T Strategies and applications of \f2in vitro\f1 mutagenesis %J Science %P 1193-1201 %V 229 %D 1985 %A R.R. Bott %A E. Subramanian %A D.R. Davies %T Three-dimensional structure of the complex of the \f2Rhizopus chinensis\f1 carboxyl proteinase and pepstatin at 2.5\(Ao resolution %J Biochemistry %V 21 %P 6956-? %D 1982 %K 2APR %A R. Bott %A J. Frane %T Incorporation of crystallographic temperature factors in the statistical analysis of protein tertiary structures %J Prot. Eng. %V 3 %D 1990 %P 649-657 %A R. Bott %A M. Ultsch %A A. Kossiakoff %A T. Graycar %A B. Katz %A S. Power %T The three-dimensional structure of \f2Bacillus amyloliquefaciens\f1 subtilisin at 1.8\(Ao and an analysis of the structural consequences of peroxide inactivation %J J. Biol. Chem. %V 263 %P 7895-? %D 1988 %K 0ST1 0ST2 1ST2 2ST1 %A H.R. Bourne %T Discovery of a new oncogene in pituitary tumors ? %J Nature %P 517 %V 330 %D 1987 %A H.R. Bourne %A D.A. Saunders %A F. McCormick %T The GTPase superfamily: a conserved switch for diverse cell functions %J Nature %V 348 %P 125-132 %D 1990 %A H.R. Bourne %A D.A. Saunders %A F. McCormick %T The GTPase superfamily: conserved structure and molecular mechanism %J Nature %V 349 %P 117-127 %D 1991 %A P.E. Bourne %A A. Sato %A P.W.R. Corfield %A L.S. Rosen %A S. Birken %A B.W. Low %T Erabutoxin B: initial protein refinement and sequence analysis at 0.140-nm resolution %J Eur. J. Biochem. %V 153 %P 521-527 %D 1985 %K 3EBX %A Y. Bourne %A P. Roug\(e' %A C. Cambillau %T X-ray structure of a biantennary octasaccharide-lectin complex refined at 2.3\(Ao resolution %J J. Biol. Chem. %V 267 %P 197-203 %D 1992 %K Rouge %A J.U. Bowie %A N.D. Clarke %A C.O. Pabo %A R.T. Sauer %J Proteins %V 7 %D 1990 %P 257-264 %T Identification of protein folds: matching hydrophobicity patterns of sequence sets with solvent accessibility patterns of known structure %K alignment comparison pattern matching hydrophobicity accessibility %A J.U. Bowie %A D. Eisenberg %T Inverted protein structure prediction %J Curr. Opin. Struct. Biol. %V 3 %P 437-444 %D 1993 %A J.U. Bowie %A D. Eisenberg %T An evolutionary approach to folding small \(*a-helical proteins that uses sequence information and an empirical guiding fitness function %J Proc. Natl. Acad. Sci. USA %V 91 %P 4436-4440 %D 1994 %A J.U. Bowie %A R. L\(u:tthy %A D. Eisenberg %T A method to identify protein sequences that fold into a known three-dimensional structure %J Science %V 253 %P 164-170 %D 1991 %K Lutthy %A J.U. Bowie %A J.F. Reidhaar-Olsen %A W.A. Lim %A R.T. Sauer %T Deciphering the message in protein sequences: tolerance to amino acid substitutions %J Science %V 247 %D 1990 %P 1306-1310 %K mutation selection alignment %A J.U. Bowie %A R.T. Sauer %T Identifying determinants of folding and activity for a protein of unknown structure %J Proc. Natl. Acad. Sci. USA %V 86 %D 1989 %P 2152-2156 %K protein folding determinants prediction mutation PNAS %A J.C. Boyington %A B.J. Gaffney %A L.M. Amzel %T The three-dimensional structure of an arachidonic acid 15-lipoxygenase %J Science %V 260 %P 1482-1486 %D 1993 %A C.W.G. Boys %A A. Miller %A K. Harlos %A D.M.A. Martin %A E.G.D. Tuddenham %A D.P. O'Brien %T Crystallization and preliminary X-ray analysis of human tissue factor extracellular domain %J J. Mol. Biol. %V 234 %P 1263-1265 %D 1993 %A R.N. Bracewell %J Science %V 248 %D 1990 %P 697-704 %T Numerical transforms %K Fourier %A M.K. Bradley %A T.F. Smith %A R.H. Lathrop %A D.M. Livingstone %A T.A. Webster %T Consensus topography in the ATP binding site of the simian virus 40 and polyomavirus large tumor antigens %J Proc. Natl. Acad. Sci. USA %V 84 %P 4026-4030 %D 1987 %A H. Bradnstetter %A M. Bauer %A R. Huber %A P. Lollar %A W. Bode %T X-ray structure of clotting factor IXa: Active site and module structure related to Xase activity and hemophilia B %J Proc. Natl. Acad. Sci. USA %V 92 %P 9796-9800 %D 1995 %A R.A. Bradshaw %A T.L. Blundell %A R. Lapatto %A N.Q. McDonald %A J. Murray-Rust %T Nerve growth factor revisited %J Trends Biochem. Sci. %V 18 %P 48-52 %D 1993 %A R.A. Bradshaw %A F.R.N. Gurd %T Comparison of myoglobins from harbor seal, porpoise and sperm whale: V. the complete amino acid sequences of harbor seal and porpoise myoglobins %J J. Biol. Chem. %V 244 %P 2167-? %D 1969 %K 1MBS %A R.A. Bradshaw %A M. Purton\0(eds.) %T Proteins: Form and Function %D 1990 %I Elsevier %C Cambridge %A K. Brady %A R.H. Abeles %T Inhibition of chymotrypsin by peptidyl trifluoromethyl ketones: determinants of slow-binding kinetics %J Biochemistry %V 29 %P 7608-? %D 1990 %K 4GCH 6GCH 7GCH 3GCH 5GCH %A K. Brady %A T.-C. Liang %A R.H. Abeles %T pH dependence of the inhibition of chymotrypsin by a peptidyl trifluoromethyl ketone %J Biochemistry %V 28 %P 9066-? %D 1989 %K 3GCH 4GCH 5GCH 6GCH 7GCH %A K. Brady %A A. Wei %A D. Ringe %A R.H. Abeles %T Structure of chymotrypsin-trifluoromethyl ketone inhibitor complexes: comparison of slowly and rapidly equilibrating inhibitors %J Biochemistry %V 29 %P 7600-? %D 1990 %K 4GCH 6GCH 7GCH %A L. Brady %A A.M. Brzozowski %A Z.S. Derewenda %A E. Dodson %A G. Dodson %A S. Tolley %A J.P. Turkenburg %A L. Christiansen %A B. Huge-Jensen %A L. Norskov %A L. Thim %A U. Menge %T A serine protease triad forms the catalytic centre of a triacylglycerol lipase %J Nature %V 343 %P 767-770 %D 1990 %K convergent-evolution %A R.L. Brady %A E.J. Dodson %A G.G. Dodson %A G. Lange %A S.J. Davis %A A.F. Williams %A A.N. Barclay %T Crystal structure of doamins 3 and 4 of rat CD4: Relation to the NH\d\s-42\s0\u-terminal domains %J Science %V 260 %P 979-983 %D 1993 %A K. Braig %A Z. Otwinowski %A R. Hegde %A D.C. Boisvert %A A. Joachimiak %A A.L. Horwich %A P.B. Sigler %T The crystal structure of the bacterial chaperonin GroEL at 2.8\(oA %J Nature %V 371 %P 578-586 %D 1994 %A B.J. Brandhuber %A V.S. Allured %A T.G. Falbel %A D.B. McKay %T Mapping the enzymatic active site of \f2Pseudomonas aeruginosa\f1 exotoxin A %J Proteins %V 3 %P 146-154 %D 1988 %A B.J. Brandhuber %A T. Boone %A W.C. Kenney %A D.B. McKay %T Crystals and a low resolution structure of interleukin-2 %J J. Biol. Chem. %V 262 %P 12306-? %D 1987 %K 0ILT %A B.J. Brandhuber %A T. Boone %A W.C. Kenney %A D.B. McKay %T Three-dimensional structure of interleukin-2 %J Science %V 238 %P 1707-1709 %D 1987 %A B.J. Brandhuber %A T. Boone %A W.C. Kenney %A D.B. McKay %T Three-dimensional structure of interleukin-2 %J Science %V 238 %P 1707-? %D 1987 %K 0ILT %A H. Brandstetter %A D. Turk %A H.W. Hoeffken %A D. Grosse %A J. St\(u:rzebecher %T Refined 2.3\(Ao X-ray crystal structure of bovine thrombin complexes formed with the benzamidine and arginine-based thrombin inhibitors NAPAP, 4-TAPAP and MQPA: A starting point for improving antithrombotics %J J. Mol. Biol. %V 226 %P 1085-1099 %D 1992 %K Sturzebecher %A J. Brange %A G.G. Dodson %A B. Xiao %T Designing insulin for diabetes therapy by protein engineering %J Curr. Opin. Struct. Biol. %V 1 %P 934-940 %D 1991 %A C. Branlant %A T. Oster %A G. Branlant %T Nucleotide sequence determination of the DNA region coding for \f2Bacillus stearothermophilus\f1 glyceraldehyde-3-phosphate dehydrogenase and of the flanking DNA regions required for its expression in \f2Escherichia coli\f1 %J Gene %V 75 %P 145-? %D 1989 %K 2GD1 %A J.A. Brannigan %A G. Dodson %A H.J. Duggleby %A P.C.E. Moody %A J.L. Smith %A D.R. Tomchick %A A.G. Murzin %T A protein catalytic framework with an N-terminal nucleophile is capable of self activation %J NAture %V 378 %P 416-419 %D 1995 %A W. Braun %T Distance geometry and related methods for protein structure determination from NMR data %J Quart. Rev. Biophys. %P 115-157 %V 19 3/4 %D 1987 %A W. Braun %A C. Bosch %A L.R. Brown %A N. Go %A K. W\(u:thrich %T Combined use of proton-proton Overhauser enhancements and a distance geometry algorithm for determination of polypeptide conformation %J Biochim. Biophys. Acta %P 377-396 %D 1981 %K Wuthrich %A W. Braun %A O. Epp %A K. W\(u:thrich %A R. Huber %T Solution of the phase problem in the X-ray diffraction method for proteins with the NMR solution structure as initial model %J J. Mol. Biol. %P 669-676 %V 206 %D 1989 %K Wuthrich %A W. Braun %A N. Go %T Calculation of protein conformations by proton-proton distance constraints: a new efficient algorithm %J J. Mol. Biol. %V 186 %D 1985 %P 611-626 %K NMR %K distance constraint target function protein folding %A G.D. Brayer %A L.T.J. Delbaere %A M.N.G. James %T Molecular structure of crystalline \f2Streptomyces griseus\f1 protease *a at 2.8\(Ao resolution. I. Crystallization, data collection and structural analysis %J J. Mol. Biol. %V 124 %P 243-? %D 1978 %K 3SGA 4SGA 5SGA %A G.D. Brayer %A L.T.J. Delbaere %A M.N.G. James %T Molecular structure of the \(*a-lytic protease from Myxobacter 495 at 2.8\(Ao resolution %J J. Mol. Biol. %V 131 %P 743-? %D 1979 %K 2ALP %A G.D. Brayer %A L.T.J. Delbaere %A M.N.G. James %T Molecular structure of crystalline \f2Streptomyces griseus\f1 protease *a at 2.8\(Ao resolution. II. molecular conformation, comparison with \(*a-chymotrypsin and active-site geometry %J J. Mol. Biol. %V 124 %P 261-? %D 1978 4SGA 5SGA %K 3SGA %A G.D. Brayer %A L.T.J. Delbaere %A M.N.G. James %A C.-A. Bauer %A R.C. Thompson %T Crystallographic and kinetic investigations of the covalent complex formed by a specific tetrapeptide aldehyde and the serine protease from \f2Streptomyces griseus\f1 %J Proc. Natl. Acad. Sci. USA %V 76 %P 96-? %D 1979 %K 3SGA 4SGA 5SGA %A G.D. Brayer %A A. McPherson %T Preliminary diffraction data for crystals of ribonucleases A and B and their complexes with deoxy(pA)\d\s-24\s0\u and deoxy(pA)\d\s-26\s0\u %J J. Biol. Chem. %V 257 %P 3359-? %D 1982 %K 1RBB %A G.D. Brayer %A A. McPherson %T Refined structure of the gene 5 DNA binding protein from bacteriophage Fd %J J. Mol. Biol. %V 169 %P 565-? %D 1983 %K PDB2GN5 %A G.D. Brayer %A A. McPherson %T Cooperative interactions of the gene-5 protein %J J. Biomol. Struct. Dyn. %V 2 %P 495-? %D 1984 %K 2GN5 %A G.D. Brayer %A A. McPherson %T Mechanism of DNA binding to the gene 5 protein of bacteriophage fd %J Biochemistry %V 23 %P 340-? %D 1984 %K 2GN5 %A G.D. Brayer %A A. McPherson %T A model for intracellular complexation between gene-5 protein and bacteriophage Fd DNA %J Eur. J. Biochem. %V 150 %P 287-? %D 1985 %K 2GN5 %A G.D. Brayer %A A. McPherson %T Topological comparison of two helix destabilizing proteins: ribonuclease A and the gene-5 DNA binding protein %J J. Biomol. Struct. Dyn. %V 3 %P 173-? %D 1985 %K 2GN5 %A J.N. Breg %A J.H.J. van\0Opheusden %A M.J.M. Burgering %A R. Boelens %A R. Kaptein %T Structure of \f2arc\f1 repressor in solution: evidence for a family of \(*b-sheet DNA-binding proteins %J Nature %D 1990 %V 346 %P 586-589 %K NMR structure NOE homology %A D.R. Breiter %A M.R. Kanost %A M.M. Benning %A G. Wesenberg %A J.H. Law %A M.A. Wells %A I. Rayment %A H.M. Holden %T Molecular structure of an apolipoprotein determined at 2.5\(Ao resolution %J Biochemistry %V 30 %P 603-608 %D 1991 %A V. Brendel %A P. Bucher %A I.R. Nourbakhsh %A E. Blaisdell %A S. Karlin %T Methods and algorithms for statistical analysis of protein sequences %J Proc. Natl. Acad. Sci. USA %V 89 %P 2002-2006 %D 1992 %A R.G. Brennan %A B.W. Matthews %T Structural basis of DNA-protein recognition %J Trends Biochem. Sci. %V 14 %D 1989 %P 286-290 %K TIBS %A R.G. Brennan %A S.L. Roderick %A Y. Takeda %A B.W. Matthews %T Protein-DNA conformational changes in the crystal structure of a \(*l Cro-operator complex %J Proc. Natl. Acad. Sci. USA %V 87 %P 8165-8169 %D 1990 %K PNAS %A R.G. Brennan %A Y. Takeda %A J. Kim %A W.F. Anderson %A B.W. Matthews %T Crystallization of a complex of \f2Cro\f1 repressor with a 17 base-pair operator %J J. Mol. Biol. %V 188 %P 115-118 %D 1986 %K 1CRO %A R.G. Brennan %A L.H. Weaver %A B.W. Matthews %T Use of protein sequence and structure to infer distant evolutionary relationships %J Chem. Scr. %V B 26 %P 251-? %D 1986 %K 1CRO %A R.R. Brentani %T Biological implications of complementary hydropathy of amino acids %J J. Theor. Biol. %P 495-499 %V 135 %D 1988 %A K. Brew %A T.C. Vanaman %A R.L. Hill %T Comparison of the amino-acid sequence of bovine \(*a-lactalbumin and hen's egg-white lysozyme %J J. Biol. Chem. %V 242 %P 3747-3749 %D 1967 %A P. Brick %A T.N. Bhat %A D.M. Blow %T Structure of tyrosyl-tRNA synthetase refined at 2.3\(Ao resolution: interaction of the enzyme with the tyrosyl adenylate intermediate %J J. Mol. Biol. %V 208 %P 83-? %D 1989 %K PDB2TS1 PDB3TS1 %A P. Brick %A D.M. Blow %T Crystal structure of a deletion mutant of a tyrosyl-tRNA synthetase complexed with tyrosine %J J. Mol. Biol. %V 194 %P 287-297 %D 1987 %K 3TS1 PDB4TS1 %A P. Brick %A D. Ollis %A T.A. Steitz %T Crystallization and 7\(Ao resolution electron density map of the large fragment of \f2Escherichia coli\f1 DNA polymerase I %J J. Mol. Biol. %V 166 %P 453-? %D 1983 %K 1DPI %A L. Brillouin %T Science and Information Theory %C New York %I Academic Press, Inc. %D 1956 %A A.T. Brint %A H.M. Davies %A E.M. Mitchell %A P. Willet %T Rapid geometric searches in protein structures %J J. Mol. Graph. %V 7 %P 48-53 %D 1989 %A L. Brocchieri %A S. Karlin %T Geometry of interplanar residue contacts in protein structures %J Proc. Natl. Acad. Sci. USA %V 91 %P 9297-9301 %D 1994 %A C. Bron %A J. Kerbosch %D 1973 %T Algorithm 457: finding all cliques of an undirected graph %J Comm. Ass. Comp. Mach. %V 16 %P 575-577 %A B.R. Brooks %A R.E. Bruccoleri %A B.D. Olafson %A D.J. States %A S. Swaminathan %A M. Karplus %T \s-2CHARMM\s0: A program for macromolecular energy, minimization, and dynamics calculations %J J. Comp. Chem. %V 4 %P 187-217 %D 1982 %A B.R. Brooks %A R.E. Bruccoleri %A B.D. Olafson %A D.J. States %A S. Swaminathan %A M. Karplus %T \s-2CHARMM\s0: a program for macromolecular energy, minimization, and dynamics calculations %J J. Comp. Chem. %V 4 %P 187 %D 1983 %A B. Brooks %A M. Karplus %T Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor %J Proc. Natl. Acad. Sci. USA %V 80 %P 6571-6575 %D 1983 %K PNAS %A B. Brooks %A M. Karplus %T Harmonic dynamics of proteins: Normal modes and fluctuations in bovine pancreatic trypsin inhibitor %J Proc. Natl. Acad. Sci. USA %V 80 %P 6571-6575 %D 1983 %A B. Brooks %A M. Karplus %T Normal modes for specific motions of macromolecules: application to the hinge-bending mode of lysozyme %J Proc. Natl. Acad. Sci. USA %V 82 %P 4995-4999 %D 1985 %K PNAS %A C.L. Brooks,\0III %T Molecular simulations of protein structure, dynamics and thermodynamics %B NATO Advanced Study Institute %D 1989 %A C.L. Brooks,\0III %T Molecular simulations of peptide and protein unfolding: in quest of a molten globule %J Curr. Opin. Struct. Biol. %V 3 %P 92-98 %D 1993 %A C.L. Brooks,\0III %A M. Karplus %T Solvent effects on protein motion and protein effects on solvent motion: Dynamics of the active site region of lysozyme %J J. Mol. Biol. %V 208 %P 159-181 %D 1989 %K sbmd %A C.L. Brooks,\0III %A M. Karplus %A B.M. Pettitt %T Proteins: A theoretical perspective of dynamics, structure, and thermodynamics %I Wiley Interscience %C New York %D 1988 %A C.L. Brooks\0III %T Thermodynamic calculations on biological systems %P 73-88 %B Computer simulation of biomolecular systems: Theoretical and experimental applications %E W.F. van\0Gunsteren and P.K. Weiner %I ESCOM %C Leiden %D 1989 %A C.L. Brooks\0III %A M.K. Karplus %T Solvent effects on protein motion and protein effects on solvent motion: dynamics of the active site region of lysozyme %J J. Mol. Biol. %P 159-181 %V 208 %D 1989 %A C.L. Brooks\0III %A M.K. Karplus %A B.M. Pettit %T Proteins: A Theoretical Perspective of Dynamics, Structure and Thermodynamics %I John Wiley \& Sons %C New York %D 1988 %A F.J. Brown %A D.W. Andisik %A P.R. Bernstein %A C.B. Bryant %A C. Ceccarelli %A J.R. Damewood %A P.D. Edwards %A R.A. Earley %A S. Feeney %A R.C. Green %A B. Gomes %A B.J. Kosmider %A R.D. Krell %A A. Shaw %A G.B. Steelman %A R.M. Thomas %A E.P. Vacek %A C.A. Veale %A P.A. Tuthill %A P. Warner %A J.C. Williams %A D.J. Wolanin %A S.A. Woolson %T Design of orally active, non-peptidic inhibitors of human leukocyte elastase %J J. Med. Chem. %V 37 %P 1259-1261 %D 1994 %A F.K. Brown %T Molecular dynamics simulations of "loop closing" in the enzyme triose phosphate isomerase %J J. Mol. Biol. %V 198 %D 1987 %P 533-546 %K molecular dynamics simulation substrate binding %A J.H. Brown %A T.H. Jardetzky %A J.C. Gorga %A L.J. Stern %A R.G. Urban %A J.L. Strominger %A D.C. Wiley %T Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1 %J Nature %V 364 %P 33-39 %D 1993 %A J.J. Brown %A T. Jardetzky %A M.A. Saper %A B. Samraoui %A P.J. Bjorkman %A D.C. Wiley %T A hypothetical model of the foreign antigen binding site of Class II histocompatibility molecules %J Nature %V 332 %P 845-850 %D 1988 %A R.S. Brown %A J.C. Dewan %A A. Klug %T Crystallographic and biochemical investigation of the lead(II)-catalyzed hydrolysis of yeast phenylalanine tRNA %J Biochemistry %V 24 %P 4785-? %D 1985 %K PDB1TN1 PDB1TN2 %A R.S. Brown %A B.E. Hingerty %A J.C. Dewan %A A. Klug %T Pb(II)-catalysed cleavage of the sugar-phosphate backbone of yeast tRNA\d\s-2phe\s0\u \(em Implications for lead toxicity and self-splicing RNA %J Nature %V 303 %P 543-546 %D 1983 %K 1TN1 %A T. Brown %A W.N. Hunter %A G. Kneale %A O. Kennard %T Molecular structure of the G.A base pair in DNA and its implications for the mechanism of transversion mutations %J Proc. Natl. Acad. Sci. USA %V 83 %P 2402-? %D 1986 %K 0DN3 %A T. Brown %A O. Kennard %A G. Kneale %A D. Rabinovich %T High-resolution structure of a DNA helix containing mismatched base pairs %J Nature %V 315 %P 604-? %D 1985 %K 0GTC %A W.E. Brown %A K.H. Stump %A W.S. Kelley %T \f2Escherichia coli\f1 DNA polymerase I: sequence characterization and secondary structure prediction %J J. Biol. Chem. %V 257 %P 1965-? %D 1982 %K 1DPI %A C.A. Browne %A I.D. Campbell %A P.A. Kiener %A D.C. Phillips %A S.G. Waley %A I.A. Wilson %T Studies of the histidine residues of triose phosphate isomerase by proton magnetic resonance and X-ray crystallography %J J. Mol. Biol. %V 100 %P 319-? %D 1976 %K 1TIM %A W.J. Browne %A A.C.T. North %A D.C. Phillips %A K. Brew %A T.C. Vanaman %A R.C. Hill %T A possible three-dimensional structure of bovine \(*a-lactalbumin based on that of hen's egg-white lysozyme %J J. Mol. Biol. %V 42 %D 1969 %P 65-86 %K modelling alignment %A R.E. Bruccoleri %A E. Haber %A J. Novotny\\*' %T Structure of antibody hypervariable loops reproduced by a conformational search algorithm %J Nature %V 335 %D 1988 %P 564-568 %K immunoglobulin loops CDRs prediction %A R.E. Bruccoleri %A M. Karplus %T Chain closure with bond angle variations %J Macromolecules %V 18 %P 2767-2773 %D 1987 %A R.E. Bruccoleri %A M. Karplus %T Prediction of the folding of short polypeptide segments by uniform conformational sampling %J Biopolymers %V 26 %P 137-168 %D 1987 %A T.C. Bruice %A S.J. Benkovic %T Bioorganic mechanisms %I Benjamin %D 1966 %A S. Brunie %A J. Bolin %A D. Gewirth %A P.B. Sigler %T The refined crystal structure of dimeric phospholipase A\d\s-22\s0\u at 2.5\(Ao: access to a shielded catalytic centre %J J. Biol. Chem. %V 260 %P 9742-9749 %D 1985 %K PDB1PP2 %A R.M. Brunne %A E. Liepinsh %A G. Otting %A K. W\(u:thrich %A W.F. van\0Gunsteren %T A comparison of experimental residence times of water molecules solvating the bovine pancreatic trypsin inhibitor with theoretical model calculations %J J. Mol. Biol. %V 231 %P 1040-1048 %D 1993 %A M. Bruschi %T The amino acid sequence of rubredoxin from the sulfate reducing bacterium, \f2Desulfovibrio gigas\f1 %J Biochem. Biophys. Res. Comm. %V 70 %P 615-? %D 1976 %K 1RDG %A P.N. Bryan %A M.L. Rollence %A M.W. Pantoliano %A J. Wood %A B.C. Finzel %A G.L. Gilliland %A A.J. Howard %A T.L. Poulos %T Proteases of enhanced stability: characterization of a thermostable variant of subtilisin %J Proteins %V 1 %P 326-? %D 1986 %K 1S01 %A S.H. Bryant %T \s-2PKB\s0: a program system and data base for analysis of protein structure %J Proteins %V 5 %D 1989 %P 233-247 %K database PKB analysis protein structure %A S.H. Bryant %A L.M. Amzel %T Correctly folded proteins make twice as many hydrophobic contacts %J Int. J. Pept. Prot. Res. %V 29 %P 46-52 %D 1987 %A S.H. Bryant %A L.M. Amzel %A R.P. Phizackerley %A R.J. Poljak %T Molecular-replacement structure of guinea pig IgG1 \f2p\f1Fc\(fm refined at 3.1\(Ao resolution %J Acta Cryst. %V B 41 %P 362-? %D 1985 %K PDB1PFC %A S.H. Bryant %A S.A. Islam %A D.L. Weaver %T The surface area of monomeric proteins: significance of power law behavior %J Proteins %V 6 %D 1989 %P 418-423 %A S.H. Bryant %A C.E. Lawrence %T The frequency of ion-pair substructures in proteins is quantitatively related to electrostatic potential: a statistical model for nonbonded interactions %J Proteins %V 9 %P 108-119 %D 1991 %A S.H. Bryant %A C.E. Lawrence %T An empirical energy function for threading protein sequence through the folding motif %J Proteins %V 16 %P 92-112 %D 1993 %A T.N. Bryant %A H.C. Watson %A P.L. Wendell %T Structure of yeast phosphoglycerate kinase %J Nature %V 257 %P 614-618 %D 1974 %K 3PGK %A A.M. Brzozowski %A U. Derewenda %A Z.S. Derewenda %A G.G. Dodson %A D.M. Lawson %A J.P. Turkenburg %A F. Bjorkling %A B. Huge-Jensen %A S.A. Patkar %A L. Thim %T A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex %J Nature %V 351 %P 491-494 %D 1991 %A A. Brzozowski %A Z. Derewenda %A E. Dodson %A G. Dodson %A M. Grabowski %A R. Liddington %A T. Skarzynski %A D. Vallely %T Bonding of molecular oxygen to T state human haemoglobin %J Nature %V 307 %P 74-? %D 1984 %K 0HBT %A A.T. Br\(;unger %A M. Karplus %T Molecular dynamics simulations with experimental restraints %J Acc. Chem. Res %V 24 %P 54-61 %D 1991 %K Brunger %A C.-I. Br\(a:nd\(e'n %T Structure of horse liver alcohol dehydrogenase: I. structural symmetry and conformational changes %J Arch. Biochem. Biophys. %V 112 %P 215-? %D 1965 %K 5ADH Branden %A C.-I. Br\(a:nd\(e'n %T Relation between structure and function of \(*a/\(*b proteins %J Quart. Rev. Biophys. %V 13 %P 317-339 %D 1980 %K Branden %A C.-I. Br\(a:nd\(e'n %T Founding fathers and families %J Nature %D 1990 %V 346 %P 607-608 %K ATP binding proteins nucleotide chaperones Branden %A C.-I. Br\(a:nd\(e'n %T The TIM barrel \(em the most frequently occurring folding motif in proteins %J Curr. Opin. Struct. Biol. %V 1 %P 978-983 %D 1991 %K Branden %A C.-I. Br\(a:nd\(e'n %A H. Eklund %A B. Nordstr\(o:m %A T. Boiwe %A G. S\(o:derlund %A E. Zeppezauer %A I. Ohlsson %A \(Ao. \(Aokeson %T Structure of liver alcohol dehydrogenase at 2.9\(Ao resolution %J Proc. Natl. Acad. Sci. USA %V 70 %P 2439-2442 %D 1973 %K 5ADH Branden Akeson Nordstrom PNAS %A C.-I. Br\(a:nd\(e'n %A T.A. Jones %T Between objectivity and subjectivity %J Nature %V 343 %D 1990 %P 687-689 %K Branden %A C.-I. Br\(a:nd\(e'n %A H. J\(o:rnvall %A H. Eklund %A B. Furugren %T Alcohol dehydrogenases %E P.D. Boyer %J The Enzymes, Third edition %V 11 %P 103-? %D 1975 %K 5ADH Branden Jornvall %A C.I. Br\(a:nd\(e'n %A J. Tooze %T Introduction to protein structure %I Garland %D 1991 %C New York %K Branden %A A.T. Br\(u:nger %T Crystallographic refinement by simulated annealing: application to 2.8\(Ao resolution structure of aspartate aminotransferase %J J. Mol. Biol. %P 803-816 %V 203 %D 1988 %K Brunger %A A.T. Br\(u:nger %T A memory-efficient fast Fourier transformation algorithm for crystallographic refinement on supercomputers %J Acta Cryst. %P 42-50 %V A 45 %D 1989 %K Brunger %A A.T. Br\(u:nger %T Crystallographic phasing and refinement of macromolecules %J Curr. Opin. Struct. Biol. %V 1 %P 1016-1022 %D 1991 %K Brunger %A A.T. Br\(u:nger %A C.L. Brooks %A M. Karplus %T Active site dynamics of ribonuclease A %J Proc. Natl. Acad. Sci. USA %V 82 %P 8458-8462 %D 1985 %K PNAS Brunger %A A.T. Br\(u:nger %A R.L. Campbell %A G.M. Clore %A A.M. Gronenborn %A M.K. Karplus %A G.A. Petsko %A M.M. Teeter %T Solution of a protein crystal structure with a model obtained from NMR interproton distance restraints %J Science %P 1049-1053 %V 235 %D 1987 %K Brunger %A A.T. Br\(u:nger %A R.L. Campbell %A G.M. Clore %A A.M. Gronenborn %A M. Karplus %A G.A. Petsko %A M.M. Teeter %T Solution of a protein crystal structure with a model obtained from NMR interproton distance restraints %J Science %V 335 %P 1049-1053 %A A.T. Br\(u:nger %A G.M. Clore %A A.M. Gronenborn %A M.K. Karplus %T Solution conformations of human growth hormone releasing factor: comparison of the restrained molecular dynamics and distance geometry methods for a system without long-range distance data %J Prot. Eng. %V 1 %P 399-406 %D 1987 %K Brunger %A A.T. Br\(u:nger %A A. Krukowski %T Slow-cooling protocols for crystallographic refinement by simulated annealing %J Acta Cryst. %V A 46 %P 585-593 %D 1990 %K Brunger XPLOR %A A. Br\(u:nger %A M. Karplus %T Polar hydrogen positions in proteins: empirical energy placement and neutron diffraction comparison %J Proteins %V 4 %P 148-156 %D 1988 %K Brunger %A A. Br\(u:nger %A M. Karplus %A G.A. Petsko %T Crystallographic refinement by simulated annealing: application to crambin %J Acta Cryst. %V A 45 %P 50-61 %D 1989 %K Brunger %A A. Br\(u:nger %A J. Kuriyan %A M. Karplus %T Crystallographic \f2R\f1 factor refinement by molecular dynamics %J Science %V 235 %D 1987 %P 458-460 %K Brunger %A L. Buck %A R. Axel %T A novel multigene family may encode odorant receptors: A molecular basis for odor recognition %J Cell %V 65 %P 175-187 %D 1991 %A M. Buehner %A G.C. Ford %A D. Moras %A K.W. Olsen %A M.G. Rossmann %T \s-2D\s0-Glyceraldehyde-3-phosphate dehydrogenase: three-dimensional structure and evolutionary significance %J Proc. Natl. Acad. Sci. USA %V 70 %D 1973 %P 3052-3054 %K structure comparison dehydrogenase GPDH evolution PNAS %A M. Buehner %A G.C. Ford %A D. Moras %A K.W. Olsen %A M.G. Rossmann %T Structure determination of crystalline lobster \s-2D\s0-glyceraldehyde-3-phosphate dehydrogenase %J J. Mol. Biol. %V 82 %P 563-? %D 1974 %K 4GPD %A M. Buehner %A G.C. Ford %A D. Moras %A K.W. Olsen %A M.G. Rossmann %T Three-dimensional structure of \s-2D\s0-glyceraldehyde-3-phosphate dehydrogenase %J J. Mol. Biol. %V 90 %P 25-49 %D 1974 %K 4GPD %A M. Buehner %A H.-J. Hecht %A R. Hensel %A U. Mayr %T Crystallization and preliminary crystallographic analysis at low resolution of the allosteric \s-2L\s0-lactate dehydrogenase from \f2Lactobacillus casei\f1 %J J. Mol. Biol. %V 162 %P 189-? %D 1982 %K 1LLC %A M. Buehner %A H.J. Hecht %T Structure determination of the allosteric \s-2L\s0-lactate dehydrogenase from \f2Lactobacillus casei\f1 at 3.0\(Ao resolution %O Unpublished results %K PDB1LLC %A M. Buehner %A A. Lifchitz %A R. Bally %A J.P. Mornon %T Use of molecular replacement in the structure determination of the P\d\s-221212\s0\u and the P\d\s-221\s0\u (pseudo P\d\s-221212\s0\u) crystal forms of oxidized uteroglobin %J J. Mol. Biol. %V 159 %P 353-? %D 1982 %K 1UTG %A J.J. Burbaum %A R.M. Starzyk %A P. Schimmel %T Understanding structural relationships in proteins of unsolved three-dimensional structure %J Proteins %V 7 %D 1990 %P 99-111 %K modelling prediction %A B. Burchell %T Turning on and turning off the sense of smell %J Nature %V 350 %P 16-17 %D 1991 %A P.J. Burck %A D.H. Berg %A T.P. Luk %A L.M. Sassmannshausen %A M. Wakulchik %A D.P. Smith %A H.M. Hsiung %A G.W. Becker %A W. Gibson %A E.C. Villarreal %T Human cytomegalovirus maturational proteinase: Expression in \f2Escherichia coli\f1, purification and enzymatic characterization by using peptide substrate mimics of natural cleavage sites %J J. Virol. %V 68 %P 2937-2946 %D 1994 %A M.G. Bures %A C.W. Hutchins %A M. Maus %A W. Kohlbrenner %A S. Kadam %A J.W. Erickson %T Using three-dimensional substructure searching to identify novel, non-peptidic inhibitors of HIV-1 protease %J Tetra. Comp. Methodol. %V 3 %P 673-680 %D 1990 %A A.S.V. Burgen %A G.C.K. Roberts %A J. Feeney %T Binding of flexible ligands to macromolecules %J Nature %V 253 %D 1975 %P 753-755 %K ligand free energy conformation mechanism %A A.W. Burgess %A H.A. Scheraga %T Assessment of some problems associated with prediction of the three-dimensional structure of a protein from its amino acid sequence %J Proc. Natl. Acad. Sci. USA %V 72 %P 1221-1225 %D 1975 %K PNAS %A H.B. Burgi %A J.D. Dunitz %A E. Shefter %T Geometrical reaction coordinates: II. nucleophilic addition to a carbonyl group %J J. Am. Chem. Soc. %P 5065-5067 %V 95:15 %D 1973 %A U. Burkert %A N.L. Allinger %B Molecular mechanics %I American Chemical Society %C Washington, D.C. %D 1982 %A S.K. Burley %T p53: A cellular Achilles' heel revealed %J Nature Struct. Biol. %V 2 %P 789-792 %D 1994 %A S.K. Burley %A P.R. David %A A. Taylor %A W.N. Lipscomb %T Molecular structure of leucine aminopeptidase at 2.7\(Ao resolution %J Proc. Natl. Acad. Sci. USA %V 87 %P 6878-? %D 1990 %K PDB1LAP %A S.K. Burley %A G.A. Petsko %T Aromatic-aromatic interaction: a mechanism of protein structure stabilization %J Science %V 229 %P 23-28 %D 1985 %A S.K. Burley %A G.A. Petsko %T Weakly polar interactions in proteins %J Adv. Prot. Chem. %V 39 %P 125-189 %D 1988 %A W.P. Burmeister %A L.N. Gastinel %A N.E. Simister %A M.L. Blum %A P.J. Bjorkman %T Crystal structure at 2.2\(oA resolution of the MHC-related neonatal Fc receptor %J Nature %V 372 %P 336-343 %D 1994 %A W.P. Burmeister %A B. Henrissat %A S. Cusack %A R.W.H. Ruigrok %T Influenza B virus neuraminidase can synthesize its own inhibitor %J Structre %V 1 %P 19-26 %D 1993 %A W.P. Burmeister %A A.H. Huber %A P.J. Bjorkman %T Crystal structure of the complex of rat neonatal Fc receptor with Fc %J Nature %V 372 %P 379-383 %D 1994 %A R.M. Burnett %T The structure of the adenovirus capsid: II. The packing symmetry of hexon and its implications for viral architecture %J J. Mol. Biol. %V 185 %P 125-? %D 1985 %K 0AD2 %A R.M. Burnett %A G.D. Darling %A D.S. Kendall %A M.E. LeQuesne %A S.G. Mayhew %A W.W. Smith %A M.L. Ludwig %T The structure of the oxidized form of clostridial flavodoxin at 1.9\(Ao resolution %J J. Biol. Chem. %V 249 %P 4383-? %D 1974 %K 4FXN %A R.M. Burnett %A M.G. Gr\(u:tter %A J.L. White %T The structure of the adenovirus capsid: I. An envelope model of hexon at 6\(Ao resolution %J J. Mol. Biol. %V 185 %P 105-? %D 1985 %K 0AD2 Grutter %A R.M. Burnett %A J. van\0Oostrum %A M.M. Roberts %T Progress in understanding adenovirus architecture %J Biophys. J. %V 49 %P 22-? %D 1986 %K 0AD2 %A C.E. Burnham %A C.L. Hawelu-Johnson %A B.M. Frank %A K.R. Lynch %T Molecular cloning of rat renin cDNA and its gene %J Proc. Natl. Acad. Sci. USA %V 84 %D 1987 %P 5605-5609 %K aspartic proteinase sequence PNAS %A S.K. Burt %A C.W. Hutchins %A J. Greer %T Predicting receptor-ligand interactions %J Curr. Opin. Struct. Biol. %V 1 %P 213-218 %D 1991 %A S. Burt %A J. Greer %T Search strategies for determining the bioactive conformers of peptides and small molecules %J Ann. Rep. Med. Chem. %V 23 %P 285-294 %D 1988 %A D.R. Burton %A C.F. Barbas\0III %A M.A.A. Persson %A S. Koenig %A R.M. Chanock %A R.A. Lerner %T A large array of human monoclonal antibodies to type 1 human immunodeficiency virus from combinatorial libraries of asymptomatic seropositive individuals %J Proc. Natl. Acad. Sci. USA %V 88 %P 10134-10137 %D 1991 %A D.J. Buttle %A A. Ritonja %A L.H. Pearl %A V. Turk %A A. Barret %T Selective cleavage of glycyl bonds by papaya proteinase IV %J FEBS Lett. %V 260 %D 1990 %P 195-197 %K thiol protease cleavage %A M. Bycroft %A A. Matouschek %A J.T. Kellis,\0Jr. %A L. Serrano %A A. Fersht %T Detection and characterization of a folding intermediate in barnase by NMR %J Nature %V 346 %D 1990 %P 488-490 %A I.-J.L. Byeon %A M. Llin\(a's %T Solution structure of the tissue-type plasminogen activator kringle 2 domain complexed to 6-aminohexanoic acid, an antifibrinolytic drug %J J. Mol. Biol. %V 222 %P 1035-1051 %D 1991 %K Llinas %A C. Bystroff %A S.J. Oatley %A J. Kraut %T Crystal structures of \f2Escherichia coli\f1 dihydrofolate reductase: the NADP\u\s-2\(pl\s0\d holoenzyme and the folate\(emNADP\u\s-2\(pl\s0\d ternary complex: substrate binding and a model for the transition state %J Biochemistry %V 29 %P 3263-? %D 1990 %K 7DFR 5DFR 6DFR %A H.-J. B\(:ohm %T The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure %J J. Comp. Aid. Mol. Des. %V 8 %P 243-256 %D 1994 %K Bohm %A Z. B\(o:cskei %A C.R. Groom %A D.R. Flower %A C.E. Wright %A S.E.V. Phillips %A A. Cavaggioni %A J.B.C. Findlay %A A.C.T. North %T Pheromone binding to two rodent urinary proteins revealed by X-ray crystallography %J Nature %V 360 %P 186-188 %D 1992 %K Bockskei %A M. B\(u:scher %A W. Reiser %A H. Will %A H. Schaller %T Transcripts and the putative RNA pregenome of duck hepatitis B virus: implications for reverse transcription %J Cell %V 40 %D 1985 %P 717-724 %K hepatitis sequence Buscher %A J.J. Cael %A W.T. Winter %A S. Arnott %T Calcium chondroitin 4-sulfate: molecular conformation and organization of polysaccharide chains in a proteoglycan %J J. Mol. Biol. %V 125 %P 21-? %D 1978 %K PDB2C4S %A A. Caflisch %A A. Miranker %A M. Karplus %T Multiple copy simultaneous search and construction of ligands in binding sites: Application to inhibitors of HIV-1 aspartic proteinase %J J. Med. Chem. %V 36 %P 2142-2167 %D 1993 %A I. Callebaut %A J.-M. Renoir %A M.-C. Lebeau %A N. Massol %A A. Burny %A E.-E. Baulieu %A J.P. Mornon %T An immunophilin that binds M\d\s-2r\s0\u 90,000 heat shock protein: Main structural features of a mammalian p59 protein %J Proc. Natl. Acad. Sci. USA %V 89 %P 6270-6274 %D 1992 %A L. Camardella %A C. Caruso %A R. D'Avino %A G di\0Prisco %A B. Rutigliano %A M. Tamburrini %A G. Fermi %A M.F. Perutz %T Haemoglobin of the Antarctic fridge \f2Pagothenia bernacchii\f1: Amino acid sequence, oxygen equilibria and crystal structure of its carbonmonoxy derivative %J J. Mol. Biol. %V 224 %P 449-460 %D 1992 %A C.E. Cameron %A B. Grinde %A J. Jentoft %A J. Leis %A I.T. Weber %A T.D. Copeland %A A. Wlodawer %T Mechanism of inhibiton of the retroviral protease by a Rous sarcoma virus peptide substrate representing the cleavage site between the \f2gag\f1 p2 and p10 proteins %J J. Biol. Chem. %V 267 %P 23735-23741 %D 1992 %A J.H. Camin %A R.R. Sokal %D 1965 %T A method for deducing branching sequences in phylogeny %J Evolution %V 19 %P 311-326 %A I.D. Campbell %A M. Baron %T The structure and function of protein modules %J Proc. Roy. Soc. Lond. %V B 332 %P 165-170 %D 1991 %A J.W. Campbell %A G.I. Hodgson %A H.C. Watson %T Low resolution structure of yeast phosphoglycerate mutase %J Nature, New Biol. %V 240 %P 137-139 %D 1972 %K 3PGM %A J.W. Campbell %A G.I. Hodgson %A H.C. Watson %A R.K. Scopes %T A preliminary X-ray crystallographic investigation of yeast phosphoglycerate mutase %J J. Mol. Biol. %V 61 %P 257-? %D 1971 %K 3PGM %A J.W. Campbell %A H.C. Watson %A G.I. Hodgson %T Structure of yeast phosphoglycerate mutase %J Nature %V 250 %P 301-303 %D 1974 %K 3PGM %A C.R. Cantor %A P.R. Schimmel %T Biophysical Chemistry: the conformation of biological macromolecules %V 1 %C San Francisco %D 1980 %I Freeman %A S. Capasso %A F. Giordano %A C.A. Mattia %A L. Mazzarella %A A. Zagari %T Refinement of the structure of bovine seminal ribonuclease %J Biopolymers %V 22 %P 327-? %D 1983 %K 0RBS %A S. Capasso %A F. Giordano %A L. Mazzarella %A A. Ripamonti %T Preliminary X-ray investigation of bovine seminal ribonuclease %J J. Mol. Biol. %V 64 %P 311-? %D 1972 %K 0RBS %A J.D. Capra %A A.B. Edmundson %T The antibody combining site %J Sci. Amer. %V 236 %P 50-? %D 1977 %K 1MCG 2MCG 3MCG %A T. Cardozo %A M. Totrov %A R. Abagyan %T Homology modeling by the ICM method %J Proteins %V 23 %P 403-414 %D 1995 %A C.H. Carlisle %A R.A. Palmer %A S.K. Mazumdar %A B.A. Gorinsky %A D.G.R. Yeates %T The structure of ribonuclease at 2.5\(Ao resolution %J J. Mol. Biol. %V 85 %D 1974 %P 1-18 %K 3RN3 %A J. Carlson %A J. Stenflo %T The biosynthesis of rat \(*a\d\s-21\s0\u-antitrypsin %J J. Biol. Chem. %V 257 %P 12987-? %D 1982 %K 7API 8API 9API %A W. Carlson %A M. Karplus %A E. Haber %T Construction of a model for the three-dimensional structure of human renal renin %J Hypertension %V 7 %P 13-26 %D 1985 %A A. Carne %A C.H. Moore %T The amino acid sequence of the tryptic peptides from actinidin, a proteolytic enzyme from the fruit of \f2Actinidia chinensis\f1 %J Biochem. J. %V 173 %P 73-? %D 1978 %K 2ACT %A G. Carpenter %A S. Cohen %T Epidermal growth factor %J J. Biol. Chem. %D 1990 %V 265 %P 7709-7712 %K EGF %A M.D. Carr %T \u\s-21\s0\dH NMR-based determination of the secondary structure of porcine pancreatic spasmolytic polypeptide: One of a new family of ``trefoil'' motif containing cell growth factors %J Biochemistry %V 31 %P 1998-2004 %D 1992 %A H.L. Carrell %A J.P. Glusker %A V. Burger %A F. Manfre %A D. Tritsch %A J.-F. Biellmann %T X-ray analysis of \s-2D\s0-xylose isomerase at 1.9\(Ao: Native enzyme in complex with substrate and with a mechanism-designed inactivator %J Proc. Natl. Acad. Sci. USA %V 86 %P 4440-? %D 1989 %K PDB7XIA PDB8XIA PDB9XIA %A H.L. Carrell %A B.H. Rubin %A T.J. Hurley %A J.P. Glusker %T X-ray crystal structure of \s-2D\s0-xylose isomerase at 4\(Ao resolution %J J. Biol. Chem. %V 259 %P 3230-? %D 1984 %K 7XIA 8XIA 9XIA %A R.W. Carrell %A J.-O. Jeppsson %A L. Vaughan %A S.O. Brennan %A M.C. Owen %A D.R. Boswell %T Human \(*a\d\s-21\s0\u-antitrypsin: carbohydrate attachment and sequence homology %J FEBS Lett. %V 135 %P 301-? %D 1981 %K 7API %K 8API %K 9API %A R.W. Carrell %A A.M. Lesk %T A tale of two proteinases %J Nature Struct. Biol. %V 1 %P 492-494 %D 1994 %A R. Carrell %A J. Travis %T \(*a\d\s-21\s0\u-Antitrypsin and the serpins: variation and countervariation %J Trends Biochem. Sci. %V 10 %D 1985 %P 20-24 %K serine proteinase inhibitor serpin TIBS %A D.M. Carrington %A A. Auffret %A D.E. Hanke %T Polypeptide ligation occurs during post-translational modification of concanavalin A %J Nature %V 313 %P 64-67 %D 1985 %K lectin %A D.B. Carter %A K.A. Curry %A C.-S.C. Tomich %A A.W. Yem %A M.R. Deibel %A D.E. Tracey %A J.W. Paslay %A J.B. Carter %A N.Y. Theriault %A P.K.W. Harris %A I.M. Reardon %A H.A. Zurcher-Neely %A R.L. Heinrikson %A L.L. Clancy %A S.W. Muchmore %A K.D. Watenpaugh %A H.M. Einspahr %T Crystallization of purified recombinant human interleukin-1\(*b %J Proteins %V 3 %P 121-? %D 1988 %K 1I1B %A D.C. Carter %A X.-M. He %A S.H. Munson %A P.D. Twigg %A K.M. Gernert %A M.B. Broom %A T.Y. Miller %T Three-dimensional structure of human serum albumin %J Science %V 244 %P 1195-1198 %D 1989 %A D.C. Carter %A K.A. Melis %A S.E. O'Donnell %A B.K. Burgess %A W.F. Furey,\0Jr. %A B.-C. Wang %A C.D. Stout %T Crystal structure of \f2Azotobacter\f1 cytochrome \f2c\f1\d\s-25\s0\u at 2.5\(Ao resolution %J J. Mol. Biol. %V 184 %P 279-295 %D 1985 %K PDB1CC5 %A P. Carter %A J.A. Wells %T Engineering enzyme specificity by ``substrate-assisted catalysis'' %J Science %V 237 %P 394-399 %D 1987 %A P. Carter %A J.A. Wells %T Dissecting the catalytic triad of a serine protease %J Nature %V 332 %D 1988 %P 564-568 %K catalytic-mechanism %A C.W. Carter,\0Jr. %A S.T. Freer %A N.H. Xuong %A R.A. Alden %A J. Kraut %T Structure of the iron-sulfur cluster in the chromatium iron protein at 2.25\(Ao resolution %J Cold Spring Harbor Symp. Quant. Biol. %V 36 %P 381-? %D 1972 %K 1HIP %A C.W. Carter,\0Jr. %A J. Kraut %A S.T. Freer %A R.A. Alden %T Comparison of oxidation-reduction site geometries in oxidized and reduced chromatium high potential iron protein and oxidized \f2Peptococcus aerogenes\f1 ferredoxin %J J. Biol. Chem. %V 249 %P 6339-? %D 1974 %K 1HIP %A C.W. Carter,\0Jr. %A J. Kraut %A S.T. Freer %A N.-H. Xuong %A R.A. Alden %A R.G. Bartsch %T 2.0\(Ao crystal structure of oxidized chromatium high potential iron protein %J J. Biol. Chem. %V 249 %P 4212-? %D 1974 %K PDB1HIP %A G. Casari %A M.J. Sippl %T Structure-derived hydrophobic potential: hydrophobic potential derived from X-ray structures of globular proteins is able to identify native folds %J J. Mol. Biol. %V 224 %P 725-732 %D 1992 %A D.L.D. Caspar %A J. Clarage %A D.M. Salunke %A M. Clarage %T Liquid-like movements in crystalline insulin %J Nature %D 1988 %V 332 %P 659-662 %A D.L.D. Caspar %A A. Klug %T Physical principles in the construction of regular viruses %J Cold Spring Harbor Symp. Quant. Biol. %V 27 %P 1-24 %D 1962 %A L.L. Cavalli-Sforza %A A.W.F. Edwards %D 1967 %T Phylogenetic analysis: models and estimation procedures %J Evolution %V 32 %P 550-570 %A J.A. Cavender %A J. Felsenstein %D 1987 %T Invariants of phylogenies in a simple case with discrete states %J J. Classification %V 4 %P 57-71 %A E. Cedergren-Zeppezauer %T Crystal-structure determination of reduced nicotinamide adenine dinucleotide complex with horse liver alcohol dehydrogenase maintained in its \f2apo\f1 conformation by zinc-bound imidazole %J Biochemistry %V 22 %P 5761-? %D 1983 %K 5ADH %A E.S. Cedergren-Zeppezauer %A G. Larsson %A P.O. Nyman %A Z. Dauter %A K.S. Wilson %T Crystal structure of a dUTPase %J Nature %V 355 %P 740-743 %D 1992 %A E. Cedergren-Zeppezauer %A J.-P. Samama %A H. Eklund %T Crystal structure determinations of coenzyme analogue and substrate complexes of liver alcohol dehydrogenase: binding of 1,4,5,6-tetrahydronicotinamide adenine dinucleotide and \f2trans\f1-4-(N,N-dimethylamino)cinnamaldehyde to the enzyme %J Biochemistry %V 21 %P 4895-? %D 1982 %A E. Cederlund %A Y. Lindqvist %A G. S\(o:derlund %A C.-I. Br\(a:nd\(e'n %A H. J\(o:rnvall %T Primary structure of glycolate oxidase from spinach %J Eur. J. Biochem. %V 173 %P 523-? %D 1988 %K 1GOX Branden Jornvall Soderlund %A G. Cesareni %T Peptide display on filamentous phage capsids %J FEBS Letts %V 307 %P 66-70 %D 1992 %A T.A. Ceska %A M. Lamers %A P. Monaci %A A. Nicosia %A R. Cortese %A D. Suck %T The X-ray structure of an atypical homeodomain present in the rat liver transcription factor LFB1/HNF1 and implication for DNA binding %J EMBO J. %V 12 %P 1805-1810 %D 1993 %A L. Chakrabarti %A M. Guyader %A M. Alizon %A M.D. Daniel %A R.C. Desrosiers %A P. Tiollais %A P. Sonigo %T Sequence of simian immunodeficiency virus from macaque and its relationship to other human and simian retroviruses %J Nature %V 328 %D 1987 %P 543-547 %K sequence retrovirus lentivirus phylogeny %A P. Chakrabarti %T Geometry of interaction of metal ions with sulphur-containing ligands in protein structures %J Biochemistry %V 28 %P 6081-6085 %D 1989 %A P. Chakrabarti %T Geometry of interaction of metal ions with histidine residues in protein structures %J Prot. Eng. %V 4 %P 57-63 %D 1990 %A P. Chakrabarti %T Interaction of metal ions with carboxylic and carboxamide groups in protein structures %J Prot. Eng. %V 4 %D 1990 %P 49-56 %A A. Chakrabartty %A A.J. Doig %A R.L. Baldwin %T Helix capping propensities in peptides parallel those in proteins %J Proc. Natl. Acad. Sci. USA %V 90 %P 11332-11336 %D 1993 %A J.L. Chambers %A G.G. Christoph %A M. Krieger %A L. Kay %A R.M. Stroud %T Silver ion inhibition of serine proteases, crystallographic study of silver-trypsin %J Biochem. Biophys. Res. Comm. %V 59 %P 70-? %D 1974 %K 4PTP %A J.L. Chambers %A R.M. Stroud %T Difference-Fourier refinement of the structure of \f2dip\f1-trypsin at 1.5\(Ao using a minicomputer technique %J Acta Cryst. %V B 33 %P 1824-? %D 1977 %K 4PTP %A J.L. Chambers %A R.M. Stroud %T The accuracy of refined protein structures: comparison of two independently refined models of bovine trypsin %J Acta Cryst. %V B 35 %P 1861-1874 %D 1979 %K PDB4PTP %A J.N. Champness %A A.C. Bloomer %A G. Bricogne %A P.J.G. Butler %A A. Klug %T The structure of the protein disk of tobacco mosaic virus to 5\(Ao resolution %J Nature %V 259 %P 20-? %D 1976 %K 0TMV %A H.S. Chan %A K.A. Dill %T Origins of structure in globular proteins %J Proc. Natl. Acad. Sci. USA %D 1990 %V 87 %P 6388-6392 %K PNAS %A J.-M. Chandonia %A M. Karplus %T Neural networks for secondary structure and structural class predictions %J Prot. Sci. %V 4 %P 275-285 %D 1995 %A K. Chandrasekhar %A A. McPherson,\0Jr. %A M.J. Adams %A M.G. Rossmann %T Conformation of coenzyme fragments when bound to lactate dehydrogenase %J J. Mol. Biol. %V 76 %P 503-? %D 1973 %K 1LDM %A U.M. Chandrekharan %A S. Sanker %A M.J. GLynias %A S.S. Karnik %A A. Husain %T Angiotensin II-forming activity in a reconstructed ancestral chymase %J Science %V 271 %P 502-505 %D 1996 %A C.-H. Chang %A M.T. Short %A F.A. Westholm %A F.J. Stevens %A B.-C. Wang %A W. Furey,\0Jr. %A A. Solomon %A M. Schiffer %T Novel arrangement of immunoglobin variable domains: X-ray crystallographic analysis of the lambda-chain dimer Bence-Jones protein \f2loc\f1 %J Biochemistry %V 24 %P 4890-? %D 1985 %K PDB1BJL 2BJL %A C.T. Chang %A C.-S.C. Wu %A J.T. Yang %T Circular dichroic analysis of protein conformation: inclusion of the \(*b-turns %J Anal. Biochem. %P 13-31 %V 91 %D 1978 %A G.V. Chapman %A P.M. Colman %A H.C. Freeman %A J.M. Guss %A M. Murata %A V.A. Norris %A J.A.M. Ramshaw %A M.P. Venkatappa %T Preliminary crystallographic data for a copper-containing protein, plastocyanin %J J. Mol. Biol. %V 110 %P 187-? %D 1977 %K 1PCY %A M.S. Chapman %A I. Minor %A M.G. Rossmann %A G.D. Diana %A K. Andries %T Human rhinovirus 14 complexed with antiviral compound R 61837 %J J. Mol. Biol. %V 217 %P 455-? %D 1991 %K PDB1R09 %A R.ST. Charles %A D.A. Walz %A B.F.P. Edwards %T The three-dimensional structure of bovine platelet factor 4 at 3.0\(Ao resolution %J J. Biol. Chem. %V 264 %P 2092-? %D 1989 %K 0PFB %A C. Chatfield %T Statistics for Technology %O 3rd ed. %I Chapman and Hall %C London %D 1983 %A C. Chatfield %A A.J. Collins %T Introduction to Multivariate Analysis %I Chapman and Hall %C London %D 1980 %K principle components scaling trees %A G. Chelanayagam %A P. Argos %T Definition of general topological equivalence in protein structures %J Chemtracts %V 1 %P 382-385 %D 1992 %A B.L. Chen %A R.J. Poljak %T Amino acid sequence of the \(*l light chain of a human myeloma immunoglobulin IgG new %J Biochemistry %V 13 %P 1295-? %D 1974 %K 3FAB %A J.M. Chen %A G. Lee %A P.W. Brandt-Rauf %A R.B. Murphy %A S. Rackovsky %A M.R. Pincus %T Comparison of the predicted structure for the activated form of the P21 protein with the X-ray crystal structure %J J. Prot. Chem. %V 9 %P 543-547 %D 1990 %K Duplicate? %A K.-C. Chen %A G.M. Maggiora %A H.A. Scheraga %T Role of loop-helix interactions in stabilizing four-helix bundle proteins %J Proc. Natl. Acad. Sci. USA %V 89 %P 7315-7319 %D 1992 %A K.C.S. Chen %A J. Tang %T Amino acid sequence around the epoxide-reactive residues in pepsin %J J. Biol. Chem. %P 2566-2574 %V 247 %D 1972 %A L. Chen %A R. Durley %A B.J. Poliks %A K. Hamada %A Z. Chen %A F.S. Mathews %A V.L. Davidson %A Y. Satow %A E. Huizinga %A F.M.D. Vellieux %A W.G.J. Hol %T Crystal structure of an electron-transfer complex between methylamine dehydrogenase and amicyanin %J Biochemistry %V 31 %P 4959-4964 %D 1992 %K 1MDA %A L. Chen %A J.P. Rose %A E. Breslow %A D. Yang %A W.-R. Chang %A W.F. Furey,\0Jr. %A M. Sax %A B.-C. Wang %T Crystal structure of a bovine neurophysin II dipeptide complex at 2.8\(Ao determined from the single-wavelength anomalous scattering signal of an incorporated iodine atom %J Proc. Natl. Acad. Sci. USA %V 88 %P 4240-4244 %D 1991 %K 1BN2 %A P. Chen %A R. Love %A C.H. Wei %A B.-C. Wang %T Reactive sites of an anticarcinogenic Bowman-Birk proteinase inhibitor are similar to other trypsin inhibitors %J J. Biol. Chem. %V 267 %P 1990-1994 %D 1992 %A P. Chen %A U. Schulze-Gahmen %A E.A. Stura %A J. Inglese %A D.L. Johnson %A A. Marolewski %A S.J. Benkovic %A I.A. Wilson %T Crystal structure of glycinamide ribonucleotide transformylase from \f2Escherichia coli\f1 at 3.0\(Ao resolution %J J. Mol. Biol. %V 227 %P 283-292 %D 1992 %A S. Chen %A R.A. Chrushciel %A H. Nakanishi %A A. Raktabutr %A M.E. Johnson %A A. Sato %A D. Weiner %A J. Hoxie %A H.U. Saragovi %A M.I. Greene %A M. Kahn %T Design and synthesis of a CD4 \(*b-turn mimetic that inhibits human immunodeficiency virus envelope glycoprotein gp120 binding and infection of human lymphocytes %J Proc. Natl. Acad. Sci. USA %V 89 %P 5872-5876 %D 1992 %A X. Chen %A A. Tropsha %T Relative binding free energies of peptide inhibitors of HIV-1 protease: The influence of the active site protonation state %J J. Med. Chem. %V 38 %P 42-48 %D 1995 %A Y-H. Chen %A J.T. Yang %A K.H. Chau %T Determination of the helix and beta form of proteins in aqueous solution by circular dichroism %J Biochemistry %P 3350-3359 %V 13 %D 1974 %A Z. Chen %A W. Bode %T Refined 2.5\(Ao X-ray crystal structure of the complex formed by porcine kallikrein A and the bovine pancreatic trypsin inhibitor %J J. Mol. Biol. %V 164 %D 1983 %P 283-311 %K PDB2KAI %A Z. Chen %A C. Stauffacher %A Y. Li %A T. Schmidt %A W. Bomu %A G. Kamer %A M. Shanks %A G. Lomonossoff %A J.E. Johnson %T Protein-RNA interactions in an icosahedral virus at 3.0\(Ao resolution %J Science %V 245 %P 154-159 %D 1989 %A Z. Chen %A C. Stauffacher %A Y. Li %A T. Schmidt %A W. Bomu %A G. Kamer %A M. Shanks %A G. Lomonossoff %A J.E. Johnson %T Protein-RNA interactions in an icosahedral virus at 3.0\(Ao resolution %J Science %V 245 %P 154-? %D 1989 %K 1BMV %A X. Cheng %A S. Kumar %A J. Posfai %A J.W. Pflugrath %A R.J. Roberts %T Crystal structure of the Hhal DNA methyltransferase complexed with S-adenosyl-\s-2L\s0-methionine %J Cell %V 74 %P 299-307 %D 1993 %A B.Z. Cherches %A P.D. Reshetov %A L.S. Zhigis %A I.A. Stoyachenko %A L.A. Chupova %A A.S. Khokhlov %T Actinoxanthin: VI. tryptic peptides and amino acid sequence of actinoxanthin %J Sov. J. Bioorg. Chem. (English trans.) %V 1 %P 799-? %D 1976 %K 1ACX %A L. Chice %A L.M. Gregoret %A F.E. Cohen %A P.A. Kollman %T Protein model structure evaluation using the solvation free energy folding %J Proc. Natl. Acad. Sci. USA %V 87 %P 3240-3243 %D 1990 %K PNAS %A L. Chiche %A C. Gaboriaud %A A. Heitz %A J. Mornon %A B. Castro %A P.A. Kollman %T Use of restrained molecular dynamics in water to determine three-dimensional protein structure: prediction of the three-dimensional structure of \f2Ecballium elaterium\f1 trypsin inhibitor II %J Proteins %V 6 %P 405-417 %D 1989 %K PDB2ETI %A D.T. Chin %A S.A. Goff %A T. Webtser %A T. Smith %A A.L. Goldberg %T Sequence of the \f2lon\f1 gene in \f2Escherichia coli\f1 %J J. Biol. Chem. %V 263 %P 11718-11728 %D 1986 %A G. CHinea %A G. Padron %A R.W.W. Hooft %A C. Sander %A G. Vriend %T The use of position-specific rotamers in model building by homology %J Proteins %V 23 %P 415-423 %D 1995 %A I.-M. Chiu %A A. Yaniv %A J.E. Dahlberg %A A. Gazit %A S.F. Skuntz %A S.R. Tronick %A S.A. Aaronson %T Nucleotide sequence evidence for relationship of AIDS retrovirus to lentiviruses %J Nature %V 317 %D 1985 %P 366-368 %K AIDS sequence phylogeny lentivirus retrovirus %A Y. Cho %A S. Gorina %A P.D. Jeffrey %A N.P. Pavletich %T Crystal structure of a p53 tumor suppressor-DNA complex: Understanding tumorogenic mutations %J Science %V 265 %P 346-355 %D 1994 %A H.-K. Choi %A L. Tong %A W. Minor %A P. Dumas %A U. Boege %A M.G. Rossmann %A G. Wengler %T Structure of Sindbis virus core protein reveals a chymotrypsin-like serine proteinase and the organization of the virion %J Nature %V 354 %P 37-43 %D 1991 %A H.-T. Chong %A M.J. Ruwart %A R.R. Hinshaw %A K.F. Wilkinson %A B.D. Rush %A M.F. Yancey %A J.W. Strohbach %A S. Thaisrivongs %T Peptidomimetic HIV protease inhibitors: Phosphate prodrugs with improved biological activities %J J. Med. Chem. %V 36 %P 2575-2577 %D 1993 %A Q.-L. Choo %A K.H. Richman %A J.H. Han %A K. Berger %A C. Lee %A C. Dong %A C. Gallegos %A D. Coit %A A. Medina-Selby %A P.J. Barr %A A.J. Weiner %A D.W. Bradley %A G. Kuo %A M. Houghton %T Genetic organization and diversity of the hepatitis C virus %J Proc. Natl. Acad. Sci. USA %V 88 %P 2451-2455 %D 1991 %A C. Chothia %T Conformation of twisted \(*b-pleated sheets in proteins %J J. Mol. Biol. %V 75 %D 1973 %P 295-302 %K beta sheets protein structure %A C. Chothia %T Hydrophobic bonding and accessible surface area in proteins %J Nature %V 248 %D 1974 %P 338-339 %K protein structure surface area folding %A C. Chothia %T Structural invariants in protein folding %J Nature %V 254 %D 1975 %P 304-308 %K protein structure invariance conservation %A C. Chothia %T The nature of the accessible and buried surfaces in proteins %J J. Mol. Biol. %V 105 %D 1976 %P 1-14 %K surface area hydrophobicity protein structure folding %A C. Chothia %T Coiling of \(*b-pleated sheets %J J. Mol. Biol. %V 163 %D 1983 %P 107-117 %K protein structure beta sheets secondary structure %A C. Chothia %T Principles that determine the structure of proteins %J Annu. Rev. Biochem. %V 53 %D 1984 %P 537-572 %A C. Chothia %T The 14th barrel rolls out %J Nature %V 333 %D 1988 %P 598-599 %A C. Chothia %T Polyhedra for helical proteins %J Nature %V 337 %P 204-205 %D 1989 %A C. Chothia %T One thousand families for the molecular biologist %J Nature %V 357 %P 543-544 %D 1992 %A C. Chothia %A D.R. Boswell %A A.M. Lesk %T The outline structure of the T-cell \(*a\(*b receptor %J EMBO J. %V 7 %P 3745-3755 %D 1988 %A C. Chothia %A A.V. Finkelstein %T The classification and origins of protein folding patterns %J Annu. Rev. Biochem. %V 59 %P 1007-1139 %D 1990 %A C. Chothia %A J. Janin %T Principles of protein-protein recognition %J Nature %V 256 %D 1975 %P 705-708 %K ligand binding molecular recognition %A C. Chothia %A J. Janin %T Relative orientation of close-packed \(*b-pleated sheets in proteins %J Proc. Natl. Acad. Sci. USA %V 78 %D 1981 %P 4146-4150 %K PNAS %A C. Chothia %A J. Janin %T Orthogonal packing of \(*b-pleated sheets in proteins %J Biochemistry %V 21 %D 1982 %P 3955-3965 %K protein structure beta sheets secondary structure %A C. Chothia %A A.M. Lesk %T Evolution of proteins formed by \(*b-sheets: I. plastocyanin and azurin %J J. Mol. Biol. %V 160 %D 1982 %P 309-323 %A C. Chothia %A A.M. Lesk %T Helix movements and the reconstruction of the haem pocket during the evolution of the cytochrome \f2c\f1 family %J J. Mol. Biol. %V 182 %D 1985 %P 151-158 %A C. Chothia %A A.M. Lesk %T Helix movements in proteins %J Trends Biochem. Sci. %V 10 %D 1985 %P 116-118 %K TIBS %A C. Chothia %A A.M. Lesk %T The relation between the divergence of sequence and structure in proteins %J EMBO J. %V 5 %D 1986 %P 823-826 %A C. Chothia %A A.M. Lesk %T Canonical structures for the hypervariable regions of immunoglobulins %J J. Mol. Biol. %V 196 %D 1987 %P 901-917 %A C. Chothia %A A.M. Lesk %A G.G. Dodson %A D.C. Hodgkin %T Transmission of conformational change in insulin %J Nature %V 302 %D 1983 %P 500-505 %A C. Chothia %A A.M. Lesk %A E. Gherardi %A I.M. Tomlinson %A G. Walter %A J.D. Marks %A M.B. Llewelyn %A G. Winter %T Structural repertoire of the human V\d\s-4H\s0\u segments %J J. Mol. Biol. %V 227 %P 799-817 %D 1992 %A C. Chothia %A A.M. Lesk %A M. Levitt %A A.G. Amit %A R.A. Mariuzza %A S.E.V. Phillips %A R.J. Poljak %T The predicted structure of immunoglobulin D1.3 and its comparison with the crystal structure %J Science %V 233 %D 1986 %P 755-758 %A C. Chothia %A A.M. Lesk %A A. Tramontano %A M. Levitt %A S.J. Smith-Gill %A G. Air %A S. Sheriff %A E.A. Padlan %A D. Davies %A W.R. Tulip %A P.M. Colman %A S. Spinelli %A P.M. Alzari %A R.J. Poljak %T Conformation of immunoglobulin hypervariable regions %J Nature %V 342 %D 1989 %P 877-883 %A C. Chothia %A M. Levitt %A D. Richardson %T Structure of proteins: packing of \(*a-helices and pleated sheets %J Proc. Natl. Acad. Sci. USA %V 74 %D 1977 %P 4130-4134 %K PNAS %A C. Chothia %A M. Levitt %A D. Richardson %T Helix to helix packing in proteins %J J. Mol. Biol. %V 145 %D 1981 %P 215-250 %A C. Chothia %A J. Novotny\\*' %A R. Bruccoleri %A M. Karplus %T Domain association in immunoglobulin molecules: the packing of variable domains %J J. Mol. Biol. %V 186 %D 1985 %P 651-663 %A C. Chothia %A S. Wodak %A J. Janin %T Role of subunit interfaces in the allosteric mechanism of hemoglobin %J Proc. Natl. Acad. Sci. USA %V 73 %D 1976 %P 3793-3797 %K PNAS %A K.-C. Chou %T Energy-optimized structure of antifreeze protein and its binding mechanism %J J. Mol. Biol. %V 223 %P 509-? %D 1992 %K PDB1ATF %A K.-C. Chou %T The convergence-divergence duality in lectin domains of selectin family and its implications %J FEBS Letts. %V 363 %P 123-126 %D 1995 %A K.-C. Chou %T Does the folding type of a protein depend on its amino acid sequence %J FEBS Letts. %V 363 %P 127-131 %D 1995 %A K.-C. Chou %A L. Carlacci %T Energetic approach to the folding of \(*a/\(*b barrels %J Proteins %V 9 %P 280-295 %D 1991 %A K.-C. Chou %A L. Carlacci %A G.G. Maggiora %T Conformation and geometrical properties of idealized \(*b-barrels in proteins %J J. Mol. Biol. %V 213 %D 1990 %P 315-326 %K beta-barrels secondary structure conformation minimization %A K.-C. Chou %A G. N\(e'methy %A M. Pottle %A H.A. Scheraga %T Energy of stabilization of the right-handed \(*b\(*a\(*b crossover in proteins %J J. Mol. Biol. %V 205 %D 1989 %P 241-249 %K Nemethy %A K.-C. Chou %A G. N\(e'methy %A S. Rumsey %A R.W. Tuttle %A H.A. Scheraga %T Interactions between an \(*a-helix and a \(*b-sheet: energetics of \(*a/\(*b packing in proteins %J J. Mol. Biol. %V 186 %D 1985 %P 591-609 %K Nemethy %A K.-C. Chou %A G. N\(e'methy %A S. Rumsey %A R.W. Tuttle %A H.A. Scheraga %T Interactions between two \(*b-sheets: energetics of \(*b/\(*b packing in proteins %J J. Mol. Biol. %V 188 %D 1986 %P 641-649 %K Nemethy %A K.-C. Chou %A G. N\(e'methy %A H.A. Scheraga %T Energetic approach to the packing of \(*a-helices: 1. Equivalent helices %J J. Phys. Chem. %V 87 %D 1983 %P 2869-2881 %K Nemethy %A K.-C. Chou %A G. N\(e'methy %A H.A. Scheraga %T Energetic approach to the packing of \(*a-helices: 2. General treatment of nonequivalent and nonregular helices %J J. Am. Chem. Soc. %V 106 %D 1984 %P 3161-3170 %K Nemethy %A P.Y. Chou %A G.D. Fasman %T Conformational parameters for amino acids in helical \(*b-sheet and random coil regions calculated from proteins %J Biochemistry %V 13 %D 1974 %P 211-222 %A P.Y. Chou %A G.D. Fasman %T Prediction of protein conformation %J Biochemistry %V 13 %D 1974 %P 222-245 %A P.Y. Chou %A G.D. Fasman %T \(*b-turns in proteins %J J. Mol. Biol. %V 115 %D 1977 %P 135-175 %A P.Y. Chou %A G.D. Fasman %T Empirical predictions of protein conformation %J Annu. Rev. Biochem. %V 47 %D 1978 %P 251-276 %K prediction secondary structure review %A P.Y. Chou %A G.D. Fasman %T Prediction of the secondary structure of proteins from their amino acid sequence %J Adv. Enzym. %V 47 %D 1978 %P 45-148 %K prediction secondary structures propensity Chou and Fasman methods %A P.Y. Chou %A G.D. Fasman %T Conservation of chain reversal regions in proteins %J Biophys. J. %V 26 %P 385-399 %D 1979 %A M. Chow %A J.F.E. Newman %A D. Filman %A J.M. Hogle %A D.J. Rowlands %A F. Brown %T Myristylation of picornavirus capsid protein VP4 and its structural significance %J Nature %V 327 %P 482-486 %D 1987 %K 2PLV %A A.C. Christensen %A S. Henikoff %T Fact and fiction in alignment %J Nature %V 358 %P 271 %D 1992 %A D.W. Christianson %A W.N. Lipscomb %T X-ray crystallographic investigation of substrate binding to carboxypeptidase A at subzero temperature %J Proc. Natl. Acad. Sci. USA %V 83 %P 7568-7572 %D 1986 %K PDB3CPA PNAS %A L.A. Chupova %A P.D. Reshetov %A A.S. Khokhlov %T Actinoxanthin: IV. chymotryptic peptides of actinoxanthin %J Sov. J. Bioorg. Chem. (English trans.) %V 1 %P 709-? %D 1976 %K 1ACX %A W.B. Church %A J.M. Guss %A J.J. Potter %A H.C. Freeman %T The crystal structure of mercury-substituted poplar plastocyanin at 1.9-\(Ao resolution %J J. Biol. Chem. %V 261 %P 234-? %D 1986 %K PDB3PCY %A W.B. Church %A A. Palmer %A J.C. Wathey %A D.H. Kitson %T Homology modeling of histidine-containing phosphocarrier protein and eosinophil-derived neurotoxin: Construction of models and comparison with experiment %J Proteins %V 23 %P 422-430 %D 1995 %A J. Ciarkowski %A S. Oldziej %T AM1 and PM3 study of a low molecular weight structural mimic of hydrogen exchange wihtin the catalytic center of aspartic proteinases %J Eur. Biophys. J. %V 22 %P 207-212 %D 1993 %A P. Cieplak %A P. Bash %A U.C. Singh %A P.A. Kollman %T A theoretical study of tautomerism in the gas phase and aqueous solution: A combined use of ``state of the art'' ab initio quantum mechanics and free energy perturbation methods %J J. Amer. Chem. Soc. %V 109 %P 6283-6289 %D 1987 %A P. Cieplak %A P.A. Kollman %T Peptide mimetics as enzyme inhibitors: Use of free energy perturbation calculations to evaluate isosteric replacement for amide bonds in a potent HIV protease inhibitor %J J. Comp. Aid. Mol. Des. %V 7 %P 291-304 %D 1993 %A E. Ciszak %A V. Cody %A J.R. Luft %T Crystal determination at 2.3\(Ao resolution of human transthyretin-3\(fm,5\(fm-dibromo-2\(fm,4,4\(fm,6-tetrahydroxyaurone complex %J Proc. Natl. Acad. Sci. USA %V 89 %P 6644-6648 %D 1992 %A T. Clackson %A J.A. Wells %T A hot spot of binding energy in a hormone-receptor interface %J Science %V 267 %P 383-386 %D 1995 %A M. Claessens %A E. van\0Cutsem %A I. Lasters %A S. Wodak %T Modelling the polypeptide backbone with `spare parts' from known protein structures %J Prot. Eng. %V 2 %P 335-345 %D 1989 %A J. Clare %A P. Farabaugh %T Nucleotide sequence of a yeast Ty element: evidence for an unusual mechanism of gene expression %J Proc. Natl. Acad. Sci. USA %V 82 %D 1985 %P 2829-2833 %K PNAS %A B.F.C. Clark %A M. Jensen %A M. Kjeldgaard %A S. Thirup %T Structural homologies in G-binding proteins %B Protein design and the development of new therapeutics and vaccines %E J.B. Hook and G. Poste %I Plenum %C New York %D 1990 %P 179-206 %A A.R. Clarke %A T. Atkinson %A J. Holbrook %T From analysis to synthesis: new ligand binding sites on the lactate dehydrogenase framework. Part I %J Trends Biochem. Sci. %P 101-105 %V 14 %D 1989 %K TIBS %A N.D. Clarke %A L.J. Beamer %A H.R. Goldberg %A C. Berkower %A C.O. Pabo %T The DNA binding arm of \(*l repressor: critical contacts from a flexible region %J Science %V 254 %P 267-270 %D 1991 %A S.E. Clarke %A L.C. Sieker %A R.E. Stenkamp %A J.S. Loehr %T Mercury binding to hemerythrin: coordination of mercury and its effects on subunit interactions %J Biochemistry %V 18 %P 684-? %D 1979 %K 1HMQ %A L.K. Clayton %A R.E. Hussey %A R. Steinbrich %A H. Ramachandran %A Y. Husain %A E.L. Reinherz %T Substitution of murine for human CD4 residues identifies amino acid residues critical for HIV-gp120 binding %J Nature %V 335 %D 1988 %P 363-366 %A L.K. Clayton %A M. Sieh %A D.A. Pious %A E.L. Reinherz %T Identification of human CD4 residues affecting class II MHC versus HIV-1 gp120 binding %J Nature %V 339 %D 1989 %P 548-551 %A G.A. Clegg %A J.E. Fitton %A P.M. Harrison %A A. Treffry %T Ferritin: molecular structure and iron-storage mechanisms %J Prog. Biophys. Mol. Biol. %V 36 %P 53-? %D 1980 %K 0AF1 %A G.A. Clegg %A R.F.D. Stansfield %A P.E. Bourne %A P.M. Harrison %T Helix packing and subunit conformation in horse spleen apoferritin %J Nature %V 288 %P 298-? %D 1980 %K 0AF1 %A G.E. Clement %T Catalytic activity of pepsin %J Prog. Bioorg. Chem. %P 177-238 %V 2 %D 1973 %A J.M. Clements %A L.J. Bawden %A R.E. Bloxidge %A G. Catlin %A A.L. Cook %A S. Craig %A A.H. Drummond %A R.M. Edwards %A A. Fallon %A D.R. Green %A P.G. Hellewell %A P.M. Kirwin %A P.D. Nayee %A S.J. Richardson %A D. Brown %A S.B. Chahwala %A M. Snarey %A D. Winslow %T Two PDFG-B chain residues, arginine 27 and isoleucine 30, mediate receptor binding and activation %J EMBO J. %V 10 %P 4113-4120 %D 1991 %A G.M. Clore %A E. Appella %A M. Yamada %A K. Matsushima %A A.M. Gronenborn %T Determination of the secondary structure of interleukin-8 by nuclear magnetic resonance spectroscopy %J J. Biol. Chem. %V 264 %P 18907-? %D 1989 %K 1IL8 2IL8 %A G.M. Clore %A E. Appella %A M. Yamada %A K. Matsushima %A A.M. Gronenborn %T Three-dimensional structure of interleukin 8 in solution %J Biochemistry %V 29 %P 1689-? %D 1990 %K 1IL8 2IL8 %A G.M. Clore %A A.T. Br\(u:nger %A M.K. Karplus %A A.M. Gronenborn %T Application of molecular dynamics with interproton distance restraints to 3D protein structure determination %J J. Mol. Biol. %P 523-551 %V 191 %D 1986 %K Brunger %A G.M. Clore %A A.M. Gronenborn %T Determination of three-dimensional structures of proteins in solution by nuclear magnetic resonance spectroscopy %J Prot. Eng. %V 1 %P 275-288 %D 1987 %A G.M. Clore %A A.M. Gronenborn %T Comparison of the solution nuclear magnetic resonance and X-ray crystal structures of human recombinant interleukin-1\(*b %J J. Mol. Biol. %V 221 %P 47-53 %D 1991 %A G.M. Clore %A A.M. Gronenborn %T Localization of bound water in the solution structure of the immunoglobulin binding domain of \f2streptococcal\f1 protein G %J J. Mol. Biol. %V 223 %P 853-856 %D 1992 %A G.M. Clore %A A.M. Gronenborn %T Methods of structrual analysis of proteins. Part 2 \(em nuclear magnetic resonance %P 33-56 %B Protein Engineering: A practical approach %E A.R. Rees, M.J.E. Sternberg and R. Wetzel %I IRL Press %C Oxford %D 1992 %A G.M. Clore %A A.M. Gronenborn %A A.T. Br\(u:nger %A M. Karplus %T Solution conformation of a heptadecapeptide comprising the DNA binding helix F of the cyclic AMP receptor protein of \f2Escherichia coli\fP: combined use of \u\s-21\s0\dH nuclear magnetic resonance and restrained molecular dynamics %J J. Mol. Biol. %V 186 %P 435-455 %D 1985 %K Brunger %A G.M. Clore %A A.M. Gronenborn %A A.T. Br\(u:nger %A M.K. Karplus %T Solution conformation of a heptadecapeptide comprising the DNA binding helix F of the cyclic AMP receptor protein of \f2Escherichia coli\f1: combined use of \u\s-21\s0\dH NMR and restrained molecular dynamics %J J. Mol. Biol. %P 435-455 %V 186 %D 1985 %K Brunger %A G.M. Clore %A A.M. Gronenborn %A G. Carlson %A E.F. Meyer %T Stereochemistry of binding of the tetrapeptide acetyl-Pro-Ala-Pro-Tyr-NH\d\s-22\s0\u to porcine pancreatic elastase: combined use of two-dimensional transferred nuclear Overhauser enhancement measurements, restrained molecular dynamics, X-ray crystallography and molecular modelling %J J. Mol. Biol. %V 190 %P 259-? %D 1986 %K 3EST %A G.M. Clore %A A.M. Gronenborn %A M.N.G. James %A M. Kjaer %A C.A. McPhalen %A F.M. Poulsen %T Comparison of the solution and X-ray structures of barley serine proteinase inhibitor 2 %J Prot. Eng. %V 1 %P 313-? %D 1987 %K 2CI2 %A G.M. Clore %A A.M. Gronenborn %A M. Kjaer %A F.M. Poulsen %T The determination of the three-dimensional structure of barley serine proteinase inhibitor 2 by NMR, distance geometry and restrained molecular dynamics %J Prot. Eng. %V 1 %P 305-311 %D 1987 %A G.M. Clore %A A.M. Gronenborn %A M. Nilges %A K. Sukumaran %A J. Zarbock %T The polypeptide fold of the globular domain of histone H5 in solution: a study using NMR, distance geometry and restrained molecular dynamics %J EMBO J. %V 6 %P 1833-1842 %D 1987 %A G.M. Clore %A M. Nilges %A A.T. Br\(u:nger %A M.K. Karplus %A A.M. Gronenborn %T A comparison of the restrained molecular dynamics and distance geometry methods for determining three-dimensional structures of proteins on the basis of interproton distance %J FEBS Lett. %P 269-277 %V 213 %D 1987 %K Brunger %A P.W. Codding %A L.T.J. Delbaere %A K. Hayakawa %A W.L.B. Hutcheon %A M.N.G. James %A L. Jur\(a'\(svek %T 4.5\(Ao resolution structure of a bacterial serine protease from \f2Streptomyces griseus\f1 %J Can. J. Biochem. %V 52 %P 208-220 %D 1974 %K 3SGB Jurasek %A C.J. Coffee %A R.A. Bradshaw %T Carp muscle calcium-binding protein: I. characterization of the tryptic peptides and the complete amino acid sequence of component B %J J. Biol. Chem. %V 248 %P 3305-? %D 1973 %K 2CPV 5CPV 1CPD %A C.J. Coffee %A R.A. Bradshaw %A R.H. Kretsinger %T The coordination of calcium ions by carp muscle calcium-binding proteins A, B and C %J Adv. Exp. Med. Biol. %V 48 %P 211-? %D 1974 %K 2CPV 5CPV 1CPD %A C. Cohen %A D.A.D. Parry %T \(*a-helical coiled coils \(em a widespread motif in proteins %J Trends Biochem. Sci. %V 11 %D 1986 %P 245-248 %K TIBS %A C. Cohen %A D.A.D. Parry %T \(*a-helical coiled coils and bundles: how to design an \(*a-helical protein %J Proteins %D 1990 %V 7 %P 1-15 %A E.A. Cohen %A E.F. Terwilliger %A J.G. Sodroski %A W.A. Haseltine %T Identification of a protein encoded by the \f2vpu\f1 gene of HIV-1 %J Nature %V 334 %D 1988 %P 532-534 %A E.B. Cohen %T New concepts of chemical and biological structure: consequences of consistently treating weak bonds as chemical structure determinants %J J. Theor. Biol. %P 369-376 %V 108 %D 1984 %A F.E. Cohen %T The parallel \(*b helix of pectate lyase C: Something to sneeze at %J Science %V 260 %P 1444-1445 %D 1993 %A F.E. Cohen %A R.M. Abarbanel %A I.D. Kuntz %A R.J. Fletterick %T Secondary structure assignment for \(*a/\(*b Proteins by a combinatorial approach %J Biochemistry %V 22 %D 1983 %P 4894-4904 %A F.E. Cohen %A R.M. Abarbanel %A I.D. Kuntz %A R.J. Fletterick %T Turn prediction in proteins using a pattern matching approach %J Biochemistry %V 25 %D 1986 %P 266-275 %K prediction secondary structure turns hydrophobicity %A F.E. Cohen %A L.M. Gregoret %A P. Amiri %A K. Aldape %A J. Railey %A J.H. McKerrow %T Arresting tissue invasion of a parasite by protease inhibitors chosen with the aid of computer modelling %J Biochemistry %V 30 %P 11221-11229 %D 1991 %A F.E. Cohen %A L. Gregoret %A S.R. Presnell %A I.D. Kuntz %T Computer-assisted modelling of receptor-ligand interactions %B Protein structure predictions: New theoretical approaches %D 1989 %P 75-85 %A F.E. Cohen %A I.D. Kuntz %T Prediction of the three-dimensional structure of human growth hormone %J Proteins %V 1 %D 1987 %P 162-166 %A F.E. Cohen %A J. Novotny\\*' %A M.J.E. Sternberg %A D.G. Campbell %A A.F. Williams %T Analysis of structural similarities between brain Thy-1 antigen and immunoglobulin domains %J Biochem. J. %V 195 %D 1981 %P 31-40 %A F.E. Cohen %A T.J. Richmond %A F.M. Richards %T Protein folding: evaluation of simple rules for the assembly of helices into tertiary structures with myoglobin as an example %J J. Mol. Biol. %V 132 %D 1979 %P 275-288 %A F.E. Cohen %A P.A. Rosen %A I.D. Kuntz %A L.B. Epstein %A T.L. Ciardelli %A K.A. Smith %T Structure-activity studies of interleukin-2 %J Science %V 234 %P 349-352 %D 1986 %A F.E. Cohen %A M.J.E. Sternberg %T On the prediction of protein structure: the significance of the root-mean-square deviation %J J. Mol. Biol. %V 138 %D 1980 %P 321-333 %A F.E. Cohen %A M.J.E. Sternberg %T On the use of chemically derived distance constraints in the prediction of protein structure with myoglobin as an example %J J. Mol. Biol. %V 137 %D 1980 %P 9-22 %A F.E. Cohen %A M.J.E. Sternberg %A W.R. Taylor %T Analysis and prediction of protein \(*b-sheet structures by a combinatorial approach %J Nature %V 285 %D 1980 %P 378-382 %A F.E. Cohen %A M.J.E. Sternberg %A W.R. Taylor %T Analysis of the tertiary structure of protein \(*b-sheet sandwiches %J J. Mol. Biol. %V 148 %D 1981 %P 253-272 %A F.E. Cohen %A M.J.E. Sternberg %A W.R. Taylor %T Analysis and prediction of the packing of \(*a-helices against a \(*b-sheet in the tertiary structure of globular proteins %J J. Mol. Biol. %V 156 %D 1982 %P 821-862 %A G.H. Cohen %A B.W. Matthews %A D.R. Davies %T The relation between \(*g- and \(*a-chymotrypsin: II. direct comparison of the electron densities at 5.5\(Ao resolution %J Acta Cryst. %V B 26 %P 1062-? %D 1970 %K 2GCH %A G.H. Cohen %A E.W. Silverton %A D.R. Davies %T Refined crystal structure of \(*g-chymotrypsin at 1.9\(Ao resolution: comparison with other pancreatic serine proteinases %J J. Mol. Biol. %V 148 %D 1981 %P 449-479 %K PDB2GCH %A G.H. Cohen %A E.W. Silverton %A B.W. Matthews %A H. Braxton %A D.R. Davies %T Structure of \(*g-chymotrypsin at 5.5\(Ao resolution %J J. Mol. Biol. %V 44 %P 129-? %D 1969 %K 2GCH %A N.C. Cohen %A J.M. Blaney %A C. Humblert %A P. Gund %A D.C. Barry %T Molecular modelling software and methods for medicinal chemistry %J J. Med. Chem. %V 33 %P 883-894 %D 1993 %A N.C. Cohen %A V. Tschinke %T Generation of new-lead structures in computer-aided drug design %J Prog. Drug Res. %V 45 %P 205-243 %D 1995 %A S.A. Cohen %A R. Sterner %A P.S. Keim %A R.L. Heinrikson %T Covalent structural analysis of yeast inorganic pyrophosphatase %J J. Biol. Chem. %V 253 %P 889-? %D 1978 %K 1PYP %A D.E. Coleman %A A.M. Berghuis %A E. Lee %A M.E. Linder %A A.G. Gilman %A S.R. Sprang %T Structures of active conformations of G\d\s-3i\(*a1\s0\u and the mechanism of GTP hydrolysis %J Science %V 265 %P 1405-1412 %D 1994 %A M. Coll %A J. Aymami %A G.A. van\0der\0Marel %A J.H. van\0Boom %A A. Rich %A A.H.-J. Wang %T Molecular structure of the netropsin-d(CGCGATATCGCG) complex: DNA conformation in an alternating AT segment %J Biochemistry %V 28 %P 310-320 %D 1989 %K 1DNE %A M. Coll %A C.A. Frederick %A A.H.-J. Wang %A A. Rich %T A bifurcated hydrogen-bonded conformation in the d(A.T) base pairs of the DNA dodecamer d(CGCAAATTTGCG) and its complex with distamycin %J Proc. Natl. Acad. Sci. USA %V 84 %P 8385-8389 %D 1987 %K 2DND PNAS %A M. Coll %A A. Guasch %A F.X. Aviles %A R. Huber %T Three-dimensional structure of porcine procarboxypeptidase-B \(em a structural basis of its inactivity %J EMBO J. %V 10 %P 1-9 %D 1991 %A R.J. Collier %A D.B. McKay %T Crystallization of exotoxin A from \f2Pseudomonas aeruginosa\f1 %J J. Mol. Biol. %V 157 %P 413-? %D 1982 %K 0EXA %A D.M. Collins %A F.A. Cotton %A E.E. Hazen %A E.F. Meyer %A C.N. Morimoto %T Protein crystal structures: quicker, cheaper approaches %J Science %P 1047-1047 %V 190 %D 1975 %A E.J. Collins %A D.N. Garboczi %A D.C. Wiley %T Three-dimensional structure of a peptide extending from one end of a class I MHC binding site %J Nature %V 371 %P 626-629 %D 1994 %A J.R. Collins %A S.K. Burt %A J.W. Erickson %T Flap opening in HIV-1 protease simulated by 'activated' molecular dynamics %J Nature Struct. Biol. %V 2 %P 334-338 %D 1995 %A N. Colloc'h %A F.E. Cohen %T \(*b-breakers: An aperiodic secondary structure %J J. Mol. Biol. %V 221 %P 603-613 %D 1991 %A C.A. Collyer %A J.M. Guss %A Y. Sugimura %A F. Yoshizaki %A H.C. Freeman %T Crystal structure of plastocyanin from a green alga \f2Enteromorpha prolifera\f1 %J J. Mol. Biol. %V 211 %D 1990 %P 617-632 %K 7PCY %A P.M. Colman %T Antigen-antigen receptor interactions %J Curr. Opin. Struct. Biol. %V 1 %P 232-236 %D 1991 %A P.M. Colman %T Structure-based drug design %J Curr. Opin. Struct. Biol. %V 4 %P 868-874 %D 1994 %A P.M. Colman %A J. Deisenhofer %A R. Huber %A W. Palm %T Structure of the human antibody molecule Kol (immunoglobulin G1): an electron density map at 5\(Ao resolution %J J. Mol. Biol. %V 100 %P 257-? %D 1976 %K 2FB4 %A P.M. Colman %A O. Epp %A H. Fehlhammer %A W. Bode %A M. Schiffer %A E.E. Lattman %A T.A. Jones %T X-ray studies on antibody fragments %J FEBS Lett. %V 44 %P 194-? %D 1974 %K 1FC1 %A P.M. Colman %A H.C. Freeman %A J.M. Guss %A M. Murata %A V.A. Norris %A J.A.M. Ramshaw %A M.P. Venkatappa %T X-ray crystal structure analysis of plastocyanin at 2.7\(Ao resolution %J Nature %V 272 %P 319-324 %D 1978 %K 3PCY %A P.M. Colman %A H.C. Freeman %A J.M. Guss %A M. Murata %A V.A. Norris %A J.A.M. Ramshaw %A M.P. Venkatappa %A L.E. Vickery %T Preliminary crystallographic data for a basic copper-containing protein from cucumber seedlings %J J. Mol. Biol. %V 112 %P 649-? %D 1977 %K 1CBP %A P.M. Colman %A J.N. Jansonius %A B.W. Matthews %T The structure of thermolysin, an electron density map at 2.3\(Ao resolution %J J. Mol. Biol. %V 70 %P 701-? %D 1972 %K 3TLN %A P.M. Colman %A W.G. Laver %A J.N. Varghese %A A.T. Baker %A P.A. Tulloch %A G.M. Air %A R.G. Webster %T Three-dimensional structure of a complex of antibody with influenza virus neuraminidase %J Nature %V 326 %D 1987 %P 358-363 %K immunology molecular recognition complex antibody structure %A P.M. Colman %A W.G. Laver %A J.N. Varghese %A A.T. Baker %A P.A. Tulloch %A G.M. Air %A R.G. Webster %T Three-dimensional structure of a complex of antibody with influenza virus neuraminidase %J Nature %V 326 %P 358-363 %D 1994 %A P.M. Colman %A H.J. Schramm %A J.M. Guss %T Crystal and molecular structure of the dimer of variable domains of the Bence-Jones protein ROY %J J. Mol. Biol. %V 116 %P 73-? %D 1977 %K 0ROY %A P.M. Colman %A J.N. Varghese %A W.G. Laver %T Structure of the catalytic and antigenic sites in influenza virus neuraminidase %J Nature %V 303 %P 41-44 %D 1983 %A P.M. Colman %A L.H. Weaver %A B.W. Matthews %T Rare earths as isomorphous calcium replacements for protein crystallography %J Biochem. Biophys. Res. Comm. %V 46 %P 1999-? %D 1972 %K 3TMN %A F. Colonni-Cesari %A D. Perahia %A M. Karplus %A H. Eklund %A C.-I. Br\(a:nd\(e'n %A O. Tapia %T Interdomain motion in liver alcohol dehydrogenase: structural and energetic analysis of the hinge bending mode %J J. Biol. Chem. %V 261 %P 15273-? %D 1986 %K Branden %A M.B. Comarmond %A R. Gieg\(e' %A J.C. Thierry %A D. Moras %A J. Fischer %T Three-dimensional structure of yeast tRNA\d\s-2asp\s0\u: I. structure determination %J Acta Cryst. %V B 42 %P 272-? %D 1986 %K 3TRA Giege %A N.O. Concha %A J.F. Head %A M.A. Kaetzel %A J.R. Dedman %A B.A. Seaton %T Rat annexin V crystal structure: Ca\u\s-32\(pl\s0\d-induced conformational changes %J Science %V 261 %P 1321-1324 %D 1993 %A P.R. Connelly %A J.A. Thomson %T heat capacity changes and hydrophobic interactions in the binding of FK506 and rapamycin to the FK506 binding protein %J Proc. Natl. Acad. Sci. USA %V 89 %P 4781-4785 %D 1992 %A M. Connolly %T Computation of molecular volume %J J. Am. Chem. Soc. %V 107 %P 1118-1124 %D 1985 %A M.L. Connolly %T Analytical molecular surface calculation %J J. Appl. Cryst. %V 16 %P 548-558 %D 1983 %A M.J. Connoly %T Solvent-accessible surfaces of proteins and nucleic acids %J Science %V 221 %D 1983 %P 709-713 %A K.L. Constantine %A M. Madrid %A L. B\(a'nyai %A M. Trexler %A L. Patthy %A M. Llin\(a's %T Refined solution structure and ligand-binding properties of PDC-109 domain b: A collagen-binding type II domain %J J. Mol. Biol. %V 223 %P 281-298 %D 1992 %K Llinas Banyai %A W.J. Cook %A J.R. Dedman %A A.R. Means %A C.E. Bugg %T Crystallization and preliminary X-ray investigation of calmodulin %J J. Biol. Chem. %V 255 %P 8152-? %D 1980 %K 3CLN %A W.J. Cook %A S.E. Ealick %A C.E. Bugg %A J.D. Stoeckler %A R.E. Parks,\0Jr. %T Crystallization and preliminary X-ray investigation of human erythrocyte purine nucleoside phosphorylase %J J. Biol. Chem. %V 256 %P 4079-? %D 1981 %K 2PNP %A W.J. Cook %A L.C. Jeffrey %A M.L. Sullivan %A R.D. Vierstra %T Three-dimensional structure of a ubiquitin-conjugating enzyme (E2) %J J. Biol. Chem. %V 267 %P 15116-15121 %D 1992 %A W.J. Cook %A J.S. Sack %T Preparation of calmodulin crystals %J Methods Enzymol. %V 102 %P 143-? %D 1983 %K 3CLN %A W.J. Cook %A F.L. Suddath %A C.E. Bugg %A G. Goldstein %T Crystallization and preliminary X-ray investigation of ubiquitin, a non-histone chromosomal protein %J J. Mol. Biol. %V 130 %P 353-? %D 1979 %K 1UBQ %A R.M. Cooke %A A.J. Wilkinson %A M. Barron %A A. Pastore %A M.J. Tappin %A I.D. Campbell %A H. Gregory %A B. Sheard %T The solution structure of human epidermal growth factor %J Nature %V 327 %P 339-341 %D 1987 %A J.B. Cooper %A S.I. Foundling %A T.L. Blundell %A R.J. Arrowsmith %A C.J. Harris %A J.N. Champness %T A rational approach to the design of antihypertensives: X-ray studies of complexes between aspartic proteinases and aminoalcohol renin inhibitors %J Topics in medicinal chemistry %P 308-313 %V 65 %D 1988 %K 5ER1 %A J.B. Cooper %A S.I. Foundling %A T.L. Blundell %A J. Boger %A R.A. Jupp %A J. Kay %T X-ray studies of aspartic proteinase-statine inhibitor complexes %J Biochemistry %P 8596-8602 %V 28 %D 1989 %K 2ER9 2ER0 2ER6 %A J.B. Cooper %A S.I. Foundling %A A. Hemmings %A T.L. Blundell %A D.M. Jones %A A. Hallett %A M. Szelke %T The structure of a synthetic pepsin inhibitor complexed with endothiapepsin %J Eur. J. Biochem. %P 215-221 %V 169 %D 1987 %A J.B. Cooper %A S.I. Foundling %A F.E. Watson %A B.L. Sibanda %A T.L. Blundell %T Inhibitors of aspartic proteinases and their relevance to the design of antihypertensive agents %J Biochem. Soc. Trans. %V 15 %P 751-754 %D 1987 %A J.B. Cooper %A C.J. Harris %T Current directions in renin inhibition %J Curr. Cardiovasc. Pat. %P 143-150 %D 1988 %A J.B. Cooper %A G. Khan %A G. Taylor %A I.J. Tickle %A T.L. Blundell %T X-ray analysis of aspartic proteinases: II. three-dimensional structure of the hexagonal crystal form of porcine pepsin at 2.3\(Ao resolution %J J. Mol. Biol. %D 1990 %V 214 %P 199-222 %K PDB2PEP %A J. Cooper %A W. Quail %A C. Frazao %A S.I. Foundling %A T.L. Blundell %A C. Humblert %A E.A. Lunney %A W.T. Lowther %A B.M. Dunn %T X-ray crystallographic analysis of inhibition of endothiapepsin by cyclohexyl renin inhibitors %J Biochemistry %V 31 %P 8142-8150 %D 1992 %A C. Corbier %A A. Mougin %A Y. Mely %A H.W. Adolph %A M. Zeppenzauer %A D. Gerard %A A. Wonacott %A G. Branlant %T The nicotinamide subsite of glyceraldehyde-3-phosphate dehydrogenase studied by site-directed mutagenesis %J Biochimie %V 72 %P 545-554 %D 1990 %A D.R. Corey %A M.E. McGrath %A J.R. Vasquez %A R.J. Fletterick %A C.S. Craik %T An alternative geometry for the catalytic triad of serine proteases %J J. Amer. Chem. Soc. %V 114 %P 4905-4907 %D 1992 %A D.R. Corey %A M.A. Phillips %T Cyclic peptides as proteases: A reevaluation %J Proc. Natl. Acad. Sci. USA %V 91 %P 4106-4109 %D 1994 %A P.W.R. Corfield %A T.-J. Lee %A B.W. Low %T The crystal structure of erabutoxin A at 2.0\(Ao resolution %J J. Biol. Chem. %V 264 %P 9239-? %D 1989 %K PDB5EBX %A A. Cornish-Bowden %T Assessment of protein sequence identity from amino acid composition data %J J. Theor. Biol. %P 735-742 %V 65 %D 1977 %A A. Cornish-Bowden %T How reliably do amino acid composition comparisons predict sequence similarities between proteins %J J. Theor. Biol. %P 369-386 %V 76 %D 1979 %A A. Cornish-Bowden %T Interpretation of amino acid compositions %J Trends Biochem. Sci. %V 6 %P 217-219 %D 1981 %K TIBS %A A. Cornish-Bowden %T The amino acid sequences of copper/zinc superoxide dismutases from swordfish and \f2Photobacter leiognathi\f1 confirm the predictions made from the compositions %J Eur. J. Biochem. %P 333-335 %V 151 %D 1985 %A A. Cornish-Bowden %A C.W. Wharton %T Enzyme kinetics %I IRL Press %D 1988 %C Oxford %A P.E. Correa %T The building of protein structures from \(*a-carbon coordinates %J Proteins %V 7 %P 366-377 %D 1990 %A C.C. Correll %A C.J. Batie %A D.P. Ballou %A M.L. Ludwig %T Phtalate dioxygenase reductase: A modular structure for electron transfer from pyridine nucleotides to [2Fe-2S] %J Science %V 258 %P 1604-1610 %D 1992 %A F.A. Cotton %A E.E. Hazen,\0Jr. %A M.J. Legg %T Staphylococcal nuclease: proposed mechanism of action based on structure ofenzyme-thymidine-3\(fm,5\(fm-biphosphate-calcium ion complex at 1.5\(Ao resolution %J Proc. natl. Acad. Sci. USA %V 76 %P 2551-? %D 1979 %K PNAS PDB2SNS %A A.F.W. Coulson %A J.F. Collins %A A. Lyall %T Protein and nucleic acid sequence database searching: a suitable case for parallel processing %J Comput. J. %V 30 %P 420-424 %A P.V. Coveney %T The second law of thermodynamics: entropy, irreversibility and dynamics %J Nature %P 409-413 %V 333 %D 1988 %A S.W. Cowan %A M.E. Newcomer %A T.A. Jones %T Crystallographic refinement of human serum retinol binding protein at 2\(Ao resolution %J Proteins %V 8 %P 44-? %D 1990 %K 1RBP %A S.W. Cowan %A T. Schirmer %A G. Rummel %A M. Steiert %A R. Ghosh %A R.A. Pauptit %A J.N. Jansonius %A J.P. Rosenbusch %T Crystal structures explain functional properties of two \f2E. coli\f1 porins %J Nature %V 358 %P 727-? %D 1992 %A D.J. Cowley %A J.M. Hoflack %A J.T. Pelton %A V. Saudek %T Structure of neuropeptide Y dimer in solution %J Eur. J. Biochem. %V 205 %P 1099-1106 %D 1992 %A J.A. Cox %A P. Alard %A O. Schaad %T Comparative molecular modelling of \f2Amphioxus\f1 calcium vector protein with calmodulin and troponin C %J Prot. Eng. %V 4 %P 23-32 %D 1990 %A D.A. Craig %T The Cheng-Prusoff relationship: Something lost in translation %J Trends. Pharmacol. Sci. %V 14 %P 89-91 %D 1993 %A C.S. Craik %T Use of oligonucleotides for site-specific mutagenesis %J Bio Techniques %V ? %P 12-19 %D 1985 %A C.S. Craik %A C. Largman %A T. Fletcher %A S. Roczniak %A P.J. Barr %A R. Fletterick %A W.J. Rutter %T Redesigning trypsin: alteration of substrate specificity %J Science %P 291-297 %V 228 %D 1985 %A C.S. Craik %A S. Roczniak %A C. Largman %A W.J. Rutter %T The catalytic role of the active site aspartic acid in serine proteases %J Science %V 237 %P 909-913 %D 1987 %K 1TRM %A C.S. Craik %A W.J. Rutter %A R. Fletterick %T Splice junctions: association with variation in protein structure %J Science %V 220 %D 1983 %P 1125-1129 %A D.J. Cram %T The design of molecular hosts, guests, and their complexes %J Science %P 760-767 %V 240 %D 1988 %A I.P. Crawford %A T. Niermann %A K. Kirschner %T Prediction of secondary structure by evolutionary comparison: application to the \(*a-subunit of tryptophan synthase %J Proteins %V 2 %P 118-129 %D 1987 %A J.L. Crawford %A W.N. Lipscomb %A C.G. Schellman %T The reverse turn as a polypeptide conformation in globular proteins %J Proc. Natl. Acad. Sci. USA %V 70 %D 1973 %P 538-542 %K PNAS %A T.E. Creighton %T The protein folding problem %J Science %V 240 %D 1988 %P 267,344 %A T.E. Creighton %T Toward a better understanding of protein folding pathways %J Proc. Natl. Acad. Sci. USA %V 85 %D 1988 %P 5082-5086 %K PNAS %A T.E. Creighton %T Protein folding %J Biochem. J. %V 270 %P 1-16 %D 1990 %A T.E. Creighton %T The disulphide folding pathway of BPTI %J Science %V 256 %P 111-112 %D 1992 %A T.E. Creighton %A C. Chothia %T Selecting buried residues %J Nature %V 339 %P 14-15 %D 1989 %A S. Crennell %A E. Garman %A G. Laver %A E. Vimr %A G. Taylor %T Crystal structure of \f2Vibrio cholerae\f1 neuraminidase reveals dual lectin-like domains in addition to the catalytic domain %J Structure %V 2 %P 535-544 %D 1994 %A F.H.C. Crick %T Is \(*a-keratin a coiled coil ? %J Nature %V 170 %D 1952 %P 882-883 %A F.H.C. Crick %T The packing of \(*a-helices: simple coiled-coils %J Acta Cryst. %V 6 %D 1953 %P 689-697 %A G.M. Crippen %T A novel approach to calculation of conformation: distance geometry %J J. Comp. Phys. %V 24 %P 96-197 %D 1977 %A G.M. Crippen %J J. Comp. Phys. %P 449-452 %T Rapid calculation of coordinates from distance matrices %V 26 %D 1978 %A G.M. Crippen %T The tree structural organization of proteins %J J. Mol. Biol. %P 315-332 %V 126 %D 1978 %A G.M. Crippen %T Distance constraints on macromolecular conformation %J Int. J. Pept. Prot. Res. %P 320-326 %V 13 %D 1979 %A G.M. Crippen %T Distance geometry and conformational calculations %J Chemometrics Research Studies Series 1 %I Research Studies Press (Wiley) %C New York %D 1981 %A G.M. Crippen %T Energy embedding of trypsin inhibitor %J Biopolymers %P 1933-1943 %V 21 %D 1982 %A G.M. Crippen %A T.F. Havel %T Stable calculation of coordinates from distance geometry %J Acta Cryst. %P 282-284 %V A 34 %D 1978 %A G.M. Crippen %A T.F. Havel %B Distance geometry and molecular conformation %I Research Studies Press %C Letchworth, UK %D 1988 %A G.M. Crippen %A N.J. Oppenheimer %A M.L. Connolly %T Distance geometry analysis of the NMR evidence on the solution conformation of bleomycin %J Int. J. Pept. Prot. Res. %P 156-169 %V 17 %D 1981 %A G.M. Crippen %A H.A. Scheraga %T Minimisation of polypeptide energy: X. A global search algorithm %J Arch. Biochem. Biophys. %P 453-461 %V 144 %D 1971 %A G.M. Crippen %A H.A. Scheraga %T Minimisation of polypeptide energy: XI. The method of gentlest ascent %J Arch. Biochem. Biophys. %P 462-466 %V 144 %D 1971 %A P. Cronet %A C. Sander %A G. Vriend %T Modeling of transmembrane seven helix bundles %J Prot. Eng. %V 6 %P 59-64 %D 1992 %A R.A. Crowther %T The fast rotation function %B The molecular replacement method %E M.G. Rossmann %I Gordon and Breach %C New York %D 1972 %P 173-178 %A D.W.J. Cruickshank %T The analysis of the anisotropic thermal motion of molecules in crystals %J Acta Cryst. %V 9 %P 754-756 %D 1956 %A D.W.J. Cruickshank %T Errors in bond lengths due to rotational oscillations of molecules %J Acta Cryst. %V 9 %P 757-758 %D 1956 %A T.C. Crusberg %A R. Leary %A R.L. Kisliuk %T Properties of thymidylate synthetase from dichloromethotrexate-resistant \f2Lactobacillus casei\f1 %J J. Biol. Chem. %V 245 %P 5292-? %D 1970 %K 3DFR %A M.G. Cull %A J.F. Miller %A P.J. Schatz %T Screening for receptor ligands using large libraries of peptides linked to the C-terminus of the \f2lac\f1 repressor %J Proc. Natl. Acad. Sci. USA %V 89 %P 1865-1869 %D 1992 %A B.A. Cunningham %A F.M. Rausel %A J.J. Villafranca %A S.J. Benkovic %T Distances between structural metal ion, substrates, and allosteric modifier of fructose biphosphatase %J Biochemistry %P 359-362 %V 20 %D 1981 %A B.A. Cunningham %A J.L. Wang %A M.J. Waxdal %A G.M. Edelman %T The covalent and three-dimensional structure of concanavalin A: II. amino acid sequence of cyanogen bromide fragment F\d\s-23\s0\u %J J. Biol. Chem. %V 250 %P 1503-? %D 1975 %K 2CNA %A B.C. Cunningham %A J.A. Wells %T Rational design of receptor-specific variants of human growth hormone %J Proc. Natl. Acad. Sci. USA %V 88 %P 3407-3411 %D 1991 %A J.R. Cupp-Vickery %A T.L. Poulos %T Structure of cytochrome P450eryF involved in erythromycin biosynthesis %J Nature Struct. Biol. %V 2 %P 144-153 %D 1995 %A B.M. Curtis %A S.R. Presnell %A S. Srinivasan %A H. Sassenfeld %A R. Klinke %A E. Jeffery %A D. Cosman %A C.J. March %A F.E. Cohen %T Experimental and theoretical studies of the three-dimensional structure of human interleukin-4 %J Proteins %V 11 %P 111-119 %D 1991 %A S. Cusack %A C. Berthet-Colominas %A M. H\(a:rtlein %A N. Nassar %A R. Leberman %T A second class of synthetase structure revealed by X-ray analysis of \f2Escherichia coli\f1 seryl-tRNA synthetase at 2.5\(Ao %J Nature %V 347 %D 1990 %P 249-255 Nartlein %A S.M. Cutfield %A E.J. Dodson %A B.F. Anderson %A P.C.E. Moody %A C.J. MArshall %A P.A. Sullivan %A J.F. Cutfield %T The crystal structure of a major secreted aspartic proteinase from \f2Candida albicans\f1 in complexes with two inhibitors %J Structure %V 3 %P 1261-1271 %D 1995 %A M. Cygler %A D.R. Rose %A D.R. Bundle %T Recognition of a cell-surface oligosaccharide of pathogenic \f2Salmonella\f1 by an antibody Fab fragment %J Science %V 253 %P 442-445 %D 1991 %A J. Czelusniak %A M. Goodman %A D. Hewett-Emmett %A M.L. Weiss %A P.J. Venta %A R.E. Tashian %T Phylogenetic origins and adaptive evolution of avian and mammalian haemoglobin genes %J Nature %P 297-300 %V 298 %D 1982 %A E.W. Czerwinski %A F.S. Mathews %T Location of the iron atom and the non-crystallographic symmetry elements in cytochrome \f2b\f1\d\s-2562\s0\u %J J. Mol. Biol. %V 86 %P 49-? %D 1974 %K 256B 156B %A V. Daggert %A P.A. Kollman %T The use of theoretical methods in protein engineering %P 143-163 %B Protein Engineering: A practical approach %E A.R. Rees, M.J.E. Sternberg and R. Wetzel %I IRL Press %C Oxford %D 1992 %A F.W. Dahlquist %A J.W. Long %A W.L. Bigbee %T Role of calcium in the thermal stability of thermolysin %J Biochemistry %V 15 %P 1103-? %D 1976 %K 3TLN %A J.-B. Dai %A Y. Liu %A W.R. Ray,\0Jr. %A M. Konno %T The crystal structure of muscle phosphoglucomutase refined at 2.7\(Ao resolution %J J. Biol. Chem. %V 267 %P 6322-6337 %D 1992 %A G. Dalbardie-McFarland %A L.W. Cohen %A A.D. Riggs %A C. Morin %A K. Itakura %A J.H. Richards %T Oligonucleotide-directed mutagenesis as a general and powerful method for studies of protein function %J Proc. Natl. Acad. Sci. USA %P 6409-6413 %V 79 %D 1982 %K PNAS %A K. Dalziel %A N.V. McFerran %A A.J. Wonacott %T Glyceraldehyde-3-phosphate dehydrogenase %J Phil. Trans. Roy. Soc. Lond. %V B 293 %P 105-? %D 1981 %K 2GD1 %A D.L. Daniels %A G. Plunket\0III %A V. Burland %A F.R. Blattner %T Analysis of the \f2Escherichia coli\f1 genome: DNA sequence of the region from 84.5 to 86.5 minutes %J Science %V 257 %P 771-778 %D 1992 %A A.T. Danishefsky %A J.J. Onnufer %A G.A. Petsko %A D. Ringe %T Activity and structure of the active-site mutants R386Y and R386F of \f2Escherichia coli\f1 aspartate aminotransferase %J Biochemistry %V 30 %P 1980-? %D 1991 %K PDB3AAT %A S. Dao-Pin %A T. Alber %A W.A. Baase %A J.A. Wozniak %A B.W. Matthews %T Structural and thermodynamic analysis of the packing of two \(*a-helices in bacteriophage T4 lysozyme %J J. Mol. Biol. %V 221 %P 647-? %D 1991 %K 1L43 1L44 1L45 1L46 1L47 1L54 1L55 1L56 1L57 1L58 1L59 1L60 1L61 1L62 1L63 1L64 1L65 1L66 1L67 1L68 1L69 1L70 1L71 1L72 1L73 1L74 1L75 PDB1L48 PDB1L49 PDB1L50 PDB1L51 PDB1L52 PDB1L53 1L36 1L37 1L38 1L39 1L40 1L41 1L42 1L76 %A S. Dao-Pin %A W.A. Baase %A B.W. Matthews %T A mutant T4 lysozyme (Val 131 \(-> Ala) designed to increase thermostability by the reduction of strain within an \(*a-helix %J Proteins %V 7 %P 198-204 %D 1990 %A S. Dao-Pin %A U. Sauer %A H. Nicholson %A B.W. Matthews %T Contributions of engineered surface salt bridges to the stability of T4 lysozyme determined by directed mutagenesis %J Biochemistry %V 30 %P 7142-? %D 1991 %K 1L36 1L37 1L38 1L39 1L40 1L41 1L42 1L43 1L44 1L45 1L46 1L47 1L48 1L49 1L50 1L51 1L52 1L53 1L54 1L55 1L56 1L57 1L58 1L59 1L60 1L61 1L62 1L63 1L64 1L65 1L66 1L67 1L68 1L69 1L70 1L71 1L72 1L73 1L74 1L75 1L76 %A S. Dao-Pin %A E. Soderlind %A W.A. Baase %A J.A. Wozniak %A U. Sauer %A B.W. Matthews %T Cumulative site-directed charge-change replacements in bacteriophage T4 lysozyme suggest that long-range electrostatic interactions contribute little to protein stability %J J. Mol. Biol. %V 221 %P 873-? %D 1991 %K 1L48 1L49 1L50 1L51 1L52 1L53 1L54 1L55 1L56 1L57 1L58 1L59 1L60 1L61 1L62 1L63 1L64 1L65 1L66 1L67 1L68 1L69 1L70 1L71 1L72 1L73 PDB1L44 PDB1L45 PDB1L46 PDB1L47 1L74 1L75 1L36 1L37 1L38 1L39 1L40 1L41 1L76 PDB1L43 PDB1L42 %A S. Daopin %A T. Alber %A W.A. Baase %A J.A. Wozniak %A B.W. Matthews %T Structural and thermodynamic analysis of the packing of two \(*a-helices in bacteriophage T4 lysozyme %J J. Mol. Biol. %V 221 %P 647-667 %D 1991 %A S. Daopin %A G.H. Cohen %A D. Davies %T Response to M.B. Swidells %J Science %V 258 %P 1161-1162 %D 1992 %A S. Daopin %A K.A. Piez %A Y. Ogawa %A D.R. Davies %T Crsytal structure of transforming growth factor-\(*b2: An unusual fold for the superfamily %J Science %V 257 %P 369-373 %D 1992 %A P.L. Darke %A C.-T. Leu %A L.J. Davis %A J.C. Heimabch %A R.E. Diehl %A W.S. Hill %A R.A.F. Dixon %A I.S. Sigal %T Human immunodeficiency virus protease: Bacterial expression and characterization of the purified aspartic protease %J J. Biol. Chem. %V 264 %P 2307-? %D 1989 %K 5HVP %A J.K. Dattagupta %A T. Fujiwara %A E.V. Grishin %A K. Lindner %A P.C. Manor %A N.J. Pieniazek %A W. Saenger %A D. Suck %T Crystallization of the fungal enzyme proteinase K and amino acid composition %J J. Mol. Biol. %V 97 %P 267-? %D 1975 %K 2PRK %A P. Dauber %A D.J. Osguthorpe %A A.T. Hagler %T Structure energetics and dynamics of ligand binding to dihydrofolate reductase %J Biochem. Soc. Trans. %V 10 %D 1982 %P 312-318 %A P. Dauber-Osguthorpe %A D.J. Osguthorpe %T Partitioning the motion in molecular dyanmics simulations into characteristic modes of motion %J J. Comp. Chem. %V 14 %P 1259-1271 %D 1993 %A P. Dauber-Osguthorpe %A V.A. Roberts %A D.J. Osguthorpe %A J. Wolff %A M. Genest %A A.T. Hagler %T Structure and energetics of ligand binding to proteins: \f2E. coli\f1 dihydrofolate reductase-trimethoprim, a drug receptor system %J Proteins %V 4 %D 1988 %P 31-47 %A Z. Dauter %A C. Betzel %A W.-E. Hoehne %A M. Ingelman %A K.S. Wilson %T Crystal structure of a complex between thermitase from \f2Thermoactinomyces vulgaris\f1 and the leech inhibitor eglin %J FEBS Lett. %V 236 %P 171-? %D 1988 %K 0TEC %A Z. Dauter %A M. Dauter %A J. Hemker %A H. Witzel %A K.S. Wilson %T Crystallization and preliminary analysis of glucose isomerase from \f2Streptomyces albus\f1 %J FEBS Lett. %V 247 %P 1-? %D 1989 %K 6XIA %A Z. Dauter %A H. Terry %A H. Witzel %A K.S. Wilson %T Refinement of glucose isomerase from \f2Streptomyces albus\f1 at 1.65\(Ao with data from an imaging plate %J Acta Cryst. %V B 46 %P 833-? %D 1990 %K PDB6XIA %A E. Davenas %A F. Beauvais %A J. Amara %A M. Oberbaum %A B. Robinzon %A A. Miadonna %A A. Tedeschi %A B. Pomeranz %A P. Fortner %A P. Belon %A J. Sainte-Laudy %A B. Poitevin %A J. Benveniste %T Human basophil degranulation triggered by very dilute antiserum against IgE %J Nature %P 816-818 %V 333 %D 1988 %A E.W. Davie %A K. Fujikawa %A W. Kisiel %T The coagulation cascade: Initiation, maintenance, and regulation %J Biochemistry %V 30 %P ?-? %D 1991 %A B. Davies %A P.D. Brown %A N. East %A M.J. Crimmin %A F.R. Balkwill %T A synthetic matrix metalloprtoeinase inhibitor decreases tumor burden and prolongs survival of mice bearing human ovarian carcinoma xenografts %J Cancer Res. %V 53 %P 2087-2091 %D 1993 %A D.R. Davies %T A correlation between amino acid composition and protein structure %J J. Mol. Biol. %V 9 %P 605-609 %D 1964 %A D.R. Davies %T The structure and function of the aspartic proteinases %J Annu. Rev. Biophys. Biophys. Chem. %V 19 %P 189-215 %D 1990 %A D.R. Davies %A H. Metzger %T Structural basis of antibody function %J Annu. Rev. Immunol. %V 1 %D 1983 %P 87-117 %A D.R. Davies %A E.A. Padlan %T Correlations between antigen-binding specificity and the three-dimensional structure of the antibody combining site %B Antibodies in human diagnosis and therapy %P 119-132 %D 1977 %I Raven Press %C New York %E E. Haber and R.M. Krause %K modelling %A D.R. Davies %A E.A. Padlan %A D.M. Segal %T Immunoglobulin structures at high resolution %J Contemp. Top. Mol. Immunol. %V 4 %P 127-? %D 1975 %K 1MCP %A D.R. Davies %A E.A. Padlan %A S. Sheriff %T Antibody-antigen complexes %J Annu. Rev. Biochem. %V 59 %P 439-473 %D 1990 %A J.F. Davies,\0Jr. %A Z. Hostomska %A Z. Hostomsky %A S.R. Jordan %A D.A. Matthews %T Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase %J Science %V 252 %P 88-95 %D 1991 %A J.C. Davis %C New York %I John Wiley & Sons, Inc. %T Statistics and data analysis in geology %D 1973 %A M.M. Davis %A P.J. Bjorkman %T T-cell antigen receptor genes and T-cell recognition %J Nature %V 334 %D 1988 %P 395-402 %A W.H.E. Day %D 1983 %T Computationally difficult parsimony problems in phylogenetic systematics %J J. Theor. Biol. %V 103 %P 429-438 %A M.O. Dayhoff %A W.C. Barker %A L.T. Hunt %T Establishing homologies in protein sequences %J Methods Enzymol. %V 91 %D 1983 %P 524-545 %A M.O. Dayhoff %A R.V. Eck %T The chemical meaning of patterns in amino acid alleles %B Atlas of protein sequence and structure %E M.O. Dayhoff %I National Biomedical Research Foundation %C Washington D.C. %D 1968 %P 43-45 %A M.O. Dayhoff %A R.V. Eck %T A model of evolutionary change in proteins %B Atlas of protein sequence and structure %E M.O. Dayhoff %I National Biomedical Research Foundation %C Washington D.C. %D 1968 %P 33-41 %K mutation PAM similarity sequence comparison evolution %A H.E. Dayringer %A A. Tramontano %A S.R. Sprang %A R.J. Fleterrick %T Interactive program for visualization and modelling of proteins, nucleic acids and small molecules %J J. Mol. Graph %V 4 %P 82-90 %D 1986 %A A. Dearry %A J.A. Gingrich %A P. Falardeau %A R.T. Fremeau,\0Jr. %A M.D. Bates %A M.G. Caron %T Molecular cloning and expression of the gene for a human D\d\s-21\s0\u dopamine receptor %J Nature %V 347 %P 72-76 %D 1990 %A C. Debouck %A J.G. Gorniak %A J.E. Strickler %A T.D. Meek %A B.W. Metcalf %A M. Rosenberg %T Human immunodeficiency virus protease expressed in \f2Escherichia coli\f1 exhibits autoprocessing and specific maturation of the \f2gag\f1 precursor %J Proc. Natl. Acad. Sci. USA %V 84 %D 1987 %P 8903-8906 %K PNAS %A R.W. DeBry %A N.A. Slade %D 1985 %T Cladistic analysis of restriction endonuclease cleavage maps within a maximum-likelihood framework %J System. Zool. %V 34 %P 21-34 %A J.-P. Declercq %A B. Tinant %A J. Parello %A G. Etienne %A R. Huber %T Crystal structure determination and refinement of pike 4.10 parvalbumin (minor component from \f2Esox lucius\f1) %J J. Mol. Biol. %V 202 %P 349-? %D 1988 %K 0PAL %A J.-P. Declercq %A B. Tinant %A J. Parello %A J. Rambaud %T Ionic interactions with parvalbumins. Crystal structure determination of pike 4.10 parvalbumin in four different ionic environments %J J. Mol. Biol. %V 220 %P 1017-? %D 1991 %K PDB1PAL PDB4PAL PDB2PAL PDB3PAL %A T. Defay %A F.E. Cohen %T Evaluation if current techniques for \f2ab initio\f1 protein structure prediction %J Proteins %V 23 %P 431-445 %D 1995 %A W.F. DeGrado %T Design of peptides and proteins %J Adv. Prot. Chem. %V 39 %P 51-124 %D 1988 %A W.F. DeGrado %A D.P. Raleigh %A T. Handel %T \f2De novo\f1 protein design: what are we learning ? %J Curr. Opin. Struct. Biol. %V 1 %P 984-993 %D 1991 %A W.F. DeGrado %A Z.R. Wasserman %A J.D. Lear %T Protein design, a minimalist approach %J Science %V 243 %P 622-628 %D 1989 %A J. Deisenhofer %T Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from \f2Staphylococcus aureus\f1 at 2.9 and 2.8\(Ao resolution %J Biochemistry %V 20 %D 1981 %P 2361-2370 %K PDB1FC1 PDB1FC2 %A J. Deisenhofer %A P.M. Colman %A O. Epp %A R. Huber %T Crystallographic structural studies of a human Fc fragment: II. a complete model based on a Fourier map at 3.5\(Ao resolution %J Hoppe-Seyler's Z. Physiol. Chem. %V 357 %P 1421-? %D 1976 %K 1FC1 %A J. Deisenhofer %A P.M. Colman %A R. Huber %A H. Haupt %A G. Schwick %T Crystallographic structural studies of a human Fc-fragment: I. an electron-density map at 4\(Ao resolution and a partial model %J Hoppe-Seyler's Z. Physiol. Chem. %V 357 %P 435-? %D 1976 %K 1FC1 %A J. Deisenhofer %A O. Epp %A K. Miki %A R. Huber %A H. Michel %T X-ray structure analysis of a membrane protein complex: electron density map at 3\(Ao resolution and a model of the chromophores of the photosynthetic reaction center from \f2Rhodopseudomonas viridis\f1 %J J. Mol. Biol. %V 180 %P 385-398 %D 1984 %K 1PRC %A J. Deisenhofer %A O. Epp %A K. Mikki %A R. Huber %A H. Michel %T Structure of the protein subunits in the photosynthetic reaction centre of \f2Rhodopseudomonas viridis\f1 at 3\(Ao resolution %J Nature %V 318 %P 618-624 %D 1985 %A J. Deisenhofer %A T.A. Jones %A R. Huber %A J. Sjodahl %A J. Sjoquist %T Crystallization, crystal structure analysis and atomic model of the complex Formed by a human Fc fragment and fragment B of protein A from \f2Staphylococcus aureus\f1 %J Hoppe-Seyler's Z. Physiol. Chem. %V 359 %P 975-? %D 1978 %K 1FC2 %A J. Deisenhofer %A H. Michel %T The photosynthetic reaction center from the purple bacterium \f2Rhodopseudomonas viridis\f1 %J Science %V 245 %P 1463-1473 %D 1989 %K 1PRC %A J. Deisenhofer %A W. Steigemann %T The model of the basic pancreatic trypsin inhibitor refined at 1.5\(Ao resolution %J Bayer Symp. %V 5 %P 484-? %D 1974 %K 4PTI %A J. Deisenhofer %A W. Steigemann %T Crystallographic refinement of the structure of bovine pancreatic trypsin inhibitor at 1.5\(Ao resolution %J Acta Cryst. %V B 31 %P 238-? %D 1975 %K 4PTI %A R. Delaney %A R.N.S. Wong %A G.-Z. Meng %A N.-H. Wu %A J. Tang %T The amino acid sequence of rhizopuspepsin isozyme pI 5 %J J. Biol. Chem. %V 262 %D 1987 %P 1461-1467 %A M. Delarue %A P. Koehl %T Atomic environment energies in proteins defined from statistics of accessible and contact surface areas %J J. Mol. Biol. %V 249 %P 675-690 %D 1995 %A M. Delarue %A O. Poch %A N. Tordo %A D. Moras %A P. Argos %T An attempt to unify the structure of polymerases %J Prot. Eng. %V 3 %D 1990 %P 461-467 %K alignment reverse transcriptase polymerase %A L.T.J. Delbaere %A G.D. Brayer %T Structure of the complex formed between the bacterial-produced inhibitor chymostatin and the serine enzyme \f2Streptomyces griseus\f1 protease A %J J. Mol. Biol. %V 139 %P 45-? %D 1980 %K 1SGC 3SGA 4SGA 5SGA %A L.T.J. Delbaere %A G.D. Brayer %T The 1.8\(Ao structure of the complex between chymostatin and \f2Streptomyces griseus\f1 protease A: a model for serine protease catalytic tetrahedral intermediates %J J. Mol. Biol. %V 183 %P 89-103 %D 1985 %K PDB1SGC %A L.T.J. Delbaere %A G.D. Brayer %A M.M.G. James %T The 2.8\(Ao resolution structure of \f2Streptomyces griseus\f1 protease B and its homology with \(*a-chymotrypsin and \f2Streptomyces griseus\f1 protease A %J Can. J. Biochem. %V 57 %P 135-144 %D 1979 %K 3SGB %A L.T.J. Delbaere %A G.D. Brayer %A M.N.G. James %T Comparison of the predicted model of \(*a-lytic protease with the X-ray structure %J Nature %V 279 %D 1979 %P 165-168 %A L.T.J. Delbaere %A W.L.B. Hutcheon %A M.N.G. James %A W.E. Thiessen %T Tertiary structural differences between microbial serine proteases and pancreatic serine proteases %J Nature %V 257 %D 1975 %P 758-763 %K 3SGA 4SGA 5SGA %A G. Deleage %A B. Roux %T An algorithm for protein secondary structure prediction based on class prediction %J Prot. Eng. %V 1 %P 289-294 %D 1987 %A R.C. del\0Minton %A S.C.F. Milton %A S.B.H. Kent %T Total chemical synthesis of a \s-2D\s0-enzyme: The enantiomers of HIV-1 protease show demonstration of reciprocal chiral substrate specificity %J Science %V 256 %P 1445-1448 %D 1992 %A A.P. Dempster %A N.M. Laird %A D.B. Rubin %D 1977 %T Maximum likelihood from incomplete data via the EM algorithm %J J. Roy. Stat. Soc. %V B 39 %P 1-38 %A E. Depiereux %A E. Feytmans %T Simultaneous and multivariate alignment of protein sequences: Correspondence between physicochemical profiles and structurally conserved regions (SCR) %J Prot. Eng. %V 4 %P 603-613 %D 1991 %A U. Derewenda %A A.M. Brzozowski %A D.M. Lawson %A Z.S. Derewenda %T Catalysis at the interface: The anatomy of a conformational change in a triglyceride lipase %J Biochemistry %V 31 %P 1532-1541 %D 1992 %A U. Derewenda %A Z. Derewenda %A E.J. Dodson %A G.G. Dodson %A C.D. Reynolds %A G.D. Smith %A C. Sparks %A D. Swenson %T Phenol stabilizes more helix in a new symmetrical zinc insulin hexamer %J Nature %V 338 %P 594-? %D 1989 %K 0ZIN %A Z.S. Derewenda %A E.J. Dodson %A G.G. Dodson %A A.M. Brzozowski %T The application of the molecular replacement method in studies on the quaternary structure of haemoglobin %J Acta Cryst. %V A 37 %P 407-? %D 1981 %K 0HBT %A J.P. Derrick %A D.B. Wigley %T Crystal structure of a streptococcal protein G domain bound to an Fab fragment %J Nature %V 359 %P 752-754 %D 1992 %A M. Derring %A R. Huber %A W. Bode %T The structure of \(*g-N-methylasparagine in C-phycocyanin from \f2Mastigocladus laminosus\f1 and \f2Agmenellum quadruplicatum\f1 %J FEBS Lett. %V 236 %P 167-? %D 1988 %K 0CPC %A F. Descalzi\0Cancedda %A B. Dozin %A F. Rossi %A F. Molina %A R. Cancedda %A A. Negri %A S. Ronchi %T The Ch21 protein, developmentally regulated in chick embryo, belongs to the superfamily of lipophilic molecule carrier proteins %J J. Biol. Chem. %V 265 %P 19060-19064 %D 1990 %K lipocalin %A J.R. Desjarlais %A J.M. Berg %T Redesigning the DNA-binding specificity of a zinc finger protein: A database-guided approach %J Proteins %V 12 %P 101-104 %D 1992 %A R.L. DesJarlais %A J.S. Dixon %T A shape- and chemistry-based docking method and its use in the design of HIV-1 protease inhibitors %J J. Comp. Aid. Mol. Des. %V 8 %P 231-242 %D 1994 %A R.L. DesJarlais %A G.L. Seibel %A I.D. Kuntz %A P.S. Furth %A J.C. Alvarez %A P.R. Ortiz\0de\0Montellano %A D.L. DeCamp %A L.M. Bab\(e' %A C.S. Craik %T Structures-based design of non-peptide inhibitors specific for the human immunodeficiency virus 1 protease %J Proc. Natl. Acad. Sci. USA %V 87 %P 6644-6648 %D 1990 %K PNAS Babe %A P. Deslongchamps %J Tetrahedron %P 2463-2490 %T Stereoelectronic control in the cleavage of tetrahedral intermediates in the hydrolysis of esters and amides %V 31 %D 1975 %A J. Desmet %A M. De\0Maeyer %A B. Hazes %A I. Lasters %T The dead-end elimination theorem and its use in protein side-chain positioning %J Nature %V 356 %P 539-542 %D 1992 %A A. Dessen %A A. Quemard %A J.S. Blanchard %A W.R. Jacobs\0Jr. %A J.C. Sacchettini %T Crystal structure and function of the isoniazid target of \f2Mycobacterium tuberculosis\f1 %J Science %V 267 %P 1638-1641 %D 1995 %A S.G. Devare %A E.P. Reddy %A J.D. Law %A K.C. Robbins %A S.A. Aaronson %T Nucleotide sequence of the simian sarcoma virus genome: demonstration that its acquired cellular sequences encode the transforming gene product p28\u\s-2sis\s0\d %J Proc. Natl. Acad. Sci. USA %V 80 %D 1983 %P 731-735 %K PNAS %A T.E. Dever %A M.J. Glynias %A W.C. Merrick %T GTP-binding domain: Three consensus sequence elements with distinct spacing %J Proc. Natl. Acad. Sci. USA %V 84 %P 1814-1818 %D 1987 %A T.E. Dever %A M.J. Glynias %A W.C. Merrick %T GTP-binding domain: three consensus sequence elements with distinct spacing %J Proc. Natl. Acad. Sci. USA %V 84 %P 1814-1818 %D 1987 %K PNAS sequence-motif %A J. Devereux %A P. Haeberli %A O. Smithies %T A comprehensive set of sequence analysis programs for the VAX %J Nucl. Acids Res. %V 12 %P 387-395 %D 1984 %A M.J.S. Dewar %T Chemical implications of \(*s conjugation %J J. Amer. Chem. Soc. %V 106 %P 669-682 %D 1984 %A J.L. de\0Coen %A M. Debouck %A C. Delcroix %A J.-F. Lontie %A C.L. Malmendier %T Proposed folding pattern for apolipoprotein A-II based on structural analogy with uteroglobin %J Proc. Natl. Acad. Sci. USA %V 85 %D 1988 %P 5669-5672 %K PNAS %A C. de\0Ha\(e:n %A H. Neurath %A D.C. Teller %T The phylogeny of trypsin-related serine proteases and their zymogens. New methods for the investigation of distant evolutionary relationships %J J. Mol. Biol. %V 92 %D 1975 %P 225-259 %K phylogeny sequences comparison serine proteases deHaen %A P. de\0la\0Paz %A B.J. Sutton %A M.J. Darsley %A A.R. Rees %T Modelling of the combining sites of three anti-lysozyme monoclonal antibodies and of the complex between one of the antibodies and its epitope %J EMBO J. %D 1986 %V 5 %P 415-425 %A R. de\0Lorimer %A D.A. Bryant %A R.D. Porter %A W.-Y. Liu %A E. Jay %A S.E. Stevens,\0Jr. %T Genes for the \(*a and \(*b subunits of phycocyanin %J Proc. Natl. Acad. Sci. USA %V 81 %P 7946-? %D 1984 %K 0CPC %A J. de\0Vlieg %A H.J.C. Berendsen %A W.F. van\0Gunsteren %J Proteins %V 6 %P 104-127 %T An NMR-based molecular dynamics simulation of the interaction of the \f2lac\f1 repressor headpiece and its operator in aqueous solution %D 1989 %A J. de\0Vlieg %A R.M. Scheek %A W.F. van\0Gunsteren %A H.J.C. Berendsen %A R. Kaptein %A J. Thomason %T Combined procedure of distance geometry and restrained molecular dynamics techniques for protein structure determination from NMR data: application to the DNA binding domain of \f2lac\f1 repressor from \f2E. coli\f1 %J Proteins %V 3 %D 1988 %P 209-218 %A A.M. de\0Vos %A M. Hatada %A H. van\0der\0Wel %A H. Krabbendam %A A.F. Peerdeman %A S.-H. Kim %T Three-dimensional structure of thaumatin I, an intensely sweet protein %J Proc. Natl. Acad. Sci. USA %V 82 %P 1406-1409 %D 1985 %K PDB1THI PNAS %A A.M. de\0Vos %A L. Tong %A M.V. Milburn %A P.M. Matias %A J. Jancarik %A S. Noguchi %A S. Nishimura %A K. Miura %A E. Ohtsuka %A S.-H. Kim %T Three-dimensional structure of an oncogene protein: catalytic domain of human c-H-\f2ras\f1 p21 %J Science %V 239 %P 888-891 %D 1988 %K 3P21 %A A.M. de\0Vos %A M. Ultsch %A A.A. Kossiakoff %T Human growth hormone and extracellular domain of its recptor: Crystal structure of the complex %J Science %V 255 %P 306-312 %D 1992 %A R.S. Dhallan %A K.-W. Yau %A K.A. Schrader %A R.R. Reed %T Primary structure and functional expression of a cyclic nucleotide-activated channel from olfactory neurons %J Nature %V 347 %D 1990 %P 184-187 %A V. Dhanaraj %A C.G. Dealwis %A C. Frazao %A M. Badasso %A B.L. Sibanda %A I.J. Tickle %A J.B. Cooper %A H.P.C. Driessen %A M. Newman %A C. Aguilar %A S.P. Wood %A T.L. Blundell %A P.M. Hobart %A K.F. Geoghegan %A M.J. Ammirati %A D.E. Danley %A B.A. O'Connor %A D.J. Hoover %T X-ray analyses of peptide-inhibitor complexes define the structural basis of specificity foir human and mouse renins %J Nature %V 357 %P 466-472 %D 1992 %A R. Diamond %T A note on the rotational superposition problem %J Acta Cryst. %V A 44 %P 211-216 %A R. Diamond %T A mathematical model-building procedure for proteins %J Acta Cryst. %V 21 %P 253-? %D 1966 %K 5MBN %A R. Diamond %T A real-space refinement procedure for proteins %J Acta Cryst. %V A 27 %P 436-? %D 1971 %K 5MBN %A R. Diamond %T Real-space refinement of the structure of hen egg-white lysozyme %J J. Mol. Biol. %V 82 %P 371-? %D 1974 %K 2LYZ %A R. Diamond %T On the multiple simultaneous superposition of molecular structures by rigid body transformations %J Prot. Sci. %V 1 %P 1279-1287 %D 1992 %A R.E. Dickerson %T Sequence and structrue homologies in bacterial and mammalian-type cytochromes %J J. Mol. Biol. %V 57 %P 1-15 %D 1971 %A R.E. Dickerson %J J. Mol. Evol. %V 1 %P 26-45 %T The structure of cytochrome \f2c\f1 and the rates of molecular evolution %D 1971 %A R.E. Dickerson %T The structure and history of an ancient protein %J Sci. Amer. %V 226 %P 58-? %D 1972 %K 3CYT %A R.E. Dickerson %T Structural conservatism in proteins over three billion years: cytochrome with a touch of collagen %B Biomolecular structure, conformation, function, and evolution %E R. Srinivasan %P 227-249 %V 1 %I Pergamon Press %C Oxford %D 1978 %A R.E. Dickerson %T Cytochrome \f2c\f1 and the evolution of energy metabolism %J Sci. Amer. %V 242 %P 136-? %D 1980 %K 3CYT %A R.E. Dickerson %A I. Geis %T The Structure and Action of Proteins %I Harper and Row %D 1969 %C New York %A R.E. Dickerson %A I. Geis %T Hemoglobin: structure, function, evolution and pathology %I Benjamin/Cummins %C Menlo Park, CA %D 1983 %A R.E. Dickerson %A R. Timkovich %A R.J. Almassy %T The cytochrome fold and the evolution of bacterial energy metabolism %J J. Mol. Biol. %V 100 %D 1976 %P 473-491 %K evolution sequences comparison %A O. Dideberg %A P. Charlier %A G. Dive %A B. Joris %A J.M. Frere %A J.M. Ghuysen %T Structure of Zn\u\s-22\(pl\s0\d-containing \s-2D\s0-alanyl-\s-2D\s0-alanine-cleaving carboxypeptidase at 2.5\(Ao resolution %J Nature %V 299 %P 469-? %D 1982 %K 0ZGP %A O. Dideberg %A P. Charlier %A L. Dupont %A M. Vermeire %A J.-M. Frere %A J.-M. Ghuysen %T The 4.5\(Ao resolution structure analysis of the exocellular \s-2D\s0-carboxypeptidase of \f2Streptomyces albus\f1 G %J FEBS Lett. %V 117 %P 212-? %D 1980 %K 0ZGP %A O. Dideberg %A J.-M. Frere %A J.-M. Ghuysen %T Crystallographic data for the \s-2D\s0,\s-2D\s0-carboxypeptidase-endopeptidase of low penicillin sensitivity excreted by \f2Streptomyces albus\f1 G %J J. Mol. Biol. %V 129 %P 677-? %D 1979 %K 0ZGP %A K. Diederichs %A G.E. Schulz %T Three-dimensional structure of the complex between the mitochondrial matrix adenylate kinase and its substrate AMP %J Biochemistry %V 29 %P 8138-? %D 1990 %K PDB1AK3 %A K. Diederichs %A G.E. Schulz %T The refined structure of the complex between adenylate kinase from beef heart mitochondrial matrix and its substrate AMP at 1.85\(Ao resolution %J J. Mol. Biol. %V 217 %P 541-549 %D 1991 %K 1AK3 %A C.L. DiIanni %A P.L. Darke %A A.F. Dixon %A I.S. Sigal %T Comparison of the dimerization, stability and inhibitor binding between HIV-1 protease wild type and active site mutant %B Current research in protein chemistry: Techniques, structure, and function %A J.J. Villafranca %I Academic Press %C San Diego %D 1990 %P 521-528 %A B.W. Dijkstra %A J. Drenth %A K.H. Kalk %T Active site and catalytic mechanism of phospholipase A\d\s-22\s0\u %J Nature %V 289 %P 604-606 %D 1981 %A B.W. Dijkstra %A J. Drenth %A K.H. Kalk %A P. Vandermaelen %T Three-dimensional structure and disulfide bond connections in bovine pancreatic phospholipase A\d\s-22\s0\u %J J. Mol. Biol. %V 124 %P 53-? %D 1978 %K 2BP2 %A B.W. Dijkstra %A K.H. Kalk %A J. Drenth %A G.H. de\0Haas %A M.R. Egmond %A A.J. Slotboom %T Role of the N-terminus in the interaction of pancreatic phospholipase A\d\s-22\s0\u with aggregated substrates: properties and crystal structure of transaminated phospholipase A\d\s-22\s0\u %J Biochemistry %V 23 %P 2759-? %D 1984 %K PDB3BP2 %A B.W. Dijkstra %A K.H. Kalk %A W.G.J. Hol %A J. Drenth %T Structure of bovine pancreatic phospholipase A\d\s-22\s0\u at 1.7\(Ao %J J. Mol. Biol. %V 147 %P 97-123 %D 1981 %K PDB1BP2 %A B.W. Dijkstra %A R. Renetseder %A K.H. Kalk %A W.G.J. Hol %A J. Drenth %T The structure of porcine pancreatic phospholipase at 2.6\(Ao resolution and comparison with bovine phospholipase A\d\s-42\s0\u %J J. Mol. Biol. %V 168 %P 163-179 %D 1983 %K 3BP2 PDB1P2P %A B.W. Dijkstra %A G.J.H. van\0Nes %A K.H. Kalk %A N.P. Brandenburg %A W.G.J. Hol %A J. Drenth %T The structure of bovine pancreatic \f2pro\f1 phospholipase at 3.0\(Ao resolution %J Acta Cryst. %V B 38 %P 793-799 %D 1982 %K PDB2BP2 %A B.W. Dijkstra %A W.J. Weijer %A R.K. Wierenga %T Polypeptide chains with similar amino acid sequences but a distinctly different conformation %J FEBS Lett. %D 1983 %V 164 %P 25-27 %K Incorrect interpretation of data see Lesk BioEssays paper loops proved similar later experimentally %A K.A. Dill %T Theory for folding and stability of globular proteins %J Biochemistry %V 24 %P 1501-1509 %D 1985 %A K.A. Dill %T Dominant forces in protein folding %J Biochemistry %V 29 %P 7133-7155 %D 1990 %A K.A. Dill %T Dominant forces in protein folding %J Biochemistry %V 15 %P 14-17 %D 1990 %A J.-L. Dimicoli %A A. Renaud %A J. Bieth %T The indirect mechanism of action of the trifluoroacetyl peptides on elastase %J Eur. J. Biochem. %V 107 %P 423-? %D 1980 %K 2EST %A C. Divne %A J. St\(oahlberg %A T. Reinikainen %A L. Ruohonen %A G. Pettersson %A J.K.C. Knowles %A T.T. Teeri %A T.A. Jones %T The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from \f2Trichoderma reesei\f1 %J Science %V 265 %P 524-528 %D 1994 %A M.M. Dixon %A R.G. Brennan %A B.W. Matthews %T Structure of \(*g-chymotrypsin in the range pH 2.0 to pH 10.5 suggests that \(*g-chymotrypsin is a covalent acyl-enzyme adduct at low pH %J Int. J. Biol. Macromol. %V 13 %P 89-? %D 1991 %K 1GCT PDB2GCT PDB3GCT %A M.M. Dixon %A B.W. Matthews %T Is \(*g-chymotrypsin a tetrapeptide acyl-enzyme adduct of \(*g-chymotrypsin? %J Biochemistry %V 28 %P 7033-? %D 1989 %K 2GCT 3GCT PDB1GCT %A F. di\0Marzo\0Veronese %A T.D. Copeland %A A.L. de\0Vico %A R. Rahman %A S. Oroszlan %A R.C. Gallo %A M.G. Sarngadharan %T Characterization of highly immunogenic p66/p51 as the reverse transcriptase of HTLV-III/LAV %J Science %V 231 %D 1986 %P 1289-1291 %A F. di\0Marzo\0Veronese %A T.D. Copeland %A S. Oroszlan %A R.C. Gallo %A M.G. Sarngadharan %T Biochemical and immunological analysis of human immunodeficiency virus \f2gag\f1 gene products p17 and p24 %J J. Virol. %V 62 %D 1988 %P 795-801 %A K. Djinovic %A G. Gatti %A A. Coda %A L. Antolini %A G. Pelosi %A A. Desideri %A M. Falconi %A F. Marmocchi %A G. Rotilio %A M. Bolognesi %T Crystal structure of yeast Cu,Zn superoxide dismutase: crystallogrpahic refinement at 2.5\(Ao resolution %J J. Mol. Biol. %V 225 %P 791-809 %D 1992 %A C.M. Dobson %T Hinge-bending and folding %J Nature %D 1990 %P 198-199 %V 348 %A C.M. Dobson %A P.A. Evans %A S.E. Radford %T Understanding how proteins fold: The lysozyme story so far %J Trends Biochem. Sci. %V 19 %P 31-37 %D 1994 %A C.M. Dobson %A M.K. Karplus %T Internal motion of proteins: NMR measurements and dynamic simulations %J Methods Enzymol. %P 362-389 %V 131 %D 1986 %A E.J. Dodson %A G.G. Dodson %A D.C. Hodgkin %A C.D. Reynolds %T Structural relationships in the two-zinc insulin hexamer %J Can. J. Biochem. %V 57 %P 469-479 %D 1979 %K 2INS %A E.J. Dodson %A G.G. Dodson %A A. Lewitova %A M. Sabesan %T Zinc-free cubic pig insulin: Crystallization and structure determination %J J. Mol. Biol. %V 125 %P 387-? %D 1978 %K 9INS %A E.J. Dodson %A N.W. Isaacs %A J.S. Rollett %T A method for fitting satisfactory models to sets of atomic positions in protein structure refinements %J Acta Cryst. %V A 32 %P 311-? %D 1976 %K 2INS %A G. Dodson %T Protein crystallography and its new revolution %J Trends Biochem. Sci. %V 11 %P 309-310 %D 1986 %A G. Dodson %A R.E. Hubbard %A T.J. Oldfield %A S.J. Smerdon %A A.J. Wilkinson %T Apomyoglobin as a molecular recognition surface: expression, reconstitution and crystallisation of recombinant porcine myoglobin in \f2Escherichia coli\f1 %J Prot. Eng. %V 2 %P 233-? %D 1988 %K 1PMB %A J.G. Dohlman %A H. de\0Loof %A M. Prabhakaran %A W.J. Koopman %A J.P. Segrest %J Proteins %V 6 %P 61-69 %T Identification of peptide hormones of the amphipathic helix class using the helical hydrophobic moment algorithm %D 1989 %A M. Doi %A M. Tanaka %A T. Ishida %A M. Inoue %J FEBS Lett. %P 265-268 %T The three-dimensional similarity between a dimeric antiparallel extended structure and a \(*b-turn folded form of enkephalin %V 213 %D 1987 %A A.J. Doig %A D.H. Williams %A R.T. Sauer %T Surface areas of unfolded proteins %J Nature %V 348 %P 397 %D 1990 %A R.E. Dolle %A J. Singh %A J. Rinker %A D. Hoyer %A C.V.C. Prasad %A T.L. Graybill %A J.M. Salvino %A C.T. Helaszek %A R.E. Miller %A M.A. Ator %T Aspartyl \(*a((1-phenyl-3(trifluoromethyl)-pyrazol-5-yl)oxy)methyl ketones as interleukin-1\(*b converting enzyme inhibitors: Significance of the P\d\s-31\s0\u and P\d\s-33\s0\u amido nitrogens for enzyme-peptide inhibitor binding %J J. Med. Chem. %V 37 %P 3863-3866 %D 1994 %A J.P. Donahue %A H. Patel %A W.F. Anderson %A J. Hawiger %T Three-dimensional structure of the platelet integrin recognition segment of the fibrinogen \(*g chain obtained by carrier protein-driven crystallization %J Proc. Natl. Acad. Sci. USA %V 91 %P 12178-12182 %D 1994 %A P.R. Donahue %A E.A. Hoover %A G.A. Beltz %A N. Riedel %A V.M. Hirsch %A J. Overbaugh %A J.I. Mullins %T Strong sequence conservation among horizontally transmissible minimally pathogenic feline leukemia viruses %J J. Virol. %V 62 %D 1988 %P 722-731 %A D. Donnelly %A J.B.C. Findlay %T Seven-helix receptors: Structure and modelling %J Curr. Opin. Struct. Biol. %V 4 %P 582-589 %D 1994 %A D. Donnelly %A J.B.C. Findlay %A T.L. Blundell %T The evolution and structure of aminergic G protein-coupled receptors %J Receptors and Channels %V 2 %P 61-78 %D 1994 %A D. Donnelly %A M.S. Johnson %A T.L. Blundell %T An analysis of the periodicity of conserved residues in sequence alignments of G-protein coupled receptors: implications for the three-dimensional structure %J FEBS Lett. %V 251 %D 1989 %P 109-116 %A D. Donnelly %A J.P. Overington %A S.V. Ruffle %A J.H.A. Nugent %A T.L. Blundell %T Modelling \(*a-helical transmembrane domains: The calculation and use of substitution tables for lipid facing tables %J Prot. Sci. %V 2 %P 55-70 %D 1993 %A R.F Doolittle %T Convergent evolution: The need to be explicit %J Trends Biochem. Sci. %V 19 %P 15-18 %D 1994 %A R.F. Doolittle %T Similar amino acid sequences: chance or common ancestry ? %J Science %V 214 %D 1981 %P 149-159 %A R.F. Doolittle %T The genealogy of some recently evolved vertebrate proteins %J Trends Biochem. Sci. %V 10 %D 1985 %P 233-237 %K TIBS %A R.F. Doolittle %T Proteins %J Sci. Amer. %V 253 %N 10 %D 1985 %P 74-83 %A R.F. Doolittle %T Of URFS and ORFS: a primer on how to analyze derived amino acid sequences %D 1986 %C Mill Valley, CA %I University Science Books %A R.F. Doolittle %T Similar amino acid sequences revisited %J Trends Biochem. Sci. %V 14 %D 1989 %P 244-245 %K TIBS %A R.F. Doolittle %A D.-F. Feng %A M.S. Johnson %A M.A. McClure %J Cold Spring Harbor Symp. Quant. Biol. %P 447-455 %T Relationships of human protein sequences to those of other organisms %V L1 %D 1987 %A R.F. Doolittle %A D.-F. Feng %A M.S. Johnson %A M.A. McClure %T Origins and evolutionary relationships of retroviruses %J Quart. Rev. Biol. %V 64 %D 1989 %P 1-30 %A R.F. Doolittle %A D.F. Feng %A M.A. McClure %A M.S. Johnson %T Retrovirus phylogeny and evolution %J Curr. Top. Microbiol. Immunol. %V 157 %D 1990 %P 1-18 %A R.F. Doolittle %A M.S. Johnson %A I. Husain %A B. Van\0Houten %A A. Sancar %T Domainal evolution of a prokaryotic DNA repair protein and its relationship to active-transport proteins %J Nature %V 323 %P 451-453 %D 1986 %A W.F. Doolittle %A C. Sapienza %T Selfish genes, the phenotype paradigm and genome evolution %J Nature %V 284 %P 601-603 %D 1980 %A R.L. Dorit %A W. Gilbert %T The limted universe of exons %J Curr. Opin. Struct. Biol. %V 1 %P 973-977 %D 1991 %A B.D. Dorsey %A R.B. Levin %A S.L. McDaniel %A J.P. Vacca %A J.P. Guare %A P.L. Darke %A J.A. Zugay %A E.A. Emini %A W.A. Schleif %A J.C. Quintero %A J.H. Lin %A I.-W. Chen %A M.K. Holloway %A P.M.D. Fitzgerald %A M.G. Axel %A D. Ostovic %A P.S. Anderson %A J.R. Huff %T L-735,524: The design of a potent and orally bioavailable HIV protease inhibitor %J J. Med. Chem. %V 37 %P3443-3451 %D 1994 %A D.A. Dougherty %T Cation-\(*p interactions in chemistry and biology: A new view of benzene, Phe, Tyr, and Trp %J Science %V 271 %P 163-168 %D 1996 %A D.A. Dougherty %T Cation-\(*p interactions in chemistry and biology: A new view of benzene, Phe, Tyr, and Trp %J Science %V 271 %P 163-168 %D 1996 %A A.K. Downing %A P.C. Driscoll %A T.S. Harvey %A T.J. Dudgeon %A B.O. Smith %A M. Baron %A I.D. Campbell %T Solution structure of the fibrin binding domain of tissue-type plasminogen activator determined by \u\s-41\s0\dH nuclear magnetic resonance %J J. Mol. Biol. %V 225 %P 821-833 %D 1992 %A J. Drenth %B Principles of X-ray crystallography %I Springer-Verlag %C New York %D 1995 %A J. Drenth %A W.G.J. Hol %A J.N. Jansonius %A R. Koekoek %T A comparison of the three-dimensional structures of subtilisin BPN\(fm and subtilisin novo %J Cold Spring Harbor Symp. Quant. Biol. %V 36 %P 107-? %D 1972 %K PDB2SBT %A J. Drenth %A W.G.J. Hol %A R.K. Wierenga %T Crystallization and preliminary X-ray investigation of \f2p\f1-hydrobenzoate hydroxylase from \f2Pseudomonas fluorescens\f1 %J J. Biol. Chem. %V 250 %P 5268-? %D 1975 %K 1PHH 2PHH %A J. Drenth %A J.N. Jansonius %A R. Koekoek %A L.A.A. Sluyterman %A B.G. Wolthers %T The structure of the papain molecule %J Phil. Trans. Roy. Soc. Lond. %V B 257 %P 231-? %D 1970 %K 5PAD %A J. Drenth %A J.N. Jansonius %A R. Koekoek %A H.M. Swen %A B.G. Wolthers %T Structure of papain %J Nature %V 218 %P 929-932 %D 1968 %K 5PAD %A J. Drenth %A J.N. Jansonius %A R. Koekoek %A B.G. Wolthers %T The structure of papain %J Adv. Prot. Chem. %V 25 %P 79-? %D 1971 %K 2PAD %A J. Drenth %A K.H. Kalk %A H.M. Swen %T Binding of chloromethyl ketone substrate analogues to crystalline papain %J Biochemistry %V 15 %P 3731-? %D 1976 %K PDB1PAD PDB2PAD PDB4PAD PDB5PAD PDb6PAD %A J. Drenth %A B.W. Low %A J.S. Richardson %A C.S. Wright %T The toxin-agglutinin folds: a new group of small protein structures organized around a four-disulfide core %J J. Biol. Chem. %V 255 %P 2652-? %D 1980 %K 3EBX 2WGC 9WGA 1WGC 7WGA %A J. Drenth %A J.D.G. Smit %T Crystallographic data for rhodanese from bovine liver %J Biochem. Biophys. Res. Comm. %V 45 %P 1320-? %D 1971 %K 1RHD %A D. Dreusicke %A P.A. Karplus %A G.E. Schulz %T Refined structure of porcine cytosolic adenylate kinase at 2.1\(Ao resolution %J J. Mol. Biol. %V 199 %P 359-? %D 1988 %K PBB3ADK 1AK3 %A D. Dreusicke %A G.E. Schulz %T The glycine-rich loop of adenylate kinase forms a giant anion hole %J FEBS Lett. %V 208 %P 301-? %D 1986 %K 3ADK 1AK3 %A D. Dreusicke %A G.E. Schulz %T The switch between two conformations of adenylate kinase %J J. Mol. Biol. %V 203 %P 1021-? %D 1988 %K 1AK3 %A K. E. Drexler %T Molecular engineering: An approach to the development of general capabilities for molecular manipulation %J Proc. Natl. Acad. Sci. USA %V 78 %P 5275-5278 %D 1981 %K PNAS %A G.B. Dreyer %A J.C. Boehm %A B. Chenera %A R.L. DesJarlais %A A.M. Hassell %A T.D. Meek %A T. Tomaszek,\0Jr. %A M. Lewis %T A symmetric inhibitor binds HIV-1 protease asymmetrically %J Biochemistry %V 32 %P 937-947 %D 1993 %A G.B. Dreyer %A D.M. Lambert %A T.D. Meek %A T.J. Carr %A T.A. Tomaszek,\0Jr. %A A.V. Fernandez %A H. Bartus %A E. Cacciavillani %A A.M. Hassel %A M. Minnich %A S.R. Petteway,\0Jr. %A B.W. Metcalf %A G.B. Dreyer %A B.W. Metcalf %A T.A. Tomaszek,\0Jr. %A T.J. Carr %A A.C. Chandler\0III %A L. Hyland %A S.A. Fakhoury %A V.W. Magaard %A M.L. Moore %A J.E. Strickler %A C. Debouck %A T.D. Meek %T Inhibition of human immunodeficiency virus 1 protease \f2in vitro\f1: rational design of substrate analogue inhibitors %J Proc. Natl. Acad. Sci. USA %V 86 %D 1989 %P 9752-9756 %K aspartic proteinase transition state analogue isostere PNAS %A T. Dreyer %A B. Halkier %A I.B. Svendsen %A M. Ottesen %T Primary structure of the aspartic proteinase A from \f2Saccharomyces cerevisiae\f1 %J Carlsberg Res. Commun. %V 51 %D 1986 %P 27-41 %A P.C. Driscoll %A G.M. Clore %A L. Beress %A A.M. Gronenborn %T A proton nuclear magnetic resonance study of the antihypertensive and antiviral protein BDS-I from the sea \f2Anemone anemonia sulcata\f1: sequential and stereospecific resonance assignment and secondary structure %J Biochemistry %V 28 %P 2178-2187 %D 1989 %K 2BDS %A P.C. Driscoll %A J.G. Cyster %A I.D. Campbell %A A.F. Williams %T Structure of domain 1 of rat T lymphocyte CD2 antigen %J Nature %V 353 %P 762-765 %D 1991 %A P.C. Driscoll %A A.M. Gronenborn %A L. Beress %A G.M. Clore %T Determination of the three-dimensional solution structure of the antihypertensive and antiviral protein BDS-I from the sea \f2Anemone anemonia sulcata\f1: a study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing %J Biochemistry %V 28 %P 2188-2198 %D 1989 %K PDB2BDS PDB1BDS %A P.C. Driscoll %A A.M. Gronenborn %A G.M. Clore %T The influence of stereospecific assignments on the determination of three-dimensional structures of proteins by nuclear magnetic resonance spectroscopy: application to the sea anemone protein BDS-I %J FEBS Lett. %V 243 %P 223-? %D 1989 %K 2BDS %A M. Dubourdieu %A J.L. Fox %T Amino acid sequence of \f2Desulfovibrio vulgaris\f1 flavodoxin %J J. Biol. Chem. %V 252 %P 1453-? %D 1977 %K 1FX1 %A M. Duerring %A G.B. Schmidt %A R. Huber %T Isolation, crystallization, crystal structure analysis and refinement of constitutive C-phycocyanin from the chemotactically adapting cyanobacterium \f2Fremyella diplosiphon\f1 ta 1.66\(Ao resolution %J J. Mol. Biol. %V 217 %P 577-592 %D 1991 %A M.J. Dufton %A P. Bladon %T A method for detecting centres of natural selection in protein structures: potential for predicting the location of functional areas %J J. Theor. Biol. %P 331-333 %V 134 %D 1988 %A M.J. Dufton %A R.C. Hider %T Classification of phospholipases A\d\s-22\s0\u according to sequence. Evolutionary and pharmacological implications %J Eur. J. Biochem. %V 137 %P 545-551 %D 1983 %A H. Dugas %A C. Penney %T Bioorganic chemistry %I Springer-Verlag %D 1981 %A R.G. Duggleby %J J. Theor. Biol. %P 123-124 %T Fitting the double Michaelis-Menten equation to kinetic data %V 130 %D 1988 %A P. Dumas %A J.P. Ebel %A R. Gieg\(e' %A D. Moras %A J.C. Thierry %A E. Westhof %T Crystal structure of yeast tRNA\d\s-2asp\s0\u: atomic coordinates %J Biochimie %V 67 %P 597-606 %D 1985 %K 3TRA Giege %A R.L. Dunbrack,\0Jr. %A M. Karplus %T Conformational analysis of the backbone-dependent rotamer preferences of protein sidechains %J Nature Struct. Biol. %V 1 %P 334-340 %D 1994 %A A.R. Duncan %A G. Winter %T The binding site for CIq on IgG %J Nature %V 332 %D 1988 %P 738-740 %A B.M. Dunn %J Arch. Biochem. Biophys. %P 763-771 %T The two-step interaction between \(*a-dimethylaminonaphthalene-1-sulfonyl-pepsinogen-(1-12) and pepsin %V 214 %D 1982 %A B.M. Dunn %A J. Kay %J Biochemistry %P 1041-1043 %T Design, synthesis and analysis of new synthetic substrates for the aspartic proteinases %V 13 %D 1985 %A B.M. Dunn %A B. Parten %A M. Jimenez %A C.E. Rolph %A M. Valler %A J. Kay %T Interaction of aspartic proteinases with a new series of synthetic substrates and with inhibitors based on the propart of porcine pepsinogen %B Aspartic proteinases and their inhibitors %E V. Kostka %P 263-320 %C Berlin %I Walter de\0Gruyter %D 1985 %A S.R. Durell %A B.R. Brooks %A A. Ben-Naim %T Solvent-induced forces between two hydrophilin groups %J J. Phys. Chem. %V 98 %P 2198-2202 %D 1994 %A F. Dyda %A A.B. Hickman %A T.M. Jenkins %A A. Engelman %A R. Craigie %A D.R. Davies %T Crystal structure of the catalytic domain of HIV-1 integrase: Similarity to other polynucleotidyl transferases %J Science %V 266 %P 1981-1986 %D 1994 %A S.E. Ealick %A S. Babu %A C.E. Bugg %A M.D. Erion %A W.C. Guida %A J.A. Montgomery %A J.A. Sesrist\0III %T Application of crystallographic and modeling methods in the design of purine nucleoside phosphorylase inhibitors %J Proc. Natl. Acad. Sci. USA %V 88 %P 11540-11544 %D 1991 %A S.E. Ealick %A W.J. Cook %A S. Vijay-Kumar %A M. Carson %A T.L. Nagabhushan %A P.P. Trotta %A C.E. Bugg %T Three-dimensional structure of recombinant human interferon-\(*g %J Science %V 252 %P 698-702 %D 1991 %A S.E. Ealick %A S.A. Rule %A D.C. Carter %A T.J. Greenhough %A Y.S. Babu %A W.J. Cook %A J. Habash %A J.R. Helliwell %A J.D. Stoeckler %A R.E. Parks,\0Jr. %A S.-F. Chen %A C.E. Bugg %T Three-dimensional structure of human erythrocytic purine nucleoside phosphorylase at 3.2\(Ao resolution %J J. Biol. Chem. %V 265 %P 1812-? %D 1990 %K 2PNP %A M.J. Eck %A B. Beutler %A G. Kuo %A J.P. Merryweather %A S.R. Sprang %T Crystallization of trimeric recombinant human tumor necrosis factor (cachectin) %J J. Biol. Chem. %V 263 %P 12816-? %D 1988 %K 1TNF %A M.J. Eck %A S. Pluskey %A T. Trub %A S.C. Harrison %A S.E. Shoelson %T Spatial constraints on the recognition of phosphoproteins by the tandem SH2 domains of the phosphatase SH-PTP2 %J Nature %V 379 %P 277-280 %D 1996 %A M.J. Eck %A S.E. Shoelson %A S.C. Harrison %T Recognition of a high-affinity phosphotyrosyl peptide by the Src homology-2 domain of p56\u\s-4\f2lck\f1\s0\d %J Nature %V 362 %P 87-91 %D 1993 %A M.J. Eck %A S.R. Sprang %T The structure of tumor necrosis factor-\(*a at 2.6\(Ao resolution: implications for receptor binding %J J. Biol. Chem. %V 264 %P 17595-? %D 1989 %K PDB1TNF %A R.V. Eck %A M.O. Dayhoff %E M.O. Dayhoff %B Atlas of protein sequence and structure, 1966 %I National Biomedical Research Foundation %C Silver Spring, Maryland %D 1966 %A J. Edelman %A S.H. White %T Linear optimization of predictors for secondary structure: application to transbilayer segments of membrane proteins %J J. Mol. Biol. %V 210 %D 1989 %P 195-209 %A J. Eder %A M. Wilmanns %T Protein engineering of a disulfide bond in a \(*b/\(*a-barrel protein %J Biochemistry %V 31 %P 4437-4444 %D 1992 %A S.M. Edginton %T Superfamily structure and biotech drug development %J Bio/Technology %V 10 %P 1529-1534 %D 1992 %A A.S. Edison %T Propagation of an error: \(*-sheet structures %J Trends Biochem. Sci. %V 15 %P 216-217 %D 1990 %A A.B. Edmundson %A E.E. Abola %A K.R. Ely %A J.R. Firca %A N.C. Panagiotopoulos %A M. Schiffer %A F.A. Westholm %T Implications of conformational isomerism and rotational allomerism to the binding of small molecules by the McG Bence-Jones dimer %B Antibodies in human diagnosis and therapy %E E. Haber and K.R. Krause %I Raven Press %C New York %P 135-? %D 1977 %K 1MCG 2MCG 3MCG %A A.B. Edmundson %A K.R. Ely %A E.E. Abola %A P.M. Colman %T Conformational flexibility in human immunoglobulins %B Biomolecular structure, conformation, function, and evolution %E R. Srinivasan %P 153-164 %V 1 %I Pergamon Press %C Oxford %D 1978 %A A.B. Edmundson %A K.R. Ely %A E.E. Abola %A M. Schiffer %A N. Panagiotopoulos %T Rotational allomerism and divergent evolution of domains in immunoglobulin light chains %J Biochemistry %V 14 %P 3953-? %D 1975 %K 1MCG 2MCG 3MCG %A A.B. Edmundson %A K.R. Ely %A E.E. Abola %A M. Schiffer %A N. Panagiotopoulos %A H.F. Deutsch %T Conformational isomerism, rotational allomerism and divergent evolution in immunoglobulin light chains %J Fed. Proc., Fed. Amer. Soc. Exp. %V 35 %P 2119-? %D 1976 %K 2MCG 3MCG %A A.B. Edmundson %A K.R. Ely %A R.L. Girling %A E.E. Abola %A M. Schiffer %A F.A. Westholm %T Structure and binding properties of a \(*l-type Bence-Jones dimer %J Prog. Immunol. %V 1 %P 103-? %D 1974 %K 1MCG 2MCG 3MCG %A A.B. Edmundson %A K.R. Ely %A R.L. Girling %A E.E. Abola %A M. Schiffer %A F.A. Westholm %A M.D. Fausch %A H.F. Deutsch %T Binding of 2,4-dinitrophenyl compounds and other small molecules to a crystalline \(*l-type Bence-Jones dimer %J Biochemistry %V 13 %P 3816-? %D 1974 %K 1MCG 2MCG 3MCG %A A.B. Edmundson %A K.R. Ely %A J.N. Herron %A B.D. Cheson %T The binding of opioid peptides to the McG light chain dimer: flexible keys and adjustable locks %J Mol. Immunol. %V 24 %P 915-? %D 1987 %K 2MCG 3MCG %A A.B. Edmundson %A M. Schiffer %A K.R. Ely %A M.K. Wood %T Structure of a \(*l-type Bence-Jones protein at 6\(Ao resolution %J Biochemistry %V 11 %P 1822-? %D 1972 %K 1MCG 2MCG 3MCG %A A.B. Edmundson %A M. Schiffer %A K.R. Ely %A M.K. Wood %T Structural features of immunoglobulin light chains %J Prog. Mol. Subcell. Biol. %V 3 %P 159-? %D 1973 %K 1MCG 2MCG 3MCG %A A.B. Edmundson %A M. Schiffer %A M.K. Wood %A K.D. Hardman %A K.R. Ely %A C.F. Ainsworth %T Crystallographic studies of an IgG immunoglobulin and the Bence-Jones protein from one patient %J Cold Spring Harbor Symp. Quant. Biol. %V 36 %P 427-? %D 1972 %K 1MCG 2MCG 3MCG %A A.W.F. Edwards %A L.L. Cavalli-Sforza %T Reconstruction of evolutionary trees %B Phenetic and phylogenetic classification %E V.H. Heywood and J. McNeill %I Systematics Association %C London %V 6 %P 67-76 %D 1964 %A M.S. Edwards %A M.J.E. Sternberg %A J.M. Thornton %T Structural and sequence patterns in the loops of \(*b\(*a\(*b units %J Prot. Eng. %V 1 %D 1987 %P 173-181 %A P.D. Edwards %A E.F. Meyer,\0Jr. %A J. Vijayalakshmi %A P.A. Tuthill %A D.A. Andisik %A B. Gomes %A A. Strimpler %T Design, synthesis and kinetic eveulation of a unique class of elastase inhibitors, the peptidyl \(*a-ketobenzoxazoles, and the X-ray crystal structure of the covalent complex between porcine pancreatic elastase and Ac-Ala-Pro-Val-2-benzoxazole %J J. Amer. Chem. Soc. %V 114 %P 1854-1863 %D 1992 %K ICI %A S.L. Edwards %A R. Raag %A H. Wariishi %A M.H. Gold %A T.L. Poulos %T Crystal structure of lignin peroxidase %J Proc. Natl. Acad. Sci. USA %V 90 %P 750-754 %D 1993 %A S.L. Edwards %A N.H. Xuong %A R.C. Hamlin %A J. Kraut %T Crystal structure of cytochrome \f2c\f1 peroxidase compound I %J Biochemistry %V 26 %P 1503-? %D 1987 %K 0CCI %A Y.J.K. Edwards %A S.J. Perkins %T The protein fold of the von Willebrand factor type A domain is predicted to be similar to the open twisted \(*b-sheet flanked by \(*a-helices found in human ras-p21 %J FEBS Letts. %V 358 %P 283-286 %D 1995 %A Y.J. Edwards %A M.S. Johnson %A D.S. Moss %A T.L. Blundell %T The effects of local environments on the pattern of amino-acid substitution in homologous protein structures: The role of side-chain to main-chain van der Waals interactions %J Techniques in Protein Chemistry V %P 405-412 %E J.W. Crabb %I Academic Press %C San Diego %D 1994 %A A.V. Efimov %T Packing of \(*a-helices in globular proteins: layer-structure of globin hydrophobic cores %J J. Mol. Biol. %V 134 %D 1979 %P 23-40 %A A.V. Efimov %T A novel super-secondary structure of proteins and the relation between the structure and the amino acid sequence %J FEBS Lett. %V 166 %D 1984 %P 33-38 %K secondary structure prediction helices alpha alpha corner helix packing %A A.V. Efimov %T Standard conformations of a polypeptide chain in irregular regions of proteins %J Molec. Biol. (Moscow) %V 20 %P 250-260 %D 1986 %A A.V. Efimov %T Structure of \(*a-\(*a-hairpins with short connections %J Prot. Eng. %V 4 %P 245-250 %D 1991 %A A.V. Efimov %T A novel supersecondary structure of \(*b-proteins: A triple-strand corner %J FEBS Letts. %V 298 %P 261-265 %D 1992 %A A.V. Efimov %T Common structural motifs in small proteinas and domains %J FEBS Letts. %V 355 %P 213-219 %D 1994 %A A.V. Efimov %T Favoured structural motifs in globular proteins %J Structure %V 2 %P 999-1002 %D 1994 %A U. Egner %A A.G. Tomasselli %A G.E. Schulz %T Structure of the complex of yeast adenylate kinase with the inhibitor P\u\s-21\s0\d, P\u\s-25\s0\d-di(adenosine-5\(fm)pentaphosphate at 2.6\(Ao resolution %J J. Mol. Biol. %V 195 %P 649-? %D 1987 %K 0AKN 1AK3 %A G. Eichele %A G.C. Ford %A M. Glor %A J.N. Jansonius %A C. Mavrides %A P. Christen %T The three-dimensional structure of mitochondrial aspartate aminotransferase at 4.5\(Ao resolution %J J. Mol. Biol. %V 133 %P 161-? %D 1979 %K 0MAA %A G. Eichele %A G.C. Ford %A M. Glor %A A.-S. Reimer %A C. Thaller %A J.N. Jansonius %T Towards the spatial structure of mitochondrial aspartate aminotransferase %J Experientia %V 34 %P 908-? %D 1978 %K 0MAA %A M. Eigen %A R. Winkler-Oswatitisch %A A. Dress %T Statistical geometry in sequence space: a method of quantitative comparative sequence analysis %J Proc. Natl. Acad. Sci. USA %V 85 %D 1988 %P 5913-5917 %K PNAS %A C. Eigenbrot %A M. Randal %A C. Quan %A J. Burnier %A L. O'Connell %A E. Rinderknecht %A A.A. Kossiakov %T Crystal structure of human relaxin at 1.5\(Ao: Comparison to insulin and implications for binding determinants %J J. Mol. Biol. %V 221 %P 15-21 %D 1991 %A R. Einarsson %A H. Eklund %A E. Zeppezauer %A T. Boiwe %A C.-I. Br\(a:nd\(e'n %T Binding of salicylate in the adenosine-binding pocket of dehydrogenases %J Eur. J. Biochem. %V 49 %P 41-? %D 1974 %K Branden %A H. Einspahr %A L.L. Clancy %A S.W. Muchmore %A K.D. Watenpaugh %A P.K.W. Harris %A D.B. Carter %A K.A. Curry %A C.-S.C. Tomich %A A.W. Yem %A M.R. Deibel,\0Jr. %A D.E. Tracey %A J.W. Pasley %A N.D. Staite %A J.B. Carter %A N.Y. Theriault %A I.M. Reardon %A H.A. Zurcher-Neely %A R.L. Heinrikson %T Crystallization of recombinant human interleukin 1\(*b %J J. Cryst. Growth %V 90 %P 180-? %D 1988 %K 1I1B %A H. Einspahr %A E.H. Parks %A K. Suguna %A E. Subramanian %A F.L. Suddath %T The crystal structure of pea lectin at 3.0\(Ao resolution %J J. Biol. Chem. %V 261 %P 16518-? %D 1986 %K 2LTN %A H. Einspahr %A K. Suguna %A F.L. Suddath %A G. Ellis %A J.R. Helliwell %A M.Z. Papiz %T The location of manganese and calcium ion cofactors in pea lectin crystals by use of anomalous dispersion and tunable synchrotron X-radiation %J Acta Cryst. %V B 41 %P 336-? %D 1985 %K 2LTN %A D. Eisenberg %T Three-dimensional structure of membrane and surface proteins %J Annu. Rev. Biochem. %V 53 %D 1984 %P 595-623 %K membrane proteins hydrophobicity %A D. Eisenberg %A C.P. Hill %T Protein crystallography: more surprises ahead %J Trends Biochem. Sci. %V 14 %D 1989 %P 260-264 %K TIBS %A D. Eisenberg %A A.D. McLachlan %T Solvation energy in protein folding and binding %J Nature %V 319 %D 1986 %P 199-203 %K solvation free energy %A D. Eisenberg %A R.M. Weiss %A T.C. Terwilliger %T The helical hydrophobic moment: a measure of the amphiphilicity of a helix %J Nature %V 299 %D 1982 %P 371-374 %K protein structure pattern Fourier transform hydrophobicity %A D. Eisenberg %A R.M. Weiss %A T.C. Terwilliger %T The hydrophobic moment detects periodicity in protein hydrophobicity %J Proc. Natl. Acad. Sci. USA %V 81 %D 1984 %P 140-144 %K protein structure helix sheet secondary structure PNAS %A D. Eisenberg %A W. Wilcox %A S.M. Eshita %A P.M. Pryciak %A S.P. Ho %T The design, synthesis, and crystallization of an \(*a-helical peptide %J Proteins %V 1 %P 16-? %D 1986 %K 1AL1 %A H. Eklund %A C.-I. Br\(a:nd\(e'n %T Structural differences between \f2apo\f1- and holoenzyme of horse liver alcohol dehydrogenase %J J. Biol. Chem. %V 254 %P 3458-? %D 1979 %K 5ADH Branden %A H. Eklund %A C.-I. Br\(a:nd\(e'n %A H. J\(o:rnvall %T Structural comparisons of mammalian, yeast and bacillar alcohol dehydrogenases %J J. Mol. Biol. %V 102 %D 1976 %P 61-73 %K comparison structure sequence template phylogeny Jornvall Branden %A H. Eklund %A F.G. Gleason %A A. Holmgren %T Structural and functional relations among thioredoxins of different species %J Proteins %V 11 %P 13-28 %D 1991 %A H. Eklund %A M. Ingelman %A B.-O. S\(o:derberg %A T. Uhlin %A P. Nordlund %A M. Nikkola %A U. Sonnerstam %A T. Joelson %A K. Petratos %T Structure of oxidized bacteriophage T4 glutaredoxin (thioredoxin) %J J. Mol. Biol. %V 228 %P 596-618 %D 1992 %K Soderberg %A H. Eklund %A B. Nordstr\(o:m %A E. Zeppezauer %A G. S\(o:derlund %A I. Ohlsson %A T. Boiwe %A C.-I. Br\(a:nd\(e'n %T The structure of horse liver alcohol dehydrogenase %J FEBS Lett. %V 44 %P 200-? %D 1974 %K 5ADH Branden Nordstrom Soderlund %A H. Eklund %A B. Nordstr\(o:m %A E. Zeppezauer %A G. S\(o:derlund %A I. Ohlsson %A T. Boiwe %A B.-O. S\(o:derberg %A O. Tapia %A C.-I. Br\(a:nd\(e'n %A \(Ao. \(Aokeson %T Three-dimensional structure of horse liver alcohol dehydrogenase at 2.4\(Ao resolution %J J. Mol. Biol. %V 102 %P 27-59 %D 1976 %K Branden Akeson Nordstrom Soderberg Soderlund %A H. Eklund %A B.V. Plapp %A J.-P. Samama %A C.-I. Br\(a:nd\(e'n %T Binding of substrate in a ternary complex of horse liver alcohol dehydrogenase %J J. Biol. Chem. %V 257 %P 14349-? %D 1982 %K Branden %A H. Eklund %A J.-P. Samama %A T.A. Jones %T Crystallographic investigations of nicotinamide adenine dinucleotide binding to horse liver alcohol dehydrogenase %J Biochemistry %V 23 %P 5982-? %D 1984 %K PDB5ADH PDB8ADH %A H. Eklund %A J.-P. Samama %A L. Wallen %T Pyrazole binding in crystalline binary and ternary complexes with liver alcohol dehydrogenase %J Biochemistry %V 21 %P 4858-? %D 1982 %K 5ADH %A H. Eklund %A J.-P. Samama %A L. Wallen %A C.-I. Br\(a:nd\(e'n %A \(Ao. \(Aokeson %A T.A. Jones %T Structure of triclinic ternary complex of horse liver alcohol dehydrogenase at 2.9\(Ao resolution %J J. Mol. Biol. %V 146 %P 561-? %D 1981 %K PDB5ADH Branden Akeson %A E.L. Eliel %A N.L. Allinger %A S.J. Angyal %A G.A. Morrison %T Conformational Analysis %I Wiley Interscience %C New York %D 1965 %A A.D. Ellington %A A.A. Benner %T Free energy differences between enzyme bound states %J J. Theor. Biol. %P 491-506 %V 127 %D 1987 %A R.J. Ellis %T The molecular chaperone concept %J Semin. Cell Biol. %V 1 %P 1-9 %D 1990 %A A. Elofssin %A T. Kulinski %A R. RIgler %A L. Nilsson %T Site specific point mutation changes specificity: A molecular modelling study by free energy simulations and enzyme kinetics of the thermodynamics in ribonuclease T\d\s-21\s0\u substrate interactions %J Proteins %V 17 %P 161-175 %D 1993 %A A. Elofsson %A L. Nilsson %T How consistent are molecular dynamics simulations ? Comparing structure and dynamics in reduced and oxidized \f2Escerichia coli\f1 thioredoxin %J J. Mol. Biol. %V 233 %P 766-780 %D 1993 %A K.R. Ely %A J.R. Firca %A K.J. Williams %A E.E. Abola %A J.M. Fenton %A M. Schiffer %A N.C. Panagiotopoulos %A A.B. Edmundson %T Crystal properties as indicators of conformational changes during ligand binding or interconversion of McG light chain isomers %J Biochemistry %V 17 %P 158-? %D 1978 %K 1MCG 2MCG 3MCG %A K.R. Ely %A R.L. Girling %A M. Schiffer %A D.E. Cunningham %A A.B. Edmundson %T Preparation and properties of a Bence-Jones dimer with mercury inserted into the interchain disulfide bond %J Biochemistry %V 12 %P 4233-? %D 1973 %K 1MCG 2MCG 3MCG %A K.R. Ely %A J.N. Herron %A A.B. Edmundson %T Three-dimensional structure of the orthorhombic form of the McG Bence-Jones dimer %J Prog. Immunol. %P 61-? %D 1983 %K 2MCG 3MCG %A K.R. Ely %A J.N. Herron %A A.B. Edmundson %T Three-dimensional structure of a hybrid light chain dimer: protein engineering of a binding cavity %J Mol. Immunol. %V 27 %P 101-114 %D 1990 %A K.R. Ely %A J.N. Herron %A M. Harker %A A.B. Edmundson %T Three-dimensional structure of a light chain dimer crystallized in water: conformational flexibility of a molecule in two crystal forms %J J. Mol. Biol. %V 210 %P 601-? %D 1989 %K 2MCG 3MCG %A K.R. Ely %A M.K. Wood %A S.S. Rajan %A J.M. Hodsdon %A E.E. Abola %A H.F. Deutsch %A A.B. Edmundson %T Unexpected similarities in the crystal structures of the McG light-chain dimer and its hybrid with the Weir protein %J Mol. Immunol. %V 22 %P 93-? %D 1985 %K 1MCW %A Y. Emori %A H. Kawasaki %A H. Sugihara %A S. Imajoh %A S. Kawashima %A K. Suzuki %T Isolation and sequence analysis of cDNA clones for the large subunit of two isozymes of rabbit calcium-dependent protease %J J. Biol. Chem. %V 20 %D 1986 %P 9465-9471 %K sequence calpain thiol proteinase %A M.W. Empie %A M. Laskowski,\0Jr. %T Thermodynamics and kinetics of single residue replacements in avian ovomucoid third domains: effect on inhibitor interactions with serine proteinases %J Biochemistry %V 21 %P 2274-? %D 1982 %K 2OVO %A J. Emsley %A H.E. White %A B.P. O'Hara %A G. Oliva %A N. Srinivasan %A I.J. Tickle %A T.L. Blundell %A M.B. Pepys %A S.P. Wood %T Structure of pentameric human serum amyloid P component %J Nature %V 367 %P 338-345 %D 1994 %A G.F. Endres %A M.K. Swenson %A H.A. Scheraga %T Structural aspects of thrombin specificity %J Arch. Biochem. Biophys. %V 168 %P 180-187 %D 1975 %K modelling serine-protease %A D.M. Engelman %A G. Zaccai %T Bacteriorhodopsin is an inside-out protein %J Proc. Natl. Acad. Sci. USA %V 77 %D 1980 %P 6438-6442 %K PNAS %A R.A. Engh %A H.T. Wright %A R. Huber %T Modeling the intact form of the \(*a\d\s-21\s0\u-proteinase inhibitor %J Prot. Eng. %V 3 %D 1990 %P 469-477 %K modelling serpin comparison %A R. Engh %A H. Loebermann %A M. Schneider %A G. Wiegand %A R. Huber %A C.-B. Laurell %T The S variant of human \(*a\d\s-21\s0\u-antitrypsin, structure and implications for function and metabolism %J Prot. Eng. %V 2 %P 407-? %D 1989 %K 7API 8API 9API %A O. Epp %A P. Colman %A H. Fehlhammer %A W. Bode %A M. Schiffer %A R. Huber %A W. Palm %T Crystal and molecular structure of a dimer composed of the variable portions of the Bence-Jones protein REI %J Eur. J. Biochem. %V 45 %P 513-? %D 1974 %K 1REI %A O. Epp %A R. Ladenstein %A A. Wendel %T The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution %J Eur. J. Biochem. %V 133 %P 51-69 %D 1983 %K PDB1GP1 %A O. Epp %A E.E. Lattman %A M. Schiffer %A R. Huber %A W. Palm %T The molecular structure of a dimer composed of the variable portions of the Bence-Jones protein REI refined at 2.0\(Ao resolution %J Biochemistry %V 14 %D 1975 %P 4943-4952 %K PDB1REI %A C.J. Epstein %T Relation of protein evolution to tertiary structure %J Nature %V 203 %P 1350-1352 %D 1964 %A C.J. Epstein %T Role of the amino-acid `code' and the selection for conformation in the evolution of proteins %J Nature %V 210 %P 25-27 %D 1966 %A G. Eriani %A M. Delarue %A O. Poch %A J. Gangloff %A D. Moras %T Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs %J Nature %V 347 %D 1990 %P 203-206 %A J.W. Erickson %A S.W. Fesik %T Macromolecular X-ray crystallography and NMR as tools for structure-based drug design %J Annu. Rep. Med. Chem. %V 27 %P 271-289 %D 1992 %A J.W. Erickson %A E.A. Frankenberger %A M.G. Rossmann %A G.S. Fout %A K.C. Medappa %A R.R. Rueckert %T Crystallization of a common cold virus, human rhinovirus 14: "isomorphism" with poliovirus crystals %J Proc. Natl. Acad. Sci. USA %V 80 %P 931-934 %D 1983 %K 1R08 PNAS 1R09 %A J. Erickson %A D.J. Niedhart %A J. VanDrie %A D.J. Kempf %A X.C. Wang %A D.W. Norbeck %A J.J. Plattner %A J.W. Rittenhouse %A M. Turon %A N. Wideburg %A W.E. Kohlbrenner %A R. Simmer %A R. Helfrich %A D.A. Paul %A M. Knigge %T Design, activity, and 2.8\(Ao crystal structure of a C\d\s-22\s0\u symmetric inhibitor complexed to HIV-1 protease %J Science %D 1990 %V 249 %P 527-533 %A A.E. Eriksson %A L.S. Cousens %A L.H. Weaver %A B.W. Matthews %T Three-dimensional structure of human basic fibroblast growth factor %J Proc. Natl. Acad. Sci. USA %V 88 %P 3441-3445 %D 1991 %K PNAS %A A.E. Eriksson %A T.A. Jones %A A. Liljas %T Refined structure of human carbonic anhydrase II at 2.0\(Ao resolution %J Proteins %V 4 %P 274-? %D 1988 %K 1CA2 %A A.E. Eriksson %A P.M. Kylsten %A T.A. Jones %A A. Liljas %T Crystallographic studies of inhibitor binding sites in human carbonic anhydrase II: a pentacoordinated binding of the SCN\u\s-2\(mi\s0\d ion to the zinc at high pH %J Proteins %V 4 %P 283-? %D 1988 %K PDB3CA2 PDB2CA2 %A M.D. Erion %A S. Niwas %A J.D. Rose %A A. Ananthan %A M. Allen %A J.A. Secrist,\0III %A Y.S. Babu %A C.E. Bugg %A W.C. Guida %A S.E. Ealick %A J.A. Montgomery %T Structure-based design of inhibitors of purine nucleoside phospohorylase: 3. 9-arylmethyl derivatives of 9-deazaguanine substituted on the methylene group %J J. Med. Chem. %V 36 %P 3771-3783 %D 1993 %A C.R. Erwin %A B.L. Barnett %A J.D. Oliver %A J.F. Sullivan %T Effects of engineered salt bridges on the stability of subtilisin BPN\(fm %J Prot. Eng. %V 4 %P 87-97 %D 1990 %K PROTEUS %A G.F. Estabrook %A C.S. Johnson,\0Jr. %A F.R. McMorris %D 1975 %T An idealized concept of the true cladistic character %J Math. Biosci. %V 23 %P 263-272 %A G.F. Estabrook %A C.S. Johnson,\0Jr. %A F.R. McMorris %D 1976 %T An algebraic analysis of cladistic characters %J Disc. Math. %V 16 %P 141-147 %A G.F. Estabrook %A C.S. Johnson,\0Jr. %A F.R. McMorris %D 1976 %T A mathematical foundation for the analysis of character compatibility %J Math. Biosci. %V 23 %P 181-187 %A G.F. Estabrook %A L. Landrum %D 1975 %T A simple test for the simultaneous divergence of two amino acid positions %J Taxon %V 24 %P 609-613 %A P.R. Evans %A G.W. Farrants %A P.J. Hudson %T Phosphofructokinase: structure and control %J Phil. Trans. Roy. Soc. Lond. %V B 293 %P 53-? %D 1981 %K 1PFK PDB3PFK PDB4PFK %A P.R. Evans %A G.W. Farrants %A M.C. Lawrence %T Crystallographic structure of allosterically inhibited phosphofructokinase at 7\(Ao resolution %J J. Mol. Biol. %V 191 %P 713-? %D 1986 %K PDB5PFK %A P.R. Evans %A P.J. Hudson %T The three-dimensional structure of phosphofructokinase from \f2Bacillus stearothermophilus\f1 %J Proc. FEBS Meet. %V 52 %P 349-? %D 1978 %K 1PFK %A P.R. Evans %A P.J. Hudson %T Structure and control of phosphofructokinase from \f2Bacillus stearothermophilus\f1 %J Nature %V 279 %P 500-504 %D 1979 %K 1PFK %A R.M. Evans %T The steroid and thyroid hormone receptor superfamily %J Science %V 240 %P 889-895 %D 1988 %A W. Eventoff %A G.V. Gurskaya %T The molecular symmetry of bovine liver catalase %J J. Mol. Biol. %V 93 %P 55-? %D 1975 %A W. Eventoff %A M.L. Hackert %A S.J. Steindel %A M.G. Rossmann %T A Structural comparison of porcine B\d\s-24\s0\u and dogfish A\d\s-24\s0\u isozymes of lactate dehydrogenase %E C.L. Markert %B Isozymes-molecular structure %V 1 %P 137-? %D 1975 %I Academic Press %C New York %A W. Eventoff %A M.G. Rossmann %T The evolution of dehydrogenases and kinases %J CRC Crit. Rev. Biochem. %V 3 %P 112-140 %D 1975 %A W. Eventoff %A M.G. Rossmann %A S.S. Taylor %A H.-J. Torff %A H. Meyer %A W. Keil %A H.-H. Kiltz %T Structural adaptations of lactate dehydrogenase isozymes %J Proc. Natl. Acad. Sci. USA %V 74 %D 1977 %P 2677-2681 %K LDH sequence comparison PNAS %A W. Eventoff %A N. Tanaka %A M.G. Rossmann %T Crystalline bovine liver catalase %J J. Mol. Biol. %V 103 %P 799-? %D 1976 %A J.J. Ewbank %A T.E. Creighton %T The molten globule protein conformation probed by disulphide bonds %J Nature %V 350 %P 518-520 %D 1991 %A H.R. Faber %A B.W. Matthews %T A mutant T4 lysozyme displays different crystal conformations %J Nature %V 348 %D 1990 %P 263-266 %A A.D. Factor %A E.L. Mehler %T Graphical representation of hydrogen bonding patterns in proteins %J Prot. Eng. %V 4 %P 421-425 %D 1991 %A R. Fairman %A K.M. Armstrong %A K.R. Shoemaker %A E.J. York %A J.M. Stewart %A R.L. Baldwin %T Position effect on apparent helical propensities in the C-peptide helix %J J. Mol. Biol. %V 221 %P 1395-1401 %D 1991 %A R. Fairman %A K.R. Shoemaker %A E.J. York %A J.M. Stewart %A R.L. Baldwin %T Further studies of the helix dipole model: effects of a free \(*a-NH\d\s-23\s0\u\u\s-2\(pl\s0\d or \(*a-COO\u\s-2\(mi\s0\d group on helix stability %J Proteins %V 5 %D 1989 %P 1-7 %A M. Falconi %A G. Rotilio %A A. Desideri %T Modelling the three-dimensional structure and electrostatic potential field of the two CU, Zn superoxide dismutase variants from \f2Xenopus laevis\f1 %J Proteins %V 10 %P 149-155 %D 1991 %A Z.-C. Fan %A L. Shan %A L.W. Guddat %A X.-M. He %A W.R. Gray %A R.L. Raison %A A.B. Edmundson %T Three-dimensional structure of an Fv from a human IgM immunoglobulin %J J. Mol. Biol. %V 228 %P 188-207 %D 1992 %A G.K. Farber %A A. Glasfeld %A G. Tiraby %A D. Ringe %A G.A. Petsko %T Crystallographic studies of the mechanism of xylose isomerase %J Biochemistry %V 28 %P 7289-7297 %D 1989 %K 3XIA %A G.K. Farber %A P. Machin %A S.C. Almo %A G.A. Petsko %A J. Hajdu %T X-ray Laue diffraction from crystals of xylose isomerase %J Proc. Natl. Acad. Sci. USA %V 85 %P 112-115 %D 1988 %K 3XIA PNAS %A G.K. Farber %A G.A. Petsko %T The evolution of \(*a/\(*b barrel enzymes %J Trends Biochem. Sci. %V 15 %P 228-234 %D 1990 %K TIBS %A G.K. Farber %A G.A. Petsko %A D. Ringe %T The 3.0\(Ao crystal structure of xylose isomerase from \f2Streptomyces olivochromogenes\f1 %J Prot. Eng. %V 1 %P 459-466 %D 1987 %K 3XIA %A R. Farber %A A. Lapedes %A K. Sirotkin %T Determination of eukaryotic protein coding regions using neural networks and information theory %J J. Mol. Biol. %V 226 %P 471-479 %D 1992 %A J.S. Farris %D 1970 %T Methods for computing Wagner trees %J System. Zool. %V 19 %P 83-92 %A J.S. Farris %D 1977 %T Phylogenetic analysis under Dollo's Law %J System. Zool. %V 26 %P 77-88 %A J.S. Farris %T Inferring phylogenetic trees from chromosome inversion data %J System. Zool. %V 27 %P 275-284 %D 1978 %A J.S. Farris %T Distance data in phylogenetic analysis %B Advances in cladistics: proceedings of the first meeting of the Willi Hennig Society %P 3-23 %E V.A. Funk and D.R. Brooks %I New York Botanical Garden %C Bronx, New York %D 1981 %A J.S. Farris %T The logical basis of phylogenetic analysis %B Advances in cladistics: proceedings of the second meeting of the Willi Hennig Society %V 2 %P 1-47 %E I. Norman, N. Platnick and V.A. Funk %I Columbia University Press %C New York %D 1983 %A J.S. Farris %D 1985 %T Distance data revisited %J Cladistics %V 1 %P 67-85 %A J.S. Farris %D 1986 %T Distances and statistics %J Cladistics %V 2 %P 144-157 %A G.D. Fasman %J Nature %P 22-22 %T Prediction of protein structure from sequence %V 316 %D 1985 %A G.D. Fasman %T Protein conformational prediction %J Trends Biochem. Sci. %V 14 %D 1989 %P 295-299 %K TIBS %A G.D. Fasman %T The prediction of secondary structure of proteins: fact or fiction %J Curr. Sci. %D 1990 %V 59 %P 839-845 %A G.D. Fasman %A W.A. Gilbert %T The prediction of transmembrane protein sequences and their conformation: An evaluation %J Trends Biochem. Sci. %V 15 %P 89-92 %D 1990 %A G.D. Fasman\0(Ed.) %T Prediction of protein structure and the principles of protein conformation %C New York %I Plenum %D 1989 %A J.L. Fauchere %J Trends Biochem. Sci. %V 10 %P 268-268 %T How hydrophobic is tryptophan ? %D 1985 %K TIBS %A P.L. Faust %A S. Kornfeld %A J.M. Chirgwin %T Cloning and sequence analysis of cDNA for human cathepsin D %J Proc. Natl. Acad. Sci. USA %V 82 %D 1985 %P 4910-4914 %K PNAS %A J. Feder %A L.R. Garrett %A B.S. Wildi %J Biochemistry %P 4552-4556 %T Studies on the role of calcium in thermolysin %V 10 %D 1971 %A H. Fehlhammer %A W. Bode %T The refined crystal structure of bovine \(*b-trypsin at 1.8\(Ao resolution: I. crystallization, data collection and application of Patterson search techniques %J J. Mol. Biol. %V 98 %P 683-? %D 1975 %K 1TPO %A H. Fehlhammer %A W. Bode %A R. Huber %T Crystal structure of bovine trypsinogen at 1.8\(Ao resolution: II. crystallographic refinement, refined crystal structure and comparison with bovine trypsin %J J. Mol. Biol. %V 111 %D 1977 %P 415-438 %K PDB1TGB %A H. Fehlhammer %A M. Schiffer %A O. Epp %A P.M. Colman %A E.E. Lattman %A P. Schwager %A W. Steigemann %A H.J. Schramm %T The structure determination of the variable portion of the Bence-Jones protein AU %J Biophys. Struct. Mech. %V 1 %P 139-? %D 1975 %K 0AUI %A R.J. Feldmann %A D.H. Bing %A M. Potter %A C. Mainhart %A B. Furie %A B.C. Furie %A L.H. Caporale %T On the construction of computer models of proteins by extension of crystallographic structures %J Ann. N.Y. Acad. Sci. %V 439 %P 44-63 %D 1985 %K modelling %A R.J. Feldmann %A M. Potter %A C.P.J. Glaudemans %T A hypothetical space-filling model of the V-regions of the galactan-binding myeloma immunoglobulin J539 %J Mol. Immunol. %V 18 %P 683-698 %D 1981 %K modelling %A J. Felsenstein %D 1973 %T Maximum-likelihood estimation of evolutionary trees from continuous characters %J Amer. J. Human Genetics %V 25 %P 471-492 %A J. Felsenstein %D 1973 %T Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters %J System. Zool. %V 22 %P 240-249 %A J. Felsenstein %D 1978 %T Cases in which parsimony and compatibility methods will be positively misleading %J System. Zool. %V 27 %P 401-410 %A J. Felsenstein %D 1978 %T The number of evolutionary trees %J System. Zool. %V 27 %P 27-33 %A J. Felsenstein %D 1979 %T Alternative methods of phylogenetic inference and their interrelationship %J System. Zool. %V 28 %P 49-62 %A J. Felsenstein %D 1981 %T Evolutionary trees from DNA sequences \(em a maximum likelihood approach %J J. Mol. Evol. %V 17 %P 368-376 %A J. Felsenstein %D 1981 %T Evolutionary trees from gene frequencies and quantitative characters \(em finding maximum likelihood estimates %J Evolution %V 35 %P 1229-1242 %A J. Felsenstein %D 1981 %T A likelihood approach to character weighting and what it tells us about parsimony and compatibility %J Biol. J. Linn. Soc. %V 16 %P 183-196 %A J. Felsenstein %D 1982 %T Numerical methods for inferring evolutionary trees %J Quart. Rev. Biol. %V 57 %P 379-404 %A J. Felsenstein %D 1983 %T Parsimony in systematics: biological and statistical issues %J Annu. Rev. Ecol. System. %V 14 %P 313-333 %A J. Felsenstein %D 1983 %T Statistical inference of phylogenies %J J. Roy. Stat. Soc. %V A 146 %P 246-272 %A J. Felsenstein %D 1984 %T Distance methods for inferring phylogenies: a justification %J Evolution %V 38 %P 16-24 %A J. Felsenstein %D 1984 %T The statistical approach to inferring evolutionary trees and what it tells us about parsimony and compatibility %P 169-191 %B Cladistics: perspectives in the reconstruction of evolutionary history %E T. Duncan and T.F. Stuessy %I Columbia University Press %C New York %A J. Felsenstein %D 1985 %T Confidence limits on phylogenies: an approach using the bootstrap %J Evolution %V 39 %P 783-791 %A J. Felsenstein %D 1985 %T Confidence limits on phylogenies with a molecular clock %J System. Zool. %V 34 %P 152-161 %A J. Felsenstein %D 1985 %T Phylogenies from gene frequencies: a statistical problem %J System. Zool. %V 34 %P 300-311 %A J. Felsenstein %D 1986 %T Distance methods: a reply to Farris %J Cladistics %V 2 %P 130-144 %A J. Felsenstein %D 1988 %T Phylogenies and quantitative characters %J Annu. Rev. Ecol. System. %V 19 %P 445-471 %A J. Felsenstein %D 1988 %T Phylogenies from molecular sequences: inference and reliability %J Annu. Rev. Genetics %V 22 %P 521-565 %A J. Felsenstein %D 1989 %T \s-2PHYLIP\s0 3.2 manual %O University of California Herbarium, Berkeley, California %A J. Felsenstein %A E. Sober %D 1986 %T Parsimony and likelihood: an exchange %J System. Zool. %V 35 %P 617-626 %A K.M. Felsenstein %A S.P. Goff %J J. Virol. %V 62 %D 1988 %P 2179-2182 %T Expression of the \f2gag-pol\f1 fusion protein of Moloney murine leukemia virus without \f2gag\f1 protein does not induce virion formation or proteolytic processing %A D.-F. Feng %A R.F. Doolittle %T Progressive sequence alignment as a prerequisite to correct phylogenetic trees %J J. Mol. Evol. %D 1987 %V 25 %P 351-360 %A D.-F. Feng %A M.S. Johnson %A R.F. Doolittle %T Aligning amino acid sequences: comparison of commonly used methods %J J. Mol. Evol. %V 21 %P 112-125 %D 1985 %A S. Feng %A E.C. Holland %T HIV-1 \f2tat trans\f1-activator requires the loop sequence within \f2tar\f1 %J Nature %V 334 %D 1988 %P 165-167 %A R.E. Fenna %A B.W. Matthews %T Chlorophyll arrangement in a bacteriochlorophyll protein from \f2Chlorobium limicola\f1 %J Nature %V 258 %P 573-577 %D 1975 %K 3BCL %A R.E. Fenna %A B.W. Matthews %T Structure of a bacteriochlorophyll \(*a-protein from \f2Prosthecochloris aestuarii\f1 %J Brookhaven Symp. Biol. %V 28 %P 170-? %D 1977 %K 3BCL %A R.E. Fenna %A L.F. Ten\0Eyck %A B.W. Matthews %T Atomic coordinates for the chlorophyll core of a bacteriochlorophyll \(*a-protein from green photosynthetic bacteria %J Biochem. Biophys. Res. Comm. %V 75 %P 751-? %D 1977 %K 3BCL %A D.M. Ferguson %A R.J. Radmer %A P.A. Kollman %T Determination of the relative binding free energies of peptide inhibitors to the HIV-1 protease %J J. Med. Chem. %V 34 %P 2654-2659 %D 1991 %A G. Fermi %T Three-dimensional Fourier synthesis of human deoxyhaemoglobin at 2.5\(Ao resolution: refinement of the atomic model %J J. Mol. Biol. %V 97 %P 237-? %D 1975 %K 3HHB %A G. Fermi %A M.F. Perutz %A L.C. Dickinson %A J.C.W. Chien %T Structure of human deoxy cobalt haemoglobin %J J. Mol. Biol. %V 155 %P 495-? %D 1982 %K 0DCH %A G. Fermi %A M.F. Perutz %A B. Shaanan %A R. Fourme %T The crystal structure of human deoxyhaemoglobin at 1.74\(Ao resolution %J J. Mol. Biol. %V 175 %P 159-174 %D 1984 %K PDB2HHB PDB3HHB PDB4HHB %A D.R. Ferro %A J. Hermans %T A different best rigid-body molecular fit routine %J Acta Cryst. %P 345-347 %V A33 %D 1977 %A A.R. Ferr\(e'-D'Amar\(e' %A G.C. Prendergast %A E.B. Ziff %A S.K. Burley %T Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain %J Nature %V 363 %P 38-45 %D 1993 %K Ferre-D'Amare %A A. Fersht %T Enzyme structure and mechanism %D 1984 %I W.H. Freeman and Company %C New York %O 2nd ed. %A A.R. Fersht %J Trends Biochem. Sci. %V 9 %P 145-147 %T Basis of biological specificity %D 1984 %K TIBS %A A.R. Fersht %T Protein engineering %J Prot. Eng. %V 1 %P 7-16 %D 1986 %A A.R. Fersht %T Dissection of the structure and activity of the tyrosyl-tRNA synthetase by site-directed mutagenesis %J Biochemistry %V 26 %P 8031-8037 %D 1987 %A A.R. Fersht %T The hydrogen bond in molecular recognition %J Trends Biochem. Sci. %V 12 %D 1987 %P 301-304 %K TIBS %A A.R. Fersht %A R.J. Leatherbarrow %A T.N.C. Wells %J Trends Biochem. Sci. %P 321-325 %T Binding energy and catalysis: a lesson from protein engineering of the tyrosyl-tRNA synthetase %V 11 %D 1986 %K TIBS %A A.R. Fersht %A R.J. Leatherbarrow %A T.N.C. Wells %T Quantitative analysis of structure-activity relationships in engineered proteins by linear free-energy relationships %J Nature %V 322 %P 284-286 %D 1986 %A A.R. Fersht %A R.J. Leatherbarrow %A T.N.C. Wells %T Structure and activity of the tyrosyl-tRNA synthetase: the hydrogen bond in catalysis and specificity %J Phil. Trans. Roy. Soc. Lond. %P 305-320 %V A317 %D 1986 %A A.R. Fersht %A J.-P. Shi %A J. Knill-Jones %A D.M. Lowe %A A.J. Wilkinson %A D.M. Blow %A P. Brick %A P. Carter %A M.M.Y. Waye %A G. Winter %T Hydrogen bonding and biological specificity analysed by protein engineering %J Nature %V 314 %P 235-238 %D 1985 %A A.R. Fersht %A T.N.C. Wells %T Linear free energy relationships in enzyme binding interactions studied by protein engineering %J Prot. Eng. %V 4 %P 229-231 %D 1991 %A A. Fersht %A G. Winter %T Protein Engineering %J Trends Biochem. Sci. %V 17 %P 292-294 %D 1992 %A S.W. Fesik %T NMR structure-based drug design %J J. Biomol. NMR %V 3 %P 261-269 %D 1993 %A S.W. Fesik %A R.T. Gampe,\0Jr. %A T.F. Holzman %A D.A. Egan %A R. Edalji %A J.R. July %A R. Simmer %A R. Helfrich %A V. Kishore %A D.H. Rich %T Isotope-edited NMR of cyclosporin A bound to cyclophilin: Evidence for a \fItrans\fP 9,10 amide bond %J Science %V 250 %P 1406-1409 %D 1990 %A J.W. Fett %A H.F. Deutsch %T Primary structure of the McG \(*l chain %J Biochemistry %V 13 %P 4102-? %D 1974 %K 1MCG 2MCG 3MCG %A B.A. Fields %A F.A. Goldbaum %A X. Ysern %A R.J. Poljak %A R.A. Mariuzza %T Molecular basis of antigen mimricry by an anti-idiotype %J Nature %V 374 %P 739-742 %D 1995 %A B.A. Fields %A J.M. Guss %A H.C. Freeman %T Three-dimensional model for stellacyanin, a ``blue'' copper protein %J J. Mol. Biol. %V 222 %P 1053-1065 %D 1991 %A D.J. Filman %A J.T. Bolin %A D.A. Matthews %A J. Kraut %T Crystal structure of \f2Escherichia coli\fP and \f2Lactobacillus casei\fP dihydrofolate reductase refined at 1.7\(Ao resolution. II. Environment of bound NADPH and implication for catalysis %J J. Biol. Chem. %V 257 %D 1982 %P 13663-13672 %K 4DFR 5DFR 6DFR 7DFR %A D.J. Filman %A R. Syed %A M. Chow %A A.J. Macadam %A P.D. Minor %A J.M. Hogle %T Structural factors that control conformational transitions and serotype specificity in type 3 poliovirus %J EMBO J. %V 8 %P 1567-1579 %D 1989 %K PDB2PLV %A J.T. Finch %A P.F.C. Gilbert %A A. Klug %A R. Leberman %T X-ray analysis of the disk of tobacco mosaic virus protein: II. The packing arrangement in the crystal %J J. Mol. Biol. %V 86 %P 183-? %D 1974 %K 0TMV %A J.T. Finch %A A. Klug %T Three-dimensional reconstruction of the stacked-disk aggregate of tobacco mosaic virus protein from electron micrographs %J Phil. Trans. Roy. Soc. Lond. %V 261 %P 211-? %D 1971 %K 0TMV %A J.T. Finch %A R. Leberman %A Y.-S. Chang %A A. Klug %T Rotational symmetry of the two turn disk aggregate of tobacco mosaic virus protein %J Nature %V 212 %P 349-? %D 1966 %K 0TMV %A J.B.C. Findlay %A D. Donnelly %T The superfamily: Molecular modelling %B Handbook in Experimental Pharmacology: GTPases in biology II %V 108 %P 17-31 %D 1993 %I Psringer-Verlag %C Heidelberg %A J. Findlay %A E. Eliopoulos %T Three-dimensional modelling of G protein-linked receptors %J Trends Pharmacol. Sci. %V 11 %P 492-499 %D 1990 %A R.M. Fine %A H. Wang %A P.S. Shenkin %A D.L. Yarmush %A C. Levinthal %T Predicting antibody hypervariable loop conformations. II: minimization and molecular dynamics studies of McP603 from many randomly generated loop conformations %J Proteins %V 1 %P 342-362 %D 1986 %A T. Fink %T Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein %J Chemtracts %V 1 %P 507-510 %D 1990 %A W.L. Fink %D 1986 %T Microcomputers and phylogenetic analysis %J Science %V 234 %P 1135-1139 %A A.V. Finkelstein %A B.A. Reva %T A search for the most stable folds of protein chains %J Nature %V 351 %P 497-499 %D 1991 %A A. Finkelstein %A J. Janin %J Prot. Eng. %V 3 %P 1-3 %T The price of lost freedom: entropy of bimolecular complex formation %D 1989 %A J. Finney %T Volume occupation, environment and accessibility in proteins: the problem of the protein surface %J J. Mol. Biol. %P 721-732 %D 1975 %V 96 %A J.L. Finney %A J. Goodfellow %B Structure and dynamics: Nucleic acids and proteins %E E. Clementi and R.H. Sarma %I Adenine Press %C New York %D 1983 %P 81-? %A B.C. Finzel %T Software for macromolecular crystallography: A user's overview %J Curr. Opin. Struct. Biol. %V 3 %P 741-747 %D 1993 %A B.C. Finzel %A L.L. Clancy %A D.R. Holland %A S.W. Muchmore %A K.D. Watenpaugh %A H.M. Einspahr %T The crystal structure of recombinant human interleukin-1\(*b at 2.0\(Ao resolution %J J. Mol. Biol. %V 209 %P 779-? %D 1989 %K PDB1I1B %A B.C. Finzel %A D.H. Ohlendorf %A P.C. Weber %A F.R. Salemme %T An independent crystallographic refinement of porcine phospholipase A2 at 2.4\(Ao resolution %J Acta Cryst. %V B 47 %P 588-? %D 1991 %K PDB4P2P %A B.C. Finzel %A T.L. Poulos %A J. Kraut %T Crystal structure of yeast cytochrome \f2c\f1 peroxidase refined at 1.7\(Ao resolution %J J. Biol. Chem. %V 259 %P 13027-? %D 1984 %K 0CCI PDB2CYP 1CCP 2CCP 3CCP 4CCP %A B.C. Finzel %A F.R. Salemme %T Lattice mobility and anomalous temperature factor behavior in cytochrome \f2c\f1\(fm %J Nature %V 315 %P 686-688 %D 1985 %K 2CCY %A B.C. Finzel %A P.C. Weber %A K.D. Hardman %A F.R. Salemme %T Structure of ferricytochrome \f2c\f1\(fm from \f2Rhodospirillum molischianum\f1 at 1.67\(Ao resolution %J J. Mol. Biol. %V 186 %P 627-643 %D 1985 %K PDB2CCY %A J.R. Firca %A K.R. Ely %A P. Kremser %A F.A. Westholm %A K.J. Dorrington %A A.B. Edmundson %T Interconversion of conformational isomers of light chains in the Mcg immunoglobulins %J Biochemistry %V 17 %P 148-? %D 1978 %K 1MCG 2MCG 3MCG %A F. Fischel-Ghodisian %A G. Mathiowitz %A T.F. Smith %T Alignment of protein sequences using secondary structure: a modified dynamic programming method %J Prot. Eng. %V 3 %D 1990 %P 577-581 %A G. Fischer %A H. Bang %A E. Berger %A A. Schellenberger %J Biochim. Biophys. Acta %P 87-97 %T Conformational specificity of chymotrypsin toward proline-containing substrates %V 791 %D 1984 %A T.O. Fischmann %A G.A. Bentley %A T.N. Bhat %A G. Boulot %A R.A. Mariuzza %A S.E.V. Phillips %A D. Tello %A R.J. Poljak %T Crystallographic refinement of the three-dimensional structure of the FAB-D1.3-lysozyme complex at 2.5\(Ao resolution %J J. Biol. Chem. %V 266 %P 12915-? %D 1991 %K PDB1FDL %A A.J. Fisher %A J.E. Johnson %T Ordered duplex RNA controls capsid architecture in an icosahredral animal virus %J Nature %V 361 %P 176-179 %D 1993 %A C.L. Fisher %A J.S. Greengard %A J.H. Griffin %T Models for the serine proteinase domain of the human antithrombotic plasma factor activated protein C and its zymogen %J Prot. Sci. %V 3 %P 588-599 %D 1994 %A I. Fita %A M.G. Rossmann %T The active center of catalase %J J. Mol. Biol. %V 185 %P 21-37 %D 1985 %A I. Fita %A M.G. Rossmann %T The NADPH binding site on beef liver catalase %J Proc. Natl. Acad. Sci. USA %V 82 %P 1604-1608 %D 1985 %K PNAS PDB7CAT PDB8CAT %A I. Fita %A A.M. Silva %A M.R.N. Murthy %A M.G. Rossmann %T The refined structure of beef liver catalase at 2.5\(Ao resolution %J Acta Cryst. %V B 42 %P 497-? %D 1986 %A W.M. Fitch %J J. Mol. Biol. %P 9-16 %T An improved method of testing for evolutionary homology %V 16 %D 1966 %A W.M. Fitch %J J. Mol. Biol. %P 1-8 %T The relation between frequencies of amino acids and ordered trinucleotides %V 16 %D 1966 %A W.M. Fitch %T Further improvements in the method of testing for evolutionary homology among proteins %J J. Mol. Biol. %V 49 %D 1970 %P 1-14 %K sequences alignment comparison probability %A W.M. Fitch %T A method for estimating the probability that a specific frameshift mutation was selected in the course of evolution %J J. Mol. Biol. %V 49 %D 1970 %P 15-21 %K mutation sequence comparison probability %A W.M. Fitch %D 1971 %T Toward defining the course of evolution: minimum change for a specified tree topology %J System. Zool. %V 20 %P 406-416 %A W.M. Fitch %A E. Margoliash %T Construction of phylogenetic trees %J Science %V 155 %D 1967 %P 279-284 %A W.M. Fitch %A T.F. Smith %T Optimal sequence alignments %J Proc. Natl. Acad. Sci. USA %V 80 %D 1983 %P 1382-1386 %K hemoglobin homology-analogy distance gaps dynamic programming PNAS %A P.M.D Fitzgerald %T HIV protease-ligand complexes %J Curr. Opin. Struct. Biol. %V 3 %P 868-874 %D 1993 %A P.M.D. Fitzgerald %A B.M. McKeever %A J.F. Van\0Middlesworth %A J.P. Springer %A J.C. Heimbach %A C.-T. Leu %A W.K. Herber %A R.A.F. Dixon %A P.L. Darke %T Crystallographic analysis of a complex between human immunodeficiency virus type 1 protease and acetyl-pepstatin at 2.0\(Ao resolution %J J. Biol. Chem. %V 265 %P 14209-? %D 1990 %K PDB5HVP %A K.M. Flaherty %A C. DeLuca-Flaherty %A D.B. McKay %T Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein %J Nature %V 346 %D 1990 %P 623-628 %K 1HSC %A K.M. Flaherty %A D.B. McKay %A W. Kabsch %A K.C. Holmes %T Similarity of the three-dimensional structures of actin and the ATPase fragment of a 70kDa heat shock cognate protein %J Proc. Natl. Acad. Sci. USA %V 88 %P 5041-5045 %D 1991 %K PNAS %A J.E. Fletcher %A A.A. Spector %A J.D. Ashbrook %J Biochemistry %V 9 %P 4580-4587 %T Analysis of macromolecule-ligand binding by determination of stepwise equilibrium constants %D 1970 %A R.J. Fletterick %A S. Sprang %A N.B. Madsen %T Analysis of the surface topography of glycogen phosphorylase A: implications for metabolic interconversion and regulatory mechanisms %J Can. J. Biochem. %V 57 %P 789-? %D 1979 %K 0PPA %A R.J. Fletterick %A J. Sygusch %A N. Murray %A N.B. Madsen %A L.N. Johnson %T Low-resolution structure of the glycogen phosphorylase A monomer and comparison with phosphorylase B %J J. Mol. Biol. %V 103 %P 1-? %D 1976 %K 0PPA %A R.J. Fletterick %A J. Sygusch %A H. Semple %A N.B. Madsen %T Structure of glycogen phosphorylase A at 3.0\(Ao resolution and its ligand binding sites at 6.0\(Ao %J J. Biol. Chem. %V 251 %P 6142-? %D 1976 %K 0PPA %A R.J. Fletterick %A H.W. Wyckoff %T Preliminary refinement of protein coordinates in real space %J Acta Cryst. %V A 31 %P 698-? %D 1975 %K PDB1RNS %A M.M. Flocco %A S.L. Mowbray %T Strange bedfellows: Interactions between acidic side-chains in proteins %J J. Mol. Biol. %V 254 %P 96-105 %D 1995 %A H. Flockner %A M. Braxenthaler %A P. Lackner %A M. Jaritz %A M. Ortner %A M.J. Sippl %T Progress in fold recognition %J Proteins %V 23 %P 376-386 %D 1995 %A R. Floegal %A P. Zielenkiewicz %A W. Saenger %T Tertiary structure of RNase Pch1 predicted from the model structure of RNase Ms and the crystal structure of RNase T1 %J Eur. Biophys. J. %V 18 %P 225-233 %D 1990 %A T.P. Flores %A C.A. Orengo %A D.S. Moss %A J.M. Thornton %T Comparison of conformational characteristics in structurally similar protein pairs %J Prot. Sci. %V 2 %P 1811-1826 %D 1993 %A D.R. Flower %A A.C.T. North %A T.K. Attwood %T Mouse oncogene protein 24p3 is a member of the lipocalin protein family %J Biochem. Biophys. Res. Comm. %V 180 %P 69-74 %D 1991 %A R.H. Fogh %A W.R. Kem %A R.S. Norton %T Solution structure of neurotoxin I from the sea anemone \f2Stichodactyla helianthus\f1. A nuclear magnetic resonance, distance geometry and restrained molecular dynamics study %J J. Biol. Chem. %V 265 %P 13016-? %D 1990 %K PDB2SH1 PDB1SH1 %A R.H. Fogh %A B.C. Mabbutt %A W.R. Kem %A R.S. Norton %T Sequence-specific \u\s-41\s0\dH NMR assignments and secondary structure in the sea anemone polypeptide \f2Stichodactyla helianthus\f1 neurotoxin I %J Biochemistry %V 28 %P 1826-? %D 1989 %K 1SH1 2SH1 %A P.J.M. Folkers %A G.M. Clore %A P.C. Driscoll %A J. Dodt %A S. Koehler %A A.M. Gronenborn %T Solution structure of recombinant hirudin and the Lys-47 \(-> Glu mutant: a nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing study %J Biochemistry %V 28 %P 2601-2617 %D 1989 %K PDB2HIR PDB4HIR PDB5HIR PDB6HIR %A B. Foltmann %T Aspartic proteinases: alignment of amino acid sequences %J 18th Lindstrong-Lang Conference Proceedings, Elsinore, Denmark %D 1987 %P 7-20 %A B. Foltmann %A V.B. Pedersen %A D. Kauffman %A G. Wybrandt %T The primary structure of calf chymosin %J J. Biol. Chem. %V 254 %D 1979 %P 8447-8456 %A J.C. Fontecilla-Camps %A R.J. Almassy %A S.E. Ealick %A F.L. Suddath %A D.D. Watt %A R.J. Feldmann %A C.E. Bugg %T Architecture of scorpion neurotoxins: a class of membrane-binding proteins %J Trends Biochem. Sci. %V 6 %P 291-? %D 1981 %K 1SN3 TIBS %A J.C. Fontecilla-Camps %A R.J. Almassy %A F.L. Suddath %A D.D. Watt %A C.E. Bugg %T Three-dimensional structure of a protein from scorpion venom: a new structural class of neurotoxins %J Proc. Natl. Acad. Sci. USA %V 77 %P 6496-6500 %D 1980 %K 1SN3 PNAS %A J. Foote %A G. Winter %T Antibody framework residues affecting the conformation of the hypervariable loops %J J. Mol. Biol. %V 224 %P 487-499 %D 1992 %A G.C. Ford %A G. Eichele %A J.N. Jansonius %T Three-dimensional structure of a pyridoxal-phosphate-dependent enzyme, mitochondrial aspartate aminotransferase %J Proc. Natl. Acad. Sci. USA %V 77 %P 2559-? %D 1980 %K 0MAA %A L.O. Ford %A L.N. Johnson %A P.A. Machin %A D.C. Phillips %A R. Tjian %T Crystal structure of a lysozyme-tetrasaccharide lactone complex %J J. Mol. Biol. %V 88 %P 349-371 %D 1974 %A J.D. Forman-Kay %A G.M. Clore %A P.C. Driscoll %A P. Wingfield %A F.M. Richards %A A.M. Gronenborn %T A proton nuclear magnetic resonance assignment and secondary structure determination of recombinant human thioredoxin %J Biochemistry %V 28 %P 7088-? %D 1989 %K 3TRX 4TRX %A J.D. Forman-Kay %A G.M. Clore %A P.T. Wingfield %A A.M. Gronenborn %T High-resolution three-dimensional structure of reduced recombinant human thioredoxin in solution %J Biochemistry %V 30 %P 2685-? %D 1991 %K PDB4TRX PDB3TRX %A J.D. Forman-Kay %A A.M. Gronenborn %A L.E. Kay %A P.T. Wingfield %A G.M. Clore %T Studies on the solution conformation of human thioredoxin using heteronuclear \u\s-415\s0\dN-\u\s-41\s0\dH nuclear magnetic resonance spectroscopy %J Biochemistry %V 29 %P 1566-? %D 1990 %K 4TRX 3TRX %A S.I. Foundling %A J. Cooper %A F.E. Watson %A L.H. Pearl %A A. Hemmings %A S.P. Wood %A T.L. Blundell %A A. Hallet %A D.M. Jones %A J. Sveiras %A B. Atrash %A M. Szelke %T Crystallographic studies of reduced bond inhibitors complexed with an aspartic proteinase %J J. Cardiovasc. Pharmacol. %V 10 %D 1987 %P S59-S68 %A S. Foundling %A J. Cooper %A F. Watson %A A. Cleasby %A L.H. Pearl %A B.L. Sibanda %A A. Hemmings %A S. Wood %A T.L. Blundell %A M. Valler %A C. Norey %A J. Kay %A J. Boger %A B. Dunn %A B. Leckie %A D. Jones %A B. Atrash %A A. Hellet %A M. Szelke %T High resolution X-ray analyses of renin inhibitor-aspartic proteinase complexes %J Nature %V 327 %D 1987 %P 349-352 %A R.O. Fox %A F.M. Richards %T A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5\(Ao resolution %J Nature %V 300 %P 325-330 %D 1982 %K PDB1AMT %A C. Franchini %A C. Gurgo %A H.-G. Guo %A R.C. Gallo %A E. Collalti %A K.A. Fargnoli %A L.F. Hall %A F. Wong-Staal %A M.S. Reitz %T Sequence of simian immunodeficiency virus and its relationship to the human immunodeficiency viruses %J Nature %V 328 %D 1987 %P 539-542 %A A. Frank %A H. Guilley %A G. Jonard %A K. Richards %A L. Hirth %T Nucleotide sequence of cauliflower mosaic virus DNA %J Cell %V 21 %D 1980 %P 285-294 %A M.E. Fraser %A N.C.J. Strynadka %A P.A. Bartlett %A J.E. Hanson %A M.N.G. James %T Crystallographic analysis of transition-state mimics bound to penicillopepsin: phosphorus-containing peptide analogues %J Biochemistry %V 31 %P 5201-5214 %D 1992 %A H. Frauenfelder %A G.A. Petsko %J Biophys. J. %P 465-483 %T Structural dynamics of liganded myoglobin %V 32 %D 1980 %A H. Frauenfelder %A G.A. Petsko %A D. Tsernoglou %T Temperature-dependent X-ray diffraction as a probe of protein structural dynamics %J Nature %V 280 %P 558-563 %D 1979 %K 0MBM %A H. Frauenfelder %A S.G. Sligar %A P.G. Woylnes %T The energy landscapes and motions of proteins %J Science %V 254 %P 1598-1603 %D 1991 %A H.C. Freeman %A T.P.J. Garrett %A J.M. Guss %A M. Murata %A F. Yoshizaki %A Y. Sugimura %A M. Shimokoriyama %T Preliminary crystallographic data for plastocyanins from an alga (\f2Enteromorpha prolifera\f1) and from cucumber (\f2Cucumis sativus\f1) %J J. Mol. Biol. %V 164 %P 351-? %D 1983 %K 7PCY %A D.H. Freemont %A M. Matsumura %A E.A. Stura %A P.A. Peterson %A I.A. Wilson %T Crystal structure of two viral peptides in complex with murine MHC class I H-2K\u\s-2b\s0\d %J Science %V 257 %P 919-926 %D 1992 %A S.T. Freer %A R.A. Alden %A C.W. Carter,\0Jr. %A J. Kraut %T Crystallographic structure refinement of chromatium high potential iron protein at 2\(Ao resolution %J J. Biol. Chem. %V 250 %P 46-? %D 1975 %K 1HIP %A S.T. Freer %A J. Kraut %A J.D. Robertus %A H.T. Wright %A N.H. Xuong %T Chymotrypsinogen: 2.5\(Ao crystal structure, comparison with \(*a-chymotrypsin, and implications for zymogen activation %J Biochemistry %V 9 %P 1997-2009 %D 1970 %K PDB1CHG %A D.H. Fremont %A D.H. Anderson %A I.A. Wilson %A E.A. Dennis %A N.-H. Xuong %T Crystal structure of phospholipase A\d\s-42\s0\u from Indian cobra reveals a trimeric association %J Proc. Natl. Acad. Sci. USA %V 90 %P 342-346 %D 1993 %A M. Frentup %A L.D. Weber %A A. Tulinsky %T The folding and structure of 2-keto-3-deoxy-6-phosphogluconic aldolase (KDPG aldolase) from \f2Pseudomonas putida\f1, interpreted in light of the amino acid sequence %J Amer. Cryst. Assoc. %V 6 %P 29-? %D 1978 %K 1KGA %A M. Frey %A L. Sieker %A F. Payan %A R. Haser %A M. Bruschi %A G. Pepe %A J. Le\0Gall %T Rubredoxin from \f2Desulfovibrio gigas\f1: a molecular model of the oxidized form at 1.4\(Ao resolution %J J. Mol. Biol. %V 197 %P 525-? %D 1987 %K PDB1RDG %A P.A. Frey %A S.A. Whitt %A J.B. Tobin %T A low-barrier hydrogen bond in the catalytic triad of serine proteinases %J Science %V 264 %P 1927-1930 %D 1994 %A D.M. Freymann %A P. Metcalf %A M. Turner %A D.C. Wiley %T 6\(Ao-resolution X-ray structure of a variable surface glycoprotein from \f2Trypanosoma brucei\f1 %J Nature %V 311 %P 167-? %D 1984 %K 1VSG %A D. Freymann %A J. Down %A M. Carrington %A I. Roditi %A M. Turner %A D.C. Wiley %T 2.9\(Ao resolution structure of the n-terminal domain of a variant surface glycoprotein from trypanosoma brucei %J J. Mol. Biol. %V 216 %P 141-? %D 1990 %K PDB1VSG %A F.K. Friedman %A S. Beychok %T Probes of subunit assembly and reconstitution pathways in multisubunit proteins %J Annu. Rev. Biochem. %P 217-250 %V 48 %D 1979 %A J.A. Frier %A M.F. Perutz %T Structure of human foetal deoxyhaemoglobin %J J. Mol. Biol. %V 112 %P 97-? %D 1977 %K PDB1FDH %A D. Frishman %A P. Argos %T Recognition of distantly related protein sequences using conserved motifs and neural networks %J J. Mol. Biol. %V 228 %P 951-962 %D 1992 %A J.S. Fruton %J Adv. Enzymol. %P 1-36 %T The mechanism of the catalytic action of pepsin and related acid proteinases %V 46 %D 1976 %A J.S. Fruton %J Mol. Cell. Biol. %P 105-114 %T Fluorescence studies on the active sites of proteinases %V 32 %D 1980 %A D.C. Fry %A S.A. Kuby %A A.S. Mildvan %T ATP-binding site of adenylate kinase: mechanistic implications of its homology with \f2ras\f1-encoded \f2p\f121 F\d\s-21\s0\u-ATPase, and other nucleotide binding proteins %J Proc. Natl. Acad. Sci. USA %V 83 %D 1986 %P 907-911 %K sequence comparison alignment nucleotide binding conservation PNAS %A C. Fr\(o:mmel %J J. Theor. Biol. %P 171-177 %T Use of the averaged mutation rate in pieces of protein sequences to predict the location of antigenic determinants %V 132 %D 1988 %K Frommel %A C. Fr\(o:mmel %A W.E. Hoehne %T Influence of calcium binding on the thermal stability of thermitase, a serine protease from \f2Thermoactinomyces vulgaris\f1 %J Biochim. Biophys. Acta %V 670 %P 25-? %D 1981 %K 0TMT Frommel %A C. Fr\(o:mmel %A C. Sander %T Thermitase a thermostable subtilisin: comparison of predicted and experimental structures and the molecular cause of thermostability %J Proteins %V 5 %D 1989 %P 22-37 %K Frommel %A G. Fuh %A B.C. Cunningham %A R. Fukunaga %A S. Nagata %A D.V. Goeddel %A J.A. Wells %T Rational design of potent antagonists to the human growth hormone recpetor %J Science %V 256 %P 1677-1680 %D 1992 %A M. Fujinaga %A L.T.J. Delbaere %A G.D. Brayer %A M.N.G. James %T Refined structure of \(*a-lytic protease at 1.7\(Ao resolution: analysis of hydrogen bonding and solvent structure %J J. Mol. Biol. %V 183 %P 479-502 %D 1985 %K PDB2ALP 3SGA 4SGA 5SGA %A M. Fujinaga %A P. Gros %A W.F. van\0Gunsteren %T Testing the method of crystallographic refinement using molecular dynamics %J J. Appl. Cryst. %V 22 %P 1-8 %D 1989 %A M. Fujinaga %A M.N.G. James %T Rat submaxillary gland serine protease, tonin: structure solution and refinement at 1.8\(Ao resolution %J J. Mol. Biol. %V 195 %D 1987 %P 373-396 %K PDB1TON %A M. Fujinaga %A R.J. Read %A A. Sielecki %A W. Ardelt %A M. Laskowski,\0Jr. %A M.N.G. James %T Refined crystal structure of the molecular complex of \f2Streptomyces griseus\f1 protease B, a serine protease, with the third domain of the ovomucoid inhibitor from turkey %J Proc. Natl. Acad. Sci. USA %V 79 %D 1982 %P 4868-4872 %K structure serine proteinase inhibitor complex Kazal PNAS %A M. Fujinaga %A A.R. Sielecki %A R.J. Read %A W. Ardelt %A M. Laskowski,\0Jr. %A M.N.G. James %T Crystal and molecular structures of the complex of \(*a-chymotrypsin with its inhibitor turkey ovomucoid third domain at 1.8\(Ao resolution %J J. Mol. Biol. %V 195 %D 1987 %P 397-418 %K PDB1CHO %A A. Fukamizu %A K. Nishi %A T. Cho %A M. Saitoh %A K. Nakamaya %A H. Ohkubo %A S. Nakanishi %A K. Murakami %T Structure of the rat renin gene %J J. Mol. Biol. %V 201 %D 1988 %P 443-450 %A M. Fukasawa %A T. Miura %A A. Hasegawa %A S. Morikawa %A H. Tsujimoto %A K. Miki %A T. Kitamura %A M. Hayami %T Sequence of simian immunodeficiency virus from African green monkey a new member of the HIV/SIV group %J Nature %V 333 %D 1988 %P 457-461 %A K. Fukuyama %A T. Hase %A S. Matsumoto %A T. Tsukihara %A Y. Katsube %A N. Tanaka %A M. Kakudo %A K. Wada %A H. Matsubara %T Structure of \f2S. platensis\f1 (2Fe-2S) ferredoxin and evolution of chloroplast-type ferredoxins %J Nature %V 286 %P 522-524 %D 1980 %K 3FXC %A K. Fukuyama %A H. Matsubara %A Y. Katsube %A L.J. Rogers %T Crystallization and preliminary X-ray diffraction studies of oxidized flavodoxin from \f2Chondrus crispus\f1, a red alga %J J. Biochem. (Tokyo) %V 105 %P 348-? %D 1989 %K 2FCR %A K. Fukuyama %A H. Matsubara %A L.J. Rogers %T Crystal structure of oxidized flavodoxin from a red alga \f2Chondrus crispus\f1 refined at 1.8\(Ao resolution %J J. Mol. Biol. %V 225 %P 775-789 %D 1992 %A K. Fukuyama %A H. Matsubara %A T. Tsukihara %A Y. Katsube %T Structure of [4Fe-4S] ferredoxin from \f2Bacillus thermoproteolyticus\f1 refined at 2.3\(Ao resolution: structural comparison of bacterial ferredoxins %J J. Mol. Biol. %V 210 %D 1989 %P 383-398 %K 2FXB %A K. Fukuyama %A Y. Nagahara %A T. Tsukihara %A Y. Katsube %A T. Hase %A H. Matsubara %T Tertiary structure of \f2Bacillus thermoproteolyticus\f1 [4Fe-4S] Ferredoxin: evolutionary implications for bacterial ferredoxins %J J. Mol. Biol. %V 199 %D 1988 %P 183-193 %K PDB1FXB PDB2FXB %A K. Fukuyama %A S. Wakabayashi %A H. Matsubara %A L.J. Rogers %T Tertiary structure of oxidized flavodoxin from an eukaryotic red alga \f2Chondrus crispus\f1 at 2.35\(Ao resolution: Localization of charged residues and implication for interaction with electron transfer partners %J J. Biol. Chem. %V 265 %P 15804-? %D 1990 %K 2FCR %A C.S. Fullmer %A R.H. Wasserman %T The amino acid sequence of bovine intestinal calcium-binding protein %J J. Biol. Chem. %V 256 %P 5669-? %D 1981 %K 3ICB %A W. Furey,\0Jr. %A B.C. Wang %A C.S. Yoo %A M. Sax %T Phase extension and refinement of Bence-Jones protein RHE (1.9\(Ao) %J Acta Cryst. %V A 35 %P 810-? %D 1979 %K 2RHE %A W. Furey,\0Jr. %A B.C. Wang %A C.S. Yoo %A M. Sax %T Structure of a novel Bence-Jones protein (RHE) fragment at 1.6\(Ao resolution %J J. Mol. Biol. %V 167 %P 661-692 %D 1983 %K 2RHE %A B. Furie %A D.H. Bing %A R.J. Feldmann %A D.J. Robison %A J.P. Burnier %A B.C. Furie %T Computer generated models of blood coagulation factor Xa, factor IXa and thrombin based upon structural homology with other serine proteases %J J. Biol. Chem. %V 257 %D 1982 %P 3875-3882 %A C. Gaboriaud %A V. Bissery %A T. Benchetrit %A J.P. Mornon %J FEBS Lett. %T Hydrophobic cluster analysis, an efficient new way to compare and analyse amino acid sequences %D 1988 %A D.J. Galas %A M. Eggert %A M.S. Waterman %T Rigorous pattern-recognition methods for DNA sequences: analysis of promoter sequences from \f2Escherichia coli\f1 %J J. Mol. Biol. %V 186 %D 1985 %P 117-128 %K sequence alignment promoter pattern recognition %A S. Gallion %A D. Ringe %T Molecular modelling studies of the complex between cyclophilin and cyclosporin A %J Prot. Eng. %V 5 %P 391-397 %D 1992 %A R.C. Gallo %T The AIDS virus %J Sci. Amer. %V 256 %N 1 %D 1987 %P 38-48 %A R. Gallo %A F. Wong-Staal %A L. Montagnier %A W.A. Haseltine %A M. Yoshida %T HIV/HTLV gene nomenclature %J Nature %V 333 %P 504 %D 1988 %A M.A. Gallop %A R.W. Barrett %A W.J. Dower %A S.P.A. Fodor %A E.M. Gordon %T Applications of combinatorial technologies to drug discovery: 1. Background and peptide combinatorial libraries %J J. Med. Chem. %V 37 %P 1233-1251 %D 1994 %A S.J. Gamblin %A B. Cooper %A J.R. Millar %A G.J. Davies %A J.A. Littlechild %A H.C. Watson %T The crystal structure of human muscle aldolase at 3.0\(Ao resolution %J FEBS Lett. %V 262 %P 282-? %D 1990 %K 1ALD %A S.J. Gamblin %A G.J.. Davies %A J.M. Grimes %A R.M. Jackson %A J.A. Littlechild %A H.C. Watson %T Activity and specificity of human aldolases %J J. Mol. Biol. %V 219 %P 573-? %D 1991 %K PDB1ALD %A R.D. Gandour %A R.L. Schowen %T Transition states of biochemical processes %I Plenum %D 1978 %A J. Gao %A K. Kuczera %A B. Tidor %A M. Karplus %T Hidden thermodynamics of mutant proteins: A molecular dynamics analysis %J Science %V 244 %P 1069-1072 %D 1989 %A K.C. Garcia %A S.V. Desiderio %A P.M. Ronco %A P.J. Verroust %A L.M. Amzel %T Recognition of angiotensin II: Antibodies at different levels of an idiotypic network are superimposable %J Science %V 257 %P 528-531 %D 1992 %A K.C. Garcia %A P.M. Ronco %A P.J. Verrous %A A.T. Br\(u:nger %A L.M. Amzel %T Three-dimensional structure of an angiotensin II-Fab complex at 3\(Ao: Hormone recognition by an anti-idiotypic antibody %J Science %V 257 %P 502-507 %D 1992 %A S.J. Gardell %A L.T. Duong %A R.D. Diehl %A J.D. York %A T.R. Hare %A R.B. Register %A J.W. Jacobs %A R.A.F. Dixon %A P.A. Friedman %T Isolation characterization and cDNA cloning of a vampire bat salivary plasminogen activator %J J. Biol. Chem. %V 264 %D 1989 %P 17947-17952 %K serine proteinase kringle tPA plasminogen activator %A P.W. Garden %J J. Theor. Biol. %P 679-684 %T Markov analysis of viral DNA/RNA sequences %V 82 %D 1980 %A J. Gari\(e'py %A R.S. Hodges %T Primary sequence analysis and folding behavior of EF hands in relation to the mechanism of action of troponin-C and calmodulin %J FEBS Lett. %V 160 %D 1983 %P 1-6 %K calcium-binding template alignment calmodulin troponin-C Gariepy %A J. Garnier %A D.J. Osguthorpe %A B. Robson %T Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins %J J. Mol. Biol. %V 120 %D 1978 %P 97-120 %K prediction secondary structure Robson method %A T.P.J. Garrett %A D.J. Clingeleffer %A J.M. Guss %A S.J. Rogers %A H.C. Freeman %T The crystal structure of poplar apoplastocyanin at 1.8-\(Ao resolution: the geometry of the copper-binding site is created by the polypeptide %J J. Biol. Chem. %V 259 %P 2822-? %D 1984 %K 3PCY PDB2PCY %A T.P.J. Garrett %A M.A. Saper %A P.J. Bjorkman %A J.L. Strominger %A D.C. Wiley %T Specificity pockets for the sidechains of peptide antigens in HLA-Aw68 %J Nature %V 342 %D 1989 %P 692-696 %K PDB2HLA %A K.J. Garvey %A M.S. Oberste %A J.E. Elser %A M.J. Braun %A M.A. Gonda %T Nucleotide sequence and genomic organization of biologically active proviruses of the bovine immunodeficiency-like virus %J Virology %V 175 %D 1990 %P 391-409 %K retrovirus sequence phylogeny %A W.P.J. Gaykema %A W.G.J. Hol %A J.M. Vereijken %A N.M. Soeter %A H.J. Bak %A J.J. Beintema %T 3.2\(Ao structure of the copper-containing, oxygen-carrying protein \f2Panulirus interruptus\f1 haemocyanin %J Nature %V 309 %P 23-? %D 1984 %K 0HPI %A W.P.J. Gaykema %A A. Volbeda %A W.G.J. Hol %T Structure determination of \f2Panulirus interruptus\f1 haemocyanin at 3.2\(Ao resolution: successful phase extension by sixfold density averaging %J J. Mol. Biol. %V 187 %P 255-? %D 1985 %K 0HPI %A B.R. Gelin %A M. Karplus %T Side-chain torsional potentials: effect of dipeptide, protein, and solvent environment %J Biochemistry %V 18 %P 1256-1268 %D 1979 %A B.R. Gelin %A M.K. Karplus %T Side-chain torsional potentials and motion of amino acids in proteins: bovine pancreatic trypsin inhibitor %J Proc. Natl. Acad. Sci. USA %V 72 %P 2002-2006 %D 1975 %K PNAS %A D.G. George %A W.C. Barker %A L.T. Hunt %T Mutation data matrix and its uses %J Methods Enzymol. %D 1990 %V 183 %P 333-351 %A M.M. Georgiadis %A H. Komiya %A P. Chakrabrti %A D. Woo %A J.J. Kornuc %A D.C. Rees %T Crystallographic structure of the nitrogenase iron protein from \f2Azotobacter vinelandii\f1 %J Science %V 257 %P 1653-1659 %D 1992 %A N.P. Gerard %A C. Gerard %T The chemotactic receptor for human C5a anaphylatoxin %J Nature %V 349 %P 615-617 %D 1991 %K seven-helix-bundle %A P.R. Gerber %A A.E. Mark %A W.F. van\0Gunsteren %T An approximate but efficient method to calculate free energy trends by computer simulation: Application to dihydrofolate reductase-inhibitor complexes %J J. Comp. Aid. Mol. Des. %V 7 %P 305-323 %D 1993 %A M. Gerritsen %A K.-C. Chou %A G. N\(e'methy %A H.A. Scheraga %T Energetics of multihelix interactions in protein folding: application to myoglobin %J Biopolymers %V 24 %D 1985 %P 1271-1291 %K Nemethy %A M. Gerstein %A C. Chothia %T Analysis of protein loop closure: Two types of hinges produce one motion in lactate dehydrogenase %J J. Mol. Biol. %V 220 %P 133-149 %D 1991 %A M. Gerstein %A E.L.L. Sonnhammer %A C. Chothia %T Volume changes in protein evolution %J J. Mol. Biol. %V 236 %P 1067-1078 %D 1994 %A M.-J. Gething %A B. Adler %A J.-A. Boose %A R.D. Gerard %A E.L. Madison %A D. McGookey %A R.S. Meidell %A L.M. Roman %A J. Sambrook %T Variants of human tissue-type plasminogen activator that lack specific structural domains of the heavy chain %J EMBO J. %V 7 %D 1988 %P 2731-2740 %A M.-J. Gething %A J. Sambrook %T Protein folding in the cell %J Nature %V 355 %P 33-45 %D 1992 %A D.P. Getman %A G.A. DeCrescenzo %A R.M. Heintz %A K.L. Reed %A J.J. Talley %A M.L. Bryant %A M. Clare %A K.A. Houseman %A J.J. Marr %A R.A. Mueller %A M.L. Vazquez %A H.-S. Shieh %A W.C. Stallings %A R.A. Stegeman %T Discovery of a novel class of potent HIV-1 protease inhibitors containing the (R)-(hydroxyethyl)urea isostere %J J. Med. Chem. %V 36 %P 288-291 %D 1993 %A E.D. Getzoff %A D.E. Cabelli %A C.L. Fisher %A H.E. Parge %A M.S. Viezzoli %A L. Banci %A R.A. Hallewell %T Faster superoxide dismutase mutants designed by enhancing electrostatic guidance %J Nature %V 358 %P 347-351 %D 1992 %A E.D. Getzoff %A H.M. Geysen %A S.J. Rodda %A H. Alexander %A J.A. Tainer %A R.A. Lerner %T Mechanisms of antibody binding to a protein %J Science %V 335 %P 1191-1196 %D 1987 %A E.D. Getzoff %A J.A. Tainer %A M.M. Stempien %A G.I. Bell %A R.A. Hallewell %T Evolution of CuZn superoxide dismutase and the Greek key \(*b-barrel structural motif %J Proteins %V 5 %D 1989 %P 322-336 %A H.M. Geysen %A J.A. Tainer %A S.J. Rodda %A T.J. Mason %A H. Alexander %A E.D. Getzoff %A R.A. Lerner %T Chemistry of antibody binding to a protein %J Science %V 335 %P 1184-1190 %D 1987 %A A.K. Ghose %A A. Pritchett %A G.M. Crippen %J J. Comp. Chem. %V 9 %P 80-90 %T Atomic physicochemical parameters for three-dimensional structure directed quantitative structure-activity relationships: III. modeling hydrophobic interactions %D 1988 %A A.K. Ghosh %A H.Y. Lee %A W.J. Thompson %A C. Culberson %A M.K. Holloway %A S.P. McKee %A P.M. Munson %A T.T. Duong %A A.M. Smith %A P.L. Darke %A J.A. Zugay %A E.A. Emini %A W.A. Schleif %A J.R. Huff %A P.S. Anderson %T The development of cyclic sulfolanes as novel and high-affinity P\d\s-32\s0\u ligands for HIV-1 protease inhibitors %J J. Med. Chem. %V 37 %P 1177-1188 %D 1994 %A A.K. Ghosh %A W.J. Thompson %A H.Y. Lee %A S.P. McKee %A P.M. Munson %A T.T. Duong %A P.L. Darke %A J.A. Zugay %A E.A. Emini %A W.A. Schleif %A J.R. Huff %A P.S. Anderson %T Cyclic sulfolanes as novel and high affinity P\d\s-42\s0\u ligands for HIV-1 protease inhibitors %J J. Med. Chem. %V 36 %P 924-927 %D 1993 %A A.K. Ghosh %A W.J. Thompson %A S.P. McKee %A T.T. Duong %A T.A. Lyle %A J.C. Chen %A P.L. Darke %A J.A. Zugay %A E.A. Emini %A W.A. Schleif %A J.R. Huff %A P.S. Anderson %T 3-tetrahydrofuran and pyran urethanes as high-affinity P\d\s-42\s0\u-ligands for HIV-1 protease inhibitors %J J. Med. Chem. %V 36 %P 292-294 %D 1993 %A A.K. Ghosh %A W.J. Thompson %A S.P. MsKee %A T.T. Duong %A T.A. Lyle %A J.C. Chen %A P.L. Darke %A J.A. Zugay %A E.A. Emini %A W.A. Schleif %A J.R. Huff %A P.S. Anderson %T 3-tetrahydrofuran and pyran urethanes as high-affinity P\d\s-32\s0\u-ligands for HIV-1 protease inhibitors %J J. Med. Chem. %V 36 %P 292-294 %D 1993 %A D. Ghosh %A W. Furey,\0Jr. %A S. O'Donnell %A C.D. Stout %T Structure of a 7Fe ferredoxin from \f2Azotobacter vinelandii\f1 %J J. Biol. Chem. %V 256 %P 4185-? %D 1981 %K 4FD1 2FD2 %A D. Ghosh %A S. O'Donnell %A W. Furey,\0Jr. %A A.H. Robbins %A C.D. Stout %T Iron-sulfur clusters and protein structure of \f2Azotobacter\f1 ferredoxin at 2.0\(Ao resolution %J J. Mol. Biol. %V 158 %P 73-? %D 1982 %K 4FD1 2FD2 %A D. Ghosh %A C.M. Weeks %A P. Grochulski %A W.L. Duax %A M. Erman %A R.L. Rimsay %A J.C. Orr %T Three-dimensional structure of holo 3\(*a,20\(*b-hydroxysteroid dehydrogenase: A member of a short-chain dehydrogenase family %J Proc. Natl. Acad. Sci. USA %V 88 %P 10064-10068 %D 1991 %K 1HSD %A P. Ghosh %A M. Amaya %A E. Mellins %A D.C. Wiley %T The structure of an intermediate in class II MHC maturation: CLIP bound to HLA-DR3 %J Nature %V 378 %P 457-462 %D 1995 %A A.J. Gibbs %A G.A. McIntyre %J Eur. J. Biochem. %P 1-11 %T The diagram, a method for comparing sequences; its use with amino acid and nucleotide sequences %V 16 %D 1970 %A C.S. Gibbs %A S.E. Coutre %A M. Tsiang %A W.-X. Li %A A.K. Jain %A K.E. Dunn %A V.S. Law %A C.T. Mao %A S.Y. Matsumura %A S.J. Mejza %A L.R. Paborsky %A L.L.K. Leung %T Conversion of thrombin into an anticoagulant by protein engineering %J Nature %V 378 %P 413-416 %D 1995 %A M.R. Gibbs %A P.C.E. Moody %A A.G.W. Leslie %T Crystal structure of the Asp-199-Asn mutant of chloramphenicol acetyltransferase to 2.35\(Ao resolution: structural consequences of disruption of a buried salt-bridge. %J Biochemistry %V 29 %P 11261-? %D 1990 %K 4CLA %A R.A. Gibbs %A B.A. Posner %A D.R. Filpula %A S.W. Dood %A M.A.J. Finkelman %A T.K. Lee %A M. Wroble %A M. Whitlow %A S.J. Benkovic %T Construction and characterization of a single-chain antibody %J Proc. Natyl. Acad. Sci. USA %V 88 %P 4001-4004 %D 1991 %A J.-F. Gibrat %A J. Garnier %A B. Robson %T Further developments of protein secondary structure prediction using information theory: new parameters and consideration of residue pairs %J J. Mol. Biol. %V 198 %D 1987 %P 425-443 %A A.L. Gibson %A J.N. Herron %A X.-M. He %A V.A. Patrick %A M.L. Mason %A J.-N. Lin %A D.M. Kranz %A E.W. Voss,\0Jr. %A A.B. Edmundson %T Differences in crystal properties and ligand affinities of an antifluorescyl Fab (4-4-20) in two solvent systems %J Proteins %V 3 %P 155-? %D 1988 %K 4FAB %A K.D. Gibson %A H.A. Scheraga %T Minimization of polypeptide energy: I. preliminary structures of bovine pancreatic ribonuclease S-peptide %J Proc. Natl. Acad. Sci. USA %V 58 %P 420-427 %D 1967 %K PNAS %A K.D. Gibson %A H.A. Scheraga %T Minimization of polypeptide energy: II. preliminary structures of oxytocin, vasopressin, and an octapeptide from ribonuclease %J Proc. Natl. Acad. Sci. USA %V 58 %P 1317-1323 %D 1967 %K PNAS %A T.J. Gibson %A J.D. Thompson %A R.A. Abagyan %T Proposed structrue for the DNA-binding domain of the helix-loop-helix family of eukaryotic gene regulatory proteins %J Prot. Eng. %V 6 %P 41-50 %D 1993 %A R. Gieg\(e' %A D. Moras %A J.C. Thierry %T Yeast transfer RNA\d\s-2asp\s0\u: a new high-resolution X-ray diffracting crystal form of a transfer RNA %J J. Mol. Biol. %V 115 %P 91-? %D 1977 %K 3TRA Giege %A P.F.C. Gilbert %A A. Klug %T X-ray analysis of the disk of tobacco mosaic virus protein: III. A low resolution electron density map %J J. Mol. Biol. %V 86 %P 193-? %D 1974 %K 0TMV %A W. Gilbert %T Why genes in pieces ? %J Nature %V 271 %P 501 %D 1978 %A M.F. Gillen %A D. Banville %A R.G. Rutledge %A S. Narang %A V.L. Seligy %A J.F. Whitfield %A J.P. MacManus %T A complete complementary DNA for the oncodevelopmental calcium-binding protein, oncomodulin %J J. Biol. Chem. %V 262 %P 5308-? %D 1987 %K 1OMD %A G.L. Gilliland %A F.A. Quiocho %T Structure of the \s-2L\s0-arabinose-binding protein from \f2Escherichia coli\f1 at 2.4\(Ao resolution %J J. Mol. Biol. %V 146 %P 341-? %D 1981 %K PDB1ABP 6ABP 7ABP 8ABP %A G.L. Gilliland %A E.L. Winborne %A Y. Masui %A Y. Hirai %T A preliminary crystallographic study of recombinant human interleukin-1\(*b %J J. Biol. Chem. %V 262 %P 12323-? %D 1987 %K PDB4I1B %A G.L. Gilliland %A E.L. Winborne %A J. Nachman %A A. Wlodawer %T The three-dimensional structure of recombinant bovine chymosin at 2.3\(Ao resolution %J Proteins %V 8 %D 1990 %P 82-101 %K PDB1CMS %A A.G. Gilman %T G proteins: Transducers of receptor-generated signals %J Annu. Rev. Biochem. %V 56 %P 615-649 %D 1987 %A M.K. Gilson %A B. Honig %T Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis %J Proteins %V 4 %D 1988 %P 7-18 %A M.K. Gilson %A B. Honig %T Energetics of charge-charge interactions in proteins %J Proteins %V 3 %D 1988 %P 32-52 %A M.K. Gilson %A B.H. Honig %J Nature %P 84-86 %T Calculation of electrostatic potentials in an enzyme active site %V 330 %D 1987 %A S.L. Ginell %A S. Kuzmich %A R.A. Jones %A H.M. Berman %T Crystal and molecular structure of a DNA duplex containing the carcinogenic lesion O\u\s-46\s0\d-methylguanine %J Biochemistry %V 29 %P 10461-? %D 1990 %K PDB1D24 %A V.L. Giranda %A M.S. Chapman %A M.G. Rossmann %T Modeling of the human intercellular adhesion molecule-1, the human rhinovirus major group receptor %J Proteins %V 7 %D 1990 %P 227-233 %K modelling immunoglobulin virus receptor alignment %A R.L. Girling %A T.E. Houston %A W.C. Schmidt,\0Jr. %A E.L. Amma %T Macromolecular structure refinement by restrained least-squares and interactive graphics as applied to sickling deer type III hemoglobin %J Acta Cryst. %V A 36 %P 43-? %D 1980 %K PDB1HDS %A R.L. Girling %A W.C. Schmidt,\0Jr. %A T.E. Houston %A E.L. Amma %A T.H.J. Huisman %T Molecular packing and intermolecular contacts of sickling deer type III hemoglobin %J J. Mol. Biol. %V 131 %P 417-? %D 1979 %K 1HDS %A B.E. Glatthaar %A L.J. Banaszak %A R.A. Bradshaw %T The identification of an asymmetric complex of nicotinamide adenine dinucleotide and pig heart cytoplasmic malate dehydrogenase %J Biochem. Biophys. Res. Comm. %V 46 %P 757-? %D 1972 %K 4MDH %A D.M. Glick %A H.E. Auer %A D.H. Rich %A M. Kawai %A A. Kamath %J Biochemistry %P 1858-1864 %T Pepsinogen activation: genesis of the binding site %V 25 %D 1986 %A D.M. Glick %A Y. Shalitin %A C.R. Hilt %J Biochemistry %P 2626-2630 %T Studies on the irreversible step of pepsinogen activation %V 28 %D 1989 %A D.M. Glick %A M.J. Valler %A C.C. Rowlands %A J.C. Evans %A J. Kay %J Biochemistry %P 3746-3750 %T Activation of spin-labeled chicken pepsinogen %V 16 %D 1982 %A I. Glover %A I. Haneef %A J. Pitts %A S. Wood %A D. Moss %A I. Tickle %A T. Blundell %T Conformational flexibility in a small globular hormone: X-ray analysis of avian pancreatic polypeptide at 0.98\(Ao resolution %J Biopolymers %V 22 %P 293-? %D 1983 %K 1PPT %A N. Go %A H.A. Scheraga %T Ring closure and local conformational deformations of chain molecules %J Macromolecules %V 3 %P 178-187 %D 1970 %A J.W. Godden %A S. Turley %A D.C. Teller %A E.T. Adman %A M.Y. Liu %A W.J. Payne %A J. LeGall %T The 2.3\(Ao X-ray structure of nitrite reductase from \f2Achromobacter cycloclastes\f1 %J Science %V 253 %P 438-442 %D 1991 %A D.W. Goddette %A C. Paech %A S.S. Yang %A J.R. Mielenz %A C. Bystroff %A M.E. Wilke %A R.J. Fletterick %T The crystal structure of the \f2Bacillus lentus\f1 alkaline protease, Subtilisin BL, at 1.4\(Ao resolution %J J. Mol. Biol. %V 228 %P 580-595 %D 1992 %A J. Godovac-Zimmermann %T The structural motif of \(*b-lactoglobulin and retinol-binding protein: a basic framework for binding and transport of small hydrophobic molecules %J Trends Biochem. Sci. %V 13 %P 64-66 %D 1987 %A A. Godzik %A A. Kolinski %A J. Skolnick %T Topology fingerprint approach to the inverse protein folding problem %J J. Mol. Biol. %V 227 %P 227-238 %D 1992 %A A. Godzik %A C. Sander %T Conservation of residue interactions in a family of Ca-binding proteins %J Prot. Eng. %V 2 %P 589-596 %D 1989 %A A. Godzik %A J. Skolnick %T Sequence-structure matching in globular proteins: Application to supersecondary and tertiary structure determination %J Proc. Natl. Acad. Sci. USA %V 89 %P 12098-12102 %D 1992 %A U. Gohke %A F.-X. Gomis-Ruth %A T. Crabbe %A G. Murphy %A A.J.P. Docherty %A W. Bode %T The C-terminal (haemopexin-like) domain structure of human gelatinase A (MMP2): structural implications for its function %J FEBS Letts. %V 378 %P 126-130 %D 1996 %A J. Goldberg %A H.-B. Huang %A Y.-G. Kwon %A P. Greengard %A A.C. Nairn %A J. Kuriyan %T Three-dimensional structure of the catalytic subunit of protein serine/threonin phosphatase-1 %J Nature %V 376 %P 745-753 %D 1995 %A A. Goldblum %T Theoretical calculations on the acidity of the active site in aspartic proteinases %J Biochemistry %V 27 %P 1653-1658 %D 1988 %A D.P. Goldenberg %T Native and non-native intermediates in the BPTI folding pathway %J Trends Biochem. Sci. %V 17 %P 257-261 %D 1992 %A D.P. Goldenberg %A R.W. Frieden %A J.A. Haack %A T.B. Morrison %T Mutational analysis of a protein-folding pathway %J Nature %D 1989 %V 338 %P 127-132 %A A. Goldman %A D.L. Ollis %A T.A. Steitz %T Crystal structure of muconate lactonizing enzyme at 3\(Ao resolution %J J. Mol. Biol. %V 194 %P 143-? %D 1987 %K 0MLE 1MLE %A A. Goldman %A D. Ollis %A K.-L. Ngai %A T.A. Steitz %T Crystal structure of muconate lactonizing enzyme at 6.5\(Ao resolution %J J. Mol. Biol. %V 182 %P 353-? %D 1985 %K 0MLE 1MLE %A H. Goldstein %T Classical Mechanics %D 1980 %I Addison-Wesley Publishing Company %C Reading, Massachusetts %O second edition %A R.A. Goldstein %A Z.A. Luthey-Schulten %A P.G. Wolynes %T Optimal folding codes from spin-glass theory %J Proc. Natl. Acad. Sci. USA %V 89 %P 4918-4922 %D 1992 %A F.-X. Gomis-R\(u:th %A L.F. Kress %A W. Bode %T First structure of a snake venom metalloproteinase: a prototype for matrix maetlloproteinases/collagenases %J EMBO J. %V 12 %P 4151-4157 %D 1993 %A F.X. Gomis-R\(u:th %A W. St\(o:cker %A R. Huber %A R. Zwilling %A W. Bode %T Refined 1.8\(Ao X-ray crystal structure of astacin, a zinc-endopeptidase from the crayfish \f2Astacus astacus\f1 %J J. Mol. Biol. %V 229 %P 945-968 %D 1993 %K Gomis-Ruth Stocker %A M.A. Gonda %A M.J. Braun %A J.E. Clements %A J.M. Pyper %A F. Wong-Staal %A R.C. Gallo %A R.V. Gilden %T Human T-cell lymphotropic virus type-III shares sequence homology with a family of pathogenic lentiviruses %J Proc. Natl. Acad. Sci. USA %V 83 %D 1986 %P 4007-4011 %K PNAS %A G.H. Gonnet %A M.A. Cohen %A S.A. Benner %T Exhaustive matching of the entire protein sequence database %J Science %V 245 %P 1443-1445 %D 1992 %A J. Goodfellow %T Computer simulation in molecular biology %J Chem. in Brit. %D 1990 %P 1066-1068 %V 26 %A P.J. Goodford %T A computational procedure for determining energetically favorable binding sites on biologically important macromolecules %J J. Med. Chem. %V 28 %P 849-857 %D 1985 %A M. Goodman %A G.W. Moore %A G. Matsuda %T Darwinian evolution in the genealogy of haemoglobin %J Nature %V 253 %P 603-608 %D 1975 %A D.S. Goodsell %A A.J. Olson %T Soluble proteins: Size, shape and function %J Trends Biochem. Sci. %V 18 %P 65-68 %D 1993 %A P.R. Gooley %A B.A. Johnson %A A.I. Marcy %A G.C. Cuca %A S.P. Salowe %A W.K. Hagmann %A C.K. Esser %A J.P. Springer %T Secondary structure and zinc ligation of human recombinant short-form stromelysin by multidimensional heteronuclear NMR %J Biochemistry %V 32 %P 13098-13108 %D 1993 %A P.R. Gooley %A J.F. O'Connell %A A.I. Marcy %A G.C. Cuca %A S.P. Salowe %A B.L. Lush %A J.D. Hermes %A C.K. Esser %A W.K. Hagmann %A J.P. Springer %A B.A. Johnson %T The NMR structure of the inhibited catalytic domain of human stromelysin-1 %J Nature Structural Biology %V 1 %P 111-? %D 1994 %A K. Goraj %A A. Renard %A J.A. Martial %T Synthesis, purification and initial structure characterization of octarellin, a \f2de novo\f1 polypeptide modelled on the \(*a/\(*b barrel proteins %J Prot. Eng. %V 3 %P 259-266 %D 1990 %A A.E. Gorbalenya %A E.V. Koonin %A M.M-C. Lai %T Putative papain-related thiol proteases of positive-strand RNA viruses: Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, \(*a-, and coronaviruses %J FEBS Lett. %V 288 %P 201-205 %D 1991 %A E.M. Gordon %A R.W. Barrett %A W.J. Dower %A S.P.A. Fodor %A M.A. Gallop %T Applications of combinatorial technologies to drug discovery: 2. Combinatorial organic synthesis, library screening strategies, and future directions %J J. Med. Chem. %V 37 %P 1385-1401 %D 1994 %A O. Gotoh %J J. Mol. Biol. %P 705-708 %T An improved algorithm for matching biological sequences %V 162 %D 1982 %A O. Gotoh %T Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences %J J. Biol. Chem. %V 267 %P 83-90 %D 1992 %A J.E. Gouaux %A K.L. Krause %A W.N. Lipscomb %T The catalytic mechanism of \f2Escherichia coli\f1 aspartate carbamoyltransferase: a molecular modelling study %J Biochem. Biophys. Res. Comm. %V 14 %P 893-? %D 1987 %K 8ATC 1AT1 2AT1 3AT1 4AT1 5AT1 6AT1 7AT1 8AT1 %A J.E. Gouaux %A W.N. Lipscomb %T Three-dimensional structure of carbamoyl phosphate and succinate bound to aspartate carbamoyltransferase %J Proc. Natl. Acad. Sci. USA %V 85 %P 4205-? %D 1988 %K 0ACS 8ATC 1AT1 2AT1 3AT1 4AT1 5AT1 6AT1 7AT1 8AT1 PNAS %A J.E. Gouaux %A W.N. Lipscomb %T Structural transitions in crystals of native aspartate carbamoyltransferase %J Proc. Natl. Acad. Sci. USA %V 86 %P 845-? %D 1989 %K 8ATC 1AT1 2AT1 3AT1 4AT1 5AT1 6AT1 7AT1 8AT1 PNAS %A J.E. Gouaux %A W.N. Lipscomb %T Crystal structures of phosphonoacetamide ligated T and phosphonoacetamide and malonate ligated R states of aspartate carbamoyltransferase at 2.8\(Ao resolution and neutral pH %J Biochemistry %V 29 %P 389-? %D 1990 %K 8ATC 1AT1 2AT1 3AT1 4AT1 5AT1 6AT1 7AT1 8AT1 %A J.E. Gouaux %A W.N. Lipscomb %A S.A. Middleton %A E.R. Kantrowitz %T Structure of a single amino acid mutant of aspartate carbamoyltransferase at 2.5\(Ao resolution: implications for the cooperative mechanism %J Biochemistry %V 28 %P 1798-? %D 1989 %K 8ATC 1AT1 2AT1 3AT1 4AT1 5AT1 6AT1 7AT1 8AT1 %A J.E. Gouaux %A R.C. Stevens %A W.N. Lipscomb %T Crystal structures of aspartate carbamoyltransferase ligated with phosphonoacetamide, malonate, and CTP or ATP at 2.8\(Ao %J Biochemistry %V 29 %P 7702-? %D 1990 %K 8ATC 1AT1 2AT1 3AT1 4AT1 5AT1 6AT1 7AT1 8AT1 %A A.D. Gounaris %A M.A. Brown %A A.J. Barrett %J Biochem. J. %P 445-452 %T Human plasma \(*a-cysteine proteinase inhibitor: purification by affinity chromatography, characterisation and the isolation of an active fragment %V 221 %D 1984 %A M.J. Grabowski %A A.M. Brzozowski %A Z.S. Derewenda %A T. Skarzynski %A M. Cygler %A A. Stepien %A A.E. Derewenda %T Crystallization of human oxyhaemoglobin from poly(ethylene glycol) solutions %J Biochem. J. %V 171 %P 277-? %D 1978 %K 0HBT %A J. Gracy %A L. Chiche %A J. Sallantin %T Improved alignment of weakly homologous protein sequences using structural information %J Prot. Eng. %V 6 %P 821-829 %D 1993 %A R.L. Graham %A L.R. Foulds %T Unlikelihood that minimal phylogenies for a realistic biological study can be constructed in reasonable computational time %J Math. Biosci. %V 60 %P 133-142 %D 1982 %A F. Grams %A M. Crimmin %A L. Hinnes %A P. Huxley %A M. Pieper %A H. Tschesche %A W. Bode %T Structure determination and analysis of human neutrophil collagenase complexed with a hydroxamate inhibitor %J Biochemistry %V 34 %P 14012-14020 %D 1995 %A R. Grantham %T Amino acid difference formula to help explain protein evolution %J Science %V 185 %D 1974 %P 862-864 %K sequence evolution similarities substitution %A U.M. Grau %A W.E. Trommer %A M.G. Rossmann %T Structure of the active ternary complex of pig heart lactate dehydrogenase with \s-2L\s0-lac-NAD at 2.7\(Ao resolution %J J. Mol. Biol. %V 151 %P 289-? %D 1981 %K PDB5LDH %A U. Grau %A H. Kapmeyer %A W.E. Trommer %T Combined coenzyme-substrate analogues of various dehydrogenases: synthesis of (3\s-2S\s0)- and (3\s-2R\s0)-5-(3-carboxy-3-hydroxypropyl)nicotinamide adenine dinucleotide and their interaction with (\s-2S\s0)- and (\s-2R\s0)-lactate-specific dehydrogenases %J Biochemistry %V 17 %P 4621-? %D 1978 %K 5LDH %A B.J. Graves %A R.L. Crowther %A C. Chandran %A J.M. Rumberger %A S. Li %A K.-S. Huang %A D.H. Presky %A P.C. Familletti %A B.A. Wolitzky %A D.K. Burns %T Insight into E-selectin/ligand interaction from the crystal structure and mutagenesis of the lec/EGF domains %J Nature %V 367 %P 532-538 %D 1994 %A M.C. Graves %A J.J. Lim %A E.P. Heimer %A R.A. Kramer %T An 11-kDa form of human immunodeficiency virus protease expressed in \f2Escherichia coli\f1 is sufficient for enzymatic activity %J Proc. Natl. Acad. Sci. USA %V 85 %D 1988 %P 2449-2453 PNAS %A G.L. Gray %A D.H. Smith %A J.S. Baldridge %A R.N. Harkins %A M.L. Vasil %A E.Y. Chen %A H.L. Heyneker %T Cloning, nucleotide sequence, and expression in \f2Escherichia coli\f1 of the exotoxin A structural gene of \f2Pseudomonas aeruginosa\f1 %J Proc. Natl. Acad. Sci. USA %V 81 %P 2645-? %D 1984 %K 0EXA %A P.M.D. Gray %A N.W. Paton %A G.J.L. Kemp %A J.E. Fothergill %T An object-oriented database for protein structure analysis %J Prot. Eng. %V 3 %P 235-244 %D 1990 %A T.M. Gray %A B.W. Matthews %T Intrahelical hydrogen bonding of serine, threonine and cysteine residues within \(*a-helices and its relevance to membrane-bound proteins %J J. Mol. Biol. %V 175 %P 75-81 %D 1984 %A T.M. Gray %A B.W. Matthews %T Structural analysis of the temperature-sensitive mutant of bacteriophage T4 lysozyme, glycine 156 \(-> aspartic acid %J J. Biol. Chem. %V 262 %P 16858-? %D 1987 %K 1L08 PDB1L16 %K 1L36 1L37 1L38 1L39 1L40 1L41 1L42 1L43 1L44 1L45 1L46 1L47 1L48 1L49 1L50 1L51 1L52 1L53 1L54 1L55 1L56 1L57 1L58 1L59 1L60 1L61 1L62 1L63 1L64 1L65 1L66 1L67 1L68 1L69 1L70 1L71 1L72 1L73 1L74 1L75 1L76 %A D.W. Green %A V.M. Ingram %A M.F. Perutz %T The structure of haemoglobin: IV. sign determination by the isomorphous replacement method %J Proc. Roy. Soc. Lond. %V A 225 %D 1954 %P 287-307 %A P. Green %A D. Lipman %A L. Hillier %A R. Waterstone %A D. States %A J.-M. Claverie %T Ancient conserved regions in new gene sequences and protein databases %J Science %V 259 %P 1711-1716 %D 1993 %A H.M. Greenblatt %A C.A. Ryan %A M.N.G. James %T Structure of the complex of \f2S. griseus\f1 proteinase B and polypeptide chymotrypsin inhibitor-I from russet Burbank potato tubers at 2.1\(Ao resolution %J J. Mol. Biol. %V 205 %D 1989 %P 201-228 %K 4SGB %A D.A. Greenhalgh %A C. Altenbach %A W.L. Hubbell %A H.G. Khorana %T Locations of Arg-82, Asp-85, and Asp-96 in helix C of bacteriorhodopsin relative to the aqueous boundaries %J Proc. Natl. Acad. Sci. USA %V 88 %P 8626-8630 %D 1991 %A J. Greer %T Model for haptoglobin heavy chain based upon structural homology %J Proc. Natl. Acad. Sci. USA %V 77 %P 3393-3397 %D 1980 %K PNAS %A J. Greer %T Structure of haptoglobin heavy chain and other serine protease homologs by comparative model building %J Biophys. J. %V 32 %D 1980 %P 218-219 %A J. Greer %T Comparative model-building of the mammalian serine proteases %J J. Mol. Biol. %V 153 %D 1981 %P 1027-1042 %A J. Greer %T Model of a specific interaction: salt bridges form between prothrombin and its activating enzyme blood clotting factor Xa %J J. Mol. Biol. %V 153 %D 1981 %P 1043-1053 %A J. Greer %T Model structure for the inflammatory protein C5a %J Science %V 228 %D 1985 %P 1055-1060 %A J. Greer %T Protein structure and function by comparative model building %J Ann. N.Y. Acad. Sci. %V 439 %D 1985 %P 44-63 %A J. Greer %T Comparative modelling methods: application to the family of the mammalian serine proteases %J Proteins %D 1990 %V 7 %P 317-334 %A J. Greer %A B.L. Bush %T Macromolecular shape and surface maps by solvent exclusion %J Proc. Natl. Acad. Sci. USA %V 75 %P 303-307 %D 1978 %K PNAS %A J. Greer %A J.W. Erickson %A J.J. Baldwin %A M.D. Varney %T Application of the three-dimensional structures of protein target molecules in structure-based drug design %J J. Med. Chem. %V 37 %P 1035-1054 %D 1994 %A J. Greer %A K.W. Mollison %A G.W. Carter %A E.R.P. Zuiderweg %T Comparative modeling of proteins in the complement pathway %B Computer-assisted modelling of receptor-ligand interactions %D 1989 %P 385-397 %A L.M. Gregoret %A F.E. Cohen %T Novel method for the rapid evaluation of packing in protein structures %J J. Mol. Biol. %V 211 %D 1990 %P 959-974 %A L.M. Gregoret %A F.E. Cohen %T Protein folding: Effect of packing density on chain conformation %J J. Mol. Biol. %V 219 %P 109-122 %D 1991 %A L.M. Gregoret %A S.D. Rader %A R.J. Fletterick %A F.E. Cohen %T Hydrogen bonds involving sulfur atoms in proteins %J Proteins %V 9 %P 99-107 %D 1991 %A M. Gribskov %A R.R. Burgess %A J. Devereux %T \s-1PEPPLOT\s0, a protein secondary structure analysis program for the UWGCG sequence analysis software package %J Nucl. Acids Res. %P 327-? %V 14 %D 1986 %A M. Gribskov %A R. L\(u:thy %A D. Eisenberg %T Profile analysis %J Methods Enzymol. %D 1990 %V 183 %P 133-146 %K Luthy %A M. Gribskov %A A.D. McLachlan %A D. Eisenberg %T Profile analysis: detection of distantly related proteins %J Proc. Natl. Acad. Sci. USA %V 84 %D 1987 %P 4355-4358 %K sequences alignment template PNAS %A J.T. Griffiths %A L.H. Phylip %A J. Konvalinka %A P. Strop %A A. Gustchina %A A. Wlodawer %A R.J. Davenport %A R. Briggs %A B.M. Dunn %A J. Kay %T Different requirements for productive interaction between the active site of HIV-1 proteinase and substrates containing \(emhydrophobic*hydrophobic\(em or \(emaromatic*Pro\(em cleavage sites %J Biochemistry %V 31 %P 5193-5200 %D 1992 %A H.M. Grindley %A P.J. Artymiuk %A D.W. Rice %A P. Willett %T Identificiation of tertiary structure resemblance in proteins using a maximal common subgraph isomorphism algorithm %J J. Mol. Biol. %V 229 %P 707-721 %D 1993 %A D. Grobelny %A L. Poncz %A R.E. Galardy %T Inhibition of human skin fibroblast collagenase, thermolysin, and \f2Pseudomonas aeruginosa\f1 elastase by peptide hydroxamic acids %J Biochemistry %V 31 %P 7152-7154 %D 1992 %A D. Grobelny %A L. Poncz %A R.E. Galardy %T Inhibition of human skin fibroblast collagnease, thermolysin, and \f2Pseuodomonas aeruginosa\f1 elastase by peptide hydroxamic acids %J Biochemistry %P 7152-7154 %D 1992 %A A.M. Gronenborn %A G.M. Clore %O Response to P.J. Kraulis %J Science %V 254 %P 581-582 %D 1991 %A A.M. Gronenborn %A G.M. Clore %T Modeling the three-dimensional structure of the monocyte chemo-attractant and activating protein MCAF/MCP-1 on the basis of the solution structure of interleukin-8 %J Prot. Eng. %V 4 %P 263-269 %D 1991 %A A.M. Gronenborn %A D.R. Filpula %A N.Z. Essig %A A. Achari %A M. Whitlow %A P.T. Wingfield %A G.M. Clore %T A novel, highly stable fold of the immunoglobulin binding domain of Streptoccal protein G %J Science %V 253 %P 657-661 %D 1991 %A P. Gros %A C. Betzel %A Z. Dauter %A K.S. Wilson %A W.G.J. Hol %T Molecular dynamics refinement of a thermitase-eglin-c complex at 1.98\(Ao resolution and comparison of two crystal forms that differ in calcium content %J J. Mol. Biol. %V 210 %P 347-? %D 1989 %K PDB2TEC %A P. Gros %A M. Fujinaga %A B.W. Dijkstra %A K.H. Kalk %A W.G.J. Hol %T Crystallographic refinement by incorporation of molecular dynamics: The thermostable serine protease thermitase complexed with eglin-c %J Acta Cryst. %V B 45 %P 488-? %D 1989 %K PDB1TEC %A P. Gros %A K.H. Kalk %A W.G.J. Hol %T Calcium binding to thermitase. crystallographic studies of thermitase at 0, 5 and 100 mM calcium %J J. Biol. Chem. %V 266 %P 2953-? %D 1991 %K PDB3TEC %A P. Gros %A A.V. Teplyakov %A W.G.J. Hol %T Effects of eglin-c binding to thermitase: three-dimensional structure comparison of native thermitase and thermitase eglin-c complexes %J Proteins %V 12 %P 63-? %D 1992 %K 3TEC %A R. Grosse %A J. Malur %A W. Meiske %A K.R.H. Repke %T Statistical behavior and suitability of protein-derived circular dichroic-basis spectra for the determination of globular protein conformation %J Biochim. Biophys. Acta %P 33-46 %V 359 %D 1974 %A M.L. Groves %A R. Greenberg %T Complete amino acid sequence of bovine \(*b\d\s-22\s0\u-microglobulin %J J. Biol. Chem. %V 257 %P 2619-? %D 1982 %K 0B2M %A K. Grzeskowiak %A K. Yanagi %A G.G. Prive %A R.E. Dickerson %T Structure of the b-helical CGATCGATCG and comparison with CCAACGTTGG: The effect of base pair reversals %J J. Biol. Chem. %V 266 %P 8861-? %D 1991 %K PDB1D23 %A L. Gr\(a'f %A C.S. Craik %A A. Patthy %A S. Roczniak %A R.J. Fletterick %A W.J. Rutter %T Selective alteration of substrate specificity by replacement of Asp 189 with lysine in the binding pocket of trypsin %J Biochemistry %V 26 %D 1987 %P 2616-2623 %K serine-proteinase Graf %A L. Gr\(a'f %A A. Jansc\(o' %A L. Szil\(a'gyi %A G. Hegyi %A K. Pint\(e'r %A G. N\(a'ray-Szabo %A J. Hepp %A K. Medzihradsky %A W.J. Rutter %T Electrostatic complementarity within the substrate binding pocket of trypsin %J Proc. Natl. Acad. Sci. USA %V 85 %D 1988 %P 4961-4965 %K Jansco Graf Serine proteinase substrate binding specificity Szilagyi Naray Pinter PNAS %A J. Gr\(o:tzinger %A M. Engels %A E. Jacoby %A A. Wollmer %A W. Str\(ssburger %T A model for the C5a receptor and for its interaction with the ligand %J Prot. Eng. %V 4 %P 767-771 %D 1991 %K Strassburger Grotzinger %A M.G. Gr\(u:tter %A T.M. Gray %A L.H. Weaver %A T. Alber %A K. Wilson %A B.W. Matthews %T Structural studies of mutants of the lysozyme of bacteriophage T4: the temperature-sensitive mutant protein Thr 157 \(-> Ile %J J. Mol. Biol. %V 197 %P 315-? %D 1987 %K 3LZM PDB1L01 PDBL10 %K 1L36 1L37 1L38 1L39 1L40 1L41 1L42 1L43 1L44 1L45 1L46 1L47 1L48 1L49 1L50 1L51 1L52 1L53 1L54 1L55 1L56 1L57 1L58 1L59 1L60 1L61 1L62 1L63 1L64 1L65 1L66 1L67 1L68 1L69 1L70 1L71 1L72 1L73 1L74 1L75 1L76 %A M.G. Gr\(u:tter %A J.P. Priestle %A J. Rahuel %A H. Grossenbacher %A W. Bode %A J. Hofsteenge %A S.R. Stone %T Crystal structure of the thrombin-hirudin complex: a novel mode of serine proteinase inhibition %J EMBO J. %V 9 %P 2361-2365 %D 1990 %K Grutter %A M.G. Gr\(u:tter %A J.P. Priestle %A J. Rahuel %A H. Grossenbacher %A W. Bode %A J. Hofsteenge %A S.R. Stone %T Crystal structure of the thrombin-hirudin complex: A novel mode of serine proteinase inhibition %J EMBO J. %V 9 %P 2361-2365 %D 1990 %K Grutter %A M.G. Gr\(u:tter %A K.L. Rine %A B.W. Matthews %T Crystallographic data for lysozyme from the egg white of the Embden goose %J J. Mol. Biol. %V 135 %P 1029-? %D 1979 %K 0GLM Grutter %A M.G. Gr\(u:tter %A L.H. Weaver %A B.W. Matthews %T Goose lysozyme structure: an evolutionary link between hen and bacteriophage lysozymes ? %J Nature %V 303 %D 1983 %P 828-830 %K lysozyme structure comparison evolution Grutter %A W.C. Guida %T Software for structure-based drug design %J Curr. Opin. Struct. Biol. %V 4 %P 777-781 %D 1994 %A W.C. Guida %A R.S. Bohacek %A M.D. Erion %T Probing the conformational space available to inhibitors in the thermolysin active site using Monte Carlo/energy minimization techniques %J J. Comput. Chem. %V 13 %P 214-228 %D 1992 %A R.P. Gunsalus %A C. Yanofsky %T Nucleotide sequence and expression of \f2Escherichia coli\f1 \f2trp\f1R, the structural gene for the \f2trp\f1 aporepressor %J Proc. Natl. Acad. Sci. USA %V 77 %P 7117-7120 %D 1980 %K 1WRP PNAS %A H.C. Guo %A T.S. Jardetzky %A T.P.J. Garrett %A W.S. Lane %A J.L. Strominger %A D.C. Wiley %T Different length peptides bind to HLA-Aw68 similarly at their ends but bulge out in the middle %J Nature %V 360 %P 364-366 %D 1992 %A R.P. Gupta %A S.E. Patton %A A.M. Jetten %A G.E.R. Hook %T Purification, characterization and proteinase-inhibitory activity of a clara-cell secretory protein from the pulmonary extracellular lining of rabbits %J Biochem. J. %V 248 %P 337-? %D 1987 %K 1UTG %A J.M. Guss %A H.C. Freeman %T Structure of oxidized poplar plastocyanin at 1.6\(Ao resolution %J J. Mol. Biol. %V 169 %P 521-522 %D 1983 %K PDB1PCY 7PCY %A J.M. Guss %A P.R. Harrowell %A M. Murata %A V.A. Norris %A H.C. Freeman %T Crystal structure analysis of reduced Cu\u\s-2I\s0\d poplar plastocyanin at six pH values %J J. Mol. Biol. %V 192 %P 361-? %D 1986 %K PDB4PCY PDB5PCY PDb6PCY %A J.M. Guss %A D.W.L. Hukins %A P.J.C. Smith %A W.T. Winter %A S. Arnott %A R. Moorhouse %A D.A. Rees %T Hyaluronic acid, molecular conformations and interactions in two sodium salts %J J. Mol. Biol. %V 95 %P 359-? %D 1975 %K PDB3HYA PDB2HYA %A J.M. Guss %A E.A. Merritt %A R.P. Phizackerley %A B. Hedman %A M. Murata %A K.O. Hodgson %A H.C. Freeman %T Phase determination by multiple-wavelength X-ray diffraction: crystal structure of a basic "blue" copper protein from cucumbers %J Science %V 241 %P 806-811 %D 1988 %K PDB1CBP %A A. Gustchina %A N.S. Andreeva %T Structure of the active site of pepsin and its complexes with inhibitors %B Aspartic proteinases and their inhibitors %E V. Kostka %P 179-182 %I Walter de\0Gruyter %C Berlin %D 1985 %A A. Gustchina %A I.T. Weber %T Comparative analysis of the sequences and structures of HIV-1 and HIV-2 proteases %J Proteins %V 10 %P 325-339 %D 1991 %A M. Guyader %A M. Emerman %A P. Sonigo %A F. Clavel %A L. Montagnier %A M. Alizon %T Genome organization and transactivation of the human immunodeficiency virus type-2 %J Nature %V 326 %D 1987 %P 662-669 %K sequence gene HIV AIDS %A W.A. G\(u:nzler %A G.J. Steffens %A A. Grossmann %A S.-M.A. Kim %A F. \(O:tting %A A. Wendel %A L. Floh\(e' %T The amino-acid sequence of bovine glutathione peroxidase %J Hoppe-Seyler's Z. Physiol. Chem. %V 365 %P 195-? %D 1984 %K 1GP1 Gunzler Otting Flohe %A E. Haas %A C.A. McWherter %A H.A. Scheraga %T Conformational unfolding in the N-terminal region of ribonuclease A detected by nonradiative energy transfer: distribution of interresidue distances in the native, denatured, and reduced-denatured states %J Biopolymers %P 1-21 %V 27 %D 1988 %A J. Habazettl %A D. Gondol %A R. Wiltscheck %A J. Otlewski %A M. Schleicher %A T.A. Holak %T Structure of hisactophilin is similar to interleukin-1\(*b and fibroblast growth factor %J Nature %V 351 %P 855-858 %D 1992 %A E. Haber %A J. Burton %T Inhibitors of renin and their utility in physiologic studies %J FASEB Fed. Proc. %I Fed. Am. Soc. Exp. Biol. %P 2768-2773 %V 38 %D 1979 %A J.E. Haber %A D.E. Koshland %T An evaluation of the relatedness of proteins based on comparisons of amino acid sequences %J J. Mol. Biol. %V 50 %D 1970 %P 617-639 %K sequences alignment comparison probability %A M.L. Hackert %A C. Abad-Zapatero %A S.E. Stevens,\0Jr. %A J.L. Fox %T Crystallization of C-phycocyanin from the marine blue-green alga \f2Agmenellum quadruplicatum\f1 %J J. Mol. Biol. %V 111 %P 365-? %D 1977 %K 0CPC %A A.T. Hagler %A B. Honig %T On the formation of protein tertiary structure on a computer %J Proc. Natl. Acad. Sci. USA %V 75 %P 554-558 %D 1978 %K PNAS %A A.T. Hagler %A J.R. Maple %A T.S. Thacher %A G.B. Fitzgerald %A U. Dinur %T Potential energy functions for organic and biomolecular systems %P 149-167 %B Computer simulation of biomolecular systems: Theoretical and experimental applications %E W.F. van\0Gunsteren and P.K. Weiner %I ESCOM %C Leiden %D 1989 %A A.T. Hagler %A J. Moult %T Computer simulation of the solvent structure in biological macromolecules %J Nature %V 272 %P 222-226 %D 1978 %A A.T. Hagler %A P.S. Stern %A R. Sharon %A J.M. Becker %A F. Naidleer %T Computer simulation of the conformational properties of oligopeptides: comparison of theoretical methods and analysis of experimental results %J J. Am. Chem. Soc. %V 101 %D 1979 %P 6842-6852 %K peptide conformation analysis prediction forcefield %A K.W. Hahn %A W.A. Klis %A J.M. Stewart %T Design and synthesis of a peptide having a chymotrypsin-like esterase activity %J Science %V 248 %P 1544-1547 %D 1990 %A M. Hahn %A W.T. Wipke %T \s-2SHADEMOL\s0: an algorithm for presentation of three-dimensional structures on a laser printer using depth-shading %J Tet. Comp. Method. %V 1 %D 1988 %P 81-86 %K postscript graphics figures %A J. Hajdu %A K.R. Acharya %A D.I. Stuart %A D. Barford %A L.N. Johnson %T Catalysis in enzyme crystals %J Trends Biochem. Sci. %V 14 %P 104-109 %D 1988 %A J. Hajdu %A K.R. Acharya %A D.I. Stuart %A P.J. McLaughlin %A D. Barford %A H.W. Klein %A N.G. Oikonomakos %A L.N. Johnson %T Catalysis in the crystal: synchrotron radiation studies with glycogen phosphorylase B %J EMBO J. %V 6 %P 539-546 %D 1987 %A J. Hajdu %A P.A. Machin %A J.W. Campbell %A T.J. Greenough %A I.J. Clifton %A S. Zurek %A S. Gover %A L.N. Johnson %A M. Elder %T Millisecond X-ray diffraction and the first electron density map from from Laue photographs of a protein crystal %J Nature %V 329 %D 1987 %P 178-181 %A C.J. Halfman %A T. Nishida %J Biochemistry %P 3493-3498 %T Method for measuring the binding of small molecules to proteins from binding-induced alterations of physico-chemical properties %V 11 %D 1972 %A C.J. Halfman %A J. Steinhardt %T Electrostatic methods for measuring the binding of ionic ligands to proteins %J Biochemistry %P 3564-3569 %V 10 %D 1971 %A M.D. Hall %A D.G. Levitt %A L.J. Banaszak %T Crystal structure of \f2Escherichia coli\f1 malate dehydrogenase: A complex of the apoenzyme and citrate at 1.87\(Ao resolution %J J. Mol. Biol. %V 226 %P 867-882 %D 1992 %A P.L. Hall %A C.D. Anderson %T Proflavine interactions with papain and ficin: I. dye binding and its effects upon enzyme inactivation by N-alkylmaleimides %J Biochemistry %P 2082-2087 %V 13 %D 1974 %A P.L. Hall %A C.D. Anderson %T Proflavine interactions with papain and ficin: II. effects of dye binding upon reversible inhibition %J Biochemistry %P 2087-2092 %V 13 %D 1974 %C Berlin %A A. Hallett %A D.M. Jones %A B. Atrash %A M. Szelke %A B. Leckie %A S. Beattle %A B.M. Dunn %A M.J. Valler %A C.E. Rolph %A J. Kay %A S.I. Foundling %A S. Wood %A L.H. Pearl %A F.E. Watson %A T.L. Blundell %T Inhibition of aspartic proteinases by transition state substrate analogues %B Aspartic proteinases and their inhibitors %E V. Kostka %P 467-478 %I Walter de\0Gruyter %D 1985 %A S.J. Hamodrakas %A T. Etmekzoglou %A F.C. Kafatos %T Amino acid periodicities and their structural implications for the evolutionarily conservative central domain of some silkmoth chorion proteins %J J. Mol. Biol. %V 186 %D 1985 %P 583-589 %K prediction conservation periodicity Fourier transform %A D.M. Hampsey %A G. Das %A F. Sherman %T Yeast \f2iso\f1-1-cytochrome \f2c\f1: genetic analysis of structural requirements %J FEBS Lett. %V 231 %D 1988 %P 275-283 %K protein folding cytochrome determinants mutation %A T. Handel %A W.F. DeGrado %T \f2De novo\f1 design of a Zn\u\s-22\(pl\s0\d binding protein %J J. Am. Chem. Soc. %V 112 %P 6710-6711 %D 1990 %A I. Haneef %A D.S. Moss %A M.J. Stanford %A N. Borkakoti %T Restrained structure-factor least-squares refinement of protein structures using a vector processing computer %J Acta Cryst. %P 426-433 %V A 41 %D 1985 %A I. Haneef %A M.J. Sutcliffe %T A robust method for the superposition of many protein structures and its application to comparative model building %J Inf. Q. Prot. Cryst. %V 18 %P 11-18 %D 1986 %A D.G. Hangauer %A A.F. Monzingo %A B.W. Matthews %T An interactive computer graphics study of thermolysin-catalyzed peptide cleavage and inhibition by N-carboxymethyl dipeptides %J Biochemistry %V 23 %P 5730-? %D 1984 %K 1TLP %A M. Haniu %A L.G. Armes %A M. Tanaka %A K.T. Yasunobu %A B.S. Shastry %A G.C. Wagner %A I.C. Gunsalus %T The primary structure of the monoxygenase cytochrome \f2p\f1450\d\s-2cam\s0\u %J Biochem. Biophys. Res. Comm. %V 105 %P 889-? %D 1982 %K 0CPF 2CPP 3CPP %A S.K. Hanks %T Eukaryotic protein kinases %J Curr. Opin. Struct. Biol. %V 1 %P 369-383 %D 1991 %A S.K. Hanks %A A.M. Quinn %A T. Hunter %T The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains %J Science %V 241 %P 42-52 %D 1988 %A C. Hansch %A T.E. Klein %T Molecular graphics and QSAR in the study of enzyme-ligand interactions: On the definition of bioreceptors %J Acc. Chem. Res. %V 19 %P 392-400 %D 1986 %A C. Hansch %A T.E. Klein %T Molecular graphics and QSAR in the study of enzyme-ligand interactions: On the definition of bioreceptors %J Acc. Chem. Res. %V 19 %P 392-400 %D 1986 %A J. Hansen %A S. Billich %A T. Schulze %A S. Sukrow %A K. Moelling %T Partial purification and substrate analysis of bacterially expressed HIV protease by means of monoclonal antibody %J EMBO J. %V 7 %D 1988 %P 1785-1791 %K protease expression HIV %A J.C. Hanson %A B.P. Schoenborn %T Real space refinement of neutron diffraction data from sperm whale carbonmonoxymyoglobin %J J. Mol. Biol. %V 153 %P 117-? %D 1981 %K PDB1MB5 %A J.E. Hanson %A A.P. Kaplan %A P.A. Bartlett %T Phosphonate analogues of carboxypeptidase A substrates are potent transition-state analogue inhibitors %J Biochemistry %V 28 %P 6294-? %D 1989 %K 6CPA %A R.R. Hantgan %A G.G. Hammes %A H.A. Scheraga %T Pathways of folding of reduced bovine pancreatic ribonuclease %J Biochemistry %V 13 %P 3421-3431 %D 1974 %A S. Harada %A R. Sarma %A M. Kakudo %A S. Hara %A T. Ikenaka %T The three-dimensional structure of the lysozyme produced by \f2Streptomyces erythraeus\f1 %J J. Biol. Chem. %V 256 %P 11600-? %D 1981 %K 0LZ6 %A Y. Harada %A A. Lifchitz %A J. Berthou %A P. Jolles %T A translation function combining packing and diffraction information: an application to lysozyme (high-temperature form) %J Acta Cryst. %V A 37 %P 398-? %D 1981 %K 0LZT %A K.D. Hardman %T Crystallography of a metal-containing protein concanavalin A %J Adv. Exp. Med. Biol. %V 40 %P 103-? %D 1973 %K 3CNA %A K.D. Hardman %A C.F. Ainsworth %T Structure of concanavalin A at 2.4\(Ao resolution %J Biochemistry %V 11 %P 4910-4919 %D 1972 %K PDB3CNA %A K.D. Hardman %A C.F. Ainsworth %T Binding of nonpolar molecules by crystalline concanavalin A %J Biochemistry %V 12 %P 4442-? %D 1973 %K 3CNA %A K.D. Hardman %A C.F. Ainsworth %T Structure of the concanavalin A \(em methyl-\(*a-\s-2D\s0-mannopyranoside complex at 6.0\(Ao resolution %J Biochemistry %V 15 %P 1120-? %D 1976 %K 3CNA %A L.W. Hardy %A J.S. Finer-Moore %A W.R. Montfort %A M.O. Jones %A D.V. Santi %A R.M. Stroud %T Atomic structure of thymidylate synthase: target for rational drug design %J Science %V 235 %P 448-455 %D 1987 %A L.W. Hardy %A J.S. Finer-Moore %A W.R. Montfort %A M.O. Jones %A D.V. Santi %A R.M. Stroud %T Atomic structure of thymidylate synthase: target for rational drug design %J Science %V 235 %P 448-? %D 1987 %K 4TMS %A P.A. Hargrave %T Seven-helix receptors %J Curr. Opin. Struct. Biol. %V 1 %P 575-581 %D 1991 %A K. Harlos %T Micro-bridges for sitting drop crystallizations %J J. Appl. Cryst. %V 25 %P 536-538 %D 1992 %A K. Harlos %A D.M.A. Martin %A D.P. O'Brien %A E.Y. Jones %A D.I. Stuart %A I. Polikarpov %A A. Miller %A E.G.D. Tuddenham %A C.W.G. Boys %T Crystal structure of the extracellular region of human tissue factor %J Nature %V 370 %P 662-666 %D 1994 %A K. Harlos %A M. Vas %A C.F. Blake %T Crystal structure of the binary complex of pig muscle phosphoglycerate kinase and its substrate 3-phospho-\s-2D\s0-glycerate %J Proteins %V 12 %P 133-144 %D 1992 %A Y. Harpaz %A C. Chothia %T Many of the immunoglobulin superfamily domains in cell adhesion molecules and surface receptors belong to a new structural set which is close to that containing variable domains %J J. Mol. Biol. %V 238 %P 528-539 %D 1994 %A J.W. Harper %A R.R. Cook %A C.J. Roberts %A B.J. McLaughlin %A J.C. Powers %T Active site mapping of the serine proteases human leukeocyte elastase, cathepsin G, porcine pancreatic elastase, rat mast cell proteases I and AA, bovie chymotrypsin A\d\s-4\(*a\s0\u, and \f2Staphylococcus aureus\f1 protease V-8 using tripeptide thiobenzyl ester substrates %J Biochemistry %V 23 %P 2995-3002 %D 1984 %A G.W. Harris %A N. Borkakoti %A D.S. Moss %A R.A. Palmer %A B. Howlin %T Ribonuclease A: Analysis of the hydrogen bond geometry, and spatial accessibility at the active site %J Biochim. Biophys. Acta %V 912 %P 348-? %D 1987 %K 3RN3 %A L.J. Harris %A S.B. Larson %A K.W. Hasel %A J. Day %A A. Greenwood %A A. McPherson %T The three-dimensional structure of an intact monoclonal antibody for canine lymphoma %J Nature %V 360 %P 369-372 %D 1992 %A T.J.R. Harris %T Second-generation plasminogen activators %J Prot. Eng. %V 1 %D 1987 %P 449-458 %K serine proteinase protein engineering %A C.J. Harrison %A A.A. Bohm %A H.C.M. Nelson %T Crystal structure of the DNA binding domain of the heat shock transcription factor %J Nature %V 263 %P 224-227 %D 1994 %A R.W. Harrison %A D. Chatterjee %A I.T. Weber %T Analysis of six protein structures predicted by comparative modeling techniques %J Proteins %V 23 %P 463-471 %D 1995 %A R.W. Harrison %A I.T. Weber %T Molecular dynamics simulations of HIV-1 protease with peptide substrate %J Prot. Eng. %V 7 %P 1353-1363 %D 1994 %A S.C. Harrison %T Virus structure: high-resolution perspective %J Adv. Virus Res. %J 28 %P 175-240 %D 1983 %A S.C. Harrison %T A structural taxonomy of DNA-binding domains %J Nature %V 353 %P 715-719 %D 1991 %A S.C. Harrison %A A.K. Aggarwal %T DNA recognition by proteins with the helix-turn-helix motif %J Annu. Rev. Biochem. %V 59 %P 933-969 %D 1990 %A S.C. Harrison %A R. Durbin %T Is there a single pathway for the folding of a polypeptide chain ? %J Proc. Natl. Acad. Sci. USA %V 82 %P 4028-4030 %D 1985 %K PNAS %A W.E. Harte,\0Jr. %A D.L. Beveridge %T Prediction of the protonation state of the active site aspartyl residues in HIV-1 protease-inhibitor complexes via molecular dynamics simulation %J J. Amer. Chem. Soc. %V 115 %P 3883-3886 %D 1993 %A W.E. Harte,\0Jr. %A S. Swaminathan %A M.M. Mansuri %A J.C. Martin %A I.E. Rosenberg %A D.L. Beveridge %T Domain communication in the dynamical structure of human immunodeficiency virus 1 protease %J Proc. Natl. Acad. Sci. USA %V 87 %P 8864-8868 %D 1990 %K PNAS %A J.A. Hartigan %T Clustering Algorithms %I John Wiley & Sons %C New York %D 1975 %A B.S. Hartley %T Homologies in serine proteinase %J Phil. Trans. Roy. Soc. Lond. %V B 257 %D 1970 %P 77-87 %A B.S. Hartley %T The active centers of serine proteinases %J Ann. N.Y. Acad. Sci. %V 227 %D 1974 %P 438-445 %K serine proteinases structure mechanism %A B.S. Hartley %T Commercial prospects for enzyme engineering %J Phil. Trans. Roy. Soc. Lond. %V A 317 %D 1986 %P 321-331 %K protein engineering %A R.W. Hartley %A E.A. Barker %T Amino-acid sequence of extracellular ribonuclease (barnase) of \f2Bacillus amyloliquefaciens\f1 %J Nature, New Biol. %V 235 %P 15-? %D 1972 %K 0RNB %A D.S. Hartsough %A K.M. Merz,\0Jr. %T Protein flexibility in aqueous and nonaquesous solutions %J J. Amer. Chem. Soc %V 114 %P 10113-10116 %D 1992 %A J.A. Hartsuck %A G. Koelsch %A S.J. Remington %T The high resolution crystal structure of porcine pepsinogen %J Proteins %V 13 %P 1-25 %D 1992 %A E.G. Harutyunyan %A V.N. Malashkevich %A S.S. Tersyan %A V.M. Kochkina %A Y.M. Torchinsky %A A.E. Braunstein %T Three-dimensional structure at 3.2\(Ao resolution of the complex of cytosolic aspartate aminotransferase from chicken heart with 2-oxoglutarate %J FEBS Lett. %V 138 %P 113-? %D 1982 %K 1AAT %A S.C. Harvey %T Treatment of electrostatic effects in macromolecular modeling %J J. Mol. Biol. %P 78-92 %V 207 %D 1989 %A M. Hasegawa %A Y. Iida %A T. Yano %A F. Takaiwa %A M. Iwabuchi %D 1985 %T Phylogenetic relationships among eukaryotic kingdoms as inferred from ribosomal RNA sequences %J J. Mol. Evol. %V 22 %P 32-38 %A M. Hasegawa %A H. Kishino %A T. Yano %D 1985 %T Dating of the human-ape splitting by a molecular clock of mitochondrial DNA %J J. Mol. Evol. %V 22 %P 160-174 %A M. Hasegawa %A T. Yano %D 1984 %T Maximum likelihood method of phylogenetic inference from DNA sequence data %J Bull. Biometric Society of Japan %V 5 %P 1-7 %A M. Hasegawa %A T. Yano %D 1984 %T Phylogeny and classification of Hominoidea as inferred from DNA sequence data %J Proc. Japan Academy %V 60 B %P 389-392 %A W. Hasel %A T.F. Hendrickson %A W.C. Still %T A rapid approximation to the solvent accessible surface area of atoms %J Tet. Comput. Methodol. %V 1 %P 103-116 %D 1988 %A C.A. Hasemann %A KG. Ravichandran %A J.A. Peterson %A J. Deisenhofer %T Crystal structure and refinement of cytochrome P450\d\s-3terp\s0\u at 2.3\(oA resolution %J J. Mol. Biol. %V 236 %P 1169-1185 %D 1994 %A R. Haser %T Structural approach of the electron transfer pathways in multiheme cytochromes \f2c\f1\d\s-23\s0\u %J Biochimie %V 63 %P 945-949 %D 1981 %K 1CY3 %A R. Haser %A M. Pierrot %A M. Frey %A F. Payan %A J.P. Astier %A M. Bruschi %A J. Le\0Gall %T Structure and sequence of the multihaem cytochrome \f2c\f1\d\s-23\s0\u %J Nature %V 282 %P 806-810 %D 1979 %K 1CY3 %A M.H. Hatada %A X. Lu %A E.R. Laird %A J. Green %A J.P. Morgenstern %A M. Luo %A C.S. Marr %A T.B. Phillips %A M.K. Ram %A K. Theriault %A M.J. Zoller %A J.L. Karas %T Molecular basis for interaction of the protein tyrosine kinase ZAP-70 with the T-cell receptor %J Nature %V 377 %P 32-38 %D 1995 %A G.F. Hatfull %A M.R. Sanderson %A P.S. Freemont %A P.R. Raccuia %A N.D.F. Grindley %A T.A. Steitz %T Preparation of heavy-atom derivatives using site-directed mutagenesis. introduction of cysteine residues into gamma delta resolvase %J J. Mol. Biol. %V 208 %P 661-? %D 1989 %K 1RSL %A K. Hatrick %A W.R. Taylor %T Sequence conservation and correlation measures in protein structure prediction %J Computers Chem. %V 18 %P 245-249 %D 1994 %A J. Hauber %A P. Nelbock-Hochstetter %A H. Feldman %T Nucleotide sequence and characteristics of a Ty element from yeast %J Nucl. Acids Res. %V 13 %D 1985 %P 2745-2758 %K transposon sequence protease %A T.F. Havel %A G.M. Crippen %A I.D. Kuntz %T Effects of distance constraints on macro-molecular conformation. II: simulation of experimental results and theoretical predictions %J Biopolymers %V 18 %P 73-? %D 1979 %A T.F. Havel %A I.D. Kuntz %A G.M. Crippen %T The theory and practice of distance geometry %J Bull. Math. Biol. %V 45 %P 655-720 %D 1983 %A T.F. Havel %A M.E. Snow %T A new method for building protein conformations from sequence alignments with homologues of known structure %J J. Mol. Biol. %V 217 %P 1-7 %D 1991 %A T. Havel %A K. W\(u:thrich %T A distance geometry program for determining the structures of small proteins and other macromolecules from nuclear magnetic resonance \u\s-21\s0\dH-\u\s-21\s0\dH proximities in solution %J Bull. Math. Biol. %P 673-698 %V 46 %D 1984 %K Wuthrich %A T. Havel %A K. W\(u:thrich %T An evaluation of the combined use of NMR and distance geometry for the determination of protein conformations in solution %J J. Mol. Biol. %V 182 %P 281-294 %D 1985 %K Wuthrich %A R.E. Hawkins %A S.J. Russell %A G. Winter %T Selection of phage antibodies by binding afinity: Mimicking affinity maturation %J J. Mol. Biol. %V 226 %P 889-896 %D 1992 %A K. Hayakawa %A J.A. Kelly %A M.N.G. James %T Crystal data for tonin, an enzyme involved in the formation of angiotensin II %J J. Mol. Biol. %V 123 %P 107-? %D 1978 %K 1TON %A T. Hayano %A K. Sogawa %A Y. Ichihara %A Y. Fujii-Kuriyama %A K. Takahashi %T Primary structure of human pepsinogen C gene %J J. Biol. Chem. %V 263 %D 1988 %P 1382-1385 %K sequence aspartic protease alignment pepsin C gastricsin %A K. Hayashi %A K. Agata %A M. Mochii %A S. Yasugi %A G. Eguchi %A T. Mizuno %T Molecular cloning and the nucleotide sequence of cDNA for embryonic chicken pepsinogen: phylogenetic relationship with prochymosin %J J. Biochem. %V 103 %D 1988 %P 290-296 %K sequence aspartic proteinase chymosin %A X.M. He %A D.C. Carter %T Atomic structure and chemistry of human serum albumin %J Nature %V 358 %P 209-215 %D 1992 %A M.H. Hecht %A K.M. Hehir %A H.C.M. Nelson %A J.M. Sturtevant %A R.T. Sauer %T Increasing and decreasing protein stability: effects of revertant substitutions on the thermal denaturation of phage \(*l repressor %J J. Cell. Biochem. %V 29 %P 217-224 %D 1985 %A M.H. Hecht %A H.C.M. Nelson %A R.T. Sauer %T Mutations in \(*l repressor's amino-terminal domain: implications for protein stability and DNA binding %J Proc. Natl. Acad. Sci. USA %V 80 %D 1983 %P 2676-2680 %K mutation substitution stability protein folding PNAS %A M.H. Hecht %A J.S. Richardson %A D.C. Richardson %A R.C. Ogden %T \f2De novo\f1 design, expression, and characterization of felix: a four-helix bundle protein of native-like sequence %J Science %V 249 %P 884-891 %D 1990 %K PDB1FLX PDB2FLX %A M.H. Hecht %A J.M. Sturtevant %A R.T. Sauer %T Effect of single amino acid replacements on the thermal stability of the NH\d\s-22\s0\u-terminal domain of phage \(*l repressor %J Proc. Natl. Acad. Sci. USA %V 81 %D 1984 %P 5685-5689 %K mutation substitution protein folding PNAS %A M.H. Hecht %A J.M. Sturtevant %A R.T. Sauer %T Stabilization of \(*l repressor against thermal denaturation by site-directed Gly \(-> Ala changes in \(*a-helix 3 %J Proteins %V 1 %P 43-46 %D 1986 %A L. Hedstrom %A S. Farr-Jones %A C.A. Kettner %A W.J. Rutter %T Converting trypsin to chymotrypsin: Ground state binding does not determine substrate specificity %J Biochemistry %V 33 %P 8764-8769 %D 1994 %A L. Hedstrom %A S. Farr-Jones %A C.A. Kettner %A W.J. Rutter %T Converting trypsin to chymotrypsin: Ground state binding does not determine substrate specificity %J Biochemistry %V 33 %P 8764-8769 %D 1994 %A L. Hedstrom %A L. Szilagyi %A W.J. Rutter %T Converting trypsin to chymotrypsin: the role of surface loops %J Science %V 255 %P 1249-1253 %D 1992 %A R.S. Hegde %A S.R. Grossman %A L.A. Laimins %A P.B. Sigler %T Crystal structure at 1.7\(Ao of the bovine papillomavirus-1 E2 DNA binding domain bound to its DNA target %J Nature %V 359 %P 505-512 %D 1992 %A A. Heil %A G. Mueller %A L. Noda %A T. Pinder %A H. Schirmer %A I. Schirmer %A I. von\0Zabern %T The amino-acid sequence of porcine adenylate kinase from skeletal muscle %J Eur. J. Biochem. %V 43 %P 131-? %D 1974 %K 3ADK %A U. Heinemann %A C. Alings %T Crystallographic study of one turn of G/C-rich b-DNA %J J. Mol. Biol. %V 210 %P 369-? %D 1989 %K 2D25 %A U. Heinemann %A C. Alings %T The conformation of a b-DNA decamer is mainly determined by its sequence and not by crystal environment %J EMBO J. %V 10 %P 35-? %D 1991 %K 2D25 %A U. Heinemann %A C. Alings %A H. Lauble %T Sequence-structure code %J Nucleosides and Nucleotides %V 9 %P 349-? %D 1990 %K 1D26 2D25 %A U. Heinemann %A C. Alings %A H. Lauble %T Structural features of B/C-rich DNA going a or b %J Structure and Methods. DNA and RNA %V 3 %P 39-? %D 1990 %K 1D26 2D25 %A U. Heinemann %A M. Hahn %T Circular permutations of protein sequence: Not so rare %J TIBS %V 20 %P 349-351 %D 1995 %A U. Heinemann %A H. Lauble %A R. Frank %A H. Bloecker %T Crystal structure analysis of an a-DNA fragment at 1.8\(Ao resolution: d(GCCCGGGC) %J Nucl. Acids Res. %V 15 %P 9531-? %D 1987 %K 1D26 %A U. Heinemann %A H. Lauble %A R. Frank %A H. Bloecker %T X-ray crystallographic studies of the a-form of DNA %J Nucleosides and Nucleotides %V 7 %P 699-? %D 1998 %K 1D26 %A U. Heinemann %A G.P. Pal %A R. Hilgenfeld %A W. Saenger %T Crystal and molecular structure of the sulfhydryl protease calotropin at 3.2\(Ao resolution %J J. Mol. Biol. %V 161 %P 591-? %D 1982 %K 0CDI %A U. Heinemann %A L.-N. Rudolph %A C. Alings %A M. Morr %A W. Heikens %A R. Frank %A H. Bloeker %T Effect of a single 3'-methylene phosphonate linkage on the conformation of an a-DNA octamer double helix %J Nucl. Acids Res. %V 19 %P 427-? %D 1991 %K PDB1D26 %A U. Heinemann %A W. Saenger %T Specific protein-nucleic acid recognition in ribonuclease T1-2\(fm-guanylic acid complex: an X-ray study %J Nature %V 299 %P 27-31 %D 1982 %K 1RNT %A U. Heinemann %A W. Saenger %T Crystallographic study of mechanism of ribonuclease T1-catalysed specific RNA hydrolysis %J J. Biomol. Struct. Dyn. %V 1 %P 523-? %D 1983 %K 3RNT %A U. Heinemann %A W. Saenger %T Ribonuclease T1: mechanism of specific guanine recognition and RNA hydrolysis %J Jerusalem Symp. Quant. Chem. Biochem. %V 16 %P 265-? %D 1983 %K 3RNT %A U. Heinemann %A W. Saenger %T Mechanism of guanosine recognition and RNA hydrolysis by ribonuclease T1 %J Pure Appl. Chem. %V 57 %P 417-? %D 1985 %K 1RNT %A U. Heinemann %A M. Wernitz %A A. Paehler %A W. Saenger %A G. Menke %A H. Rueterjans %T Crystallization of a complex between ribonuclease T1 and 2\(fm-guanylic acid %J Eur. J. Biochem. %V 109 %P 109-? %D 1980 %K 3RNT %A D.W. Heinz %A W.A. Baase %A F.W. Dahlquist %A B.W. Matthews %T How amino-acid insertions are allowed in an \(*a-helix of T4 lysozyme %V 361 %P 561-? %D 1993 %A D.W. Heinz %A W.A. Baase %A B.W. Matthews %T Folding and function of a T4 lysozyme containing 10 consecutive alanines illustrate the redundancy of information in an amino acid sequence %J Proc. Natl. Acad. Sci. USA %V 89 %P 3751-3755 %D 1992 %A A. Heitz %A L. Chiche %A D. Le-Nguyen %A B. Castro %T \u\s-41\s0\dH 2D NMR and distance geometry study of the folding of \f2Ecballium elaterium\f1 trypsin inhibitor, a member of the squash inhibitors family %J Biochemistry %V 28 %P 2392-? %D 1989 %K 2ETI %A C.W. Heizmann %A W. Hunziker %T Intracellular calcium-binding proteins: more sites than insights %J Trends Biochem. Sci. %V 16 %P 98-103 %D 1991 %A S.L. Helad %A R.F. Tilton,\0Jr. %A L.J. Hammond %A A. Lee %A R.M. Bayney %A M.E. Kamarck %A T.V. Ramabhadran %A R.N. Dreyer %A G. Davis %A A. Unterbeck %A P.P. Taburini %T Sequential NMR resonance assignment and structure determination of the Kunitz-type inhibitor domain of the Alzheimer's \(*b-amyloid precursor protein %J Biochemistry %V 30 %P 10467-10478 %D 1991 %A A. Hellberg %A M. Sjostrom %A B. Skagerbeg %A S. Wold %J J. Med. Chem. %P 1126-1135 %T Peptide quantitative structure-activity relationships, a multivariate approach %V 30 %D 1987 %A C.U.T. Hellen %A M. de\0Crombrugghe %A E. Wimmer %A M.A. Seeger %A T.C. Kaufman %T Amalgamated sequences %J Nature %V 340 %P 682 %D 1989 %A H.W. Hellinga %A J.P. Caradonna %A F.M. Richards %T Construction of new ligand binding sites in proteins of known structure: II. Grafting of a buried transition metal binding site into \f2Escherichia coli\f1 thioredoxin %J J. Mol. Biol. %V 222 %P 787-803 %D 1991 %A H.W. Hellinga %A P.R. Evans %T Nucleotide sequence and high-level expression of the major \f2Escherichia coli\f1 phosphofructokinase %J Eur. J. Biochem. %V 149 %P 363-? %D 1985 %K 1PFK %A H.W. Hellinga %A F.M. Richards %T Construction of new ligand binding sites in proteins of known structure: I. Computer-aided modeling of sites with pre-defined geometry %J J. Mol. Biol. %V 222 %P 763-785 %D 1991 %A A.M. Hemmings %A S.I. Foundling %A B.L. Sibanda %A S.P. Wood %A L.H. Pearl %A T.L. Blundell %T Energy calculations on aspartic proteinases: human renin, endothiapepsin and its angiotensin fragment analogue, H-142 %J Biochem. Soc. Trans. %V 13 %P 1036-1041 %D 1985 %A S.M. Hemmingsen %A C. Woolford %A S.M. van\0der\d0Vies %A K. Tilly %A D.T. Dennis %A C.P. Georgopoulos %A R.W. Hendrix %A R.J. Ellis %T Homologous plant and bacterial proteins chaperone oligomeric protein assembly %J Nature %V 333 %P 330-334 %D 1988 %A J. Hempel %A H. Nicholas %A H. J\(o:rnvall %T Thiol proteases and aldehyde dehydrogenases: Evolution from a common thiolesterase precursor ? %J Proteins %V 11 %P 176-183 %D 1991 %K Jornvall %A G.B. Henderson %A N.J. Murgolo %A J. Kuriyan %A K. Osapay %A D. Kominos %A A. Berry %A N.S. Scrutton %A N.W. Hinchliffe %A R.N. Perham %A A. Cerami %T Engineering the substrate specificity of glutathione reductase toward that of trypanothione reduction %J Proc. Natl. Acad. Sci. USA %V 88 %P 8769-8773 %D 1991 %A L.E. Henderson %A R.E. Benveniste %A R. Sowder %A T.D. Copeland %A A.M. Schultz %A S. Oroszlan %T Molecular characterization of \f2gag\f1 proteins from simian immunodeficiency virus (SIV\d\s-2Mne\s0\u) %J J. Virol. %V 62 %D 1988 %P 2587-2595 %K sequence SIV lentivirus retrovirus %A R. Henderson %T Structure of crystalline \(*a-chymotrypsin: IV. the structure of indoleacryloyl-\(*a-chymotrypsin and its relevance to the hydrolytic mechanism of the enzyme %J J. Mol. Biol. %V 54 %P 341-? %D 1970 %K 2CHA %A R. Henderson %A J.M. Balswin %A T.A. Ceska %A F. Zemlin %A E. Beckermann %A K.H. Downing %T Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy %J J. Mol. Biol. %D 1990 %P 899-929 %V 213 %A R. Henderson %A P.N.T. Unwin %T Three-dimensional model of purple membrane obtained by electron microscopy %J Nature %V 257 %P 28-32 %D 1975 %A R. Henderson %A C.S. Wright %A G.P. Hess %A D.M. Blow %T \(*a-chymotrypsin,what can we learn about catalysis from X-ray diffraction ? %J Cold Spring Harbor Symp. Quant. Biol. %V 36 %P 63-? %D 1972 %K 2CHA %A M. Hendlich %A P. Lackner %A S. Weitckus %A H. Floeckner %A R. Froschauer %A K. Gottsbacher %A G. Cesari %A M.J. Sippl %T Identification of native protein folds amongst a large number of incorrect models: the calculation of low energy conformations from potentials of mean force %J J. Mol. Biol. %D 1990 %V 216 %P 167-180 %A W.A. Hendrickson %T Transformations to optimize the superposition of similar structures %J Acta Cryst. %V A 35 %P 158-163 %D 1979 %A W.A. Hendrickson %T Stereochemically restrained refinement of macromolecular structures %J Methods Enzymol. %V 115 %P 252-270 %D 1985 %A W.A. Hendrickson %T Determination of macromolecular structures from anomalous diffraction of synchrotron radiation %J Science %V 254 %P 51-58 %D 1991 %A W.A. Hendrickson %A J. Karle %T Carp muscle calcium-binding protein: III. phase refinement using the tangent formula %J J. Biol. Chem. %V 248 %P 3327-? %D 1973 %K 1CPV 5CPV 1CDP %A W.A. Hendrickson %A G.L. Klippenstein %A K.B. Ward %T Tertiary structure of myohemerythrin at low resolution %J Proc. Natl. Acad. Sci. USA %V 72 %P 2160-2164 %D 1975 %K 1HRB PNAS %A W.A. Hendrickson %A J.H. Konnert %T Stereochemically restrained crystallographic least-squares refinement of macromolecule structures %B Biomolecular structure, conformation, function, and evolution %E R. Srinivasan %P 43-57 %V 1 %I Pergamon Press %C Oxford %D 1978 %A W.A. Hendrickson %A W.E. Love %T Structure of lamprey haemoglobin %J Nature, New Biol. %V 232 %P 197-203 %D 1971 %K 2LHB %A W.A. Hendrickson %A W.E. Love %A J. Karle %T Crystal structure analysis of sea lamprey hemoglobin at 2\(Ao resolution %J J. Mol. Biol. %V 74 %P 331-? %D 1973 %K 2LHB %A W.A. Hendrickson %A S. Sheriff %T General density function corresponding to X-ray diffraction with anomalous scattering included %J Acta Cryst. %V A 43 %P 121-? %D 1987 %K 2MHR %A W.A. Hendrickson %A J.L. Smith %A S. Sheriff %T Direct phase determination based on anomalous scattering %J Methods Enzymol. %V 115 %P 41-55 %D 1985 %A W.A. Hendrickson %A J.L. Smith %A S. Sheriff %T Mobility and heterogeneity in protein structure as seen by diffraction %E R.H. Sarma and M.H. Sarma %B Biomolecular stereodynamics. III. Proceedings of the fourth conversation in the discipline of biomolecular stereodynamics %I Adenine Press %C Albany, New York %P 217-? %D 1986 %K 2MHR %A W.A. Hendrickson %A M.M. Teeter %T Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulphur %J Nature %V 29 %P 107-113 %D 1981 %K 1CRN %A W.A. Hendrickson %A K.B. Ward %T Atomic models for the polypeptide backbones of myohemerythrin and hemerythrin %J Biochem. Biophys. Res. Comm. %V 66 %P 1349-? %D 1975 %K PDB1HRB %A R.W. Hendrix %T Protein carpentry %J Current Biology %V 1 %P 71-73 %D 1991 %K post-translational-modification protein-processing concanavalin-A %A M.D. Hendy %A D. Penny %D 1982 %T Branch and bound algorithms to determine minimal evolutionary trees %J Math. Biosci. %V 59 %P 277-290 %A S. Henikoff %A J.G. Henikoff %T Amino acid substitution matrices from protein blocks %J Proc. Natl. Acad. Sci. USA %V 89 %P 10915-10919 %D 1992 %K BLOSUM %A A. De %A D.G. Brown %A M.A. Gorman %A M. Carr %A M.R. Sanderson %A P.S. Freemont %T Crystal structure of a disulphide-linked ``trefoil'' motif found in a large family of putative growth factors %J Proc. Natl. Acad. Sci. USA %V 91 %P 1084-1088 %D 1994 %A C.M. Henneke %T Multiple sequence alignment algorithms for homologous proteins using secondary structure information %J CABIOS %V 5 %P 140-150 %D 1989 %A C.M. Henneke %A M.J. Danson %A D.W. Hough %A D.J. Osguthorpe %T Sequence alignment of citrate synthase proteins using a multiple sequence alignment algorithm and multiple scoring matrices %J Prot. Eng. %V 4 %D 1989 %P 597-604 %K alignment scoring template multiple alignment %A J.P. Hennessey %A W.C. Johnson,\0Jr. %J Biochemistry %P 1085-1094 %T Information content in the circular dichroism of proteins %V 20 %D 1981 %A M. Hennig %A B. Schleiser %A Z. Dauter %A S. Pfeffer %A C. Betzel %A W.E. Hohne %A K.S. Wilson %T A TIM barrel protein without enzymatic activity ? Crystal-structure of narbonin at 1.8\(Ao resolution %J FEBS Letts. %V 306 %P 80-84 %D 1992 %A K. Henrick %A D.M. Blow %A H.L. Carrell %A J.P. Glusker %T Comparison of backbone structures of glucose isomerase from \f2Streptomyces\f1 and \f2Arthrobacter\f1 %J Prot. Eng. %V 1 %P 467-469 %D 1987 %K 1XIA 7XIA 8XIA 9XIA %A K. Henrick %A C.A. Collyer %A D.M. Blow %T Structures of \s-2D\s0-xylose isomerase from \f2Arthrobacter\f1 strain B3728 containing the inhibitors xylitol and \s-2D\s0-sorbitol at 2.5\(Ao and 2.3\(Ao resolution, respectively %J J. Mol. Biol. %V 208 %P 129-? %D 1989 %K PDB4XIA PDB5XIA %A R. Hensel %A U. Mayr %A C. Yang %T The complete primary structure of the allosteric \s-2L\s0-lactate dehydrogenase from \f2Lactobacillus casei\f1 %J Eur. J. Biochem. %V 134 %P 503-? %D 1983 %K 1LLC %A M.W. Hentze %A P. Argos %T Homology between IRE-BP, a regulatory RNA-bonding protein, aconitase and isopropylmalate isomerase %J Nucl. Acids Res. %V 19 %P 1739-1740 %D 1991 %A J. Heringa %A P. Argos %T Side-chain clusters in protein structures and their role in protein folding %J J. Mol. Biol. %V 220 %P 151-171 %D 1991 %A J. Hermans,\0Jr. %A J.E. McQueen,\0Jr. %T Computer manipulation of (macro)molecules with the method of local change %J Acta Cryst. %D 1974 %V A 30 %P 730-739 %A M.A. Hermodson %A C. Abad-Zapatero %A S.S. Abdel-Meguid %A S. Pundak %A M.G. Rossmann %A J.H. Tremaine %T Amino acid sequence of southern bean mosaic virus coat protein and its relation to the three-dimensional structure of the virus %J Virology %V 119 %P 133-? %D 1982 %K 4SBV %A W. Herr %T Nucleotide sequence of AKV murine leukemia virus %J J. Virol. %V 49 %D 1984 %P 471-478 %K type-C retrovirus %A J.R. Herriott %A L.C. Sieker %A L.H. Jensen %A W. Lovenberg %T Structure of rubredoxin: an X-ray study to 2.5\(Ao resolution %J J. Mol. Biol. %V 50 %P 391-? %D 1970 %K 5RXN %A J.R. Herriott %A K.D. Watenpaugh %A L.C. Sieker %A L.H. Jensen %T Sequence of rubredoxin by X-ray diffraction %J J. Mol. Biol. %V 80 %P 423-? %D 1973 %K 5RXN %A J.N. Herron %A X. He %A M.L. Mason %A E.W. Voss,\0Jr. %A A.B. Edmundson %T Three-dimensional structure of a fluorescein-Fab complex crystallized in 2-methyl-2,4-pentanediol %J Proteins %V 5 %P 271-? %D 1989 %K 4FAB %A O. Herzberg %A K. Hayakawa %A M.N.G. James %T Crystallographic data for troponin C from turkey skeletal muscle %J J. Mol. Biol. %V 172 %P 345-? %D 1984 %K 5TNC %A O. Herzberg %A M.N.G. James %T Common structural framework of the two Ca\u\s-22\(pl\s0\d/Mg\u\s-22\(pl\s0\d binding loops of troponin C and other Ca\u\s-22\(pl\s0\d binding proteins %J Biochemistry %V 24 %P 5298-? %D 1985 %K 5TNC %A O. Herzberg %A M.N.G. James %T Structure of the calcium regulatory muscle protein troponin-C at 2.8\(Ao resolution %J Nature %V 313 %D 1985 %P 653-659 %K 5TNC %A O. Herzberg %A M.N.G. James %T Crystallographic determination of lanthanide ion binding to troponin C %J FEBS Lett. %V 199 %P 279-? %D 1986 %K 5TNC %A O. Herzberg %A M.N.G. James %T Refined crystal structure of troponin C from turkey skeletal muscle at 2.0\(Ao resolution %J J. Mol. Biol. %V 203 %P 761-779 %D 1988 %K PDB5TNC %A O. Herzberg %A J. Moult %T Bacterial resistance to \(*b-lactam antibiotics: crystal structure of \(*b-lactamase from \f2Staphylococcus aureus\f1 PC1 at 2.5\(Ao resolution %J Science %V 236 %P 694-? %D 1987 %K 3BLM PDB1BLM %A O. Herzberg %A J. Moult %T Analysis of the steric strain in the polypeptide backbone of protein molecules %J Proteins %V 11 %P 223-229 %D 1991 %A O. Herzberg %A J. Moult %T Penicillin-binding and degrading enzymes %J Curr. Opin. Struct. Biol. %V 1 %P 946-953 %D 1991 %A O. Herzberg %A J. Moult %A M.N.G. James %T Calcium binding to skeletal muscle troponin C and the regulation of muscle contraction %J CIBA Found. Symp. %V 122 %P 120-? %D 1986 %K 5TNC %A O. Herzberg %A J. Moult %A M.N.G. James %T A model for the Ca\u\s-22\(pl\s0\d-induced conformational transition of troponin C: a trigger for muscle contraction %J J. Biol. Chem. %V 261 %P 2638-? %D 1986 %K 5TNC %A O. Herzberg %A J. Moult %A M.N.G. James %T Conformational flexibility of troponin C %B Calcium binding in health and disease %P 312-? %D 1987 %K 5TNC %A O. Herzberg %A J. Moult %A M.N.G. James %T Molecular structure of troponin C and its implications for the Ca\u\s-22+\s0\d triggering of muscle contraction %J Methods Enzymol. %V 139 %P 610-? %D 1987 %K 5TNC %A O. Herzberg %A P. Reddy %A S. Sutrina %A M.H. Saier\0Jr. %A J. Reizer %A G. Kapadia %T Structure of the histidine-containing phosphocarrier protein HPr from \f2Bacillus subtilis\f1 at 2.0\Ao resolution %J Proc. Natl. Acad. Sci. USA %V 89 %P 2499-2503 %D 1992 %A O. Herzberg %A J. Sussman %T Protein model building by the use of a constrained-restrained least-squares procedure %J J. Appl. Cryst. %V 16 %P 144-? %D 1983 %K PDB7LYZ %A P. Herzyk %A R.E. Hubbard %T A reduced representation of proteins for use in restraint satisfaction calculations %J Proteins %V 17 %P 310-324 %D 1993 %A G.P. Hess %T Chymotrypsin-chemical properties and catalysis %J The Enzymes, Third edition %V 3 %P 213-? %D 1971 %K 2CHA %A J.N. Higaki %A B.L. Haymore %A S. Chen %A R.J. Fletterick %A C. Craik %T Regulation of serine protease activity by an engineered metal switch %J Biochemistry %V 29 %P 8582-8586 %D 1991 %A C.F. Higgins %A I.D. Hiles %A G.P.C. Salmond %A D.R. Gill %A J.A. Downie %A I.J. Evans %A I.B. Holland %A L. Gray %A S.D. Buckel %A A.W. Bell %A M.A. Hermondson %T A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria %J Nature %V 323 %P 448-450 %D 1986 %A Y. Higuchi %A S. Bando %A M. Kusunoki %A Y. Matsuura %A N. Yasuoka %A M. Kakudo %A T. Yamanaka %A T. Yagi %A H. Inokuchi %T The structure of cytochrome \f2c\f1\d\s-23\s0\u from \f2Desulfovibrio vulgaris miyazaki\f1 at 2.5\(Ao resolution %J J. Biochem. (Tokyo) %V 89 %P 1659-? %D 1981 %K 2CDV %A Y. Higuchi %A M. Kusunoki %A Y. Matsuura %A N. Yasuoka %A M. Kakudo %T Refined structure of cytochrome \f2c\f1\d\s-23\s0\u at 1.8\(Ao resolution %J J. Mol. Biol. %V 172 %P 109-139 %D 1984 %K PDB2CDV %A Y. Higuchi %A M. Kusunoki %A N. Yasuoka %A M. Kakudo %A T. Yagi %T On cytochrome \f2c\f1\d\s-23\s0\u folding %J J. Biochem. (Tokyo) %V 90 %P 1715-? %D 1981 %K 2CDV %A M. Hilbert %A G. B\(:ohm %A R. Jaenicke %T Structural relationships of homologous proteins as a fundamental priciple in homology modelling %J Proteins %V 17 %P 138-151 %D 1993 %K Bohm %A C.P. Hill %A D.H. Anderson %A L. Wesson %A W.F. DeGrado %A D. Eisenberg %T Crystal structure of \(*a\d\s-21\s0\u: Implication for protein design %J Science %V 249 %P 543-545 %D 1990 %K PDB1AL1 %A C.P. Hill %A Z. Dauter %A E.J. Dodson %A G.G. Dodson %A M.F. Dunn %T X-ray structure of an unusual Ca\u\s-22\(pl\s0\d site and the roles of Zn\u\s-22\(pl\s0\d and Ca\u\s-22\(pl\s0\d in the assembly, stability and storage of the insulin hexamer %J Biochemistry %V 30 %P 917-924 %D 1991 %A C. Hill %A G. Dodson %A U. Heinemann %A W. Saenger %A Y. Mitsui %A K. Nakamura %A S. Borisov %A G. Tischenko %A K. Polyakov %A S. Pavlovsky %T The structural and sequence homology of a family of microbial ribonucleases %J Trends Biochem. Sci. %V 8 %P 364-? %D 1983 %K 3RNT TIBS %A E. Hill %A D. Tsernoglou %A L. Webb %A L.J. Banaszak %T Polypeptide conformation of cytoplasmic malate dehydrogenase from an electron density map at 3.0\(Ao resolution %J J. Mol. Biol. %V 72 %P 577-? %D 1972 %K 4MDH %A T.L. Hill %J J. Polymer Science %P 549-562 %T Some statistical problems concerning linear macromolecules %V 22 %D 1957 %A T.L. Hill %T An introduction to statistical thermodynamics %I Addison-Wesley Publishing Company %C Reading, Massachusetts %D 1960 %A K.L. Hilyard %A D. Staunton %A A.E. Jones %A A.R. Rees %T Protein engineering of antibody combining sites %P 253-275 %B Protein Engineering: A practical approach %E A.R. Rees, M.J.E. Sternberg and R. Wetzel %I IRL Press %C Oxford %D 1992 %A D.A. Hinds %A M. Levitt %T A lattice model for protein structure prediction at low reoslution %J Proc. Natl. Acad. Sci. USA %V 89 %P 2536-2540 %D 1992 %A B.E. Hingerty %A R.S. Brown %A A. Jack %T Further refinement of the structure of yeast tRNA\d\s-2phe\s0\u %J J. Mol. Biol. %V 124 %P 523-? %D 1978 %K PDB4TNA %A W. Hinrichs %A C. Kisker %A M. D\(u:vel %A A. M\(u:ller %A K. Tovar %A W. Hillen %A W. Saenger %T Structure of the Tet represoor-tetracycline complex and regulation of antibiotic resistance %J Science %V 264 %P 418-420 %D 1994 %A K. Hiramatsu %A J. Nishida %A A. Naito %A H. Yoshikura %T Molecular cloning of the closed circular provirus of human T-cell leukemia virus type-1: a new open reading frame in the \f2gag-pol\f1 region %J J. Gen. Virol. %V 68 %D 1987 %P 213-218 %A M. Hirata %A Y. Hayashi %A F. Ushikubi %A Y. Yokota %A R. Kageyama %A S. Nakanishi %A S. Narumiya %T Cloning and expression of cDNA for a human thromboxane A\d\s-22\s0\u receptor %J Nature %V 349 %P 617-620 %D 1991 %K seven-helix-bundle %A S. Hirono %A H. Akagawa %A Y. Mitsui %A Y. Iitaka %T Crystal structure at 2.6\(Ao resolution of the complex of subtilisin BPN\(fm with \f2Streptomyces\f1 subtilisin inhibitor %J J. Mol. Biol. %V 178 %P 389-413 %D 1984 %K PDB1SIC %A S. Hirono %A P.A. Kollman %T Relative binding free energy calculations of inhibitors to two mutants (Glu46 \(-> Ala/Gln) of ribonuclease T1 using molecular dynamics/free energy perturbation approaches %J Prot. Eng. %V 4 %P 233-243 %D 1991 %A V.M. Hirsch %A R.A. Olmsted %A M. Murphey-Corb %A R.H. Purcell %A P.R. Johnson %T An African primate lentivirus (SIV\d\s-2sm\s0\u) closely related to HIV-2 %J Nature %V 339 %D 1989 %P 389-392 %A J.D. Hirst %A M.J.E. Sternberg %T Prediction of ATP-binding motifs: A comparison of a perceptron-type neural network and a consensus sequence method %J Prot. Eng. %V 4 %P 615-623 %D 1991 %A A. Hizi %A L.E. Henderson %A T.D. Copeland %A R.C. Sowder %A C.V. Hixson %A S. Oroszlan %T Characterization of mouse mammary tumor virus \f2gag-pro\f1 gene products and the ribosomal frameshift site by protein sequencing %J Proc. Natl. Acad. Sci. USA %V 84 %D 1987 %P 7041-7045 %K PNAS %A A. Hizi %A L.E. Henderson %A T.D. Copeland %A R.C. Sowder %A H.C. Krutzsch %A S. Oroszlan %T Analysis of \f2gag\f1 proteins from mouse mammary tumor virus %J J. Virol. %V 63 %D 1989 %P 2543-2549 %A R.J. Hoare %A P.M. Harrison %A T.G. Hoy %T Structure of horse-spleen apoferritin at 6\(Ao resolution %J Nature %V 255 %P 653-? %D 1975 %K 0AF1 %A U. Hobohm %A M. Scharf %A R. Schneider %A C. Sander %T Selection of representative protein data sets %J Prot. Sci. %V 1 %P 409-417 %D 1992 %A J.C. Hoch %A C. Redfield %A A.S. Stern %T Computer-aided analysis of protein NMR spectra %J Curr. Opin. Struct. Biol. %V 1 %P 1036-1041 %D 1991 %A T.C. Hodgeman %T The elucidation of protein function by sequence motif analysis %J Comp. Appl. Biosci. %V 5 %P 1-13 %D 1989 %A D.C. Hodgkin %T The structure of insulin %J Dan. Tidsskr. Farm. %V 46 %P 1-? %D 1972 %K 2INS %A T.C. Hodgman %T The elucidation of protein function from its amino acid sequence %J CABIOS %V 2 %D 1986 %P 181-187 %A T.C. Hodgman %T A new superfamily of replicative proteins %J Nature %V 333 %P 22-23 %D 1988 %O \f2Erratum\f1: \f2ibid\f1, p. 578 %A J. Hodgson %T The good, the bad, and the indifferent %J Bio/Technology %V 11 %P 36-37 %D 1993 %A J.M. Hodsdon %A G.M. Brown %A L.C. Sieker %A L.H. Jensen %T Refinement of triclinic lysozyme: I. Fourier and least-squares methods %J Acta Cryst. %V B 46 %P 54-? %D 1990 %K PDB1LZT %A A. Hoess %A S. Watson %A G.R. Siber %A R. Liddington %T Crystal structure of an endotoxin-neutralizing protein from the horseshoe crab, \f2Limulus\f1 anti-LPS factor, at 1.5\(oA resolution %J EMBO J. %V 12 %P 3351-3356 %D 1993 %A R.H. Hoess %T Phage display of peptides and protein domains %J Curr. Opin. Struct. Biol. %V 3 %P 572-579 %D 1993 %A M. Hoffman %T On the road to mandelate ... racemase %J Science %V 251 %P 31-32 %D 1991 %A M. Hoffman %T Researchers get a first look at the versatile TGF-\(*b family %J Science %V 257 %P 332 %D 1992 %A A.-M. Hoffr\(e'n %A M. Saloheimo %A P. Thomas %A J.P. Overington %A M.S. Johnson %A J.K.C. Knowles %A T.L. Blundell %T Modelling of lignin peroxidase LIII of \f2Phlebia radiata\f1: Use of a sequence template generated from a 3-D structure %J Prot. Eng. %V 6 %P 177-182 %D 1993 %K Hoffren %A A.-M. Hoffr\(e'n %A M. Saloheimo %A P. Thomas %A J. Overington %A M.S. Johnson %A T.L. Blundell %T Modelling the lignin peroxidase LIII of \f2Phlebia radiata\f1 using a knowledge-based approach %J J. Chim. Phys. %V 88 %P 2659-2662 %D 1991 %K Hoffren %A A.M. Hoffr\(e'n %A M. Saloheimo %A P. Thomas %A J.P. Overington %A M.S. Johnson %A J.K.C. Knowles %A T.L. Blundell %T Knowledge-based modelling of the lignin peroxidase LIII of \f2Phlebia radiata\f1 %O Submitted %K Ansku Hoffren %A T. Hofmann %A B. Allen %A M. Bendiner %A M. Blum %A A. Cunningham %J Biochemistry %P 1140-1146 %T Effect of secondary substrate binding in penicillopepsin: contributions of subsites S\d\s-23\s0\u and S\d\s-22\(fm\s0\u to k\d\s-2cat\s0\u %V 27 %D 1988 %A T. Hofmann %A A.L. Fink %J Biochemistry %P 5247-5256 %T Cryoenzymology of penicillopepsin %V 23 %D 1984 %A T. Hofmann %A R.S. Hodges %J Biochemistry %P 603-610 %T A new chromophoric substrate for penicillopepsin and other fungal aspartic proteinases %V 203 %D 1982 %A T. Hofmann %A R.S. Hodges %A M.N.G. James %J Biochemistry %P 635-643 %T Effect of pH on the activities of penicillopepsin and rhizopuspepsin and a proposal for the productive substrate binding mode in penicillopepsin %V 23 %D 1984 %A J. Hofsteenge %A J.M. Vereijken %A W.J. Weijer %A J.J. Beintema %A R.K. Wierenga %A J. Drenth %T Primary and tertiary structure studies of \f2p\f1-hydroxybenzoate hydroxylase from \f2Pseudomonas fluorescens\f1: isolation and alignment of the CNBr peptides. Interactions of the protein with flavin adenine dinucleotide %J Eur. J. Biochem. %V 113 %P 141-? %D 1980 %K 1PHH 2PHH %A J. Hofsteenge %A W.J. Weijer %A P.A. Jekel %A J.J. Beintema %T \f2p\f1-hydroxybenzoate hydroxylase from \f2Pseudomonas fluorescens\f1: 1. Completion of the elucidation of the primary structure %J Eur. J. Biochem. %V 133 %P 91-? %D 1983 %K 1PHH 2PHH %A P. Hogeweg %A B. Hesper %J J. Mol. Evol. %P 175-186 %T The alignment of sets of sequences and the construction of phyletic trees: an integrated method %V 20 %D 1984 %A J.M. Hogle %A M. Chow %A D.J. Filman %T Three-dimensional structure of poliovirus at 2.9\(Ao resolution %J Science %V 229 %P 1358-1365 %D 1985 %K 2PLV %A J.M. Hogle %A M. Chow %A D.J. Filman %T The structure of poliovirus %J Sci. Amer. %V 255 %P 42-? %D 1987 %K 2PLV %A J.M. Hogle %A R. Syed %A T.O. Yeates %A D. Jacobson %A T. Critchlow %A D.J. Filman %T Structural determinants of serotype specificity and host range in poliovirus %B Molecular aspects of picornavirus infection and detection %I American Society for Microbiology %C Washington D.C. %D 1988 %K 2PLV %A J. Hogle %A S.T. Rao %A M. Mallikarjunan %A C. Beddell %A R.K. McMullan %A M. Sundaralingam %T Studies of monoclinic hen egg white lysozyme: I. structure solution at 4\(Ao resolution and molecular-packing comparisons with tetragonal and triclinic lysozymes %J Acta Cryst. %V B 37 %P 591-? %D 1981 %K 1LYM %A H.H. Hogrefe %A J.P. Griffith %A M.G. Rossmann %A E. Goldberg %T Characterization of the antigenic sites on the refined 3\(Ao resolution structure of mouse testicular lactate dehydrogenase C\d\s-24\s0\u %J J. Biol. Chem. %V 262 %P 13155-? %D 1987 %K PDB2LDX %A W.G.J. Hol %T Effects of the \(*a-helix dipole upon the functioning and structure of proteins and peptides %J Adv. Biophys. %V 19 %P 133-165 %D 1985 %A W.G.J. Hol %T The role of the \(*a-helix dipole in protein function and structure %J Prog. Biophys. Mol. Biol. %P 149-195 %V 45 %D 1985 %A W.G.J. Hol %T Protein crystallography and computer graphics: Towards rational drug design %J Angew. Chem. %V 25 %P 767-778 %D 1986 %K TO_GET %A W.G.J. Hol %A L.M. Harlie %A C. Sander %T Dipoles of the \(*a-helix and \(*b-sheet: Their role in protein folding %J Nature %V 294 %P 532-536 %D 1981 %A W.G.J. Hol. %A P.T. van\0Duijnen %A H.J.C. Berendsen %T The \(*a-helix dipole and the properties of proteins %J Nature %V 273 %P 443-446 %D 1978 %A W.G.J. Hol. %A R.K. Wierenga %A H. Groendijk %A R.J. Read %A A.M.W.H. Thunnissen %A M.E.M. Noble %A K.H. Kalk %A F.M.D. Vellieux %A F.R. Opperdoes %A P.A.M. Michels %T Protein crystallogrpahy, computer graphics, and sleeping sickness %B Molecular Recognition: Chemical and biochemical problems %P 84-93 %I Royal Society of Chemistry %O Special Publication No. 78 %C London %D 1989 %A T.A. Holak %A W. Bode %A R. Huber %A J. Otlewski %A T. Wilusz %T Nuclear magnetic resonance solution and X-ray structures of squash trypsin inhibitor exhibit the same conformation of the proteinase binding loop %J J. Mol. Biol. %V 210 %P 649-? %D 1989 %K 1CTI %K 2CTI %A T.A. Holak %A D. Gondol %A J. Otlewski %A T. Wilusz %T Determination of the complete three-dimensional structure of the trypsin inhibitor from squash seeds in aqueous solution by nuclear magnetic resonance and a combination of distance geometry and dynamical simulated annealing %J J. Mol. Biol. %V 210 %P 635-? %D 1989 %K PDB1CTI PDB2CTI %A J.J. Holbrook %A A. Liljas %A S.J. Steindel %A M.G. Rossmann %T Lactate dehydrogenase %J The Enzymes, Third edition %V 11 %P 191-292 %D 1975 %K 3LDH %A S.R. Holbrook %A S.-H. Kim %T Molecular model of the G protein, a subunit based on the crystal structure of the H-\f2ras\f1 protein %J Proc. Natl. Acad. Sci. USA %V 86 %P 1751-1755 %D 1989 %A S.R. Holbrook %A S.M. Muskal %A S.-H. Kim %T I.-N. Hsu %A L.T.J. Delbaere %A M.N.G. James %A T. Hofmann %T Penicillopepsin from \f2Penicillium janthinellum\f1 crystal structure at 2.8\(Ao and sequence homology with porcine pepsin %J Nature %V 266 %D 1977 %P 140-145 %K 2APP %A H.M. Holden %A B.W. Matthews %T The binding of \s-2L\s0-valyl-\s-2L\s0-tryptophan to crystalline thermolysin illustrates the mode of interaction of a product of peptide hydrolysis %J J. Biol. Chem. %V 263 %P 3256-? %D 1988 %K PDB3TMN %A H.M. Holden %A D.E. Tronrud %A A.F. Monzingo %A L.H. Weaver %A B.W. Matthews %T Slow- and fast-binding inhibitors of thermolysin display different modes of binding: Crystallographic analysis of extended phosphonamidate transition state analogues %J Biochemistry %V 26 %P 8542-? %D 1987 %K PDB4TMN PDB5TMN PDB7TMN %A M.W. Holladay %A F.G. Salituro %A P.G. Schmidt %A D.H. Rich %T Pepsin-catalyzed addition of water to a ketomethylene peptide-isostere: observation of the tetrahedral species by \u\s-213\s0\dC-NMR spectroscopy %J Biochemistry %P 1046-1048 %V 16 %D 1985 %A D.R. Holland %A P.L. Barclay %A J.C. Danilewicz %A B.W. Matthews %A K. James %T Inihibition of thermolysin and neutral endopeptidase 24.11 by a novel glutaramide derivative: X-ray structure determination of the thermolysin-inhibitor complex %J Biochemistry %V 33 %P 51-56 %D 1994 %A D.R. Holland %A D.E. Tronrud %A H.W. Pley %A K.M. Flahery %A W. Stark %A J.N. Jansonius %A D.B. McKay %A B.W. Matthews %T Structural comparison suggests that thermolysin and related neutral proteases undergo hinge-bending motion during catalysis %J Biochemistry %V 31 %P 11310-11316 %D 1992 %A T.R. Hollands %A J.S. Fruton %T Kinetics of the hydrolysis of synthetic substrates by pepsin and by acetyl-pepsin %J Biochemistry %V 7 %P 2045-2053 %D 1968 %A T.R. Hollands %A I.M. Voynick %A J.S. Fruton %T Action of pepsin on cationic synthetic substrates %J Biochemistry %V 8 %P 575-585 %D 1969 %A L.H. Holley %A M.K. Karplus %T Protein secondary structure prediction with a neural network %J Proc. Natl. Acad. Sci. USA %V 86 %P 152-156 %D 1989 %K PNAS %A L. Holm %A C. Ouzounis %A C. Sander %A G. Tuparev %A G. Vriend %T A database of protein structure families with common folding motifs %J Prot. Sci. %V 1 %P 1691-1698 %D 1992 %A L. Holm %A C. Sander %T Database algorithm for generating protein backbone and side-chain co-ordinates from C\(*a trace: application to model building and detection of co-ordinate errors %J J. Mol. Biol. %V 218 %P 183-194 %D 1991 %A L. Holm %A C. Sander %T Evaluation of protein models by atomic solvation preference %J J. Mol. Biol. %V 225 %P 93-105 %D 1992 %A L. Holm %A C. Sander %T Fast and simple Monte Carlo algorithm for side chain optimization in proteins: Application to model building by homology %J Proteins %V 14 %P 213-223 %D 1992 %A L. Holm %A C. Sander %T Globin fold in a bacterial toxin %J Nature %V 361 %P 309 %D 1993 %A L. Holm %A C. Sander %T Protein structure comparison by alignment of distance matrices %J J. Mol. Biol. %V 233 %P 123-138 %D 1993 %A L. Holm %A C. Sander %T Structural alignment of globins, phycocyanins and colicin A %J FEBS Letts. %V 315 %P 301-306 %D 1993 %A L. Holm %A C. Sander %T DALI: A network tool for protein structure comparison %J Trends Biochem. Sci. %V 20 %P 478-480 %D 1995 %A L. Holm %A C. Sander %T DNA polymerase \(*b belongs to an ancient nucleotidyltransferase superfamily %J TIBS %V 20 %P 345-347 %D 1995 %A L. Holm %A C. Sander %T Evolutionary link between glycogen phosphorylase and a DNA modifying enzyme %J EMBO J. %V 14 %P 1287-1293 %D 1995 %A M.A. Holmes %A B.W. Matthews %T Binding of hydroxamic acid inhibitors to crystaline thermolysin suggests a pentacoordinate zinc intermediate in catalysis %J Biochemistry %V 20 %P 6912-? %D 1981 %K PDB4TLN PDB5TLN PDB6TLN %A M.A. Holmes %A B.W. Matthews %T Structure of thermolysin refined at 1.6\(Ao resolution %J J. Mol. Biol. %V 160 %P 623-639 %D 1982 %K PDB3TLN %A M.A. Holmes %A R.E. Stenkamp %T The structures of met and azidomet hemerythrin at 1.66\(Ao resolution %J J. Mol. Biol. %V 220 %P 723-? %D 1991 %K PDB2HMQ PDB2HMZ %A W.E. Holmes %A J. Lee %A W.-L. Kuang %A G.C. Rice %A W.I. Wood %T Structure and functional expression of a human interleukin-8 receptor %J Science %V 253 %P 1278-1280 %D 1991 %A A. Holmgren %J Trends Biochem. Sci. %V 6 %P 26-29 %T Thioredoxin: structure and functions %D 1981 %K TIBS %A A. Holmgren %A C.-I. Branden %T Crystal structure of chaperone protein papD reveals an immunoglobulin fold %J Nature %V 342 %P 248-? %D 1989 %K 3DPA %A A. Holmgren %A C.-I. Branden %A F. Lindberg %A J.M. Tennant %T Preliminary X-ray study of papD crystals from uropathogenic \f2Escherichia coli\f1 %J J. Mol. Biol. %V 203 %P 279-? %D 1988 %K 3DPA %A A. Holmgren %A B.-O. Soderberg %T Crystallization and preliminary crystallographic data for thioredoxin from \f2Escherichia coli\f1 B %J J. Mol. Biol. %V 54 %P 387-? %D 1970 %K 2TRX %A A. Holmgren %A B.-O. S\(o:derberg %A H. Eklund %A C.-I. Br\(a:nd\(e'n %T Three-dimensional structure of \f2Escerhichia coli\f1 thioredoxin-S\d\s-42\s0\u to 2.8\(Ao resolution %J Proc. Natl. Acad. Sci. USA %V 72 %P 2305-? %K Branden Soderberg PNAS PDB1SRX 2TRX %A D.A. Holt %A J.I. Luengo %A D.S. Yamashita %A H.-J. Oh %A A.L. Konialian %A H.-K. Yen %A L.W. Rozamus %A M. Brandt %A M.J. Bossard %A M.A. Lavy %A D.S. Eggleston %A J. Liang %A L.W. Schultz %A T.J. Stout %A J. Clardy %T Design, synthesis, and kinetic evaluation of high affinity FKBP ligands and the X-ray crystal structures of their complexes with FKBP12 %J J. Amer. Chem. Soc. %V 115 %P 9925-9938 %D 1993 %A U. Hommel %A T.S. Harvey %A P.C. Driscoll %A I.D. Campbell %T Human epidermal growth factor: High resolution solution structure and comparison with human transforming growth factor \(*a %J J. Mol. Biol. %V 227 %P 271-282 %D 1992 %A B. Honig %A A. Nicholls %T Classical electrostatics in biology and chemistry %J Science %V 268 %P 1144-1149 %D 1995 %A R.B. Honzatko %A J.L. Crawford %A H.L. Monaco %A J.E. Ladner %A B.F.P. Edwards %A D.R. Evans %A S.G. Warren %A D.C. Wiley %A R.C. Ladner %A W.N. Lipscomb %T Crystal and molecular structures of native and CTP-liganded aspartate carbamoyltransferase from \f2Escherichia coli\f1 %J J. Mol. Biol. %V 160 %P 219-? %D 1982 %K PDB2ATC 8ATC 1AT1 2AT1 3AT1 4AT1 5AT1 6AT1 7AT1 8AT1 %A R.B. Honzatko %A W.A. Hendrickson %A W.E. Love %T Refinement of a molecular model for lamprey hemoglobin from \f2Petromyzon marinus\f1 %J J. Mol. Biol. %V 184 %D 1985 %K PDB2LHB %A R.B. Honzatko %A W.N. Lipscomb %T Interactions of metal-nucleotide complexes with aspartate carbamoyltransferase in the crystalline state %J Proc. Natl. Acad. Sci. USA %V 79 %P 7171-? %D 1982 %K 8ATC 1AT1 2AT1 3AT1 4AT1 5AT1 6AT1 7AT1 8AT1 PNAS %A R.B. Honzatko %A W.N. Lipscomb %T Interactions of phosphate ligands with \f2Escherichia coli\f1 aspartate carbamoyltransferase in the crystalline state %J J. Mol. Biol. %V 160 %P 265-? %D 1982 %K 8ATC 1AT1 2AT1 3AT1 4AT1 5AT1 6AT1 7AT1 8AT1 %A R.B. Honzatko %A H.L. Monaco %A W.N. Lipscomb %T A 3.0\(Ao resolution study of nucleotide complexes with aspartate carbamoyltransferase %J Proc. Natl. Acad. Sci. USA %V 76 %P 5105-? %D 1979 %K 8ATC 1AT1 2AT1 3AT1 4AT1 5AT1 6AT1 7AT1 8AT1 PNAS %A H.R. Hoogenboom %A A.D. Griffiths %A K.S. Johnson %A D.J. Chiswell %A P. Hudson %A G. Winter %T Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains %J Nuc. Acids Res. %V 19 %P 4133-4137 %D 1991 %A V.Y.H. Hook %A A.V. Azaryan %A S.-R. Hwang %A N. Tezapsidis %T Proteases and the emerging role of protease inhibitors in prohormone processing %J FASEB J. %V 8 %P 1269-1278 %D 1994 %A T.P. Hopp %A K.R. Woods %J Proc. Natl. Acad. Sci. USA %P 3824-3828 %T Prediction of protein antigenic determinants from amino acid sequences %V 78 %D 1981 %K PNAS %A Z. Hostomska %A D.A. Matthews %A J.F. Davies,\0II %A B.R. Nodes %A Z. Hostomsky %T Proteolytic release and crystallization of the RNase H domain of human immunodeficiency virus type I reverse transcriptase %J J. Biol. Chem. %V 266 %P 14697-? %D 1991 %K 1HRH %A M.V. Hosur %A T.N. Bhat %A D.J. Kempf %A E.T. Baldwin %A B. Liu %A S. Gulnik %A N.E. Wideburg %A D.W. Norbeck %A K. Appelt %A J.W. Erickson %T Influence of stereochemistry on activity and binding modes for C\d\s-32\s0\u symmetry-based diol inhibitors of HIV-1 protease %J J. Amer. Chem. Soc. %V 116 %P 847-855 %D 1994 %A Y.-M. Hou %A P. Schimmel %T A simple structural feature is a major determinant of the identity of a transfer RNA %J Nature %V 333 %P 140-145 %D 1988 %A J.B. Howard %A T.W. Lorsbach %A D. Ghosh %A K. Melis %A C.D. Stout %T Structure of \f2Azotobacter vinelandii\f1 7Fe ferredoxin: amino acid sequence and electron density maps of residues %J J. Biol. Chem. %V 258 %P 508-? %D 1983 %K 2FD2 %A B. Howlin %A D.S. Moss %A G.W. Harris %T Segmented anisotropic refinement of bovine ribonuclease A by the application of the rigid-body TLS model %J Acta Cryst. %V A 45 %P 851-? %D 1989 %K 3RN3 %A J.C. Hu %A E.K. O'Shea %A P.S. Kim %A R.T. Sauer %T Sequence requirements for coiled-coils: analysis with \(*l repressor-GCN4 leucine zipper fusions %J Science %V 250 %P 1400-1403 %D 1990 %A Q.X. Hua %A S.E. Shoelson %A M. Kochoyan %A M.A. Weiss %T Receptor binding redefined by a structural switch in a mutant human insulin %J Nature %V 354 %P 238-241 %D 1991 %A C.D. Hubbard %A J.F. Kirsch %J Biochemistry %V 7 %P 2569-2573 %T The presteady-state kinetics of the papain-catalysed hydrolysis of isomeric nitrophenyl esters of carbobenzoxyglycine %D 1968 %A R.E. Hubbard %B Current Communications in Molecular Biology: Computer Graphics and Molecular Modelling %D 1986 %E R. Fletterick and M. Zoller %P 9-11 %I Cold Spring Harbor Laboratory %K HYDRA %A S.J. Hubbard %A S.F. Campbell %A J.M. Thornton %T Molecular recognition: Conformational analysis of limited proteolytic sites and serine proteinase protein inhibitors %J J. Mol. Biol. %V 220 %P 507-530 %D 1991 %A T.J.P. Hubbard %A T.L. Blundell %T Comparison of solvent-inaccessible cores of homologous proteins: definitions useful for protein modelling %J Prot. Eng. %V 1 %D 1987 %P 159-171 %A T.J.P. Hubbard %A T.L. Blundell %T The design of novel proteins using a knowledge-based approach to computer-aided modeling %B Computer simulation of biomolecular systems: Theoretical and experimental applications %P 168-182 %I ESCOM %E W.F. van\0Gunsteren and P.K. Weiner %C Leiden %D 1989 %A T.J.P. Hubbard %A C. Sander %T The role of heat-shock and chaperone proteins in protein folding: possible molecular mechanisms %J Prot. Eng. %V 4 %P 711-717 %D 1991 %A T.J. Hubbard %A J. Park %T Fold recognition and \f2Ab initio\f1 structure predictions using hidden Markov models and \(*b-strand pair potentials %J Proteins %V 23 %P 398-402 %D 1995 %A R. Huber %J Trends Biochem. Sci. %T Conformational flexibility and its functional significance in some protein molecules %V 4 %D 1979 %K TIBS %A R. Huber %A W.S. Bennett,\0Jr. %J Biopolymers %P 261-279 %T Functional significance of flexibility in proteins %V 22 %D 1983 %A R. Huber %A R. Berendes %A A. Burger %A M. Schneider %A A. Karshikov %A H. Luecke %A J. R\(o:misch %A E. Paques %T Crystal and molecular structure of human annexin V after refinement: Implications for structure, membrane binding and ion channel formation of the annexin family of proteins %J J. Mol. Biol. %V 223 %P 683-704 %K Romisch %A R. Huber %A W. Bode %T Structural basis of the activation and action of trypsin %J Acc. Chem. Res. %V 11 %P 114-? %D 1978 %K 1TGB %A R. Huber %A W. Bode %A D. Kukla %A U. Kohl %A C.A. Ryan %T The structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor: III. structure of the anhydro-trypsin-inhibitor complex %J Biophys. Struct. Mech. %V 1 %P 189-? %D 1975 %K 1TPA %A R. Huber %A R.W. Carrell %T Implication of the three-dimensional structure of \(*a\d\s-41\s0\u-antitrypsin for structure and function of serpins %J Biochemistry %V 28 %P 8951-8966 %D 1989 %A R. Huber %A J. Deisenhofer %A P.M. Colman %A M. Matsushima %A W. Palm %T Crystallographic structure studies of an IgG molecule and an Fc fragment %J Nature %V 264 %P 415-420 %D 1976 %K 2FB4 %A R. Huber %A O. Epp %A H. Formanek %T Structures of deoxy- and carbomonoxy-erythrocruorin %J J. Mol. Biol. %V 52 %P 349-? %D 1970 %K 1ECA %A R. Huber %A O. Epp %A W. Steigemann %A H. Formanek %T The atomic structure of erythrocruorin in the light of the chemical sequence and its comparison with myoglobin %J Eur. J. Biochem. %V 19 %P 42-? %D 1971 %K 1ECA %A R. Huber %A D. Kukla %A W. Bode %A P. Schwager %A K. Bartels %A J. Deisenhofer %A W. Steigemann %T Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor: II. crystallographic refinement at 1.9\(Ao resolution %J J. Mol. Biol. %V 89 %D 1974 %P 73-101 %A R. Huber %A D. Kukla %A A. Ruehlmann %A O. Epp %A H. Formanek %T The basic trypsin inhibitor of bovine pancreas: I. structure analysis and conformation of the polypeptide chain %J Naturwissenschaften %V 57 %P 389-? %D 1970 %K 4PTI %A R. Huber %A D. Kukla %A A. Ruehlmann %A W. Steigemann %T Pancreatic trypsin inhibitor (Kunitz): I. Structure and function %J Cold Spring Harbor Symp. Quant. Biol. %V 36 %P 141-150 %D 1972 %K 4PTI %A R. Huber %A D. Kukla %A W. Steigemann %A J. Deisenhofer %A A. Jones %T Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor: refinement of the crystal structure analysis %J Bayer Symp. %V 5 %P 497-? %D 1974 %K 1TPA %A R. Huber %A M. Schneider %A O. Epp %A I. Mayr %A A. Messerschmidt %A J. Pflugrath %A H. Kayser %T Crystallization, crystal structure analysis and preliminary molecular model of the bilin binding protein from the insect \f2Pieris brassicae\f1 %J J. Mol. Biol. %V 195 %P 423-? %D 1987 %K 1BBP %A R. Huber %A M. Schneider %A I. Mayr %A R. Mueller %A R. Deutzmann %A F. Suter %A H. Zuber %A H. Falk %A H. Kayser %T Molecular structure of the bilin binding protein (BBP) from \f2Pieris brassicae\f1 after refinement at 2.0\(Ao resolution %J J. Mol. Biol. %V 198 %P 499-? %D 1987 %K PDB1BBP %A R. Huber %A H. Scholze %A E.P. Paques %A J. Deisenhofer %T Crystal structure analysis and molecular model of human C3a anaphylatoxin %J Hoppe-Seyler's Z. Physiol. Chem. %V 361 %P 1389-? %D 1980 %K 0C3A %A D. Hudig %A N.J. Allison %A T.M. Pickett %A U. Winkler %A C.-H. Kam %A J.C. Powers %T The function of lymophocyte proteases: Inhibition and restoration of granule-mediated lysis with isocoumarin serine protease inhibitors %J J. Immunol. %V 147 %P 1360-1368 %D 1991 %A D.L. Hughes %A L.C. Sieker %A J. Bieth %A J.-L. Dimicoli %T Crystallographic study of the binding of a trifluoroacetyl dipeptide anilide inhibitor with elastase %J J. Mol. Biol. %V 162 %P 645-? %D 1982 %K PDB2EST %A R.E. Hughes %A G.F. Hatfull %A P. Rice %A T.A. Steitz %A N.D.F. Grindley %T Cooperativity mutants of the gamma delta resolvase identify an essential interdimer interaction %J Cell %V 63 %P 1331-? %D 1990 %K 1RSL %A F.M. Hughson %A P.E. Wright %A R.L. Baldwin %T Structural characterization of a partly folded apomyoglobin intermediate %J Science %V 249 %P 1544-1548 %D 1990 %A R. Hull %A J. Sadler %A M. Longstaff %T The sequence of carnation etched ring virus DNA: comparison with cauliflower mosaic virus and retroviruses %J EMBO J. %V 5 %D 1986 %P 3083-3090 %A J.F. Hunt %A A.J. Weaver %A S.J. Landry %A L. Gierasch %A J. Deisenhofer %T The crystal structure of the GroES co-chaperonin at 2.8\(oA resolution %J Nature %V 379 %P 37-45 %D 1996 %A C.A. Hunter %A J. Singh %A J.M. Thornton %T \(*p\(em\(*p interactions: the geometry and energetics of phenylalanine\(emphenylalanine interactions in proteins %J J. Mol. Biol. %V 218 %P 837-846 %D 1991 %A W.N. Hunter %A T. Brown %A N.N. Anand %A O. Kennard %T Structure of an adenosine.cytosine base pair in DNA and its implications for mismatch repair %J Nature %V 320 %P 552-? %D 1986 %K 0DN2 %A W.N. Hunter %A G. Kneale %A T. Brown %A D. Rabinovich %A O. Kennard %T Refined crystal structure of an octanucleotide duplex with G.T mismatched base-pairs %J J. Mol. Biol. %V 190 %P 605-? %D 1986 %K 0GTC %A M.R. Hurle %A C.R. Matthews %A F.E. Cohen %A I.D. Kuntz %A A. Toumadje %A W.C. Johnson,\0Jr. %T Prediction of the tertiary structure of the \(*a-subunit of tryptophan synthase %J Proteins %V 2 %P 210-224 %D 1987 %A J.H. Hurley %A A.M. Dean %A J.L. Sohl %A D.E. Koshland,\0Jr. %A R.M. Stroud %T Regulation of an enzyme by phosphorylation at the active site %J Science %V 249 %P 1012-? %D 1990 %K 3ICD 4ICD PDB5ICD PDB6ICD PDB7ICD PDB8ICD PDB9ICD %A J.H. Hurley %A A.M. Dean %A P.E. Thorsness %A D.E. Koshland,\0Jr. %A R.M. Stroud %T Regulation of isocitrate dehydrogenase by phosphorylation involves no long-range conformational change in the free enzyme %J J. Biol. Chem. %V 265 %P 3599-? %D 1990 %K 3ICD 4ICD 5ICD 6ICD 7ICD 8ICD 9ICD %A J.H. Hurley %A H.R. Faber %A D. Worthylake %A N.D. Meadow %A S. Roseman %A D.W. Pettigrew %A S.J. Remington %T Structure of the regulatory complex of \f2Escherichia coli\f1 III\u\s-3Glc\s0\d with glycerol kinase %J Science %P 673-? %D 1993 %A J.H. Hurley %A P.E. Thorsness %A V. Ramalingam %A N.H. Helmers %A D.E. Koshland,\0Jr. %A R.M. Stroud %T Structure of a bacterial enzyme regulated by phosphorylation, isocitrate dehydrogenase %J Proc. Natl. Acad. Sci. USA %V 86 %P 8635-? %D 1989 %K 3ICD 4ICD 5ICD 6ICD 7ICD 8ICD 9ICD %A T.D. Hurley %A W.F. Bosron %A J.A. Hamilton %A L.M. Amzel %T Structure of human \(*b\d\s-41\s0\u\(*b\d\s-41\s0\u alcohol dehydrogenase: Catalytic effects of non-active site substitutions %J Proc. Natl. Acad. Sci. USA %V 88 %P 8149-8153 %D 1991 %A E.G. Hutchinson %A J.M. Thornton %T \s-1HERA\s0 \(em A program to draw schematic diagrams of protein secondary structure %J Proteins %V 8 %P 203-212 %D 1990 %A E.G. Hutchinson %A J.M. Thornton %T The Greek key motif: Extraction, classification and analysis %J Prot. Eng. %V 6 %P 233-245 %D 1993 %A M. Huysmans %A J. Richelle %A S.J. Wodak %T \s-1SESAM\s0: A relational database for structure and sequence of macromolecules %J Proteins %V 11 %P 59-76 %D 1991 %A J.-K. Hwang %A A. Warshel %T Why ion pair reversal by protein engineering is unlikely to succeed %J Nature %V 334 %D 1988 %P 270-272 %A C.C. Hyde %A S.A. Ahmed %A E.A. Padlan %A E.W. Miles %A D.R. Davies %T Three-dimensional structure of the tryptophan synthase \(*a\d\s-22\s0\u\(*b\d\s-22\s0\u multienzyme complex from \f2Salmonella typhimurium\f1 %J J. Biol. Chem. %V 263 %P 17857-17871 %D 1988 %K PDB1WSY %A C.C. Hyde %A E.W. Miles %T The tryptophan synthase multienzyme complex: exploring structure-function relationships with X-ray crystallography and mutagenesis %J Bio/Technology %V 8 %P 27-? %D 1990 %K 1WSY %A S.C. Hyde %A P. Emsley %A M.J. Hartshorn %A M.M. Mimmack %A U. Gileadi %A S.R. Pearce %A M.P. Gallagher %A D.R. Gill %A R.E. Hubbard %A C.F. Higgins %T Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport %J Nature %V 346 %D 1990 %P 362-365 %K modelling ADK nucleotide binding prediction %A T.R. Hynes %A R.A. Kautz %A M.A. Goodman %A J.F. Gill %A R.O. Fox %T Transfer of a \(*b-turn structure to a new protein context %J Nature %V 339 %P 73-76 %D 1989 %A T.R. Hynes %A M. Randal %A L.A. Kennedy %A C. Eigenbrot %A A.A. Kossiakoff %T X-ray crystal structure of the protease inhibitor domain of Alzheimer's amyloid \(*b-protein precursor %J Biochemistry %V 29 %P 10018-? %D 1990 %K PDB1AAP %A Y. Ichihara %A K. Sogawa %A K.-I. Morohashi %A Y. Fujii-Kuriyama %A K. Takahashi %T Nucleotide sequence of a nearly full length cDNA coding for pepsin of rat gastric mucosa %J Eur. J. Biochem. %V 161 %D 1986 %P 7-12 %K sequence aspartic protease alignment pepsin C gastricsin %A T. Ichikawa %A M. Sundaralingam %T X-ray diffraction study of a new crystal form of yeast phenylalanine tRNA %J Nature, New Biol. %V 236 %P 174-175 %D 1972 %K 1TRA %A T. Ichiye %A M. Karplus %T Anisotropy and anharmonicity of atomic fluctuations in proteins: analysis of a molecular dynamics simulation %J Proteins %V 2 %D 1987 %P 236-259 %K protein dynamics anisotropy simulation %A H. Iijima %A J.B. Dunbar,\0Jr. %A G. Marshall %T Calibration of effective van der Waal's atomic contact radii for proteins and peptides %J Proteins %V 2 %P 330-339 %D 1987 %A M. Ikura %a G.M. Clore %A A.M. Gronenborn %A G. Zhu %A C.B. Klee %A A. Bax %T Solution structure of a calmodulin-target peptide complex by multidimensional NMR %J Science %V 256 %P 632-638 %D 1992 %A K. Ikuta %A M. Takami %A C.W. Kim %A T. Honjo %A T. Miyoshi %A Y. Tagaya %A T. Kawabe %A J. Yodoi %T Human lymphocyte Fc receptor for IgE: Sequence homology of its cloned cDNA with animal lectins %J Proc. Natl. Acad. Sci. USA %V 84 %P 819-823 %D 1987 %A T. Ikuta %A S. Szeto %A A. Yoshida %T Three human alcohol dehydrogenase subunits: cDNA structure and molecular and evolutionary divergence %J Proc. Natl. Acad. Sci. USA %V 83 %D 1986 %P 634-638 %K dehydrogenase sequence alignment comparison phylogeny PNAS %A K. Imada %A M. Sato %A N. Tanaka %A Y. Katsube %A Y. Matsuura %A T. Oshima %T Three-dimensional structure of a highly thermostable enzyme, 3-isopropylmalate dehydrogenase of \f2Thermus thermophilus\f1 at 2.2\(Ao resolution %J J. Mol. Biol. %V 22 %P 725-738 %D 1991 %A T. Imai %A H. Miyazaki %A S. Hirose %A H. Hori %A T. Hayashi %A R. Kageyama %A H. Ohkubo %A S. Nakanishi %A K. Murakami %T Cloning and sequence analysis of cDNA for human renin precursor %J Proc. Natl. Acad. Sci. USA %V 80 %D 1983 %P 7405-7409 %K sequence renin aspartic proteinase PNAS %A S. Imajoh %A K. Aoki %A S. Ohno %A Y. Emori %A H. Kawasaki %A H. Sugihara %A K. Suzuki %T Molecular cloning of the cDNA for the large subunit of the high-Ca\u\s-22\(pl\s0\d-requiring form of human Ca\u\s-22\(pl\s0\d-activated neutral protease %J Biochemistry %V 27 %D 1988 %P 8122-8128 %K thiol proteinase sequence calcium-binding calpain %A T. Imoto %A L.N. Johnson %A A.C.T. North %A D.C. Phillips %A J.A. Rupley %T Vertebrate lysozymes %J The Enzymes, Third edition %V 7 %P 665-868 %D 1972 %K 3LYZ %A G. Inana %A J. Piatigorsky %A B. Norman %A C. Slingsby %A T. Blundell %T Gene and protein structure of a \(*b-crystallin polypeptide in murine lens: relationship of exons and structural motifs %J Nature %V 302 %P 310-315 %D 1983 %A R.F. Inger %D 1967 %T The development of a phylogeny of frogs %J Evolution %V 21 %P 369-384 %A J-I. Inoue %A T. Watanabe %A M. Sato %A A. Oda %A K. Toyosihima %A M. Yoshida %A M. Seiki %T Nucleotide sequence of the protease-coding region in an infectious DNA of simian retrovirus (STLV) of the HTLV-1 family %J Virology %V 150 %D 1986 %P 187-195 %A J.A. Ippolito %A R.S. Alexander %A D.W. Christianson %T Hydrogen bond stereochemistry in protein structure and function %J J. Mol. Biol. %V 215 %D 1990 %P 457-471 %A D.M. Irwin %T Evolution of an active-site codon in serine proteases %J Nature %V 336 %P 429-430 %D 1988 %A M.J. Irwin %A J. Nyborg %A B.R. Reid %A D.M. Blow %T The crystal structure of tyrosyl-transfer RNA synthetase at 2.7\(Ao resolution %J J. Mol. Biol. %V 105 %P 577-? %D 1976 %K 3TS1 %A N.W. Isaacs %A R.C. Agarwal %T Experience with fast Fourier least squares in the refinement of the crystal structure of rhombohedral 2-zinc insulin at 1.5\(Ao resolution %J Acta Cryst. %V A 34 %P 782-? %D 1978 %K 2INS %A N.W. Isaacs %A K.J. Machin %A M. Masakuni %T Three-dimensional structure of goose-type lysozyme from the egg white of the Australian black swan, \f2Cygnus atratus\f1 %J Aust. J. Biol. Sci. %V 38 %P 13-? %D 1985 %K 0LZG %A N. Isaacs %A R. James %A H. Niall %A M. Bryant-Green %A S. Wood %A G. Dodson %A A. Evans %A A.C.T. North %T Relaxin and its structural relationship to insulin %J Nature %V 271 %D 1978 %P 278-281 %K PDB1RLX PDB2RLX PDB3RLX PDB4RLX %A S. Isemura %A E. Saitoh %A K. Sanada %J FEBS Lett. %P 145-149 %T Characterisation of a new cysteine proteinase inhibitor of human saliva, cystatin SN, which is immunologically related to cystatin S %V 198 %D 1986 %A H. Isihara %A R.W. Hogg %T Amino acid sequence of the sulfate binding protein from \f2Salmonella typhimurium\f1 LT2 %J J. Biol. Chem. %V 255 %P 4614-? %D 1980 %K 0SBP %A S.A. Islam %A M.J.E. Sternberg %T A relational database of protein structures designed for flexible enquiries about conformation %J Prot. Eng. %V 2 %D 1989 %P 431-442 %A S.A. Islam %A D.L. Weaver %T Molecular interactions in protein crystals: solvent accessible surface and stability %J Proteins %V 8 %P 1-5 %D 1990 %A S.A. Islam %A D.L. Weaver %T Variation of folded polypeptide surface with probe size %J Proteins %V 10 %P 300-314 %D 1991 %A J. Israelachvili %A H. Wennerstrom %T Role of hydration and water structure in biological and colloidal interactions %J Nature %V 379 %P 219-225 %D 1996 %A N. Ito %A S.E.V. Phillips %A C. Stevens %A Z.B. Ogel %A M.J. McPherson %A J.N. Keen %A K.D.S. Yadav %A P.F. Knowles %T Novel thioether bond revealed by a 1.7\(Ao crystal structure of galactose oxidase %J Nature %V 350 %P 87-90 %D 1991 %A W. Ito %A H. Nakamura %A Y. Arata %T Protein-protein interactions on the surface of immunoglobulin molecules %J J. Mol. Graph. %V 7 %D 1989 %P 60-63 %A Y. Ito %A A.G. Tomasselli %A L.H. Noda %T ATP:AMP phosphotransferase from baker's yeast %J Eur. J. Biochem. %V 105 %P 85-? %D 1980 %K 0AKN %Q IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN) %T Nomenclature and symbolism for amino acids and peptides %J Eur. J. Biochem. %V 138 %P 9-37 %D 1984 %A H. Iwaasa %A T. Takagi %A K. Shikama %T Protozoan myoglobin from \f2Paramecium caudatum\f1: its unusual amino acid sequence %J J. Mol. Biol. %V 208 %D 1989 %P 355-358 %A R.B. Iyengar %A P. Smits %A F. van\0der\0Ouderaa %A H. van\0der\0Wel %A J. van\0Brouwershaven %A P. Ravestein %A G. Richters %A P.D. van\0Wassenaar %T The complete amino-acid sequence of the sweet protein thaumatin I %J Eur. J. Biochem. %V 96 %P 193-? %D 1979 %K 1THI %A A. Jack %A J.E. Ladner %A A. Klug %T Crystallographic refinement of yeast phenylalanine transfer RNA at 2.5\(Ao resolution %J J. Mol. Biol. %V 108 %P 619-? %D 1976 %K 4TNA %A A. Jack %A J.E. Ladner %A D. Rhodes %A R.S. Brown %A A. Klug %T A crystallographic study of metal-binding to yeast phenylalanine transfer RNA %J J. Mol. Biol. %V 111 %P 315-? %D 1977 %K 4TNA %A A. Jack %A M. Levitt %T Refinement of large structures by simultaneous minimization of energy and R factor %J Acta Cryst. %V A 34 %P 931-? %D 1978 %K 4TNA %A T. Jacks %A M.D. Power %A F.R. Masiarz %A P.A. Luciw %A P.J. Barr %A H.E. Varmus %T Characterization of ribosomal frameshifting in HIV-1 \f2gag-pol\f1 expression %J Nature %V 331 %D 1988 %P 280-283 %A T. Jacks %A K. Townsley %A H.E. Varmus %A J. Majors %T Two efficient ribosomal frameshifting events are required for synthesis of mouse mammary tumor virus \f2gag\f1-related polyproteins %J Proc. Natl. Acad. Sci. USA %V 84 %D 1987 %P 4298-4302 %K PNAS %A T. Jacks %A H.E. Varmus %T Expression of the Rous sarcoma virus \f2pol\f1 gene by ribosomal frameshifting %J Science %V 230 %D 1985 %P 1237-1242 %A D.Y. Jackson %A J.R. Prudent %A E.P. Baldwin %A P.G. Schulz %T A mutagenesis study of catalytic antibody %J Proc. Natl. Acad. Sci. USA %V 88 %P 58-62 %D 1991 %K PNAS %A R.H. Jackson %A J. McCafferty %A K.S. Johnson %A A.R. Pope %A A.J. Roberts %A D.J. Chiswell %A T.P. Clackson %A A.D. Griffiths %A H.R. Hoogenboom %A G. Winter %T Selection of variants of antibodies and other protein molecules using display on the surface of bacteriophage fd %B Protein Engineering: A practical approach %E A.R. Rees, M.J.E. Sternberg and R. Wetzel %I IRL Press %C Oxford %D 1992 %A A. Jacobo-Molina %A J. Ding %A R.G. Nanni %A A.D. Clark,\0Jr. %A X. Lu %A C. Tantillo %A R.L. Williams %A G. Kamer %A A.L. Ferris %A P. Clark %A A. Hizi %A S.H. Hughes %A E. Arnold %T Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0\(oA resolution shows bent DNA %J Proc. Natl. Acad. Sci. USA %V 90 %P 6320-6324 %D 1993 %A B.L. Jacobson %A J.J. He %A P.S. Vermersch %A D.D. Lemon %A F.A. Quiocho %T Engineered interdomain disulfide in the periplasmic receptor for sulfate transport reduces flexibility %J J. Biol. Chem. %V 266 %P 5220-5225 %D 1991 %A B.L. Jacobson %A F.A. Quiocho %T Sulfate-binding protein dislikes protonated oxyacids: a molecular explanation %J J. Mol. Biol. %V 204 %P 783-? %D 1988 %K 0SBP %A R.H. Jacobson 5A X.-J. Zhang %A R.F. DuBose %A B.W. Matthews %T Three-dimensional structure of \(*b-galactosidase from \f2E. coli\f1 %J Nature %V 369 %P 761-766 %D 1994 %A R.H. Jacobson %A X.-J. Zhang %A R.F. DuBose %A B.W. Matthews %T Three-dimensional structure of \(*b-galactosidase from \f2E. coli\f1 %J Nature %V 369 %P 761-766 %D 1994 %A R. Jaenicke %T Folding and association of proteins %J Prog. Biophys. Mol. Biol. %V 49 %D 1987 %P 117-237 %A M.N.G. James %T Relationship between the structures and activities of some microbial serine proteases: II. comparison of the tertiary structures of microbial and pancreatic serine proteases %J Miami Winter Symp. %V 11 %P 125-? %D 1976 %K 3SGB %A M.N.G. James %T An X-ray crystallographic approach to enzyme structure and function %J Can. J. Biochem. %V 58 %P 251-271 %D 1980 %K 2APP %A M.N.G. James %A G.D. Brayer %A L.T.J. Delbaere %A A.R. Sielecki %A A. Gertler %T Crystal structure studies and inhibition kinetics of tripeptide chloromethyl ketone inhibitors with \f2Streptomyces griseus\f1 protease B %J J. Mol. Biol. %V 139 %P 423-? %D 1980 %K 3SGB %A M.N.G. James %A L.T.J. Delbaere %A G.D. Brayer %T Amino acid sequence alignment of bacterial and mammalian pancreatic serine proteases based on topological equivalences %J Can. J. Biochem. %V 26 %D 1978 %P 396-402 %K 3SGA 4SGA 5SGA %A M.N.G. James %A I-N. Hsu %A T. Hofmann %A A.R. Sielecki %T The tertiary structure of penicillopepsin: towards a catalytic mechanism for acid proteases %E G. Dodson, J.P. Glusker and D. Sayre %B Structural studies on molecules of biological interest %I Oxford University Press %C New York %P 350-? %D 1981 %K 2APP %A M.N.G. James %A I.-N. Hsu %A L.T.J. Delbaere %T Mechanism of acid protease catalysis based on the crystal structure of penicillopepsin %J Nature %V 267 %D 1977 %P 808-813 %A M.N.G. James %A A. Sielecki %J Biochemistry %P 3701-3713 %T Stereochemical analysis of peptide bond hydrolysis catalyzed by the aspartic proteinase penicillopepsin %V 24 %D 1985 %A M.N.G. James %A A.R. Sielecki %T Structure and refinement of penicillopepsin at 1.8\(Ao resolution %J J. Mol. Biol. %V 163 %D 1983 %P 299-361 %K PDB2APP PDB3APP %A M.N.G. James %A A.R. Sielecki %T Aspartic proteinases and their catalytic pathway %B Biological macromolecules and assemblies %V 3 %E F.A. Jurnak & A. McPherson %I J. Wiley & Sons %C New York %D 1984 %A M.N.G. James %A A.R. Sielecki %T Molecular structure of an aspartic proteinase zymogen, porcine pepsinogen at 1.8\(Ao resolution %J Nature %V 319 %D 1986 %P 33-38 %A M.N.G. James %A A.R. Sielecki %T Aspartic proteinases and their catalytic pathway %B Biological macromolecules and assemblies %V 3 %E F. Jurnak and A. McPherson %C New York %I John Wiley & Sons %D 1987 %P 413-482 %A M.N.G. James %A A.R. Sielecki %A G.D. Brayer %A L.T.J. Delbaere %A C.-A. Bauer %T Structures of product and inhibitor complexes of \f2Streptomyces griseus\f1 protease A at 1.8\(Ao resolution: a model for serine proteinase catalysis %D 1980 %J J. Mol. Biol. %V 144 %P 43-88 %K PDB3SGA PDB4SGA PDB5SGA %A M.N.G. James %A A.R. Sielecki %A K. Hayakawa %A M.H. Gelb %T Crystallographic analysis of transition state mimics bound to penicillopepsin: Diflurostatine- and difluorostatone-containing peptides %J Biochemistry %V 31 %P 3872-3886 %D 1992 %A M.N.G. James %A A.R. Sielecki %A T. Hofmann %T X-ray diffraction studies on penicillopepsin and its complexes: the hydrolytic mechanism %B Aspartic proteinases and their inhibitors %E V. Kostka %P 163-177 %I Walter de\0Gruyter %C Berlin %D 1985 %A M.N.G. James %A A. Sielecki %A F. Salituro %A D.H. Rich %A T. Hofmann %T Conformational flexibility in the active sites of aspartyl proteinases revealed by a pepstatin fragment binding to penicillopepsin %J Proc. Natl. Acad. Sci. USA %V 79 %D 1982 %P 6137-6141 %K flap conformation PNAS %A R. James %A H. Niall %A S. Kwok %A G. Bryant-Greenwood %T Primary structure of porcine relaxin, homology with insulin and related growth factors %J Nature %V 267 %P 544-546 %D 1977 %K 1RLX %A M.N. Janakiraman %A C.L. White %A W.G. Laver %A G.M. Air %A M. Luo %T Structure of influenza virus neuraminidase B/Lee/40 complexed with sialic acid and a dehydro analog at 1.8Å resolution: Implications for the catalytic mechanism %J Biochemistry %V 33 %P 8172-8179 %D 1994 %A K.D. Janda %A S.J. Benkovic %A R.A. Lerner %T Catalytic antibodies with lipase activity and \s-2R\s0 or \s-2S\s0 substrate selectivity %J Science %V 244 %P 437-440 %D 1989 %A R.W. Janes %A D.H. Peapus %A B.A. Wallace %T The crystal structure of human endothelin %J Nature Struct. Biol. %V 1 %P 311-318 %D 1994 %A W. Janes %A G.E. Schulz %T The binding of the retro-analogue of glutathione disulfide to glutathione reductase %J J. Biol. Chem. %V 265 %P 10443-? %D 1990 %K PDB4GR1 %A J. Janin %T Surface and inside volumes in globular proteins %J Nature %V 277 %D 1979 %P 491-492 %A J. Janin %A C. Chothia %T Stability and specificity of protein-protein interactions: the case of the trypsin-trypsin inhibitor complexes %J J. Mol. Biol. %V 100 %D 1976 %P 197-211 %A J. Janin %A C. Chothia %T Packing of \(*a-helices onto \(*b-pleated sheets and the anatomy of \(*a/\(*b proteins %J J. Mol. Biol. %V 143 %D 1980 %P 95-128 %A J. Janin %A C. Chothia %T Domains in proteins: definitions, location and structural principles %J Methods Enzymol. %V 115 %P 420-430 %D 1985 %A J. Janin %A S. Miller %A C. Chothia %T Surface subunit interfaces and interior of oligomeric proteins %J J. Mol. Biol. %V 204 %D 1988 %P 155-164 %A J. Janin %A S. Wodak %A M. Levitt %A B. Maigret %T Conformation of amino acid side-chains in proteins %J J. Mol. Biol. %D 1978 %V 125 %P 357-386 %A C.A. Janson %A P.S. Kayne %A R.J. Almassy %A M. Grunstein %A D. Eisenberg %T Sequence of glutamine synthetase from \f2Salmonella typhimurium\f1 and implications for the protein structure %J Gene %V 46 %P 297-? %D 1986 %K 0GLS 2GLS %A B.K. Jap %A P.J. Walian %A K. Gehring %T Structural architecture of an outer membrane channel as determined by electron crystallography %J Nature %V 350 %P 167-169 %D 1991 %K porin %A N. Jardine %A R. Sibson %T Mathematical Taxonomy %C London %I Wiley %D 1971 %A J.A. Jarvis %A S.L.A. Munro %A D.J. Craik %T Homology model of thyroxine binding globulin and elucidation of the thyroid hormone binding site %J Prot. Eng. %V 5 %P 61-67 %D 1992 %A M. Jask\(o'lski %A M. Miller %A J.K.M. Rao %A J. Leis %A A. Wlodawer %T Structure of the aspartic protease from Rous sarcoma retrovirus refined at 2\(Ao resolution %J Biochemistry %V 29 %P 5889-5898 %D 1990 %K PDB2RSP Jaskolski %A B. Jasny %T Exploiting the insights from protein structure %J Science %V 240 %D 1988 %P 722-723 %A M.J. Jedrzejas %AD S. Singh %A W.J. Brouillette %A W.G. Laver %A G.M. Air %A M. Luo %T Structures of aromatic inhibitors of influenza virus neuraminidase %J Biochemistry %V 34 %P 3144-3151 %D 1995 %A C. Jelsch %A F. Lenfant %A J.M. Masson %A J.P. Samama %T \(*b-lactamase TEM1 of \f2E. coli\f1: Crystal structure determination at 2.5\(Ao resolution %J FEBS Letts. %V 299 %P 134-142 %D 1992 %A W.P. Jencks %T Catalysis in chemistry and enzymology %I McGraw-Hill %D 1969 %A W.P. Jencks %T Binding energy, specificity, and enzymatic catalysis: the Circe effect %J Adv. Enzymol. %V 43 %P 219-410 %D 1975 %A J. Jenkins %A I. Tickle %A T. Sewell %A L. Ungaretti %A A. Wollmer %A T. Blundell %T X-ray analysis and circular dichroism of the acid protease from \f2Endothia parasitica\f1 and chymosin %J Adv. Exp. Med. Biol. %V 95 %P 43-? %D 1977 %K 2ER7 2ER9 4ER1 4ER2 5ER1 2ER0 2ER6 4APE %A T.J. Jentsch %A K. Steinmeyer %A G. Schwarz %T Primary structure of \f2Torpedo marmorata\f1 chloride channel isolated by expression cloning in \f2Xenopus\f1 oocytes %J Nature %V 348 %P 510-514 %D 1990 %A Z. Jia %A M. Vandonselaar %A J.W. Quail %A L.T.J. Delbaere %T Active-centre torsion-angle strain revealed in 1.6\(Ao resolution structure of histidine-containing phosphocarrier protein %J Nature %V 361 %P 94-97 %D 1993 %A F. Jiang %A S.-H. Kim %T ``Soft docking'': Matching of molecular surface cubes %J J. Mol. Biol. %V 219 %P 79-102 %D 1991 %A W. Jiang %A J.S. Bond %T Families of metalloendopeptidases and their relationships %J FEBS Letts. %V 312 %P 110-114 %D 1992 %A L. Jin %A F.E. Cohen %A J.A. Wells %T Structure from function: Screening structural models with functional data %J Proc. Natl. Acad. Sci. USA %V 91 %P 113-117 %D 1994 %A A. Joachimiak %A R.L. Kelley %A R.P. Gunsalus %A C. Yanofsky %A P.B. Sigler %T Purification and characterization of \f2trp\f1 repressor %J Proc. Natl. Acad. Sci. USA %V 80 %P 668-672 %D 1983 %K 3WRP PNAS %A A. Joachimiak %A R.Q. Marmorstein %A R.W. Schevitz %A W. Mandecki %A J.L. Fox %A P.B. Sigler %T Crystals of the \f2trp\f1 repressor-operator complex suitable for X-ray diffraction analysis %J J. Biol. Chem. %V 262 %P 4917-? %D 1987 %K 0TRO %A A. Joachimiak %A R.W. Schevitz %A R.L. Kelley %A C. Yanofsky %A P.B. Sigler %T Functional inferences from crystals of \f2Escherichia coli trp\f1 repressor %J J. Biol. Chem. %V 258 %P 12641-? %D 1983 %K 3WRP %A C.K. Johnson %B Crystallographic computing %E F.A. Ahmed %C Munksgaard, Denmark %P 207-219 %T An introduction to thermal-motion analysis %D 1970 %A C.N. Johnson %T \s-2ORTEP-II\s0: a \s-2FORTRAN\s0 thermal ellipsoid plot program for crystal structure illustrations %O \s-2ORNL\s0-5138, Oak Ridge National Laboratory %D 1976 %A D.A. Johnson %A G.J. Barton %T Mast cell tryptases: Examination of unusual characteristics by multiple sequence alingnment and molecular modeling %J Prot. Sci. %V 1 %P 370-377 %D 1992 %A D.A. Johnson %A G.J. Barton %T Mast cell tryptases: Examination of unusual characteristics by multiple sequence alignment and molecular modelling %J Prot. Sci. %V 1 %P 370-377 %D 1993 %A F.A. Johnson %A S.D. Lewis %A J.A. Shafer %T Determination of a low pK for histidine-159 in the S-methylthio derivative of papain by proton nuclear magnetic resonance spectroscopy %J Biochemistry %P 44-48 %V 20 %D 1981 %A F.A. Johnson %A S.D. Lewis %A J.A. Shafer %J Biochemistry %P 52-58 %T Perturbations in the free energy and enthalpy of ionization of histidine-159 at the active site of papain as determined by fluorescence spectroscopy %V 20 %D 1981 %A J.E. Johnson %A T. Akimoto %A D. Suck %A I. Rayment %A M.G. Rossmann %T The structure of southern bean mosaic virus at 22.5\(Ao resolution %J Virology %V 75 %P 394-? %D 1976 %K 4SBV %A L.N. Johnson %T Glycogen phosphorylase: control and phosphorylation and allosteric effects %J FASEB J. %V 6 %P 2274-2282 %D 1992 %A L.N. Johnson %A D. Barford %T Glycogen phosphorylase: the structural basis of the allosteric response and comparison with other allosteric proteins %J J. Biol. Chem. %V 265 %D 1990 %P 2409-2412 %K phosphorylase allostery ligand binding %A L.N. Johnson %A J.A. Jenkins %A K.S. Wilson %A E.A. Stura %A G. Zanotti %T Proposals for the catalytic mechanism of glycogen phosphorylase B prompted by crystallographic studies on glucose 1-phosphate binding %J J. Mol. Biol. %V 140 %P 565-? %D 1980 %K 0PB1 %A L.N. Johnson %A D.C. Phillips %T Structure of some crystalline lysozyme-inhibitor complexes determined by X-ray analysis at 6\(Ao resolution %J Nature %V 206 %P 761-763 %D 1965 %K 3LYZ %A L.N. Johnson %A E.A. Sutra %A K.S. Wilson %A M.S.P. Sansom %A I.T. Weber %T Nucleotide binding to glycogen phosphorylase B in the crystal %J J. Mol. Biol. %V 134 %P 639-? %D 1979 %K 0PB1 %A L.N. Johnson %A I.T. Weber %A D.L. Wild %A K.S. Wilson %A D.G.R. Yeates %T Crystallographic analysis at low resolution of metabolite binding sites on phosphorylase B %J J. Mol. Biol. %V 118 %P 579-? %D 1978 %K 0PB1 %A M.S. Johnson %A R.F. Doolittle %T A method for the simultaneous alignment of three or more amino acid sequences %J J. Mol. Evol. %V 23 %P 267-273 %D 1986 %A M.S. Johnson %A M.A. McClure %A D.-F. Feng %A J. Gray %A R.F. Doolittle %T Computer analysis of retroviral \f2pol\f1 genes: assignment of enzymatic functions to specific sequences and homologies with nonviral enzymes %J Proc. Natl. Acad. Sci. USA %V 83 %D 1986 %P 7648-7652 %K PNAS %A M.S. Johnson %A J.P. Overington %T A structural basis for sequence comparisons: An evaluation of scoring methodologies %J J. Mol. Biol. %V 233 %P 716-738 %D 1993 %A M.S. Johnson %A J.P. Overington %A T.L. Blundell %T Alignment and searching for common protein folds using a data bank of structural templates %J J. Mol. Biol. %V 231 %P 735-752 %D 1993 %A M.S. Johnson %A J.P. Overington %A A. \(Svali %T Knowledge-based protein modelling: human plasma kallikrein and human neutrophil defensin %B Current research in protein chemistry: Techniques, structure, and function %E J.J. Villafranca %I Academic Press %C San Diego %D 1990 %P 567-574 %K Sali %A M.S. Johnson %A J. Overington %A A. \(Svali %A Z. Zhu %A D. Donnelly %A P. Thomas %A A. McLeod %A R. Goold %A C. Topham %A T.L. Blundell %T From comparative structure analysis to protein engineering: Knowledge-based protein modelling and design %J Fresnius J. Anal. Chem. %V 337 %P 1-3 %D 1990 %K Sali %A M.S. Johnson %A M.J. Sutcliffe %A T.L. Blundell %T Molecular anatomy: phyletic relationships derived from three-dimensional structures of proteins %J J. Mol. Evol. %V 30 %D 1990 %P 43-59 %K phylogeny comparison sequence structure families %A M.S. Johnson %A A. \(Svali %A T.L. Blundell %T Phylogenetic relationships from three-dimensional protein structures %J Methods Enzymol. %V 183 %D 1990 %P 670-690 %K structure evolution comparison alignment Sali %A P. Johnson %A A.F. Williams %T Striking similarities between antigen receptor J pieces and sequence in the second chain of the murine CD8 antigen %J Nature %V 323 %D 1986 %P 74-76 %K sequence alignment immunoglobulin CD8 %A R.L. Johnson %J J. Med. Chem. %P 666-669 %T N-(\(*a-hydroxyalkanoyl) derivatives of Leu-Val-Phe-OCH\d\s-23\s0\u as inhibitors of renin %V 32 %D 1980 %A P. Jolles %A J. Berthou %T High temperature crystallization of lysozyme: an example of phase transition %J FEBS Lett. %V 23 %P 21-? %D 1972 %K 0LZT %A D.D. Jones %T Amino acid properties and side-chain orientation in proteins: a cross correlation approach %J J. Theor. Biol. %P 167-183 %V 50 %D 1975 %A D.T. Jones %T \f2De novo\f1 protein design using pairwise potentials and a genetic algorithm %J Prot. Sci. %V 3 %P 567-574 %D 1994 %A D.T. Jones %A R.T. Miller %A J.M. Thornton %T Successful protein fold recognition by optimal sequence threading validated by rigorous blind testing %J Proteins %V 23 %P 387-397 %D 1995 %A D.T. Jones %A W.R. Taylor %A J.M. Thornton %T A new approach to protein fold recognition %J Nature %V 358 %P 86-89 %D 1992 %A D.T. Jones %A W.R. Taylor %A J.M. Thornton %T A model recognition approach to the prediction of all-helical membrane protein structure and topology %J Biochem. %V 33 %P 3038-3049 %D 1994 %A E.Y. Jones %A S.J. Davies %A A.F. Williams %A K. Harlos %A D.I. Stuart %T Crystal structure at 2.8\(Ao resolution of a soluble form of the cell adhesion molecule CD2 %J Nature %V 360 %P 232-239 %D 1992 %A E.Y. Jones %A D.I. Stuart %T Methods of structural analysis of proteins. Part 1 \(em protein crystallography %P 3-32 %B Protein Engineering: A practical approach %E A.R. Rees, M.J.E. Sternberg and R. Wetzel %I IRL Press %C Oxford %D 1992 %A E.Y. Jones %A D.I. Stuart %A N.P.C. Walker %T Structure of tumor necrosis factor %J Nature %V 338 %D 1989 %P 225-228 %A G. Jones %A P. Willett %A R.C. Glen %T Molecular recognition of erceptor sites using a genetic algorithm with a description of desolvation %J J. Mol. Biol. %V 245 %P 43-53 %D 1995 %A T.A. Jones %T A graphics model building and refinement system for macromolecules %J J. Appl. Cryst. %V 11 %D 1978 %P 268-272 %K FRODO %A T.A. Jones %T \s-2FRODO\s0: A graphics fitting program for macromolecules %B Computational crystallography %D 1982 %E D. Sayre %C Oxford %I Clarendon Press %P 303-317 %K FRODO %A T.A. Jones %A M. Bergdoll %A M. Kjeldgaard %T O: A macromolecule modelling environment %B Crystallographic and modelling methods in molecular design %E C.E. Bugg & S.E. Ealick %I Springer-Verlag %P 189-199 %D 1990 %C New York %A T.A. Jones %A S. Thirup %T Using known substructures in protein model building and crystallography %J EMBO J. %V 5 %D 1986 %P 819-822 %A S.R. Jordan %A C.O. Pabo %T Structure of the \(*l complex at 2.5\(Ao resolution: details of the repressor-operator interactions %J Science %V 242 %P 893-899 %D 1988 %K PDB1LRD %A W.L. Jorgensen %T Free energy calculations: A breakthrough for modeling organic chemistry in solution %J Acc. Chem. Res. %V 22 %P 184-189 %D 1989 %A W.L. Jorgensen %T Rusting of the lock and key model for protein-ligand binding %J Science %V 254 %P 954-955 %D 1991 %A W.L. Jorgensen %A J. Tirado-Rives %T The OPLS potential function for proteins: Energy minimizations for crystals of cyclic peptides and crambin %J J. Amer. Chem. Soc. %V 110 %P 1657-1666 %D 1988 %A B. Joris %A J. van\0Beeumen %A F. Casagrande %A C. Gerday %A J.-M. Frere %A J.-M. Ghuysen %T The complete amino acid sequence of the Zn\u\s-22\(pl\s0\d-containing \s-2D\s0-alanyl-\s-2D\s0-alanine-cleaving carboxypeptidase of \f2Streptomyces albus\f1 G %J Eur. J. Biochem. %V 130 %P 53-? %D 1983 %K 0ZGP %A L. Joshua-Tor %A D. Rabinovich %A H. Hope %A F. Frolow %A E. Appella %A J.L. Sussman %T The three-dimensional structure of a DNA duplex containing looped-out bases %J Nature %V 334 %P 82-? %D 1988 %K 1D31 %A F.J. Joubert %A N. Taljaard %T The amino acid sequences of two proteinase inhibitor homologues from \f2Dendroaspis augusticeps\f1 venom %J Hoppe-Seyler's Z. Physiol. Chem. %V 361 %P 661-? %D 1980 %K 1DTX %A C.M. Joyce %A W.S. Kelley %A N.D.F. Grindley %T Nucleotide sequence of the \f2Escherichia coli\f1 \f2pol\f1A gene and primary structure of DNA polymerase I %J J. Biol. Chem. %V 257 %P 1958-? %D 1982 %K 1DPI %A T.H. Jukes %A C.R. Cantor %T Evolution of protein molecules %P 21-132 %B Mammalian protein metabolism %E H.N. Munro %I Academic Press %C New York %D 1969 %A M. Julkunen %A M. Sepp\(a:l\(a: %A O.A. J\(a:nne %T Complete amino acid sequence of human placental protein 14: A progesterone-regulated uterine protein homologous to \(*b-lactoglobulins %J Proc. Natl. Acad. Sci. USA %V 85 %P 8845-8849 %D 1988 %K PNAS Seppala Janne lipocalin %A F. Jurnak %T Structure of the GDP domain of EF-Tu and location of the amino acids homologous to \f2ras\f1 oncogene proteins %J Science %V 230 %P 32-36 %D 1985 %K PDB1EFM %A F. Jurnak %T Structure of the GDP domain of EF-Tu and location of the amino acids homologous to \f2ras\f1 oncogene products %J Science %V 230 %P 32-36 %D 1985 %A F. Jurnak %A A. McPherson %A A.H.J. Wang %A A. Rich %T Biochemical and structural studies of the tetragonal crystalline modification of the \f2Escherichia coli\f1 elongation factor Tu %J J. Biol. Chem. %V 255 %P 6751-? %D 1980 %K 1EFM %A F. Jurnak %A A. Rich %A D. Miller %T Preliminary X-ray diffraction data for tetragonal crystals of trypsinized \f2Escherichia coli\f1 elongation factor %J J. Mol. Biol. %V 115 %P 103-? %D 1977 %K 1EFM %A F. Jurnak %A A. Rich %A L. van\0Loon-Klaassen %A H. Bloemendal %A A. Taylor %A F.H. Carpenter %T Preliminary X-ray study of leucine aminopeptidase (bovine lens), an oligomeric metalloenzyme %J J. Mol. Biol. %V 112 %P 149-? %D 1977 %K 1LAP %A L. Jur\(a'\(svek %A R.W. Olafson %A P. Johnson %A L.B. Smillie %T ? %J Miami Winter Symp. %V 11 %D 1976 %P 93-123 %K Jurasek %A M. Juy %A A.G. Amit %A P.M. Alzari %A R.J. Poljak %A M. Claeyssens %A P. B\(e'guin %A J.-P. Aubert %T Three-dimensional structure of a thermostable bacterial cellulase %J Nature %V 357 %P 89-91 %D 1992 %K Beguin %A H. J\(o:rnvall %A A. Carlstr\(o:m %A T. Pettersson %A B. Jacobsson %A M. Persson %A V. Mutt %T Structural homology between prealbumin, gastrointestinal prohormones and other proteins %J Nature %V 291 %D 1981 %P 261-263 %K Jornvall Carlstrom %A H. J\(o:rnvall %A H. Eklund %A C.-I. Br\(a:nd\(e'n %T Subunit conformation of yeast alcohol dehydrogenase %J J. Biol. Chem. %V 253 %P 8414-? %D 1978 %K Branden Jornvall %A E.A. Kabat %T The structural basis of antibody complementarity %J Adv. Prot. Chem. %V 32 %P 1-75 %D 1978 %A E.A. Kabat %A T.T. Wu %T Construction of a three-dimensional model of the polypeptide backbone of the variable region of \(*k immunoglobulin light chains %J Proc. Natl. Acad. Sci. USA %V 69 %D 1972 %P 960-964 %K PNAS %A E.A. Kabat %A T.T. Wu %T The influence of nearest-neighbour amino acids on the conformation of the middle amino acid in proteins: comparison of predicted and experimentally determination of \(*b-sheets in concanavalin A %J Proc. Natl. Acad. Sci. USA %V 70 %D 1973 %P 1473-1477 %K PNAS %A E.A. Kabat %A T.T. Wu %T The influence of nearest-neighbouring amino acid residues on aspects of secondary structure of proteins: attempts to locate \(*a-helices and \(*b-sheets %J Biopolymers %V 12 %D 1973 %P 751-774 %A E.A. Kabat %A T.T. Wu %T Further comparison of predicted and experimentally determined structure of adenylate kinase %J Proc. Natl. Acad. Sci. USA %V 71 %D 1974 %P 4217-4220 %K PNAS %A W. Kabsch %T A solution for the best rotation to relate two sets of vectors %J Acta Cryst. %V A 32 %P 922-923 %D 1976 %A W. Kabsch %A H.G. Mannherz %A D. Suck %A E.F. Pai %A K.C. Holmes %T Atomic structure of the actin:DNase I complex %J Nature %V 347 %P 37-44 %D 1990 %A W. Kabsch %A C. Sander %T Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features %J Biopolymers %V 22 %D 1983 %P 2577-2637 %A W. Kabsch %A C. Sander %T How good are predictions of protein secondary structure ? %J FEBS Lett. %V 155 %D 1983 %P 179-182 %A W. Kabsch %A C. Sander %T On the use of sequence homologies to predict protein structure: identical pentapeptides can have completely different conformations %J Proc. Natl. Acad. Sci. USA %V 81 %D 1984 %P 1075-1078 %K cooperativity protein folding homology PNAS %A F. Kaden %A I. Koch %A J. Selbig %T Knowledge-based prediction of protein structures %J J. Theor. Biol. %V 147 %P 85-100 %D 1990 %A T. Kageyama %A K. Takahashi %J J. Biochem. %P 571-582 %T Isolation of an activation intermediate and determination of the amino acid sequence of the activation segment of human pepsinogen A %V 88 %D 1980 %A T. Kageyama %A K. Takahashi %T The complete amino acid sequence of monkey pepsinogen A %J J. Biol. Chem. %V 261 %D 1986 %P 4395-4405 %A T. Kageyama %A K. Takahashi %T The complete amino acid sequence of monkey progastricsin %J J. Biol. Chem. %V 261 %D 1986 %P 4406-4419 %A E.T. Kaiser %A F.J. K\(e'zdy %T Amphiphilic secondary structure: design of peptide hormones %J Science %V 223 %P 249-255 %D 1984 %K Kezdy %A J. Kallen %A C. Spitzfaden %A M.G.M. Zurini %A G. Wider %A H. Widmer %A K. W\(u:thrich %A M.D. Walkinshaw %T Structure of human cyclophilin and its binding site for cyclosporin A determined by X-ray crystallography and NMR spectroscopy %J Nature %V 353 %P 276-279 %D 1991 %K Wuthrich %A C.-M. Kam %A B.J. McRae %A J.W. Harper %A M.A. Niemann %A J.E. Volanakis %A J.C. Powers %T Human complement protein D, C2 and B: Active site mapping with peptide thioester substrates %J J. Biol. Chem. %V 262 %P 3444-3451 %D 1987 %A G. Kamer %A P. Argos %T Comparison of the active center geometries in phospholipase, trypsin and thermolysin %J Biochim. Biophys. Acta %P 93-97 %V 66? %D 1981 %A I.G. Kamphuis %A J. Drenth %A E.N. Baker %T Thiol proteases: comparative studies based on the high-resolution structures of papain and actinidin and on amino acid sequence information for cathepsins B and H and stem bromelein %J J. Mol. Biol. %V 182 %D 1985 %P 317-329 %K thiol proteinase comparison structure modelling alignment %A I.G. Kamphuis %A K.H. Kalk %A M.B.A. Swarte %A J. Drenth %T Structure of papain refined at 1.65\(Ao resolution %J J. Mol. Biol. %V 179 %D 1984 %P 233-256 %K PDB9PAP %A S. Kamtekar %A J.M. Schiffer %A H. Xiong %A J.M. Babik %A M.H. Hecht %T Protein design by binary patterning of polar and nonpolar amino acids %J Science %V 262 %P 1680-1685 %D 1993 %A M. Kanaoka %A F. Kishimoto %A K. Ueki %T Alignment of protein sequences using the hydrophobic core scores %J Prot. Eng. %V 2 %D 1989 %P 347-351 %A M. Kanehisa %T A multivariate analysis method for discriminating protein secondary structural segments %J Prot. Eng. %V 2 %D 1988 %P 87-92 %A K.K. Kannan %T Structure and function of carbonic anhydrases %B Biomolecular structure, conformation, function, and evolution %E R. Srinivasan %P 165-181 %V 1 %I Pergamon Press %C Oxford %D 1978 %A K.K. Kannan %A A. Liljas %A I. Waara %A P.-C. Bergst\(e'n %A S. L\(o:vgren %A B. Strandberg %A U. Bengtsson %A U. Carlbom %A K. Fridborg %A L. J\(a:rup %A M. Petef %T Crystal structure of human erythrocyte carbonic anhydrase C: VI. the three-dimensional structure at high resolution in relation to other mammalian carbonic anhydrases %J Cold Spring Harbor Symp. Quant. Biol. %V 36 %P 221-? %D 1972 %K 3CA2 Bergsten Lovgren Jarup %A K.K. Kannan %A B. Notstrand %A K. Fridborg %A S. L\(o:vgren %A A. Ohlsson %A M. Petef %T Crystal structure of human erythrocyte carbonic anhydrase B, three-dimensional structure at a nominal 2.2\(Ao resolution %J Proc. Natl. Acad. Sci. USA %V 72 %P 51-55 %D 1975 %K 2CAB PNAS Lovgren %A K.K. Kannan %A M. Petef %A K. Fridborg %A H. Cid-Dresdner %A S. L\(o:vgren %T Structure and function of carbonic anhydrases: imidazole binding to human carbonic anhydrase B and the mechanism of action of carbonic anhydrases %J FEBS Lett. %V 73 %P 115-? %D 1977 %K 2CAB Lovgren %A K.K. Kannan %A M. Ramanadham %T Structure, refinement, and function of human carbonic anhydrase-B %J Int. J. Quant. Chem. %V 20 %P 199-? %D 1981 %K 2CAB %A K.K. Kannan %A M. Ramanadham %A T.A. Jones %T Structure, refinement and function of carbonic anhydrase isozymes: refinement of human carbonic anhydrase I %J Ann. N.Y. Acad. Sci. %V 429 %P 49-55 %D 1984 %K PDB2CAB %A E.R. Kantrowitz %A W.N. Lipscomb %T \f2Escherichia coli\f1 aspartate transcarbamylase: The relation between structure and function %J Science %V 241 %P 669-674 %D 1988 %K 2ATC 8ATC 1AT1 2AT1 3AT1 4AT1 5AT1 6AT1 7AT1 8AT1 %A R. Kaptein %A R. Boelens %A J.A.C. Rullmann %T Biomolecular structures from NMR: Computational aspects %P 194-216 %B Computer simulation of biomolecular systems: Theoretical and experimental applications %E W.F. van\0Gunsteren and P.K. Weiner %I ESCOM %C Leiden %D 1989 %A R. Kaptein %A R. Boelens %A R.M. Scheek %A W.F. van\0Gunsteren %J Biochemistry %P 5389-5394 %T Protein structure from NMR %V 27 %D 1988 %A R. Kaptein %A E.R.P. Zuiderweg %A R.M. Scheek %A R. Bolens %A W.F. van\0Gunsteren %T A protein structure from nuclear magnetic resonance data: \f2lac\fP repressor headpiece %J J. Mol. Biol. %V 182 %P 179-182 %D 1985 %A S. Karlin %A S.F. Altschul %T Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes %J Proc. Natl. Acad. Sci. USA %V 87 %D 1990 %P 2264-2268 %K alignment significance statistics scoring PNAS %A S. Karlin %A B.E. Blaisdell %A P. Bucher %T Quantile distributions of amino acid usage in protein classes %J Prot. Eng. %V 5 %P 729-738 %D 1992 %A S. Karlin %A B.E. Blaisdell %A E.S. Mocarski %A V. Brendel %J J. Mol. Biol. %P 165-177 %T A method to identify distinctive charge configurations in protein sequences, with application to human herpesvirus polypeptides %V 205 %D 1989 %A S. Karlin %A M. Morris %A G. Ghandour %A M.-Y. Leung %T Efficient algorithms for molecular sequence analysis %J Proc. Natl. Acad. Sci. USA %V 85 %P 841-845 %D 1988 %K PNAS %A H. Karlos %A C.W.G. Boys %A S.K. Holland %A M.P. Esnouf %A C.C.F. Blake %T Structure and order of the protein and carbohydrate domains of prothrombin fragment 1 %J FEBS Lett. %D 1987 %V 224 %P 97-103 %A M.E. Karpen %A P.L. de\0Haseth %A K.E. Neet %T Comparing short protein substructures by a method based on backbone torsion angles %J Proteins %V 6 %D 1989 %P 155-167 %A M.E. Karpen %A P.L. De\0Haseth %A K.E. Neet %T Differences in the amino acid distributions of 3\d\s-410\s0\u and \(*a-helices %J Prot. Sci. %V 1 %P 1333-1342 %D 1992 %A M.E. Karpen %A K.E. Neet %A P.L. de\0Haseth %T A common pentapeptide conformation occurs in viral acid proteases and other proteins %J J. Mol. Biol. %V 216 %P 201-206 %D 1990 %A M. Karplus %A A. Caflisch %A A. Sali %A E. Shakhnovich %T Protein dynamics: From the native to the unfolded state and back again %B Modelling of Biomolecular Structures and Mechanisms %E A. Pullman et al. %D 1995 %I Kluwer Academic Publishers %A M. Karplus %A J.N. Kushick %T Method for estimating the configurational entropy of macromolecules %J Macromolecules %V 14 %P 325-332 %D 1981 %A M. Karplus %A J.A. McCammon %T Protein structural fluctuations during a period of 100 ps %J Nature %D 1979 %V 277 %P 578 %A M. Karplus %A J.A. McCammon %T Dynamics of proteins: elements and function %J Annu. Rev. Biochem. %D 1983 %V 53 %P 263-300 %A M. Karplus %A G.A. Petsko %T Molecular dynamics simulations in biology %J Nature %V 347 %P 631-639 %D 1990 %A M. Karplus %A A. Sali %T Theoretical studies of protein folding and unfolding %J Curr. Opin. Struct. Biol. %V 5 %P 58-73 %D 1995 %A M. Karplus %A D.L. Weaver %T Protein folding dynamics: The diffusion-collision model and experimental data %J Prot. Sci. %V 3 %P 650-668 %D 1994 %A P.A. Karplus %A M.J. Daniels %A J.R. Herriot %T Atomic structure of ferredoxin-NADP\u\s-2\(pl\s0\d reductase: prototype for a structurally novel flavoenzyme family %J Science %V 251 %P 60-66 %D 1991 %K 1FNR 2FNR %A P.A. Karplus %A R.L. Krauth-Siegel %A R.H. Schirmer %A G.E. Schulz %T Inhibition of human glutathione reductase by the nitrosourea drugs 1,3-bis(2-chloroethyl)-1-nitrosourea and 1-(2-chloroethyl)-3-(2-hydroxyethyl)-1-nitrosourea %J Eur. J. Biochem. %V 171 %P 193-? %D 1988 %K 3GRS %A P.A. Karplus %A G.E. Schulz %T Refined structure of glutathione reductase at 1.54\(Ao resolution %J J. Mol. Biol. %V 195 %P 701-729 %D 1987 %K PDB3GRS %A P.A. Karplus %A K.A. Walsh %A J.R. Herriott %T Amino acid sequence of spinach ferredoxin:NADP\u\s-4\(pl\s0\d oxidoreductase %J Biochemistry %V 23 %P 6576-? %D 1984 %K 1FNR 2FNR %A S.Y. Karpukhina %A V.V. Barynin %A G.M. Lobanova %T Crystallization of catalase in an ultracentrifuge %J Kristallografiya %V 20 %P 680-? %D 1975 %K 4CAT %A S.Y. Karpukhina %A V.V. Barynin %A G.M. Lobanova %T Crystallization of catalase in the ultracentrifuge %J Sov. Phys. Cryst. (English trans.) %V 20 %P 417-? %D 1975 %K 4CAT %A M. Karpusas %A W.A. Baase %A M. Matsumura %A B.W. Matthews %T Hydrophobic packing in T4 lysozyme probed by cavity-filling mutants %J Proc. Natl. Acad. Sci. USA %V 86 %D 1989 %P 8237-8241 %K PNAS %A K.M. Karrer %A S.L. Peiffer %A M.E. DiTomas %T Two distinct gene subfamilies within the family of cysteine protease genes %J Proc. Natl. Acad. Sci. USA %V 90 %P 3063-3067 %D 1993 %A G. Kartha %A J. Bello %A D. Harker %T Tertiary structure of ribonuclease %J Nature %V 213 %P 862-? %D 1967 %K 0RSA %A P.J. Kasvinsky %A N.B. Madsen %T Activity of glycogen phosphorylase in the crystalline state %J J. Biol. Chem. %V 251 %P 6852-? %D 1976 %K 0PPA %A P.J. Kasvinsky %A N.B. Madsen %A R.J. Fletterick %A J. Sygusch %T X-ray crystallographic and kinetic studies of oligosaccharide binding to phosphorylase %J J. Biol. Chem. %V 253 %P 1290-? %D 1978 %K 0PPA %A P.J. Kasvinsky %A N.B. Madsen %A J. Sygusch %A R.J. Fletterick %T The regulation of glycogen phosphorylase A by nucleotide derivatives: kinetic and X-ray crystallographic studies %J J. Biol. Chem. %V 253 %P 3343-? %D 1978 %K 0PPA %A P.J. Kasvinsky %A S. Shechosky %A R.J. Fletterick %T Synergistic regulation of phosphorylase A by glucose and caffeine %J J. Biol. Chem. %V 253 %P 9102-? %D 1978 %K 0PPA %A S. Katakura %A T. Nagahara %A T. Hara %A S. Kunitada %A M. Iwamoto %T Molecular model of an interaction between factor Xa and DX-9065a, a novel factor Xa inhibiotr: contribution of the acetimidoylpyrrolidine moiety of the inhibitor to potency and selectivity for serine proteases %J Eur. J. Med. Chem. %V 30 %P 387-394 %D 1995 %A K. Katayanagi %A M. Miyagawa %A M. Matsushima %A M. Ishikawa %A S. Kanaya %A M. Ikehara %A T. Matsuzaki %A K. Morikawa %T Three-dimensional structure of ribonuclease H from \f2E. coli\f1 %J Nature %V 347 %D 1990 %P 306-309 %K reverse transcriptase %A K. Katayanagi %A M. Miyagawa %A M. Matsushima %A M. Ishikawa %A S. Kanaya %A H. Nakamura %A M. Ikehara %A T. Matsuzaki %A K. Morikawa %T Structural details of ribonuclease H from \f2Escherichia coli\f1 as refined to an atomic resolution %J J. Mol. Biol. %V 223 %P 1029-1052 %D 1992 %A E. Katchalski-Katzir %A I. Shariv %A M. Eisenestein %A A.A. Freisem %A C. Aflalo %A I.A. Vakser %T Molecular surface recognition: Determination of geometric fit between proteins and their ligands by correlation techniques %J Proc. Natl. Acad. Sci. USA %V 89 %P 2195-2199 %D 1992 %A I. Katoh %A T. Yasunaga %A Y. Ikawa %A Y. Yoshinaka %T Inhibition of retroviral protease activity by an aspartyl proteinase inhibitor %J Nature %V 329 %D 1987 %P 654-656 %A S.K. Katti %A B.A. Katz %A H.W. Wyckoff %T Crystal structure of muconolactone isomerase at 3.3\(Ao resolution %J J. Mol. Biol. %V 205 %P 557-? %D 1989 %K 1MLI %A S.K. Katti %A D.M. LeMaster %A H. Eklund %T Crystal structure of thioredoxin from \f2Escherichia coli\f1 at 1.68\(Ao resolution %J J. Mol. Biol. %V 212 %P 167-? %D 1990 %K PDB2TRX %A N. Katunuma %A N. Wakamatsu %A K. Takio %A K. Titani %A E. Kominami %T Structure, function and regulation of endogenous thiol proteinase inhibitor %J Japan Sci. Soc. Press %P 135-145 %D 1983 %A B.A. Katz %A D. Ollis %A H.W. Wyckoff %T Low resolution crystal structure of muconolactone isomerase: a decamer with a 5-fold symmetry axis %J J. Mol. Biol. %V 184 %P 311-? %D 1985 %K 1MLI %A D.S. Katz %A D.W. Christianson %T Modeling the uncleaved serpin antichymotrypsin and its chymotrypsin complex %J Prot. Eng. %V 6 %P 701-709 %D 1993 %A B.J. Katzin %A E.J. Collins %A J.D. Robertus %T Structure of ricin A-chain at 2.5\(Ao %J Proteins %V 10 %P 251-259 %D 1991 %A K. Kaushansky %A P.A. Karplus %T Hematopoietic growth factors: Understanding functional diversity in structural terms %J Blood %V 82 %P 3229-3240 %D 1993 %K cytokines %A W. Kauzmann %T Some factors in the interpretation of protein denaturation %J Adv. Prot. Chem. %V 14 %D 1959 %P 1-63 %K protein folding stability free energy hydrophobic effect %A W. Kauzmann %J Nature %P 763-764 %T Thermodynamics of unfolding %V 325 %D 1987 %A H. Kawai %A T. Kikuchi %A Y. Okamoto %J Prot. Eng. %V 3 %P 85-94 %T A prediction of tertiary structures by the Monte Carlo simulated annealing method %D 1989 %A T. Kawakami %A L. Sherman %A J. Dahlberg %A A. Gazit %A A. Yaniv %A S.R. Tronick %A S.A. Aaronson %T Nucleotide sequence analysis of equine infectious anemia virus proviral DNA %J Virology %V 158 %D 1987 %P 300-312 %A T. Kawashima %A C. Berthet-Colominas %A M. Wulff %A S. Cusack %A R. Leberman %T The structure of the \f2Escherichia coli\f1 EF-Tu.EF-Ts complex at 2.5\(oA resolution %J Nature %V 379 %P 511-518 %D 1996 %A J. Kay %B Aspartic proteinases and their inhibitors %E V. Kostka %P 1-17 %C Berlin %I Walter de\0Gruyter %D 1985 %A H. Ke %T Similarities and differences between human cyclophilin A and other \(*b-barrel structures %J J. Mol. Biol. %V 228 %P 539-550 %D 1992 %A H.-M. Ke %A R.B. Honzatko %A W.N. Lipscomb %T Structure of unligated aspartate carbamoyltransferase of \f2Escherichia coli\f1 at 2.6\(Ao resolution %J Proc. Natl. Acad. Sci. USA %V 81 %P 4037-4040 %D 1984 %K PDB4ATC 8ATC 1AT1 2AT1 3AT1 4AT1 5AT1 6AT1 7AT1 8AT1 PNAS %A H. Ke %A W.N. Lipscomb %A Y. Cho %A R.B. Honzatko %T Complex of N-phosphonacetyl-\s-2L\s0-aspartate with aspartate carbamoyltransferase: X-ray refinement, analysis of conformational changes and catalytic and allosteric mechanisms %J J. Mol. Biol. %V 204 %P 725-? %D 1988 %K 8ATC 1AT1 2AT1 3AT1 4AT1 5AT1 6AT1 7AT1 8AT1 %A H. Ke %A D. Mayrose %A W. Cao %T Crystal structure of cyclophilin A complexed with substrate Ala-Pro suggests a solvent-assisted mechanism of cis-trans isomerization %J Proc. Natl. Acad. Sci. USA %V 90 %P 3324-3328 %D 1993 %A H. Ke %A Y. Zhang %A J.-Y. Liang %A W.N. Lipscomb %T Crystal structure of the neutral form of fructose-1,6-bisphosphatase complexed with the product fructose 6-phosphate at 2.1\(Ao resolution %J Proc. Natl. Acad. Sci. USA %V 88 %P 2989-2993 %D 1991 %K PNAS %A H. Ke %A L.D. Zydowsky %A J. liu %A C.T. Walsh %T Crystal structure of recombinant human T-cell cyclophilin A at 2.5\(Ao resolution %J Proc. Natl. Acad. Sci. USA %V 88 %P 9483-9487 %D 1991 %K PNAS %A C. Keith %A D.S. Feldman %A S. Deganello %A J. Glick %A K.B. Ward %A E.O. Jones %A P.B. Sigler %T The 2.5\(Ao crystal structure of a dimeric phospholipase A\d\s-22\s0\u from the venom of \f2Crotalus atrox\f1 %J J. Biol. Chem. %V 256 %P 8602-? %D 1981 %K 1PP2 %A J.T. Kellis %A K. Nyberg %A A.R. Fersht %T Energetics of complementary side-chain packing in a protein hydrophobic core %J Biochemistry %P 4914-4922 %V 28 %D 1989 %A J.T. Kellis,\0Jr. %A K. Nyberg %A D. \(Svali %A A.R. Fersht %T Contribution of hydrophobic interactions to protein stability %J Nature %V 333 %D 1988 %P 784-786 %K Sali %A J.A. Kelly %A O. Dideberg %A P. Charlier %A J.P. Wery %A M. Libert %A P.C. Moews %A J.R. Knox %A C. Duez %A C.L. Fraipont %A B. Joris %A J. Dusart %A J.M. Frere %A J.M. Ghuysen %T On the origin of bacterial resistance to penicillin: comparison of a \(*b-lactamase and a penicillin target %J Science %V 231 %P 1429-1431 %D 1986 %K 1PTE 2BLM %A J.A. Kelly %A J.R. Knox %A P.C. Moews %A G.J. Hite %A J.B. Bartolone %A H. Zhao %A B. Joris %A J.-M. Frere %A J.-M. Ghuysen %T 2.8\(Ao structure of penicillin-sensitive \s-2D\s0-alanyl carboxypeptidase-transpeptidase from \f2Streptomyces\f1 R61 and complexes with \(*b-lactams %J J. Biol. Chem. %V 260 %P 6449-? %D 1985 %K PDB1PTE %A J.A. Kelly %A P.C. Moews %A J.R. Knox %A J.-M. Frere %A J.-M. Ghuysen %T Penicillin target enzyme and the antibiotic binding site %J Science %V 218 %P 479-481 %D 1982 %K 1PTE %A J.A. Kelly %A A.R. Sielecki %A B.D. Sykes %A M.N.G. James %A D.C. Phillips %T X-ray crystallogrpahy of the binding of the bacterial cell wall trisaccharide NAM-NAG-NAM to lysozyme %J Nature %V 282 %P 875-? %D 1979 %K PDB9LYZ %A D.S. Kemp %A J.G. Boyd %A C.C. Muendel %T The helical \f2s\f1 constant for alanine in water derived from template-nucleated helices %J Nature %V 352 %P 451-454 %D 1991 %A J.C. Kendrew %T Myoglobin and the structure of proteins (Nobel lecture, December 11, 1962) %J Prix Nobel %P 103-? %D 1963 %K 1MBN %A J.C. Kendrew %A R.E. Dickerson %A B.E. Strandberg %A R.G. Hart %A D.R. Davies %A D.C. Phillips %A V.C. Shore %T Structure of myoglobin: a three-dimensional Fourier synthesis at 2\(Ao resolution %J Nature %V 185 %D 1960 %P 422-427 %A J.C. Kendrew %A W. Klyne %A S. Lifson %A T. Miyazawa %A G. N\(e'methy %A D.C. Phillips %A G.N. Ramachandran %A H. Scheraga %T IUPAC-IUB commission on biochemical nomenclature: abbreviations and symbols for the description of the conformation of polypeptide chains %J J. Mol. Biol. %V 52 %D 1970 %P 1-17 %K nomenclature peptide units Nemethy %A J.C. Kendrew %A W. Klyne %A S. Lifson %A T. Miyazawa %A G. N\(e'methy %A D.C. Phillips %A G.N. Ramachandran %A H.A. Scheraga %T Abbreviations and symbols for the description of the conformation of polypeptide chains %J J. Biol. Chem. %V 245 %D 1970 %P 6489-6497 %K conformation nomenclature Nemethy %A C.E. KenKnight %J Acta Cryst. %P 708-712 %T Comparison of methods of matching protein structure %V A 40 %D 1984 %A O. Kennard %T Structural studies of DNA fragments: the G.T wobble base pair in A, B and Z DNA: the G.A base pair in B-DNA %J J. Biomol. Struct. Dyn. %V 3 %P 205-? %D 1985 %K 0GTC %A A.R. Kerlavage %T G-protein-coupled receptor family %J Curr. Opin. Struct. Biol. %V 1 %P 394-401 %D 1991 %A B.W. Kernighan %A D.M. Ritchie %T The C Programming Language %O Second Edition %I Prentice Hall %C Englewood Cliffs, N.J. %D 1988 %A W.R. Kester %A B.W. Matthews %T Comparison of the structures of carboxypeptidase A and thermolysin %J J. Biol. Chem. %V 252 %P 7704-? %D 1977 %K 1TLP %A W.R. Kester %A B.W. Matthews %T Crystallographic study of the binding of dipeptide inhibitors to thermolysin: implications for the mechanism of catalysis %J Biochemistry %V 16 %P 2506-? %D 1977 %K 1TLP %A C.A. Kettner %A R. Bone %A D.A. Agard %A W.W. Bachovchin %T Kinetic properties of the binding of \(*a-lytic protease to peptide boronic acids %J Biochemistry %V 27 %P 7682-7688 %D 1988 %K 1P01 %A C.A. Kettner %A A.B. Shenvi %T Inhibition of the serine proteases leukocyte elastase, pancreatic elastase, cathepsin G, and chymotrypsin by peptide boronic acids %J J. Biol. Chem. %V 259 %P 15106-15114 %D 1984 %A A.S. Khokhlov %A P.D. Reshetov %A L.A. Chupova %A B.Z. Cherches %A L.S. Zhigis %A I.A. Stoyachenko %T Chemical studies on actinoxanthin %J J. Antibiot. %V 29 %P 1026-? %D 1976 %K 1ACX %A C.R. Kiefer %A B.S. McGuire\0Jr. %A E.F. Osserman %A F.A. Garver %T The modeled structure of the IgG GAR V\d\s-2L\s0\u region and its implication for anti-flavin and anti-DNP FINE specificities %J J. Immunol. %D 1983 %V 131 %P 1871-1875 %K modelling %A H. Kim %A W.N. Lipscomb %T Crystal structure of the complex of carboxypeptidase A with a strongly bound phosphonate in a new crystalline form: Comparison with structures of other complexes %J Biochemistry %V 29 %P 5546-? %D 1990 %K PDB6CPA %A J.-J.P. Kim %A S.H. Vollmer %A F.E. Frerman %T Crystallization and preliminary X-ray data for the general acyl-coA dehydrogenase %J J. Biol. Chem. %V 259 %P 3318-? %D 1984 %K 0ACD %A J.-J.P. Kim %A J. Wu %T Structure of the medium-chain acyl-coA dehydrogenase from pig liver mitochondria at 3\(Ao resolution %J Proc. Natl. Acad. Sci. USA %V 85 %P 6677-? %D 1988 %K 0ACD %A J. Kim %A M.A. Burgman %T Accuracy of phylogenetic-estimation methods using simulated allele-frequency data %J Evolution %V 42 %D 1988 %P 596-602 %A J. Kim %A D.C. Rees %T Crystallogrpahic structure and functional implications of the nitrogenase molybdenum-iron protein from \f2Azotobacter vinelandii\f1 %J Nature %V 360 %P 553-560 %D 1992 %A J. Kim %A D.C. Rees %T Structural models for the metal centers in the nitrogenase molybdenum-iron protein %J Science %V 257 %P 1677-1682 %D 1992 %A K.H. Kim %A Z. Pan %A R.B. Honzatko %A H. Ke %A W.N. Lipscomb %T Structural asymmetry in the CTP-liganded form of aspartate carbamoyltransferase from \f2Escherichia coli\f1 %J J. Mol. Biol. %V 196 %P 853-? %D 1987 %K PDB7ATC 8ATC 1AT1 2AT1 3AT1 4AT1 5AT1 6AT1 7AT1 8AT1 %A S.-H. Kim %T Crystal structure of yeast phenylalanine tRNA its correlation to the solution structure and the functional implications %B Transfer RNA %D 1978 %K 4TRA %A S.-H. Kim %T Three dimensional structure of tRNA and its functional implications %J Adv. Enzymol. Relat. Areas Mol. Biol. %V 46 %P 279-? %D 1978 %K 4TRA %A S.-H. Kim %T \(*b-ribbon: A new DNA recognition motif %J Science %V 255 %P 1217-1218 %D 1992 %A S.-H. Kim %A A. de\0Vos %A C. Ogata %T Crystal structures of two intensely sweet proteins %J Trends Biochem. Sci. %V 13 %P 13-15 %D 1988 %K 1MON TIBS %A S.H. Kim %A G.J. Quigley %A F.L. Suddath %A A. McPherson %A D. Sneden %A J.J. Kim %A J. Weinzierl %A A. Rich %T Three-dimensional structure of yeast phenylalanine transfer RNA: folding of the polynucleotide chain %J Science %V 179 %P 285-? %D 1973 %K 0TR1 %A S.H. Kim %A G. Quigley %A F.L. Suddath %A A. McPherson %A D. Sneden %A J.J. Kim %A J. Weinzierl %A P. Blattmann %A A. Rich %T The three-dimensional structure of yeast phenylalanine transfer RNA: shape of the molecule at 5.5\(Ao resolution %J Proc. Natl. Acad. Sci. USA %V 69 %P 3746-? %D 1972 %K 0TR1 %A S.H. Kim %A F.L. Suddath %A G.J. Quigley %A A. McPherson %A J.L. Sussman %A A.H.J. Wang %A N.C. Seeman %A A. Rich %T Three-dimensional tertiary structure of yeast phenylalanine transfer RNA %J Science %V 185 %P 435-? %D 1974 %K 0TR1 %A S. Kim %A T.J. Smith %A M.S. Chapman %A M.G. Rossmann %A D. Pevear %A F.J. Dutko %A P.J. Felock %A G.D. Diana %A M.A. McKinlay %T Crystal structure of human rhinovirus serotype 1a (HRV1a) %J J. Mol. Biol. %V 210 %P 91-? %D 1989 %K 1R1A %A M.R. Kimball %A A. Sato %A J.S. Richardson %A L.S. Rosen %A B.W. Low %T Molecular conformation of erabutoxin B: atomic coordinates at 2.5\(Ao resolution %J Biochem. Biophys. Res. Comm. %V 88 %P 950-? %D 1979 %K 3EBX %A J.R. Kimmel %A L.J. Hayden %A H.G. Pollock %T Isolation and characterization of a new pancreatic polypeptide hormone %J J. Biol. Chem. %V 250 %P 9369-? %D 1975 %K 1PPT %A M. Kimura %J Nature %P 624-626 %T Evolutionary rate at the molecular level %V 217 %D 1968 %A M. Kimura %T A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences %J J. Mol. Evol. %V 16 %P 111-120 %D 1980 %A D.H. Kinder %A J.A. Katzenellenbogen %T Acylamino boronic acids and difluoroborane analogues of amino acids: Potent inhibitors of chymotrypsin and elastase %J J. Med. Chem. %V 28 %P 1917-1925 %D 1985 %A R.D. King %A M.J.E. Sternberg %T Machine learning approach for the prediction of protein secondary structure %J J. Mol. Biol. %V 216 %P 441-457 %D 1990 %K PROMIS %A S. Kirkpatrick %A C.D. Gelatt,\0Jr. %A M.P. Vecchi %T Optimization by simulated annealing %J Science %D 1983 %V 220 %P 671-680 %A J.F. Kirsch %A G. Eichele %A G.C. Ford %A M.G. Vincent %A J.N. Jansonius %A H. Gehring %A P. Christen %T Mechanism of action of aspartate aminotransferase proposed on the basis of its spatial structure %J J. Mol. Biol. %V 174 %P 497-? %D 1984 %K 0MAA %A C.R. Kissinger %A B. Liu %A E. Martin-Blanco %A T.B. Kornberg %A C.O. Pabo %T Crystal structure of an engrailed homeodomain-DNA complex at 2.8\(Ao resolution: a framework for understanding homeodomain-DNA interactions %J Cell %D 1990 %V 63 %P 579-590 %A C.R. Kissinger %A H.E. PArge %A D.R. Knighton %A C.T. Lewis %A L.A. Pelletier %A A. Tempczyk %A V.J. Kalish %A K.D. Tucker %A R.E. Showalter %A E.W. Moomaw %A L.N. Gastinel %A N. Habuka %A X. Chen %A F. Maldonado %A J.E. Barker %A R. Bacquet %A J.E. Villafranca %T Crystal structures of human calcineurin and the human FKBP-12-FK506-calcineurin complex %J Nature %V 378 %P 641-644 %D 1995 %A C.R. Kissinger %A L.C. Sieker %A E.T. Adman %A L.H. Jensen %T Refined crystal structure of ferredoxin II from \f2Desulfovibrio gigas\f1 at 1.7\(Ao resolution %J J. Mol. Biol. %V 219 %P 693-715 %D 1991 %A K. Kitagishi %A H. Nakatani %A K. Hiromi %J J. Biochem. %P 573-579 %T Static and kinetic studies on the binding between pepsin and \f2Streptomyces\f1 pepsin inhibitor with a fluorescent probe %V 87 %D 1980 %A N. Kitaguchi %A Y. Takahashi %A Y. Tokushima %A S. Shiojiri %A H. Ito %T Novel precursor of Alzheimer's disease amyloid protein shows protease inhibitory activity %J Nature %V 331 %D 1988 %P 530-532 %A J. Kitchin %A R.C. Bethell %A N. Cammack %A S. Dolan %A D.N. Evans %A S. Holman %A D.S. Holmes %A P. McMeekin %A C.L. Mo %A N. Nieland %A D.C. Orr %A J. Saunders %A B.E.V. Shenoy %A I.D. Starkey %A R. Storer %T Synthesis and structure-activity relationships of a series of penicillin-derived HIV proteinase inhibitors: Heterocyclic ring systems containing P\d\s-31\s0\u\(fm and P\d\s-32\s0\u\(fm substituents %J J. Med. Chem. %V 37 %P 3707-3716 %D 1994 %A D.H. Kitson %A F. Avbelj %A J. Moult %A D.T. Nguyen %A J.E. Mertz %A D. Hadzi %A A.T. Hagler %T On achieving better than 1\(oA accuracy in a simulation of a large protein: \f2Streptomyces griseus\f1 protease A %J Proc. Natl. Acad. Sci. USA %V 90 %P 8920-8924 %D 1993 %A M. Kjeldgaard %A J. Nyborg %T Refined structure of elongation factor EF-Tu from \f2Escherichia coli\f1 %J J. Mol. Biol. %V 223 %P 721-742 %D 1992 %A G. Klebe %T The use of composite crystal-field environments in molecular recognition and the \f2de novo\f1 design of protein ligands %J J. Mol. Biol. %V 237 %P 212-235 %D 1994 %A H.D. Kleinert %A S.H. Rosenberg %A W.R. Baker %A H.H. Stein %A V. Klinghofer %A J. Barlow %A K. Spina %A J. Polakowski %A P. Kovar %A J. Cohen %A J. Denissen %T Discovery of a peptide-based renin inhibitor with oral bioavailability and efficacy %J Science %V 257 %P 1940-1943 %D 1992 %A G. Kleywegt %T O for morons %I University of Uppsala %C Uppsala, Sweden %D 1994 %A A.D. Kline %A W. Braun %A K. W\(u:thrich %T Studies by \u\s-21\s0\dH nuclear magnetic resonance and distance geometry of the solution conformation of the \(*a-amylase inhibitor tendamistat %J J. Mol. Biol. %V 189 %P 377-382 %D 1986 %K PDB2AIT Wuthrich %A A.D. Kline %A W. Braun %A K. W\(u:thrich %T Determination of the complete three-dimensional structure of the \(*a-amylase inhibitor tendamistat in aqueous solution by nuclear magnetic resonance and distance geometry %J J. Mol. Biol. %V 204 %P 675-? %D 1988 %K 2AIT Wuthrich %A A.D. Kline %A K. W\(u:thrich %T Secondary structure of the \(*a-amylase polypeptide inhibitor tendamistat from \f2Streptomyces tendae\f1 determined in solution by \u\s-21\s0\dH nuclear magnetic resonance %J J. Mol. Biol. %V 183 %P 503-507 %D 1985 %K 2AIT Wuthrich %A A.D. Kline %A K. W\(u:thrich %T Complete sequence-specific \u\s-21\s0\dH nuclear magnetic resonance assignments for the \(*a-amylase polypeptide inhibitor tendamistat from \f2Streptomyces tendae\f1 %J J. Mol. Biol. %V 192 %P 869-? %D 1986 %K 2AIT Wuthrich %A P. Kline %A C. DeLisi %T Prediction of protein structural class from the amino acid sequence %J Biopolymers %V 25 %P 1659-1672 %D 1986 %A P. Kline %A R.L. Somorjai %T Nonlinear methods for discrimination and their application to classification of protein structures %J J. Theor. Biol. %V 130 %P 461-468 %D 1988 %A G. Klopman %A R.D. Bendale %J J. Theor. Biol. %P 67-77 %T Computer automated structure evaluation (CASE): a study of inhibitors of the thermolysin enzyme %V 136 %D 1989 %A I.M. Klotz %T Quaternary structure of proteins %J Annu. Rev. Biochem. %V 39 %P 25-62 %D 1970 %A I.M. Klotz %A G.L. Klippenstein %A W.A. Hendrickson %T Hemerythrin: alternative oxygen carrier %J Science %V 192 %P 335-344 %D 1976 %K 1HRB %A A. Klug %A D. Rhodes %J Trends Biochem. Sci. %P 464-469 %T `Zinc fingers': a novel protein motif for nucleic acid recognition %V 12 %D 1987 %K TIBS %A A.G. Kluge %A J.S. Farris %T Quantitative phyletics and the evolution of anurans %J System. Zool. %V 18 %D 1969 %P 1-32 %A G. Kneale %A T. Brown %A O. Kennard %A D. Rabinovich %T G.T base pairs in a DNA helix: the crystal structure of d(G-G-G-G-T-C-C-C) %J J. Mol. Biol. %V 186 %P 805-? %D 1985 %K 0DN1 %A D.G. Kneller %A F.E. Cohen %A R. Langridge %T Improvements in protein secondary structure prediction by an enhanced neural network %J J. Mol. Biol. %V 214 %D 1990 %P 171-182 %A C.A. Knight %A C.C. Cheng %A A.L. De\0Vries %T Adsorption of \(*a-helical antifreeze peptides on specific ice crystal surface planes %J Biophys. J. %V 59 %P 409-? %D 1991 %K 1ATF %A S. Knight %A I. Andersson %A C.-I. Br\(a:nd\(e'n %T Reexamination of the three-dimensional structure of the small subunit of RuBisCo from higher plants %J Science %V 244 %P 702-705 %D 1989 %K Branden %A D.R. Knighton %A R.B. Pearson %A J.M. Sowadski %A A.R. Means %A L.F. Ten\0Eyck %A S.S. Taylor %A B.E. Kemp %T Structural basis of the intrasteric regulation of myosin light chain kinases %J Science %V 258 %P 130-135 %D 1992 %A D.R. Knighton %A J. Zheng %A L.F. Ten\0Eyck %A V.A. Ashford %A N.-H. Xuong %A S.S. Taylor %A J.M. Sowadski %T Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase %J Science %V 253 %P 407-414 %D 1991 %A D.R. Knighton %A J. Zheng %A L.F. Ten\0Eyck %A N.-H. Xuong %A S.S. Taylor %A J.M. Sowadski %T Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase %J Science %V 253 %P 414-420 %D 1991 %A M. Knossow %A R.S. Daniels %A A.R. Douglas %A J.J. Skehel %A D.C. Wiley %T Three-dimensional structure of an antigenic mutant of the influenza virus haemagglutinin %J Nature %V 311 %P 678-680 %D 1984 %K 2HMG 3HMG 4HMG 5HMG 1HMG %A J.R. Knowles %T Tinkering with enzymes: What are we learning ? %J Science %V 236 %P 1252-1258 %D 1987 %A J.R. Knowles %T Enzyme catalysis: no different, just better %J Nature %V 350 %P 121-124 %D 1991 %K TIM %A J.R. Knowles %A W.J. Albery %T Perfection in enzyme catalysis: The energetics of triosephosphate isomerase %J Acc. Chem. Res. %V 10 %P 105-111 %D 1978 %K TO_GET %A J.H. Knox %T Molecular Thermodynamics %I John Wiley \& Sons %C Chichester %D 1978 %A J.R. Knox %A M.L. De\0Lucia %A N.S. Murthy %A J.A. Kelly %A P.C. Moews %A J.-M. Frere %A J.-M. Ghuysen %T Crystallographic data for a penicillin receptor: exocellular \s-2D,D\s0-carboxypeptidase-transpeptidase from \f2Streptomyces r61\f1 %J J. Mol. Biol. %V 127 %P 217-? %D 1979 %K 1PTE %A D.E. Knuth %T The TeX book %D 1987 %I Addison-Wesley Publishing Company %C Reading, Massachusetts %A B. Kobe %A J. Deisenhofer %T Crystal structure of porcine ribonuclease inhibitor, a protein with leucine-rich repeats %J Nature %V 366 %P 751-756 %D 1993 %A B. Kobe %A J. Deisenhofer %T A structural basis of the interactions between leucine-rich repeats and protein ligands %J Nature %V 374 %P 183-186 %D 1995 %A M. Kochoyan %A H.T. Keutmann %A M.A. Weiss %T Architectural rules of the zinc-finger motif: Comparative two-dimensional NMR studies of native and ``aromatic-swap'' domains define a ``weakly polar switch'' %J Proc. Natl. Acad. Sci. USA %V 88 %P 8455-8459 %D 1991 %A T. Kodama %A M. Freeman %A L. Rohrer %A J. Zabrecky %A P. Matsudaira %A M. Krieger %T Type I macrophage scavenger receptor contains \(*a-helical and collagen-like coiled coils %J Nature %V 343 %D 1990 %P 531-535 %A J. Koepke %A M. Maslowska %A U. Heinemann %A W. Saenger %T Three-dimensional structure of ribonuclease T1 complexed with guanylyl-2\(fm,5\(fm-guanosine at 1.8\(Ao resolution %J J. Mol. Biol. %V 206 %P 475-? %D 1989 %K PDB2RNT %A T.F. Koetzle %A G.J.B. Williams %T The crystal and molecular structure of the antifolate drug trimethoprim (2,4-Diamino-5-(3,4,5-trimethoxybenzyl)pyrimidine): a neutron diffraction study %J J. Am. Chem. Soc. %V 98 %D 1976 %P 2074-2078 %A N.E. Kohl %A E.A. Emini %A W.A. Schleif %A L.J. Davis %A J.C. Heimbach %A R.A.F. Dixon %A E.M. Scolinick %A I.S. Sigal %T Active human immunodeficiency virus protease is required for viral infectivity %J Proc. Natl. Acad. Sci. USA %V 85 %D 1988 %P 4686-4690 %K PNAS %A L.A. Kohlstaedt %A J. Wang %A J.M. Friedman %A P.A. Rice %A T.A. Steitz %T Crsytal structure at 3.5\(Ao resolution of HIV-1 reverse transcriptase complexed with an inhibitor %J Science %V 256 %P 1783-1790 %D 1992 %A A.S. Kolaskar %A U. Kulkarni-Kale %T Sequence alignment approach to pick up conformationally similar protein fragments %J J. Mol. Biol. %V 223 %P 1053-1061 %D 1992 %A P.A. Kollman %T Theory of macromolecule-ligand interactions %J Curr. Opin. Struct. Biol. %V 4 %P 240-245 %D 1994 %A P.A. Kollman %A K.M. Merz,\0Jr. %T Computer modelling of the interactions of complex molecules %J Acc. Chem. Res. %V 23 %P 246-252 %D 1990 %A H. Komiya %A T.O. Yeates %A D.C. Rees %A J.P. Allen %A G. Feher %T Structure of the reaction center from \f2R. sphaeroides\f1 R-26 and 2.4.1: symmetry relations and sequence comparisons between different species %J Proc. Natl. Acad. Sci. USA %V 85 %D 1988 %P 9012-9016 %K PNAS %A N.H. Komiyama %A D.T.-B. Shih %A D. Looker %A J. Tame %A K. Nagai %T Was the loss of the D helix in \(*a globin a functionally neutral mutation %J Nature %V 352 %P 349-251 %D 1991 %A X.-P. Kong %A R. Onrust %A M. O'Donnell %A J. Kuriyan %T Three-dimensional structure of the \(*b subunit of \f2E. coli\f1 DNA polymerase III holoenzyme: A sliding DNA clamp %J Cell %V 69 %P 425-437 %D 1992 %A D.A.M. Konings %A P. Hogeweg %J J. Mol. Biol. %P 597-614 %T Pattern analysis of RNA secondary structure: similarity and consensus of minimal-energy folding %V 207 %D 1989 %A E.V. Koonin %A P. Bork %A C. Sander %T Yeast chromosome III: new gene functions %J EMBO J. %V 13 %P 493-503 %D 1994 %A M.L. Kopka %A C. Yoon %A D. Goodsell %A P. Pjura %A R.E. Dickerson %T The molecular origin of DNA-drug specificity in netropsin and distamycin %J Proc. Natl. Acad. Sci. USA %V 82 %P 1376-1380 %D 1985 %K 1DNE PNAS %A Z.R. Korszun %A F.R. Salemme %J Proc. Natl. Acad. Sci. USA %P 5244-5247 %T Structure of cytochrome \f2c\f1\d\s-2551\s0\u of \f2Chlorobium thiosulfatophilium\f1: primitive low-potential cytochrome \f2c\f1 %V 74 %D 1977 %K PNAS %A Z.R. Korszun %A F.R. Salemme %T Structure of cytochrome \f2c\f1\d\s-2555\s0\u of \f2Chlorobium thiosulfatophilum\f1: primitive low-potential cytochrome \f2c\f1 %J Proc. Natl. Acad. Sci. USA %V 74 %P 5244-? %D 1977 %K 05C1 %A D.E. Koshland %A K.E. Neet,\0Jr. %J Annu. Rev. Biochem. %P 359-411 %T The catalytic activity and regulatory properties of enzymes %V 37 %D 1968 %A A.A. Kossiakoff %T Protein dynamics investigated by the neutron diffraction-hydrogen exchange technique %J Nature %V 296 %P 713-721 %D 1982 %K 1NTP %A A.A. Kossiakoff %T Use of the neutron diffraction-H/D exchange technique to determine the conformational dynamics of trypsin %J Basic Life Sci. %V 27 %P 281-? %D 1984 %K PDB1NTP %A A.A. Kossiakoff %A J.L. Chambers %A L.M. Kay %A R.M. Stroud %T Structure of bovine trypsinogen at 1.9\(Ao resolution %J Biochemistry %V 16 %P 654-664 %D 1977 %K PDB1TGN %A A.A. Kossiakoff %A S.A. Spencer %T Neutron diffraction identifies His 57 as the catalytic base in trypsin %J Nature %V 288 %P 414-416 %D 1980 %K 1NTP %A A.A. Kossiakoff %A S.A. Spencer %T Direct determination of the protonation states of aspartic acid-102 and histidine-57 in the tetrahedral intermediate of the serine proteases: neutron structure of trypsin %J Biochemistry %V 20 %P 6462-? %D 1981 %K 1NTP %A D. Kostrewa %A H.-W. Choe %A U. Heinemann %A W. Saenger %T Crystal structure of guanosine-free ribonuclease T1, complexed with vanadate(V), suggests conformational change upon substrate binding %J Biochemistry %V 28 %P 7592-7600 %D 1989 %K 2RNT PDB3RNT %A D. Kostrewa %A J. Granzin %A C. Koch %A H.-W. Choe %A S. Raghunathan %A W. Wolf %A J. Labahn %A R. Kahmann %A W. Saenger %T Three-dimensional structure of the \f2E. coli\f1 DNA-binding protein FIS %J Nature %V 349 %P 178-180 %D 1991 %A M. Kotler %A R.A. Katz %A W. Danho %A J. Leis %A A.M. Skalka %T Synthetic peptides as substrates and inhibitors of a retroviral protease %J Proc. Natl. Acad. Sci. USA %V 85 %D 1988 %P 4185-4189 %K PNAS %A M. Kotler %A R.A. Katz %A A.M. Skalka %T Activity of avian retroviral protease expressed in \f2E. coli\f1 %J J. Virol. %V 62 %D 1988 %P 2696-2700 %A D. Kowlessur %A E.W. Thomas %A C.M. Topham %A W. Templeton %A K. Brocklehurst %T Dependance of the P\d\s-22\s0\u\(miS\d\s-22\s0\u stereochemical selectivity of papain on the nature of the catalytic-site chemistry %J Biochem. J. %V 266 %D 1990 %P 653-660 %K kinetics thiol proteinase %A P.J. Kraulis %T Similarity of protein G and ubiquitin %J Science %V 254 %P 581 %D 1991 %A P.J. Kraulis %A G.M. Clore %A M. Nilges %A T.A. Jones %A G. Pettersson %A J. Knowles %A A.M. Gronenborn %T Determination of the three-dimensional structure of the C-terminal domain of cellobiohydrolase I from \f2Trichoderma reesei\f1: a study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing %J Biochemistry %V 28 %P 7241-7257 %D 1989 %K PDB1CBH PDB2CBH %A P.J. Kraulis %A T.A. Jones %T Determination of three-dimensional protein structures from nuclear magnetic resonance data using fragments of known structures %J Proteins %V 2 %P 188-201 %D 1987 %A P.J. Kraulis %A A.R.C. Raine %A P.L. Gadhavi %A E.D. Laue %T Structure of the DNA-binding domain of zinc GAL4 %J Nature %V 356 %P 448-450 %D 1992 %A K.L. Krause %A K.W. Volz %A W.N. Lipscomb %T Structure at 2.9\(Ao resolution of aspartate carbamoyltransferase complexed with the bisubstrate analogue N-(phosphonacetyl)-\s-2L\s0-aspartate %J Proc. Natl. Acad. Sci. USA %V 82 %P 1643-? %D 1985 %K 8ATC 1AT1 2AT1 3AT1 4AT1 5AT1 6AT1 7AT1 8AT1 PNAS %A K.L. Krause %A K.W. Volz %A W.N. Lipscomb %T 2.5\(Ao structure of aspartate carbamoyltransferase complexed with the bisubstrate analog N-(phosphonacetyl)-\s-2L\s0-aspartate %J J. Mol. Biol. %V 193 %P 527-? %D 1987 %K 0ACS 8ATC 1AT1 2AT1 3AT1 4AT1 5AT1 6AT1 7AT1 8AT1 %A N. Krauss %A W. Hinrichs %A I. Witt %A P. Fromme %A W. Pritzkow %A Z. Dauter %A C. Betzel %A K.S. Wilson %A H.T. Witt %A W. Saenger %T Three-dimensional structure of system I of photosynthesis at 6\(Ao resolution %J Nature %V 361 %P 326-331 %D 1993 %A J. Kraut %T Chymotrypsinogen, X-ray structure %J The Enzymes, Third edition %V 3 %P 165-? %D 1971 %K 1CHG %A J. Kraut %T Serine proteases: structure and mechanism of catalysis %J Annu. Rev. Biochem. %V 46 %D 1977 %P 331-358 %A J. Kraut %T How do enzymes work ? %J Science %V 242 %P 533-540 %D 1988 %A J. Kraut %A J.D. Robertus %A J.J. Birktoft %A R.A. Alden %A P.E. Wilcox %A J.C. Powers %T The aromatic substrate binding site in subtilisin BPN and its resemblance to chymotrypsin %J Cold Spring Harbor Symp. Quant. Biol. %V 36 %P 117-? %D 1972 %K 1SBT %A R.L. Krauth-Siegel %A R. Blatterspiel %A M. Saleh %A E. Schiltz %A R.H. Schirmer %A R. Untucht-Grau %T Glutathione reductase from human erythrocytes: The sequences of the NADPH domain and of the interface domain %J Eur. J. Biochem. %V 121 %P 259-? %D 1982 %K 3GRS %A R.H. Kretsinger %T Gene triplication deduced from the tertiary structure of a muscle calcium binding protein %J Nature, New Biol. %V 240 %P 85-88 %D 1972 %K 1CPV 5CPV 1CDP %A R.H. Kretsinger %T Calcium binding proteins and natural membranes %B Perspectives in membrane biology %P 229-? %D 1974 %K 3CPV 1CDP 5CPV %A R.H. Kretsinger %A C.D. Barry %T The predicted structure of the calcium-binding component of troponin %J Biochim. Biophys. Acta %V 405 %P 40-52 %D 1975 %K PDB1TNC %A R.H. Kretsinger %A C.E. Nockolds %T Carp muscle calcium-binding protein: II. structure determination and general description %J J. Biol. Chem. %V 248 %D 1973 %P 3313-3326 %K calcium-binding EF hand structure parvalbumin 5CPV 1CDP %A R.H. Kretsinger %A C.E. Nockolds %A C.J. Coffee %A R.A. Bradshaw %T The structure of a calcium-binding protein from carp muscle %J Cold Spring Harbor Symp. Quant. Biol. %V 36 %P 217-? %D 1972 %K 1CPV 5CPV 1CDP %A R.H. Kretsinger %A S.E. Rudnik %A T.G. Greenough %A C.E. Bugg %A A.R. Means %A W.J. Cook %T Crystal structure of calmodulin %J J. Inorg. Biochem. %V 28 %P 289-302 %D 1986 %A A.M. Krezel %A G. Wagner %A J. Seymour-Ulmer %A R.A. Lazarus %T Structure of the RGD protein decorsin: Conserved motif and distinct function in leech proteins that affect blood clotting %J Science %V 264 %P 1944-1947 %D 1994 %A M. Krieger %A L.M. Kay %A R.M. Stroud %T Structure and specific binding of trypsin, comparison of inhibited derivatives and a model for substrate binding %J J. Mol. Biol. %V 83 %P 209-? %D 1974 %K 1NTP %A S. Krishnaswamy %A M.G. Rossmann %T Structural refinement and analysis of mengo virus %J J. Mol. Biol. %V 211 %P 803-? %D 1990 %K PDB2MEV %A A. Krohn %A S. Redshaw %A J.C. Ritchie %A B.J. Graves %A M.H. Hatada %T Novel binding mode of highly potent HIV-proteinase inhibitors incorporating the (\s-1R\s0)-hydroxyethylamine isostere %J J. Med. Chem. %V 34 %P 3340-3342 %D 1991 %A M. Krook %A D. Ghosh %A W. Duax %A H. J\(o:rnvall %T Three-dimensional model of NAD\u\s-4\(pl\s0\d-dependent 15-hydroxyprostaglandin dehydrogenase and relationships to the NADP\u\s-4\(pl\s0\d-dependent enzyme (carbonyl reductase) %J FEBS Letts. %V 322 %P 139-142 %D 1993 %K Jornvall %A J.B. Kruskal %J SIAM Rev. %P 201-237 %T An overview of sequence comparison: Time warps, string edits, and macromolecules %V 25 %D 1983 %A H.-G. Kr\(a:usslich %A H. Schneider %A G. Zybarth %A C.A. Carter %A E. Wimmer %T Processing of \f2in vitro\f1-synthesized \f2gag\f1 precursor proteins of human immunodeficiency virus (HIV) type-1 by HIV proteinase generated in \f2Escherichia coli\f1 %J J. Virol. %V 62 %D 1988 %P 4393-4397 %K HIV protease Krausslich %A H.A. Kuiper %A W. Gaastra %A J.J. Beintema %A E.F.J. van\0bruggen %A A.M.H. Schepman %A J. Drenth %T Subunit composition, X-ray diffraction, amino acid analysis and oxygen binding behaviour of \f2Panulirus interruptus\f1 hemocyanin %J J. Mol. Biol. %V 99 %P 619-? %D 1975 %K 0HPI %A O.P. Kuipers %A R. Dijkman %A C.E.G.M. Pals %A H.M. Verheij %A G.H. de\0Haas %T Evidence for the involvement of tyrosine-69 in the control of stereospecificity of porcine pancreatic phospholipase A\d\s-22\s0\u %J Prot. Eng. %V 2 %P 467-471 %D 1989 %A O.P. Kuipers %A M.M.G.M. Thunnissen %A P. de\0Geus %A B.W. Dijkstra %A J. Drenth %A H.M. Verheij %A G.H. de\0Haas %T Enhanced activity and altered specificity of phospholipase A\d\s-22\s0\u by deletion of a surface loop %J Science %V 244 %P 82-85 %D 1989 %K PDB3P2P %A A.A. Kumar %A D.T. Blankenship %A B.T. Kaufmann %A J.H. Freisheim %T Primary structure of chicken liver dihydrofolate reductase %J Biochemistry %V 19 %P 667-? %D 1980 %A S. Kumar %A N.L. Harvey %T Role of multiple cellular proteases in the execution of programmed cell death %J FEBS Letts. %V 375 %P 169-173 %D 1995 %A V.D. Kumar %A L. Lee %A B.F.P. Edwards %T Refined crystal structure of calcium-liganded carp parvalbumin 4.25 at 1.5\(Ao resolution %J Biochemistry %V 29 %P 1404-? %D 1990 %K 4CPV %A V.D. Kumar %A I.T. Weber %T Molecular model of the cyclic GMP-binding domain of the cyclic GMP-gated ion channel %J Biocehmistry %V 31 %P 4643-4649 %D 1992 %A C.E. Kundrot %A F.M. Richards %T Collection and processing of X-ray diffraction data from protein crystals at high pressure %J J. Appl. Cryst. %V 19 %P 208-? %D 1986 %K 2LYM %A C.E. Kundrot %A F.M. Richards %T Crystal structure of hen egg-white lysozyme at a hydrostatic pressure of 1000 atmospheres %J J. Mol. Biol. %V 193 %P 157-170 %D 1987 %K PDB2LYM PDB3LYM %A C.E. Kundrot %A F.M. Richards %T Effect of hydrostatic pressure on the solvent in crystals of hen egg-white lysozyme %J J. Mol. Biol. %V 200 %P 401-? %D 1988 %K 2LYM %A W.H. Kung %A A. Tulinsky %A G.L. Nelsestuen %T Crystallization and preliminary X-ray data of proteins derived from prothrombin %J J. Biol. Chem. %V 255 %P 10523-? %D 1980 %K 0PF1 %A A. Kunita %A M. Koshibe %A Y. Nishikawa %A K. Fukuyama %A T. Tsukihara %A Y. Katsube %A Y. Matsuura %A N. Tanaka %A M. Kakudo %A T. Hase %A H. Matsubara %T Crystallization and a 5\(Ao X-ray diffraction study of \f2Aphanothece sacrum\f1 ferredoxin %J J. Biochem. (Tokyo) %V 84 %P 989-? %D 1978 %K 0FXI 1FXI %A I.D. Kuntz %J Prot. Eng. %V 1 %P 147-150 %T Macromolecular structure in solution %D 1987 %A I.D. Kuntz %T Structure-based strategies for drug design and discovery %J Science %V 257 %P 1078-1082 %D 1992 %A I.D. Kuntz %A G.M. Crippen %A P.A. Kollman %J Biopolymers %P 939-957 %T Application of distance geometry to protein tertiary structure calculations %V 18 %D 1979 %A I.D. Kuntz %A E.C. Meng %A B.K. Schoichet %T Structure-based molecular design %J Acc. Chem. Res. %V 27 %P 117-123 %D 1994 %A C.-F. Kuo %A D.E. McRee %A C.L. Fisher %A S.F. O'Handley %A R.P. Cunningham %A J.A. Tainer %T Atomic structure of the DNA repari [4Fe-4S] enzyme endonuclease III %J Science %V 258 %P 434-440 %D 1992 %A K. Kurachi %A L.C. Sieker %A L.H. Jensen %T Metal ion binding in triclinic lysozyme %J J. Biol. Chem. %V 250 %P 7663-? %D 1975 %K 2LZT %A K. Kurachi %A L.C. Sieker %A L.H. Jensen %T Structures of triclinic mono- and di-N-acetylglucosamine: lysozyme complexes \(em A\ crystallographic study %J J. Mol. Biol. %V 101 %P 11-? %D 1976 %K 1LZT %A I.V. Kurinov %A R.W. Harrison %T Prediction of new serine proteinase inhibitors %J Nature Struct. Biol. %V 1 %P 735-743 %D 1994 %A J. Kuriyan %A S.K. Burley %T DNA recognition, warts and all %J Nature %V 359 %P 476 %D 1992 %A J. Kuriyan %A M. Karplus %A G.A. Petsko %T Estimation of uncertainties in X-ray refinement results by use of perturbed structures %J Proteins %V 2 %P 1-? %D 1987 %K 1MBC %A J. Kuriyan %A X.-P. Kong %A T.S.R. Krishna %A R.M. Sweet %A N.J. Murgolo %A H. Field %A A. Cerami %A G.B. Henderson %T X-ray structure of trypanothione reductase from \f2Crithidia fasciculata\f1 at 2.4\(Ao resolution %J Proc. Natl. Acad. Sci. USA %V 88 %P 8764-8768 %D 1991 %A J. Kuriyan %A T.S.R. Krishna %A L. Wong %A B. Guenther %A A. Pahler %A C.H. Williams,\0Jr. %A P. Model %T Convergent evolution of similar function in two structurally divergent enzymes %V 351 %P 172-174 %D 1991 %A J. Kuriyan %A W.I. Weis %T Rigid protein motion as a model for crystallographic temperature factors %J Proc. Natl. Acad. Sci. USA %P 2773-2777 %V 88 %D 1991 %A J. Kuriyan %A S. Wilz %A M. Karplus %A G.A. Petsko %T X-ray structure and refinement of carbon-monoxy (Fe II)-myoglobin at 1.5\(Ao resolution %J J. Mol. Biol. %V 192 %P 133-? %D 1986 %K PDB1MBC %A R. Kuroki %A L.H. Weaver %A B.W. Matthews %T A covalent enzyme-substrate intermediate with saccharide distortion in a mutant T4 lysozyme %J Scienbce %V 262 %P 2030-2033 %D 1993 %A L.F. Kuyper %A B. Roth %A D.P. Baccanari %A R. Ferone %A C.R. Beddel %A J.N. Champness %A D.K. Stammers %A J.G. Dann %A F.E. Norrington %A D.J. Baker %A P.J. Goddfood %T Receptor-based design of dihydrofolate reductase inhibitors: Comparison of crystallographically determined enzyme-binding with enzyme affinity in a series of carboxy-substituted trimethoprim analogues %J J. Med. Chem. %V 28 %P 303-311 %D 1985 %A P.D. Kwong %A S.-E. Ryu %A W.A. Hendrickson %A R. Axel %A R.M. Sweet %A G. Folena-Wasserman %A P. Hensley %A R.W. Sweet %T Molecular characterization of recombinant human CD4 as deduced from polymorphic crystals %J Proc. Natl. Acad. Sci. USA %V 87 %D 1990 %P 6423-6427 %K PNAS %A J. Kyte %A R.F. Doolittle %T A simple method for displaying the hydrophobic character of a protein %J J. Mol. Biol. %V 157 %D 1982 %P 105-132 %A W. K\(u:hlbrandt %A D.N. Wang %T Three-dimensional structure of plant light-harvesting complex determined by electron crystallography %J Nature %V 350 %P 130-134 %D 1991 %K Kuhlbrandt %A L.W. Labaw %A D.R. Davies %T An electron microscopic study of human \(*g-G1 immunoglobulin crystals: preliminary results %J Proc. Natl. Acad. Sci. USA %V 246 %P 3760-? %D 1971 %K 0IG1 %A J.C. Lacal %A J. Moscat %A S.A. Aaronson %J Nature %P 269-272 %T Novel source of 1,2-diacylglycerol elevated in cells transformed by Ha-\f2ras\f1 oncogene %V 330 %D 1987 %A R. Ladenstein %A O. Epp %A K. Bartels %A A. Jones %A R. Huber %A A. Wendel %T Structure analysis and molecular model of the selenoenzyme glutathione peroxidase at 2.8\(Ao resolution %J J. Mol. Biol. %V 134 %P 199-? %D 1979 %K 1GP1 %A R. Ladenstein %A H.C. Ludwig %A A. Bacher %T Crystallization and preliminary X-ray diffraction study of heavy riboflavin synthase from \f2Bacillus subtilis\f1 %J J. Biol. Chem. %V 258 %P 11981-? %D 1983 %K 0HRS %A R. Ladenstein %A M. Schneider %A R. Huber %A H.-D. Bartunik %A K. Wilson %A K. Schott %A A. Bacher %T Heavy riboflavin synthase from \f2Bacillus subtilis\f1: crystal structure analysis of the icosahedral \(*b\d\s-260\s0\u capsid at 3.3\(Ao resolution %J J. Mol. Biol. %V 203 %P 1045-? %D 1988 %K 0HRS %A J.E. Ladner %A A. Jack %A J.D. Robertus %A R.S. Brown %A D. Rhodes %A B.F.C. Clark %A A. Klug %T Atomic co-ordinates for yeast phenylalanine tRNA %J Nucl. Acids Res. %V 2 %P 1629-? %D 1975 %K 4TNA %A J.E. Ladner %A J.P. Kitchell %A R.B. Honzatko %A H.M. Ke %A K.W. Volz %A A.J. Kalb %A R.C. Ladner %A W.N. Lipscomb %T Gross quaternary changes in aspartate carbamoyltransferase are induced by the binding of N-(phosphonacetyl)-\s-2L\s0-aspartate: a 3.5\(Ao resolution study %J Proc. Natl. Acad. Sci. USA %V 79 %P 3125-3128 %D 1982 %K 4ATC 8ATC 1AT1 2AT1 3AT1 4AT1 5AT1 6AT1 7AT1 8AT1 PNAS %A R.C. Ladner %A G.M. Air %A J.H. Fogg %T A correction to the sequence of the \(*a chain of horse haemoglobin %J J. Mol. Biol. %V 103 %P 675-? %D 1976 %K 2DHB %A R.C. Ladner %A E.J. Heidner %A M.F. Perutz %T The structure of horse methaemoglobin at 2.0\(Ao resolution %J J. Mol. Biol. %V 114 %D 1977 %P 385-414 %K PDB2MHB %A A. Lahm %A D. Suck %T DNase I-induced DNA conformation: 2\(Ao structure of a DNase I-octamer complex %J J. Mol. Biol. %V 222 %P 645-667 %D 1991 %A E. Lai %A K.L. Clark %A S.K. Burley %A J.E Darnell,\0Jr. %T Hepatocyte nuclear factor 3/fork head or ``winged helix'' proteins: A family of transcription factors of diverse biologic function %J Proc. Natl. Acad. Sci. USA %V 90 %P 10421-10423 %D 1993 %A J.A. Lake %D 1987 %T A rate-independent technique for analysis of nucleic acid sequences: operator metrics %J Mol. Biol. Evol. %V 4 %P 167-191 %A J.H. Lakey %A D. Baty %A F. Pattus %T Fluorescence energy transfer distance measurements using site-directed single cysteine mutants %J J. Mol. Biol. %V 218 %P 639-653 %D 1991 %A P.Y.S. Lam %A P.K. Jadhav %A C.J. Eyermann %A C.J. Hodge %A Y. Ru %A L.T. Bacheler %A J.L. Meek %A M.J. Otto %A M.M. Rayner %A Y.N. Wong %A C.-H. Chang %A P.C. Weber %A D.A. Jackson %A T.R. Sharpe %A S. Erickson-Viitanen %T Rational design of potent, bioavailable, noneptide cyclic ureas as HIV protease inhibitors %J Science %V 263 %P 380-384 %D 1994 %A D.G. Lambright %A J.P. Noel %A H.E. Hamm %A P.B. Sigler %T Structural determinants for activation of the \(*a-subunit of a heterotrimeric G protein %J Nature %V 369 %P 621-628 %D 1994 %A L. Lamport %T LaTex. A Document Preparation System %D 1987 %I Addison-Wesley Publishing Company %C Reading, Massachusetts %A D. Lancet %A E. Sadovsky %A E. Seidemann %T Probability model for molecular recognition in bioloical receptor repertoires: Significance to the olfactory system %J Proc. Natl. Acad. Sci. USA %V 90 %P 3715-3719 %D 1993 %A R.R. Reddy %A M.D. Varney %A V. Kalish %A V.N. Viswanadhan %A K. Appelt %T Calculation of relative differences in the binding free energies of HIV1 protease inhibitors: A thermodynamic cycle perturbation approach %J J. Med. Chem. %V 37 %P 1145-1152 %D 1994 %A G.F. Lanchantin %A J.A. Friedman %A D.W. Hart %T Two forms of human thrombin %J J. Biol. Chem. %V 248 %P 5956-5966 %D 1973 %A N.R. Landau %A M. Warton %A D.R. Littman %T The envelope glycoprotein of the human immunodeficiency virus binds to the immunoglobulin-like domain of CD4 %J Nature %V 334 %D 1988 %P 159-162 %A W.H. Landschulz %A P.F. Johnson %A S.L. McKnight %T The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins %J Science %V 240 %P 1759-1764 %D 1988 %A H.T. Langen %A J.W. Taylor %T Alkaline phosphatase-somatostatin hybrid proteins as probes for somatostatin-14 receptors %J Proteins %V 14 %P 1-9 %D 1992 %A R. Langen %A T. Schweins %A A. Warshel %T On the mechanism of guanosine triphosphate hydrolysis in \f2ras\f1 p21 proteins %J Biochemistry %V 31 %P 8691-8696 %D 1992 %A D.A. Langs %T Three-dimensional structure at 0.86\(Ao of the uncomplexed form of the transmembrane ion channel peptide gramicidin A %J Science %V 241 %P 188-? %D 1988 %K 1GMA %A M.A. Lapadat %A D.W. Deerfield\0II %A L.G. Pedersen %A L.L. Spremulli %T Generation of potential structures for the G-domain of chloroplast EF-Tu using comparative molecular modelling %J Proteins %V 8 %P 237-250 %D 1990 %A S. Lapanje %A R. Prijon %A F. Guben\(svek %T Apparently opposing effects of temperature and guanidimium chloride in the denaturation of ribonuclease A %J Croatica Chemica Acta %P 361-368 %V 51 %D 1978 %K Gubensek %A R. Lapatto %T Model for the structure of formaldehyde dehydrogenase based on alcohol dehydrogenase %J Int. J. Biol. Macromol. %V 13 %P 73-76 %D 1991 %A R. Lapatto %A T.L. Blundell %A A. Hemmings %A J.P. Overington %A A. Wilderspin %A S. Wood %A J.R. Merson %A P.J. Whittle %A D.E. Danley %A K.F. Geoghegan %A S.J. Hawrylik %A S.E. Lee %A K.G. Scheld %A P. Hobart %T X-ray Analysis of HIV-1 proteinase at 2.7\(Ao resolution confirms structural homology among retroviral enzymes %J Nature %V 342 %D 1989 %P 299-302 %A R. Lapatto %A V. Nalini %A B. Bax %A H. Driessen %A P.F. Lindley %A T.L. Blundell %A C. Slingsby %T High resolution structure of an oligomeric eye lens \(*b-crystallin: Loops, arches, linkers and interfaces in \(*bB2 dimer compared to a monomeric \(*g-crystallin %J J. Mol. Biol. %V 222 %P 1067-1083 %D 1991 %A I. Laprevotte %A A. Hampe %A C.J. Sherr %A F. Galibert %J J. Virol. %V 50 %D 1984 %P 884-894 %T Nucleotide sequence of the \f2gag\f1 genes and \f2gag-pol\f1 junction of feline leukemia virus %A A.J. Lapthorn %A D.C. Harris %A A. Littlejohn %A J.W. Lustbader %A R.E. Canfield %A K.J. Machin %A F.J. Morgan %A N.W. Isaacs %T Crystal structure of human chorionic gonadotropin %J Nature %V 369 %P 455-461 %D 1994 %A A.J. Lapthorn %A R.W. Janes %A N.W. Isaacs %A B.A. Wallace %T Cystine nooses and protein specificity %J Nature Struct. Biol. %V 2 %P 266-268 %D 1995 %A S.B. Larson %A S. Koszelak %A J. Day %A A. Greenwood %A J.A. Dodds %A A. McPherson %T Double-helical RNA in satellite tobacco mosaic virus %J Nature %V 361 %P 179-182 %D 1993 %A M.-B. Lascombe %A P.M. Alzari %A G. Boulot %A P. Saludjian %A P. Tougard %A C. Berek %A S. Haba %A E.M. Rosen %A A. Nisonoff %A R.J. Poljak %T Three-dimensional structure of Fab R19.9, a monoclonal murine antibody specific for the \f2p\f1-azobenzenearsonate group %J Proc. Natl. Acad. Sci. USA %V 86 %P 607-611 %D 1989 %K PDB1F19 PNAS %A M. Laskowski %J Biochem. Pharmacol. %P 2089-2094 %T An algorithmic approach to sequence-reactivity of proteins %V 29 %D 1980 %A R.A. Laskowski %T \s-2PROCHECK\s0: A program to check the stereochemical quality of protein structures %J J. Appl. Cryst. %V 26 %P 283-291 %D 1993 %A R.A. Laskowski %A M.W. McArthur %A D.S. Moss %A J.M. Thornton %T \s-1PROCHECK\s0: A program to check the stereochemical quality of protein structures %J J. Appl. Cryst. %V 26 %P 283-191 %D 1993 %A A. Monge %A R.A. Freisner %A B. Honig %T An algorithm to generate low-resolution protein tertiary structures from knowledge of secondary structure %J Proc. Natl. Acad. Sci. USA %V 91 %P 5027-5029 %D 1994 %A R.A. Laskowski %A D.S. Moss %A J.M. Thornton %T Main-chain bond lengths and bond angles in protein structures %J J. Mol. Biol. %V 231 %P 1049-1067 %D 1993 %A M. Laskowski,\0Jr. %A M.W. Empie %A I. Kato %A W.J. Kohr %A W. Ardelt %A W.C. Bogard,\0Jr. %A E. Weber %A E. Papamokos %A W. Bode %A R. Huber %T Correlation of amino acid sequence with inhibitor activity and specificity of protein inhibitors of serine proteinases %J Colloq. Ges. Biol. Chem. %V 32 %P 136-? %D 1981 %K 2OVO %A M. Laskowski,\0Jr. %A I. Kato %T Protein inhibitors of proteinases %J Annu. Rev. Biochem. %V 49 %D 1982 %P 593-626 %K proteinases inhibitors specificity binding %A I. Lasters %A S.J. Wodak %A P. Alard %A E. van\0Cutsem %T Structural principles of parallel \(*b-barrels in proteins %J Proc. Natl. Acad. Sci. USA %V 85 %D 1988 %P 3338-3342 %K PNAS %A I. Lasters %A S.J. Wodak %A F. Pio %T The design of idealized \(*a/\(*b-barrels: analysis of \(*b-sheet closure requirements %J Proteins %V 7 %P 249-256 %D 1990 %A R.H. Lathrop %A T.A. Webster %A T.F. Smith %T \s-2ARIADNE\s0: pattern-directed inference and hierarchical abstraction in protein structure recognition %J Comm. Ass. Comp. Mach. %V 30 %P 909-921 %D 1987 %A F. Latron %A L. Pazmany %A J. Morrison %A R. Moots %A M.A. Saper %A A. McMichael %A J.L. Strominger %T A critical role for conserved residues in the cleft of HLA-A2 in presentation of a nonapeptide to T-cells %J Science %V 257 %P 964-? %D 1992 %A E.E. Lattman %T Protein crystallography for all %J Proteins %V 18 %P 103-106 %D 1994 %A E.E. Lattman %A G.D. Rose %T Protein folding \(em what's the question ? %J Proc. Natl. Acad. Sci. USA %V 90 %P 439-441 %D 1993 %A K.F. Lau %A K.A. Dill %T A lattice statistical mechanics model of the conformational and sequence spaces of proteins %J Macromolecules %V 22 %P 3986-3997 %D 1989 %A K.F. Lau %A K.A. Dill %T Theory for protein mutability and biogenesis %J Proc. Natl. Acad. Sci. USA %V 87 %D 1990 %P 638-642 %K lattice simulation random sequences PNAS %A C.A. Laughton %A S. Neidel %A M.J.J.M. Zvelebil %A M.J.E. Sternberg %T A molecular model for the enzyme cytochrome \f2p\f1-450\d\s-217\(*a\s0\u, a major target for the chemotherapy of prostatic cancer %J Biochem. Biophys. Res. Comm. %V 171 %P 1160-1167 %D 1990 %A B.C. Laurent %A M.H.L. Nilsson %A C.O. B\(aovik %A T.A. Jones %A J. Sundelin %A P.A. Peterson %T Characterization of the rat retinol-binding protein gene ans its comparison to the three-dimensional structure of the protein %J J. Biol. Chem. %V 260 %P 11476-11480 %D 1985 %K lipocalin Bavik %A J. Lautz %A H. Kessler %A J.M. Blaney %A R.M. Scheek %A W.F. van\0Gunsteren %J Int. J. Pept. Prot. Res. %P 281-288 %T Calculating three-dimensional molecular structure from atom-atom distance information: cyclosporin A %V 33 %D 1989 %A W.G. Laver %A P.M. Colman %A R.G. Webster %A V.S. Hinshaw %A G.M. Air %T Influenza virus neuraminidase with hemagglutinin activity %J Virology %V 137 %P 314-323 %D 1984 %A C.E. Lawrence %A A.A. Reilly %J J. Theor. Biol. %P 425-439 %T Maximum likelihood estimation of subsequence conservation %V 113 %D 1985 %A C.E. Lawrence %A A.A. Reilly %T An expectation maximization (EM) algorithm for the identification and characterization of common sites in unaligned biopolymer sequences %J Proteins %V 7 %D 1990 %P 41-51 %K recognition statistics sequence %A C. Lawrence %A I. Auger %A C. Mannella %T Distribution of accessible surfaces of amino acids in globular proteins %J Proteins %V 2 %P 153-161 %D 1987 %A D.A. Lawrence %A D.J. Loskutoff %T Inactivation of plasminogen activator inhibitor by oxidants %J Biochemistry %V 25 %D 1986 %P 6531-6355 %A M.C. Lawrence %A P.C. Davis %T \s-2CLIX\s0: A search algorithm for finding novel ligands capable of binding proteins of known three-dimensional structure %J Proteins %V 12 %P 31-41 %D 1992 %A M.C. Lawrence %A E. Suzuki %A J.N. Varghese %A P.C. Davis %A A. van\0Donkelaar %A P.A. Tulloch %A P.M. Colman %T The three-dimensional structure of the seed storage protein phaseolin at 3\(Ao resolution %J EMBO J. %V 9 %P 9-? %D 1990 %K 1PHS %A C.L. Lawson %A P.B. Sigler %T The structure of \f2trp\f1 pseudorepressor at 1.65\(Ao shows why indole propionate acts as a \f2trp\f1 `inducer' %J Nature %V 333 %P 869-871 %D 1988 %A C.L. Lawson %A R.-G. Zhang %A R.W. Schevitz %A Z. Otwinowski %A A. Joachimiak %A P.B. Sigler %T Flexibility of the DNA-binding domains of \f2trp\f0 repressor %J Proteins %V 3 %P 18-? %D 1988 %K PDB1WRP PDB2WRP PDB3WRP %A D.M. Lawson %A P.J. Artymiuk %A S.J. Yewdall %A J.M.A. Smith %A J.C. Livingstone %A A. Treffry %A A. Luzzago %A S. Levi %A P. Arosio %A G. Cesareni %A C.D. Thomas %A W.V. Shaw %A P.M. Harrison %T Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts %J Nature %V 349 %P 541-544 %D 1991 %A D. Lazard %A K. Zupko %A Y. Poria %A P. Nef %A J. Lazarovits %A S. Horn %A M. Khen %A D. Lancet %T Odorant signal termination by olfactory UDP glucuronosyl transferase %J Nature %V 349 %P 790-793 %D 1991 %A C. Lazure %A R. Leduc %A N.G. Seidah %A G. Thibault %A J. Genest %A M. Chr\(e'tien %T Amino acid sequence of rat submaxillary tonin reveals similarities to serine proteases %J Nature %V 307 %P 555-558 %D 1984 %K 1TON Chretien %A T.F.M. la\0Cour %A J. Nyborg %A S. Thirup %A B.F.C. Clark %T Structural details of the binding of guanosine diphosphate to elongation factor Tu from \f2E. coli\f1 as studied by X-ray crystallography %J EMBO J. %V 4 %P 2385-2388 %D 1985 %K PDB1ETU %A A.R. Leach %A S.R. Kilvington %T Automated molecular design: A new fragment-joining algorithm %J J. Comp. Aid. Mol. Des. %V 8 %P 283-298 %D 1994 %A D.J. Leahy %A R. Axel %A W.A. Hendrickson %T Crystal structure of a soluble form of the human T cell coreceptor CD8 at 2.6\(Ao resolution %J Cell %V 68 %P 1145-1162 %D 1992 %A D.J. Leahy %A W.A. Hendrickson %A I. Aukhil %A H.P. Erickson %T Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenemethionyl protein %J Science %V 258 %P 987-991 %D 1992 %A R.J. Leatherbarrow %A A.R. Fersht %J Prot. Eng. %V 1 %P 7-16 %T Protein engineering %D 1986 %A R. Leberman %A J.T. Finch %A P.F.C. Gilbert %A J. Witz %A A. Klug %T X-ray analysis of the disk of tobacco mosaic virus protein: I. crystallization of the protein and of a heavy-atom derivative %J J. Mol. Biol. %V 86 %P 179-? %D 1974 %K 0TMV %A L. Lebioda %A J.M. Brewer %T Crystallization and preliminary crystallographic data for a tetragonal form of yeast enolase %J J. Mol. Biol. %V 180 %P 213-215 %D 1984 %K 2ENL %A L. Lebioda %A M.H. Hatada %A A. Tulinsky %A I.M. Mavridis %T Comparison of the folding of 2-keto-3-deoxy-6-phosphogluconate aldolase, triosephosphate isomerase and pyruvate kinase: implications in molecular evolution %J J. Mol. Biol. %V 162 %P 445-? %D 1982 %K 1KGA %A L. Lebioda %A B. Stec %T Crystal structure of enolase indicates that enolase and pyruvate kinase evolved from a common ancestor %J Nature %V 333 %P 683-686 %D 1988 %A L. Lebioda %A B. Stec %A J.M. Brewer %T The structure of yeast enolase at 2.25\(Ao resolution: an 8-fold \(*b+\(*a-barrel with a novel \(*b\(*b\(*a\(*a(\(*b\(*a)\d\s-26\s0\u topology %J J. Biol. Chem. %V 264 %P 3685-? %D 1989 %K PDB2ENL %A B.J. Leckie %B Aspartic proteinases and their inhibitors %E V. Kostka %P 443-461 %I Walter de\0Gruyter %C Berlin %T Human renin inhibitors %D 1985 %A F. Lederer %A A. Glatigny %A P.H. Bethge %A H.D. Bellamy %A F.S. Mathews %T Improvement of the 2.5\(Ao resolution model of cytochrome \f2b\f1\d\s-2562\s0\u by redetermining the primary structure and using molecular graphics %J J. Mol. Biol. %V 148 %P 427-? %D 1981 %K PDB256B PDB156B %A F.D. Ledley %A A.G. di\0Lella %A S.C.M. Kwok %A S.L.C. Woo %T Homology between phenylalanine and tyrosine hydroxylases reveals common structural and functional domains %J Biochemistry %V 24 %D 1985 %P 3389-3394 %K sequence alignment comparison hydroxylase %A A.Y. Lee %A M. Hagihara %A R. Karmacharya %A M.W. Albers %A S.L. Schreiber %A J. Clardy %T Atomic structure of the trypsin-cyclotheonamide A complex: Lessons for the design of serine proteinase inhibitors %J J. Amer. Chem. Soc. %V 115 %P 12619-12620 %D 1993 %A B. Lee %A F.M. Richards %T The interpretation of protein structures: estimation of static accessibility %J J. Mol. Biol. %V 55 %D 1971 %P 379-400 %A C. Lee %A M. Levitt %T Accurate prediction of the stability and activity effects of site directed mutagenesis on a protein core %J Nature %V 352 %P 448-451 %D 1991 %A C. Lee %A S. Subbiah %T Prediction of side-chain conformation by packing optimization %J J. Mol. Biol. %V 217 %P 373-388 %D 1991 %A F.S. Lee %A Z.-T. Chu %A A. Warshel %T Microscopic and semimicroscopic calculations of electrostatic energies in proteins by the POLARIS and ENZYMIX programs %J J. Comp. Chem. %V 14 %P 161-185 %D 1993 %A K.-H. Lee %A R.G. Wells %A R.R. Reed %T Isolation of an olfactory cDNA: Similarity to retinol-binding protein suggests a role in olfaction %J Science %V 235 %P 1053-1056 %D 1987 %A M.S. Lee %A J. Cavanagh %A P.E. Wright %T Complete assignment of the \u\s-21\s0\dH nuclear magnetic resonance spectrum of a synthetic zinc finger from Xfin: Sequential resonance assignments and secondary structure %J FEBS Lett. %V 254 %P 159-? %D 1989 %K 1ZNF %A M.S. Lee %A G.P. Gippert %A K.V. Soman %A D.A. Case %A P.E. Wright %T Three-dimensional solution structure of a single zinc finger DNA-binding domain %J Science %V 245 %P 635-637 %D 1989 %K 1ZNF %A M.S. Lee %A G.P. Gippert %A K.V. Soman %A D.A. Case %A P.E. Wright %T Proton nuclear magnetic resonance assignments and solution structure of a synthetic zinc finger from Xfin %B Structure and methods. V. DNA protein complexes and proteins %P 83-? %D 1990 %K 1ZNF %A M.S. Lee %A S.A. Kliewer %A J. Provencal %A P.E. Wright %A R.M. Evans %T Structure of the retinoid X receptor \(*a DNA binding domain: A helix required for homodimeric DNA binding %J Science %V 260 %P 1117-1121 %D 1993 %K Wuthrich %A R.J. Lefkowitz %T Variations on a theme %J Nature %V 351 %P 353-354 %D 1991 %K thrombin-receptor G-protein-coupled-receptor %A R.J. Lefkowitz %A M.G. Caron %T Adrenergenic receptors %J J. Biol. Chem. %V 263 %P 4993-4996 %D 1988 %A S.F.J. LeGrice %A J. Mills %A J. Mous %J EMBO J. %V 7 %D 1988 %P 2547-2553 %T Active site mutagenesis of the AIDS virus protease and its alleviation by trans complementation %K retrovirus %A M.S. Lehmann %A S.A. Mason %A G.J. McIntyre %T Study of ethanol-lysozyme interactions using neutron diffraction %J Biochemistry %V 24 %P 5862-? %D 1985 %K 0LZE %A A.L. Lehninger %D 1975 %T Biochemistry %I Worth %O 2nd ed. %C New York %A M. Leijonmarck %A K. Appelt %A J. Badger %A A. Liljas %A K.S. Wilson %A S.W. White %T Structural comparison of the prokaryotic ribosomal proteins L7/L12 and L30 %J Proteins %V 3 %P 243-251 %D 1988 %A M. Leijonmarck %A S. Eriksson %A A. Liljas %T Crystal structure of a ribosomal component at 2.6\(Ao resolution %J Nature %V 286 %P 824-826 %D 1980 %K 1CTF %A M. Leijonmarck %A A. Liljas %T Structure of the C-terminal domain of the ribosomal protein L7/L12 from \f2Escherichia coli\f1 at 1.7\(Ao %J J. Mol. Biol. %V 195 %P 555-579 %D 1987 %K PDB1CTF %A M. Leijonmarck %A I. Pettersson %A A. Liljas %T Structural studies on the protein L7/L12 from \f2E. coli\f1 ribosomes %B Structural aspects of recognition and assembly in biological macromolecules %E M. Balabam, J.L. Sussman, W. Traub, A Yonath and R. Feldmann %C Rehovot %I Balabam International Scientific Services %P 761-? %D 1981 %K 1CTF %A J. Leis %A D. Baltimore %A J.M. Bishop %A J. Ciffin %A E. Fleissner %A S.P. Goff %A S. Oroszlan %A H. Robinson %A A.M. Skalka %A H.M. Temin %T Standardized and simplified nomenclature for proteins common to all retroviruses %J J. Virol. %V 62 %D 1988 %P 1808-1809 %A B. Leiting %A R. De\0Francesco %A L. Tomei %A R. Cortese %A G. Otting %A K. W\(:uthrich %T The three-dimensioanl NMR-solution structure of the polypeptide fragment 195 \(em 286 of the LFB1/HNF1 transcription factor from rat liver comprises a non-classical homeodomain %J EMBO J. %V 12 %P 1797-1803 %D 1993 %A C.M.-R. Lemer %A M.J. Rooman %A S.J. Wodak %T Protein structure prediction by threading methods: Evaluation of current techniques %J Proteins %V 23 %P 337-355 %D 1995 %A R.E. Lenski %A J.E. Mittler %T The directed mutation controversy and Neo-Darwinism %J Science %V 259 %P 188-192 %D 1993 %A J.A. Lenstra %A J. Hofsteenge %A J.J. Beintema %D 1977 %T Invariant features of the structure of pancreatic ribonuclease %J J. Mol. Biol. %V 109 %P 185-193 %A G.A. Leonard %A J. Thomson %A W.P. Watson %A T. Brown %T High-resolution structure of a mutagenic lesion in DNA %J Proc. Natl. Acad. Sci. USA %V 87 %P 9573-? %D 1990 %K PDB1D27 %A W.J. LeQuesne %D 1969 %T A method of selection of characters in numerical taxonomy %J System. Zool. %V 18 %P 201-205 %A W.J. LeQuesne %D 1972 %T Further studies based on the uniquely derived character concept %J System. Zool. %V 21 %P 281-288 %A W.J. LeQuesne %D 1974 %T The uniquely evolved character concept and its cladistic application %J System. Zool. %V 23 %P 513-517 %A W.J. LeQuesne %D 1977 %T The uniquely evolved character concept %J System. Zool. %V 26 %P 218-223 %A R.A. Lerner %T Synthetic vaccines %J Sci. Amer. %V 248 %N 2 %P 48-62 %D 1983 %A R.A. Lerner %A A. Tramontano %T Catalytic antibodies %J Sci. Amer. %V 258 %N 3 %P 42-53 %D 1988 %A A.M. Lesk %T Pictorial pattern recognition and the phase problem of X-ray crystallography %J Comm. Assoc. Comp. Mach. %V 15 %P 3-6 %D 1972 %A A.M. Lesk %T A toolkit for computational molecular biology: I. Packing and unpacking of protein coordinate sets %J J. Mol. Graph. %V 1 %P 118-121 %D 1983 %A A.M. Lesk %T Themes and trends in protein structures %J Trends Biochem. Sci. %V 9 %D 1984 %P ?-? %A A.M. Lesk %T A toolkit for computational molecular biology: III. Micryfon \(em A (fairly) general program for input of protein coordinate files %J J. Appl. Cryst. %V 20 %P 488-490 %D 1987 %A A.M. Lesk %T Computational Molecular Biology: Sources and Methods for sequence analysis %D 1988 %C Oxford %I Oxford University Press %A A.M. Lesk %T Protein structure and evolution: similar amino acid sequences sometimes produce strikingly different three-dimensional structures %J BioEssays %V 2 %D 1988 %P 213-214 %K Later proved incorrect !! %A A.M. Lesk %A D.R. Boswell %T Does protein structure determine amino acid sequence ? %J BioEssays %V 14 %P 407-410 %D 1992 %A A.M. Lesk %A D.R. Boswell %T Homology modelling: inferences from tables of aligned sequences %J Curr. Opin. Struct. Biol. %V 2 %P 242-247 %D 1992 %A A.M. Lesk %A C.-I. Br\(a:nd\(e'n %A C. Chothia %T Structural principles of \(*a/\(*b barrel proteins: The packing of the interior of the sheet %J Proteins %V 5 %D 1989 %P 139-148 %K Branden %A A.M. Lesk %A C. Chothia %T How different amino acid sequences determine similar protein structures: The structure and evolutionary dynamics of the globins %J J. Mol. Biol. %V 136 %D 1980 %P 225-270 %A A.M. Lesk %A C. Chothia %T Evolution of proteins formed by \(*b-sheets: II. the core of the immunoglobulin domains %J J. Mol. Biol. %V 160 %D 1982 %P 325-342 %A A.M. Lesk %A C. Chothia %T Mechanism of domain closure in proteins %J J. Mol. Biol. %V 174 %D 1984 %P 175-191 %A A.M. Lesk %A C. Chothia %T The response of protein structure to amino acid sequence changes %J Phil. Trans. Roy. Soc. Lond. %V A 317 %D 1986 %P 345-356 %A A.M. Lesk %A C. Chothia %T Elbow motion in the immunoglobulins involves a molecular ball-in-socket joint %J Nature %V 335 %D 1988 %P 188-190 %A A.M. Lesk %A K.D. Hardman %T Computer-generated schematic diagrams of protein structure %J Science %D 1982 %V 216 %P 539-540 %A A.M. Lesk %A K.D. Hardman %T Computer-generated pictures of proteins %J Methods Enzymol. %V 115 %P 381-390 %D 1985 %A A.M. Lesk %A M. Levitt %A C. Chothia %T Alignment of the amino acid sequences of distantly related proteins using variable gap penalties %J Prot. Eng. %V 1 %D 1986 %P 77-78 %A V.I. Lesk %A A.M. lesk %T Schematic diagrams of nucleic acids and protein-nucleic acid complexes %J J. Appl. Cryst. %V 22 %P 569-571 %D 1989 %A A.M. Lesk\0(Ed.) %T Computational molecular biology %I Oxford University Press %C Oxford %D 1988 %A A.G.W. Leslie %T Refined crystal structure of type III chloramphenicol acetyltransferase at 1.75\(Ao resolution %J J. Mol. Biol. %V 213 %P 167-? %D 1990 %K 3CLA 1CLA 2CLA %A A.G.W. Leslie %A J.M. Liddell %A W.V. Shaw %T Crystallization of a type III chloramphenicol acetyl transferase %J J. Mol. Biol. %V 188 %P 283-? %D 1986 %K 3CLA 1CLA 2CLA %A A.G.W. Leslie %A P.C.E. Moody %A W.V. Shaw %T Structure of chloramphenicol acetyltransferase at 1.75\(Ao resolution %J Proc. Natl. Acad. Sci. USA %V 85 %P 4133-? %D 1988 %K 3CLA 2CLA 1CLA PNAS %A A.G.W. Leslie %A A.J. Wonacott %T Coenzyme binding in crystals of glyceraldehyde-3-phosphate dehydrogenase %J J. Mol. Biol. %V 165 %P 375-? %D 1983 %K 1GD1 %A A.G.W. Leslie %A A.J. Wonacott %T Structural evidence for ligand-induced sequential conformational changes in glyceraldehyde 3-phosphate dehydrogenase %J J. Mol. Biol. %V 178 %P 743-772 %D 1984 %K 1GD1 %A G.J. Lesser %A G.D. Rose %T Hydrophobicity of amino acid subgroups in proteins %J Proteins %V 8 %P 6-13 %D 1990 %A J.F. Leszczynski %A G.D. Rose %T Loops in globular proteins: a novel category of secondary structure %J Science %V 234 %D 1986 %P 849-855 %A D.W. Leung %A G. Cachianes %A W.-J. Kuang %A D.V. Goeddel %A N. Ferrara %T Vascular endothelial growth factor is a secreted angiogenic mitogen %J Science %V 246 %D 1989 %P 1306-1309 %K PDGF growth factor peptide %A J.A.M. Leunissen %A W.W. de\0Jong %J J. Theor. Biol. %P 189-196 %T Phylogenetic trees constructed from hydrophobicity values of protein sequences %V 119 %D 1986 %A N. Levilliers %A M. Peron-Renner %A J. Pudles %T Role of serine 195 in the stabilization of \(*b-trypsin and \(*b-trypsin-ligand complexes %J J. Mol. Biol. %V 111 %P 279-303 %D 1977 %A J.M. Levin %A B. Robson %A J. Garnier %T An algorithm for secondary structure determination in proteins based on sequence similarity %J FEBS Lett. %V 205 %D 1986 %P 303-308 %A M. Levine %A H. Muirhead %A D.K. Stammers %A D.I. Stuart %T Structure of pyruvate kinase and similarities with other enzymes: possible implications for protein taxonomy and evolution %J Nature %V 271 %P 626-630 %D 1978 %K 1PYK %A M. Levine %A D. Stuart %A J. Williams %T A method for the systematic comparison of the three-dimensional structures of proteins and some results %J Acta Cryst. %V A 40 %P 600-610 %D 1984 %A M. Levitt %T Energy refinement of hen egg-white lysozyme %J J. Mol. Biol. %V 82 %P 393-? %D 1974 %K 1LYZ %A M. Levitt %T A simplified representation of protein conformation for rapid simulation of protein folding %J J. Mol. Biol. %V 104 %P 59-107 %D 1976 %A M. Levitt %T Conformational preferences of amino acids in globular proteins %J Biochemistry %V 17 %D 1978 %P 4277-4285 %A M. Levitt %T Molecular dynamics of native protein: I. computer simulation of trajectories %J J. Mol. Biol. %V 168 %D 1983 %P 595-620 %A M. Levitt %T Protein folding by restrained energy minimization and molecular dynamics %J J. Mol. Biol. %V 170 %D 1983 %P 723-764 %A M. Levitt %T Protein folding %J Curr. Opin. Struct. Biol. %V 1 %P 224-229 %D 1991 %A M. Levitt %T Accurate modeling of protein conformation by automatic segment matching %J J. Mol. Biol. %V 226 %P 507-533 %D 1992 %A M. Levitt %A C. Chothia %T Structural patterns in globular proteins %J Nature %V 261 %D 1976 %P 552-558 %A M. Levitt %A J. Greer %T Automatic interpretation of secondary structure in globular proteins %J J. Mol. Biol. %V 114 %P 181-239 %D 1977 %A M. Levitt %A S. Lifson %T Refinement of protein conformation using a macromolecular energy minimization procedure %J J. Mol. Biol. %V 46 %P 269-279 %D 1969 %A M. Levitt %A M.F. Perutz %T Aromatic rings act as hydrogen bond acceptors %J J. Mol. Biol. %P 751-754 %V 201 %D 1988 %A M. Levitt %A C. Sander %A P.S. Stern %T Protein normal-mode dynamics: Trypsin inhibitor, crambin, ribonuclease and lysozyme %J J. Mol. Biol. %V 181 %D 1985 %P 423-447 %A M. Levitt %A A. Warshel %T Computer simulation of protein folding %J Nature %V 253 %D 1975 %P 694-698 %A P.L. Levy %A M.K. Pangburn %A Y. Burstein %A L.H. Ericsson %A H. Neurath %A K.A. Walsh %T Evidence of homologous relationship between thermolysin and neutral protease a of \f2Bacillus subtilis\f1 %J Proc. Natl. Acad. Sci. USA %V 72 %P 4341-4345 %D 1975 %K 3TLN PNAS %A R.M. Levy %A D.A. Bassolino %A D.B. Kitchen %A A. Pardi %T Solution structures of proteins from NMR data and modeling: alternative folds for neutrophil peptide 5 %J Biochemistry %P 9361-9372 %V 28 %D 1989 %A X.Q. Lewell %T A model of the adrenergic \(*b-2 receptor and binding sites for agonist and antagonist %J Drug Des. Disc. %V 9 %P 29-48 %D 1992 %A A. Lewendon %A I.A. Murray %A C. Kleanthous %A P.M. Cullis %A W.V. Shaw %T Substitutions in the active site of chloramphenicol acetyltransferase: role of a conserved aspartate %J Biochemistry %V 27 %P 7385-? %D 1988 %K 3CLA 1CLA 2CLA %A A. Lewendon %A I.A. Murray %A W.V. Shaw %A M.R. Gibbs %A A.G.W. Leslie %T Evidence for transition-state stabilization by serine-148 in the catalytic mechanism of chloramphenicol acetyltransferase %J Biochemistry %V 29 %P 2075-? %D 1990 %K 3CLA 1CLA 2CLA %A D.F.V. Lewis %A H. Moereels %T The sequence homologies of cytochromes P-450 and active-site geometries %J J. Comp. Aided Mol. Design %V 6 %P 235-252 %D 1992 %A H.R. Lewis %A C.H. Papadimitriou %T The efficiency of algorithms %J Sci. Amer. %N 1 %D 1978 %V 238 %P 96-109 %A M. Lewis %A A. Jeffrey %A J. Wang %A R. Ladner %A M. Ptashne %A C.O. Pabo %T Structure of the operator-binding domain of bacteriophage \(*l repressor: implications for DNA recognition and gene regulation %J Cold Spring Harbor Symp. Quant. Biol. %V 47 %P 435-? %D 1983 %K 1LRD %A R.A. Lewis %A A.R. Leach %T Current methods for site-directed structure generation %J J. Comp. Aid. Mol. Des. %V 8 %P 467-475 %D 1994 %A S.D. Lewis %A F.A. Johnson %A J.A. Shafer %J Biochemistry %P 48-51 %T Effect of cysteine-25 on the ionization of histidine-159 in papain as determined by proton nuclear magnetic resonance spectroscopy: evidence for a His-159-Cys-25 ion pair and its possible role in catalysis %V 20 %D 1981 %A M.H. le\0Du %A P. Marchot %A P.E. Bougis %A J.C. Fonticella-Camps 1.9\(Ao resolution structure of fasciculin 1, an anti-acetylcholinesterase toxin from green mamba snake venom %J J. Biol. Chem. %V 267 %P 22122-22130 %D 1992 %A H. Li %A T.L. Poulos %T Structural variation in heme enzymes: A comparative analysis of peroxidase and P450 crystal structures %J Structure %V 2 %P 461-464 %D 1994 %A J. Li %A P. Brick %A M.C. O'Hare %A T. Skarzynski %A L.F. Lloyd %A V.A. Curry %A I.M. Clark %A H.F. Bigg %A B.L. Hazleman %A T.E. Cawston %A D.M. Blow %T Structure of full-length porcine synovial collagenase reveals a C-terminal domain containing a calcium-linked, four bladed \(*b-propellor %J Structure %V 3 %P 541-549 %D 1995 %A J. Li %A J. Carroll %A D.J. Ellar %T Crystal structure of insecticidal \(*d-endotoxin from \f2Bacillus thuringiensis\f1 at 2.5\(Ao resolution %J Nature %V 353 %P 815-821 %D 1991 %A S.S.-L. Li %A R.J. Feldmann %A M. Okabe %A Y.-C.E. Pan %T Molecular features and immunological properties of lactate dehydrogenase C\d\s-24\s0\u isozymes from mouse and rat testes %J J. Biol. Chem. %V 258 %D 1983 %P 7017-7028 %K LDH sequence modelling antigenicity %A S.S.-L. Li %A W.M. Fitch %A Y.-C. Pan %A F.S. Sharief %J J. Biol. Chem. %V 258 %D 1983 %P 7029-7032 %T Evolutionary relationships of vertebrate lactate dehydrogenase isozymes A\d\s-24\s0\u (muscle), B\d\s-24\s0\u (heart) and C\d\s-24\s0\u (testis) %K LDH sequence comparison alignment evolution %A W.-H. Li %A D. Graur %T Fundamentals of Molecular Evolution %I Sinauer Associates Inc. %C Sunderland, Mass. %D 1991 %A W.-H. Li %A W.A. Hide %A D. Graur %T Is the guinea-pig a rodent ? %J Nature %V 351 %P 649-652 %D 1991 %A W.-H. Li %A W.A. Hide %A D. Graur %T Origin of rodents and guinea-pigs %J Nature %V 359 %P 277-278 %D 1992 %A W.-H. Li %A M. Tanimura %A P.M. Sharp %T An evaluation of the molecular clock hypothesis using mammalian DNA sequences %J J. Mol. Evol. %V 25 %P 330-342 %D 1987 %A X.-J. Li %A W. Wolfgang %A Y.-N. Wu %A R.A. North %A M. Forte %T Cloning, heterologous expression and developmental regulation of a \f2Drosophila\f1 receptor for tachykinin-like peptides %J EMBO J. %V 10 %P 3221-3229 %D 1991 %A Z. Li %A X. Chen %A E. Davidson %A O. Zwang %A C. Mendis %A C.S. Ring %A W.R. ROush %A G. Fegley %A R. Li %A P.J. Rosenthal %A G.K. Lee %A G.L. Kenyon %A I.D. Kuntz %A F.E. Cohen %T Anti-malarial drug development using models of enzyme structure %J Chem. and Biol. %V 1 %P 31-37 %D 1994 %A L.-Y. Lian %A J.P. Derrick %A M.J. Sutcliffe %A J.C. Yang %A G.C.K. Roberts %T Determination of the solution structure of domains II and III od protein G from \f2Streptococcus\f1 by \u\s-41\s0\dH nuclear magnetic resonance %J J. Mol. Biol. %V 228 %P 1219-1234 %D 1992 %A J.-Y. Liang %A S. Huang %A Y. Zhang %A H. Ke %A W.N. Lipscomb %T Crystal structure of the neutral form of fructose 1,6-bisphosphatase complexed with regulatory inhibitor fructose 2,6-bisphosphate at 2.6\(Ao resolution %J Proc. Natl. Acad. Sci. USA %V 89 %P 2404-2408 %D 1992 %A T.-H. Liao %A J. Salnikow %A S. Moore %A W.H. Stein %T Bovine pancreatic deoxyribonuclease A: isolation of cyanogen bromide peptides, complete covalent structure of the polypeptide chain %J J. Biol. Chem. %V 248 %P 1489-? %D 1973 %K 0DNI %A R.C. Liddington %A Y. Yan %A J. Moulai %A R. Sahli %A T.L. Benjamin %A S.C. Harrison %T Structure of simian virus 40 at 3.8\(Ao resolution %J Nature %V 354 %P 278-284 %D 1991 %A M.N. Liebman %T Quantitative analysis of structural domains in proteins %J Biophys. J. %V 32 %D 1980 %P 213-215 %A I. Liepina %A G.V. Nikiforovich %A A.C.M. Paiva %J Biochemistry %P 700-705 %T Conformational aspects of angiotensinogen analogues with renin inhibitory activity %V 122 %D 1985 %A D.J. Lifson %A C. Sander %J Nature %P 109-111 %V 282 %T Antiparallel and parallel \(*b-strands differ in amino acid residue properties %D 1979 %A S. Lifson %A C. Sander %T Antiparallel and parallel \(*b strands differ in amino acid residue preferences %J Nature %V 282 %P 109-111 %D 1979 %A M.M. Lightfoote %A J.E. Coligan %A T.M. Folks %A A.S. Fauci %A M.A. Martin %A S. Venkatesan %J J. Virol. %V 60 %D 1986 %P 771-775 %T Structural characterization of reverse transcriptase and endonuclease polypeptides of the acquired immunodeficiency syndrome retrovirus %A L.J. Lijk %A K.H. Kalk %A N.P. Brandenburg %A W.G.J. Hol %T Binding of metal cyanide complexes to bovine liver rhodanese in the crystalline state %J Biochemistry %V 22 %P 2952-? %D 1983 %K 1RHD %A A. Liljas %A S. Eriksson %A D. Donner %A C.G. Kurland %T Isolation and crystallization of stable domains of the protein L7/L12 from \f2Escherichia coli\f1 ribosomes %J FEBS Lett. %V 88 %P 300-? %D 1978 %K 1CTF %A A. Liljas %A K.K. Kannan %A P.-C. Bergst\(e'n %A I. Waara %A K. Fridborg %A B. Strandberg %A U. Carlbom %A L. J\(a:rup %A S. L\(o:vgren %A M. Petef %T Crystal structure of human carbonic anhydrase C %J Nature, New Biol. %V 235 %P 131-137 %D 1972 %K 1CA2 Bergsten Jarup Lovgren %A A. Liljas %A M.G. Rossmann %T X-ray studies of protein interactions %J Annu. Rev. Biochem. %V 43 %P 475-? %D 1974 %K 3LDH %A L. Liljas %A B. Strandberg %T Structure of satellite tobacco necrosis virus after crystallographic refinement at 2.5\(Ao resolution %J J. Mol. Biol. %V 177 %P 735-? %D 1984 %K PDB2STV %A E.P. Lillehoj %A R.H.R. Salazar %A R.J. Mervis %A M.G. Raum %A H.W. Chan %A N. Ahmad %J J. Virol. %V 62 %D 1988 %P 3053-3058 %T Purification and structural characterization of the putative \f2gag-pol\f1 protease of human immunodeficiency virus %A L.W. Lim %A F.S. Mathews %A D.J. Steenkamp %T Crystallographic study of the iron-sulfur flavoprotein trimethyamine dehydrogenase from the bacterium W\d\s-23\s0\uA\d\s-21\s0\u %J J. Mol. Biol. %V 162 %P 869-? %D 1982 %K 0TMD %A L.W. Lim %A N. Shamala %A F.S. Mathews %A D.J. Steenkamp %A R. Hamlin %A N.H. Xuong %T Three-dimensional structure of the iron-sulfur flavoprotein trimethylamine dehydrogenase at 2.4\(Ao resolution %J J. Biol. Chem. %V 261 %P 15140-? %D 1986 %K 0TMD %A V.I. Lim %J J. Mol. Biol. %V 88 %D 1974 %P 873-894 %T Algorithm for prediction of \(*a-helical and \(*b-structural regions in globular proteins %A V.I. Lim %J J. Mol. Biol. %V 88 %D 1974 %P 857-872 %T Structural principles of the globular organization of protein chains: a stereochemical theory of globular protein secondary structure %A W.A. Lim %A F.M. Richards %A R.O. Fox %T Structural determinants of peptide-binding orientation and of sequence specificity in SH3 domains %J Nature %V 372 %P 375-379 %D 1994 %A W.A. Lim %A R.T. Sauer %T Alternative packing arrangements in the hydrophobic core of \(*l repressor %J Nature %V 339 %D 1989 %P 31-36 %A W.A. Lim %A R.T. Sauer %T The role of internal packing interactions in determining the structure and stability of a protein %J J. Mol. Biol. %V 219 %P 359-376 %D 1991 %A M.S.L. Lim-Wilby %A K. Hallenga %A M. De\0Maeyer %A I. Lasters %A G.P. Vlasuk %A T.K. Brunk %T NMR structure determination of tick anticoagulant peptide (TAP) %J Prot. Sci. %V 4 %P 178-186 %D 1995 %A C.D. Lima %A J.C. Wang %A A. Mondrag\(o'n %T Three-dimensional structure of the 67K N-terminal fragment of \f2E. coli\f1 DNA topoisomerase I %J Nature %V 367 %P 138-146 %D 1994 %A L.-N. Lin %A J.F. Brandts %J Biochemistry %P 43-47 %T Evidence that some proteolytic enzymes may cleave only the \f2trans\f1 form of the peptide bond %V 18 %D 1979 %A S.H. Lin %A Y. Konishi %A M.E. Denton %A H.A. Scheraga %T Influence of an extrinsic cross-link on the folding pathway of ribonuclease A: conformational and thermodynamic analysis of cross-linked (lysine\d\s-27\s0\u-lysine\d\s-247\s0\u)-ribonuclease A %J Biochemistry %V 23 %P 5504-? %D 1984 %K 1RSM %A Y. Lin %A M. Luo %A W.G. Laver %A G.M. Air %A C.D. Smith %A R.G. Webster %T New crystalline forms of neuraminidase of type B human influenza virus %J J. Mol. Biol. %V 214 %P 639-640 %D 1990 %A Z.-J. Lin %A M. Konno %A C. Abad-Zapatero %A R. Wierenga %A M.R.N. Murthy %A W.J. Ray,\0Jr. %A M.G. Rossmann %T The structure of rabbit muscle phosphoglucomutase at intermediate resolution %J J. Biol. Chem. %V 261 %P 264-? %D 1986 %K 0PGL %A Z. Lin %A M.E. Johnson %T Proposed cation-\(*p mediated binding by factor Xa: A novel enzymatic mechanism for molecular recognition %J FEBS Letts. %V 370 %P 1-5 %D 1995 %A P. Linder %A P.F. Lasko %A M. Ashburner %A P. Leroy %A P.J. Nielsen %A K. Nishi %A J. Schnier %A P.P. Slonimski %T Birth of the D-E-A-D box %J Nature %V 337 %P 121-122 %D 1989 %A Y. Lindqvist %T Refined structure of spinach glycolate oxidase at 2\(Ao resolution %J J. Mol. Biol. %V 209 %P 151-? %D 1989 %K PDB1GOX %A Y. Lindqvist %A C.-I. Br\(a:nd\(e'n %T Preliminary crystallographic data for glycolate oxidase from spinach %J J. Biol. Chem. %V 254 %P 7403-? %D 1979 %K 1GOX Branden %A Y. Lindqvist %A C.-I. Br\(a:nd\(e'n %T Structure of glycolate oxidase from spinach at a resolution of 5.5\(Ao %J J. Mol. Biol. %V 143 %P 201-? %D 1980 %K 1GOX Branden %A Y. Lindqvist %A C.-I. Br\(a:nd\(e'n %T Structure of glycolate oxidase from spinach %J Proc. Natl. Acad. Sci. USA %V 82 %P 6855-6859 %D 1985 %K 1GOX Branden PNAS %A Y. Lindqvist %A C.-I. Br\(a:nd\(e'n %T The active site of spinach glycolate oxidase %J J. Biol. Chem. %V 264 %P 3624-? %D 1989 %K 1GOX Branden %A Y. Lindqvist %A C.-I. Br\(a:nd\(e'n %A F.S. Mathews %A F. Lederer %T Spinach glycolate oxidase yeast flavocytochrome \f2b\f1\d\s-42\s0\u are structurally homologous and evolutionarily related enzymes with distinctly different function and flavin mononucleotide binding %J J. Biol. Chem. %V 266 %P 3198-3207 %D 1991 %K Branden %A Y. Lindqvist %A G. Schneider %A U. Ermler %A M. Sundstr\(o:m %T Three-dimensional structure of transketolase, a thiamine diphosphate dependent enzyme, at 2.5\(Ao resolution %J EMBO J. %V 11 %P 2373-2379 %D 1992 %K Sundstrom %A S. Linse %A P. Brodin %A C. Johansson %A E. Thulin %A T. Grundstrom %A S. Forsen %J Nature %V 335 %D 1988 %P 651-652 %T The role of protein surface charges in ion binding %A G. Linzen %A N.M. Soeter %A A.F. Riggs %A H.-J. Schneider %A W. Schartau %A M.D. Moore %A E. Yokota %A P.Q. Behrens %A H. Nakashima %A T. Takagi %A T. Nemoto %A J.M. Vereijken %A H.J. Bak %A J.J. Beintema %A A. Volbeda %A W.P.J. Gaykema %A W.G.J. Hol %T The structure of arthropod hemocyanins %J Science %V 229 %P 519-? %D 1985 %K 0HPI %A C. Lionetti %A M.G. Guanziroli %A F. Frigerio %A P. Ascenzi %A M. Bolognesi %T X-ray crystal structure of the ferric sperm whale myoglobin: Imidazole complex at 2.0\(Ao resolution %J J. Mol. Biol. %V 217 %P 409-? %D 1991 %K PDB1MBI %A C.A. Lipinski %T Bioisosterism in drug design %J Ann. Reports Med. Chem. %V 21 %P 283-291 %D 1986 %A D.J. Lipman %A S.F. Altschul %A J.D. Kececioglu %J Proc. Natl. Acad. Sci. USA %V 86 %D 1989 %P 4412-4415 %T A tool for multiple sequence alignment %K proteins structure evolution dynamic programming PNAS %A D.J. Lipman %A W.R. Pearson %T Rapid and sensitive protein similarity searches %J Science %V 227 %D 1985 %P 1435-1441 %A W.N. Lipscomb %T Structure and mechanism in the enzymatic activity of carboxypeptidase A and relations to chemical sequence %J Acc. Chem. Res. %V 3 %P 81-? %D 1970 %K 0CPS 3CPA %A W.N. Lipscomb %T Carboxypeptidase A mechanisms %J Proc. Natl. Acad. Sci. USA %V 77 %P 3875-3878 %D 1980 %K 3CPA PNAS 0CPS %A W.N. Lipscomb %J Annu. Rev. Biochem. %P 17-34 %T Structure and catalysis of enzymes %V 52 %D 1983 %A W.N. Lipscomb %A B.F.P. Edwards %A D.R. Evans %A S.C. Pastra-Landis %T Binding site at 5.5\(Ao resolution of cytidine triphosphate, the allosteric inhibitor of aspartate transcarbamylase from \f2Escherichia coli\f1: relation to mechanisms of control %B Structure and conformation of nucleic acids and protein-nucleic acid interactions %C Baltimore, MD %I University Park Press %E M. Sundralingham and S.T. Rao %P 333-? %D 1975 %K 4ATC 8ATC 4AT1 5AT1 6AT1 7AT1 8AT1 %A W.N. Lipscomb %A J.A. Hartsuck %A G.N. Reeke,\0Jr. %A F.A. Quiocho %A P.H. Bethge %A M.L. Ludwig %A T.A. Steitz %A H. Muirhead %A J.C. Coppola %T The structure of carboxypeptidase A: VII. the 2.0\(Ao resolution studies of the enzyme and of its complex with glycyltyrosine, and mechanistic deductions %J Brookhaven Symp. Biol. %V 21 %P 24-? %D 1969 %K 5CPA 0CPS %A B. Liu %A C.R. Kissinger %A C.O. Pabo %A E. Martin-Blanco %A T.B. Kornberg %T Crystallization and preliminary X-ray diffraction studies of the engrailed homeodomain and of an engrailed homeodomain complex %J Biochem. Biophys. Res. Comm. %V 171 %P 257-? %D 1990 %K 1HDD %A C.D. Livingstone %A G.J. Barton %T Protein sequence alignments: A strategy for the hierarchical analysis of residue conservation %J CABIOS %V 9 %P 745-756 %D 1993 %A C.D. Livingstone %A P.G. Strange %A L.H. Naylor %T Molecular modelling of D\d\s-42\s0\u-like dopamine receptors %J Biochem. J. %V 287 %P 277-282 %D 1992 %A E. Lobovsky %A P.C. Moews %A H. Liu %A H. Zhao %A J.-M. Frere %A J.R. Knox %T Evolution of an anzyme activity: Crystallographic structure at 2\(oA resolution of cephalosporinase from the \f2ampC\f1 gene of \f2Enterobacter clocae\f1 P99 and comparison with a class A penicillinase %J Proc. Natl. Acad. Sci. USA %V 90 %P 11257-11261 %D 1993 %A P.J. Lodi %A D.S. GArrett %A J. Kuszewski %A M.L.-S. Tsang %A J.A. Weatherbee %A W.J. Leonard %A A.M. Gronenborn %A G.M. Clore %T High-resolution solution structure of the \(*b chemokine hMIP-1\(*b by multidimensional NMR %J Science %V 263 %P 1762-1767 %D 1994 %A D.D. Loeb %A C.A. Hutchison\0III %A M.H. Edgell %A W.G. Farmerie %A R. Swanstrom %T Mutational analysis of human immunodeficiency virus type-1 protease suggests functional homology with aspartic proteinases %J J. Virol. %V 63 %D 1989 %P 111-121 %A D.D. Loeb %A R. Swanstrom %A L. Everitt %A M. Manchester %A S.E. Stamper %A C.A. Hutchison\0III %T Complete mutagenesis of the HIV-1 protease %J Nature %D 1989 %V 340 %P 397-400 %A H. Loebermann %A F. Lottspeich %A W. Bode %A R. Huber %T Interaction of human \(*a1-proteinase inhibitor with chymotrypsinogen A and crystallization of a proteolytically modified \(*a1-proteinase inhibitor %J Hoppe-Seyler's Z. Physiol. Chem. %V 363 %P 1377-? %D 1982 %K 7API 8API 9API %A H. Loebermann %A R. Tokuoka %A J. Deisenhofer %A R. Huber %T Human \(*a\d\s-21\s0\u-proteinase inhibitor: crystal structure analysis of two crystal modifications, molecular model and preliminary analysis of the implications for function %J J. Mol. Biol. %V 177 %P 531-556 %D 1984 %K PDB5API PDB6API %A J.S. Loehr %A P.J. Lammers %A B. Brimhall %A M.A. Hermodson %T Amino acid sequence of hemerythrin from \f2Themiste dyscritum\f1 %J J. Biol. Chem. %V 253 %P 5726-? %D 1978 %K 1HMQ %A J.S. Loehr %A K.N. Meyerhoff %A L.C. Sieker %A L.H. Jensen %T An X-ray crystallographic study of hemerythrin %J J. Mol. Biol. %V 91 %P 521-? %D 1975 %K 1HMQ %A E. Lolis %A T. Alber %A R.C. Davenport %A D. Rose %A F.C. Hartman %A G.A. Petsko %T Structure of yeast triosephosphate isomerase at 1.9\(Ao resolution %J Biochemistry %V 29 %P 6609-? %D 1990 %K 2YPI 1YPI %A E. Lolis %A G.A. Petsko %T Crystallographic analysis of the complex between triosephosphate isomerase and 2-phosphoglycolate at 2.5\(Ao resolution: implications for catalysis %J Biochemistry %V 29 %P 6619-? %D 1990 %K 2YPI 1YPI %A E. Lolis %A G.A. Petsko %T Transition-state analogues in protein crystallography: Probes of the structural source of enzyme catalysis %J Annu. Rev. Biochem. %V 59 %P 597-630 %D 1991 %A P.J. Loll %A E.E. Lattman %T The crystal structure of the ternary complex of staphylococcal nuclease, Ca\u\s-22\(pl\s0\d, and the inhibitor pdTp, refined at 1.65\(Ao %J Proteins %V 5 %P 183-? %D 1989 %K 1SNC 1SNM %A P.J. Loll %A E.E. Lattman %T Active site mutant Glu-43 \(-> Asp in staphylococcal nuclease displays nonlocal structural changes %J Biochemistry %V 29 %P 6866-? %D 1990 %K 1SNM %A M.A. Lopez %A P.A. Kollman %T Application of molecular dynamics and free energy perturbation methods to metalloporphyrin-ligand systems II: CO and dioxygen binding %J Prot. Sci. %V 2 %P 1975-1986 %D 1993 %A M.S. Lopez\0de\0Haro %A L. Alvarez %A A. Nieto %T Evidence for the identity of anti-proteinase pulmonary protein CCSP and uteroglobin %J FEBS Lett. %V 232 %P 351-? %D 1988 %K 1UTG %A A. Lorek %A K.S. Wilson %A M.S.P. Sansom %A D.I. Stuart %A E.A. Stura %A J.A. Jenkins %A G. Zanotti %A J. Hajdu %A L.N. Johnson %T Allosteric interactions of glycogen phosphorylase B: a crystallographic study of glucose 6-phosphate and inorganic phosphate binding to di-imidate-cross-linked phosphorylase B %J Biochem. J. %V 218 %P 45-? %D 1984 %K 0PB1 %A G.V. Louie %A G.D. Brayer %T A polypeptide chain-refolding event occurs in the Gly 82 variant of yeast \f2iso\f1-1-cytochrome \f2c\f1 %J J. Mol. Biol. %V 210 %P 313-? %D 1989 %K 1YCC %A G.V. Louie %A G.D. Brayer %T High-resolution refinement of yeast \f2iso\f1-1-cytochrome \f2c\f1 and comparisons with other eukaryotic cytochromes \f2c\f1 %J J. Mol. Biol. %V 214 %P 527-? %D 1990 %K 1YCC %A G.V. Louie %A P.D. Brownlie %A R. Lambert %A J.B. Cooper %A T.L. Blundell %A S.P. Wood %A M.J. Warren %A S.C. Woodcock %A P.M. Jordan %T Structure of porphobilinogen deaminase reveals a flexible multidomain polymerase with a single catalytic site %J Nature %V 359 %P 33-39 %D 1992 %A G.V. Louie %A W.L.B. Hutcheon %A G.D. Brayer %T Yeast \f2iso\f1-1-cytochrome \f2c\f1: A 2.8\(Ao resolution three-dimensional structure determination. %J J. Mol. Biol. %V 199 %P 295-? %D 1988 %K 1YCC %A G.V. Louie %A G.J. Pielak %A M. Smith %A G.D. Brayer %T Role of phenylalanine-82 in yeast \f2iso\f1-1-cytochrome \f2c\f1 and remote conformational changes induced by a serine residue at this position %J Biochemistry %V 27 %P 7870-? %D 1988 %K 1YCC %A J.M. Louis %A D.C.A. Smith %A E.M. Wondrak %A P.T. Mora %A S. Oroszlan %T The highly conserved arginine 87 of HIV-1 protease is essential for activity %J Biochem. Biophys. Res. Comm. %V 164 %D 1989 %P 30-38 %A R.A. Love %A R.M. Stroud %T The crystal structure of \(*a-bungarotoxin at 2.5\(Ao resolution: relation to solution structure and binding to acetylcholine receptor %J Prot. Eng. %V 1 %P 37-? %D 1986 %K PDB0BGT PDB2ABX %A W.E. Love %A P.M.D. Fitzgerald %A J.C. Hanson %A W.E. Royer,\0Jr. %T Intermolecular interactions in crystals of human deoxy hemoglobin A, C, F and S %J INSERM Symp. %V 9 %P 65-? %D 1978 %K 1HBS %A B. Lovejoy %A S. Choe %A D. Cascio %A D.K. McRorie %A W.F. DeGrado %A D. Eisenberg %T Crystal structure of a synthetic triple-stranded \(*a-helical bundle %J Science %V 259 %P 1288-1293 %D 1993 %A B. Lovejoy %A A. Cleasby %A A.M. Hassell %A K. Longley %A M.A. Luther %A D. Weigl %A G. McGeehan %A A.B. McElroy %A D. Drewry %A M.H. Lambert %A S.R. Jordan %T Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor %J Science %V 263 %P 375-377 %D 1994 %A B.W. Low %T The three-dimensional structure of postsynaptic snake neurotoxins: consideration of structure and function %J Handb. Exp. Pharmacol. %V 52 %P 213-? %D 1979 %K 3EBX %A B.W. Low %A P.W.R. Corfield %T Erabutoxin B: structure/function relationships following initial protein refinement at 0.140nm resolution %J Eur. J. Biochem. %V 161 %P 579-? %D 1986 %K 3EBX %A B.W. Low %A P.W.R. Corfield %T Acetylcholine receptor: \(*a-toxin binding site \(em theoretical and model studies %J Asia Pac. J. Pharmacol. %V 2 %P 115-? %D 1987 %K 3EBX %A B.W. Low %A R. Potter %A R.B. Jackson %A N. Tamiya %A S. Sato %T X-ray crystallographic study of the erabutoxins and of a diiodo derivative %J J. Biol. Chem. %V 246 %P 4366-? %D 1971 %K 3EBX %A B.W. Low %A H.S. Preston %A A. Sato %A L.S. Rosen %A J.E. Searl %A A.D. Rudko %A J.S. Richardson %T Three dimensional structure of erabutoxin B neurotoxic protein: inhibitor of acetylcholine receptor %J Proc. Natl. Acad. Sci. USA %V 73 %P 2991-2994 %D 1976 %K 3EBX PNAS %A M. Luckow %A D. Pimentel %D 1985 %T An empirical comparison of numerical Wagner computer programs %J Cladistics %V 1 %P 47-66 %A S. Ludvigsen %A H. Shen %A M. Kjaer %A J.C. Madsen %A F.M. Poulsen %T Refinement of the three-dimensional solution structure of barley serine proteinase inhibitor 2 and comparison with the structures in crystals %J J. Mol. Biol. %V 222 %P 621-635 %D 1991 %A M.L. Ludwig %A R.D. Andersen %A P.A. Apgar %A R.M. Burnett %A M.E. LeQuesne %A S.G. Mayhew %T The structure of a clostridial flavodoxin, an electron-transferring flavoprotein: III. An interpretation of an electron-density map at a nominal resolution of 3.25\(Ao %J Cold Spring Harbor Symp. Quant. Biol. %V 36 %P 369-? %D 1972 %K 0FX2 4FXN %A M.L. Ludwig %A R.D. Andersen %A S.G. Mayhew %A V. Massey %T The structure of a clostridial flavodoxin: I. Crystallographic characterization of the oxidized and semiquinone forms %J J. Biol. Chem. %V 244 %P 6047-? %D 1969 %K 0FX2 3FXN %A M.L. Ludwig %A R.M. Burnett %A G.D. Darling %A S.R. Jordan %A D.S. Kendall %A W.W. Smith %T Flavin mononucleotide-protein interactions in flavodoxin from \f2Clostridium mp.\f1 %B Structure and conformation of nucleic acids and protein-nucleic acid interactions %C Baltimore, MD %I University Park Press %E M. Sundralingham and S.T. Rao %P 407-? %D 1975 %K 3FXN %A M.L. Ludwig %A R.M. Burnett %A G.D. Darling %A S.R. Jordan %A D.S. Kendall %A W.W. Smith %T The structure of \f2Clostridium mp.\f1 flavodoxin as a function of oxidation state, some comparisons of the FMN-binding sites in oxidized, semiquinone and reduced forms %B Flavins and flavoproteins %P 393-? %D 1976 %K 0FX2 %A M.L. Ludzig %A A.L. Metzger %A K.A. Pattridge %A W.C. Stallings %T Manganese superoxide dismutase from \f2Thermus thermophilus\f1: A structural model refined at 1.8\(Ao resolution %J J. Mol. Biol. %V 219 %P 335-358 %D 1991 %A H. Luecke %A F.A. Quiocho %T High specificity of a phosphate transport protein determined by hydrogen bonds %J Nature %V 347 %D 1990 %P 402-406 %K periplasmic binding protein %A B.F. Luisi %A W.X. Xu %A Z. Otwinowski %A L.P. Freedman %A K.R. Yamamoto %A P.B. Sigler %T Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA %J Nature %V 352 %P 497-505 %D 1991 %A B. Luisi %A N. Shibayama %T Structure of haemoglobin in the deoxy quaternary state with ligand bound at the \(*a haems %J J. Mol. Biol. %V 206 %P 723-? %D 1989 %K PDB1COH %A T. Lundqvist %A G. Schneider %T Crystal structure of the binary complex of ribulose-1,5-bisphosphate carboxylase and its product, 3-phospho-\s-2D\s0-glycerate %J J. Biol. Chem. %V 263 %P 3643-? %D 1988 %K 2RUS 1RUS %K 5RUB %A T. Lundqvist %A G. Schneider %T Crystal structure of the complex of ribulose-1,5-bisphosphate carboxylase and a transition state analogue, 2-carboxy-\s-2D\s0-arabinitol 1,5-bisphosphate %J J. Biol. Chem. %V 264 %P 7078-? %D 1989 %K 1RUS %K 2RUS %K 5RUB %A T. Lundqvist %A G. Schneider %T Crystal structure of the ternary complex of ribulose-1,5-bisphosphate carboxylase, Mg(II), and activator CO\d\s-22\s0\u at 2.3\(Ao resolution %J Biochemistry %V 30 %P 904-? %D 1991 %K 5RUB 1RUS 2RUS %A E.A. Lunney %A H.W. Hamilton %A J.C. Hodges %A J.S. Kaltenbronn %A J.T. Repine %A M. Badasso %A J.B. Cooper %A C. Dealwis %A B.A. Wallace %A W.T. Lowther %A B.M. Dunn %A C. Humblert %T Analyses of ligand binding in five endothiapepsin crystal complexes and their use in the design and evaluation of novel renin inhibitors %J J. Med. Chem. %V 36 %P 3809-3820 %D 1993 %A L.F. Luo %A L. Tsai %A Y.M. Zhou %J J. Theor. Biol. %P 351-361 %T Information parameters of nucleic acid and molecular evolution %V 130 %D 1988 %A M. Luo %A E. Arnold %A J.W. Erickson %A M.G. Rossmann %A U. Boege %A D.G. Scraba %T Picornaviruses of two different genera have similar structures %J J. Mol. Biol. %V 180 %P 703-714 %D 1984 %K 2MEV 1R09 %A M. Luo %A C. He %A K.S. Toth %A C.X. Zhang %A H.L. Lipton %T Three-dimensional structure of Theiler murine encephalomyeltis virus (BeAn strain) %J Proc. Natl. Acad. Sci. USA %V 89 %P 2409-2413 %D 1992 %A M. Luo %A G. Vriend %A G. Kamer %A I. Minor %A E. Arnold %A M.G. Rossmann %A U. Boege %A D.C. Scabra %A G.M. Dunn %A A.C. Palmenberg %T The atomic structure of Mengo virus at 3.0\(Ao resolution %J Science %V 235 %P 182-191 %D 1987 %A Y. Luo %A L. Lai %A X. Xu %A Y. Tang %T Defining topological equivalences in protein structures by means of a dynamic programming algorithm %J Prot. Eng. %V 6 %P 373-376 %D 1993 %A A. Lupas %A M. van\0Dyke %A J. Stock %T Predicting coiled coils from protein sequences %J Science %V 252 %P 1162-1164 %D 1991 %A J.W. Lustbader %A J.P. Arcoleo %A S. Birken %A J. Greer %T Hemoglobin binding site on haptoglobin probed by selective proteolysis %J J. Biol. Chem. %V ? %P 1227-1234 %D 1983 %A T.A. Lyle %A C.M. Wiscount %A J.P. Guare %A W.J. Thompson %A P.S. Anderson %A P.L. Darke %A J.A. Zugay %A E.A. EMini %A W.A. Schleif %A J.C. Quintero %A R.A.F. Dixon %A I.S. Sigal %A J.R. Huff %T Benzocycloalkyl amines as novel C-termini for HIV protease inhibitors %J J. Med. Chem. %V 34 %P 1228-1230 %D 1991 %A P.C. Lyu %A M.I. Liff %A L.A. Marky %A N.R. Kallenbach %T Side chain contributions to the stability of \(*a-helical structure in peptides %J Science %V 250 %P 669-673 %D 1990 %A R. L\(u:thy %A J.U. Bowie %A D. Eisenberg %T Assessment of protein models with three-dimensional profiles %J Nature %V 356 %P 83-85 %D 1992 %A R. L\(u:thy %A A.D. McLachlan %A D. Eisenberg %T Secondary structure-based profiles: Use of structure-conserving scoring tables in searching protein sequence databases for structural similarities %J Proteins %V 10 %P 229-239 %D 1991 %K Luthy %A R. L\(u:thy %A I. Xenarios %A P. Bucher %T Inproving the sensitivity of the sequence profile method %J Protein Sci. %V 3 %P 139-146 %D 1994 %K Luthy %A M.W. MacArthur %T J.M. Thornton %T Conformational analysis of protein structures derived from NMR data %J Proteins %V 17 %P 232-251 %D 1993 %A M.W. MacArthur %A J.M. Thornton %T Influence of proline residues on protein conformation %J J. Mol. Biol. %V 218 %P 397-412 %D 1991 %A H.J.H. MacFie %A N.D. Light %A A.J. Bailey %J J. Theor. Biol. %V 131 %D 1988 %P 401-418 %T Natural taxonomy of collagen based on amino acid composition %A M.J. Macias %A A. Musacchio %A H. Ponstingl %A M. Nilges %A M. Saraste %A H. Oschkinat %T Structure of the pleckstrin homology domain from \(*b-spectrin %J Nature %V 369 %P 675-677 %D 1994 %A A.L. MacKay %J Acta Cryst. %P 440-447 %T Generalized structural geometry %V A 30 %D 1974 %A A.L. MacKay %T The numerical geometry of biological structures %B Computing in biological science %E M.J. Geisow and A.N. Barrett %I Elsevier Biomedical Press %D 1983 %P 349-392 %A V.L. MacKay %A S.K. Welch %A M.Y. Insley %A T.R. Manney %A J. Holly %A G.C. Saari %A M.L. Parker %T The \f2Saccharomyces cerevisiae\f1 BAR1 gene encodes an exported protein with homology to pepsin %J Proc. Natl. Acad. Sci. USA %V 85 %D 1988 %P 55-59 %K PNAS %A A.D. MacKerell,\0Jr. %A L. Nilsson %A R. Rigler %A U. Heinemann %A W. Saenger %T Molecular dynamics simulations of ribonuclease T1: comparison of the free enzyme and the 2' GMP-enzyme complex %J Proteins %V 6 %P 20-31 %D 1989 %A J.P. MacManus %A D.C. Watson %A M. Yaguchi %T The complete amino acid sequence of oncomodulin \(em a parvalbumin-like calcium-binding protein from Morris hepatoma 5123TC %J Eur. J. Biochem. %V 136 %P 9-? %D 1983 %K 1OMD %A D.R. Madden %A J.C. Gorga %A J.L. Strominger %A D.C. Wiley %T The structure of HLA-B27 reveals nonamer self-peptides bound in an extended conformation %J Nature %V 353 %P 321-325 %D 1991 %A T. Madej %A J.-F. Gibrat %A S.H. Bryant %T Threading a database of protein cores %J Proteins %V 23 %P 356-369 %D 1995 %A E.L. Madison %A E.J. Goldsmith %A R.D. Gerard %A M.-J.H. Gething %A J.F. Sambrook %T Serpin-resistant mutants of human tissue-type plasminogen activator %J Nature %V 339 %D 1989 %P 721-724 %A E.L. Madison %A E.J. Goldsmith %A R.D. Gerard %A M.-J.H. Gething %A J.F. Sambrook %A R.S. Bassel-Duby %T Amino acid residues that affect interaction of tissue-type plasminogen activator with plasminogen activator inhibitor 1 %J Proc. Natl. Acad. Sci. USA %V 87 %D 1990 %P 3530-3533 %K modelling tPA inhibitor mutagenesis PNAS %A N.B. Madsen %A P.J. Kasvinsky %A R.J. Fletterick %T Allosteric transitions of phosphorylase A and the regulation of glycogen metabolism %J J. Biol. Chem. %V 253 %P 9097-? %D 1978 %K 0PPA %A D.L. Mager %A J.D. Freeman %T Human endogenous retroviruslike genome with type-C \f2pol\f1 sequences and \f2gag\f1 sequences related to human T-cell lymphotropic viruses %J J. Virol. %V 61 %D 1987 %P 4060-4066 %A R. Maggio %A Z. Vogel %A J. Wess %T Coexpression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular ``cross-talk'' between G-protein-linked receptors %J Proc. Natl. Acad. Sci. USA %V 90 %P 3103-3107 %D 1993 %A K.A. Magnus %A E.E. Lattman %A A. Volbeda %A W.G.J. Hol %T Hexamers of subunit II from \f2Limulus\f1 hemocyanin (a 48-mer) have the same quaternary structure as whole \f2Panulirus\f1 hemocyanin molecules %J Proteins %V 9 %P 240-247 %D 1991 %A J. Maibaum %A D.H. Rich %J J. Med. Chem. %P 625-629 %T Inhibition of porcine pepsin by two substrate analogues containing statine %V 31 %D 1988 %A S. Maignan %A J.-P. Guilloteau %A N. Fromage %A B. Arnoux %A J. Becqart %A A. Ducruix %T Crystal structure of the mammalian Grb2 adapter %J Science %V 268 %P 291-293 %D 1995 %A A.L. Main %A T.S. Harvey %A M. Baron %A J. Boyd %A I.D. Campbell %T The three-dimensional structure of the tenth type III module of fibronectin: An insight into RGD-mediated interactions %J Cell %V 71 %P 671-678 %D 1992 %A J.V. Maizel %A R.P. Lenk %D 1981 %T Enhanced graphic matrix analysis of nucleic acid and protein sequences %J Proc. Natl. Acad. Sci. USA %V 78 %P 7665-7669 %K PNAS %A V.V. Makhaldianei %A E.A. Smirnova %A A.A. Voronova %A A.B. Tovbis %A I.P. Kuranova %A E.G. Arutyunyan %A B.K. Vainshtein %A B. Bienwald %A G. Hansen %A W.E. Hoehne %T X-ray structural investigation of inorganic pyrophosphatase of yeasts: II. calculation of phases and structural model at 6\(Ao resolution %J Sov. Phys. Cryst. (English trans.) %V 25 %P 163-? %D 1980 %K 1PYP %A V.V. Makhaldiani %A E.A. Smirnova %A A.A. Voronova %A I.P. Kuranova %A E.G. Arutiunian %A B.K. Vainshtein %A W.E. Hoehne %A B. Binwald %A G. Hansen %T X-ray diffraction study of inorganic pyrophosphatase from baker's yeast at the 6\(Ao resolution %J Dokl. Akad. Nauk. SSSR %V 240 %P 1478-? %D 1978 %K 1PYP %A V.V. Makhaldiani %A E.A. Smirnova %A A.A. Voronova %A I.P. Kuranova %A E.G. Arutyunyan %A B.K. Vainshtein %A W. Hoehne %A B. Binwald %A G. Hansen %T X-ray diffraction study of inorganic pyrophosphatase from baker's yeast at a resolution of 6\(Ao %J Dokl. Biochem. (English trans.) %V 240 %P 200-? %D 1978 %K 1PYP %A V.V. Makhaldiani %A E.A. Smirnova %A A.A. Voronova %A A.B. Tovbis %A I.P. Kuranova %A E.G. Haratyunyan %A B.K. Vainshtein %A B. Bienwald %A G. Hansen %A W.E. Hoehne %T X-ray structural investigation of inorganic pyrophosphatase of baker's yeast. II. Phase calculation and structure model at 6\(Ao resolution %J Kristallografiya %V 25 %P 280-? %D 1980 %K 1PYP %A V.N. Malaskevich %A V.M. Kochkina %A I.M. Torchinskii %A E.G. Arutiunian %T Oxoglutarate-induced conformational changes in cytosolic aspartate aminotransferase %J Dokl. Akad. Nauk. SSSR %V 267 %P 1257-? %D 1982 %K PDB1AAT %A B.A. Malcolm %A K.P. Wilson %A B.W. Matthews %A J.F. Kirsch %A A.C. Wilson %J Nature %D 1990 %P 86-89 %V 345 %T Ancestral lysozymes reconstructed, neutrally tested, and thermostability linked to hydrocarbon packing %K lysozyme structure packing %A M.H. Malim %A J. Huber %A R. Fenrick %A B.R. Cullen %T Immunodeficiency virus \f2rev trans\f1-activator modulates the expression of the viral regulatory genes %J Nature %V 335 %D 1988 %P 181-183 %A K. MaloneyHuss %A T.P. Lybrand %T Three-dimensional structure for the \(*b\d\s-42\s0\u adrenergenic receptor protein based on computer modelling studies %V 225 %P 859-871 %D 1992 %A P. Manavalan %A F.A. Momany %T Conformational studies on the enkephalin releasing peptides, TYR-ARG-TYR-\s-2D\s0-ARG %J Biochem. Biophys. Res. Comm. %P 847-854 %V 105 %D 1982 %A P. Manavalan %A P.K. Ponnuswamy %J Nature %P 673-674 %T Hydrophobic character of amino acid residues in globular proteins %V 275 %D 1978 %A P. Manavalan %A D.L. Swope %A R.M. Withy %T Sequence and structural relationships in the cytokine family %J J. Prot. Chem. %V 11 %P 321-331 %D 1992 %A S.C. Mande %A V. Mehra %A B.R. Bloom %A W.G.J. Hol %T Structure of the heat shock protein chaperonin-10 of \f2Mycobacterium leprae\f1 %J Science %V 271 %P 203-207 %D 1996 %A W.F. Mangel %A B. Lin %A V. Ramakrishnan %J Science %V 248 %D 1990 %P 69-73 %T Characterization of an extremely large ligand-induced conformational change in plasminogen %K plasminogen structure activation binding %A K.F. Manly %A G.R. Anderson %A D.L. Stoler %T Harvey sarcoma virus genome contains no extensive sequences unrelated to those of other retroviruses except \f2ras\f1 %J J. Virol. %V 62 %D 1988 %P 3540-3543 %A A.M. Manning %A C.N.A. Trotman %A W.P. Tate %T Evolution of a polymeric globin in the brine shrimp \f2Artemia\f1 %J Nature %V 348 %P 653-656 %D 1990 %A M. Manning %A J.P. Przybylski %A A. Olma %A W.A. Klis %A M. Kruszynski %A N.C. Wo %A G.H. Pelton %A W.H. Sawyer %J Nature %P 839-840 %T No requirement of cyclic conformation of antagonists in binding to vasopressin receptors %V 329 %D 1987 %A D. Mantafounis %A J. Pitts %T Protein engineering of chymosin: modification of the optimum pH of enzyme catalysis %J Prot. Eng. %V 3 %P 605-609 %D 1990 %A B. Mao %A M.R. Pear %A J.A. McCammon %A F.A. Quiocho %T Hinge-bending in \s-2L\s0-arabinose-binding protein: The Venus's-flytrap model %J J. Biol. Chem. %V 257 %P 1131-? %D 1982 %K 1ABP 6ABP 7ABP 8ABP %A J.R. Maple %A V. Dinur %A A.T. Hagler %J Proc. Natl. Acad. Sci. USA %V 85 %D 1988 %P 5350-5354 %T Derivation of forcefields for molecular mechanics and dynamics from \f2ab initio\f1 energy surfaces %K PNAS %A R.A. Mariuzza %A A.G. Amit %A G. Boulot %A P. Saludjian %A F.A. Saul %A P. Tougard %A R.J. Poljak %A J. Conger %A E. Lamoyi %A A. Nisonoff %T Crystallization of the Fab fragments of monoclonal anti-\f2p\f1-azophenylarsonate antibodies and their complexes with haptens %J J. Biol. Chem. %V 259 %P 5954-? %D 1984 %K 1F19 %A R.A. Mariuzza %A D.L.J. Jankovic %A G. Boulot %A A.G. Amit %A P. Saludjian %A A. Le\0Guern %A J.C. Mazie %A R.J. Poljak %T Preliminary crystallographic study of the complex between the Fab fragment of a monoclonal anti-lysozyme antibody and its antigen %J J. Mol. Biol. %V 170 %P 1055-? %D 1983 %K 0FDL %A M. Markowitz %A H. Mo %A D.J. Kempf %A D.W. Norbeck %A T.N. Bhat %A J.W. Erickson %A D.D. Ho %T Selection and analysis of human immunodeficiency virus type 1 variants with increased resistance to ABT-538, a novel protease inhibitor %J J. Virol. %V 69 %P 701-706 %D 1994 %A J.D. Marks %A H.R. Hoogenboom %A T.P. Bonnert %A J. McCafferty %A A.D. Griffiths %A G. Winter %T By-passing immunization: Human antibodies from V-gene libraries displayed on phage %J J. Mol. Biol. %V 222 %P 581-597 %D 1992 %A R. Marmorstein %A M. Carey %A M. Ptashne %A S.C. Harrison %T DNA recognition by GAL4: structure of a protein-DNA complex %J Nature %V 356 %P 408-414 %D 1992 %A M. Marquart %A J. Deisenhofer %T The three-dimensional structure of antibodies %J Immunol. Today %V 3 %P 160-166 %D 1982 %K 2FB4 %A M. Marquart %A J. Deisenhofer %A R. Huber %A W. Palm %T Crystallographic refinement and atomic model of the intact immunoglobulin molecule KOL and its antigen-binding fragment at 3.0\(Ao and 1.9\(Ao resolution %J J. Mol. Biol. %V 141 %P 369-391 %D 1980 %A PDB2FB4 PDb2IG2 %A M. Marquart %A J. Walter %A J. Deisenhofer %A W. Bode %A R. Huber %T The geometry of the reactive site and of the peptide groups in trypsin, trypsinogen and its complexes with inhibitors %J Acta Cryst. %V B 39 %D 1983 %P 480-490 %K PDB3PTB PDB2PTC PDB4PTI PDB2TGP PDB1TPA PDB3TPI PDB1TPO PDB1TPP %A S. Marqusee %A R.L. Baldwin %T Helix stabilization by Glu\u\s-2\(mi\s0\d...Lys\u\s-2\(pl\s0\d salt bridges in short peptides of \f2de novo\f1 design %J Proc. Natl. Acad. Sci. USA %D 1985 %P 8898-8902 %V 82 %K PNAS %A S. Marqusee %A V.H. Robbins %A R.L. Baldwin %T Unusually stable helix formation in short alanine-based peptide %J Proc. Natl. Acad. Sci. USA %V 86 %P 5286-5290 %D 1989 %K PNAS %A A.C.R. Martin %A J.C. Cheetham %A A.R. Rees %T Modeling antibody hypervariable loops: a combined algorithm %J Proc. Natl. Acad. Sci. USA %V 86 %D 1989 %P 9268-9272 %K PNAS %A A.E. Martin %A B.K. Burgess %A C.D. Stout %A V.L. Cash %A D.R. Dean %A G.M. Jensen %A P.J. Stephens %T Site-directed mutagenesis of \f2Azotobacter vinelandii\f1 ferredoxin I: (Fe-S) cluster-driven protein rearrangement %J Proc. Natl. Acad. Sci. USA %V 87 %P 598-? %D 1990 %K PDB2FD2 PNAS %A A. Martin %A C. Wychowski %A T. Couderc %A R. Crainic %A J. Hogle %A M. Girard %T Engineering a poliovirus type 2 antigenic site on a type 1 capsid results in a chimaeric virus which is neurovirulent for mice %J EMBO J. %V 7 %P 2839-2847 %D 1988 %K 2PLV %A J.A. Martin %T Recent advances in the design of HIV proteinase inhibitors %J Antiviral Res. %V 17 %P 265-278 %D 1992 %B Human Protein Data %E A. Haeberli %I VCH %C Weinheim %D 1992 %A J.L. Martin %A J.C.A. Bardwell %A J. Kuriyan %T Crystal structure of the DsbA protein required for disulphide bond formation \f2in vivo\f1 %J Nature %V 365 %P 464-468 %D 1993 %A J.L. Martin %A K. Veluraja %A K. Ross %A L.N. Johnson %A G.W.J. Fleet %A N.G. Ramsden %A I. Bruce %A M.G. Orchard %A N.G. Oikonomakos %A A.C. Papageogiou %A D.D. Leonidas %A H.S. Tsitoura %T Glucose analogue inhibitors of glycogen phosphorylase: The design of potential drugs for diabetes %J Biochemistry %V 30 %P 10101-10116 %D 1991 %A P.D. Martin %A M.S. Doscher %A B.F.P. Edwards %T The refined crystal structure of a fully active semisynthetic ribonuclease at 1.8\(Ao resolution %J J. Biol. Chem. %V 262 %P 15930-? %D 1987 %K 1SRN %A P.D. Martin %A W. Robertson %A D. Turk %A R. Huber %A W. Bode %A B.F.P. Edwards %T The structure of residues 7-16 of the A\(*a-chain of human fibrinogen bound to bovine thrombin at 2.3\(Ao resolution %J J. Biol. Chem. %V 267 %P 7911-7920 %D 1992 %A Y.C. Martin %A W.J. Dunn,\0III %T Examination of the utility of the Topliss schems for analog synthesis %J J. Med. Chem. %V 16 %P 578-579 %D 1973 %A C. Martinez %A P. De\0Geus %A M. Lauwereys %A G. Matthyssens %A C. Cambillau %T \f2Fusarium solani\f1 cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent %J Nature %V 356 %P 615-618 %D 1992 %A H.M. Martinez %J Bull. Math. Biol. %P 461-465 %T Mathematical and computational problems in the analysis of molecular sequences %V 46 %D 1984 %A M.T. Mas %A K.C. Smith %A D.L. Yarmush %A K. Aisaka %A R.M. Fine %T Modeling the anti-CEA antibody combining site by homology and conformational search %J Proteins %V 14 %P 483-498 %D 1992 %A M. Masakuni %A R.J. Simpson %A N.W. Isaacs %T Preliminary X-ray diffraction studies on the goose-type lysozyme from the egg-white of the black swan \f2Cygnus atratus\f1 %J J. Mol. Biol. %V 135 %P 313-? %D 1979 %K 0LZG %A V. Massey %A B. Curti %A H. Ganther %T A temperature-dependent conformational change in \s-2D\s0-amino acid oxidase and its effect on catalysis %J J. Biol. Chem. %P 2347-2357 %V 241 %D 1966 %A M. Masu %A Y. Tanabe %A K. Tsuchida %A R. Shigemoto %A S. Nakanishi %T Sequence and expression of a metabotropic glutamate receptor %J Nature %V 349 %P 760-765 %D 1991 %A F.S. Mathews %A P. Argos %A M. Levine %T The structure of cytochrome \f2b\f1\d\s-25\s0\u at 2.0\(Ao resolution %J Cold Spring Harbor Symp. Quant. Biol. %V 36 %P 387-? %D 1972 %K 3B5C PDB2B5C %A F.S. Mathews %A P.H. Bethge %A E.W. Czerwinski %T The structure of cytochrome \f2b\f1\d\s-2562\s0\u from \f2Escherichia coli\f1 at 2.5\(Ao resolution %J J. Biol. Chem. %V 254 %P 1699-? %D 1979 %K 256B 156B %A F.S. Mathews %A Z.W. Chen %A H.D. Bellamy %A W.S. McIntire %T Three-dimensional structure of \f2para\f1-cresol methylhydroxylase (flavocytochrome \f2c\f1) from \f2Pseudomonas putida\f1 at 3.0\(Ao resolution %J Biochemistry %V 30 %P 238-247 %D 1991 %A F.S. Mathews %A E.W. Czerwinski %T Cytochrome \f2b\f1\d\s-25\s0\u and cytochrome \f2b\f1\d\s-25\s0\u reductase from a chemical and X-ray diffraction viewpoint %B The enzymes of biological membranes: Electron transport systems and receptors %E A. Martinosi %I Plenum Press %C New York %V 4 %P 143-? %D 1976 %K 3B5C 2B5C %A F.S. Mathews %A F. Lederer %T Crystallographic study of baker's yeast cytochrome \f2b\f1\d\s-22\s0\u %J J. Mol. Biol. %V 102 %P 853-? %D 1976 %K 0FCB 1FCB %A F.S. Mathews %A M. Levine %A P. Argos %T The structure of calf liver cytochrome \f2b\f1\d\s-25\s0\u at 2.8\(Ao resolution %J Nature, New Biol. %V 233 %P 15-16 %D 1971 %K 3B5C 2B5C %A A. Matouschek %A J.T. Kellis,\0Jr. %A L. Serrano %A M. Bycroft %A A.R. Fersht %T Folding intermediates characterized by protein engineering %J Nature %V 346 %P 440-445 %D 1990 %A L.A. Matsuda %A S.J. Lolait %A M.J. Brownstein %A A.C. Young %A T.I. Bonner %T Structure of a cannabinoid receptor and functional expression of the cloned cDNA %J Nature %D 1990 %V 346 %P 561-564 %A R. Matsumoto %A A. Sali %A N. Ghildyal %A M. Karplus %A R.L. Stevens %T Packaging of proteases and proteoglycans in the granules of mast cells and other hematopoietic cells %J J. Biol. Chem. %V 270 %P 19524-19531 %D 1995 %A M. Matsumura %A W.J. Becktel %A B.W. Matthews %T Hydrophobic stabilization in T4 lysozyme determined directly by multiple substitutions of Ile 3 %J Nature %V 334 %D 1988 %P 406-410 %K PDB1L17 PDB1L18 %K 1L36 1L37 1L38 1L39 1L40 1L41 1L42 1L43 1L44 1L45 1L46 1L47 1L48 1L49 1L50 1L51 1L52 1L53 1L54 1L55 1L56 1L57 1L58 1L59 1L60 1L61 1L62 1L63 1L64 1L65 1L66 1L67 1L68 1L69 1L70 1L71 1L72 1L73 1L74 1L75 1L76 %A M. Matsumura %A D.H. Freemont %A P.A. Peterson %A I.A. Wilson %T Emerging principles for the recognition of peptide antigens by MHC class I molecules %J Science %V 257 %P 927-934 %D 1992 %A M. Matsumura %A G. Signor %A B.W. Matthews %J Nature %V 342 %D 1989 %P 291-293 %T Substantial increase of protein stability by multiple disulphide bonds %A M. Matsumura %A J.A. Wozniak %A S. Dao-Pin %A B.W. Matthews %T Structural studies of mutants of T4 lysozyme that alter hydrophobic stabilization %J J. Biol. Chem. %V 264 %P 16059-? %D 1989 %K 1L36 1L37 1L38 1L39 1L40 1L41 1L42 1L43 1L44 1L45 1L46 1L47 1L48 1L49 1L50 1L51 1L52 1L53 1L54 1L55 1L56 1L57 1L58 1L59 1L60 1L61 1L62 1L63 1L64 1L65 1L66 1L67 1L68 1L69 1L70 1L71 1L72 1L73 1L74 1L75 1L76 %A K. Matsuno %J J. Theor. Biol. %P 185-199 %T Evolutionary changes in the information content of polypeptides %V 105 %D 1983 %A Y. Matsuo %A K. Nishikawa %T Assessment of a protein fold recognition method that takes into account four physicochemical properties: Side-chain packing, solvation, hydrogen-bonding, and local conformation %J Proteins %V 23 %P 370-375 %D 1995 %A M. Matsushima %A M. Marquart %A T.A. Jones %A P.M. Colman %A K. Bartels %A R. Huber %A W. Palm %T Crystal structure of the human Fab fragment Kol and its comparison with the intact Kol molecule %J J. Mol. Biol. %D 1977 %V 121 %P 441-459 %A Y. Matsuura %A M. Kusunoki %A W. Harada %A M. Kakudo %T Structure and possible catalytic residues of taka-amylase \(*a %J J. Biochem. (Tokyo) %V 95 %P 697-? %D 1984 %K PDB2TAA %A Y. Matsuura %A T. Takano %A R.E. Dickerson %T Structure of cytochrome \f2c\f1\d\s-2551\s0\u from \f2P. aeruginosa\f1 refined at 1.6\(Ao resolution and comparison of the two redox forms %J J. Mol. Biol. %V 156 %P 389-409 %D 1982 %K PDB351C PDB451C %A A. Mattevi %A G. Obmolova %A E. Schulze %A K.H. Kalk %A A.H. Westphal %A A. de\0Kok %A W.G.J. Hol %T Atomic structure of the cubic core of the pyruvate dehydrogenase multienzyme complex %J Science %V 255 %P 1544-1550 %D 1992 %A A. Mattevi %A G. Obmolova %A J.R. Sokatch %A C. Betzel %A W.G.J. Hol %T The refined crystal structure of \f2Pseudomonas putida\f1 lipoamide dehydrogenase complexed with NAD\u\s-4\(pl\s0\d at 2.45\(Ao resolution %J Proteins %V 13 %P 336-351 %D 1992 %A A. Mattevi %A A.J. Schierbeek %A W.G.J. Hol %T Refined crystal structure of lipoamide dehydrogenase from \f2Azotobacter vinelandii\f1 at 2.2\(Ao resolution: A comparison with the structure of glutathione reductase %J J. Mol. Biol. %V 220 %P 975-994 %D 1991 %A J.B. Matthew %J Annu. Rev. Biophys. Biophys. Chem. %P 387-417 %T Electrostatic effects in proteins %V 14 %D 1985 %A B.W. Matthews %T The gamma turn: evidence for a new folded conformation in proteins %J Macromolecules %V 5 %P 818-819 %D 1972 %K 3TMN %A B.W. Matthews %T Comparison of the predicted and observed secondary structure of T4 phage lysozyme %J Biochim. Biophys. Acta %V 405 %D 1975 %P 442-451 %K comparison accuracy %K 1L36 1L37 1L38 1L39 1L40 1L41 1L42 1L43 1L44 1L45 1L46 1L47 1L48 1L49 1L50 1L51 1L52 1L53 1L54 1L55 1L56 1L57 1L58 1L59 1L60 1L61 1L62 1L63 1L64 1L65 1L66 1L67 1L68 1L69 1L70 1L71 1L72 1L73 1L74 1L75 1L76 %A B.W. Matthews %T Genetic and structural analysis of the protein stability problem %J Biochemistry %V 26 %P 6885-6888 %D 1987 %A B.W. Matthews %A S.A. Bernhard %T Structure and symmetry of oligomeric enzymes %J Annu. Rev. Biophys. Bioeng. %V 2 %P 257-317 %D 1973 %A B.W. Matthews %A G.H. Cohen %A E.W. Silverton %A H. Braxton %A D.R. Davies %T Relation between \(*g- and \(*a-chymotrypsin %J J. Mol. Biol. %V 36 %P 179-? %D 1968 %K 2GCH %A B.W. Matthews %A P.M. Colman %A J.N. Jansonius %A K. Titani %A K.A. Walsh %A H. Neurath %T Structure of thermolysin %J Nature, New Biol. %V 238 %P 41-43 %D 1972 %K 3TLN %A B.W. Matthews %A C.S. Craik %A H. Neurath %T Can small cyclic peptides have the activity and specificity of proteolytic enzymes ? %J Proc. Natl. Acad. Sci. USA %V 91 %P 4103-4105 %D 1994 %A B.W. Matthews %A F.W. Dahlquist %A A.Y. Maynard %T Crystallographic data for lysozyme from bacteriophage T4 %J J. Mol. Biol. %V 78 %P 575-? %D 1973 %K 1L07 1L36 1L37 1L38 1L39 1L40 1L41 1L42 1L43 1L44 1L45 1L46 1L47 1L48 1L49 1L50 1L51 1L52 1L53 1L54 1L55 1L56 1L57 1L58 1L59 1L60 1L61 1L62 1L63 1L64 1L65 1L66 1L67 1L68 1L69 1L70 1L71 1L72 1L73 1L74 1L75 1L76 %A B.W. Matthews %A R.E. Fenna %T Structure of a green bacteriochlorophyll protein %J Acc. Chem. Res. %V 13 %P 309-? %D 1980 %K 3BCL %A B.W. Matthews %A R.E. Fenna %A M.C. Bolognesi %A M.F. Schmid %A J.M. Olson %T Structure of a bacteriochlorophyll \(*a-protein from the green photosynthetic bacterium \f2Prosthecochloris aestuarii\f1 %J J. Mol. Biol. %V 131 %P 259-? %D 1979 %K 3BCL %A B.W. Matthews %A R.E. Fenna %A S.J. Remington %T An evaluation of electron micrographs of bacteriochlorophyll \(*a-protein crystals in terms of the structure determined by X-ray crystallography %J J. Ultrastruct. Res. %V 58 %P 316-? %D 1977 %K 3BCL %A B.W. Matthews %A M.G. Gr\(u:tter %A W.F. Anderson %A S.J. Remington %T Common precursor of lysozymes of hen egg-white and bacteriophage T4 %J Nature %V 290 %D 1981 %P 334-335 %K Grutter %K 1L36 1L37 1L38 1L39 1L40 1L41 1L42 1L43 1L44 1L45 1L46 1L47 1L48 1L49 1L50 1L51 1L52 1L53 1L54 1L55 1L56 1L57 1L58 1L59 1L60 1L61 1L62 1L63 1L64 1L65 1L66 1L67 1L68 1L69 1L70 1L71 1L72 1L73 1L74 1L75 1L76 %A B.W. Matthews %A J.N. Jansonius %A P.M. Colman %A B.P. Schoenborn %A D. Duporque %T Three dimensional structure of thermolysin %J Nature, New Biol. %V 238 %P 37-41 %D 1972 %K 3TLN %A B.W. Matthews %A H. Nicholson %A W.J. Becktel %T Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding %J Proc. Natl. Acad. Sci. USA %V 84 %P 6663-6667 %D 1987 %K 1L17 PNAS PDB1L23 PDB1L24 %K 1L36 1L37 1L38 1L39 1L40 1L41 1L42 1L43 1L44 1L45 1L46 1L47 1L48 1L49 1L50 1L51 1L52 1L53 1L54 1L55 1L56 1L57 1L58 1L59 1L60 1L61 1L62 1L63 1L64 1L65 1L66 1L67 1L68 1L69 1L70 1L71 1L72 1L73 1L74 1L75 1L76 %A B.W. Matthews %A D.H. Ohlendorf %A W.F. Anderson %A R.G. Fisher %A Y. Takeda %T How does \f2cro\f1 repressor recognize its DNA target sites ? %J Trends Biochem. Sci. %V 8 %P 25-? %D 1983 %K 1CRO TIBS %A B.W. Matthews %A D.H. Ohlendorf %A W.F. Anderson %A R.G. Fisher %A Y. Takeda %T \f2Cro\f1 repressor protein and its interaction with DNA %J Cold Spring Harbor Symp. Quant. Biol. %V 47 %P 427-? %D 1983 %K 1CRO %A B.W. Matthews %A D.H. Ohlendorf %A W.F. Anderson %A Y. Takeda %T Structure of the DNA-binding region of \f2lac\f1 repressor inferred from its homology with \f2cro\f1 repressor %J Proc. Natl. Acad. Sci. USA %V 79 %P 1428-1432 %D 1982 %K 1CRO PNAS %A B.W. Matthews %A S.J. Remington %T The three-dimensional structure of the lysozyme from bacteriophage T4 %J Proc. Natl. Acad. Sci. USA %V 71 %P 4178-4182 %D 1974 %K 1L07 PNAS %K 1L36 1L37 1L38 1L39 1L40 1L41 1L42 1L43 1L44 1L45 1L46 1L47 1L48 1L49 1L50 1L51 1L52 1L53 1L54 1L55 1L56 1L57 1L58 1L59 1L60 1L61 1L62 1L63 1L64 1L65 1L66 1L67 1L68 1L69 1L70 1L71 1L72 1L73 1L74 1L75 1L76 %A B.W. Matthews %A S.J. Remington %A M.G. Gr\(u:tter %A W.F. Anderson %T Relation between hen egg white lysozyme and bacteriophage T4 lysozyme: evolutionary implications %J J. Mol. Biol. %V 147 %P 545-? %D 1981 %K 3LZM Grutter %K 1L36 1L37 1L38 1L39 1L40 1L41 1L42 1L43 1L44 1L45 1L46 1L47 1L48 1L49 1L50 1L51 1L52 1L53 1L54 1L55 1L56 1L57 1L58 1L59 1L60 1L61 1L62 1L63 1L64 1L65 1L66 1L67 1L68 1L69 1L70 1L71 1L72 1L73 1L74 1L75 1L76 %A B.W. Matthews %A M.G. Rossmann %T Comparison of protein structures %J Methods Enzymol. %V 115 %D 1985 %P 397-420 %A B.W. Matthews %A P.B. Sigler %A R. Henderson %A D.M. Blow %T Three-dimensional structure of tosyl-\(*a-chymotrypsin %J Nature %V 214 %P 652-656 %D 1967 %K 2CHA %A B.W. Matthews %A L.H. Weaver %T Binding of lanthanide ions to thermolysin %J Biochemistry %V 13 %P 1719-? %D 1974 %K 1TLP %A B.W. Matthews %A L.H. Weaver %A W.R. Kester %T The conformation of thermolysin %J J. Biol. Chem. %V 249 %P 8030-? %D 1974 %K 4TLN %A D.A. Matthews %T Interpretation of nuclear magnetic resonance spectra for \f2Lactobacillus casei\f1 dihydrofolate reductase based on the X-ray structure of the enzyme-methotrexate-NADPH complex %J Biochemistry %V 18 %P 1602-? %D 1979 %K 3DFR 4DFR 5DFR 6DFR 7DFR %A D.A. Matthews %A R.A. Alden %A J.J. Birktoft %A S.T. Freer %A J. Kraut %T X-ray crystallographic study of boronic acid adducts with subtilisin BPN (novo), a model for the catalytic transition state %J J. Biol. Chem. %V 250 %P 7120-? %D 1975 %K 1SBT %A D.A. Matthews %A R.A. Alden %A J.T. Bolin %A D.J. Filman %A S.T. Freer %A R. Hamlin %A W.G.J. Hol %A R.L. Kisliuk %A E.J. Pastore %A L.T. Plante %A N.-H. Xuong %A J. Kraut %T Dihydrofolate reductase from \f2Lactobacillus casei\f1: X-ray structure of the enzyme-methotrexate-NADPH complex %J J. Biol. Chem. %V 253 %P 6946-? %D 1978 %K 3DFR 6DFR 7DFR 8DFR %A D.A. Matthews %A R.A. Alden %A J.T. Bolin %A S.T. Freer %A R. Hamlin %A N. Xuong %A J. Kraut %A M. Poe %A M. Williams %A K. Hoogsteen %T Dihydrofolate reductase: X-ray structure of the binary complex with methotrexate %J Science %V 197 %P 452-455 %D 1977 %K 3DFR 6DFR 7DFR 8DFR %A D.A. Matthews %A R.A. Alden %A S.T. Freer %A N.-H. Xuong %A J. Kraut %T Dihydrofolate reductase from \f2Lactobacillus casei\f1: stereochemistry of NADPH binding %J J. Biol. Chem. %V 254 %P 4144-? %D 1979 %K 3DFR 6DFR 7DFR 8DFR %A D.A. Matthews %A K. Appelt %A S.J. Oatley %J J. Mol. Biol. %P 449-454 %T Stacked \(*b-bulges in thymidylate synthase: account for a novel right-handed rotation between opposing \(*b-sheets %V 205 %D 1989 %A D.A. Matthews %A J.T. Bolin %A J.M. Burridge %A D.J. Filman %A K.W. Volz %A J. Kraut %T Dihydrofolate reductase: The stereochemistry of inhibitor selectivity %J J. Biol. Chem. %V 260 %P 392-? %D 1985 %A D.A. Matthews %A S.L. Smith %A D.P. Baccanari %A J.J. Burchall %A S.J. Oatley %A J. Kraut %T Crystal structure of a novel trimethoprim-resistant dihydrofolate reductase specified in \f2Escherichia coli\f1 by R-plasmid R67 %J Biochemistry %V 25 %P 4194-? %D 1986 %K 0DF5 %A D.A. MAtthews %A W.W. Smith %A R.A. Ferre %A B. Condon %A G. Budahazi %A W. Sisson %A J.E. Villafranca %A C.A. Janson %A H.E. McElroy %A C.L. Gribskov %A S. Worland %T Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein %J Cell %V 77 %P 761-777 %D 1994 %A D.J. Matthews %A J.A. Wells %T Substrate phage: Selection of prtease substrates by monovalent phage display %J Science %V 260 %P 1113-1116 %D 1993 %A F.S. Matthews %T New flavoenzymes %J Curr. Opin. Struct. Biol. %V 1 %P 954-967 %D 1991 %A S. Matthews %A P. Barlow %A J. Boyd %A G. Barton %A R. Russell %A H. Mills %A M. Cunningham %A N. Meyers %A N. Burns %A N. Clark %A S. Kingsman %A A. Kingsman %A I. Campbell %T Structural similarity between the p17 matrix protein of HIV-1 and interferon-\(*g %J Nature %V 370 %P 666-668 %D 1994 %A C. Mattos %A D.A. Giammona %A G.A. Petsko %A D. Ringe %T Structural analysis of the active site of porcine pancreatic elastase based on the X-ray crystal structures of complexes with trifluoroacetyl-dipeptide-anilide inhibitors %J Biochemistry %V 34 %P 3193-3203 %D 1995 %A Y. Maugen %A R.W. Hartley %A E.J. Dodson %A G.G. Dodson %A G. Bricogne %A C. Chothia %A A. Jack %J Nature %V 297 %D 1982 %P 162-164 %T Molecular structure of a new family of ribonucleases %K barnase 0RNB %A B. Maurer %A H. Bannert %A G. Darai %A R.M. Fl\(u:gel %J J. Virol. %V 62 %D 1988 %P 1590-1597 %T Analysis of the primary structure of the long terminal repeat and the \f2gag\f1 and \f2pol\f1 genes of the human spumaretrovirus %K retrovirus sequences Flugel %A A. Mavridis %A A. Tulinsky %A M.N. Liebman %T Asymmetrical changes in the tertiary structure of \(*a-chymotrypsin with change in pH %J Biochemistry %V 13 %P 3661-? %D 1974 %K 5CHA %A I.M. Mavridis %A M.H. Hatada %A A. Tulinsky %A L. Lebioda %T Structure of 2-keto-3-deoxy-6-phosphogluconate aldolase at 2.8\(Ao resolution %J J. Mol. Biol. %V 162 %P 419-? %D 1982 %K PDB1KGA %A I.M. Mavridis %A A. Tulinsky %T The folding and quaternary structure of trimeric 2-keto-3-deoxy-6-phosphogluconic aldolase at 3.5-\(Ao resolution %J Biochemistry %V 15 %P 4410-? %D 1976 %K 1KGA %A F.R. Maxfield %A H.A. Scheraga %T Status of empirical methods for the prediction of protein backbone topography %J Biochemistry %V 15 %D 1976 %P 5138-5153 %K prediction Bayesian statistics secondary structure %A F.R. Maxfield %A H.A. Scheraga %T Improvement in the prediction of protein backbone topography by reduction of statistical errors %J Biochemistry %V 18 %P 697-704 %D 1979 %A A.C.W. May %A T.L. Blundell %T Automated comparative modelling of protein structures %J Curr. Opin. Biotech. %V 5 %P 355-360 %D 1994 %A A.C.W. May %A M.S. Johnson %T Protein structure comparisons using a combination of a genetic algorithm, dynamic programming and least squares minimization %J Prot. Eng. %V 7 %P 475-485 %D 1994 %A A.C.W. May %A M.S. Johnson %T Improved genetic algorithm-based protein structure comparisons: pairwise and multiple superpositions %J Prot. Eng. %V 8 %P 873-882 %D 1995 %A A.C.W. May %A M.S. Johnson %A S.D. Rufino %A H. Wako %A Z.-Y. Zhu %A R. Sowdhamini %A N. Srinivasan %A M.A. Rodionov %A T.L. Blundell %T The recognition of protein structure and function from sequence: Adding value to genome data %J Phil. Trans. R. Soc. Lond. %V B 344 %P 373-381 %D 1994 %A L.T. May %A F.R. Landsberg %A M. Inouye %J Proc. Natl. Acad. Sci. USA %V 82 %D 1985 %P 4090-4094 %T Significance of similarities in patterns: an application to \(*b interferon-related DNA on human chromosome 2 %K sequence analysis pattern matching DNA PNAS %A S.G. Mayhew %A M.L. Ludwig %T Flavodoxins and electron-transferring flavoproteins %J The Enzymes, Third edition %V 12 %P 57-? %D 1975 %K 0FX2 3FXN %A P. McCaldon %A P. Argos %T Oligopeptide biases in protein sequences and their use in predicting protein coding regions in nucleotide sequences %J Proteins %V 4 %P 99-122 %D 1988 %A M. McCall %A T. Brown %A W.N. Hunter %A O. Kennard %T The crystal structure of d(GGATGGGAG): an essential part of the binding site for transcription factor IIIA %J Nature %V 322 %P 661-664 %D 1986 %K 1DN6 %A M. McCall %A T. Brown %A O. Kennard %T The crystal structure of d(G-G-G-G-C-C-C-C): a model for poly(dG).poly(dC) %J J. Mol. Biol. %V 183 %P 385-396 %D 1985 %K 1DN7 %A J.A. McCammon %A B.R. Gelin %A M.K. Karplus %T Dynamics of folded proteins %J Nature %P 585-590 %V 267 %D 1977 %A J.A. McCammon %A S.C. Harvey %T Dynamics of Proteins and Nucleic Acids %I Cambridge University Press %C Cambridge %D 1987 %A J.A. McCammon %A M. Karplus %T The dynamic picture of protein structure %J Acc. Chem. Res. %V 16 %P 187-193 %D 1983 %A D. Donnelly %A J.B.C. Findlay %T Seven-helix receptors: Structure and modelling %J Curr. Opin. Struct. Biol. %V 4 %P 582-589 %D 1994 %A J.A. McCammon %A C.F. Wong %A T.P. Lybrand %T Protein stability and function: Theoretical studies %P 149-159 %B Prediction of protein structure and the principles of protein conformation %E G.D. Fasman %I Plenum %C New York %D 1989 %A J.A. McClarin %A C.A. Frederick %A B.-C. Wang %A P. Greene %A H.W. Boyer %A J. Grable %A J.M. Rosenberg %T Structure of the DNA-Eco RI endonuclease recognition complex at 3\(Ao resolution %J Science %V 334 %P 1526-1541 %D 1986 %A M.A. McClure %A M.S. Johnson %A R.F. Doolittle %T Relocation of a protease-like gene segment between two retroviruses %J Proc. Natl. Acad. Sci. USA %V 84 %D 1987 %P 2693-2697 %K PNAS %A M.A. McClure %A M.S. Johnson %A D.-F. Feng %A R.F. Doolittle %J Proc. Natl. Acad. Sci. USA %V 85 %D 1988 %P 2469-2473 %T Sequence comparison of retroviral proteins: relative rates of change and general phylogeny %K PNAS %A F. McCormick %A B.F.C. Clark %A T.F.M. la\0Cour %A M. Kjeldgaard %A L. N\(o|rskov-Lauritsen %A J. Nyborg %T A model for the tertiary structure of \f2p\f121, the product of the \f2ras\f1 oncogene %J Science %V 230 %P 78-82 %D 1985 %K 1ETU Norskov-Lauritsen %A G. McDermott %A S.M. Prince %A A.A. Freer %A A.M. Hawthornthwaite-Lawless %A M.Z. Papiz %A R.J. Cogdell %A N.W. Isaacs %T Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria %J Nature %V 374 %P 517-521 %D 1995 %A N.Q. McDonald %A W.A. Hendrickson %T A structural superfamily of growth factors containing a cysteine knot motif %J Cell %V 73 %P 421-424 %D 1993 %A N.Q. McDonald %A R. Lapatto %A J. Murray-Rust %A J. Gunning %A A. Wlodawer %A T.L. Blundell %T New protein fold revealed by a 2.3\(Ao resolution crystal structure of nerve growth factor %J Nature %V 354 %P 411-414 %D 1991 %A R.S. McDowell %A B.K. Blackburn %A T.R. Gadek %A L.R. McGee %A T. Rawson %A M.E. Reynolds %A K.D. Robarge %A T.C. Somers %A E.D. Thorsett %A M. Tischler %A R.R. Webb,\0II %A M.C. Venuti %T From peptide to non-peptide: 2. The \f2de novo\f1 design of potent, non-peptoidal inhibitors of platelet aggregation based on a benzodiazepinedione scaffold %J J. Amer. Chem. Soc. %V 116 %P 5077-5083 %D 1994 %A R.S. McDowell %A K.A. Elias %A M.S. Stanley %A D.J. Burdick %A J.P. Burnier %A K.S. Chan %A W.J. Fairbrother %A R.G. Hammond %A G.S. Ingle %A N.E. Jacobson %A D.L. Mortensen %A T.E. Rawson %A W.B. Won %A R.G. Clark %A T.C. Somers %T Growth hormone secretagogues: Characterisation, efficacy, and minimal bioactive conformation %J Proc. Natl. Acad. Sci. USA %V 92 %P 11165-11169 %D 1995 %A R.S. McDowell %A T.R. Gadek %A P.L. Barker %A K.S. Chan %A C.L. Quan %A N. Skelton %A M. Struble %A E.D. Thorsett %A M. Tischler %A J.Y.K. Tom %A T.R. Webb %A J.P. Burnier %T From peptide to non-peptide: 1. The elucidation of a bioactive conformation of the arginine-glycine-aspartic acid recognition sequence %J J. Amer. Chem. Soc. %V 116 %P 5096-5076 %D 1994 %A M.E. McGrath %A S.A. Gillmor %A R.J. Fletterick %T Ecotin: Lessons on survival in a protease-filled world %J Prot. Sci. %V 4 %P 141-148 %D 1995 %A M.J. McGregor %A F.E. Cohen %T Analysis of conformational tendencies in proteins %J Curr. Opin. Struct. Biol. %V 1 %P 345-350 %D 1991 %A M.J. McGregor %A T.P. Flores %A M.J.E. Sternberg %T Prediction of \(*b-turns in proteins using neural networks %J Prot. Eng. %V 2 %P 521-526 %D 1989 %A M.J. McGregor %A S.A. Islam %A M.J.E. Sternberg %T Analysis of the relationship between side-chain conformation and secondary structure in globular proteins %J J. Mol. Biol. %V 198 %D 1987 %P 295-310 %A M.J. McGuire %A P.E. Lipsky %A D.L. Thiele %T Generation of active myeloid and lymphoid granule serine proteases requires processing by the granule thiol protease dipeptidyl peptidase I %J J. Biol. Chem. %V 268 %P 2458-2467 %D 1994 %A G.D. McIntyre %A B.J. Leckie %A A. Hallett %A M. Szelke %J Biochemistry %P 519-522 %T Purification of human renin by affinity chromatography using a new peptide inhibitor of renin, H77 %V 211 %D 1983 %A D.B. McKay %A M.G. Fried %T Crystallization and preliminary X-ray diffraction data for the cyclic AMP receptor protein of \f2Escherichia coli\f1 %J J. Mol. Biol. %V 139 %P 95-? %D 1980 %K 0CPN 2GAP %A D.B. McKay %A T.A. Steitz %T Structure of catabolite gene activator protein at 2.9\(Ao resolution suggests binding to left-handed B-DNA %J Nature %V 290 %P 744-749 %D 1981 %K 3GAP %A D.B. McKay %A I.T. Weber %A T.A. Steitz %T Structure of catabolite gene activator protein at 2.9-\(Ao resolution: incorporation of amino acid sequence and interactions with cyclic AMP %J J. Biol. Chem. %V 257 %P 9518-9514 %D 1982 %K 3GAP 2GAP %A B.M. McKeever %A M.A. Navia %A P.M.D. Fitzgerald %A J.P. Springer %A C.-T. Leu %A J.C. Heimbach %A W.K. Herber %A I.S. Sigal %A P.L. Darke %T Crystallization of the aspartylprotease from the human immunodeficiency virus, HIV-1 %J J. Biol. Chem. %V 264 %P 1919-? %D 1989 %K 2HVP 5HVP %A R. McKenna %A D. Xia %A P. Willingmann %A L.L. Ilag %A S. Krishnaswamy %A M.G. Rossmann %A N.H. Olson %A T.S. Baker %A N.L. Incardona %T Atomic structure of single-stranded DNA bacteriophage \(*QX174 and its functional implications %J Nature %V 355 %P 137-143 %D 1992 %A M.A. McKinlay %A M.G. Rossmann %T Rational design of antiviral agents %J Annu. Rev. Pharmacol. Toxicol. %V 29 %P 111-122 %D 1989 %A S.L. McKnight %T Molecular zippers in gene regulation %J Sci. Amer. %V 264 %N 4 %P 32-39 %D 1991 %A A.D. McLachlan %T Test for comparing related amino-acid sequences cytochrome \f2c\f1 and cytochrome \f2c\f1\d\s-2551\u\s0 %J J. Mol. Biol. %V 61 %D 1971 %P 409-424 %A A.D. McLachlan %T Gene duplication in carp muscle calcium binding protein %J Nature, New Biol. %V 240 %D 1972 %P 83-85 %K 1CDP %A A.D. McLachlan %T A mathematical procedure for superimposing atomic coordinates of proteins %J Acta Cryst. %V A 28 %D 1972 %P 656-657 %A A.D. McLachlan %T Repeating sequences and gene duplication in proteins %J J. Mol. Biol. %V 64 %D 1972 %P 417-437 %K comparison evolution statistics substitution %A A.D. McLachlan %T Analysis of periodic patterns in amino acid sequences: collagen %J Biopolymers %V 16 %D 1977 %P 1271-1297 %K periodicity patterns Fourier transform %A A.D. McLachlan %T The double helix coiled coil structure of murein lipoprotein from \f2Escherichia coli\f1 %J J. Mol. Biol. %V 121 %P 493-? %D 1978 %K PDB1MLP %A A.D. McLachlan %T Gene duplication in the structural evolution of chymotrypsin %J J. Mol. Biol. %V 128 %D 1979 %P 49-79 %A A.D. McLachlan %J J. Mol. Biol. %P 557-563 %T Three-fold structural pattern in the soybean trypsin inhibitor (Kunitz) %V 133 %D 1979 %A A.D. McLachlan %T Repeated folding pattern in copper-zinc superoxide dismutase %J Nature %V 285 %P 267-268 %D 1980 %A A.D. McLachlan %T Rapid comparison of protein structures %J Acta Cryst. %V A 38 %D 1982 %P 871-873 %A A.D. McLachlan %T Analysis of gene duplication repeats in the myosin rod %J J. Mol. Biol. %V 169 %D 1983 %P 15-30 %A A.D. McLachlan %D 1984 %T How alike are the shapes of two random chains ? %J Biopolymers %V 23 %P 1325-1331 %A A.D. McLachlan %A A.C. Bloomer %A P.J.G. Butler %J J. Mol. Biol. %P 203-224 %T Structural repeats and evolution of tobacco mosaic virus coat protein and RNA %V 136 %D 1980 %A A.D. McLachlan %A D.R. Boswell %J J. Mol. Biol. %T Confidence limits for homology in protein or gene sequences: The c-\f2myc\f1 oncogene and adenovirus e1a protein %P 39-49 %V 185 %D 1985 %A A.D. McLachlan %A D.M. Shotton %J Nature %V 229 %D 1971 %P 202-205 %T Structural similarities between \(*a-lytic protease from Myxobacter 495 and elastase %A A.D. McLachlan %A M. Stewart %J J. Mol. Biol. %V 103 %D 1976 %P 271-298 %T The 14-fold periodicity in \(*a-tropomyosin and the interaction with actin %K periodicity patterns Fourier transform %A P.J. McLaughlin %A J.T. Gooch %A H.-G. Mannherz %A A.G. Weeds %T Structure of gelsolin segment 1-actin complex and the mechanism of filament severing %J Nature %V 364 %P 685-692 %D 1993 %A P.J. McLaughlin %A D.I. Stuart %A H.W. Klein %A N.G. Oikanomakos %A L.N. Johnson %J Biochemistry %P 5862-5873 %T Substrate-cofactor interactions for phosphorylase B: a binding study in the crystal with heptenitol and heptulose 2-phosphate %V 23 %D 1984 %A F.R. McMorris %D 1977 %T On the compatibility of binary qualitative taxonomic characters %J Bull. Math. Biol. %V 39 %P 133-138 %A C.A. McPhalen %A C. Evans %A K. Hayakawa %A I. Jonassen %A I. Svendsen %A M.N.G. James %T Preliminary crystallographic data for the serine protease inhibitor CI-2 from barley seeds %J J. Mol. Biol. %V 168 %P 445-? %D 1983 %K 2CI2 %A C.A. McPhalen %A M.N.G. James %T Crystal and molecular structure of the serine proteinase inhibitor CI-2 from barley seeds %J Biochemistry %V 26 %P 261-269 %D 1987 %K PDB2CI2 %A C.A. McPhalen %A M.N.G. James %T Structural comparison of two serine proteinase-protein inhibitor complexes: eglin c-subtilisin Carlsberg and CI-2-subtilisin novo %J Biochemistry %V 27 %P 6582 %D 1988 %K PDB2SEC PDB2SNI %A C.A. McPhalen %A H.P. Schnebli %A M.N.G. James %T Crystal and molecular structure of the inhibitor eglin from leeches in complex with subtilisin carlsberg %J FEBS Lett. %V 188 %P 55-58 %D 1985 %K 1CSE %A C.A. McPhalen %A I. Svendsen %A I. Jonassen %A M.N.G. James %T Crystal and molecular structure of chymotrypsin inhibitor 2 from barley seeds in complex with subtilisin novo %J Proc. Natl. Acad. Sci. USA %V 82 %P 7242-7246 %D 1985 %K 2CI2 PNAS %A A. McPherson %T Preparation and analysis of protein crystals %I J. Wiley & Sons %C New York %D 1982 %A A. McPherson %A G.D. Brayer %T The gene-5 protein and its molecular complexes %J Biol. Macromol. %V 2 %P 324-? %D 1984 %K 2GN5 %A A. McPherson %A G.D. Brayer %A R.D. Morrison %T Crystal structure of RNase A complexed with d(pA)\d\s-24\s0\u %J J. Mol. Biol. %V 189 %P 305-? %D 1986 %K 0RIA %A A. McPherson %A G. Brayer %A D. Cascio %A R. Williams %T The mechanism of binding of a polynucleotide chain to pancreatic ribonuclease %J Science %V 232 %P 765-? %D 1986 %K 0RIA %A A. McPherson %A G. Brayer %A R. Morrison %T Structure of the crystalline complex between ribonuclease A and d(pA)\d\s-24\s0\u %J Biophys. J. %V 49 %P 209-? %D 1986 %K 0RIA %A A. McPherson %A A.J. Malkin %A Y.G. Kuznetsov %T The science of macromolecular crystallisation %J Structure %V 3 %P 759-768 %D 1995 %A A. McPherson,\0Jr. %T Binding of oxamate to the apoenzyme of dogfish M\d\s-24\s0\u lactate dehydrogenase %J J. Mol. Biol. %V 76 %P 528-? %D 1973 %K 3LDH %A D.E. McRee %T Practical protein crystallography %I Acadmeic Press %C San Diego %D 1993 %A D.E. McRee %A T.E. Meyer %A M.A. Cusanovich %A H.E. Parge %A E.D. Getzoff %T Crystallographic characterization of a photoactive yellow protein with photochemistry similar to sensory rhodopsin %J J. Biol. Chem. %V 261 %P 13850-? %D 1986 %K 1PHY %A D.E. McRee %A J.A. Tainer %A T.E. Meyer %A J. van\0Beeumen %A M.A. Cusanovich %A E.D. Getzoff %T Crystallographic structure of a photoreceptor protein at 2.4\(Ao resolution %J Proc. Natl. Acad. Sci. USA %V 86 %P 6533-? %D 1989 %K PDB1PHY PNAS %A M.A. McTigue %A D.R. Williams %A J.A. Tainer %T Crystal structures of a schistosomal drug and vaccine target: Glutathione S-transferase from \f2Schistosoma japonica\f1 and its complex with the leading antischistosomal drug praziquantel %J J. Mol. Biol. %V 246 %P 21-27 %D 1995 %A W.E. Meador %A A.R. Means %A F.A. Quiocho %T Modulation od calmodulin plasticity in molecular recognition on the basis of X-ray structures %J Science %V 262 %P 1718-1721 %D 1993 %A E.J. Meehan,\0Jr. %A J. McDuffie %A H. Einspahr %A C.E. Bugg %A F.L. Suddath %T The crystal structure of pea lectin at 6\(Ao resolution %J J. Biol. Chem. %V 257 %P 13278-? %D 1982 %K 2LTN %A T.D. Meek %A D.M. Lambert %A G.B. Dreyer %A T.J. Carr %A T.A. Tomaszek,\0Jr. %A M.L. Moore %A J.E. Strickler %A C. Debouck %A L.J. Hyland %A T.J. Matthews %A B.W. Metcalf %A S.R. Petteway,\0Jr. %J Nature %V 343 %D 1990 %P 90-92 %T Inhibition of HIV-1 protease in infected T-lymphocytes by synthetic peptide analogues %A T. Mega %A E. Lujan %A A. Yoshida %T Studies on the oligosaccharide chains of human \(*a\d\s-21\s0\u-protease inhibitor: II. structure of oligosaccharides %J J. Biol. Chem. %V 255 %P 4057-? %D 1980 %K 7API %K 8API %K 9API %A M. Meier %A P.C. Kwong %A C.J. Fr\(e'geau %A E.A. Atkinson %A M. Burrington %A N. Ehrman %A O. Sorensen %A C.C. Lin %A J. Wilkins %A R.C. Bleackley %T Cloning of a gene that encodes a new member of the human cytotoxic cell protease family %J Biochemistry %V 29 %D 1990 %P 4042-4049 %K Fregeau %A T. Meininger %A R. Raag %A S. Roderick %A L.J. Banaszak %T Preparation of single crystals of a yolk lipoprotein %J J. Mol. Biol. %V 179 %P 759-? %D 1984 %K 0LPC %A W.R. Melik-Adamyan %A V.V. Barynin %A A.A. Vagin %A V.V. Borisov %A B.K. Vainshtein %A I. Fita %A M.R.N. Murthy %A M.G. Rossmann %T Comparison of beef liver and \f2Penicillium vitale\f1 catalases %J J. Mol. Biol. %V 188 %P 63-72 %D 1986 %K 4CAT %A J. Mellor %A S.M. Fulton %A M.J. Dobson %A W. Wilson %A S.M. Kingsman %A A.J. Kingsman %T A retrovirus-like strategy for expression of a fusion protein encoded by yeast transposon Ty1 %J Nature %V 313 %D 1985 %P 243-246 %A B. Meloun %A M. Baudys %A V. Kostka %A G. Hausdorf %A C. Fr\(o:mmel %A W.E. Hoehne %T Complete primary structure of thermitase from \f2Thermoactinomyces vulgaris\f1 and its structural features related to the subtilisin-type proteinases %J FEBS Lett. %V 183 %P 195-? %D 1985 %K 0TEC Frommel %A B. Meloun %A M. Baudy\(sv %A J. Pohl %A M. Pavl\(i'k %A V. Kostka %T Amino acid sequence of bovine spleen cathepsin B %J J. Biol. Chem. %V 263 %D 1988 %P 9087-9093 %K Pavlik Baudys %A E.C. Meng %A B.K. Schoichet %A I.D. Kuntz %T Automated docking with grid-based energy evaluation %J J. Comp. Chem. %V 13 %P 505-524 %D 1992 %A L. Men\(e'ndez-Arias %A P. Argos %T Engineering protein stability: sequence statistics point to residue substitutions in \(*a-helices %J J. Mol. Biol. %V 206 %D 1989 %P 397-406 %K Menendez-Arias %A W.D. Mercer %A S.I. Winn %A H.C. Watson %T Twinning in crystals of human skeletal muscle \s-2D\s0-glyceraldehyde-3-phosphate dehydrogenase %J J. Mol. Biol. %V 104 %P 277-? %D 1976 %K PDB3GPD %A J. Merregaert %A M. Janowski %A E.P. Reddy %T Nucleotide sequence of a radiation leukemia virus genome %J Virology %V 158 %D 1987 %P 88-102 %A G. Merutka %A W. Lipton %A W. Shalongo %A S.-H. Park %T Effect of central-residue replacements on the helical stability of a monomeric peptide %J Biochemistry %V 29 %P 7511-7515 %D 1990 %A K.M. Merz,\0Jr. %T Analysis of a large data base of electrostatic potential derived atomic charges %J J. Comp. Chem. %V 13 %P 749-767 %D 1992 %A A. Messiah %T Quantum Mechanics %I North-Holland Publishing Company %C Amsterdam %D 1964 %A P. Metcalf %A M. Blum %A D. Freymann %A M. Turner %A D.C. Wiley %T Two variant surface glcoproteins of \f2Trypanosoma brucei\f1 of different sequence classes have similar 6\(Ao resolution X-ray structures %J Nature %V 325 %P 84-? %D 1987 %K 1VSG %A N. Metropolis %A A.W. Rosenbluth %A M.N. Rosenbluth %A A.H. Teller %A E. Teller %T Equation of state calculations by fast computing machines %J J. Chem. Phys. %P 1087-1092 %V 21 %D 1953 %A W.J. Metzler %A K. Valentine %A M. Roebber %A M.S. Friedrichs %A D.G. Marsh %A L. Mueller %T Determination of the three-dimensional solution structure of ragweed allergen \fIAmb t\fP V by nuclear magnetic resonance spectroscopy %J Biochemsitry %V 31 %P 5117-5127 %D 1992 %A E. Meyer %T Internal water molecules and H-bonding in biological macromolecules: A review of structural features with functional implications %J Prot. Sci. %V 1 %P 1543-1562 %D 1992 %A E. Meyer %A G. Cole %A R. Radahakrishnan %A O. Epp %T Structure of native porcine pancreatic elastase at 1.65\(Ao resolution %D 1988 %J Acta Cryst. %V B 44 %P 26-38 %K PDB3EST %A E.F. Meyer,\0Jr. %A G.M. Clore %A A.M. Gronenborn %A H.A.S. Hansen %T Analysis of an enzyme-substrate complex by X-ray crystallography and transferred nuclear Overhauser enhancement measurements: porcine pancreatic elastase and a hexapeptide %J Biochemistry %V 27 %P 725-? %D 1988 %K 0EPC %A E.F. Meyer,\0Jr. %A L.G. Presta %A R. Radahakrishnan %T Stereospecific reaction of 3-methoxy-4-chloro-7-amino-isocoumarin with crystalline porcine pancreatic elastase %J J. Am. Chem. Soc. %V 107 %P 4091-4093 %D 1985 %K 3EST %A E.F. Meyer,\0Jr. %A R. Radahakrishnan %A G.M. Cole %A L.G. Presta %T Structure of the product complex of acetyl-Ala-Pro-Ala with porcine pancreatic elastase at 1.65\(Ao resolution %J J. Mol. Biol. %V 189 %P 533-539 %D 1986 %K 3EST 0EPC 0ESC %A I.S. Mian %A A.R. Bradwell %A A.J. Olson %T Structure, function and properties of antibody combining sites %J J. Mol. Biol. %V 217 %P 133-151 %D 1991 %A H. Michel %T Three-dimensional crystals of a membrane protein complex: the photosynthetic reaction centre from \f2Rhodopseudomonas viridis\f1 %J J. Mol. Biol. %V 158 %P 567-? %D 1982 %K 1PRC %A S.W. Michnick %A M.K. Rosen %A T.J. Wandless %A M. Karplus %A S.L. Schreiber %T Solution structure of FKBP, a rotamase enzyme and receptor for FK506 and rapamycin %J Science %V 252 %P 836-839 %D 1992 %A L. Miele %A E. Cordella-Miele %A A.B. Mukherjee %T Uteroglobin: structure, molecular biology, and new perspectives on its function as a phospholipase A\d\s-22\s0\u inhibitor %J Endocr. Rev. %V 8 %P 474-? %D 1987 %K 1UTG %A J.A. Mietz %A Z. Grossman %A K.K. Lueders %A E.L. Kuff %J J. Virol. %V 61 %D 1987 %P 3020-3029 %T Nucleotide sequence of a complete mouse intracisternal A-particle genome: relationship to known aspects of particle assembly and function %A M.V. Milburn %A G.G. Priv\(e' %A D.L. Milligan %A W.G. Scott %A J. Yeh %A J. Jancarik %A D.E. Koshland\0Jr. %A S.-H. Kim %T Three-dimensional structures of the ligand-binding domain of the bacterial aspartate receptor with and without a ligand %J Science %V 254 %P 1342-1347 %D 1991 %K Prive %A M.V. Milburn %A L. Tong %A A.M. de\0Vos %A A. Br\(u:nger %A Z. Yamaizumi %A S. Nishimura %A S.-H. Kim %T Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic \f2ras\f1 proteins %J Science %P 939-945 %V 247 %D 1990 %K Brunger %A D.B. Millar %J Biochim. Biophys. Acta %P 152-176 %T The quaternary structure of lactate dehydrogenase: II. the mechanisms, kinetics and thermodynamics of dissociation, denaturation and hybridization in ethylene glycol %V 359 %D 1974 %A J.R. Millar %A P.J. Shaw %A D.K. Stammers %A H.C. Watson %T The low-resolution structure of human muscle aldolase %J Phil. Trans. R. Soc. Lond. %V B 292 %P 209-? %D 1981 %K 1ALD %A M. Miller %A M. Jask\(o'lski %A J.K.M. Rao %A J. Leis %A A. Wlodawer %J Nature %V 337 %D 1989 %P 576-579 %T Crystal structure of a retroviral protease proves relationship to aspartic protease family %K Structure Jaskolski RSV %A M. Miller %A J. Leis %A A. Wlodawer %J J. Mol. Biol. %V 204 %D 1988 %P 211-212 %T Preliminary crystallographic study of a retroviral protease %A M. Miller %A J. Schneider %A B.K. Sathyanarayana %A M.V. Toth %A G.R. Marshall %A L. Clawson %A L. Selk %A S.B.H. Kent %A A. Wlodawer %T Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3\(Ao resolution %J Science %V 246 %D 1989 %P 1149-1152 %K PDB4HVP %A M. Miller %A A.L. Swain %A M. Jask\(o'lski %A B.K. Sathyanarayana %A G.R. Marshall %A D. Rich %A S.B.H. Kent %A A. Wlodawer %T X-ray analysis of HIV-1 protease and its complexes with inhibitors %P 93-106 %B Retroviral proteases: Control of maturation and morphogenesis %E L.H. Pearl %I Macmillan Press %D 1990 %C Basingstoke %Z chapter 10 %K Jaskolski %A R.H. Miller %J Science %V 236 %D 1987 %P 722-725 %T Proteolytic self-cleavage of hepatitis B virus core protein may generate serum \f2e\f1 antigen %A S. Miller %T The structure of interfaces between subunits of dimeric and tetrameric proteins %J Prot. Eng. %V 3 %D 1989 %P 77-83 %A S. Miller %T Protein-protein recognition and the association of immunoglobulin constant domains %J J. Mol. Biol. %V 216 %P 965-973 %D 1990 %A S. Miller %A J. Janin %A A.M. Lesk %A C. Chothia %J J. Mol. Biol. %V 196 %D 1987 %P 641-656 %T Interior and surface of monomeric proteins %K area accessibility hydrophobicity %A S. Miller %A A.M. Lesk %A J. Janin %A C. Chothia %J Nature %V 328 %D 1987 %P 834-836 %T The accessible surface area and stability of oligomeric proteins %K surface area hydrophobicity %A W. Miller %T Building multiple alignments from pairwise alignments %J CABIOS %V 9 %P 169-176 %D 1993 %A D.M. Miller\0III %A M.E. Newcomer %A F.A. Quiocho %T The thiol group of the \s-2L\s0-arabinose-binding protein: chromophoric labeling and chemical identification of the sugar-binding site %J J. Biol. Chem. %V 254 %P 7521-? %D 1979 %K 1ABP 6ABP 7ABP 8ABP %A A. Mills %T Modelling the carbohydrate recognition domain of human E-selectin %J FEBS Letts. %V 319 %P 5-11 %D 1993 %A D.M. Mills %A J.P. Huelsenbeck %A C.W. Cunningham %T Application of accuracy of molecular phylogenies %J Science %V 264 %P 671-677 %D 1994 %A E.J. Milner-White %T Situations of gamma-turns in proteins: Their relation to \(*a-helices, \(*b-sheets and ligand binding sites %J J. Mol. Biol. %V 216 %P 385-397 %D 1990 %A E.J. Milner-White %A J.R. Coggins %A I.A. Anton %T Evidence for an ancestral core structure in nucleotide-binding proteins with the Type A motif %J J. Mol. Biol. %V 221 %P 751-754 %D 1991 %A E.J. Milner-White %A R. Poet %J Biochem. J. %V 240 %D 1986 %P 289-292 %T Four classes of \(*b-hairpins in proteins %A E.J. Milner-White %A R. Poet %T Loops, bulges, turns and hairpins in proteins %J Trends Biochem. Sci. %V 12 %P 189-192 %D 1987 %A E.J. Milner-White %A B.M. Ross %A R. Ismail %A K. Belhadj-Mostefa %A R. Poet %T One type of \(*g-turn rather than the other gives rise to chain-reversal in proteins %J J. Mol. Biol. %V 204 %D 1988 %P 777-782 %A C.S. Mimura %A S.R. Holbrook %A G.F.-L. Ames %T Structural model of the nucleotide-binding conserved component of periplasmic permeases %J Proc. Natl. Acad. Sci. USA %V 88 %P 84-88 %D 1991 %K PNAS modelling %A D.L. Minor,\0Jr. %A P.S. Kim %T Context is a major determinant of \(*b-sheet propensity %J Nature %V 371 %P 264-267 %D 1994 %A A. Miranker %A M. Karplus %T Functionality maps of binding sites: A multiple copy simultaneous search method %J Proteins %V 11 %P 29-34 %D 1991 %A A. Miranker %A M. Karplus %T An automated method for dynamic ligand design %J Proteins %V 23 %P 472-490 %D 1995 %A A. Miranker %A S.E. Radford %A M. Karplus %A C.M. Dobson %T Demonstration by NMR of folding domains in lysozyme %J Nature %V 349 %P 633-636 %D 1991 %A E.M. Mitchell %A P.J. Artymiuk %A D.W. Rice %A P. Willet %T Use of techniques derived from graph theory to compare secondary structure motifs in proteins %J J. Mol. Biol. %V 212 %D 1990 %P 151-166 %A Y. Mitsui %A Y. Satow %A Y. Watanbe %A S. Hirono %A Y. Itaka %T Crystal structures of \f2Streptomyces subtilisin\f1 inhibitor and its complex with subtilisin BPN\(fm %J Nature %V 277 %D 1979 %P 447-452 %K structure inhibitor complex subtilisin ligand binding %A H. Mitsuya %A S. Broder %J Nature %V 325 %D 1987 %P 773-778 %T Strategies for antiviral therapy in AIDS %A S. Miyamoto %A P.A. Kollman %T Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavadin using molecular dynamics/free energy perturbation approaches %J Proteins %V 16 %P 226-245 %D 1993 %A S. Miyamoto %A P.A. Kollman %T What determines the strength of noncovalent association of ligands to proteins in aqueous solution ? %J Proc. Natl. Acad. Sci. USA %V 90 %P 8402-8406 %D 1993 %A S. Modrow %A B.H. Hahn %A G.M. Shaw %A R.C. Gallo %A F. Wong-Staal %A H. Wolf %J J. Virol. %V 61 %D 1987 %P 570-578 %T Computer-assisted analysis of envelope protein sequences of seven human immunodeficiency virus isolates: prediction of antigenic epitopes in conserved and variable regions %A K. Moelling %A T. Schulze %A M.-T. Knoop %A J. Kay %A R. Jupp %A G. Nicolaou %A L.H. Pearl %T \f2In vitro\f1 inhibition of HIV-1 proteinase by cerulenin %J FEBS Lett. %V 261 %D 1990 %P 373-377 %K inhibitors HIV aspartic proteases modelling %A P.C. Moews %A J.R. Knox %A O. Dideberg %A P. Charlier %A J.-M. Frere %T \(*b-lactamase of \f2Bacillus licheniformis\f1 749/C at 2\(Ao resolution %J Proteins %V 7 %P 156-? %D 1990 %K 2BLM %A P.C. Moews %A R.H. Kretsinger %T Refinement of the structure of carp muscle calcium-binding parvalbumin by model building and difference Fourier analysis %J J. Mol. Biol. %V 91 %P 201-228 %D 1975 %K PDB1CPV PDB2CPV PDB3CPV 5CPV 1CDP %A P.C. Moews %A R.H. Kretsinger %T Terbium replacement of calcium in carp muscle calcium-binding parvalbumin, an X-ray crystallographic study %J J. Mol. Biol. %V 91 %P 229-232 %D 1975 %K 1CPV 5CPV 1CDP %A A.S. Moffat %T Nitrogenase structure revealed %J Science %V 250 %P 1513 %D 1990 %A K. Moffat %T Method in MADness %J Nature %V 336 %P 422-423 %D 1988 %A K. Moffat %A C.H. Fullmer %A R.H. Wasserman %T Preliminary crystallographic data for a calcium binding protein from bovine intestine %J J. Mol. Biol. %V 97 %P 661-? %D 1975 %K 3ICB %A C.D. Mol %A C.-F. Kuo %A M.M. Thayer %A R.P. Cunningham %A J.A. Tainer %T Structure and function of the multifunctional DNA-repair enzyme endonuclease III %J Nature %V 374 %P 381-386 %D 1995 %A K.W. Mollison %A W. Mandecki %A E.R.P. Zuiderweg %A L. Feyer %A T.A. Fey %A R.A. Krause %A R.G. Conway %A L. Miller %A R.P. Edalji %A M.A. Shallcross %A B. Lane %A J.L. Fox %A J. Greer %A G.W. Carter %T Identification of receptor-binding residues in the inflammatory complement protein C5a by site directed mutagenesis %J Proc. Natl. Acad. Sci. USA %V 86 %P 292-296 %D 1989 %K PNAS %A H.L. Monaco %A J.L. Crawford %A W.N. Lipscomb %T Three-dimensional structures of aspartate carbamoyltransferase from \f2Escherichia coli\f1 and of its complex with cytidine triphosphate %J Proc. Natl. Acad. Sci. USA %V 75 %P 5276-5280 %D 1978 %K 2ATC 8ATC 1AT1 2AT1 3AT1 4AT1 5AT1 6AT1 7AT1 8AT1 PNAS %A A. Mondrag\(o'n %A S.C. Harrison %T The phage 434 cro/O\d\s-4R\s0\u1 complex at 2.5\(Ao resolution %J J. Mol. Biol. %V 219 %P 321-334 %D 1991 %K Mondragon PDB3CRO %A A. Mondrag\(o'n %A S. Subbiah %A S.C. Almo %A M. Drottar %A S.C. Harrison %T Structure of the amino-terminal domain of phage 434 repressor at 2.0\(Ao resolution %J J. Mol. Biol. %V 205 %P 189-? %D 1989 %K PDB1R69 Mondragon %A A. Mondrag\(o'n %A C. Wolberger %A S.C. Harrison %T Structure of phage 434 \f2cro\f1 protein at 2.35\(Ao resolution %J J. Mol. Biol. %V 205 %P 179-188 %D 1989 %K PDB2CRO Mondragon 3CRO %A J. Monod %A J. Wyman %A J.-P. Changeux %T On the nature of allosteric transitions: a plausible model %J J. Mol. Biol. %V 12 %P 88-118 %D 1965 %A C. Monteilhet %A D.M. Blow %T Binding of tyrosine, adenosine triphosphate and analogues to crystalline tyrosyl transfer RNA synthetase %J J. Mol. Biol. %V 122 %P 407-? %D 1978 %K 3TS1 %A C. Monteilhet %A D.M. Blow %A P. Brick %T Interaction of crystalline tyrosol-tRNA synthetase with adenosine, adenosine monophosphate, adenosine triphosphate and pyrophosphate in the presence of tyrosinol %J J. Mol. Biol. %V 173 %P 477-? %D 1984 %K 3TS1 %A G.T. Montelione %A K. W\(u:thrich %A E.C. Nice %A A.W. Burgess %A H.A. Scheraga %T Identification of two anti-parallel \(*b-sheet conformations in the solution structure of murine epidermal growth factor by proton magnetic resonance %J Proc. Natl. Acad. Sci. USA %V 83 %P 8594-8598 %D 1986 %K EGF Wuthrich %A W. Montfort %A J.E. Villafranca %A A.F. Monzingo %A S.R. Ernst %A B. Katzin %A E. Rutenber %A N.H. Xuong %A R. Hamlin %A J.D. Robertus %T The three-dimensional structure of ricin at 2.8\(Ao %J J. Biol. Chem. %V 262 %P 5398-? %D 1987 %K 0RIC %A J.A. Montgomery %A S. Niwas %A J.D. Bose %A J.A. Secrist\0III Y.S. Babu %A C.E. Bugg %A M.D. Erion %A W.C. Guida %A S.E. Ealick %T Structure-based design of inhibitors of purine nucleoside phosphorylase. 1. 9-(arylmethyl) derivatives of 9-deazaguanine %J J. Med. Chem. %V 36 %P 55-69 %D 1993 %A E.W. Montroll %J J. Chem. Phys. %V 9 %P 707-721 %T Statistical mechanics of nearest neighbour systems %D 1941 %A A.F. Monzingo %A B.W. Matthews %T Structure of a mercaptan-thermolysin complex illustrates mode of inhibition of zinc proteases by substrate-analogue mercaptans %J Biochemistry %V 21 %P 3390-? %D 1982 %K 1TLP %A A.F. Monzingo %A B.W. Matthews %T Binding of N-carboxymethyl dipeptide inhibitors to thermolysin determined by X-ray crystallography: a novel class of transition-state analogues for zinc peptidases %J Biochemistry %V 23 %P 5724-? %D 1984 %K 3TMN PDB1TMN %A S.L. Moodie %A J.M. Thornton %T A study into the effects of protein binding on nucleotide conformation %J Nucl. Acid. Res. %V 21 %P 1369-1380 %D 1993 %A J.B. Moon %A W.J. Howe %T Computer-design of bioactive molecules: A method for receptor-based \f2de novo\f1 ligand design %J Proteins %V 11 %P 314-328 %D 1991 %A C.D. Moore %A J.T.J. Lecomte %T Structural properties of apocytochrome \f2b\f1\d\s-25\s0\u: Presence of a stable native core %J Biochemistry %V 29 %P 1984-1989 %D 1990 %A G.W. Moore %A M. Goodman %A C. Callahan %A R. Holmquist %A H. Moise %T Stochastic \f2vs\f1 augmented maximum parsimony method for estimating superimposed mutations in the divergent evolution of protein sequences %J J. Mol. Biol. %P 15-37 %V 105 %D 1976 %A J.M. Moore %A C.A. Lepre %A G.P. Gippert %A W.J. Chazin %A D.A. Case %A P.E. Wright %T High-resolution solution structure of reduced French bean plastocyanin and comparison with the crystal structure of poplar plastocyanin %J J. Mol. Biol. %V 221 %P 533-555 %D 1991 %A J.M. Moore %A D.A. Peattie %A M.J. Fitzgibbon %A J.A. Thomson %T Solution structure of the major binding protein for the immunosuppressant FK506 %J Nature %V 351 %P 248-250 %D 1991 %A M.L. Moore %A W.M. Bryan %A S.A. Fakhoury %A V.W. Magaard %A W.F. Huffman %A B.D. Dayton %A T.D. Meek %A L. Hyland %A G.B. Dreyer %A B.W. Metcalf %A J.E. Strickler %A J.G. Gorniak %A C. Debouck %T Peptide substrates and inhibitors of the HIV-1 protease %J Biochem. Biophys. Res. Comm. %V 159 %D 1989 %P 420-425 %A R. Moore %A M. Dixon %A R. Smith %A G. Peters %A C. Dickson %T Complete nucleotide sequence of a milk-transmitted mouse mammary tumor virus: Two frameshifting suppression events are required for translation of \f2gag\f1 and \f2pol\f1 %J J. Virol. %V 61 %D 1987 %P 480-490 %A W.J. Moore %T Physical Chemistry %I Longman Group Ltd. %C London %O fifth edition %D 1978 %A R. Moorhouse %A W.T. Winter %A S. Arnott %A M.E. Bayer %T Conformation and molecular organization in fibers of the capsular polysaccharide from \f2Escherichia coli\f1 M41 mutant %J J. Mol. Biol. %V 109 %P 373-? %D 1977 %K PDB1CAP %A M. Moos %A R. Tacke %A H. Scherer %A D. Teplow %A K. Fr\(u:h %A M. Schachner %T Neural adhesion molecule L1 as a member of the immunoglobulin superfamily with binding domains similar to fibronectin %J Nature %V 334 %D 1988 %P 701-703 %K Fruh %A D. Moras %A M.B. Comarmond %A J. Fischer %A R. Weiss %A J.C. Thierry %A J.P. Ebel %A R. Gieg\(e' %T Crystal structure of yeast tRNA\d\s-2asp\s0\u %J Nature %V 288 %P 669-674 %D 1980 %K 3TRA Giege %A D. Moras %A A.-C. Dock %A P. Dumas %A E. Westhof %A P. Romby %A J.-P. Ebel %A R. Gieg\(e' %T Anticodon-anticodon interaction induces conformational changes in tRNA: yeast tRNA\d\s-2\asp\s0\u, a model for tRNA-mRNA recognition %J Proc. Natl. Acad. Sci. USA %V 83 %P 932-936 %D 1986 %K 3TRA PNAS Giege %A D. Moras %A K.W. Olsen %A M.N. Sabesan %A M. Buehner %A G.C. Ford %A M.G. Rossmann %T Studies of asymmetry in the three-dimensional structure of lobster \s-2D\s0-glyceraldehyde-3-phosphate dehydrogenase %J J. Biol. Chem. %V 250 %P 9137-9162 %D 1975 %K 4GPD PDB1GPD %A N. Morellet %A N. Julian %A H. Du\0Rocquigny %A B. Maigret %A J.-L. Darlix %A B.P. Roques %T Determination of the structure of the nucleocapsid protein NCp7 from the human immunodeficiency virus type 1 by \u\s-41\s0\dH NMR %J EMBO J. %V 11 %P 3059-3065 %D 1992 %A A.J. Morffew %A S.J.P. Todd %A M.J. Snelgrove %T The use of a relational data-base for holding molecular data in a molecular graphics system %J Comput. Chem. %V 7 %P 9-16 %D 1983 %A E. Mori %A Y. Morita %T Amino acid sequence of cytochrome \f2c\f1 from rice %J J. Biochem. (Tokyo) %V 87 %P 249-? %D 1980 %K 1CCR %A Y. Mori %A T. Friedrich %A M.-S. Kim %A A. Mikami %A J. Nakai %A P. Ruth %A E. Bosse %A F. Hofmann %A V. Flockerzi %A T. Furuichi %A K. Mikoshiba %A K. Imoto %A T. Tanabe %A S. Numa %T Primary structure and functional expression from complementary DNA of a brain calcium channel %J Nature %V 350 %P 398-402 %D 1991 %A Y. Mori %A S. Ida %T Studies on respiratory enzymes in rice kernel: I. Isolation and purification of cytochrome \f2c\f1 and peroxidase 556 from rice embryo %J Agric. Biol. Chem. %V 32 %P 441-? %D 1968 %K 1CCR %A K. Morikawa %A T.F.M. la\0Cour %A J. Nyborg %A K.M. Rasmussen %A D.L. Miller %A B.F.C. Clark %T High resolution X-ray crystallographic analysis of a modified form of the elongation factor Tu:guanosine diphosphate complex %J J. Mol. Biol. %V 125 %P 325-? %D 1978 %K 1ETU %A T. Morita %A S. Hara %A Y. Matsushima %T Purification and characterization of lysozyme produced by \f2Streptomyces erythraeus\f1 %J J. Biochem. (Tokyo) %V 83 %P 893-? %D 1978 %K 0LZ6 %A Y. Morita %A S. Ida %T A preliminary crystallographic investigation of rice cytochrome \f2c\f1 %J J. Mol. Biol. %V 71 %P 807-? %D 1972 %K 1CCR %A I. Morize %A E. Surcouf %A M.C. Vaney %A Y. Epelboin %A M. Buehner %A F. Fridlansky %A E. Milgrom %A J.P. Mornon %T Refinement of the C222\d\s-21\s0\u crystal form of oxidized uteroglobin at 1.34\(Ao resolution %J J. Mol. Biol. %V 194 %P 725-? %D 1987 %K PDB1UTG %A J.P. Mornon %A R. Bally %A F. Fridlansky %A E. Milgrom %T Characterization of two new crystal forms of uteroglobin %J J. Mol. Biol. %V 127 %P 237-? %D 1979 %K 1UTG %A J.P. Mornon %A F. Fridlansky %A R. Bally %A E. Milgrom %T X-ray crystallographic analysis of a progesterone-binding protein: The C222\d\s-21\s0\u crystal form of oxidized uteroglobin at 2.2\(Ao resolution %J J. Mol. Biol. %V 137 %P 415-? %D 1980 %K 1UTG %A J.P. Mornon %A E. Surcouf %A R. Bally %A F. Fridlansky %A E. Milgrom %T X-ray analysis of a progesterone-binding protein (uteroglobin): preliminary results %J J. Mol. Biol. %V 122 %P 237-? %D 1978 %K 1UTG %A A.L. Morris %A M.W. MacArthur %A E.G. Hutchinson %A J.M. Thornton %T Stereochemical quality of protein structure coordinates %J Proteins %V 12 %P 345-364 %D 1992 %A R.J. Mortishire-Smith %A S.M. Pitzenberger %A C.J. Burke %A C.R. Middaugh %A V.M. Garsky %A R.G. Johnson %T Solution structure of the cyotplasmic domain of phospholamban: Phosphorylation leads to a local perturbation in secondary structure %J Biochemistry %V 34 %P 7603-7613 %D 1995 %A S. Mosimann %A R. Maleshko %A M.N.G. James %T A critical assessment of comparative molecular modeling of tertiary structures of proteins %J Proteins %V 23 %P 301-317 %D 1995 %A D.A. Mossakowska %A K. Nyberg %A A.R. Fersht %J Biochemistry %P 3843-3849 %T Kinetic characterization of the recombinant ribonuclease from \f2Bacillus amyloliquefaciens\f1 (barnase) and investigation of key residues in catalysis by site-directed mutagenesis %V 28 %D 1989 %A R.F. Mott %A T.B.L. Kirkwood %A R.N. Curnow %T Tests for the statistical significance of protein sequence similarities in data-bank searches %J Prot. Eng. %V 4 %P 149-154 %D 1990 %A J. Mottonen %A A. Strand %A J. Symersky %A R.M. Sweet %A D.E. Danley %A K.F. Geoghegan %A R.D. Gerard %A E.J. Goldsmith %T Structural basis of latency in plasminogen activator inhibitor-1 %J Nature %V 355 %P 270-273 %D 1992 %A J. Moult %T Comparative modelling of protein structure \(em progress and prospects %J J. Nat. Inst. Stand. Technol. %V 94 %P 79-84 %D 1991 %A J. Moult %A M.N.G. James %T An algorithm for determining the conformation of polypeptide segments in proteins by systematic search %J Proteins %V 1 %D 1986 %P 146-163 %A J. Moult %A L. Sawyer %A O. Herzberg %A C.L. Jones %A A.F.W. Coulson %A D.W. Green %A M.M. Harding %A R.P. Ambler %T The crystal structure of \(*b-lactamase from \f2Staphylococcus aureus\f1 at 0.5nm resolution %J Biochem. J. %V 225 %P 167-? %D 1985 %K 3BLM 1BLM %A J. Moult %A F. Sussman %A M.N.G. James %T Electron density calculations as an extension of protein structure refinement: \f2Streptomyces griseus\f1 protease at 1.5\(Ao resolution %J J. Mol. Biol. %P 479-502 %V 182 %D 1985 %K PDB2SGA 3SGA 4SGA 5SGA %A J. Moult %A A. Yonath %A W. Traub %A A. Smilansky %A A. Podjarny %A D. Rabinovich %A A. Saya %T The structure of triclinic lysozyme at 2.5\(Ao resolution %J J. Mol. Biol. %V 100 %P 179-195 %D 1976 %A S.M. Mount %A G.M. Rubin %T Complete nucleotide sequence of the \f2Drosophila\f1 transposable element copia: homology between copia and retroviral proteins %J Molec. Cell Biol. %V 5 %D 1985 %P 1630-1638 %A J. Mous %A E.P. Heimer %A S.F.J. LeGrice %T Processing protease and reverse transcriptase from human immunodeficiency virus type I polyprotein in \f2Escherichia coli\f1 %J J. Virol. %V 62 %D 1988 %P 1433-1436 %A S.L. Mowbray %A L.B. Cole %T 1.7\(Ao X-ray structure of the periplasmic ribose receptor from \f2Escherichia coli\f1 %J J. Mol. Biol. %V 225 %P 155-175 %D 1992 %A S.L. Mowbray %A G.A. Petsko %T The introduction of specific sites for heavy metal binding in a crystalline protein %J J. Biol. Chem. %V 258 %P 5634-? %D 1983 %K 1GBP 3GBP %A S.L. Mowbray %A G.A. Petsko %T The X-ray structure of the periplasmic galactose binding protein from \f2Salmonella typhimurium\f1 at 3.0\(Ao resolution %J J. Biol. Chem. %V 258 %P 7991-? %D 1983 %K PDB1GBP 3GBP %A S.L. Mowbray %A R.D. Smith %A L.B. Cole %T Structure of the periplasmic glucose/galactose receptor of \f2Salmonella typhimurium\f1 %J Receptor %V 1 %P 41-? %D 1990 %K 3GBP %A V.T. Moy %A E.-L. Florin %A H.E. Gaub %T Intermolecular forces and energies between ligands and receptors %J Science %V 266 %P 257-259 %D 1994 %A N.T. Mrabet %A A. Van\0den\0Broeck %A I. Van\0den\0brande %A P. Stanssens %A Y. Laroche %A A.-M. Lambier %A G. Matthijssens %A J. Jenkins %A M. Chiadmi %A H. van\0Tilbeurgh %A F. Rey %A J. Janin %A W.J. Quax %A I. Lasters %A M. De\0Maeyer %A S.J. Wodak %T Arginine residues as stabilizing elements in proteins %J Biochemistry %V 31 %P 2239-2253 %D 1992 %A C.W. Mueller %A G.E. Schulz %T Structure of the complex of adenylate kinase from \f2Escherichia coli\f1 with the inhibitor P\u\s-21\s0\d, P\u\s-25\s0\d-di(adenosine-5\(fm-)pentaphosphate %J J. Mol. Biol. %V 202 %P 909-? %D 1988 %K 0AKA %A P. Muhlhahn %A M. Czisch %A R. Moronweiser %A B. Habermann %A R.A. Engh %A C.P. Sommerhoff %A E.A. Auerswald %A T.A. Holak %T Structure of leech derived tryptase inhibitor (LDTI-C) in solution %J FEBS Letts. %V 355 %P 290-296 %D 1994 %A H. Muirhead %A J. Greer %T Three-dimensional Fourier synthesis of human deoxyhaemoglobin at 3.5\(Ao resolution %J Nature %V 228 %P 516-519 %D 1970 %K 3HHB %A H. Muirhead %A P.J. Shaw %T Three-dimensional structure of pig muscle phosphoglucose isomerase at 6\(Ao resolution %J J. Mol. Biol. %V 89 %P 195-203 %D 1974 %K 1PGI %A A.M. Mulichak %A J.O. Hui %A A.G. Tomasselli %A R.L. Heinrikson %A K.A. Curry %A C.-S. Tomich %A S. Thaisirvongs %A T.K. Sawyer %A K.D. Watenpaugh %T The crystallographic structure of the protease from human immunodeficiency virus type 2 with two synthetic peptidic transition state analog inhibitors %J J. Biol. Chem. %V268 %P 13103-13109 %D 1993 %A A.M. Mulichak %A A. Tulinsky %A K.G. Ravichandran %T Crystal and molecular structure of human plasminogen kringle 4 refined at 1.9\(Ao resolution %J Biochemistry %V 30 %P 10576-10588 %D 1991 %A N. Muller %T Does hydrophobic hydration destabilize protein native structures ? %J Trends Biochem. Sci. %V 17 %P 459-463 %D 1992 %A Y.A. Muller %A G.E. Schulz %T Structure of the thiamine- and flavin-dependent enzyme pyruvate oxidase %J Science %V 259 %P 965-967 %D 1993 %A A. Mullerfahrnow %A U. Egner %A T.A. Jones %A H. Rudel %A F. Spener %A W. Saenger %T Three-dimensional structure of fatty-acid binding protein from bovine heart %J Eur. J. Biochem. %V 199 %P 271-276 %D 1991 %A M. Murakami %J J. Theor. Biol. %P 339-347 %T Critical amino acids in p21 protein are located within \(*b-turns: further evaluation %V 12 %D 1987 %A S. Murao %A K. Oda %T Pepstatin-insensitive acid proteinases %B Aspartic proteinases and their inhibitors %E V. Kostka %P 380-399 %C Berlin %I Walter de\0Gruyter %D 1985 %A M. Murata %A G.S. Begg %A F. Lambrou %A B. Leslie %A R.J. Simpson %A H.C. Freeman %A F.J. Morgan %T Amino acid sequence of a basic blue protein from cucumber seedlings %J Proc. Natl. Acad. Sci. USA %V 79 %P 6434-6437 %D 1982 %K 1CBP PNAS %A M. Murata %A J.S. Richardson %A J.L. Sussman %T Simultaneous comparison of three protein sequences %J Proc. Natl. Acad. Sci. USA %V 82 %D 1985 %P 3073-3077 %K sequence alignment copper proteins PNAS %A M.A. Murcko %A B.V. Rao %T Conformational analysis of HIV protease inhibitors. I. Rotation of the amide group adjacent to the P1\(fm decahydroisoquinoline ring system in Ro 31-8959 and related systems %J J. Comp. Chem. %V 14 %P 1446-1453 %D 1993 %A K.P. Murphy %A P.L. Privalov %A S.J. Gill %T Common features of protein unfolding and dissolution of hydrophobic compounds %J Science %P 559-561 %D 1990 %A M.E.P. Murphy %A J. Moult %A R.C. Bleackley %A H. Gershenfeld %A I.L. Weissman %A M.N.G. James %T Comparative molecular model building of two serine proteinases from cytotoxic T-lymphocytes %J Proteins %V 4 %D 1988 %P 190-204 %K 2CP1 1HF1 %A P.M. Murphy %A H.L. Tiffany %T Cloning of complementary DNA encoding a functional human interleukin-8 receptor %J Science %V 253 %P 1280-1283 %D 1991 %A I.A. Murray %A A. Lewendon %A J.A. Williams %A P.M. Cullis %A W.V. Shaw %T Alternative binding modes for chloramphenicol and 1-substituted chloramphenicol analogues revealed by site*directed mutagenesis and X-ray crystallography of chloramphenicol acetyltransferase %J Biochemistry %V 30 %P 3763-? %D 1991 %K PDB4CLA %A J. Murray-Rust %A N.Q. McDonald %A T.L. Blundell %A M. Hosang %A C. Oefner %A F. Winkler %A R.A. Bradshaw %T Topological similarities in TGF-\(*b2, PDGF-BB and NGF define a superfamily of poplypeptide growth factors %J Structure %V 1 %P 153-159 %D 1993 %A P. Murray-Rust %A J.P. Glusker %T Directional hydrogen bonding to sp\u\s-32\s0\d- and sp\u\s-33\s0\d-hybridized oxygen atoms and its relevance to ligand-macromolecule interactions %J J. Amer. Chem. Soc. %V 106 %P 1018-1025 %D 1984 %A P. Murray-Rust %A W.D.S. Motherwell %T Computer retrieval and analysis of molecular geometry: 4. Intermolecular interactions %J J. Amer. Chem. Soc. %V 101 %P 4374-4376 %D 1979 %A P. Murray-Rust %A W.C. Stallings %A C.T. Monti %A R.K. Preston %A J.P. Glusker %T Intermolecular interactions of the C-F bond: The crystallographic environments of fluorinated carboxylic acids and related structures %J J. Amer. Chem. Soc. %V 105 %P 3206-3214 %D 1983 %A G.N. Murshudov %A W.R. Melik-Adamyan %A A.I. Gebenko %A V.V. Barynin %A A.A. Vagin %A B.K. Vainshtein %A Z. Dauter %A K.S. Wilson %T Three-dimensional structure of catalase from \f2Micrococcus lysodeikticus\f1 at 1.5\(Ao resolution %J FEBS Letts. %V 312 %P 127-131 %D 1992 %A K.H.M. Murthy %A E.L. Winborne %A M.D. Minnich %A J.S. Culp %A C. Debouck %T The crystal structures at 2.2\(Ao resolution of hydroxyethylene-based inhibitors bound to human immunodeficiency virus type 1 protease show that the inhibitors are present in two distinct orientations %J J. Biol. Chem. %V 267 %P 22770-22778 %D 1992 %A M.R.N. Murthy %J FEBS Lett. %P 97-102 %T A fast method of comparing protein structure %V 168 %D 1984 %A M.R.N. Murthy %A R.M. Garavito %A J.E. Johnson %A M.G. Rossmann %T The structure of lobster \f2apo\f1-\s-2D\s0-glyceraldehyde-3-phosphate dehydrogenase at 3.0\(Ao resolution %J J. Mol. Biol. %V 138 %P 859-? %D 1980 %K PDB4GPD %A M.R.N. Murthy %A T.J. Reid\0III %A A. Sicignano %A N. Tanaka %A M.G. Rossmann %T Structure of beef liver catalase %J J. Mol. Biol. %V 152 %P 465-? %D 1981 %A A.G. Murzin %T New protein folds %J Curr. Opin. Struct. Biol. %V 4 %P 441-449 %D 1994 %A A.G. Murzin %A S.E. Brenner %A T. Hubbard %A C. Chothia %T SCOP: A structural classification of protein database for the investigation of sequences and structures %J J. Mol. Biol. %V 247 %P 536-540 %D 1995 %A A.G. Murzin %A A.V. Finkelstein %T General architecture of the \(*a-helical bundle %J J. Mol. Biol. %V 204 %D 1988 %P 749-769 %A W.D.L. Musick %A A.D. Adams %A M.G. Rossmann %A T.E. Wheat %A E. Goldberg %T A low-resolution study of testicular lactate dehydrogenase using the molecular replacement technique %J J. Mol. Biol. %V 104 %P 659-? %D 1976 %K 2LDX %A W.D.L. Musick %A M.G. Rossmann %T The structure of mouse testicular lactate dehydrogenase isoenzyme C\d\s-24\s0\u at 2.9\(Ao resolution %J J. Biol. Chem. %V 254 %P 7611-? %D 1979 %K 2LDX %A D. Musil %A D. Zukic %A D. Turk %A R.A. Engh %A I. Mayr %A R. Huber %A T. Popovic %A V. Turk %A T. Towatari %A N. Katunuma %A W. Bode %T The refined 2.15\(Ao X-ray crystal structure of human liver cathepsin B: The structural basis of its specificity %J EMBO J. %V 10 %P 2321-2330 %D 1991 %A S.M. Muskal %A S.R. Holbrook %A S.-H. Kim %T Prediction of disulfide-bonding state of cysteine in proteins %J Prot. Eng. %V 3 %D 1990 %P 667-672 %A S.M. Muskal %A S.-H. Kim %T Predicting protein secondary structure content: a tandem neural network approach %J J. Mol. Biol. %V 225 %P 713-727 %D 1992 %A T. Muta %A T. Miyata %A Y. Misumi %A F. Tokunaga %A T. Nakamura %A Y. Toh %A Y. Ikehara %A S. Iwanaga %T Limulus factor C \(em An endotoxin-sensitive serine proteinase zymogen with a mosaic structure of complement-like, epidermal growth factor-like, and lectin-like domains %J J. Biol. Chem. %V 266 %P 6554-6561 %D 1991 %A M. Mutter %A R. Hersperger %A K. Gubernator %A K. Muller %T The construction of new proteins: V. a template assembled synthetic protein (TASP) containing a 4-helix bundle and \(*b-barrel-like structure %J Proteins %V 5 %P 13-21 %D 1989 %A W. M\(o:ller %A R. Amons %T Phosphate-binding sequences in nucleotide-binding proteins %J FEBS Letts. %V 186 %P 1-7 %D 1985 %K Moller %A I.R. Nabiev %A S.D. Trakhanov %A V.Z. Pletnev %A E.S. Efremov %T Actinoxanthine structure in crystal and aqueous solution %J Bioorg. Khim. %V 7 %P 832-? %D 1981 %K 1ACX %A W. Nadler %A A.T. Br\(u:nger %A K. Schulten %A M. Karplus %T Molecular and stochastic dynamics of proteins %J Proc. Natl. Acad. Sci. USA %V 84 %D 1987 %P 7933-7937 %K Brunger PNAS %A K. Nagai %A C. Oubridge %A T.H. Jessen %A J. Li %A P.R. Evans %T Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A %J Nature %V 348 %P 515-520 %D 1990 %A Y. Nagamine %A D. Pearson %A M.S. Altus %A E. Reich %T cDNA and gene nucleotide sequence of porcine plasminogen activator %J Nucl. Acids Res. %V 12 %D 1984 %P 9525-9541 %A K. Nagano %T Logical analysis of mechanism of protein folding: I. prediction of helices, loops and \(*b structures from primary structure %J J. Mol. Biol. %V 75 %D 1973 %P 401-420 %A K. Nagano %T Logical analysis of mechanism of protein folding: II. the nucleation process %J J. Mol. Biol. %V 84 %D 1974 %P 337-372 %A K. Nagano %T Logical analysis of mechanism of protein folding: IV. supersecondary structures %J J. Mol. Biol. %V 109 %D 1977 %P 235-250 %A K. Nagano %T Triplet information in helix prediction applied to the analysis of supersecondary structures %J J. Mol. Biol. %V 109 %D 1977 %P 251-274 %A K. Nagano %T Prediction of super-secondary structures in terms of topology/packing diagrams %B Biomolecular structure, conformation, function, and evolution %E R. Srinivasan %P 89-99 %V 1 %I Pergamon Press %C Oxford %D 1978 %A K. Nagano %A K. Hasegawa %T Logical analysis of mechanism of protein folding: III. prediction of the strong long-range interactions %J J. Mol. Biol. %V 94 %D 1975 %P 257-274 %A A. Nagata %A Y. Suzuki %A M. Igarashi %A N. Eguchi %A H. Toh %A Y. Urade %A O. Hayaishi %T Human brain prostaglandin D synthase has been evolutionarily differentiated from lipophilic-ligand carrier proteins %J Proc. Natl. Acad. Sci. USA %V 88 %P 4020-4024 %D 1991 %K PNAS %A K. Nakahara %A H. Shoun %A S.I. Adachi %A T. Iizuka %A Y. Shiro %T Crystallization and preliminary X-ray diffraction studies of nitric oxide reductase cytochrome P450nor from \f2Fusarium oxyxporum\f1 %J J. Mol. Biol. %V 239 %P 158-159 %D 1994 %A K. Nakai %A A. Kidera %A M. Kanehisa %T Cluster analysis of amino acid indices for prediction of protein structure and function %J Prot. Eng. %V 2 %P 93-100 %D 1988 %A K.T. Nakamura %A K. Iwahashi %A Y. Yamamoto %A Y. Iitaka %A N. Yoshida %A Y. Mitsui %T Crystal structure of a microbial ribonuclease, RNase ST %J Nature %V 299 %P 564-? %D 1982 %K 0RST %A T. Nakamura %A T. Nishizawa %A M. Hagiya %A T. Seki %A M. Shimonishi %A A. Sugimura %A K. Tashiro %A S. Shimizu %T Molecular cloning and expression of human hepatocyte growth factor %J Nature %V 342 %D 1989 %P 440-443 %A T. Nakayama %A K. Titani %A K. Narita %T The amino acid sequence of cytochrome \f2c\f1 from bonito (\f2Katsuwonus pelamis, Linnaeus\f1) %J J. Biochem. (Tokyo) %V 70 %P 311-? %D 1971 %K 1CYC %A S.H. Nam %A M. Kidokoro %A H. Shida %A M. Hatanaka %T Processing of \f2gag\f1 precursor polyprotein of human T-cell leukemia virus type I by virus-encoded protease %J J. Virol. %V 62 %D 1988 %P 3718-3728 %A K. Namba %A D.L.D. Caspar %A G. Stubbs %T Enhancement and simplification of macromolecular images %J Biophys. J. %P 469-475 %V 53 %D 1988 %A K. Namba %A R. Pattanayek %A G. Stubbs %T Visualization of protein-nucleic acid interactions in a virus: refined structure of intact tobacco mosiac virus at 2.9\(Ao resolution by X-ray fibre diffraction %J J. Mol. Biol. %V 208 %P 307-? %D 1989 %K PDB2TMV %A S.A. Narang %A F.-L. Yao %A J.J. Michniewicz %A G. Dubuc %A J. Phipps %A R.L. Somorjai %T Hierarchical strategy for protein folding and design: synthesis and expression of T4 lysozyme gene and two putative folding mutants %J Prot. Eng. %V 1 %P 481-? %D 1987 %K 1LYD %A N. Narayana %A S.L. Ginell %A I.M. Russu %A H.M. Berman %T Crystal and molecular structure of a DNA fragment: d(CGTGAATTCACG) %J Biochemistry %V 30 %P 4449-? %D 1991 %K PDB1D28 %A S.V.L. Narayana %A P. Argos %T Residue contacts in protein structures and implications for protein folding %J Int. J. Pept. Prot. Res. %V 24 %D 1984 %P 25-39 %A S.V.L. Narayana %A M. Carson %A O. El-Kabbani %A J.M. Kilpatrick %A D. Moore %A X. Chen %A C.E. Bugg %A J.E. Volanakis %A L.J. DeLucas %T Structure of human factor D: A complement systems protein at 2.0\(oA resolution %J J. Mol. Biol. %V 235 %P 695-708 %D 1994 %A J. Nardelli %A T.J. Gibson %A C. Vesque %A P. Charnay %T Base sequence discrimination by zinc-finger DNA binding domains %J Nature %V 349 %P 175-178 %D 1991 %A H. Narum %A T. Hishuda %A T. Sasaki %A D.-F. Feng %A R.F Doolittle %T Molecular cloning of silkworm (\f2Bombyx mori\f1) antichymotrypsin: A new member of the serpin superfamily of proteins from insects %J Eur. j. Biochem. %V 214 %P 181-187 %D 1993 %A M. Nassal %A P.R. Galle %A H. Schaller %T Protease-like sequence in hepatitis B virus core antigen is not required for \f2e\f1 antigen generation and may not be part of an aspartic acid-type protease %J J. Virol. %V 63 %D 1989 %P 2598-2604 %A N. Nassar %A G. Horn %A C. Herrmann %A A. Scherer %A F. McCormick %A A. Wittinghofer %T The 2.2\(oA crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue %J Nature %V 375 %P 554-560 %D 1995 %A V.V. Nauchitel %A R.L. Samorjai %T Gaussian neighborhood: A new measure of accessibility for residues of protein molecules %J Proteins %V 15 %P 50-61 %D 1992 %A M.A. Navia %A P.M.D. Fitzgerald %A B.M. McKeever %A C.-T. Leu %A J.C. Heimbach %A W.K. Herber %A I.S. Sigal %A P.L. Darke %A J.P. Springer %T Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1 %J Nature %V 337 %D 1989 %P 615-620 %K 2HVP 5HVP %A M.A. Navia %A B.M. McKeever %A J.P. Springer %A T.-Y. Lin %A H.R. Williams %A E.M. Fluder %A C.P. Dorn %A K. Hoogsteen %T Structure of human neutrophil elastase in complex with a peptide chloromethyl ketone inhibitor at 1.84\(Ao resolution %J Proc. Natl. Acad. Sci. USA %V 86 %D 1989 %P 7-11 %K PNAS PDB1HNE %A M.A. Navia %A D.A. Peattie %T Structure-based drug design: Applications in immunopharmacology and immunosuppression %J Trends Pharmacol. Sci. %V 14 %P 189-195 %D 1993 %A M.A. Navia %A D.M. Segal %A E.A. Padlan %A D.R. Davies %A N. Rao %A S. Rudikoff %A M. Potter %T Crystal structure of galactan-binding mouse immunoglobulin J539 Fab at 4.5\(Ao resolution %J Proc. Natl. Acad. Sci. USA %V 76 %P 4071-4074 %D 1979 %K 1FBJ 2FBJ PNAS %A M.A. Navia %A J.P. Springer %A T.-Y. Lin %A H.R. Williams %A R.A. Firestone %A J.M. Pisano %A J.B. Doherty %A P.E. Finke %A K. Hoogsteen %T Crystallographic study of a \(*b-lactam inhibitor complex with elastase at 1.84\(oA resolution %J Nature %V 327 %P 79-82 %D 1987 %A S.L. Needleman %A C.D. Wunsch %T A general method applicable to the search for similarities in the amino acid sequence of two proteins %J J. Mol. Biol. %V 48 %D 1970 %P 443-453 %A E.J. Neer %A D.E. Clapham %T Roles of G protein subunits in transmembrane signalling %J Nature %V 333 %P 129-134 %D 1988 %A M. Nei %D 1972 %T Genetic distance between populations %J Amer. Naturalist %V 106 %P 283-292 %A M. Nei %D 1987 %T Molecular Evolutionary Genetics %I Columbia University Press %C New York %A M. Nei %A W.-H. Li %T Mathematical model for studying genetic variation in terms of restriction endonucleases %J Proc. Natl. Acad. Sci. USA %V 76 %P 5269-5273 %D 1979 %K PNAS %A M. Nei %A F. Tajima %A Y. Tateno %T Accuracy of estimated phylogenetic trees from molecular data: II. gene frequency data %J J. Mol. Evol. %D 1983 %V 19 %P 153-170 %A D.J. Neidhart %A G.A. Petsko %T The refined crystal structrue of subtilisin Carlsberg at 2.5\(Ao resolution %J Prot. Eng. %V 2 %P 271-? %D 1988 %K PDB1SBC %A G.L. Nelsestuen %A R.M. Resnick %A G.J. Wei %A C.H. Pletcher %A V.A. Bloomfield %T Metal ion interactions with bovine prothrombin fragment 1: stoichiometry of binding, protein self-association and conformational change induced by a variety of metal ions %J Biochemistry %P 351-358 %V 20 %D 1981 %A D. Neuhaus %A G. Wagner %A M. Vasak %A J.H.R. Kagi %A K. W\(u:thrich %T Systematic application of high-resolution, phase-sensitive two-dimensional H-NMR techniques for the identification of the amino-acid-proton spin systems in proteins %J Eur. J. Biochem. %P 257-273 %V 151 %D 1985 %K Wuthrich %A H. Neurath %T Evolution of proteolytic enzymes %J Science %V 224 %D 1984 %P 350-357 %A H. Neurath %T The versatility of proteolytic enzymes %J J. Cell. Biochem. %V 32 %D 1986 %P 35-49 %A H. Neurath %T Proteolytic processing and physiological regulation %J Trends Biochem. Sci. %V 14 %D 1989 %P 268-271 %K TIBS %A M.E. Newcomer %A G.L. Gilliland %A F.A. Quiocho %T \s-2L\s0-arabinose-binding protein-sugar complex at 2.4\(Ao resolution: stereochemistry and evidence for a structural change %J J. Biol. Chem. %V 256 %P 13213-? %D 1981 %K 1ABP 6ABP 7ABP 8ABP %A M.E. Newcomer %A B.A. Lewis %A F.A. Quiocho %T The radius of gyration of \s-2L\s0-arabinose-binding protein decreases upon binding of ligand %J J. Biol. Chem. %V 256 %P 13218-? %D 1981 %K 1ABP 6ABP 7ABP 8ABP %A M.E. Newcomer %A D.M. Miller\0III %A F.A. Quiocho %T Location of the sugar-binding site of \s-2L\s0-arabinose-binding protein: sugar derivative syntheses, sugar binding specificity, and difference Fourier analyses %J J. Biol. Chem. %V 254 %P 7529-? %D 1979 %K 1ABP 6ABP 7ABP 8ABP %A M. Newman %A M. Safro %A C. Frazao %A G. Khan %A A. Zdanov %A I.J. Tickle %A T.L. Blundell %A N. Andreeva %T X-ray analyses of aspartic proteinases, IV: Structure and refinement at 2.2\(Ao resolution of bovine chymosin %J J. Mol. Biol. %V 221 %P 1295-1309 %D 1991 %K PDB4CMS %A M. Newman %A T. Strzelecka %A L.F. Dorner %A I. Schildkraut %A A.K. Aggarwal %T Structure of restriction endonuclease \f2Bam\f1HI and its relationship to \f2Eco\f1RI %J Nature %V 368 %P 660-664 %D 1994 %A P.J. Newman %A M.C. Berndt %A J. Gorski %A G.C. White\0II %A S. Lyman %A C. Paddock %A W.A. Muller %T PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily %J Science %V 247 %P 1219-1222 %D 1990 %A A.K. Newmark %A J.R. Knowles %J J. Am. Chem. Soc. %P 3557-3559 %T Acyl- and amino-transfer routes in pepsin-catalyzed reactions %V 97 %D 1975 %A S.C. Ng %A A.G. Rao %A O.M.Z. Howard %A J.M. Sodetz %T The eighth component of human complement: Evidence that it is an oligomeric protein assembled from products of three different genes %J Biochemistry %V 26 %P 5229-5233 %D 1987 %K lipocalin %A D.W. Nicholson %A A. Ali %A N.A. Thornberry %A J.P. Vaillancourt %A C.K. Ding %A M. Gallant %A Y. Gareau %A P.R. Griffin %A M. Labelle %A Y.A. Lazebnik %A N.A. Munday %A S.M. Raju %A M.E. Smulson %A T.-T. Yamin %A V.L. Yu %A D.K. Miller %T Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis %J Nature %V 376 %P 37-43 %D 1995 %A H. Nicholson %A D.E. Anderson %A S. Dao-Pin %A B.W. Matthews %T Analysis of the interaction between charged side chains and the \(*a-helix dipole using designed thermostable mutants of phage T4 lysozyme %J Biochemistry %V 30 %P 9816-? %D 1991 %K 1L36 1L37 1L38 1L39 1L40 1L41 1L42 1L43 1L44 1L45 1L46 1L47 1L48 1L49 1L50 1L51 1L52 1L53 1L54 1L56 1L58 1L60 1L64 1L65 1L66 1L67 1L68 1L69 1L70 1L71 1L72 1L73 1L74 1L75 1L76 PDB1L55 PDB1L57 PDB1L59 PDB1L61 PDB1L62 PDB1L63 %A H. Nicholson %A W.J. Becktel %A B.W. Matthews %T Enhanced protein thermostability from designed mutations that interact with \(*a-helix dipoles %J Nature %V 336 %D 1988 %P 651-656 %K PDB1L19 PDB1L20 %K 1L36 1L37 1L38 1L39 1L40 1L41 1L42 1L43 1L44 1L45 1L46 1L47 1L48 1L49 1L50 1L51 1L52 1L53 1L54 1L55 1L56 1L57 1L58 1L59 1L60 1L61 1L62 1L63 1L64 1L65 1L66 1L67 1L68 1L69 1L70 1L71 1L72 1L73 1L74 1L75 1L76 %A H. Nicholson %A E. S\(o:derlind %A D.E. Tronrud %A B.W. Matthews %T Contributions of left-handed helical residues to the structure and stability of bacteriophage T4 lysozyme %J J. Mol. Biol. %V 210 %D 1989 %P 181-193 %K Soderlind PDB1L21 PDB1L22 PDB1L33 %K 1L36 1L37 1L38 1L39 1L40 1L41 1L42 1L43 1L44 1L45 1L46 1L47 1L48 1L49 1L50 1L51 1L52 1L53 1L54 1L55 1L56 1L57 1L58 1L59 1L60 1L61 1L62 1L63 1L64 1L65 1L66 1L67 1L68 1L69 1L70 1L71 1L72 1L73 1L74 1L75 1L76 %A D.J. Niedhart %A G.J. Kenyon %A J.A. Gerlt %A G.A. Petsko %T Mandelate racemase and muconate lactonizing enzyme are mechanistically distinct and structurally homologous %J Nature %V 347 %D 1990 %P 692-694 %A K. Niefind %A D. Schomburg %T Amino acid similarity coefficients for protein modeling and sequence alignment derived from main-chain folding angles %J J. Mol. Biol. %V 219 %P 481-497 %D 1991 %A V.L. Nienaber %A K. Breddam %A J.J. Birktoft %T A glutamic acid specific serine protease utilizes a novel histidine triad in substrate binding %J Biochemistry %V 32 %P 11469-11475 %D 1993 %A T. Niermann %A K. Kirschner %T Improving the prediction of secondary structure of `TIM-barrel' enzymes %J Prot. Eng. %V 4 %P 359-370 %D 1991 %A D.B. Nikolov %A H. Chen %A E.D. Halay %A A.A. Usheva %A K. Hisatake %A D.K. Lee %A R.G. Roeder %A S.K. Burley %T Crystal structure of a TFIIB-TBP-TATA element ternary complex %J Nature %V 377 %P 119-128 %D 1995 %A D.B. Nikolov %A S.-H. Hu %A J. Lin %A A. Gasch %A A. Hoffmann %A M. Horikoshi %A N.-H. Chua %A R.G. Roeder %A S.K. Burley %T Crystal structure of TFIID TATA-box binding protein %J Nature %V 360 %P 40-46 %D 1992 %A E.P. Nikonowicz %A A. Pardi %T Three-dimensional heteronuclear NMR studies of RNA %J Nature %V 355 %P 184-186 %D 1992 %A M. Nilges %A A. Br\(u:nger %T Automated modeling of coiled coils: Application to the GCN4 dimerization region %J Prot. Eng. %V 4 %P 649-659 %D 1991 %K Brunger %A M. Nilges %A G.M. Clore %A A.M. Gronenborn %T Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometry \(em dynamical simulated annealing calculations %J FEBS Lett. %P 317-324 %V 229 %D 1988 %A L. Nillsson %A G.M. Clore %A A.M. Gronenborn %A A.T. Br\(u:nger %A M.K. Karplus %T Structure refinement of oligonucleotides by molecular dynamics with nuclear Overhauser effect interproton distance restraints: application to 5\(fmd(C-G-T-A-C-G)2 %J J. Mol. Biol. %P 455-475 %V 188 %D 1986 %K Brunger %A J. Ninio %A E. Mizraji %T String analysis and energy minimization in the partition of DNA sequences %J J. Mol. Biol. %P 585-596 %V 207 %D 1989 %A Y. Nishibata %A A. Itai %T Confirmation of usefulness of a structure construction program based on three-dimensional receptor structure for rational lead generation %J J. Med. Chem. %V 36 %P 2921-2928 %D 1993 %A K. Nishikawa %T Assessment of secondary-structure prediction of proteins: comparison of computerized Chou-Fasman method with others %J Biochim. Biophys. Acta %V 748 %D 1983 %P 285-299 %K prediction Chou-Fasman accuracy %A K. Nishikawa %A Y. Matsuo %T Development of pseudoenergy potentials for assessing protein 3D-1D compatability and detecting weak homologies %J Prot. Eng. %V 6 %P 811-820 %D 1993 %A K. Nishikawa %A T. Ooi %T Amino acid sequence homology applied to the prediction of protein secondary structures and joint prediction with existing methods %J Biochim. Biophys. Acta %V 871 %D 1986 %P 45-54 %K prediction secondary structure homology %A C.L. Nobbs %A H.C. Watson %A J.C. Kendrew %T Structure of deoxymyoglobin, a crystallographic study %J Nature %V 209 %P 339-341 %D 1966 %K 5MBN %A M.E.M. Noble %A A. Cleasby %A L.N. Johnson %A M.R. Egmond %A L.G.J. Frenken %T The crystal structure of triacylglycerol lipase from \f2Pseudomonas glumae\f1 reveals a partially redundant catalytic aspartate %J FEBS Letts. %V 331 %P 123-128 %D 1993 %A C.E. Nockolds %A R.H. Kretsinger %A C.J. Coffee %A R.A. Bradshaw %T Structure of a calcium binding carp myogen %J Proc. Natl. Acad. Sci. USA %V 69 %P 581-584 %D 1972 %K 1CPV 5CPV 1CDP PNAS %A J.P. Noel %A H.E. Hamm %A P.B. Sigler %T The 2.2\(oA crystal structure of transducin-\(*a complexed with GTP\(*gS %J Nature %V 366 %P 654-663 %D 1993 %A K. Hilpert %A J. Ackermann %A D.W. Banner %A A. Gast %A K. Gubernator %A P. Hadvary %A L. Labler %A K. Muller %A G. Schmid %A T.B. Tschopp %A H. van\0de\0Waterbeemd %T Design and synthesis of potent and highly selective thrombin inhibitors %J J. Med. Chem. %V 37 %P 3889-3901 %D 1994 %A T. Noguti %A N. Go %T A method of rapid calculation of a second derivative matrix of conformational energy for large molecules %J J. Phys. Soc. Jap. %P 3685-3690 %V 52 %D 1983 %A T. Noguti %A N. Go %T Structural basis of hierarchical multiple substates of a protein: I. introduction %J Proteins %V 5 %P 97-103 %D 1989 %A T. Noguti %A N. Go %T Structural basis of hierarchical multiple substates of a protein: II. Monte Carlo simulation of native thermal fluctuations and energy minimization %J Proteins %V 5 %P 104-112 %D 1989 %A T. Noguti %A N. Go %T Structural basis of hierarchical multiple substates of a protein: III. side chain and main chain local conformations %J Proteins %V 5 %P 113-124 %D 1989 %A T. Noguti %A N. Go %T Structural basis of hierarchical multiple substates of a protein: IV. rearrangements in atom packing and local deformations %J Proteins %V 5 %P 125-131 %D 1989 %A T. Noguti %A N. Go %T Structural basis of hierarchical multiple substates of a protein: V. nonlocal deformations %J Proteins %P 132-138 %V 5 %D 1989 %A D.W. Norbeck %A D.J. Kempf %T HIV protease inhibitors %J Ann. Rep. Med. Chem. %V 26 %P 141-150 %D 1991 %A P. Nordlund %A B.-M. Sj\(o:berg %A H. Eklund %T Three-dimensional structure of the free radical protein of ribonucleotide reductase %J Nature %V 345 %D 1990 %P 593-598 %K Sjoberg %A B. Nordstr\(o:m %A C.-I. Br\(a:nd\(e'n %T The binding of nucleotides to horse liver alcohol dehydrogenase %B Structure and conformation of nucleic acids and protein-nucleic acid interactions %C Baltimore, MD %I University Park Press %E M. Sundralingham and S.T. Rao %P 387-? %D 1975 %K 5ADH Branden Nordstrom %A D.G. Norman %A P.N. Barlow %A M. Baron %A A.J. Day %A R.B. Sim %A I.D. Campbell %T Three-dimensional structure of a complement control protein module in solution %J J. Mol. Biol. %V 219 %P 717-725 %D 1991 %A G.E. Norris %A B.F. Anderson %A E.N. Baker %T Structure of azurin from \f2Alcaligenes denitrificans\f1 at 2.5\(Ao resolution %J J. Mol. Biol. %V 165 %P 501-521 %D 1983 %K 2AZA %A G.E. Norris %A B.F. Anderson %A E.N. Baker %T Blue copper proteins. the copper site in azurin from \f2Alcaligenes denitrificans\f1 %J J. Am. Chem. Soc. %V 108 %P 2784-2785 %D 1986 %K 2AZA %A G.E. Norris %A B.F. Anderson %A E.N. Baker %A S.V. Rumball %T Purification and preliminary crystallographic studies on azurin and cytochrome \f2c\f1\(fm from \f2Alcaligenes denitrificans\f1 and \f2Alcaligenes sp.\f1 NCIB 11015 %J J. Mol. Biol. %V 135 %P 309-? %D 1979 %K 2AZA %A A.C.T. North %A A.K. Denson %A A.C. Evans %A L.O. Ford %A T.V. Willoughby %T The use of an interactive computer graphics system in the study of protein conformations %B Biomolecular structure, conformation, function, and evolution %E R. Srinivasan %P 59-72 %V 1 %I Pergamon Press %C Oxford %D 1978 %A S.H. Northrup %A M.R. Pear %A J.A. McCammon %A M. Karplus %A T. Takano %T Internal mobility of ferrocytochrome \f2c\f1 %J Nature %V 287 %P 659-669 %D 1980 %K 3CYT %A J.C. Norvell %A A.C. Nunes %A B.P. Schoenborn %T Neutron diffraction analysis of myoglobin: structure of the carbon monoxide derivative %J Science %V 190 %P 568-570 %D 1975 %K 1MB5 0MB3 %A B. Notstrand %A I. Vaara %A K.K. Kannan %T Structural relationship of human erythrocyte carbonic anhydrase isozymes B and C %J Isozymes-Molecular Structure %V 1 %P 575-? %D 1975 %K 1CA2 %A J. Novotny\\*' %A R.E. Bruccoleri %A J. Newell %T Twisted hyperboloid (\f2strophoid\f1) as a model of \(*b-barrels in proteins %J J. Mol. Biol. %V 177 %D 1984 %P 567-573 %A J. Novotny\\*' %A R. Bruccoleri %A M. Karplus %T An analysis of incorrectly folded protein models: implications for structure predictions %J J. Mol. Biol. %V 177 %P 787-818 %D 1984 %K Novotny %A J. Novotny\\*' %A E. Haber %T Static accessibility model of protein antigenicity: The case of scorpion neurotoxin %J Biochemistry %V 25 %D 1986 %P 6748-6754 %K accessibility protein structure %A J. Novotny\\*' %A A.A. Rashin %A R.E. Bruccoleri %T Criteria that discriminate between native proteins and incorrectly folded models %J Proteins %V 4 %D 1988 %P 19-30 %A J. Novotny\\*' %A S. Tonegawa %A H. Saito %A D.M. Kranz %A H.N. Eisen %T Secondary, tertiary and quaternary structure of T-cell-specific immunoglobulin-like polypeptide %J Proc. Natl. Acad. Sci. USA %V 83 %D 1986 %P 742-746 %K immunoglobulin sequence comparison prediction modelling PNAS %A J. Novotn\(y' %A F. Fran\(e'k %T Different degrees of interspecies homology in immunoglobulin \(*l chain constant domain correlated with three-dimensional structure %J Nature %V 258 %P 641-643 %D 1975 %K Novotny Franek %A K. Nowak %A M. Wolny %A T. Banas %T The complete amino acid sequence of human muscle glyceraldehyde 3-phosphate dehydrogenase %J FEBS Lett. %V 134 %P 143-? %D 1981 %K 3GPD %A Y. Nozaki %A C. Tanford %T The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions %J J. Biol. Chem. %V 246 %D 1971 %P 2211-2217 %K amino acid solubility hydrophobicity %A T. Ny %A M. Sawdey %A D. Lawrence %A J.L. Millan %A D.J. Loskutoff %T Cloning and sequence of a cDNA coding for the human \(*b-migrating endothelial-cell-type plasminogen activator inhibitor %J Proc. Natl. Acad. Sci. USA %V 83 %D 1986 %P 6776-6780 %K PNAS %A S.C. Nyburg %T Some uses of a best molecular fit routine %J Acta Cryst. %V B 30 %P 251-253 %D 1974 %A G. N\(e'methy %A M.S. Pottle %A H.A. Scheraga %T Energy parameters in polypeptides: 9. Updating of geometrical parameters, non-bonded interactions, and hydrogen bond interactions for the naturally occurring amino acids %J J. Phys. Chem. %P 1883-1887 %V 87 %D 1983 %K Nemethy %A C. O'Connell %A S. O'Brien %A W.G. Nash %A M. Cohen %J Virology %V 138 %D 1984 %P 225-235 %T ERV3: a full length human endogenous provirus: chromosomal localization and evolutionary relationships %A M.H. O'Leary %A M. Urberg %A A.P. Young %J Biochemistry %P 2077-2081 %T Nitrogen isotope effects on the papain-catalyzed hydrolysis of N-benzoyl-\s-2L\s0-arganinamide %V 13 %D 1974 %A K.T. O'Neil %A W.F. DeGrado %T A predicted structure of calmodulin suggests an electrostatic basis for its function %J Proc. Natl. Acad. Sci. USA %V 82 %D 1985 %P 4954-4958 %K PNAS %A K.T. O'Neil %A W.F. DeGrado %T How calmodulin binds its targets: Sequence independent recognition of amphiphilic \(*a-helices %J Trends Biochem. Sci. %V 15 %P 59-64 %D 1990 %A K.T. O'Neil %A W.F. DeGrado %T A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids %J Science %V 250 %P 646-651 %D 1990 %A K.T. O'Neil %A R.H. Hoess %A S.A. Jackson %A N.S. Ramachandran %A S.A. Mousa %A W.F. DeGrado %T Identification of novel peptide antagonists for GPIIb/IIIa from a conformationally constrained phage peptide library %J Proteins %V 14 %P 509-515 %D 1992 %A E.K. O'Shea %A J.D. Klemm %A P.S. Kim %A T. Alber %T X-ray structure of the GCN4 leucine zipper, a two stranded, parallel coiled coil %J Science %V 254 %P 539-544 %D 1991 %A T.G. Oas %A P.S. Kim %T A peptide model of a protein folding intermediate %J Nature %V 336 %D 1988 %P 42-48 %A U. Obst %A V. Gramlich %A F. Diederich %A L. Weber %A D.W. Banner %T Design of novel, nonpeptidic thrombin inhibitors and structure of a thrombin-inhibitor complex %J Angew. Chem. Int. Ed. Engl. %V 34 %P 1739-1741 %D 1995 %A H. Ochi %A Y. Hata %A N. Tanaka %A M. Kakudo %A T. Sakurai %A S. Aihara %A Y. Morita %T Structure of rice ferricytochrome \f2c\f1 at 2.0\(Ao resolution %J J. Mol. Biol. %V 166 %P 407-418 %D 1983 %K PDB1CCR %A S. Odake %A C.-M. Kam %A L. Narasimhan %A M. Poe %A J.T. Blake %A O. Krahenbuhl %A J. Tschopp %A J.C. Powers %T Human and murine cytotoxic T lymphocyte serine protease: Subsite mapping with peptide thioester substrates and inhibition of enzyme activity and cytolysis by isocoumarins %J Biochemistry %V 30 %P 2217-2227 %D 1991 %A C. Oefner %A A. D'Arcy %A J.J. Daly %A K. Gubernator %A R.L. Charnas %A I. Heinze %A C. Hubschwerlen %A F.K. Winkler %T Refined crystal structure of \(*b-lactamase from \f2Citrobacter freundii\f1 indicates a mechanism for \(*b-lactam hydrolysis %J Nature %V 343 %D 1990 %P 284-288 %K structure beta lactamase mechanism proteinase catalytic triad %A C. Oefner %A A. D'Arcy %A F.K. Winkler %T Crystal structure of human dihydrofolate reductase complexed with folate %J Eur. J. Biochem. %V 174 %P 377-? %D 1988 %K 0DRF %A C. Oefner %A D. Suck %T Crystallographic refinement and structure of Dnase I at 2\(Ao resolution %J J. Mol. Biol. %V 192 %P 605-? %D 1986 %K 0DNI %A C. Ogata %A M. Hatada %A G. Tomlinson %A W.-C. Shin %A S.-H. Kim %T Crystal structure of the intensely sweet protein monellin %J Nature %V 328 %P 739-742 %D 1987 %K PDB1MON %A K. Ogata %A H. Hojo %A A. Aimoto %A T. Nakai %A H. Nakamura %A A. Sarai %A S. Ishii %A Y. Nishimura %T Solution structure of a DNA-binding unit of Myb: A helix-turn-helix-related motif with conserved tryptophans forming a hydrophobic core %J Proc. Natl. Acad. Sci. USA %V 89 %P 6428-6432 %D 1992 %A K. Ogawa %A T. Tsukihara %A H. Tahara %A Y. Katsube %A Y. Matsuura %A N. Tanaka %A M. Kakudo %A K. Wada %A H. Matsubara %T Location of the iron-sulfur cluster in \f2Spirulina platensis\f1 ferredoxin by X-ray analysis %J J. Biochem. (Tokyo) %V 81 %P 529-? %D 1977 %K 3FXC %A K. Ohashi %A K.-H. Ruan %A R.J. Kulmacz %A K.K. Wu %A L.-H. Wang %T Primary structure of human thromboxane synthase determined from the cDNA sequence %J J. Biol. Chem. %V 267 %P 789-793 %D 1992 %A I. Ohkubo %A K. Kurachi %A T. Takasawa %A H. Shiokawa %A M. Sasaki %T Isolation of a human cDNA for \(*a-thiol proteinase inhibitor and its identity with low molecular weight kininogen %J Biochemistry %P 5691-5697 %V 23 %D 1984 %A D.H. Ohlendorf %A W.F. Anderson %A R.G. Fisher %A Y. Takeda %A B.W. Matthews %T The molecular basis of DNA-protein recognition inferred from the structure of \f2cro\f1 repressor %J Nature %V 298 %P 718-723 %D 1982 %K 1CRO %A D.H. Ohlendorf %A W.F. Anderson %A M. Lewis %A C.O. Pabo %A B.W. Matthews %T Comparison of the structures of \f2cro\f1 and \(*l repressor proteins from bacteriophage \(*l %J J. Mol. Biol. %V 169 %P 757-769 %D 1983 %K 1LRD PDB1LRP %A D.H. Ohlendorf %A W.F. Anderson %A B.W. Matthews %T Many gene-regulatory proteins appear to have a similar \(*a-helical fold that binds DNA and evolved from a common evolutionary precursor %J J. Mol. Evol. %V 19 %P 109-? %D 1983 %K 1CRO %A D.H. Ohlendorf %A W.F. Anderson %A Y. Takeda %A B.W. Matthews %T High resolution structural studies of \f2cro\f1 repressor protein and implications for DNA recognition %J J. Biomol. Struct. Dyn. %V 1 %P 553-? %D 1983 %K 1CRO %A D.H. Ohlendorf %A J.D. Lipscomb %A P.C. Weber %T Structure and assembly of protocatechuate 3,4-dioxygenase %J Nature %V 336 %D 1988 %P 403-405 %A D.H. Ohlendorf %A B.W. Matthews %T Structural studies of protein-nucleic acid interactions %J Annu. Rev. Biophys. Bioeng. %V 12 %P 259-? %D 1983 %K 1CRO %A I. Ohlsson %A B. Nordstr\(o:m %A C.-I. Br\(a:nd\(e'n %T Structural and functional similarities within the coenzyme binding domains of dehydrogenases %J J. Mol. Biol. %V 89 %P 339-354 %D 1974 %K Branden Nordstrom %A S. Ohno %A Y. Emori %A S. Imajoh %A H. Kawasaki %A M. Kisaragi %A K. Suzuki %J Nature %V 312 %D 1984 %P 566-570 %T Evolutionary origin of a calcium dependent protease by fusion of genes for a thiol protease and a calcium-binding protein ? %K sequence calpain thiol proteinase calcium-binding alignment %A T. Ohta %T On hypervariability at the reactive center of proteolytic enzymes and their inhibitors %J J. Mol. Evol. %V 39 %P 614-619 %D 1994 %A Y. Okada %A N. Teno %A N. Itoh %A H. Okamoto %T Significant effects of synthetic \s-1GLN-VAL-VAL-ALA-GLY\s0 and its derivatives, common sequences of thiol proteinase inhibitors on thiol proteinase %J Chem. Pharm. Bull. %P 5149-5152 %V 33 %D 1985 %A Y. Okamato %A M. Fukugita %A T. Nakazawa %A H. Kawai %T \(*a-helix folding by Monte Carlo simulated annealing in isolated C-peptide of ribonuclease A %J Prot. Eng. %V 4 %P 639-647 %D 1991 %A E.T. Olejniczak %A C.M. Dobson %A M. Karplus %A R.M. Levy %T Motional averaging of proton nuclear Overhauser effects in proteins: predictions from a molecular dynamics simulation of lysozyme %J J. Am. Chem. Soc. %V 106 %P 1923-1930 %D 1984 %A S.G. Oliver %A \fIet al\fP %T The complete DNA sequence of yeast chromosome III %J Nature %V 357 %P 38-46 %D 1992 %K There are about 150 authors on this paper, hence the et al. %A D.L. Ollis %A P. Brick %A R. Hamlin %A N.G. Xuong %A T.A. Steitz %T Structure of large fragment of \f2Escherichia coli\f1 DNA polymerase I complexed with dTMP %J Nature %V 313 %P 762-766 %D 1985 %K PDB1DPI %A D.L. Ollis %A E. Cheah %A M. Cygler %A B. Dijkstra %A F. Frolow %A S.M. Franken %A M. Harel %A S.J. Remington %A I. Silman %A J. Schrag %A J.L. Sussman %A K.H.G. Verschueren %A A. Goldman %T The \(*a/\(*b hydrolase fold %J Prot. Eng. %V 5 %P 197-211 %D 1992 %A D.L. Ollis %A C. Kline %A T.A. Steitz %T Domain of \f2E. coli\f1 DNA polymerase I showing sequence homology to T7 DNA polymerase %J Nature %V 313 %P 818-819 %D 1985 %K 1DPI %A A.J. Olsen %A C. Bricogne %A S.C. Harrison %T Structure of tomato bushy stunt virus: IV The virus particle at 2.9\(Ao resolution %J J. Mol. Biol. %V 171 %P 61-? %D 1983 %K PDB2TBV %A K.W. Olsen %A R.M. Garavito %A M.N. Sabesan %A M.G. Rossmann %T Anion binding sites in the active center of \s-2D\s0-glyceraldehyde-3-phosphate dehydrogenase %J J. Mol. Biol. %V 107 %P 571-? %D 1976 %K 1GPD %A K.W. Olsen %A R.M. Garavito %A M.N. Sabesan %A M.G. Rossmann %T Studies on coenzyme binding to glyceraldehyde-3-phosphate dehydrogenase %J J. Mol. Biol. %V 107 %P 577-? %D 1976 %K 1GPD %A K.W. Olsen %A D. Moras %A M.G. Rossmann %A J.I. Harris %T Sequence variability and structure of \s-2D\s0-glyceraldehyde-3-phosphate dehydrogenase %J J. Biol. Chem. %V 250 %P 9313-? %D 1975 %K 1GPD %A J.G. Omichinski %A G.M. Clore %A E. Appella %A K. Sakaguchi %A A.M. Gronenborn %T High-resolution three-dimensional structure of a single zinc finger from a human enhancer binding protein in solution %J Biochemistry %V 29 %P 9324-? %D 1990 %K PDB3ZNF PDB4ZNF %A J.G. Omichinski %A G.M. Clore %A M. Robien %A K. Sakaguchi %A E. Appella %A A.M. Gronenborn %T High-resolution solution structure of the double Cys\d\s-42\s0\u-His\d\s-42\s0\u zinc finger from the human enhancer binding protein MBP-1 %J Biochemistry %V 31 %P 3907-3917 %D 1992 %A M. Ono %A H. Toh %A T. Miyata %A T. Awaya %J J. Virol. %V 55 %D 1985 %P 387-394 %T Nucleotide sequence of the Syrian hamster intracisternal A-particle gene: close evolutionary relationship of type A particle to types B and D oncogene genes %A M. Ono %A T. Yasunaga %A T. Miyata %A H. Ushikubo %T Nucleotide sequence of human endogenous retrovirus genome related to the mouse mammary tumor virus genome %J J. Virol. %V 60 %D 1986 %P 589-598 %A M. Oobatake %A T. Ooi %T An analysis of non-bonded energy of proteins %J J. Theor. Biol. %V 67 %D 1977 %P 567-584 %A R.P. Oomen %A N.M. Young %A D.R. Bundle %T Molecular modelling of antibody\(emantigen complexes between the \f2Brucella abortus\f1 O-chain polysaccharide and a specific monoclonal antibody %J Prot. Eng. %V 4 %P 427-433 %D 1991 %A C. Orengo %T classification of protein folds %J Curr. Opin. Struct. Biol. %V 4 %P 429-440 %D 1994 %A C. Orengo %T Classification of protein folds %J Curr. Opin. Struct. Biol. %V 4 %P 429-440 %D 1994 %A C.A. Orengo %A N.P. Brown %A W.R. Taylor %T Fast structure alignment for protein databank searching %J Proteins %V 14 %P 139-167 %D 1992 %A C.A. Orengo %A T.P. Flores %A D.T. Jones %A W.R. Taylor %A J.M. Thornton %T Recurring structural motifs in proteins with different functions %J Curr. Biol. %V 3 %P 131-139 %D 1993 %A C.A. Orengo %A T.P. Flores %A W.R. Taylor %A J.M. Thornton %T Identification and classification of protein fold families %J Prot. Eng. %V 6 %P 485-500 %D 1993 %A C.A. Orengo %A M.B. Swindells %A A.D. Michie %A M.J. Zvelebil %A P.C. Driscoll %A M.D. Waterfield %A J.M. Thornton %T Structural similarity between the pleckstrin homology domain and verotoxin: The problem of measuring and evaluating structural similarity %J Prot. Sci. %V 4 %P 1977-1983 %D 1995 %A C.A. Orengo %A W.R. Taylor %T A rpaid method of protein structure alignment %J J. Theor. Biol. %V 147 %P 517-551 %D 1990 %A C.A. Orengo %A W.R. Taylor %T A local alignment method for protein structure motifs %J J. Mol. Biol. %V 233 %P 488-497 %D 1993 %A C.A. Orengo %A J.M. Thornton %T Alpha plus beta folds revisited: Some favoured motifs %J Structure %V 1 %P 105-120 %D 1993 %A C.A. Orengo %A J.M. Thornton %T Alpha plus beta folds revisited: some favoured motifs %J Structure %V 1 %P 105-120 %D 1993 %A L.E. Orgel %A F.H.C. Crick %T Selfish DNA: The ultimate parasite %J Nature %V 284 %P 604-607 %D 1980 %A D.L. Ornstein %A M.A. Kashdan %T Sequencing DNA using S-labeling: a troubleshooting guide %J Bio Techniques %V 3 %P 476-483 %D 1985 %A H. Oschkinat %A C. Griesenger %A P.J. Kraulis %A O.W. Sorensen %A R.R. Ernst %A A.M. Gronenborn %A G.M. Clore %T Three-dimensional NMR spectroscopy of a protein in solution %J Nature %V 332 %D 1988 %P 374-376 %K Gronenborn %A G. Otting %A E. Lipinsh %A K. W\(u:thrich %T Protein hydration in aqueous solution %J Science %V 254 %P 974-980 %D 1991 %A Z. Otwinowski %A R.W. Schevitz %A R.-G. Zhang %A C.L. Lawson %A A. Joachimiak %A R.Q. Marmorstein %A B.F. Luisi %A P.B. Sigler %T Crystal structure of \f2trp\f1 repressor/operator complex at atomic resolution %J Nature %V 335 %D 1988 %P 321-329 %A C. Oubridge %A N. Ito %A P.R. Evans %A C.-H. Teo %A K. Nagai %T Crystal structure at 1.92\(oA resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin %J Nature %V 372 %P 432-438 %D 1994 %A C. Ouzounis %A C. Sander %T A structure-derived sequence pattern for the detection of type-I copper binding domains in distantly related proteins %J FEBS Letts. %V 279 %P 73-78 %D 1991 %A C. Ouzounis %A C. Sander %A M. Scharf %A R. Schneider %T Prediction of protein structure by evaluation of sequence-structure fitness: Aligning sequences to contact profiles derived from three-dimensional structures %V 232 %P 805-825 %D 1993 %A Y.A. Ovchinnikov %J Trends Biochem. Sci. %P 434-438 %T Probing the folding membrane proteins %V 12 %D 1987 %K TIBS %A M. Overduin %A T.S. Harvey %A S. Bagby %A K.I. Tong %A P. Yau %A M. Takeichi %A M. Ikura %T Solution structure of the epithelial cadherin domain resposible for selective cell adhesion %J Science %V 267 %P 386-389 %D 1995 %A M. Overduin %A B. Mayer %A C.B. Rios %A D. Baltimore %A D. Cowburn %T Secondary structure of Src homology 2 domain of c-Abl by heteronuclear NMR spectroscopy in solution %J Proc. Natl. Acad. Sci. USA %V 89 %P 11673-11677 %D 1992 %A M. Overduin %A C.B. Rios %A B.J. Meyer %A D. Baltimore %A D. Cowburn %T Three-dimensional solution structure of the src homology 2 domain of c-abl %J Cell %V 70 %P 697-704 %D 1992 %A J.P. Overington %T Comparison of three-dimensional structures of homologous proteins %J Curr. Opin. Struct. Biol. %V 2 %P 394-401 %D 1992 %A J.P. Overington %T Structural constraints on residue substitution %J Genetic Engineering %V 14 %P 231-249 %D 1992 %E J.K. Setlow %A J.P. Overington %A D. Donnelly %A M.S. Johnson %A A. \(Svali %A T.L. Blundell %T Environment specific amino acid substitution tables: Tertiary templates and prediction of protein folds %J Prot. Sci. %V 1 %P 216-226 %D 1991 %A J.P. Overington %A M.J. Sutcliffe %A F. Watson %A S. Campbell %A K. James %A T.L. Blundell %T The knowledge-based modelling of the serine protease domain of tissue-type plasminogen activator and its inhibitor %J Proc. Int. Biotech. Symp. %E G. Durand %I Soci\(e't\(e' Francaise de Biologie %V 1 %D 1988 %P 279-304 %A J. Overington %A M.S. Johnson %A A. \(Svali %A T.L. Blundell %T Tertiary structural constraints on protein evolutionary diversity; Templates, key residues and structure prediction %J Proc. Roy. Soc. Lond. %D 1990 %V B 241 %P 132-145 %K Sali %A J. Overington %A M. Johnson %A C. Topham %A A. McLeod %A A. \(Svali %A Z.-Y. Zhu %A L. Sibanda %A T. Blundell %T Applications of environment specific amino acid substitution tables to identification of key residues in protein tertiary structure %V 59 %D 1990 %J Curr. Sci. %P 867-874 %K Sali %A D. Ozender %A C. Fox,\0(Eds.) %T Protein engineering %I New York %I Liss %D 1987 %A M. Pabhakaran %A P.K. Ponnuswamy %J J. Theor. Biol. %P 623-637 %T Spatial assignment of amino acid residues in globular proteins: an approach from information theory %V 87 %D 1980 %A C.O. Pabo %A A.K. Aggarwal %A S.R. Jordan %A L.J. Beamer %A U.R. Obeysekare %A S.C. Harrison %T Conserved residues make similar contacts in two repressor-operator complexes %J Science %V 247 %D 1990 %P 1210-1213 %A C.O. Pabo %A W. Krovatin %A A. Jeffrey %A R.T. Sauer %T The N-terminal arms of \(*l repressor wrap around the operator DNA %J Nature %V 298 %P 441-443 %D 1982 %K 1LRD %A C.O. Pabo %A M. Lewis %T The operator-binding domain of \(*l repressor: structure and DNA recognition %J Nature %V 298 %P 443-447 %D 1982 %K 1LRD %A C.O. Pabo %A R.T. Sauer %T Protein-DNA recognition %J Annu. Rev. Biochem. %V 53 %D 1984 %P 293-321 %A C.O. Pabo %A E.G. Suchanek %T Computer-aided model-building strategies for protein design %J Biochemistry %V 25 %D 1986 %P 5987-5991 %K PROTEUS %A C.N. Pace %T Thermodynamic analysis of the folding of the streptococcal protein G IgG-binding domains B1 and B2: Why small proteins tend to have high denaturation temperatures %J Chemtracts %V 3 %P 190-193 %D 1992 %A E.A. Padlan %T On the nature of antibody combining sites: unusual structural features that may confer on these sites an enhanced capacity for binding ligands %J Proteins %V 7 %P 112-124 %D 1990 %A E.A. Padlan %A G.H. Cohen %A D.R. Davies %T On the specificity of antibody/antigen interactions: phosphocholine binding to McPC603 and the correlation of three-dimensional structure and sequence data %J Ann. Immunol. (Paris) %V C 136 %P 271-? %D 1985 %K 2MCP %A E.A. Padlan %A D.R. Davies %T Variability in three-dimensional structure in immunoglobulins %J Proc. Natl. Acad. Sci. USA %V 72 %P 819-823 %D 1975 %K PNAS %A E.A. Padlan %A D.R. Davies %T A model of the Fc of immunoglobulin E %J Mol. Immunol. %V 23 %P 1063-? %D 1986 %K PDB1IGE %A E.A. Padlan %A D.R. Davies %A I. Pecht %A D. Givol %A C. Wright %T Model building studies of antigen-binding sites: The hapten-binding site of MOPC315 %J Cold Spring Harbor Symp. Quant. Biol. %V 41 %P 627-637 %D 1976 %K PDB1FVB PDB2FVB PDB1FVW PDB2FVW %A E.A. Padlan %A B.A. Helm %T A modelling study of the \(*a-subunit of human high-affinity receptor for immunoglobulin-E %J Receptor %V 2 %P 129-144 %D 1992 %A E.A. Padlan %A E.A. Kabat %T Model-building study of the combining sites of two antibodies to \(*a(1\(->6)dextran %J Proc. Natl. Acad. Sci. USA %V 85 %P 6885-6889 %D 1988 %K PNAS 1FVB %A E.A. Padlan %A W.E. Love %T Structure of the haemoglobin of the marine annelid worm, \f2Glycera dibranchiata\f1, at 5.5\(Ao resolution %J Nature %V 220 %P 376-? %D 1968 %K 0HBG %A E.A. Padlan %A W.E. Love %T Three-dimensional structure of hemoglobin from the polychaete annelid, \f2Glycera dibranchiata\f1, at 2.5\(Ao resolution %J J. Biol. Chem. %V 249 %P 4067-? %D 1974 %K 0HBG %A E.A. Padlan %A W.E. Love %T Refined crystal structure of deoxyhemoglobin S: I. restrained least-squares refinement at 3.0\(Ao resolution %J J. Biol. Chem. %V 260 %P 8272-? %D 1985 %K PDB1HBS %A E.A. Padlan %A W.E. Love %T Refined crystal structure of deoxyhemoglobin S: II. molecular interactions in the crystal %J J. Biol. Chem. %V 260 %P 8280-? %D 1985 %K 1HBS %A E.A. Padlan %A D.M. Segal %A G.H. Cohen %A D.R. Davies %A S. Rudikoff %A M. Potter %T The three-dimensional structure of the antigen binding site of Mc/PC603 protein %B The immune system. Genes, receptors, signals. Proceedings of the 1974 ICN-UCLA symposium on molecular biology %E E.E. Sercarz, A.R. Williamson and C.F. Cox %C New York %I Academic Press %P 7-? %D 1974 %K 1MCP %A E.A. Padlan %A D.M. Segal %A T.F. Spande %A D.R. Davies %A S. Rudikoff %A M. Potter %T Structure at 4.5\(Ao resolution of a phosphorylcholine-binding Fab %J Nature, New Biol. %V 245 %P 165-167 %D 1973 %K 1MCP %A E.A. Padlan %A E.W. Silverton %A S. Sheriff %A G.H. Cohen %A S.J. Smith-Gill %A D.R. Davies %T Structure of an antibody-antigen complex: crystal structure of the Hy/HEL-10 Fab-lysozyme complex %J Proc. Natl. Acad. Sci. USA %V 86 %P 5938-5947 %D 1989 %K PDB3HFM PNAS %A K. Padmanabhan %A K.P. Padmanabhan %A A. Tulinsky %A C.H. Park %A W. Bode %A R. Huber %A D.T. Blankenship %A A.D. Cardin %A W. Kisiel %T Structure of human des(1-45) factor Xa at 2.2\(oA resolution %J J. Mol. Biol. %V 232 %P 947-966 %D 1993 %A S. Padmanabhan %A R.L. Baldwin %T Straight-chain non-polar amino acids are good helix-formers in water %J J. Mol. Biol. %V 219 %P 135-137 %D 1991 %A S. Padmanabhan %A S. Marqusee %A T. Ridgeway %A T.M. Laue %A R.L. Baldwin %T Relative helix-forming tendencies of nonpolar amino acids %J Nature %V 344 %D 1990 %P 268-270 %K secondary structure alpha helices propensities %A A. Paehler %A A. Banerjee %A J.K. Dattagupta %A T. Fujiwara %A K. Lindner %A G.P. Pal %A D. Suck %A G. Weber %A W. Saenger %T Three-dimensional structure of fungal proteinase K reveals similarity to bacterial subtilisin %J EMBO J. %V 3 %P 1311-1314 %D 1984 %K 2PRK %A G.S. Page %A A.G. Mosser %A J.M. Hogle %A D.J. Filman %A R.R. Rueckert %A M. Chow %T Three-dimensional structure of poliovirus serotype 1 neutralizing determinants %J J. Virol. %V 62 %P 1781-? %D 1988 %K 2PLV %A E.F. Pai %T p21 and other guanine-nucleotide-interacting proteins %J Curr. Opin. Struct. Biol. %V 1 %P 941-945 %D 1991 %A E.F. Pai %A W. Kabsch %A U. Krengel %A K.C. Holmes %A J. John %A A. Wittinghofer %J Nature %V 341 %D 1989 %P 209-214 %T Structure of the guanine-nucleotide-binding domain of the Ha-\f2ras\f1 oncogene product \f2p\f121 in the triphosphate conformation %A E.F. Pai %A U. Krengel %A G.A. Petsko %A R.S. Goody %A W. Kabsch %A A. Wittinghofer %T Refined crystal structure of the triphosphate conformation of h-ras p21 at 1.35\(Ao resolution: implications for the mechanism of GTP hydrolysis %J EMBO J. %V 9 %P 2351-? %D 1990 %K PDB5P21 %A E.F. Pai %A U. Krengel %A G.A. Petsko %A R.S. Goody %A W. Kabsch %A A. Wittinghofer %T Refined crystal structure of the triphosphate conformation of H-\f2ras\f1 p21 at 1.35\(Ao resolution: Implications for the mechanism of GTP hydrolysis %J EMBO J. %V 9 %P 2351-2359 %D 1990 %A E.F. Pai %A W. Sachsenheimer %A R.H. Schirmer %A G.E. Schulz %T Substrate positions and induced-fit in crystalline adenylate kinase %J J. Mol. Biol. %V 114 %P 37-? %D 1977 %K 3ADK %A E.F. Pai %A G.E. Schulz %T The catalytic mechanism of glutathione reductase as derived from X-ray diffraction analyses of reaction intermediates %J J. Biol. Chem. %V 258 %P 1752-? %D 1983 %K 3GRS %A R. Pain %T A case of a flexible friend %J Nature %V 354 %P 353-354 %K colicin %A R. Pain %J Nature %P 629-630 %T Protein folding... yet there is method in't %V 315 %D 1985 %A R.H. Pain %T Folding in the egg white %J Nature %V 358 %P 278-279 %D 1992 %A R.H. Pain %A B. Robson %J Nature %V 227 %D 1970 %P 62-63 %T Analysis of the code relating sequence to secondary structure in proteins %A A.A. Pakula %A R.T. Sauer %J Nature %V 344 %D 1990 %P 363-364 %T Reverse hydrophobic effects relieved by amino-acid substitutions at a protein surface %K hydrophobic effect folding substitutions %A A.A. Pakula %A V.B. Young %A R.T. Sauer %J Proc. Natl. Acad. Sci. USA %V 83 %D 1986 %P 8829-8833 %T Bacteriophage \(*l \f2cro\f1 mutations: effects on activity and intracellular degradation %K mutation substitution stability protein folding PNAS %A G.P. Pal %A C. Betzel %A K.-D. Jany %A W. Saenger %T Crystallization of the bifunctional proteinase/amylase inhibitor PKI-3 and of its complex with proteinase K %J FEBS Lett. %V 197 %P 111-? %D 1986 %K 2PRK %A G.P. Pal %A N.K. Sinha %A W. Saenger %T Crystallizations and preliminary X-ray studies of calotropins dI and dII %J J. Mol. Biol. %V 153 %P 1157-? %D 1981 %K 0CDI %A G. Pal %A N.K. Sinha %T Isolation,crystallization, and properties of calotropins dI and dII from \f2Calotropis gigantea\f1 %J Arch. Biochem. Biophys. %V 202 %P 321-? %D 1980 %K 0CDI %A J. Palau %A P. Argos %A P. Puigdom\(e'nech %T Protein secondary structure: studies on the limits of prediction accuracy %J Int. J. Pept. Prot. Res. %V 19 %P 394-401 %D 1982 %K Puigdomenech %A J. Palau %A P. Puigdom\(e'nech %T The structural code for proteins: zonal distribution of amino acid residues and stabilization of helices by hydrophobic triplets %J J. Mol. Biol. %V 88 %P 857-872 %D 1974 %K Puigdomenech %A J.T. Palmer %A D. Rasnick %A J.L. Klaus %A D. Bromme %T Vinyl sulfones as mechanism-based cysteine protease inhibitors %J J. Med. Chem. %V 38 %P 3193-3196 %D 1995 %K Kephri %A K.A. Palmer %A H.A. Scheraga %A J.F. Riordan %A B.L. Vallee %T A preliminary three-dimensional structure of angiogenin %J Proc. Natl. Acad. Sci. USA %V 83 %P 1965-1969 %D 1986 %K PNAS %A R.A. Palmer %A J.H. Tickle %A I.J. Tickle %T Acetylcholine receptor site: a proposed model %J J. Mol. Graph. %V 1 %P 94-96 %D 1983 %A M.W. Pandit %T Prediction of strong antigenic determinant of seminalplasmin and ribonuclease from the amino acid sequence %J Int. J. Pept. Prot. Res. %P 197-199 %V 25 %D 1985 %A J.-J. Panthier %A S. Foote %A B. Chambraud %A A.D. Strosberg %A P. Corvol %A F. Rougeon %T Complete amino acid sequence and maturation of the mouse submaxillary gland renin precursor %J Nature %V 298 %D 1982 %P 90-92 %A M.W. Pantoliano %A M. Whitlow %A J.F. Wood %A S.W. Dodd %A K.D. Hardman %A M.L. Rollence %A P.N. Bryan %T Large increases in general stability for subtilisin BPN\(fm through incremental changes in the free energy of unfolding %J Biochemistry %V 28 %P 7205-? %D 1989 %K 1S01 %A M.W. Pantoliano %A M. Whitlow %A J.F. Wood %A M.L. Rollence %A B.C. Finzel %A G.L. Gilliland %A T.L. Poulos %A P.N. Bryan %T The engineering of binding affinity at metal ion binding sites for the stabilization of proteins: subtilisin as a test case %J Biochemistry %V 27 %P 8311-? %D 1988 %K 1S01 %A E. Papamokos %A E. Weber %A W. Bode %A R. Huber %A M.W. Empie %A I. Kato %A M. Laskowski,\0Jr. %T Crystallographic refinement of Japanese quail ovomucoid, a Kazal-type inhibitor, and model building studies of complexes with serine proteases %J J. Mol. Biol. %V 158 %P 515-537 %D 1982 %K PDB1OVO 2OVO %A E.P. Paques %A H. Scholze %A R. Huber %T Purification and crystallization of human anaphylatoxin, C3a %J Hoppe-Seyler's Z. Physiol. Chem. %V 361 %P 977-? %D 1980 %K 0C3A %A A. Pardi %A D.R. Hare %A M.E. Selsted %A R.D. Morrison %A D.A. Bassolino %A A.C. Bach %J J. Mol. Biol. %V 201 %D 1988 %P 625-636 %T Solution structure of the rabbit neutrophil defensin NP-5 %A J. Parello %A P. Reimarsson %A E. Thulin %A B. Lindman %T Na\u\s-2\(pl\s0\d binding to parvalbumins studied by \u\s-223\s0\dNa NMR %J FEBS Lett. %V 100 %P 153-? %D 1979 %K 0PAL %A A.J. Park %A L.M. Matrisian %A A.F. Kelly %A R. Pearson %A Z. Yuan %A M. Navre %T Mutational analysis of the transin (rat stromelysin) autoinhibitor region demonstrates a role for residues surrounding the ``cysteine switch'' %J J. Biol. Chem. %V 266 %P 1584-1590 %D 1991 %A W.R. Taylor %T New paths from dead ends %J Nature %V 356 %P 478-480 %D 1992 %A C.H. Park %A A. Tulinsky %J Biochemistry %V 25 %D 1986 %P 3977-3982 %T Three-dimensional structure of the kringle sequence: structure of prothrombin fragment 1 %K kringle structure %K 0PF1 %A M.W. Parker %A J.T. Buckley %A J.P.M. Postma %A A.D. Tucker %A K. Leonard %A F. Pattus %A D. Tsernoglou %T Structure of the \f2Aeromonas\f1 toxin proaerolysin in its water-soluble and membrane-channel states %J Nature %V 367 %P 292-295 %D 1994 %A M.W. Parker %A F. Pattus %A A.D. Tucker %A D. Tsernoglou %T Structure of the membrane-pore-forming fragment of colicin A %J Nature %V 337 %P 93-96 %D 1989 %K 0COL %A M.W. Parker %A J.P.M. Postma %A F. Pattus %A A.D. Tucker %A D. Tsernoglou %T Refined structure of the pore-formaing domain of colicin A at 2.4\(Ao resolution %J J. Mol. Biol. %V 224 %P 639-657 %D 1992 %A M.W. Parker %A A.D. Tucker %A D. Tsernoglou %A F. Pattus %T Insights into membrane insertion based on studies of colicins %J Trends Biochem. Sci. %V 15 %P 126-129 %D 1990 %A K.D. Parris %A D.J. Hoover %A D.B. Damon %A D.R. Davies %T Synthesis and crystallographic analysis of two rhizopuspepsin inhibitor complexes %J Biochemistry %V 31 %P 8125-8141 %D 1992 %A D.J. Parry-Smith %A T.K. Attwood %T \s-2SOMAP\s0: a novel interactive approach to multiple protein sequence alignment %J CABIOS %V 7 %P 233-235 %D 1991 %A M. Pasek %A C. Keith %A D. Feldman %A P.B. Sigler %T Characterization of crystals of two venom phospholipases A\d\s-22\s0\u %J J. Mol. Biol. %V 97 %P 395-? %D 1975 %K 1PP2 %A A. Pastore %A R.A. Atkinson %A V. Saudek %A R.J.P. Williams %T Topological mirror images in protein structure computation: An underestimated problem %J Proteins %V 10 %P 22-32 %D 1991 %A A. Pastore %A A.M. Lesk %T Comparison of the structures of globins and phycocyanins: evidence for evolutionary relationship %J Proteins %V 8 %P 133-155 %D 1990 %A A. Pastore %A A.M. Lesk %A M. Bolognesi %A S. Onesti %T Structural alignment and analysis of two distantly related proteins: \f2Aplysia limacina\f1 myoglobin and sea lamprey globin %J Proteins %V 4 %D 1988 %P 240-250 %A A. Pastore %A V. Saudek %A G. Ramponi %A R.J.P. Williams %T Three-dimensional structure of acylphosphatase: Refinement and structure analysis %J J. Mol. Biol. %V 224 %P 427-440 %D 1992 %A D.J. Patel %T A clasped embrace %J Nature %V 369 %P 438-439 %D 1994 %A D.J. Patel %A B.M. Gumbiner %T Zipping together a cell adhesion interface %J Nature %V 374 %P 306-307 %D 1995 %A D.J. Patel %A B.M. Gumbiner %T Zipping together a cell adhesion interface %V Nature %J 374 %P 306-307 %D 1995 %A D.V. Patel %A K. Reilly-Gauvin %A D.E. Ryono %A C.A. Free %A S.A. Smith %A E.W. Petrillo,\0Jr. %T Activated ketone based inhibitors of human renin %J J. Med. Chem. %V 36 %P 2431-2447 %D 1993 %A D. Pathak %A G. Ashley %A D. Ollis %T Thiol protease-like active site found in the enzyme dienelactone hydrolase: localization using biochemical, gentic, and structural tools %J Proteins %V 9 %P 267-279 %D 1991 %K convergent-evolution %A R. Pattanayek %A M. Elrod %A G. Stubbs %T Characterization of a putative calcium-binding site in tobacco mosaic virus %J Proteins %V 12 %P 128-132 %D 1992 %A L. Patthy %T Evolution of the proteases of blood coagulation and fibrinolysis by assembly from modules %J Cell %D 1985 %V 41 %P 657-663 %A L. Patthy %T Detecting homology of distantly related proteins with consensus sequences %J J. Mol. Biol. %V 198 %D 1987 %P 567-577 %A L. Patthy %T Modular exchange principles in proteins %J Curr. Opin. Struct. Biol. %V 1 %P 351-361 %D 1991 %A L. Pauling %T Nature of forces between large molecules of biological interest %J Nature %V 161 %P 707-709 %D 1948 %A L. Pauling %T The Nature of the Chemical Bond %D 1960 %I Cornell University Press %C Ithaca N.Y. %O 3rd ed. %A L. Pauling %A R.B. Corey %J Proc. Natl. Acad. Sci. USA %V 37 %D 1951 %P 235-240 %T Atomic coordinates and structure factors for two helical configurations of polypeptide chains %K PNAS %A L. Pauling %A R.B. Corey %J Proc. Natl. Acad. Sci. USA %V 37 %D 1951 %P 251-256 %T The pleated sheet a new layer configuration of polypeptide chains %K PNAS %A L. Pauling %A R.B. Corey %J Proc. Natl. Acad. Sci. USA %V 37 %D 1951 %P 282-285 %T The polypeptide-chain configuration in hemoglobin and other related globular proteins %K PNAS %A L. Pauling %A R.B. Corey %J Proc. Natl. Acad. Sci. USA %V 37 %D 1951 %P 256-261 %T The structure of feather rachis keratin %K PNAS %A L. Pauling %A R.B. Corey %J Proc. Natl. Acad. Sci. USA %V 37 %D 1951 %P 261-271 %T The structure of hair muscle and related proteins %K PNAS %A L. Pauling %A R.B. Corey %J Proc. Natl. Acad. Sci. USA %V 37 %D 1951 %P 241-250 %T The structure of synthetic polypeptides %K PNAS %A L. Pauling %A R.B. Corey %J Proc. Natl. Acad. Sci. USA %V 37 %D 1951 %P 272-281 %T The structure of the proteins of the collagen-gelatin group %K PNAS %A L. Pauling %A R.B. Corey %A H.R. Branson %J Proc. Natl. Acad. Sci. USA %V 37 %D 1951 %P 205-211 %T The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain %K PNAS %A N.P. Pavletich %A C.O. Pabo %T Zinc-finger-DNA recognition: Crystal structure of a Zif268-DNA complex at 2.1\(Ao %J Science %V 252 %P 809-817 %D 1991 %A N.P. Pavletich %A C.O. Pabo %T Crystal structure of a five-finger GLI-DNA complex: New perspectives on zinc fingers %J Science %V 261 %P 1701-1707 %D 1993 %A A.G. Pavlovsky %A A.A. Vagin %A B.K. Vainshtein %A N.K. Chepurnova %A M.Y. Karpeisky %T Three-dimensional structure of ribonuclease from \f2Bacillus intermedius\f1 7P at 3.2\(Ao resolution %J FEBS Lett. %V 162 %P 167-? %D 1983 %K 0RBI %A V. Pavone %J Int. J. Biol. Macromol. %V 10 %D 1988 %P 238-240 %T On \(*b-hairpin classification %A G.S. Pawley %J Acta Cryst. %P 1204-1208 %T On the least-squares analysis of the rigid body vibrations of non-centro symmetrical molecules %V 16 %D 1963 %A G.S. Pawley %J Acta Cryst. %P 631-638 %T Further refinements of some rigid boron compounds %V 20 %D 1966 %A T. Pawson %A G.D. Gish %T SH2 and SH3 domains: From structure to function %J Cell %V 71 %P 359-362 %D 1992 %A L. Pearl %T The extended binding cleft of aspartic proteinases and its role in peptide hydrolysis %B Aspartic proteinases and their inhibitors %E V. Kostka %P 189-195 %I Walter de\0Gruyter %C Berlin %D 1985 %A L.H. Pearl %J FEBS Lett. %P 8-12 %T The catalytic mechanism of aspartic proteinases %V 214 %D 1987 %A L.H. Pearl %A T.L. Blundell %J FEBS Lett. %V 174 %D 1984 %P 96-101 %T The active site of aspartic proteinases %A L.H. Pearl %A W.R. Taylor %J Nature %V 328 %D 1987 %P 482 %T Sequence specificity of retroviral proteases %A L.H. Pearl %A W.R. Taylor %T A structural model for the retroviral proteases %J Nature %V 329 %D 1987 %P 351-354 %A D.A. Pearlman %A P.R. Connelly %T Determination of the differential effects of hydrogen bonding and water release on the binding of FK506 to ative and Tyr82 \(-> Phe82 FKBP-12 proteins using free energy simulations %J J. Mol. Biol. %V 248 %P 696-717 %D 1995 %A D.A. Pearlman %A S. Kim %T Conformational studies of nucleic acids: V. sequence specificities in the conformational energetics of oligonucleotides: The homo-tetramers %J Biopolymers %P 59-77 %V 27 %D 1988 %A D.A. Pearlman %A P.A. Kollman %T Free energy perturbation calculations: Problems and pitfalls along the gilded road %P 101-119 %B Computer simulation of biomolecular systems: Theoretical and experimental applications %E W.F. van\0Gunsteren and P.K. Weiner %I ESCOM %C Leiden %D 1989 %A D.A. Pearlman %A M.A. Murcko %T CONCEPTS: New dynamic algorithm for \f2de novo\f1 drug design %J J. Comp. Chem. %V 14 %P 1184-1193 %D 1993 %A W.R. Pearson %T Rapid and sensitive comparison with \s-2FASTA\s0 and \s-2FASTP\s0 %J Methods Enzymol. %V 183 %P 63-98 %D 1990 %A W.R. Pearson %T Rapid and sensitive sequence comparison with \s-2FASTP\s0 and \s-2FASTA\s0 %J Methods Enzymol. %V 183 %P 63-98 %D 1990 %A W.R. Pearson %T Identifying distantly related protein sequences %J Curr. Opin. Struct. Biol. %V 1 %P 321-326 %D 1991 %A W.R. Pearson %A D.J. Lipman %J Proc. Natl. Acad. Sci. USA %V 85 %D 1988 %P 2444-2448 %T Improved tools for biological sequence comparison %K PNAS %A I.V. Pechik %A A.E. Gustchina %A N.S. Andreeva %A A.A. Fedorov %T Possible role of some groups in the structure and function of HIV-1 protease as revealed by molecular modelling studies %J FEBS Lett. %V 247 %D 1989 %P 118-122 %A J.T. Pedersen %A J. Moult %T \f2Ab initio\f1 structure prediction for small polypeptides and protein fragments using genetic algorithms %J Proteins %V 23 %P 454-460 %D 1995 %A J. Pedersen %A S. Searle %A A. Henry %A A.R. Rees %T Antibody modeling: Beyond homology %J Immunomethods %V 1 %P 126-136 %D 1992 %A M.C. Peitsch %A M.S. Boguski %T Is apolipoprotein D a mammalian bilin-binding protein ? %J New Biol. %V 2 %P 197-? %D 1990 %K 1APD %A H. Pelletier %A J. Kraut %T Crystal structure of a complex between electron transfer partners, cytochrome c peroxidase and cytochrome c %J Science %V 258 %P 1748-1755 %D 1992 %A H. Pelletier %A M.R. Sawaya %A A. Kumar %A S.H. Wilson %A J. Kraut %T Strcuture of ternary complexes of rat DNA polymerase \(*b, a DNA template-primer, and ddCTP %J Science %V 264 %P 1891-1903 %D 1994 %A C. Peng %A B.K. Ho %A T.W. Chang %A N.T. Chang %J J. Virol. %V 63 %D 1989 %P 2550-2556 %T Role of human immunodeficiency virus type-1 specific protease in core protein maturation and infectivity %A D. Pennica %A W.E. Holmes %A W.J. Kohr %A R.N. Harkins %A G.A. Vehar %A C.A. Ward %A W.F. Bennet %A E. Yelverton %A P.H. Seeburg %A H.L. Heyneker %A D.V. Goeddel %A D. Collen %T Cloning and expression of human tissue-type plasminogen activator cDNA in \f2E. coli\f1 %J Nature %D 1983 %V 301 %P 214-221 %K tPA %A J.P. Perentesis %A L.D. Phan %A W.B. Gleason %A D.C. LaPorte %A D.M. Livingstone %A J.W. Bodley %T \f2Saccharomyces cerevisiae\f1 elongation factor 2: Genetic cloning, characterization of expression, and G-domain modelling %J J. Biol. Chem. %V 267 %P 1190-1197 %D 1992 %A R.E. Perkins %A S.C. Conroy %A B. Dunbar %A L.A. Fothergill %A M.F. Tuite %A M.J. Dobson %A S.M. Kingsman %A A.J. Kingsman %T The complete amino acid sequence of yeast phosphoglycerate kinase %J Biochem. J. %V 211 %P 199-? %D 1983 %K 3PGK %A S.J. Perkins %A A.S. Nealis %A J. Dudhia %A T.E. Hardingham %T Immunoglobulin fold and tandem repeat structures in proteoglycan N-terminal domains and link protein %J J. Mol. Biol. %V 206 %D 1989 %P 737-753 %A J.J. Perona %A C.S. Craik %T Structural basis of substrate specificity in the serine proteases %J Prot. Sci. %V 4 %P 337-360 %D 1995 %A J.J. Perona %A C.S. Craik %A R.J. Fletterick %T Locating the catalytic water molecule in serine proteases %J Science %V 261 %P 620-621 %D 1993 %A J.J. Perona %A M.A Rould %A T.A. Steitz %A J.-L. Risler %A C. Zelwer %A S. Brunie %T Structural similarities in glutaminyl- and methionyl-tRNA synthetases suggest a common overall orientation of tRNA binding %J Proc. Natl. Acad. Sci. USA %V 88 %P 2903-2907 %D 1991 %A J.J. Perona %A R.N. Swanson %A M.A. Rould %A T.A. Steitz %A D. Soell %T Structural basis for misaminoacylation by mutant \f2E. coli\f1 glutaminyl-tRNA synthetase enzymes %J Science %V 246 %P 1152-? %D 1989 %K 1GSG %A J.J. Perona %A R. Swanson %A T.A. Steitz %A D. Soell %T Overproduction and purification of \f2Escherichia coli\f1 tRNA\u\s-4gln\s0\d2 and its use in crystallization of the glutaminyl-tRNA synthetase-tRNA\u\s-4gln\s0\d complex %J J. Mol. Biol. %V 202 %P 121-? %D 1988 %K 1GSG %A G. Perrot %A B. Cheng %A K.D. Gibson %A J. Vila %A K.A. Palmer %A A. Nayeem %A B. Maigret %A H.A. Scheraga %T \s-2MSEED\s0: A program for the rapid analytical determination of accessible surface areas and their derivatives %J J. Comp. Chem. %V 13 %P 1-11 %D 1992 %A K.M. Perry %A E.B. Fauman %A J.S. Finer-Moore %A W.R. Montfort %A G.F. Maley %A F. Maley %A R.M. Stroud %T Plastic adaptation toward mutations in proteins: structural comparison of thymidylate synthetases %J Proteins %V 8 %P 315-333 %D 1990 %A K.M. Perry %A J.J. Onuffer %A N.A. Touchette %A C.S. Herndon %A M.S. Gittelman %A C.R. Matthews %A J.-T. Chen %A R.J. Mayer %A K. Taira %A S.J. Benkovic %A E.E. Howell %A J. Kraut %T Effect of single amino acid replacements on the folding and stability of dihydrofolate reductase from \f2Escherichia coli\f1 %J Biochemistry %V 26 %P 2674-2679 %D 1987 %K 4DFR 5DFR 6DFR 7DFR %A M. Perutz %T Structure and function of haemoglobin: I. A tentative atomic model of horse oxyhaemoglobin %J J. Mol. Biol. %V 13 %P 646-668 %D 1965 %A M. Perutz %T Molecular inventiveness %J Nature %V 348 %P 583-584 %D 1990 %A M.F. Perutz %T Hemoglobin structure and respiratory transport %J Sci. Amer. %V 239 %N 6 %P 92-125 %D 1978 %A M.F. Perutz %T Regulation of oxygen affinity of hemoglobin: influence of structure of the globin on the heme iron %J Annu. Rev. Biochem. %V 48 %P 327-? %D 1979 %K 2HHB %A M.F. Perutz %T Species adaptation in a protein molecule %J Mol. Biol. Evol. %V 1 %P 1-28 %D 1983 %A M.F. Perutz %T Mechanisms of cooperativity and allosteric regulation in proteins %I Cambridge Universtiy Press %C Cambridge %D 1989 %A M.F. Perutz %A G. Fermi %T Stereochemistry of salt-bridge formation in \(*a-helices and \(*b-strands %J Proteins %V 4 %P 294-295 %D 1988 %A M.F. Perutz %A G. Fermi %A D.J. Abraham %A C. Poyart %A E. Bursaux %J J. Am. Chem. Soc. %P 1064-1078 %T Hemoglobin as a receptor of drugs and peptides: X-ray studies of the stereochemistry of binding %V 108 %D 1986 %A M.F. Perutz %A G. Fermi %A B. Luisi %A B. Shaanan %A R.C. Liddington %T Stereochemistry of cooperative mechanisms in hemoglobin %J Acc. Chem. Res. %V 20 %P 309-? %D 1987 %K 1COH %A M.F. Perutz %A S.S. Hasnain %A P.J. Duke %A J.L. Sessler %A J.E. Hahn %T Stereochemistry of iron in deoxyhaemoglobin %J Nature %V 295 %P 535-538 %D 1982 %K 3HHB %A M.F. Perutz %A J.C. Kendrew %A H.C. Watson %T Structure and function of haemoglobin: II. some relationships between polypeptide chain configuration and amino acid sequence %J J. Mol. Biol. %V 13 %D 1965 %P 669-678 %A M.F. Perutz %A H. Lehmann %T Molecular pathology of human haemoglobin %J Nature %V 219 %D 1968 %P 902-909 %K mutation globin structure function %A M.F. Perutz %A F.S. Mathews %T An X-ray study of azide methaemoglobin %J J. Mol. Biol. %V 21 %P 199-202 %D 1966 %A M.F. Perutz %A H. Muirhead %A J.M. Cox %A L.C.G. Goaman %T Three-dimensional Fourier synthesis of horse oxyhaemoglobin at 2.8\(Ao resolution, the atomic model %J Nature %V 219 %P 131-139 %D 1968 %K 2MHB %A M.F. Perutz %A M.G. Rossmann %A A.F. Cullis %A H. Muirhead %A G. Will %A A.C.T. North %T Structure of haemoglobin %J Nature %V 185 %D 1960 %P 416-422 %A M. Perutz %T Protein Structure: New approaches to disease and therapy %I W.H. Freeman %C New York %D 1992 %A C.R. Beddel %T Designing drugs to fit a macromolecular receptor %J Chem. Soc. Rev. %V 13 %P 279-319 %D 1984 %A S. Pescarella %A P. Argos %T Analysis of insertions/deletions in protein structures %J J. Mol. Biol. %V 224 %P 461-471 %D 1992 %A S. Pescarella %A P. Argos %T A data bank merging related protein structures and sequences %J Prot. Eng. %V 5 %P 121-137 %D 1992 %A A. Pessi %A E. Bianchi %A A. Crameri %A S. Venturini %A A. Tramontano %A M. Sollazzo %T A designed metal-binding protein with a novel fold %J Nature %V 362 %P 367-369 %D 1993 %A S.B. Petersen %A H. Bohr %A J. Bohr %A S. Brunak %A R.M.J. Cotterill %A H. Fredholm %A B. Lautrup %T Training neural networks to analyze biological sequences %J Trends Biotech. %V 8 %P 304-308 %D 1990 %A T.E. Petersen %A H.C. Th\(o/gersen %A K. Skorstengaard %A K. Vibepedersen %A P. Sahl %A L. Sottrup-Jensen %A S. Magnusson %T Partial primary structure of bovine plasma fibronectin: Three types of internal homology %J Proc. Natl. Acad. Sci. USA %V 80 %D 1983 %P 137-141 %K sequence fibronectin plasma protein Thogersen PNAS %A K. Petratos %A D.W. Banner %A T. Beppu %A K.S. Wilson %A D. Tsernoglou %T The crystal structure of pseudoazurin from \f2Alcaligenes faecalis\f1 S-6 determined at 2.9\(Ao resolution %J FEBS Lett. %V 218 %P 209-? %D 1987 %K 1PAZ %A K. Petratos %A Z. Dauter %A K.S. Wilson %T The refinement of the structure of pseudoazurin from \f2Alcaligenes faecalis\f1 s-6 at 1.55\(Ao resolution %J Acta Cryst. %V B 44 %P 628-? %D 1988 %K PDB1PAZ %A P. Petrelli %J Int. J. Pept. Prot. Res. %P 85-88 %T An algorithm for reconstructing protein sequences %V 25 %D 1985 %A G.A. Petsko %T Enzyme evolution: \f2D\(e'j\(a` vu\f1 all over again %J Nature %V 351 %P 104-105 %D 1991 %K evolution %A G.A. Petsko %T Fishing in Src-infested waters %J Nature %V 358 %P 625-626 %D 1992 %A G.A. Petsko %A G.L. Kenyon %A J.A. Gerlt %A D. Ringe %A J.W. Kozarich %T On the origin of enzymatic species %J Trends Biochem. Sci. %V 18 %P 372-376 %D 1993 %A G.A. Petsko %A D. Ringe %T Fluctuations in Protein Structure from X-ray Diffraction %J Annu. Rev. Biophys. Bioeng. %V 13 %P 331-371 %D 1984 %A G.A. Petsko %A D. Tsernoglou %T The structure of subtilopeptidase A: I. X-ray crystallographic data %J J. Mol. Biol. %V 106 %P 453-? %D 1976 %K 1SBC %A J.W. Pflugrath %A F.A. Quiocho %T Sulphate sequestered in the sulphate-binding protein of \f2Salmonella typhimurium\f1 is bound solely by hydrogen bonds %J Nature %V 314 %P 257-? %D 1985 %K 0SBP %A J.W. Pflugrath %A G. Wiegand %A R. Huber %A L. V\(e'rtesy %T Crystal structure determination, refinement and the molecular model of the \(*a-amylase inhibitor HOE-467a %J J. Mol. Biol. %V 189 %P 383-386 %D 1986 %K PDB1HOE Vertesy %A G. Pfl\(u:gl %A J. Kallen %A T. Schirmer %A J.N. Jansonius %A M.G.M. Zurini %A M.D. Walkinhaw %T X-ray structure od a decameric cyclophilin-cyclosporin crystal complex %J Nature %V 361 %P 91-94 %D 1993 %K Pflugl %A D.C. Phillips %T The three-dimensional structure of an enzyme molecule %J Sci. Amer. %V 215 %P 78-90 %D 1966 %K 1LYZ %A D.C. Phillips %T Crystallographic studies of lysozyme and its interactions with inhibitors and substrates %E E.F. Osserman, R.F. Canfield and S. Beychok %B Lysozyme %I Academic Press %C New York %P 9-? %D 1974 %K 1LYZ %A M.A. Phillips %A A.P. Kaplan %A W.J. Rutter %A P.A. Bartlett %T Transition-state characterization: A new approach combining inhibitor analogues and variation in enzyme structure %J Biochemistry %V 31 %P 959-963 %D 1992 %A S.E.V. Phillips %T The structure of oxy-myoglobin %J Acta Cryst. %V A 34 %P 55-? %D 1978 %K 1MBD %A S.E.V. Phillips %T Structure of oxymyoglobin %J Nature %V 273 %P 247-248 %D 1978 %K 1MBD %A S.E.V. Phillips %T Structure and refinement of oxymyoglobin at 1.6\(Ao resolution %J J. Mol. Biol. %V 142 %P 531-554 %D 1980 %K PDB1MBD %A S.E.V. Phillips %A B.P. Schoenborn %T Neutron diffraction reveals oxygen-histidine hydrogen bond in oxymyoglobin %J Nature %V 292 %P 81-82 %D 1981 %K PDB1MBD %A G.N. Phillips,\0Jr. %T Tropomyosin crystal structure and muscle regulation: Appendix. Construction of an atomic model for tropomyosin and implications for interactions with actin %J J. Mol. Biol. %V 192 %P 128-? %D 1986 %K PDB2TMA %A G.N. Phillips,\0Jr. %A R.M. Arduini %A B.A. Springer %A S.G. Sligar %T Crystal structure of myoglobin from a synthetic gene %J Proteins %V 7 %P 358-? %D 1990 %K 1MBW %A G.N. Phillips,\0Jr. %A V.K. Mahajan %A A.K.Q. Siu %A F.A. Quiocho %T Structure of \s-2L\s0-arabinose-binding protein from \f2Escherichia coli\f1 at 5\(Ao resolution and preliminary results at 3.5\(Ao %J Proc. Natl. Acad. Sci. USA %V 73 %P 2186-? %D 1976 %K 6ABP 7ABP 8ABP %A G.N. Phillips,\0Jr. %A V.K. Mahajan %A A.K.Q. Siu %A F.A. Quiocho %T Structure of \s-2L\s0-arabinose-binding protein from \f2Escherichia coli\f1 at 5\(Ao resolution and preliminary results at 3.5\(Ao %J Proc. Natl. Acad. Sci. USA %V 73 %P 2186-2190 %D 1976 %K 1ABP PNAS %A R.P. Phizackerley %A B.C. Wishner %A S.H. Bryant %A L.M. Amzel %A J.A. Lopez\0de\0Castro %A R.J. Poljak %T Three dimensional structure of the \f2p\f1/f\f2c\f1\(fm fragment of guinea pig IgG1 %J Mol. Immunol. %V 16 %P 841-? %D 1979 %K 1PFC %A R.W. Pickersgill %A P. Rizkallah %A G.W. Harris %A P.W. Goodenough %T Determination of the structure of papaya protease \(*w %J Acta Cryst. %V B 47 %P 766-771 %D 1991 %A S.D. Pickett %A M.A.S. Saqi %A M.J.E. Sternberg %T Evaluation of the sequence template method for protein structure prediction: Discrimination of the (\(*b/\(*a)\d\s-48\s0\u-barrel fold %J J. Mol. Biol. %V 228 %P 170-187 %D 1992 %A D. Picot %A P.J. Loll %A M.R. Garavito %T The X-ray crystal structure of the membrane protein prostaglandin H\d\s-42\s0 u synthase-1 %J Nature %V 367 %P 243-249 %D 1994 %A M. Pierrot %A R. Haser %A M. Frey %A M. Bruschi %A J. Le\0Gall %A L.C. Sieker %A L.H. Jensen %T Some comparisons between two crystallized anaerobic bacterial rubredoxins from \f2Desulfovibrio gigas\f1 and \f2D. vulgaris\f1 %J J. Mol. Biol. %V 107 %P 179-? %D 1976 %K 1RDG %A M. Pierrot %A R. Haser %A M. Frey %A F. Payan %A J.-P. Astier %T Crystal structure and electron transfer properties of cytochrome \f2c\f1\d\s-23\s0\u %J J. Biol. Chem. %V 257 %P 14341-14348 %D 1982 %K PDB1CY3 %A J. Pieter %A A.G.W. Leslie %A R. Lutter %A J.E. Walker %T Structure at 2.8\(oA resolution of F\d\s-31\s0\u-ATPase from bovine heart mitochondria %J Nature %V 370 %P 621-628 %D 1994 %A D. Pignol %A C. Gaboriaud %A T. Michon %A B. Kerfelec %A C. Chapus %A J.C. Fontecilla-Camps %T Crystal structure of bovine procarboxypeptidase A-S6 subunit III, a highly structured truncated zymogen E %J EMBO J. %V 13 %P 1763-1771 %D 1994 %A T.J. Pilot %A J.L. Fox %T Cloning and sequencing of the genes encoding the \(*a and \(*b subunits of C-phycocyanin form the cyanobacterium \f2Agmenellum quadruplicatum\f1 %J Proc. Natl. Acad. Sci. USA %V 81 %P 6983-? %D 1984 %K 0CPC %A K. Piontek %A P. Chakrabarti %A H.-P. Sch\(a:r %A M.G. Rossmann %A H. Zuber %T Structure determination and refinement of \f2Bacillus stearothermophilus\f1 lactate dehydrogenase %J Proteins %V 4 %D 1990 %P 74-92 %K Schar PDB1LDB PDB2LDB %A W.R. Pitt %A J.M. Goodfellow %T Modelling of solvent positions around polar groups in proteins %J Prot. Eng. %V 4 %P 531-537 %D 1991 %A J.E. Pitts %A I.J. Tickle %A S.P. Wood %A T.L. Blundell %T Crystal structure analysis of avian pancreatic polypeptide at 1.37\(Ao resolution %J Kristallografiya %V 27 %P 97-? %D 1982 %K 1PPT %A J.E. Pitts %A S.P. Wood %A I.J. Tickle %A A.M. Treharne %A Y. Mascarenhas %A J.Y. Li %A J. Husain %A S. Cooper %A T.L. Blundell %A V.J. Hruby %A H.R. Wyssbrod %A A. Baku %A A.J. Fischman %T X-ray analysis of deamino-oxytocin: conformational flexibility and receptor binding %B Biological organization %P 289-? %D 1987 %K 1XY1 %A E. Pizzi %A A. Tramontano %A L. Tomei %A N. La\0Monica %A C. Failla %A M. Sardana %A T. Wood %A R. De\0Francesco %T Molecular model of the specificity pocket of the hepatitis C virus protease: Implications for substrate recognition %J Proc. Natl. Acad. Sci. USA %V 91 %P 888-892 %D 1994 %A P.E. Pjura %A M. Matsumura %A J.A. Wozniak %A B.W. Matthews %T Structure of a thermostable disulfide-bridge mutant of phage T4 lysozyme shows that an engineered cross-link in a flexible region does not increase the rigidity of the folded protein %J Biochemistry %V 29 %P 2592-? %D 1990 %K PDB1L35 %K 1L36 1L37 1L38 1L39 1L40 1L41 1L42 1L43 1L44 1L45 1L46 1L47 1L48 1L49 1L50 1L51 1L52 1L53 1L54 1L55 1L56 1L57 1L58 1L59 1L60 1L61 1L62 1L63 1L64 1L65 1L66 1L67 1L68 1L69 1L70 1L71 1L72 1L73 1L74 1L75 1L76 %A B.V. Plapp %A H. Eklund %A C.-I. Br\(a:nd\(e'n %T Crystallography of liver alcohol dehydrogenase complexed with substrates %J J. Mol. Biol. %V 122 %P 23-? %D 1978 %K 5ADH Branden %A B.V. Plapp %A H. Eklund %A T.A. Jones %A C.-I. Br\(a:nd\(e'n %T Three-dimensional structure of isonicotinimidylated liver alcohol dehydrogenase %J J. Biol. Chem. %V 258 %P 5537-? %D 1983 %K PDB7ADH Branden %A B.V. Plapp %A E. Zeppezauer %A C.-I. Br\(a:nd\(e'n %T Crystallization of liver alcohol dehydrogenase activated by the modification of amino groups %J J. Mol. Biol. %V 119 %P 451-? %D 1978 %K 5ADH Branden %A N. Platnick %D 1987 %T An empirical comparison of microcomputer parsimony programs %J Cladistics %V 3 %P 121-144 %A V.Z. Pletnev %A A.P. Kuzin %A L.V. Malinina %T Actinoxanthin structure at the atomic level %J Bioorg. Khim. %V 8 %P 1637-? %D 1982 %K PDB1ACX %A V.Z. Pletnev %A A.P. Kuzin %A S.D. Trakhanov %T Three-dimensional structure of actinoxanthine at 2.8\(Ao resolution %J Bioorg. Khim. %V 6 %P 1420-? %D 1980 %K 1ACX %A V.Z. Pletnev %A A.P. Kuzin %A S.D. Trakhanov %A A.S. Khokhlov %A Y.A. Ovchinnikov %T X-ray diffraction studies of actinoxanthine at high resolution %J Kristallografiya %V 26 %P 1046-? %D 1981 %K 1ACX %A V.Z. Pletnev %A A.P. Kuzin %A S.D. Trakhanov %A A.S. Khokhlov %A Y.A. Ovchinnikov %T High resolution X-ray structural investigation of actinoxanthin %J Sov. Phys. Cryst. (English trans.) %V 26 %P 596-? %D 1982 %K 1ACX %A V.Z. Pletnev %A A.P. Kuzin %A S.D. Trakhanov %A P.V. Kostetsky %T Three-dimensional structure of actinoxanthin: IV. at 2.5\(Ao resolution %J Biopolymers %V 21 %P 287-? %D 1982 %K 1ACX %A V.Z. Pletnev %A A.P. Kuzin %A S.D. Trakhanov %A P.V. Kostetsky %A V.A. Popovich %A I.N. Tsigannik %T Three-dimensional structure of actinoxanthin: III. at 4\(Ao resolution %J Biopolymers %V 20 %P 679-694 %D 1981 %K 1ACX %A V.Z. Pletnev %A A.P. Kuzin %A S.D. Trakhanov %A V.A. Popovich %A I.N. Tsigannik %T Three dimensional structure of actinoxanthin: II. the location of heavy atom sites in isomorphous derivatives by X-ray direct methods %J Bioorg. Khim. %V 6 %P 563-? %D 1980 %K 1ACX %A V.Z. Pletnev %A S.D. Trakhanov %A I.N. Tsigannik %T Three-dimensional structure of actinoxanthine: I. crystallization and preliminary X-ray data %J Bioorg. Khim. %V 5 %P 1605-? %D 1979 %K 1ACX %A H.W. Pley %A K.M. Flaherty %A D.B. McKay %T Three-dimensional structure of a hemmerhead ribozyme %J Nature %V 372 %P 68-74 %D 1994 %A J.H. Ploegman %A G. Drent %A K.H. Kalk %A W.G.J. Hol %T Structure of bovine liver rhodanese: I. structure determination at 2.5\(Ao resolution and a comparison of the conformation and sequence of its two domains %J J. Mol. Biol. %V 123 %P 557-594 %D 1978 %K PDB1RHD %A J.H. Ploegman %A G. Drent %A K.H. Kalk %A W.G.J. Hol %T The structure of bovine liver rhodanese: II. the active site in the sulfur-substituted and the sulfur-free enzyme %J J. Mol. Biol. %V 127 %P 149-? %D 1979 %K 1RHD %A M. Ploug %A V. Ellis %T Structure-function relationships in the receptor for urokinase-type plasminogen activator: Comparison to other members of the Ly-6 family and snake venom \(*a-neurotoxins %J FEBS Letts. %V 349 %P 163-168 %D 1994 %A D.T. Jones %A W.R. Taylor %A J.M. Thornton %T The rapid generation of mutation data matrices from protein sequences %J CABIOS %V 8 %P 275-282 %D 1992 %A B.L. Podlogar %A R.A. Farr %A D. Friedrich %A C. Tarnus %A E.W. Huber %A R.J. Cregge %A D. Schirlin %T Design, synthesis, and conformational analysis of a novel macrocyclic HIV-protease inhibitor %J J. Med. Chem. %V 37 %P 3684-3692 %D 1994 %A M. Poe %A N.J. Greenfield %A J.M. Hirshfield %A M.N. Williams %A K. Hoogsteen %T Dihydrofolate reductase: purification and characterization of the enzyme from an amethopterin-resistant mutant of \f2Escherichia coli\f1 %J Biochemistry %V 11 %P 1023-? %D 1972 %K 4DFR 6DFR 7DFR 8DFR %A M. Poe %A K. Hoogsteen %A D.A. Matthews %T Proton magnetic resonance studies on \f2Escherichia coli\f1 dihydrofolate reductase: assignment of histidine C-2 protons in binary complexes with folates on the basis of the crystal structure with methotrexate and on chemical modifications %J J. Biol. Chem. %V 254 %P 8143-? %D 1979 %K 4DFR 6DFR 7DFR 5DFR %A J. Pohl %A P. \(Svtrop %A I. Pichova %A I. Blaha %A V. Kostka %T Kinetic and fluorescence studies on chicken pepsin: The use of Cys-115 as an active site probe %B Aspartic proteinases and their inhibitors %E V. Kostka %P 245-264 %C Berlin %I Walter de\0Gruyter %D 1985 %A L. Polgar %T The mechanism of action of aspartic proteinases involves `push-pull' catalysis %J FEBS Lett. %V 219 %P 1-4 %D 1987 %A L. Polgar %T Common feature of the four types of protease mechanism %J Biol. Chem. Hoppe-Seyler %V 371 %P 327-331 %D 1990 %A L. Polgar %A P. Halasz %T Current problems in mechanistic studies of serine and cysteine proteinases %J Biochem. J. %V 207-? %D 1982 %A L. Polgar %A P. Halasz %A A. Moravcsik %T On the reactivity of the thiol group of thiolsubtilisin %J Eur. J. Biochem. %P 421-429 %V 39 %D 1973 %A R.J. Poljak %A L.M. Amzel %A H.P. Avey %A B.L. Chen %A R.P. Phizackerley %A F. Saul %T Three-dimensional structure of the Fab fragment of a human immunoglobulin at 2.8-\(Ao resolution %J Proc. Natl. Acad. Sci. USA %V 70 %P 3305-3310 %D 1973 %K 3FAB PNAS %A R.J. Poljak %A L.M. Amzel %A B.L. Chen %A R.P. Phizackerley %A F. Saul %T The three-dimensional structure of the Fab fragment of a human myeloma immunoglobulin at 2.0\(Ao resolution %J Proc. Natl. Acad. Sci. USA %V 71 %P 3440-3444 %D 1974 %K 3FAB PNAS %A R.J. Poljak %A L.M. Amzel %A B.L. Chen %A R.P. Phizackerley %A F. Saul %T Three-dimensional structure of the Fab fragment of a human myeloma immunoglobulin %B Antibodies in human diagnosis and therapy %I Raven Press %C New York %E E. Haber and K.R. Krause %P 111-? %D 1977 %K 3FAB %A S.J. Pollack %A J.W. Jacobs %A P.G. Schulz %T Selective chemical catalysis by an antibody %J Science %V 234 %P 1570-1573 %D 1986 %A J.W. Ponder %A F.M. Richards %T Tertiary templates for proteins: use of packing criteria in the enumeration of allowed sequences for different structural classes %J J. Mol. Biol. %V 193 %D 1987 %P 775-791 %A R.A. Poorman %A A.G. Tomasselli %A R.L. Henrikson %A F.J. K\(e'zdy %T A cumulative specificity model for proteases from human immunodeficiency virus types 1 and 2, inferred from statistical analysis of an extended database %J J. Biol. Chem. %V 266 %P 14554-14561 %D 1991 %K Kezdy Upjohn %A J.-L. Popot %A C. de\0Vitry %T On the microassembly of integral membrane proteins %J Annu. Rev. Biophys. Biophys. Chem. %V 19 %P 369-403 %D 1990 %A D.A. Portny %A A.H. Erickson %A J. Kochan %A J.V. Ravetch %A J.C. Unkeless %T Cloning and characterization of a mouse cysteine proteinase %J J. Biol. Chem. %V 261 %D 1986 %P 14697-14703 %K sequence thiol proteinase %A C.B. Post %A B.R. Brooks %A M. Karplus %A C.M. Dobson %A P.J. Artymiuk %A J.C. Cheetham %A D.C. Phillips %T Molecular dynamics simulations of native and substrate-bound lysozyme: a study of the average structures and atomic fluctuations %J J. Mol. Biol. %V 190 %P 455-479 %D 1986 %A C.B. Post %A C.M. Dobson %A M. Karplus %T A molecular dynamics analysis of protein structural elements %J Proteins %V 5 %D 1989 %P 337-354 %K secondary structure dynamics simulation %A J.P.M. Postma %A M.W. Parker %A D. Tsernoglou %T Application of molecular dynamics in the crystallographic refinement of colicin A %J Acta Cryst. %V ? %P 471-477 %D 1989 %A A.R. Poteete %A D. Rennell %A S.E. Bouvier %T Functional significance of conserved amino acid residues %J Proteins %V 13 %P 38-40 %D 1992 %A T.L. Poulos %A R.A. Alden %A S.T. Freer %A J.J. Birktoft %A J. Kraut %T Polypeptide halomethyl ketones bind to serine proteases as analogs of the tetrahedral intermediate, X-ray crystallographic comparison of lysine- and phenylalanine-polypeptide chloromethyl ketone-inhibited subtilisin %J J. Biol. Chem. %V 251 %P 1097-? %D 1976 %K 1SBT %A T.L. Poulos %A S.L. Edwards %A H. Wariishi %A M.H. Gold %T Crystallographic refinement of lignin peroxidase at 2\(Ao %J J. Biol. Chem. %V 268 %P 4429-4440 %D 1993 %A T.L. Poulos %A B.C. Finzel %T Heme enzyme structure and function %J Pept. Prot. Rev. %V 4 %P 115-? %D 1984 %K 0CPF 0CCI 2CPP %A T.L. Poulos %A B.C. Finzel %A I.C. Gunsalus %A G.C. Wagner %A J. Kraut %T The 2.6-\(Ao crystal structure of \f2Pseudomonas putida\f1 cytochrome \f2p\f1450 %J J. Biol. Chem. %V 260 %P 16122-? %D 1985 %K 3CPP 0CPF 2CPP %A T.L. Poulos %A B.C. Finzel %A A.J. Howard %T Crystal structure of substrate-free \f2Pseudomonas putida\f1 cytochrome \f2p\f1450 %J Biochemistry %V 25 %P 5314-? %D 1986 %K 0CPF 2CPP 3CPP %A T.L. Poulos %A B.C. Finzel %A A.J. Howard %T High-resolution crystal structure of cytochrome \f2p\f1450\d\s-2cam\s0\u %J J. Mol. Biol. %V 195 %P 687-700 %D 1987 %K 3CPP PDB2CPP %A T.L. Poulos %A S.T. Freer %A R.A. Alden %A S.L. Edwards %A U. Skogland %A K. Takio %A B. Eriksson %A N.-H. Xuong %A T. Yonetani %A J. Kraut %T The crystal structure of cytochrome \f2c\f1 peroxidase %J J. Biol. Chem. %V 255 %P 575-580 %D 1980 %K 2CYP 0CCI %A T.L. Poulos %A S.T. Freer %A R.A. Alden %A N.H. Xuong %A S.L. Edwards %A R.C. Hamlin %A J. Kraut %T Crystallographic determination of the heme orientation and location of the cyanide binding site in yeast cytochrome \f2c\f1 peroxidase %J J. Biol. Chem. %V 253 %P 3730-? %D 1978 %K 0CCI 2CYP %A T.L. Poulos %A J. Kraut %T A hypothetical model of the cytochrome \f2c\f1 peroxidase \(em cytochrome \f2c\f1 electron transfer complex %J J. Biol. Chem. %V 255 %P 10322-? %D 1980 %K 0CCI 2CYP %A T.L. Poulos %A J. Kraut %T The stereochemistry of peroxidase catalysis %J J. Biol. Chem. %V 255 %P 8199-? %D 1980 %K 0CCI 2CYP %A T.L. Poulos %A M. Perez %A G.C. Wagner %T Preliminary crystallographic data on cytochrome \f2p\f1450\d\s-2cam\s0\u %J J. Biol. Chem. %V 257 %P 10427-? %D 1982 %K 0CPF 3CPP 2CPP %A M.J. Powell %A C.C. Bose %A A. Phipps %A M. Eaton %T Design and synthesis of statine-containing inhibitors of chymosin %B Aspartic proteinases and their inhibitors %E V. Kostka %P 479-483 %C Berlin %I Walter de\0Gruyter %D 1985 %A M.D. Power %A P.A. Marx %A M.L. Bryant %A M.B. Gardner %A P.J. Barr %A P.A. Luciw %J Science %V 231 %D 1986 %P 1567-1572 %T Nucleotide sequence of SRV-1 a type D simian acquired immune deficiency syndrome retrovirus %K sequence retrovirus %A R. Powers %A G.M. Clore %A A. Bax %A D.S. Garret %A S.J. Stahl %A P.T. Wingfield %A A.M. Gronenborn %T Secondary structure of the ribonuclease H domain of the human immunodeficiency virus reverse transcriptase in solution using three-dimensional double and triple resonance heteronuclear magnetic resonance spectroscopy %J J. Mol. Biol. %V 221 %P 1081-1090 %D 1991 %A R. Powers %A D.S. Garrett %A C.J. March %A E.A. Frieden %A A.M. Gronenborn %A G.M. Clore %T Three-dimensional solution structure of human interleukin-4 by multidimensional heteronuclear magnetic resonance spectroscopy %J Science %V 256 %P 1673-1676 %D 1992 %A T.B. Powers %A T.O. Slykhouse %A J.A. Fee %A M.L. Ludwig %T Characterization of an orthorhombic crystal form of iron-containing superoxide dismutase from \f2Escherichia coli\f1 B %J J. Mol. Biol. %V 123 %P 689-? %D 1978 %K 0SDE %A M. Prabhakaran %T Spatial constraints and group behavior in globular proteins %J J. Theor. Biol. %P 25-40 %V 106 %D 1984 %A M. Prabhakaran %A P.K. Ponnuswamy %T The spatial distribution of physical,chemical and conformational properties of amino acid residues in globular proteins %J J. Theor. Biol. %P 485-504 %V 80 %D 1979 %A J.V.N.V. Prasad %A K.S. Para %A E.A. Lunney %A D.F. Ortwine %A J.B. Dunbar,\0Jr. %A D. Ferguson %A P.J. Tummino %A D. Hupe %A B.D. Tait %A J.M. Domagala %A C. Humblert %A T.N. Bhat %A B. Liu %A D.M.A. Guerin %A E.T. Baldwin %A J.W. Erickson %A T.K. Sawyer %T Novel series of achiral, low molecular weight, and potent HIV-1 protease inhibitors %J J. Amer. Chem. Soc. %V 116 %P 6989-6990 %D 1994 %A J.V.N.V. Prasad %A K.S. Para %A E.A. Lunney %A D.F. Ortwine %A J.B. Dunbar,\0Jr. %A D. Ferguson %A P.J. Tummino %A D. Hupe %A B.D. Tait %A J.M. Domogala %A C. Humblert %A T.N. Bhat %A B. Liu %A D.M.A. Guerin %A E.T. Baldwin %A J.W. Erickson %A T.K. Sawyer %T Novel series of achiral, low molecualr weight, and potent HIV-1 protease inhibitors %J J. Amer. Chem. Soc. %V 116 %P 6989-6990 %D 1994 %A T. Prasthofer %A S.R. Phillips %A F.L. Suddath %A J.A. Engler %T Design, expression, and crystallization of recombinant lectin from the garden pea (\f2Pisum sativum\f1) %J J. Biol. Chem. %V 264 %P 6793-? %D 1989 %K 2LTN %A C.W. Pratt %A H.C. Whinna %A F.C. Church %T A comparison of three heparin-binding serine proteinase inhibitors %J J. Biol. Chem %V 267 %P 8795-8801 %D 1992 %A R. Preissner %A U. Engler %A W. Saenger %T Occurrence of bifurcated three-center hydrogen bonds in proteins %J FEBS Lett. %V 288 %P 192-196 %D 1991 %A N.J. Prendergast %A T.J. Delcamp %A P.L. Smith %A J.H. Freisheim %T Expression and site-directed mutagenesis of human dihydrofolate reductase %J Biochemistry %V 27 %P 3664-? %D 1988 %K 1DHF %A S.R. Presnell %A B.I. Cohen %A F.E. Cohen %T A segment-based approach to protein secondary structure prediction %J Biochemistry %V 31 %P 983-993 %D 1992 %A W.H. Press %A B.P. Flannery %A S.A. Teukolsky %A W.T. Vetterling %T Numerical Recipes %I Cambridge University Press %C Cambridge %D 1986 %K Numerical methods data analysis %A L. Presta %T Protein structure analysis and development of databases %J Prot. Eng. %V 2 %P 395-1989 %D 1989 %A L.G. Presta %A G.D. Rose %T Helix signals in proteins %J Science %V 240 %D 1988 %P 1632-1641 %K pattern secondary structure %A K. Preston %T Models and games %J Nature %P 122-122 %V 330 %D 1987 %A S.J. Prestrelski %A A.L. Williams %A M.N. Liebmann %T Generation of a substructure library for the description and classification of protein secondary structure. I. Overview of the methods and results %J Proteins %V 14 %P 430-439 %D 1992 %A J.P. Priestle %T \s-2RIBBON\s0: A stereo cartoon drawing program for proteins %J J. Appl. Cryst. %V 21 %P 572-576 %D 1988 %A J.P. Priestle %T Stereochemical dictionaries for protein structure refinement and model building %J Structure %V 2 %P 911-913 %D 1994 %A J.P. Priestle %A G.C. Ford %A M. Glor %A E.L. Mehler %A J.D.G. Smit %A C. Thaller %A J.N. Jansonius %T Restrained least-squares refinement of the sulfhydryl protease papain to 2.0\(Ao %J Acta Cryst. %V A 40 %P 17-22 %D 1984 %K PDB1PPD %A J.P. Priestle %A M.G. Gr\(u:tter %A J.L. White %A M.G. Vincent %A M. Kani %A E. Wilson %A T.S. Jardetzky %A K. Kirschner %A J.N. Jansonius %T Three-dimensional structure of the bifunctional enzyme \f2N\fP-(5\(fm-phosphoribosyl)anthranilate isomerase-indole-3-glycerol-phosphate synthase from \f2Escherichia coli\fP %J Proc. Natl. Acad. Sci. USA %V 84 %P 5690-5694 %D 1987 %K PNAS Grutter %A J.P. Priestle %A H.-P. Sch\(a:r %A M.G. Gr\(u:tter %T Crystal structure of the cytokine interleukin-1\(*b %J EMBO J. %V 7 %P 339-351 %D 1988 %K 1I1B Grutter Schar %A J.P. Priestle %A H.-P. Sch\(a:r %A M.G. Gr\(u:tter %T The three-dimensional structure of interleukin-1\(*b %J Biochem. Soc. Trans. %V 16 %P 949-? %D 1988 %K 2I1B Grutter Schar %A J.P. Priestle %A H.-P. Sch\(a:r %A M.G. Gr\(u:tter %T Crystallographic refinement of interleukin-1\(*b at 2.0\(Ao resolution %J Proc. Natl. Acad. Sci. USA %V 86 %P 9667-? %D 1989 %K PDB2I1B PNAS Grutter Schar %A P.L. Privalov %T Stability of proteins: small globular proteins %J Adv. Prot. Chem. %V 33 %P 167-241 %D 1979 %A P.L. Privalov %T Thermodynamic problems of protein structure %J Annu. Rev. Biophys. Biophys. Chem. %V 18 %P 47-69 %D 1989 %A G.G. Prive %A K. Yanagi %A R.E. Dickerson %T The structure of the b-DNA decamer CCAACGTTGG and comparison with the isomorphous decamers CCAAGATTGG and CCAGGCCTGG %J J. Mol. Biol. %V 217 %P 177-? %D 1991 %K PDB5DNB %A K. Proba %A A.G. Tomasselli %A P. Nielsen %A G.E. Schulz %T The cDNA sequence encoding cytosolic adenylate kinase from baker's yeast (\f2Saccharomyces cerevisiae\f1) %J Nucleic Acids Res. %V 15 %P 7187-? %D 1987 %K 1AK3 %A B. Prod'hom %A M. Karplus %T The nature of the ion binding interactions in EF-hand peptide analogs: Free energy simulations of Asp to Asn mutations %J Prot. Eng. %V 6 %P 585-592 %D 1993 %A M. Przybylska %A F.R. Ahmed %A G.I. Birnbaum %A D.R. Rose %T Crystallization and preliminary crystallographic data for oncomodulin %J J. Mol. Biol. %V 199 %P 393-? %D 1988 %K 1OMD %A O.B. Ptitsyn %T Invariant features of globin primary structure and coding of their secondary structure %J J. Mol. Biol. %V 88 %D 1974 %P 287-300 %K templates conservation alignment globins protein structure %A O.B. Ptitsyn %T Protein folding: general physical model %J FEBS Lett. %P 197-202 %V 131 %D 1981 %A O.B. Ptitsyn %T Random sequences and protein folding %J J. Mol. Str. (Theochem) %V 123 %D 1985 %P 45-65 %A O.B. Ptitsyn %A A.V. Finkelstein %T Mechanism of self-organization of the tertiary structure of globular proteins %B Biomolecular structure, conformation, function, and evolution %E R. Srinivasan %P 119-132 %V 1 %I Pergamon Press %C Oxford %D 1978 %A O.B. Ptitsyn %A A.V. Finkelstein %J Int. J. Quant. Chem. %P 407-418 %T Mechanism of protein folding %V 16 %D 1979 %A O.B. Ptitsyn %A A.V. Finkelstein %T Similarities of protein topologies: evolutionary divergence, functional convergence or principles of folding %J Quart. Rev. Biophys. %V 13 %P 339-386 %D 1980 %A O.B. Ptitsyn %A A.V. Finkelstein %J Quart. Rev. Biophys. %P 339-386 %T Similarities of protein topologies: evolutionary divergence, functional convergence or principles of folding ? %V 13 %D 1980 %A O.B. Ptitsyn %A A.V. Finkelstein %J Prot. Eng. %V 2 %P 443-447 %T Prediction of protein secondary structure based on physical theory: histones %D 1989 %A O.B. Ptitsyn %A A.V. Finkelstein %A P. Falk %T Principal folding pathway and topology of all-\(*b proteins %J FEBS Lett. %V 101 %P 1-5 %D 1979 %A O.B. Ptitsyn %A M.V. Volkenstein %T Protein structures and neutral theory of evolution %J J. Biomol. Struct. Dyn. %V 4 %D 1986 %P 137-156 %A J.A. Putkey %A K.F. Ts'ui %A T. Tanaka %A L. Lagace %A J.P. Stein %A E.C. Lai %A A.R. Means %T Chicken calmodulin genes: a species comparison of cDNA sequences and isolation of a genomic clone %J J. Biol. Chem. %V 258 %P 11864-? %D 1983 %K 3CLN %A G. P\(a'rraga %A S.J. Horvath %A A. Eisen %A W.E. Taylor %A L. Hood %A E.T. Young %A R.E. Klevitt %T Zinc-dependent structure of a single-finger domain of yeast ADR1 %J Science %V 241 %P 1489-1492 %D 1988 %K Parraga %A N. Qian %A T.J. Sejnowski %T Predicting the secondary structure of globular proteins using neural network models %J J. Mol. Biol. %V 202 %D 1988 %P 865-884 %K prediction secondary structure neural network %A W. Qian %A S. Krimm %T Energetics of the disulphide bridge: An ab initio study %J Biopolymers %V 33 %P 1591-1603 %D 1993 %A Y.Q. Qian %A M. Billiter %A G. \(O:tting %A M. M\(u:ller %A W.J. Gehring %T The structure of the \f2Antennapedia\f1 homeodomain determined by NMR spectroscopy in solution: comparison with prokaryote repressors %J Cell %V 59 %P 573-580 %D 1989 Otting Muller %A G. Querat %A G. Audoly %A P. Sonigo %A R. Vigne %J Virology %V 175 %D 1990 %P 434-447 %T Nucleotide sequence analysis of SA-OMVV, a visna-related ovine lentivirus: phylogenetic history of lentiviruses %K retrovirus sequence phylogeny %A G.J. Quigley %A A. Rich %T Structural domains of transfer RNA molecules %J Science %V 194 %P 796-? %D 1976 %K 0TR1 %A G.J. Quigley %A N.C. Seeman %A A.H.-J. Wang %A F.L. Suddath %A A. Rich %T Yeast phenylalanine transfer RNA: atomic coordinates and torsion angles %J Nucl. Acids Res. %V 2 %P 2329-? %D 1975 %K 0TR1 %A G.J. Quigley %A M.M. Teeter %A A. Rich %T Structural analysis of spermine and magnesium ion binding to yeast phenylalanine transfer RNA %J Proc. Natl. Acad. Sci. USA %V 75 %P 64-? %D 1978 %K 0TR1 %A G.J. Quigley %A G. Ughetto %A G.A. van\0der\0Marel %A J.H. van\0Boom %A A.H.-J. Wang %A A. Rich %T Non-Watson-Crick G.C and A.T base pairs in a DNA-antibiotic complex %J Science %V 232 %P 1255-? %D 1986 %K 0DAC %A G.J. Quigley %A A.H.J. Wang %A N.C. Seeman %A F.L. Suddath %A A. Rich %A J.L. Sussman %A S.H. Kim %T Hydrogen bonding in yeast phenylalanine transfer RNA %J Proc. Natl. Acad. Sci. USA %V 72 %P 4866-? %D 1975 %K 0TR1 %A F.A. Quiocho %T Atomic structures and function of periplasmic receptors for active transport and chemotaxis %J Curr. Opin. Struct. Biol. %V 1 %P 922-933 %D 1991 %A F.A. Quiocho %A G.L. Gilliland %A G.N. Phillips,\0Jr. %T The 2.8\(Ao resolution structure of the \s-2L\s0-arabinose-binding protein from \f2Escherichia coli\f1 %J J. Biol. Chem. %V 252 %P 5142-? %D 1977 %K 1ABP 6ABP 7ABP 9ABP %A F.A. Quiocho %A W.N. Lipscomb %T Carboxypeptidase A, a protein and an enzyme %J Adv. Prot. Chem. %V 25 %P 1-? %D 1971 %K 3CPA %A F.A. Quiocho %A W.E. Meador %A J.W. Pflugrath %T Preliminary crystallographic data of receptors for transport and chemotaxis in \f2Escherichia coli\f1: \s-2D\s0-galactose and maltose-binding proteins %J J. Mol. Biol. %V 133 %P 181-? %D 1979 %K 0GBP 0SBP 2GBP %A F.A. Quiocho %A N.K. Vyas %T Novel stereospecificity of the \s-2L\s0-arabinose-binding protein %J Nature %V 310 %P 381-? %D 1984 %K 6ABP 7ABP 8ABP %A F.A. Quiocho %A D.K. Wilson %A N.K. Vyas %T Substrate specificity and affinity of a protein modulated by bound water molecules %J Nature %V 340 %D 1989 %P 404-407 %K 6ABP 7ABP 9ABP %A R. Raag %A K. Appelt %A N.-H. Xuong %A L. Banaszak %T Structure of the lamprey yolk lipid-protein complex lipovitellin-phosvitin at 2.8\(Ao resolution %J J. Mol. Biol. %V 200 %P 553-? %D 1988 %K 0LPC %A R. Raag %A T.L. Poulos %T Crystal structure of the carbon monoxy-substrate-cytochrome \f2p\f1450\d\s-2cam\s0\u ternary complex %J Biochemistry %V 28 %P 7586-7592 %D 1989 %K PDB3CPP 4CPP 5CPP 6CPP 7CPP 8CPP %A R. Raag %A T.L. Poulos %T The structural basis for substrate-induced changes in redox potential and spin equilibrium in cytochrome \f2p\f1450\d\s-2cam\s0\u %J Biochemistry %V 28 %P 917-922 %D 1989 %K 3CPP 4CPP 5CPP 6CPP 7CPP 8CPP %A R. Raag %A T.L. Poulos %T Crystal structures of cytochrome \f2p\f1-450\d\s-2cam\s0\u complexed with camphane, thiocamphor, and adamantane: Factors controlling \f2p\f1-450 substrate hydroxylation %J Biochemistry %V 30 %P 2674-? %D 1991 %K 4CPP 5CPP 6CPP 7CPP 8CPP %A A.B. Rabson %A M.A. Martin %J Cell %V 40 %D 1985 %P 477-480 %T Molecular organization of the AIDS retrovirus %K HIV AIDS gene analysis organization %A S. Rackovsky %T Quantitative organization of the known protein X-ray structures: I. methods and short-length-scale results %J Proteins %V 7 %P 378-402 %D 1990 %A S. Rackovsky %T On the nature of the protein folding code %J Proc. Natl. Acad. Sci. USA %V 90 %P 644-648 %D 1993 %A S. Rackovsky %A H.A. Scheraga %T Hydrophobicity, hydrophilicity and the radial and orientational distributions of residues in native proteins %J Proc. Natl. Acad. Sci. USA %P 5248-5251 %V 74 %D 1977 %K PNAS %A R. Radahakrishnan %A L.G. Presta %A E.F. Meyer,\0Jr. %A R. Wildonger %T Crystal structures of the complex of porcine pancreatic elastase with two valine-derived benzoxazinone inhibitors %J J. Mol. Biol. %V 198 %P 417-? %D 1987 %K 3EST %A W. Radding %A P.W.R. Corfield %A L.S. Levinson %A G.A. Hashim %A B.W. Low %T \(*a-toxin binding to acetylcholine receptor \(*a 179-191 peptides: intrinsic fluorescence studies %J FEBS Lett. %V 231 %P 212-? %D 1988 %K 5EBX %A S.E. Radford %A C.M. Dobson %A P.A. Evans %T The folding of hen lysozyme involves partially structured intermediates and multiple pathways %J Nature %V 358 %P 302-307 %D 1992 %A J.B. Rafferty %A W.S. Somers %A I. Saint-Girons %A S.E.V. Phillips %J Nature %V 341 %D 1989 %P 705-710 %T Three-dimensional crystal structures of \f2Escherichia coli\f1 met repressor with and without corepressor %A N.V. Raghavan %A A. Tulinsky %T The structure of \(*a-chymotrypsin. II. Fourier phase refinement and extension of the dimeric structure at 1.8\(Ao resolution by density modification %J Acta Cryst. %V B 35 %P 1776-? %D 1979 %K 5CHA %A G. Raghunathan %A P. Seetharamulu %A B.R. Brooks %A H.R. Guy %T Models of \(*d-hemolysin membrane channels and crystal structures %J Proteins %V 8 %P 213-? %D 1990 %K PDB1DHL PDB2DHL PDB3DHL %A G.N. Ramachandran %A C. Ramakrishnan %A V. Sasisekharan %D 1963 %J J. Mol. Biol. %T Stereochemistry of polypeptide chain configurations %V 7 %P 95-99 %A G.N. Ramachandran %A V. Sasisekharan %J Adv. Prot. Chem. %V 23 %D 1968 %P 283-438 %T Conformation of polypeptides and proteins %K protein conformation peptide bond phi-psi maps energy peptides %A G.N. Ramachandran %A C.M. Venkatachalam %A S. Krimm %T Stereochemical criteria for polypeptide and protein chain conformations %D 1966 %V 6 %J Biophys. J. %P 849-872 %A C. Ramakrishnan %A N. Srinivasan %T Glycyl residues in proteins and peptides: an analysis %J Curr. Sci. %D 1990 %P 851-861 %V 59 %A V. Ramakrishnan %A J.T. Finch %A V. Graziano %A P.L. Lee %A R.M. Sweet %T Crystal structure of globular domain of histone H5 and its implications for nucleosome binding %J Nature %V 362 %P 219-223 %D 1993 %A V. Ramakrishnan %A S.W. White %T The structure of ribosomal protein S5 reveals sites of interaction with 16S rRNA %J Nature %V 358 %P 768-771 %D 1992 %A M. Ramanadham %A L.C. Sieker %A L.H. Jensen %T Structure of triclinic lysozyme and its Cu\u\s-22\(pl\s0\d complex at 2\(Ao resolution %J Acta Cryst. %V A 37 %P 33-? %D 1981 %K PDB2LZT %A M. Ramanadham %A L.C. Sieker %A L.H. Jensen %T SRLSQ refinement of triclinic lysozyme %J Acta Cryst. %V A 43 %P 13-? %D 1987 %K 2LZT %A V. Ramesh %A A.M. Petros %A M. Llin\(a's %A A. Tulinsky %A C.H. Park %T Proton magnetic resonance study of lysine-binding to the kringle 4 domain of human plasminogen: The structure of the binding site %J J. Mol. Biol. %V 198 %D 1987 %P 481-498 %K Llinas %A M.J. Ramos %T Model structure for the human blood coagulation agent \(*b-factor XIIa %J J. Mol. Graphics %V 9 %P 91-93 %D 1991 %A R.S. Randad %A W. Pan %A S.V. Gulnik %A A. Burt %A J.W. Erickson %T \f2De novo\f1 design of non-peptidic HIV-1 proteinase inhibitors: Incorporation of structural water %J Biorg. Med. Chem. Letts. %V 4 %P 1247-1252 %D 1994 %A B.G. Rao %A R.F. Tilton %T Free energy perturbation studies on inhibitor binding to HIV-1 proteinase %J J. Amer. Chem. Soc. %V 114 %P 4447-4452 %D 1992 %A J.K.M. Rao %T New scoring matrix for amino acid residue exchanges based on residue characteristic physical parameters %J Int. J. Pept. Prot. Res. %V 29 %D 1987 %P 276-281 %A J.K.M. Rao %A P. Argos %T Structural stability of halophilic proteins %J Biochemistry %V 20 %D 1981 %P 6536-6543 %K mutations halophilic salt rich %A J.K.M. Rao %A P. Argos %T A conformational preference parameter to predict helices in integral membrane proteins %J Biochim. Biophys. Acta %V 869 %P 197-214 %D 1986 %A J.K.M. Rao %A J.W. Erickson %A A. Wlodawer %T Structural and evolutionary relationships between retroviral and eucaryotic aspartic proteinases %J Biochemistry %V 30 %P 4663-4671 %D 1991 %A J.K.M. Rao %A A. Wlodawer %T Is the pseudo-dyad in retroviral proteinase monomers structural or evolutionary ? %J FEBS Lett. %V 260 %P 201-205 %D 1991 %A S.N. Rao %A S.N. Koszelak %A J.A. Hartsuck %T Crystallization and preliminary crystal data of porcine pepsinogen %J J. Biol. Chem. %V 252 %P 8728-? %D 1977 %K 1PSG %A S.N. Rao %A U.C. Singh %A P.A. Bash %A P.A. Kollman %T Free energy perturbation calculations on binding and catalysis after mutating Asn 155 in subtilisin %J Nature %V 328 %P 551-554 %D 1987 %A S.N. Rao %A U.C. Singh %A P.A. Bash %A P.A. Kollman %T Free energy perturbation calculations on binding and catalysis after mutating Asn 155 in subtilisin %J Nature %D 1987 %V 328 %P 551-554 %A S.T. Rao %A J. Hogle %A M. Sundaralingam %T Studies of monoclinic hen egg-white lysozyme: II. the refinement at 2.5\(Ao resolution \(em Conformational variability between the two independent molecules %J Acta Cryst. %V C 39 %P 237-240 %D 1983 %K PDB1LYM %A S.T. Rao %A M.G. Rossmann %T Comparison of super-secondary structures in proteins %J J. Mol. Biol. %V 76 %P 241-256 %D 1973 %A S. Rao %A Q.-L. Zhu %A S. Vajdu %A T. Smith %T The local information content of the protein structural database %J FEBS Letts. %V 322 %P 143-146 %D 1993 %A Z. Rao %A A.S. Belyaev %A E. Fry %A P. Roy %A I.M. Jones %A D.I. Stuart %T Crystal structure of SIV matrix antigen and implications for virus assembly %J Nature %V 378 %P 743-747 %D 1995 %A A.K. Rappe %A C.J. Casewit %A K.S. Colwell %A W.A. Goddard,\0III %A W.M. Skiff %T UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations %J J. Amer. Chem. Soc. %V 114 %P 10024-10035 %D 1992 %A A.R. Rashin %A M. Iofin %A B. Honig %J Biochemistry %V 25 %D 1986 %P 3619-3625 %T Internal cavities and buried waters in globular proteins %A F. Rastinejad %A T. Perlman %A R.M. Evans %A P.B. Sigler %T Structural determinants of nuclear receptor assembly on DNA direct repeats %J Nature %V 375 %P 203-211 %D 1995 %A V.L. Rath %A C.B. Newgard %A S.R. Sprang %A E.I. Goldsmith %A R.J. Fletterick %T Modelling the biochemical differences between rabbit muscle and human liver phosphorylase %J Proteins %V 2 %D 1987 %P 225-235 %A L. Ratner %A W. Haseltine %A R. Patarca %A K.J. Livak %A B. Starr %A S.F. Josephs %A E.R. Doran %A J.A. Rafalski %A E.A. Whitehorn %A K. Baumeister %A L. Ivanoff %A S.R. Petteway,\0Jr. %A M.J. Pearson %A J.A. Lautenberger %A T.S. Papas %A J. Ghrayeb %A N.T. Chang %A R.C. Gallo %A F. Wong-Staal %J Nature %V 313 %D 1985 %P 277-284 %T Complete nucleotide sequence of the AIDS virus HTLV-III %A K.G. Ravichandran %A S.S. Boddupalli %A J.A. Peterson %A J. Deisenhofer %T Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450's %J Science %V 261 %P 731-736 %D 1993 %A C.J. Rawlings %A W.R. Taylor %A J. Nyakairu %A J. Fox %A M.J.E. Sternberg %J J. Mol. Graph. %V 3 %D 1985 %P 151-157 %T Reasoning about protein topology using the logic programming language \s-2PROLOG\s0 %A W.J. Ray %A G.A. Roscelli %J J. Biol. Chem. %P 3499-3506 %T The addition and release of magnesium in the phosphoglucomutase reaction: II. kinetic control of alternative pathways %V 241 %D 1966 %A W.J. Ray,\0Jr. %A M.A. Hermodson %A J.M. Puvathingal %A W.C. Mahoney %T The complete amino acid sequence of rabbit muscle phosphoglucomutase %J J. Biol. Chem. %V 258 %P 9166-? %D 1983 %K 0PGL %A I. Rayment %A H.M. Holden %T The three-dimensional structure of a molecular motor %J Trends Biochem. Sci. %V 19 %P 129-134 %D 1994 %A I. Rayment %A H.M. Holden %A M. Whittaker %A C.B. Yohn %A M. Lorenz %A K.C. Holmes %A R.A. Milligan %T Structure of the actin-myosin complex and its implications for muscle contraction %J Science %V 260 %P 58-65 %D 1993 %A I. Rayment %A J.E. Johnson %A M.G. Rossmann %T Metal-free southern bean mosaic virus crystals %J J. Biol. Chem. %V 254 %P 5243-? %D 1979 %K 4SBV %A I. Rayment %A J.E. Johnson %A D. Suck %A T. Akimoto %A M.G. Rossmann %A K. Lonberg-Holm %A B.D. Korant %A J.E. Johnson %T An 11\(Ao-resolution electron density map of southern bean mosaic virus %J Acta Cryst. %V B 34 %P 567-? %D 1978 %K 4SBV %A I. Rayment %A W.R. Rypniewski %A K. Scmidt-Base %A R. Smith %A D.R. Tomchick %A M.M. Benning %A D.A. Winkelmann %A G. Wesenberg %A H.M. Holden %T Three-dimensional structure of myosin subfragment-1: A molecular motor %J Science %V 261 %P 50-58 %D 1993 %A R.J. Read %J Acta Cryst. %P 140-149 %T Improved Fourier coefficients for using phases from partial structures with errors %V A 42 %D 1986 %A R.J. Read %A G.D. Brayer %A L. Jur\(a'\(svek %A M.N.G. James %T Critical evaluation of comparative model building of \f2Streptomyces griseus\f1 trypsin %J Biochemistry %V 23 %D 1984 %P 6570-6575 %K modelling serine proteinase Jurasek %A R.J. Read %A M. Fujinaga %A A.R. Sielecki %A M.N.G. James %T Structure of the complex of \f2Streptomyces griseus\f1 protease B and the third domain of the turkey ovomucoid inhibitor at 1.8\(Ao resolution %J Biochemistry %V 22 %P 4420-4433 %D 1983 %K PDB3SGB 2OVO %A R.J. Read %A M.N.G. James %T Introduction to the protein inhibitors: X-ray crystallography %B Proteinase inhibitors %E A.J. Barret and G. Salvesen %I Elsevier %D 1986 %P 301-336 %A R.J. Read %A M.N.G. James %T Refined crystal structure of \f2Streptomyces griseus\f1 trypsin at 1.7\(Ao resolution %J J. Mol. Biol. %V 200 %D 1988 %P 523-551 %K PDB1SGT %A M.P. Ready %A B.J. Katzin %A J.D. Robertus %T Ribosome-inhibiting proteins retroviral reverse transcriptases and RNase H share common structural elements %J Proteins %V 3 %D 1988 %P 53-59 %A R. Rechid %A M. Vingron %A P. Argos %T A new interactive protein sequence alignment program and comparison of its results with widely used algorithms %J CABIOS %V 5 %P 107-113 %D 1989 %A E.P. Reddy %A M.J. Smith %A A. Srinivasan %T Nucleotide sequence of Abelson murine leukemia virus genome: structural similarity of its transforming gene product to other \f2onc\f1 gene products with tyrosine-specific kinase activity %J Proc. Natl. Acad. Sci. USA %V 80 %D 1983 %P 3623-3627 %K PNAS protease retrovirus %A M.R. Reddy %A R.J. Bacquet %A D. Zichi %A D.A. Matthews %A K.M. Welsh %A T.R. Jones %A S. Freer %T Calculation of solvation and binding free energy differences for folate-based inhibitors of the enzyme thymidylate synthase %J J. Am. Chem. Soc. %V 114 %P 10117-10122 %D 1992 %A M.R. Reddy %A V.N. Viswanadhan %A J.N. Weinstein %T Relative differences in the binding free energies of human immunodeficiency virus 1 protease inhibitors: A thermodynamic cycle-perturbation approach %J Proc. Natl. Acad. Sci. USA %V 88 %P 10287-10291 %D 1991 %A G.N. Reeke,\0Jr. %A J.W. Becker %A G.M. Edelman %T The covalent and three-dimensional structure of concanavalin A, IV. Atomic coordinates, hydrogen bonding, and quaternary structure %J J. Biol. Chem. %V 250 %P 1525-1547 %D 1975 %K PDB2CNA %A G.N. Reeke,\0Jr. %A J.W. Becker %A G.M. Edelman %T Changes in the three-dimensional structure of concanavalin A upon demetallization %J Proc. Natl. Acad. Sci. USA %V 75 %P 2286-? %D 1978 %K 0CN2 %A G.N. Reeke,\0Jr. %A J.W. Becker %A G.M. Edelman %T Comparison of the refined structures of native and demetallized concanavalin A %J Acta Cryst. %V A 34 %P 67-? %D 1978 %K 0CN2 %A A.R. Rees %A P. de\0la\0Paz %T Investigating antibody specificity using computer graphics and protein engineering %J Trends Biochem. Sci. %V 11 %D 1986 %P 144-148 %K TIBS %A B. Rees %A A. Bilwes %A J.P. Samama %A D. Moras %T Cardiotoxin V\d\s-24\s0\u\u\s-4II\s0\d from \f2Naja mossambica mossambica\f1: the refined crystal structure %J J. Mol. Biol. %V 214 %P 281-? %D 1990 %K 1CDT %A B. Rees %A J.P. Samama %A J.C. Thierry %A M. Gilibert %A J. Fischer %A H. Schweitz %A M. Lazdunski %A D. Moras %T Crystal structure of a snake venom cardiotoxin %J Proc. Natl. Acad. Sci. USA %V 84 %P 3132-? %D 1987 %K 0CDT 1CDT %A D.C. Rees %T Three-dimensional protein structure prediction workshop: overview and summary %B Current research in protein chemistry: Techniques, structure, and function %E J.J. Villafranca %C San Diego %I Academic Press %D 1990 %P 551-565 %A D.C. Rees %A L. DeAntonio %A D. Eisenberg %T Hydrophobic organization of membrane proteins %J Science %V 245 %D 1989 %P 510-513 %A D.C. Rees %A M. Lewis %A R.B. Honzatko %A W.N. Lipscomb %A K.D. Hardman %T Zinc environment and cis-peptide bonds in carboxypeptidase A at 1.75\(Ao resolution %J Proc. Natl. Acad. Sci. USA %V 78 %P 3408-3412 %D 1981 %K 3CPA PNAS 0CPS %A D.C. Rees %A M. Lewis %A W.N. Lipscomb %T Refined crystal structure of carboxypeptidase A at 1.54\(Ao resolution %J J. Mol. Biol. %V 168 %P 367-387 %D 1983 %K 3CPA 0CPS PDB5CPA 6CPA %A D.C. Rees %A W.N. Lipscomb %T Structure of the potato inhibitor complex of carboxypeptidase A at 2.5\(Ao resolution %J Proc. Natl. Acad. Sci. USA %V 77 %P 4633-4637 %D 1980 %K 4CPA PNAS %A D.C. Rees %A W.N. Lipscomb %T Binding of ligands to the active site of carboxypeptidase A %J Proc. Natl. Acad. Sci. USA %V 78 %P 5455-5459 %D 1981 %K 3CPA PNAS 0CPS %A D.C. Rees %A W.N. Lipscomb %T Refined crystal structure of the potato inhibitor complex of carboxypeptidase A at 2.5\(Ao resolution %J J. Mol. Biol. %V 160 %P 475-? %D 1982 %K PDB4CPA %A D.C. Rees %A W.N. Lipscomb %T Crystallographic studies on apocarboxypeptidase A and the complex with glycyl-\s-2L\s0-tyrosine %J Proc. Natl. Acad. Sci. USA %V 80 %P 7151-7154 %D 1983 %K 3CPA PNAS 0CPS %A L. Regan %A N.D. Clarke %T A tetrahedral zinc(II)-binding site introduced into a designed protein %J Biochemistry %V 29 %P 10878-10883 %D 1990 %A L. Regan %A W.F. DeGrado %T Characterization of a helical protein designed from first principles %J Science %V 241 %P 976-978 %D 1988 %A R. Reich %A E.W. Thompson %A Y. Iwamoto %A G.R. Martin %A J.R. Deason %A G.C. Fuller %A R. Miskin %T Effects of inhibitors of plasminogen activator, serine proteinases, and collagenase IV on the invasion of basement membranes by metastatic cells %J Cancer Res. %V 48 %P 3307-3312 %D 1988 %A S.H. Reich %A S.E. Webber %T Structure-based drug design (SBDD): Every structure tells a story... %J Perspectives in Drug Discovery and Design %V 1 %P 371-390 %D 1993 %A B.R. Reid %A G.L.E. Koch %A Y. Boulanger %A B.S. Hartley %A D.M. Blow %T Crystallization and preliminary X-ray diffraction studies on tyrosyl-transfer RNA synthetase from \f2Bacillus stearothermophilus\f1 %J J. Mol. Biol. %V 80 %P 199-? %D 1973 %K 3TS1 %A L.S.C. Reid %A P.F. Lindley %A J.M. Thornton %J FEBS Lett. %P 209-213 %T Sulphur-aromatic interactions in proteins %V 190 %D 1985 %A L.S. Reid %A J.M. Thornton %T Rebuilding flavodoxin from C\(*a coordinates: a test study %J Proteins %V 5 %D 1989 %P 170-182 %K protein structure modelling alpha carbons flavodoxin %A J.F. Reidhaar-Olsen %A R.T. Sauer %T Combinatorial cassette mutagenesis as a probe of the informational content of protein sequences %J Science %V 241 %D 1988 %P 53-57 %K mutation stability cassette mutagenesis protein folding %A J.F. Reidhaar-Olsen %A R.T. Sauer %T Functionally acceptable substitutions in two \(*a-helical regions of \(*l repressor %J Proteins %V 7 %P 306-316 %D 1990 %A T.J. Reid\0III %A M.R.N. Murthy %A A. Sicignano %A N. Tanaka %A W.D.L. Musick %A M.G. Rossmann %T Structure and heme environment of beef liver catalase at 2.5\(Ao resolution %J Proc. Natl. Acad. Sci. USA %V 78 %P 4767-4771 %D 1981 %K PNAS %A P. Reinemer %A H.W. Dirr %A R. Ladenstein %A J. Sch\(a:ffer %A O. Gallay %A R. Huber %T The three-dimensional structure of class \(*p glutathione S-transferase in complex with glutathione sulfonate at 2.3\(Ao resolution %J EMBO J. %J 10 %P 1997-2005 %D 1991 %A S.J. Remington %A W.F. Anderson %A J. Owen %A L.F. Ten\0Eyck %A C.T. Grainger %A B.W. Matthews %T Structure of the lysozyme from bacteriophage T4, an electron density map at 2.4\(Ao resolution %J J. Mol. Biol. %V 118 %P 81-? %D 1978 %K 1L07 %K 1L36 1L37 1L38 1L39 1L40 1L41 1L42 1L43 1L44 1L45 1L46 1L47 1L48 1L49 1L50 1L51 1L52 1L53 1L54 1L55 1L56 1L57 1L58 1L59 1L60 1L61 1L62 1L63 1L64 1L65 1L66 1L67 1L68 1L69 1L70 1L71 1L72 1L73 1L74 1L75 1L76 %A S.J. Remington %A B.W. Matthews %T A general method to assess similarity of protein structures with applications to T4 bacteriophage lysozyme %J Proc. Natl. Acad. Sci. USA %V 75 %D 1978 %P 2180-2184 %K PNAS %A S.J. Remington %A B.W. Matthews %T A systematic approach to the comparison of protein structures %J J. Mol. Biol. %V 140 %P 77-99 %D 1980 %A S.J. Remington %A L.F. Ten\0Eyck %A B.W. Matthews %T Atomic coordinates for T4 phage lysozyme %J Biochem. Biophys. Res. Comm. %V 75 %P 265-? %D 1977 %K 1L07 %K 1L36 1L37 1L38 1L39 1L40 1L41 1L42 1L43 1L44 1L45 1L46 1L47 1L48 1L49 1L50 1L51 1L52 1L53 1L54 1L55 1L56 1L57 1L58 1L59 1L60 1L61 1L62 1L63 1L64 1L65 1L66 1L67 1L68 1L69 1L70 1L71 1L72 1L73 1L74 1L75 1L76 %A S.J. Remington %A G. Wiegand %A R. Huber %T Crystallographic refinment and atomic models of two different forms of citrate synthase at 2.7 and 1.7\(Ao resolution %D 1982 %J J. Mol. Biol. %V 158 %P 111-152 %K PDB1CTS PDB2CTS PDB3CTS %A S.J. Remington %A R.G. Woodbury %A R.A. Reynolds %A B.W. Matthews %A H. Neurath %T The structure of rat mast cell protease II at 1.9\(Ao resolution %J Biochemistry %V 27 %P 8097-8105 %D 1988 %K PDB3RP2 %A J.-P. Renaud %A N. Rochel %A M. Ruff %A V. Vivat %A P. Chembon %A H. Gronemeyer %A D. Moras %T Crystal structure of the RAR-\(*g ligand-binding domain bound to all-trans retinoic acid %J Nature %V 378 %P 681-689 %D 1995 %A R. Renetseder %A S. Brunie %A B.W. Dijkstra %A J. Drenth %A P.B. Sigler %J J. Biol. Chem. %V 260 %D 1985 %P 11627-11634 %T A comparison of the crystal structures of phospholipase A\d\s-22\s0\u from bovine pancreas and \f2Crotalus atrox\f1 venom %K structure comparison phospholipase %A D. Rennell %A S.E. Bouvier %A L.W. Hardy %A A.R. Poteete %T Systematic mutation of bacteriophage T4 lysozyme %J J. Mol. Biol. %V 222 %P 67-87 %D 1991 %A R. Repaske %A P.E. Steele %A R.R. O'Neill %A A.B. Rabson %A M.A. Martin %J J. Virol. %V 54 %D 1985 %P 764-772 %T Nucleotide Sequence of a full-length human endogenous retroviral segment %A J.T. Repine %A R.J. Himmelsbach %A J.C. Hodges %A J.S. Kaltenbronn %A I. Sircar %A R.W. Skeean %A S.T. Brennan %A T.R. Hurley %A E. Lunney %A C.C. Humblert %A R.E. Weishaar %A S. Rapundalo %A M.J. Ryan %A D.G. Taylor,\0Jr. %A S.C. Olsen %A B.M. Michniewicz %A B.E. Kornberg %A D.T. Belmont %A M.D. Taylor %T Renin inhibitors containing esters at the P\d\s-42\s0\u-position: Oral activity in a derivative of methyl aminomalonate %J J. Med. Chem. %V 34 %P 1935-1943 %D 1991 %A P.D. Reshetov %A L.S. Gjigis %A I.A. Stoyachenko %A A.S. Khokhlov %T Actinoxanthin: V. thermolytic peptides of actinoxanthin %J Bioorg. Khim. %V 1 %P 940-? %D 1975 %K 1ACX %A C. Reuner %A M. Hable %A M. Wilmanns %A E. Kiefer %A E. Schiltz %A G.E. Schulz %T Amino acid sequence and three-dimensional structure of cytosolic adenylate kinase from carp muscle %J Protein Seq. Data Anal. %V 1 %P 335-? %D 1988 %K 1AK3 %A A. Rey %A J. Skolnick %T Efficient algorithm for the reconstruction of a protein backbone from the \(*a-carbon coordinates %J J. Comp. Chem. %V 13 %P 443-456 %D 1992 %A F.A. Rey %A F.X. Heinz %A C. Mandl %A C. Kunz %A S.C. Harrison %T The envelope glycoprotein from tick-borne encephalitis virus at 2\(oA resolution %J Nature %V 375 %P 291-298 %D 1995 %A F. Rey %A J. Jenkins %A J. Janin %A I. Lasters %A P. Alard %A M. Claessens %A G. Matthyssens %A S. Wodak %T Structural analysis of the 2.8\(Ao model of xylose isomerase from \f2Actinoplanes missouriensis\f1 %J Proteins %V 4 %P 165-172 %D 1988 %A J.B. Reynolds %A B.S. Weir %A C.C. Cockerham %D 1983 %T Estimation of the coancestry coefficient: basis for a short-term genetic distance %J Genetics %V 105 %P 767-779 %A R.A. Reynolds %A S.J. Remington %A L.H. Weaver %A R.G. Fisher %A W.F. Anderson %A H.L. Ammon %A B.W. Matthews %T Structure of a serine protease from rat mast cells determined from twinned crystals by isomorphous and molecular replacement %J Acta Cryst. %V B 41 %P 139-147 %D 1985 %A D. Rhodes %A A. Klug %T Zinc fingers %J Scientific American %V ? %N 2 %P 56-65 %D 1993 %A J. Ricard %A A. Cornish-Bowden %J Eur. J. Biochem. %P 255-272 %T Co-operative and allosteric enzymes: 20 years on %V 166 %D 1987 %A A. Riccio %A G. Grimaldi %A P. Verde %A G. Sebastio %A S. Boast %A F. Blasi %J Nucl. Acids Res. %V 13 %D 1985 %P 2759-2771 %T The human urokinase plasminogen activator gene and its promoter %K sequence plasminogen activator serine proteinase %A D.R. Rice %A G.E. Schulz %A J.R. Guest %T Structural relationship between glutathione reductase and lipoamide dehydrogenase %J J. Mol. Biol. %P 483-496 %V 174 %D 1984 %K modelling %A D.W. Rice %T The use of phase combination in the refinement of phosphoglycerate kinase at 2.5\(Ao resolution %J Acta Cryst. %V A 37 %P 491-? %D 1981 %K PDB2PGK %A N.R. Rice %A R.M. Stephens %A A. Burny %A R.V. Gilden %T The \f2gag\f1 and \f2pol\f1 genes of bovine leukemia virus: nucleotide sequence and analysis %J Virology %V 142 %D 1985 %P 357-377 %A P.A. Rice %A A. Goldman %A T.A. Steitz %T A helix-turn-strand structural motif in \(*a-\(*b proteins %J Proteins %V 8 %P 334-340 %D 1990 %A A. Rich %A S.H. Kim %T The three-dimensional structure of transfer RNA %J Sci. Amer. %V 238 %P 52-? %D 1978 %K 4TRA %A D.H. Rich %J J. Med. Chem. %P 263-273 %T Pepstatine-derived inhibitors of aspartic proteinases: a close look at an apparent transition-state analogue inhibitor %V 28 %D 1985 %A D.H. Rich %A M.S. Bernatowicz %J J. Med. Chem. %P 791-795 %T Synthesis of analogues of the carboxyl protease inhibitor pepstatin: effect of structure in subsite P\d\s-23\s0\u on inhibition of pepsin %V 25 %D 1982 %A D.H. Rich %A J. Green %A M.V. Toth %A G.R. Marshall %A S.B.H. Kent %T Hydroxyethylene analogues of the p17/p24 substrate cleavage site are tight-binding inhibitors of HIV protease %J J. Med. Chem. %V 33 %D 1990 %P 1285-1288 %A D.H. Rich %A C.-Q. Sun %A J.V.N. Vara\0Prasad %A A. Pathiasseril %A M.V. Roth %A G.R. Marshall %A M. Clare %A R.A. Mueller %A K. Houseman %T Effect of hydroxyl group configuration in hydroxyethylamine dipeptide isosteres on HIV protease inhibition: Evidence for multiple binding modes %J J. Med. Chem. %V 34 %P 1222-1225 %D 1991 %A A.D. Richards %A R. Roberts %A B.M. Dunn %A M.C. Graves %A J. Kay %T Effective blocking of HIV-1 proteinase activity by characteristic inhibitors of aspartic proteinases %J FEBS Lett. %V 247 %P 113-117 %D 1989 %A F.M. Richards %T The interpretation of protein structures: Total volume, group volume distributions and packing density %J J. Mol. Biol. %V 82 %P 1-14 %D 1974 %A F.M. Richards %T Areas, volumes, packing and protein structure %J Annu. Rev. Biophys. Bioeng. %V 6 %D 1977 %P 151-176 %A F.M. Richards %T Calculation of molecular volumes and areas for structures of known geometry %J Methods Enzymol. %V 115 %D 1985 %P 440-464 %A F.M. Richards %T The protein folding problem %J Sci. Amer. %V 264 %N 1 %P 34-41 %D 1991 %A F.M. Richards %A C.E. Kundrot %T Identification of structural motifs from protein coordinate data: secondary structure and first level super-secondary structure %J Proteins %V 3 %P 71-84 %D 1988 %A F.M. Richards %A H.W. Wyckoff %T Bovine pancreatic ribonuclease %J The Enzymes, Third edition %V 4 %P 647-806 %D 1971 %K 1RNS %A F.M. Richards %A H.W. Wyckoff %A W.D. Carlson %A N.M. Allewell %A B. Lee %A Y. Mitsui %T Protein structure, ribonuclease-S and nucleotide interactions %J Cold Spring Harbor Symp. Quant. Biol. %V 36 %P 35-? %D 1972 %K 1RNS %A D.C. Richardson %A J.S. Richardson %T Kinemages \(em simple macromolecular graphics for interactive teaching and publication %J Trends Biochem. Sci. %V 19 %P 135-138 %D 1994 %A J.S. Richardson %T Handedness of crossover connections in \(*b-sheets %J Proc. Natl. Acad. Sci. USA %V 73 %P 2619-2623 %D 1976 %K PNAS %A J.S. Richardson %T Sheet topology and the relatedness of proteins %J Nature %V 268 %P 495-500 %D 1977 %A J.S. Richardson %T The \(*b bulge: its description, occurrence, and importance in protein structure %B Biomolecular structure, conformation, function, and evolution %E R. Srinivasan %P 73-82 %V 1 %I Pergamon Press %C Oxford %D 1978 %A J.S. Richardson %T The anatomy and taxonomy of protein structure %J Adv. Prot. Chem. %V 34 %P 167-339 %D 1981 %A J.S. Richardson %T Introduction: Protein motifs %J FASEB J. %V 8 %P 1237-1239 %D 1994 %A J.S. Richardson %A E.D. Getzoff %A D.C. Richardson %T The \(*b-bulge: a common small unit of nonrepetitive protein structure %J Proc. Natl. Acad. Sci. USA %V 75 %P 2574-2578 %D 1978 %K PNAS %A J.S. Richardson %A D.C. Richardson %T Amino acid preferences for specific locations at the ends of \(*a-helices %J Science %V 240 %P 1648-1652 %D 1988 %K secondary structure design engineering protein folding stability %A J.S. Richardson %A D.C. Richardson %T Helix lap-joints as ion-binding sites: DNA-bending motifs and Ca-binding ``EF hands'' are related by charge and sequence reversal %J Proteins %V 4 %P 229-239 %D 1988 %A J.S. Richardson %A D.C. Richardson %T The \f2de novo\f1 design of protein structures %J Trends Biochem. Sci. %V 14 %P 304-309 %D 1989 %K TIBS %A J.S. Richardson %A D.C. Richardson %A K.A. Thomas %A E.W. Silverton %A D.R. Davies %D 1976 %T Similarity of three-dimensional structure between the immunoglobulin domain and the copper, zinc superoxide dismutase subunit %J J. Mol. Biol. %V 102 %P 221-235 %A T. Richmond %T Solvent accessible surface area and excluded volume in proteins: analytical equations for overlapping spheres and implications for the hydrophobic effect %J J. Mol. Biol. %V 178 %P 63-89 %D 1984 %A T.J. Richmond %A F.M. Richards %T Packing of \(*a-helices: geometrical constraints and contact areas %J J. Mol. Biol. %V 119 %P 537-555 %D 1978 %K secondary structure packing alpha helices protein structure %A L. Riechmann %A M. Clark %A H. Waldmann %A G. Winter %T Reshaping human antibodies for therapy %J Nature %P 323-327 %V 332 %D 1988 %A C.T. Riley %A B.K. Barbeau %A P.S. Keim %A F.J. K\(e'zdy %A R.L. Heinrikson %A J.H. Law %T The covalent protein structure of insecticyanin, a blue biloprotein from the hemolymph of the tobacco hornworm, \f2Manduca sexta\f1 L %J J. Biol. Chem. %V 259 %P 13159-13165 %D 1984 %K lipocalin Kezdy %A C.S. Ring %A E. Sun %A J.H. McKerrow %A G.K. Lee %A P.J. Rosenthal %A I.D. Kuntz %A F.E. Cohen %T Structure-based inhibitor design by using protein models for the development of antiparasitic agents %J Proc. Natl. Acad. Sci. USA %V 90 %P 3583-3587 %D 1993 %A D. Ringe %T What makes a binding site a binding site ? %J Curr. Opin. Struct. Biol. %V 5 %P 825-829 %D 1995 %A D. Ringe %A S.C. Almo %A G.K. Farber %A J. Hajdu %A P.L. Howell %A G.A. Petsko %A B. Stoddard %T Dynamic processes in proteins by X-ray diffraction %B Protein design and the development of new therapeutics and vaccines %E J.B. Hook and G. Poste %I Plenum %C New York %D 1990 %P 3-21 %A D. Ringe %A J.M. Mottonen %A M.H. Gelb %A R.H. Abeles %T X-ray diffraction analysis of the inactivation of chymotrypsin by 3-benzyl-6-chloro-2-pyrone %J Biochemistry %V 25 %P 5633-? %D 1986 %K 0GCB %A D. Ringe %A G.A. Petsko %J Prog. Biophys. Mol. Biol. %P 197-235 %T Mapping protein dynamics by X-ray diffraction %V 45 %D 1985 %A D. Ringe %A G.A. Petsko %T Molecular metamorphosis %J Nature %V 354 %P 22-23 %D 1991 %A D. Ringe %A G.A. Petsko %A F. Yamakura %A K. Suzuki %A D. Ohmori %T The iron content of iron superoxide dismutase: determination by anomalous scattering %J Proc. Roy. Soc. Lond. %V B 218 %P 119-? %D 1983 %K 0SDP %A D. Ringe %A G.A. Petsko %A F. Yamakura %A K. Suzuki %A D. Ohmori %T Structure of iron superoxide dismutase from \f2Pseudomonas ovalis\f1 at 2.9\(Ao resolution %J Proc. Natl. Acad. Sci. USA %V 80 %P 3879-3883 %D 1983 %K 0SDP %A D. Ringe %A B.A. Seaton %A M.H. Gelb %A R.H. Abeles %T Inactivation of chymotrypsin by 5-benzyl-6-chloro-2-pyrone: \u\s-213\s0\dC NMR and X-ray diffraction analyses of the inactivator-enzyme complex %J Biochemistry %V 24 %P 64-? %D 1985 %K 0GCI %A J.M. Rini %A U. Schulze-Gahmen %A I.A. Wilson %T structural evidence for induced fit as a mechanism for antibody-antigen recognition %J Science %V 255 %P 959-965 %D 1992 %A J.M. Rini %A R.L. Stanfield %A E.A. Stura %A P.A. Salinas %A A.T. Profy %A I.A. Wilson %T Crystal structure of a human immunodeficiency virus type 1 neutralizing antibody, 50.1, in complex with its V3 loop peptide antigen %J Proc. Natl. Acad. Sci. USA %V 90 %P 6325-6329 %D 1993 %A W. Ripka %T Computers picture the perfect drug %J New Scientist %V ? %P 54-57 %D 1988 %K Look up the volume for this %A W.C. Ripka %T Computer-assisted model building %J Nature %V 321 %P 93-94 %D 1986 %A F. Rippmann %A W.R. Taylor %T Visualization of structural similarity in proteins %J J. Mol. Graph. %V 9 %P 169-174 %D 1991 %A F. Rippmann %A W.R. Taylor %A J.B. Rothbard %A N.M. Green %T A hypothetical model for the peptide binding domain of hsp70 based on the peptide binding domain of HLA %J EMBO J. %V 10 %P 1053-1059 %D 1991 %A J.L. Risler %A M.O. Delorme %A H. Delacroix %A A. Henaut %T Amino acid substitutions in structurally related proteins: a pattern recognition approach: determination of a new and efficient scoring matrix %J J. Mol. Biol. %V 204 %D 1988 %P 1019-1029 %K substitutions evolution pattern recognition %A J.L. Risler %A C. Zelwer %A S. Brunie %T Methionyl-tRNA synthetase shows the nucleotide binding fold observed in dehydrogenases %J Nature %V 292 %P 384-? %D 1981 %K 0MTS %A A. Ritonja %A D.J. Buttle %A N.D. Rawlings %A V. Turk %A A. Barret %T Papaya proteinase IV amino acid sequence %J FEBS Lett. %V 258 %D 1989 %P 109-112 %K thiol protease sequence %A A.H. Robbins %A D.E. McRee %A M. Williamson %A S.A. Collett %A N.H. Xuong %A W.F. Furey %A B.C. Wang %A C.D. Stout %T Refined crystal structure of Cd, Zn metallothionein at 3.0\(Ao resolution %J J. Mol. Biol. %V 221 %P 1269-1293 %D 1991 %A A.H. Robbins %A C.D. Stout %T Iron-sulfur cluster in aconitase: crystallographic evidence for a three-iron center %J J. Biol. Chem. %V 260 %P 2328-? %D 1985 %K 5ACN 6ACN %A A.H. Robbins %A C.D. Stout %T The structure of aconitase %J Proteins %V 5 %D 1989 %P 289-312 %K iron-cluster %A A.H. Robbins %A C.D. Stout %T Structure of activated aconitase: formation of the (4Fe-4S) cluster in the crystal %J Proc. Natl. Acad. Sci. USA %V 86 %P 3639-? %D 1989 %K 5ACN 6ACN PNAS %A H.E. Roberts %A W. Markland %A A.C. Ley %A R.B. Kent %A D.W. White %A S.K. Gutterman %A R.C. Ladner %T Directed evolution of a protein: Selection of potent neutrophil elastase inhibitors displayed on M13 fusion phage %J Proc. Natl. Acad. Sci. USA %V 89 %P 2429-2433 %D 1992 %A M.M. Roberts %A S. Oroszlan %T The action of retroviral protease in various phases of virus replication %B Retroviral proteases: Control of maturation and morphogenesis %E L.H. Pearl %I Macmillan Press %P 131-139 %D 1990 %C Basingstoke %Z chapter 13 %A M.M. Roberts %A J.L. White %A M.G. Gr\(u:tter %A R.M. Burnett %T Three-dimensional structure of the adenovirus major coat protein hexon %J Science %V 232 %P 1148-? %D 1986 %K 0AD2 Grutter %A N. Roberts %A J. Martin %A D. Kinchington %A A. Broadhurst %A C. Craig %A I. Duncan %A S. Galpin %A B. Handa %A J. Kay %A A. Kr\(o:hn %A R. Lambert %A J. Merret %A J. Mills %A K. Parkes %A S. Redshaw %A A. Ritchie %A D. Taylor %A G. Thomas %A P. Machin %T Rational design of peptide-based HIV proteinase inhibitors %J Science %V 248 %D 1990 %P 358-361 %K Krohn %A V.A. Roberts %A B.L. Iverson %A S.A. Iverson A5 S.J. Benkovic %A R.A. Lemer %A E.D. Getzoff %A J.A. Tainer %T Antibody remodelling: A general solution to the design of a metal-coordination site in an antibody binding pocket %J Proc. Natl. Acad. Sci. USA %V 87 %P 6654-6658 %D 1990 %A J. Robertus %T Structure-based drug design ten years on %J Nature Structural Biology %V 1 %P 352-354 %D 1994 %A J.D. Robertus %A R.A. Alden %A J.J. Birktoft %A J. Kraut %A J.C. Powers %A P.E. Wilcox %T An X-ray crystallographic study of the binding of peptide chloromethyl ketone inhibitors to subtilisin BPN %J Biochemistry %V 11 %P 2439-? %D 1972 %K 1SBT %A J.D. Robertus %A R.A. Alden %A J. Kraut %T On the identity of subtilisins BPN and novo %J Biochem. Biophys. Res. Comm. %V 42 %P 334-? %D 1971 %K 1SBT %A J.D. Robertus %A J. Kraut %A R.A. Alden %A J.J. Birktoft %T Subtilisin, a stereochemical mechanism involving transition-state stabilization %J Biochemistry %V 11 %P 4293-? %D 1972 %K 1SBT %A J.D. Robertus %A J.E. Ladner %A J.T. Finch %A D. Rhodes %A R.S. Brown %A B.F.C. Clark %A A. Klug %T Structure of yeast phenylalanine tRNA at 3\(Ao resolution %J Nature %V 250 %P 546-551 %D 1974 %K 4TNA %A M.A. Robien %A G.M. Clore %A J.G. Omichinsky %A R.N. Perham %A E. Appella %A K. Sakaguchi %A A.M. Gronenborn %T Three-dimensional solution structure of the E3-binding domain of the dihydrolipoamide succinyltransferase core from the 2-oxoglutarate dehydrogenase multienzyme complex of \f2Escherichia coli\f1 %J Biochemistry %V 31 %P 3463-3471 %D 1992 %A A.B. Robinson %A L.R. Robinson %T Distribution of glutamine and asparagine residues and their near neighbours in peptides and proteins %J Proc. Natl. Acad. Sci. USA %V 88 %P 8880-8884 %D 1991 %A B. Robson %J Biochem. J. %V 141 %D 1974 %P 853-867 %T Analysis of the code relating sequence to conformation in globular proteins: Theory and application of expected information %K prediction %K secondary structure %A B. Robson %T The prediction of molecular conformation %J Biochem. Soc. Trans. %D 1982 %V 10 %P 297-298 %A B. Robson %A J. Garnier %T Introduction to proteins and protein engineering %I Elsevier %C Amsterdam %D 1986 %A B. Robson %A D.J. Osguthorpe %T Refined models for computer simulation of protein folding %J J. Mol. Biol. %V 132 %D 1979 %P 19-51 %K prediction secondary structure %A B. Robson %A R.H. Pain %J J. Mol. Biol. %V 58 %D 1971 %P 237-259 %T Analysis of the code relating sequence to conformation in globular proteins: possible implications for the mechanism of formation of helical regions %K secondary structure prediction %A B. Robson %A R.H. Pain %J Biochem. J. %V 141 %D 1974 %P 899-904 %T Analysis of the code relating sequence to conformation in globular proteins: The distribution of residue pairs in turns and kinks in the backbone chain %K secondary structure prediction %A B. Robson %A R.H. Pain %J Biochem. J. %V 141 %D 1974 %P 869-882 %T Analysis of the code relating sequence to conformation in globular proteins: development of a stereochemical alphabet on the basis of intra-residue information %K secondary structure prediction %A B. Robson %A R.H. Pain %J Biochem. J. %V 141 %D 1974 %P 883-897 %T Analysis of the code relating sequence to conformation in globular proteins: an informational analysis of the role of the residue in determining the conformation of its neighbours in the sequence %K secondary structure prediction %A B. Robson %A E. Platt %T Refined models for computer calculations in protein engineering: calibration and testing of atomic potential functions compatible with more efficient calculations %J J. Mol. Biol. %V 188 %D 1986 %P 259-284 %A B. Robson %A E. Platt %T Modelling of \(*a-lactalbumin from known structure of hen egg-white lysozyme using molecular dynamics %J J. Comp.-Aid. Mol. Des. %V 1 %D 1987 %P 17-22 %A B. Robson %A E. Suzuki %J J. Mol. Biol. %V 107 %D 1976 %P 327-356 %T Conformational properties of amino acid residue in globular proteins %K secondary structure prediction %A H. Roder %A G.A. Elove %A S.W. Englander %J Nature %V 335 %D 1988 %P 700-704 %T Structural characterization of folding intermediates in cytochrome \f2c\f1 by H-exchange labelling and protein NMR %K protein folding NMR %A S.L. Roderick %A L.J. Banaszak %T The conformation of mitochondrial malate dehydrogenase derived from an electron density map at 5.3\(Ao resolution %J J. Biol. Chem. %V 258 %P 11636-? %D 1983 %K 0MMD %A S.L. Roderick %A L.J. Banaszak %T The three-dimensional structure of porcine heart mitochondrial malate dehydrogenase at 3.0\(Ao resolution %J J. Biol. Chem. %V 261 %P 9461-? %D 1986 %K 0MMD %A G.N. Rogers %A J.C. Paulson %A R.S. Daniels %A J.J. Skehel %A I.A. Wilson %A D.C. Wiley %T Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity %J Nature %V 304 %P 76-? %D 1983 %K 0HG1 0HG2 0HG3 0HG4 %A N.K. Rogers %A G.R. Moore %A M.J.E. Sternberg %J J. Mol. Biol. %V 182 %D 1985 %P 613-616 %T Electrostatic interactions in globular proteins: calculation of the pH dependence of the redox potential of cytochrome \f2c\f1\d\s-2551\s0\u %K protein structure energy electrostatics %A F.J. Rohlf %A M.C. Wooten %D 1988 %T Evaluation of the restricted maximum likelihood method for estimating phylogenetic trees using simulated allele-frequency data %J Evolution %V 42 %P 581-595 %A M.L. Rollence %A D. Filpula %A M.W. Pantoliano %A P.N. Bryan %T Engineering thermostability in subtilisin BPN\(fm by \f2in vitro\f1 mutagenesis %J Crit. Rev. Biotech. %V 8 %P 217-? %D 1988 %K 1S01 %A M.J. Romao %A D. Turk %A F.-X. Gomis-R\(u:th %A R. Huber %A G. Schumacher %A H. M\(o:llering %A L. R\(u:ssmann %T Crystal structure analysis, refinement and enzymatic reaction mechanism of \f2N\f1-carbamoylsarcosine amidohydrolase from \f2Arthrobacter ap.\f1 at 2.0\(Ao resolution %J J. Mol. Biol. %V 226 %P 1111-1130 %D 1992 %K Russmann Gomis-Ruth Mollering %A M.J. Rooman %A J.-P.A. Kocher %A S.J. Wodak %T Extracting information on folding from the amino acid sequence: Accurate predictions for protein regions with preferred conformation in the absence of tertiary interactions %J Biochemistry %V 31 %P 10226-10238 %D 1992 %A M.J. Rooman %A J. Rodriguez %A S.J. Wodak %J J. Mol. Biol. %V 213 %D 1990 %P 327-336 %T Automatic definition of recurrent local structure motifs in proteins %K secondary structure motif identification structure patterns %A M.J. Rooman %A J. Rodriguez %A S.J. Wodak %J J. Mol. Biol. %V 213 %D 1990 %P 337-350 %T Relations between protein sequence and structure and their significance %K sequence structure patterns prediction %A M.J. Rooman %A S.J. Wodak %T Identification of predictive sequence motifs limited by protein structure database size %J Nature %V 335 %D 1988 %P 45-49 %K motifs sequence prediction %A M.J. Rooman %A S.J. Wodak %T Weak correlation between predictive power of individual sequence patterns and overall prediction accuracy in proteins %J Proteins %V 9 %P 69-78 %D 1991 %A M.J. Rooman %A S.J. Wodak %T Extracting information on folding from the amino acid sequence: Consensus regions with preferred conformation in homologous proteins %J Biochemistry %V 31 %P 10239-10249 %D 1992 %A M.J. Rooman %A S.J. Wodak %A J.M. Thornton %T Amino acid sequence templates derived from recurrent turn motifs in proteins: critical evaluation of their predictive power %J Prot. Eng. %D 1989 %V 3 %P 23-27 %A F. Roquet %A J.-P. Declercq %A B. Tinant %A J. Rambaud %A J. Parello %T Crystal structure of the unique parvalbumin component from muscle of the leopard shark (\f2Triakis semifasciata\f1): The first X-ray study of an \(*a-parvalbumin %J J. Mol. Biol. %V 223 %P 705-720 %D 1992 %A D.R. Rose %A J. Phipps %A J. Michniewicz %A G.I. Birnbaum %A F.R. Ahmed %A A. Muir %A W.F. Anderson %A S. Narang %T Crystal structure of T4-lysozyme generated from synthetic coding DNA expressed in \f2Escherichia coli\f1 %J Prot. Eng. %V 2 %P 277-? %D 1988 %K PDB1LYD %A G.D. Rose %J Nature %V 272 %D 1978 %P 586-590 %T Prediction of chain turns in globular proteins on a hydrophobic basis %K turns prediction hydrophobicity %A G.D. Rose %T Hydrophobic basis of packing in globular proteins %J Proc. Natl. Acad. Sci. USA %V 77 %P 4643-4647 %D 1980 %A G.D. Rose %T Automatic recognition of domains in globular proteins %J Methods Enzymol. %V 115 %D 1985 %P 430-440 %A G.D. Rose %A A.R. Geselowitz %A G.J. Lesser %A R.H. Lee %A M.H. Zehfus %T Hydrophobicity of amino acid residues in globular proteins %J Science %V 229 %D 1985 %P 834-838 %A G.D. Rose %A W.B. Young %A L.M. Gierasch %T Interior turns in globular proteins %J Nature %V 304 %P 654-657 %D 1983 %A M.A. Roseman %T Hydrophilicity of polar amino acid side-chains is markedly reduced by flanking peptide bonds %J J. Mol. Biol. %P 513-522 %V 200 %D 1988 %A M.G. Rossmann %T A comparison of the binding and function of NAD with respect to lactate dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase %B Structure and conformation of nucleic acids and protein-nucleic acid interactions %C Baltimore, MD %I University Park Press %E M. Sundralingham and S.T. Rao %P 353-? %D 1975 %K 1GPD %A M.G. Rossmann %T Evolution of glycolytic enzymes %J Phil. Trans. Roy. Soc. Lond. %V B 293 %P 191-203 %D 1981 %A M.G. Rossmann %T Antiviral agents targeted to interact with viral capsid proteins and a possible application to human immunodeficiency virus %J Proc. Natl. Acad. Sci. USA %V 85 %P 4625-4627 %D 1988 %A M.G. Rossmann %T Viral receptors and drug design %J Nature %V 333 %P 392-393 %D 1988 %A M.G. Rossmann %T The canyon hypothesis %J J. Biol. Chem. %V 264 %P 14587-14590 %D 1989 %A M.G. Rossmann %A C. Abad-Zapatero %A M.A. Hermodson %A J.W. Erickson %T Subunit interactions in southern bean mosaic virus %J J. Mol. Biol. %V 166 %P 37-? %D 1983 %K 4SBV %A M.G. Rossmann %A C. Abad-Zapatero %A M.R. Murthy %A L. Liljas %A T.A. Jones %A B. Strandberg %T Structural comparisons of small spherical plant viruses %J J. Mol. Biol. %V 165 %P 711-736 %D 1983 %K 4SBV %A M.G. Rossmann %A M.J. Adams %A M. Buehner %A G.C. Ford %A M.L. Hackert %A A. Liljas %A S.T. Rao %A L.J. Banaszak %A E. Hill %A D. Tsernoglou %A L. Webb %T Molecular symmetry axes and subunit interfaces in certain dehydrogenases %J J. Mol. Biol. %V 76 %P 533-? %D 1973 %K 3LDH %A M.G. Rossmann %A P. Argos %T A comparison of the heme binding pocket in globins and cytochrome \f2b\d\s-25\s0\u\f1 %J J. Biol. Chem. %V 250 %D 1975 %P 7525-7532 %K structure comparison haem proteins globins cytochromes %A M.G. Rossmann %A P. Argos %T Exploring structural homology of proteins %J J. Mol. Biol. %V 105 %D 1976 %P 75-95 %K structure comparison homology %A M.G. Rossmann %A P. Argos %T The taxonomy of protein structure %J J. Mol. Biol. %V 109 %D 1977 %P 99-129 %A M.G. Rossmann %A P. Argos %T Protein folding %J Annu. Rev. Biochem. %V 50 %D 1981 %P 497-532 %A M.G. Rossmann %A E. Arnold %A J.W. Erickson %A E.A. Frankenberger %A J.P. Griffith %A H.-J. Hecht %A J.E. Johnson %A G. Kamer %A M. Luo %A A.G. Mosser %A R.R. Rueckert %A B. Sherry %A G. Vriend %T Structure of a human common cold virus and functional relationship to other picornaviruses %J Nature %V 317 %P 145-153 %D 1985 %K 4RHV 1R09 %A M.G. Rossmann %A E. Arnold %A J.W. Erickson %A E.A. Frankenberger %A J.P. Griffith %A H.-J. Hecht %A J.E. Johnson %A G. Kamer %A M. Luo %A G. Vriend %T The structure of a human common cold virus (rhinovirus 14) and its evolutionary relations to other viruses %J Chem. Scr. %V B 26 %P 313-? %D 1987 %K 4RHV 1R09 %A M.G. Rossmann %A D.M. Blow %T The detection of subunits within the crystallographic asymmetric unit %J Acta Cryst. %V 15 %P 24-31 %D 1962 %A M.G. Rossmann %A B.A. Jeffery %A P. Main %A S. Warren %T The crystal structure of lactic dehydrogenase %J Proc. Natl. Acad. Sci. USA %V 57 %P 515-? %D 1967 %K 1LDM PNAS %A M.G. Rossmann %A A. Liljas %T Recognition of structural domains in globular proteins %D 1974 %J J. Mol. Biol. %V 85 %P 177-181 %A M.G. Rossmann %A A. Liljas %A C.-I. Br\(a:nd\(e'n %A L.J. Banaszak %T Evolutionary and structural relationships among dehydrogenases %J The Enzymes %V 11 %P 61-102 %D 1975 %K Branden %A M.G. Rossmann %A D. Moras %A K.W. Olsen %J Nature %V 250 %D 1974 %P 194-199 %T Chemical and biological evolution of a nucleotide-binding protein %K LDH %K dehydrogenase comparison structure evolution %A M.G. Rossmann\0(ed.) %T The Molecular Replacement Method %I Gordon Breach %C New York %D 1972 %A B. Rost %A C. Sander %T Jury returns on structure prediction %J Nature %V 360 %P 540 %D 1992 %A B. Rost %A C. Sander %T Progress of 1D protein structure prediction at last %J Proteins %V 23 %P 295-300 %D 1995 %A B. Rost %A R. Schneider %A C. Sander %T Progress in protein structure prediction ? %J Trends Biochem. Sci. %V 18 %P 120-123 %D 1993 %A J. Rothbard %T Synthetic peptides as vaccines %J Nature %P 106-107 %V 330 %D 1987 %A S.H. Rotstein %A M.A. Murcko %T GroupBuild: A fragment-based method for \f2de novo\f1 drug design %J J. Med. Chem. %V 36 %P 1700-1710 %D 1993 %A T.A. Rouault %A C.D. Stout %A S. Kaptein %A R.D. Kalusner %T Structural relationship between an iron regulated RNA-binding protein (IRE-BP) and aconitase \(em functional implications %J Cell %V 64 %P 881-883 %D 1991 %A M.A. Rould %A J.J. Perona %A D. Soell %A T.A. Steitz %T Structure of \f2E. coli\f1 glutaminyl-tRNA synthetase complexed with tRNA\u\s-4gln\s0\d and ATP at 2.8\(Ao resolution %J Science %V 246 %P 1135-? %D 1989 %K PDB1GSG %A M.A. Rould %A J.J. Perona %A T.A. Steitz %T Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase %J Nature %V 352 %P 213-218 %D 1991 %A M.A. Rould %A J.J. Perona %A D. S\(o:ll %A T.A. Steitz %T Structure of \f2E. coli\f1 glutaminyl-tRNA synthetase complexed with tRNA\u\s-4Gln\s0\d and ATP at 2.8\(Ao resolution %J Science %V 246 %P 1135-1142 %D 1989 %K Soll %A J. Rouvinen %A T. Bergfors %A T. Teeri %A J.K.C. Knowles %A T.A. Jones %T Three-dimensional structure of cellobiohydrolase from \f2Trichoderma reesei\f1 %J Science %V 249 %P 380-? %D 1990 %K 3CBH %A J. Rouvinen %A T. Bergfors %A T. Teeri %A J.K.C. Knowles %A T.A. Jones %T Three-dimensional structure of cellobiohydrolase II from \f2Trichoderma reesei\f1 %J Science %V 249 %P 380-386 %D 1990 %A W.E. Royer,\0Jr. %A W.A. Hendrickson %A E. Chiancone %T The 2.4\(Ao crystal structure of \f2Scapharca\f1 dimeric hemoglobin. cooperativity based on directly communicating hemes at a novel subunit interface %J J. Biol. Chem. %V 264 %P 21052-? %D 1989 %K 1SDH 2SDH %A W.E. Royer,\0Jr. %A W.A. Hendrickson %A E. Chiancone %T Structural transitions upon ligand binding in a cooperative dimeric hemoglobin %J Science %V 249 %P 518-521 %D 1990 %K 1SDH 2SDH %A W.E. Royer,\0Jr. %A W.E. Love %A F.F. Fenderson %T Cooperative dimeric and tetrameric clam haemoglobins are novel assemblages of myoglobin folds %J Nature %V 316 %P 277-? %D 1985 %K 1SDH 2SDH %A K.-H. Ruan %A K. Milfield %A R.J. Kulmacz %A K.K. Wu %T Comparison of the construction of a 3-D model for human thromboxane synthase using P450cam and BM-3 as templates: implications fo the substrate binding pocket %J Prot. Eng. %V7 %P 1345-1351 %D 1994 %A J.R. Rubin %A K. Morikawa %A J. Nyborg %A T.F.M. la\0Cour %A B.F.C. Clark %A D.L. Miller %T Structural features of the GDP binding site of elongation factor Tu from \f2Escherichia coli\f1 as determined by X-ray diffraction %J FEBS Lett. %V 129 %P 177-? %D 1981 %K 1ETU %A S. Rudikoff %A M. Potter %A D.M. Segal %A E.A. Padlan %A D.R. Davies %T Crystals of phosphorylcholine-binding Fab-fragments from mouse myeloma proteins: preparation and X-ray analysis %J Proc. Natl. Acad. Sci. USA %V 69 %P 3689-3692 %D 1972 %K 1MCP PNAS %A S. Rudikoff %A Y. Satow %A E. Padlan %A D. Davies %A M. Potter %T Kappa chain structure from a crystallized murine Fab\(fm: role of joining segment in hapten binding %J Mol. Immunol. %V 18 %P 705-? %D 1981 %K 1MCP %A A. Ruehlmann %A D. Kukla %A P. Schwager %A K. Bartels %A R. Huber %T Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor: crystal structure determination and stereochemistry of the contact region %J J. Mol. Biol. %V 77 %P 417-? %D 1973 %K 1TPA %A A. Ruehlmann %A H.J. Schramm %A D. Kukla %A R. Huber %T Pancreatic trypsin inhibitor (Kunitz): II. Complexes with proteinases %J Cold Spring Harbor Symp. Quant. Biol. %V 36 %P 148-? %D 1972 %K 4PTI %A W. Ruf %A T.S. Edgington %T Structural biology of tissue factor, the initiator of thrombogenesis \f2in vivo\f1 %J FASEB J. %V 8 %P 385-390 %D 1994 %A S.D. Ruffino %A T.L. Blundell %T Structure-based identification and clustering of protein families and superfamilies %J J. Comp. Aid. Mol. Des. %V 8 %P 5-27 %D 1994 %A J.A.C. Rullmann %A M.N. Bellido %A P.T. van\0Duijen %J J. Mol. Biol. %P 101-118 %T The active site of papain: all-atom study of interactions with protein matrix and solvent %V 206 %D 1989 %A J.A. Rupley %A E. Gratton %A G. Careri %T Water and globular proteins %J Trends Biochem. Sci. %P 18-22 %V 8 %D 1983 %K TIBS %A R.B. Russell %A G.J. Barton %T Multiple protein sequence alignment from tertiary structure comparison: Assignment of global and residue confidence levels %J Proteins %V 14 %P 309-323 %D 1992 %A R.B. Russell %A G.J. Barton %T An SH2-SH3 domain hybrid %J Nature %V 364 %P 765 %D 1993 %A R.B. Russell %A G.J. Barton %T Structural features can be unconserved in proteins with similar folds: An analysis of side-chain to side-chain contacts, secondary structure and accessibility %J J. Mol. Biol. %V 244 %P 332-350 %D 1994 %A R.B. Russell %A J. Breed %A G.J. Barton %T Conservation analysis and structure prediction of the SH2 family of phosphotyrosine binding proteins %J FEBS Letts. %V 304 %P 15-20 %D 1992 %A S.T. Russell %A A. Warshel %T Calculations of electrostatic energies in proteins: The energetics of ionized groups in bovine pancreatic trypsin inhibitor %J J. Mol. Biol. %P 389-404 %V 185 %D 1985 %A E. Rutenber %A E.B. Fauman %A R.J. Keenan %A S. Fong %A P.S. Furth %A P.R. Ortiz\0de\0Montellano %A E. Meng %A I.D. Kuntz %A D.L. DeCamp %A R. Salto %A J.R. Ros\(e' %A C.S. Craik %A R.M. Stroud %T Structure of a non-peptide inhibitor complexed with HIV-1 protease %J J. Biol. Chem. %V 268 %P15343-15346 %D 1993 %A E. Rutenber %A B.J. Katzin %A S. Ernst %A E.J. Collins %A D. Mlsna %A M.P. Raedy %A J.D. Robertus %T Crystallographic refinement of ricin to 2.5\(Ao %J Proteins %V 10 %P 240-250 %D 1991 %A E. Rutenber %A J.D. Robertus %T Structure of ricin B-chain at 2.5\(Ao resolution %J Proteins %V 10 %P 260-269 %D 1991 %A B. Ru\0Chang %A S.M. Cutfield %A E.J. Dodson %A G.G. Dodson %A F. Giordano %A C.D. Reynolds %A S.P. Tolley %T Molecular-replacement studies on crystal forms of despentapeptide insulin %J Acta Cryst. %V B 39 %P 90-? %D 1983 %K 0IN3 %A B. Ru\0Chang %A Z. Dauter %A E. Dodson %A G. Dodson %A F. Giordano %A C. Reynolds %T Insulin's structure as a modified and monomeric molecule %J Biopolymers %V 23 %P 391-? %D 1984 %K 0IN3 %A T.J. Rydel %A K.G. Ravichandran %A A. Tulinsky %A W. Bode %A C. Roitsch %A J.W. Fenton\0II %T The structure of a complex of recombinant hirudin and human \(*a-thrombin %J Science %V 249 %P 277-280 %D 1990 %A T.J. Rydel %A A. Tulinsky %A W. Bode %A R. Huber %T Refined structure of the hirudin-thrombin complex %J J. Mol. Biol. %V 221 %P 583-601 %D 1991 %A W.R. Rypniewski %A P.R. Evans %T Crystal structure of unliganded phosphofructokinase from \f2Escherichia coli\f1 %J J. Mol. Biol. %V 207 %D 1989 %P 805-821 %K PDB2PFK %A W.R. Rypniewski %A S. Hastrup %A C. Betzel %A M. Dauter %A Z. Dauter %A G. Papendorf %A S. Branner %A K.S. Wilson %T The sequence and X-ray structure of the trypsin from \f2Fusarium oxysporum\f1 %J Prot. Eng. %V 6 %P 341-348 %D 1993 %A S.-E. Ryu %A P.D. Kwong %A A. Truneh %A T.G. Porter %A J. Arthos %A M. Rosenberg %A X. Dai %A N.-H. Xuong %A R. Axel %A R.W. Sweet %A W.A. Hendrickson %T Crystal structure of an HIV-binding recombinant fragment of human CD4 %J Nature %P 419-426 %V 348 %D 1990 %K 1CD4 %A J.C. Sacchettini %A J.I. Gordon %A L.J. Banaszak %T The structure of crystalline \f2Escherichia coli\f1-derived rat intestinal fatty acid-binding protein at 2.5\(Ao resolution %J J. Biol. Chem. %V 263 %P 5815-? %D 1988 %K 0RIF %A J.C. Sacchettini %A J.I. Gordon %A L.J. Banaszak %T Crystal structure of rat intestinal fatty-acid-binding protein: refinement and analysis of the \f2Escherichia coli\f1 derived protein with bound palmitate %J J. Mol. Biol. %V 208 %P 327-? %D 1989 %K PDB2IFB %A J.C. Sacchettini %A J.I. Gordon %A L.J. Banaszak %T Refined apoprotein structure of rat intestinal fatty acid binding protein produced in \f2Escherichia coli\f1 %J Proc. Natl. Acad. Sci. USA %V 86 %P 7736-? %D 1989 %K PDB1IFB %A J.C. Sacchettini %A T.A. Meininger %A J.B. Lowe %A J.I. Gordon %A L.J. Banaszak %T Crystallization of rat intestinal fatty acid binding protein: preliminary X-ray data obtained from protein expressed in \f2Escherichia coli\f1 %J J. Biol. Chem. %V 262 %P 5428-? %D 1987 %K 0RIF %A J.C. Sacchettini %A G. Scapin %A D. Gopaul %A J.I. Gordon %T Refinement of the structure of \f2Escherichia coli\f1-derived rat intestinal fatty acid binding protein with bound oleate to 1.75\(Ao resolution %J J. Biol. Chem. %V 267 %P 23534-23545 %D 1992 %A G.P. Sachdev %A J.S. Fruton %J Proc. Natl. Acad. Sci. USA %P 3424-3427 %T Kinetics of action of pepsin on fluorescent peptide substrates %V 72 %D 1975 %K PNAS %A W. Sachsenheimer %A G.E. Schulz %T Two conformations of crystalline adenylate kinase %J J. Mol. Biol. %V 114 %P 23-? %D 1977 %K 3ADK %A J.S. Sack %A M.A. Saper %A F.A. Quiocho %T Periplasmic binding protein structure and function: refined X-ray structures of the leucine/isoleucine/valine-binding protein and its complex with leucine %J J. Mol. Biol. %V 206 %P 171-? %D 1989 %K 2LBP PDB2LIV %A J.S. Sack %A S.D. Trakhanov %A I.H. Tsigannik %A F.A. Quiocho %T Structure of the \s-2L\s0-leucine-binding protein refined at 2.4\(Ao resolution and comparison with the Leu/Ile/Val-binding protein structure %J J. Mol. Biol. %V 206 %D 1989 %P 193-207 %K periplasmic binding structure comparison binding %A W. Saenger %T Principles of nucleic acid structure %C Berlin %I Springer %D 1984 %A M.G. Saffro %A N.S. Andreeva %A A.S. Zdanov %T The determination of the three-dimensional structure of chymosin %B Aspartic proteinases and their inhibitors %E V. Kostka %P 183-187 %C Berlin %I Walter de\0Gruyter %D 1985 %A N. Sagata %A T. Yasunaga %A J. Tsuzuku-Kawamura %A K. Ohishi %A Y. Ogawa %A Y. Ikawa %T Complete nucleotide sequence of the genome of bovine leukemia virus: its evolutionary relationship to other retroviruses %J Proc. Natl. Acad. Sci. USA %V 82 %D 1985 %P 677-681 %K retrovirus sequence PNAS %A N. Saigo %A W. Kugiyama %A I. Matsuo %A K. Inouye %A K. Yoshioka %A S. Yuki %T Identification of the coding sequence of a reverse transcriptase-like enzyme in a transposable genetic element in \f2Drosophila melanogaster\f1 %J Nature %V 312 %D 1984 %P 659-661 %K retrovirus sequence %A N. Sait\(o^ %A T. Shigaki %A Y. Kobayashi %A M. Yamamoto %T Mechanism of protein folding: I. general considerations and refolding of myoglobin %J Proteins %V 3 %D 1988 %P 199-207 %K protein folding myoglobin Saito %A K. Sakabe %A K. Sasaki %A N. Sakabe %T Water structure in rhombohedral 2 zinc insulin crystal at 1.1\(Ao resolution %J Acta Cryst. %V A 37 %P 54-? %D 1981 %K 0IN1 %A N. Sakabe %A K. Sakabe %A C. Katayma %T Structure determination of rhombohedral 2-zinc insulin crystals with a single isomorphous derivative %J Acta Cryst. %V A 28 %P 34-? %D 1972 %K 0IN1 %A N. Sakabe %A K. Sasaki %A K. Sakabe %T Insulin structure at 1.1\(Ao resolution and its dynamic behavior with anisotropic temperature factors %J Acta Cryst. %V A 37 %P 50-? %D 1981 %K 0IN1 %A J.A. Sakanari %A C.E. Staunton %A A.E. Eakin %A C.S. Craik %A J.H. McKerrow %T Serine proteases from nematode and protozoan parasites: isolation of sequence homologs using generic molecular probes %J Proc. Natl. Acad. Sci. USA %V 86 %D 1989 %P 4863-4867 %K PNAS %A T. Sakurai %A M. Yangisawa %A Y. Takuwa %A H. Miyazaki %A S. Kimura %A K. Goto %A T. Masaki %T Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor %J Nature %V 348 %P 732-735 %D 1990 %A J. Saldhana %A D. Mahadevan %T Molecular model-building of amylin and \(*A-calcitonin gene-related polypeptide hormones using a combination of knowledge sources %J Prot. Eng. %V 4 %P 539-544 %D 1991 %A F.R. Salemme %J Prog. Biophys. Mol. Biol. %V 42 %P 95-133 %D 1983 %T Structural Properties of Protein \(*b-Sheets %A F.R. Salemme %A S.T. Freer %A N.H. Xuong %A R.A. Alden %A J. Kraut %T The structure of oxidized cytochrome \f2c\f1\d\s-22\s0\u of \f2Rhodospirillum rubrum\f1 %J J. Biol. Chem. %V 248 %D 1973 %P 3910-3921 %A A. Sali %T Comparative protein modelling by satisfaction of spatial restraints %J Mol. Med. Today %V ? %P 270-273 %D 1995 %A A. Sali %T Modelling mutations and homologous proteins %J Curr. Opin. Biotech. %V 6 %P 437-451 %D 1995 %A A. Sali %A L. Potterton %A F. Yuan %A H. van\0Vlijman %A M. Karplus %T Evaluation of comparative protein modeling by MODELLER %J Proteins %V 23 %P 318-326 %D 1995 %A A. Sali %A L. Potterton %A F. Yuan %A H. van\0Vlijmen %A M. Karplus %T Evaluation of comparative protein modeling by MODELLER %J Proteins %V 23 %P 318-326 %D 1995 %A A. Sali %A E. Shakhnovich %A M. Karplus %T Protein folding studied by Monte Carlo simulations %B Protein folds: A distance-based approach %E H. Bohr & S. Brunak %I CRC Press %C London %D 1995 %A R.D. Salter %A R.J. Benjamin %A P.K. Wesley %A S.E. Buxton %A T.P.J. Garrett %A C. Clayberger %A A.M. Krensky %A A.M. Norment %A D.R. Littman %A P. Parham %T A binding site for the T-cell receptor CD8 on the \(*a\d\s-23\s0\u domain of HLA-A2 %J Nature %P 41-46 %V 345 %D 1990 %A G. Salvesen %A D. Farley %A J. Shuman %A A. Przybyla %A C. Reilly %A J. Travis %T Molecular cloning of human cathepsin G: Structural similarity to mast cell and cytotoxic T lymphocyte proteinases %J Biochemistry %V 26 %P 2289-2293 %D 1987 %A G. Salvesen %A D. Farley %A J. Shuman %A A. Przybyla %A C. Reilly %A J. Travis %T Molecular cloning of human cathepsin G: structural similarity to mast-cell and cytotoxic T-lymphocyte proteinase %J Biochemistry %V 26 %D 1987 %P 2289-2293 %K sequence serine proteinase %A J.-P. Samama %A A.D. Wrixon %A J.-F. Biellmann %T 5-Methylnicotinamide-adenine dinucleotide: kinetic investigation with major and minor isoenzymes of liver alcohol dehydrogenase and structural determination of its binary complex with alcohol dehydrogenase %J Eur. J. Biochem. %V 118 %P 479-? %D 1981 %K 5ADH %A J.-P. Samama %A E. Zeppezauer %A J.-F. Biellmann %A C.-I. Br\(a:nd\(e'n %T The crystal structure of complexes between horse liver alcohol dehydrogenase and the coenzyme analogues 3-iodopyridine-adenine dinucleotide and pyridine-adenine dinucleotide %J Eur. J. Biochem. %V 81 %P 403-? %D 1977 %K Branden %A P.S. Sampath-Kumar %A J.S. Fruton %J Proc. Natl. Acad. Sci. USA %P 1070-1072 %T Studies on the extended active sites of acid proteinases %V 71 %D 1974 %K PNAS %A R. Samudrala %A J.T. Pedersen %A H.-B. Zhou %A R. Luo %A K. Fidelis %A J. Moult %T Confronting the problem of interconnected structural changes in the comparative modeling of proteins %J Proteins %V 23 %P 327-336 %D 1995 %A R. Sanchez-Pescador %A M.D. Power %A P.J. Barr %A K.S. Steimer %A M.M. Stempien %A S.L. Brown-Shimer %A W.W. Gee %A A. Renard %A A. Randolph %A J.A. Levy %A D. Dina %A P.A. Luciw %T Nucleotide sequence and expression of an AIDS-associated retrovirus (ARV-2) %J Science %V 227 %D 1985 %P 484-492 %K sequence lentivirus HIV %A J. Sancho %A L. Serrano %A A.R. Fersht %T Histidine residues at the N- and C-termini of \(*a-helices: perturbed pK\d\s-4a\s0\us and protein stability %J Biochemistry %V 31 %P 2253-2258 %D 1992 %A W.S. Sandberg %A T.C. Terwilliger %T Influence of interior packing and hydrophobicity to the stability of a protein %J Science %V 245 %P 54-57 %D 1989 %A W.S. Sandberg %A T.C. Terwilliger %T Energetics of repacking a protein interior %J Proc. Natl. Acad. Sci. USA %V 88 %P 1706-1710 %D 1991 %A C. Sander %T \f2De novo\f1 design of proteins %J Curr. Opin. Struct. Biol. %V 1 %P 630-637 %D 1991 %A C. Sander %A M. Scharf %A R. Schneider %T Design of protein structures %P 89-115 %B Protein Engineering: A practical approach %E A.R. Rees, M.J.E. Sternberg and R. Wetzel %I IRL Press %C Oxford %D 1992 %A C. Sander %A R. Schneider %T Database of homology-derived protein structures and the structural meaning of sequence alignment %J Proteins %V 9 %P 56-68 %D 1991 %A C. Sander %A G. Vriend %A F. Bazan %A A. Horovitz %A H. Nakamura %A L. Ribas %A A.V. Finkelstein %A A. Lockhart %A R. Merkl %A L.J. Perry %A S.C. Emery %A C. Gaboriaud %A C. Marks %A J. Moult %A C. Verlinde %A M. Eberhard %A A. Elofsson %A T.J.P. Hubbard %A L. Regan %A J. Banks %A R. Jappelli %A A.M. Lesk %A A. Tramontano %T Protein design on computers. Five new proteins: Shpilka, Grendel, Fingerclasp, Leather and Aida %J Proteins %V 12 %P 105-110 %D 1992 %A M.R. Sanderson %A P.S. Freemont %A P.A. Rice %A A. Goldman %A G.F. Hatfull %A N.D.F. Grindley %A T.A. Steitz %T The crystal structure of the catalytic domain of the site-specific recombination enzyme \(*d\(*g resolvase at 2.7\(Ao resolution %J Cell %V 63 %P 1323-1329 %D 1990 %A F. Sanger %A S. Nicklen %A A.R. Coulson %T DNA sequencing with chain-terminating inhibitors %J Proc. Natl. Acad. Sci. USA %V 74 %P 5463-5467 %D 1977 %K PNAS %A D. Sankoff %A J.B. Kruskal\0(eds.) %T Time warps, string edits, and macromolecules: The theory and practice of sequence comparison %I Addison Wesley %C Reading, Massachusetts %D 1983 %A C.E. Sansom %A J. Wu %A I.T. Weber %T Molecular mechanics analysis of inhibitor binding to HIV-1 protease %J Prot. Eng. %V 5 %P 659-667 %D 1992 %A M.-J. Santoni %A C. Goridis %A J.C. Fontecilla-Camps %T Molecular modelling of the immunoglobulin-like domains of the neural cell adhesion molecule (NCAM): Implications for the positioning of functionally important sugar side chains %J J. Neurosci. Res. %V 20 %P 304-310 %D 1988 %A M.A. Saper %A P.J. Bjorkman %A D.C. Wiley %T Refined structure of the human histocompatibility antigen HLA-A2 at 2.6\(Ao resolution %J J. Mol. Biol. %V 219 %P 277-319 %D 1991 %K PDB3HLA %A M.A. Saper %A H. Eldar %A K. Mizuuchi %A J. Nickol %A E. Appella %A J.L. Sussman %T Crystallization of a DNA tridecamer d(CGCAGAATTCGCG) %J J. Mol. Biol. %V 188 %P 111-? %D 1986 %K 1D31 %A M.A. Saper %A F.A. Quiocho %T Leucine, isoleucine, valine-binding protein from \f2Escherichia coli\f1 %J J. Biol. Chem. %V 258 %P 11057-? %D 1983 %K 2LIV %A M.A.S. Saqi %A M.J.E. Sternberg %T A simple method to generate non-trivial alternate alignments of protein sequences %J J. Mol. Biol. %V 219 %P 727-732 %D 1991 %A R. Sarma %A R. Bott %T Crystal structure of turkey egg-white lysozyme: results of the molecular replacement method at 5\(Ao resolution %J J. Mol. Biol. %V 106 %P 1037-? %D 1976 %K 1LZ2 %A R. Sarma %A R. Bott %T Crystallographic study of turkey egg-white lysozyme and its complex with a disaccharide %J J. Mol. Biol. %V 113 %P 555-? %D 1977 %K PDB1LZ2 %A R. Sarma %A S. Harada %A N. Tanaka %A M. Kakudo %A S. Hara %A T. Ikenaka %T Structure of \f2Streptomyces erythraeus\f1 lysozyme at 6\(Ao resolution %J J. Biochem. (Tokyo) %V 86 %P 1765-? %D 1979 %K 0LZ6 %A V.R. Sarma %A D.R. Davies %A L.W. Labaw %A E.W. Silverton %A W.D. Terry %T Crystal structure of an immunoglobulin molecule by X-ray diffraction and electron microscopy %J Cold Spring Harbor Symp. Quant. Biol. %V 36 %P 413-? %D 1971 %K 0IG1 %A V.R. Sarma %A E.W. Silverton %A D.R. Davies %A W.D. Terry %T The three-dimensional structure at 6\(Ao resolution of a human gamma-G1 immunoglobulin molecule %J J. Biol. Chem. %V 246 %P 3753-? %D 1971 %K 0IG1 %A H.A. Saroff %J J. Theor. Biol. %P 191-199 %T The uniqueness of protein sequences: molecular territoriality %V 115 %D 1985 %A R. Sarra %A P.F. Lindley %T Preliminary X-ray data for an N-terminal fragment of rabbit serum transferrin %J J. Mol. Biol. %V 188 %P 727-? %D 1986 %K 0TFD %A K. Sasaki %A S. Dockerill %A D.A. Adamjak %A I.J. Tickle %A T. Blundell %T X-ray analysis of glucagon and its relationship to receptor binding %J Nature %V 257 %P 751-757 %D 1975 %K PDB1GCN %A T. Satoh %A D. Barlow %T Molecular modelling of the structures of endothelin antagonists: Identification of a possible structural determinant for ET-A receptor binding %J FEBS Letts. %V 310 %P 83-87 %D 1992 %A Y. Satow %A G.H. Cohen %A E.A. Padlan %A D.R. Davies %T Phosphocholine binding immunoglobulin Fab McPC603: an X-ray diffraction study at 2.7\(Ao %J J. Mol. Biol. %V 190 %D 1986 %P 593-604 %K PDB1MCP %A Y. Satow %A Y. Watanabe %A Y. Mitsui %T Solvent accessibility and microenvironment in a bacterial protein proteinase inhibitor (SSI) %J J. Biochem. %V 88 %P 1739-1755 %D 1980 %A Y. Satow %A Y. Watanabe %A Y. Mitsui %T Solvent accessibility and microenvironment in a bacterial protein proteinase inhibitor SSI (\f2Streptomyces\f1 subtilisin inhibitor) %J J. Biochem. (Tokyo) %V 88 %P 1739-? %D 1980 %K PDB2SSI %A K.A. Satyshur %A S.T. Rao %A D. Pyzalska %A W. Drendel %A M. Greaser %A M. Sundaralingam %T Refined structure of chicken skeletal muscle troponin C in the two-calcium state at 2\(Ao resolution %J J. Biol. Chem. %V 263 %P 1628-? %D 1988 %K PDB4TNC %A V. Saudek %A H.S. Pasley %A T. Gibson %A H. Gausepohl %A R. Frank %A A. Pastore %T Solution structure of the basic region from the transcriptional activator GCN4 %J Biochemistry %V 30 %P 1310-1317 %D 1991 %A V. Saudek %A A. Pastore %A M.A. Castiglione\0Morelli %A R. Frank %A H. Gausepohl %A T. Gibson %T The solution structure of a leucine-zipper motif peptide %J Prot. Eng. %V 4 %P 519-529 %D 1991 %A V. Saudek %A A. Pastore %A M.A. Castiglione\0Morelli %A R. Frank %A H. Gausepohl %A T. Gibson %A F. Weih %A P. Roesch %T Solution structure of the DNA-binding domain of the yeast transcriptional activator protein GCN4 %J Prot. Eng. %V 4 %P 3-10 %D 1990 %K leucine zipper %A R.T. Sauer %A D.W. Allen %A H.D. Niall %J Biochemistry %V 20 %D 1981 %P 3784-3791 %T Amino acid sequence of p15 from avian myeloblastosis virus complex %K protease RSV sequence retrovirus %A R.T. Sauer %A K. Hehir %A R.S. Stearman %A M.A. Weiss %A A. Jeitler-Nilsson %A E.G. Suchanek %A C.O. Pabo %T An engineered intersubunit disulphide enhances the stability and DNA binding of the N-terminal domain of \(*l repressor %J Biochemistry %V 25 %D 1986 %P 5992-5998 %K mutation substitution stability protein folding %A R.T. Sauer %A R.R. Yocum %A R.F. Doolittle %A M. Lewis %A C.O. Pabo %T Homology among DNA-binding proteins suggests use of a conserved super-secondary structure %J Nature %V 298 %P 447-451 %D 1982 %K 1LRD %A F.A. Saul %A M. Amzel %A R.J. Poljak %T Preliminary refinement and structural analysis of the Fab fragment from human immunoglobulin New at 2.0\(Ao resolution %J J. Biol. Chem. %V 253 %D 1978 %P 585-597 %K PDB3FAB %A J. Saunders %T Drug discovery %B Principles of Molecular Recognition %C ? %I ? %D 1993 %A M.R. Sawaya %A H. Pelletier %A A. Kumar %A S.H. Wilson %A J. Kraut %T Crystal structure of rat DNA polymerase \(*b: Evidence for a common polymerase mechanism %J Science %V 264 %P 1930-1935 %D 1994 %A L. Sawyer %A M.N.G. James %T Carboxyl-carboxylate interactions in proteins %J Nature %V 295 %D 1982 %P 79-80 %A L. Sawyer %A D.M. Shotton %A J.W. Campbell %A P.L. Wendell %A H. Muirhead %A H.C. Watson %A R. Diamond %A R.C. Ladner %T The atomic structure of crystalline porcine pancreatic elastase at 2.5\(Ao resolution: comparisons with the structure of \(*a-chymotrypsin %J J. Mol. Biol. %V 118 %D 1978 %P 137-208 %K structure elastase serine proteinase PDB1EST %A L. Sawyer %A D.M. Shotton %A H.C. Watson %T Atomic coordinates for tosyl-elastase %J Biochem. Biophys. Res. Comm. %V 53 %P 944-? %D 1973 %K 3EST %A R.A. Sayle %A E.J. Milner-White %T RASMOL: Biomolecular graphics for all %J TIBS %V 20 %P 374-376 %D 1995 %A G. Scapin %A J.I. Gordon %A J.C. Sacchettini %T Refinement of the structure of recombinant rat intestinal fatty acid-binding apoprotein at 1.2\(Ao resolution %J J. Biol. Chem. %V 267 %P 4253-4269 %D 1992 %A P.E. Scarborough %A K. Guruprasad %A C. Topham %A G.R. Richo %A G.E. Conner %A T.L. Blundell %A B.M. Dunn %T Exploration of subsite binding specificity of human cathepsin D through kinetics and rule-based molecular modelling %J Prot. Sci. %V 2 %P 264-276 %D 1993 %A G. Scatchard %J Ann. N.Y. Acad. Sci. %P 660-672 %T The attractions of proteins for small molecules and ions %V 51 %D 1949 %A I. Schecter %A A. Berger %J Biochem. Biophys. Res. Comm. %V 27 %D 1967 %P 157-162 %T On the size of the active site in proteases: I. papain %K enzyme nomenclature subsite binding %A K. Scheffzek %A C. Klebe %A K. Fritz-Wolf %A W. Kabsch %A A. Wittinghofer %T Crystal structure of the nuclear Ras-related protein Ran in its GDO-bound form %J Nature %V 374 %P 378-380 %D 1995 %A V. Schellenberger %A C.W. Turck %A W.J. Rutter %T Role of the S\(fm subsites in serine protease catalysis: Active site mapping of rat chymotrypsin, rat trypsin, \(*a-lytic protease, and cercarial protease from \f2Schistosoma mansoni\f1 %J Biochemistry %V 33 %P 4251-4257 %D 1994 %A A. Scherer %A J. John %A R. Linke %A R.S. Goody %A A. Wittinghofer %A E.F. Pai %A K.C. Holmes %T Crystallization and preliminary X-ray analysis of the human c-h-ras-oncogene product p21 complexed with GTP analogues %J J. Mol. Biol. %V 206 %P 257-? %D 1989 %K 5P21 %A A. Scherer %A J. John %A R. Linke %A R.S. Goody %A A. Wittinghofer %A E.F. Pai %A K.C. Holmes %T Crystallization and preliminary X-ray analysis of the human c-H-\f2ras\f1-oncogene product p21 complexed with GTP analogues %J J. Mol. Biol. %V 206 %P 257-259 %D 1989 %A T. Scherf %A R. Hiller %A F. Naider %A M. Levitt %A J. Anglister %T Induced peptide conformations in different antibody complexes: Molecular modeling of the three-dimensional structure of peptide-antibody complexes using NMR-derived distance restraints %J Biochemistry %V 31 %P 6884-6897 %D 1992 %A G.F.X. Schertier %A C. Villa %A R. Henderson %T Projection structure of rhodopsin %J Nature %V 362 %P 770-772 %D 1993 %A R.W. Schevitz %A Z. Otwinowski %A A. Joachimiak %A C.L. Lawson %A P.B. Sigler %T The three-dimensional structure of \f2trp\f1 repressor %J Nature %V 317 %P 782-786 %D 1985 %K 3WRP %A N. Schiering %A W. Kabsch %A M.J. Moore %A M.D. Distefano %A C.T. Walsh %A E.F. Pai %T Structure of the detoxification catalyst mercuric ion reductase from \f2Bacillus\f1 sp. strain RC607 %J Nature %V 351 %P 169-172 %D 1991 %A C.A. Schiffer %A J.W. Caldwell %A P.A. Kollman %A R.M. Stroud %T Prediction of homologous protein structures based on conformational searches and energetics %J Proteins %V 8 %P 30-43 %D 1990 %A M. Schiffer %A C. Ainsworth %A Z.-B. Xu %A W. carperos %A K. Olsen %A A. Solomon %A F.J. Stevens %A C.-H. Chang %T Structure of a second crystal form of Bence-Jones protein \f2loc\f1: strikingly different domain associations in two crystal forms of a single protein %J Biochemistry %V 28 %P 4066-? %D 1989 %K 1BJL PDB2BJL %A M. Schiffer %A C.-H. Chang %A V.M. Naik %A F.J. Stevens %J J. Mol. Biol. %V 203 %D 1988 %P 799-802 %T Analysis of immunoglobulin domain interactions: evidence for a dominant role of salt bridges %K immunoglobulin domain interface interactions surface %A M. Schiffer %A A.B. Edmundson %D 1967 %T Use of helical wheels to represent the structures of proteins and to identify segments with helical potential %J Biophys. J. %V 7 %P 121-135 %A M. Schiffer %A R.L. Girling %A K.R. Ely %A A.B. Edmundson %T Structure of a \(*l-type Bence-Jones protein at 3.5\(Ao resolution %J Biochemistry %V 12 %P 4620-? %D 1973 %K 1MCG 2MCG 3MCG %A M. Schiffer %A F.J. Stevens %A F.A. Westholm %A S.S. Kim %A R.D. Carlson %T Small-angle neutron scattering study of Bence-Jones protein McG: comparison of structures in solution and in crystal %J Biochemistry %V 21 %P 2874-? %D 1982 %K PDB1MCG 2MCG 3MCG %A I. Schilichting %A S.C. Almo %A G. Rapp %A K. Wilson %A K. Petratos %A A. Lentfer %A A. Wittinghofer %A W. Kabsch %A E.F. Pai %A G.A. Petsko %A R.S. Goody %J Nature %V 345 %D 1990 %P 309-315 %T Time resolved X-ray crystallographic study of the conformational change in Ha-\f2ras\f1 \f2p\f121 protein on GTP hydrolysis %K Laue oncogene %A H. Schindelin %A M.A. Marahiel %A U. Heinemann %T Universal nucleic acid-binding domain revealed by crystal structure of the \f2B. subtillis\f1 major cold-chock protein %J Nature %V 364 %P 164-168 %D 1993 %A T. Schirmer %A P.R. Evans %J Nature %V 343 %D 1990 %P 140-145 %T Structural basis of the allosteric behavior of phosphofructokinase %K allostery protein structure %A T. Schirmer %A R. Huber %A M. Schneider %A W. Bode %A M. Miller %A M.L. Hackert %T Crystal structure analysis and refinement at 2.5\(Ao of hexameric C-phycocyanin from the cyanobacterium \f2Agmenellum quadruplicatum\f1 %J J. Mol. Biol. %V 188 %P 651-? %D 1986 %K 0CPC %A T. Schirmer %A T.A. Keller %A Y.-F. Wang %A J.P. Rosenbusch %T Structural basis for sugar translocation through maltoporin channels at 3.1\(oA resolution %J Science %V 267 %P 512-514 %D 1995 %A D.G. Lambright %A J. Sondek %A A. Bohm %A N.P. Skiba %A H.E. Hamm %A P.B. Sigler %T The 2.0\(oA crystal structure of a heterotrimeric G protein %J Nature %V 379 %P 311-319 %D 1996 %A D.H. Schlesinger %A G. Goldstein %T Molecular conservation of 74 amino acid sequence of ubiquitin between cattle and man %J Nature %V 255 %P 423-424 %D 1975 %K 1UBQ %A I. Schlichting %A G. Rapp %A J. John %A A. Wittinghofer %A E.F. Pai %A R.S. Goody %T Biochemical and crystallographic characterization of a complex of c-ha-ras p21 and caged GTP with flash photolysis %J Proc. Natl. Acad. Sci. USA %V 86 %P 7687-? %D 1989 %K 5P21 %A M.P. Schlunegger %A M.G. Gr\(u:tter %T An unusual feature revealed by the crsytal structure at 2.2\(Ao resolution of human transforming growth factor-\(*b2 %J Nature %V 358 %P 430-434 %D 1992 %K Grutter %A H. Schmale %A H. Holtgreve-Grez %A H. Christiansen %J Nature %T Possible role for salivary gland protein in taste reception indicated by homology to lipophilic-ligand carrier proteins %D 1990 %V 343 %P 366-369 %A M.F. Schmid %A J.R. Herriott %T Structure of carboxypeptidase B at 2.8\(Ao resolution %J J. Mol. Biol. %V 103 %P 175-? %D 1976 %K PDB1CPB %A M.F. Schmid %A J.R. Herriott %A E.E. Lattman %T The structure of bovine carboxypeptidase B, results at 5.5\(Ao resolution %J J. Mol. Biol. %V 84 %P 97-? %D 1974 %K 1CPB %A M.F. Schmid %A D.E. Tronrud %A B.W. Matthews %T Structural studies of a bacteriochlorophyll-protein %J Chem. Scr. %V 21 %P 69-? %D 1983 %K 3BCL %A P.G. Schmidt %A M.W. Holladay %A F.G. Salituro %A D.H. Rich %T Identification of oxygen nucleophiles in tetrahedral intermediates: \u\s-22\s0\dH and \u\s-218\s0\dO induced shifts in \u\s-213\s0\dC NMR spectra of pepsin-bound peptide ketone pseudosubstrates %J Biochem. Biophys. Res. Comm. %P 597-602 %V 129 %D 1985 %A W.C. Schmidt,\0Jr. %A R.L. Girling %A E.L. Amma %T Application of a restrained least-squares refinement procedure to sickling deer hemoglobin %J Acta Cryst. %V B 33 %P 3618-? %D 1977 %K 1HDS %A W.C. Schmidt,\0Jr. %A R.L. Girling %A T.E. Houston %A G.D. Sproul %A E.L. Amma %A T.H.J. Huisman %T The structure of sickling deer type III hemoglobin by molecular replacement %J Acta Cryst. %V B 33 %P 335-? %D 1977 %K 1HDS %A G. Schneider %A H. Eklund %A E. Cedergren-Zeppezauer %A M. Zeppezauer %T Crystal structures of the active site in specifically metal-depleted and cobalt-substituted horse liver alcohol dehydrogenase derivatives %J Proc. Natl. Acad. Sci. USA %V 80 %P 5289-5293 %D 1983 %K 5ADH PNAS %A G. Schneider %A Y. Lindqvist %A C.-I. Branden %A G. Lorimer %T Three-dimensional structure of ribulose-1,5-bisphosphate carboxylase/oxygenase from \f2Rhodospirillum rubrum\f1 at 2.9\(Ao resolution %J EMBO J. %V 5 %P 3409-? %D 1986 %K 1RUS 2RUS 5RUB %A G. Schneider %A Y. Lindqvist %A T. Lundqvist %T Crystallographic refinement and structure of ribulose-1,5-bisphosphate carboxylase from \f2Rhodospirillum rubrum\f1 at 1.7\(Ao resolution %J J. Mol. Biol. %V 211 %P 989-? %D 1990 %K 1RUS 2RUS PDB5RUB %A J. Schneider %A S.B.H. Kent %J Cell %V 54 %D 1988 %P 363-368 %T Enzymatic activity of a synthetic 99 residue protein corresponding to the putative HIV-1 protease %K protease HIV synthesis %A T.D. Schneider %A G.D. Stormo %A L. Gold %A A. Ehrenfeucht %J J. Mol. Biol. %V 188 %D 1986 %P 415-431 %T Information content of binding sites on nucleotide sequences %K nucleotide binding recognition statistics %A A. Schnuchel %A R. Wiltscheck %A M. Czisch %A M. Herrier %A G. Willmsky %A P. Graumann %A M.A. Marahiel %A T.A. Holak %T Structure in solution of the major cold-shock protein from \f2Bacillus subtilis\f1 %J Nature %V 364 %P 169-171 %D 1993 %A B.P. Schoenborn %T Neutron diffraction analysis of myoglobin %J Nature %V 224 %P 143-146 %D 1969 %K 1MB5 0MB3 %A B.P. Schoenborn %T A neutron diffraction analysis of myoglobin. III. Hydrogen-deuterium bonding in side chains %J Cold Spring Harbor Symp. Quant. Biol. %V 36 %P 569-? %D 1972 %K 1MB5 0MB3 %A B.P. Schoenborn %A R. Diamond %T Neutron diffraction analysis of metmyoglobin %J Brookhaven Symp. Biol. %V 27 %P 3-? %D 1975 %K 0MB3 1MB5 %A B.P. Schoenborn %A J.C. Hanson %T The determination of structural water by neutron protein crystallography: an analysis of the carbon monoxide myoglobin water structure %J ACS Symp. Ser. %V 127 %P 215-? %D 1980 %K 1MB5 %A B.P. Schoenborn %A J.C. Norvell %T Neutron diffraction analysis and real space refinement of met and carbon monoxide myoglobin %J Acta Cryst. %V A 31 %P 32-? %D 1975 %K 0MB3 1MB5 %A J.M. Scholz %A S. Marqusee %A R.L. Baldwin %A E.J. York %A J.M. Stewart %A M. Santoro %A D.W. Bolen %T Calorimetric determination of the enthalpy change for the \(*a-helix to coil transition of an alanine peptide in water %J Proc. Natl. Acad. Sci. USA %V 88 %D 1991 %A V. Schomaker %A K.N. Trueblood %J Acta Cryst. %P 63-76 %T On the rigid-body motion of molecules in crystals %V B 24 %D 1968 %A J.W. Schrader %A H.J. Ziltener %A K.B. Leslie %T Structural homologies among the hemopoietins %J Proc. Natl. Acad. Sci. USA %V 83 %P 2458-2462 %D 1986 %A J.D. Schrag %A Y. Li %A S. Wu %A M. Cygler %T Ser-His-Glu triad forms the catalytic site if the lipase from \f2Geotrichium candidum\f1 %J Nature %P 761-764 %V 351 %D 1991 %K convergent-evolution %A J.D. Schrag %A F.K. Winkler %A M. Cygler %T Pancreatic lipases: Evolutionary intermediates in a positional change of catalytic carboxylates ? %J J. Biol. Chem. %V 267 %P 4300-4303 %D 1992 %A H.A. Schreuder %A P.A.J. Prick %A R.K. Wierenga %A G. Vriend %A K.S. Wilson %A W.G.J. Hol %A J. Drenth %T Crystal structure of the \f2p\f1-hydroxylase-substrate complex refined at 1.9\(Ao resolution %J J. Mol. Biol. %V 208 %P 679-? %D 1989 %K 2PHH %A H.A. Schreuder %A J.M. van\0der\0Laan %A W.G.J. Hol %A J. Drenth %T Crystal structure of \f2p\f1-hydroxybenzoate hydroxylase complexed with its reaction product 3,4-dihydroxybenzoate %J J. Mol. Biol. %V 199 %P 637-? %D 1988 %K PDB1PHH 2PHH %A E. Schr\(:oder %A C. Phillips %A E. Garman %A K. Harlos %A C. Crawford %T X-ray crystallographic structure of a papain-leupeptin complex %J FEBS Letts. %V 315 %P 38-42 %D 1993 %K Schroder %A R.R. Schr\(:oder %A D.J. Manstein %A W. Jahn %A H. Holden %A I Rayment %A K.C. Holmes %A J.A. Spudich %T Three-dimensional atomic model of F-actin decorated with \f2Dictostelium\f1 myosin S1 %J Nature %V 364 %P 171-174 %D 1993 %K Schroder %A G.D. Schuler %A S.F. Alstchul %A D.J. Lipman %T A workbench for multiple alignment construction and analysis %J Proteins %V 9 %P 180-190 %D 1991 %A S.C. Schultz %A G.C. Shields %A T.A. Steitz %T Crystal structure of a CAP-DNA complex: the DNA is bent by 90\(de %J Science %V 253 %P 1001-1007 %D 1991 %A G. Schulz %T A critical evaluation of methods for prediction of protein secondary structures %J Annu. Rev. Biochem. Biophys. Chem. %V 17 %P 1-21 %D 1988 %A G.E. Schulz %J J. Mol. Evol. %V 9 %D 1977 %P 339-342 %T Recognition of phylogenetic relationships from polypeptide chain fold similarities %A G.E. Schulz %T Structural rules for globular proteins %J Angew. Chem. Int. ed. %V 16 %P 23-33 %D 1977 %A G.E. Schulz %T Gene duplication in glutathione reductase %J J. Mol. Biol. %V 138 %P 335-347 %D 1980 %K 3GRS %A G.E. Schulz %T Protein differentiation: emergence of novel proteins during evolution %J Angew. Chem. Int. Ed. %V 20 %P 143-151 %D 1981 %A G.E. Schulz %T Structural and functional relationships in the adenylate kinase family %J Cold Spring Harbor Symp. Quant. Biol. %V 52 %P 429-? %D 1987 %K 1AK3 %A G.E. Schulz %T Domain motions in proteins %J Curr. Opin. Struct. Biol. %V 1 %P 883-888 %D 1991 %A G.E. Schulz %T Binding of nucleotides by proteins %J Curr. Opin. Struct. Biol. %V 2 %P 61-67 %D 1992 %A G.E. Schulz %A C.D. Barry %A J. Friedman %A G.D. Fasman %A P.Y. Chou %A A.V. Finkelstein %A V.I. Lim %A O.B. Ptitsyn %A E.A. Kabat %A T.T. Wu %A M. Levitt %A B. Robson %A K. Nagano %J Nature %V 250 %D 1974 %P 140-142 %T Comparison of predicted and experimentally determined secondary structure of adenyl kinase %K prediction comparison secondary structure %A G.E. Schulz %A M. Elzinga %A F. Marx %A R.H. Schirmer %T Three-dimensional structure of adenylate kinase %J Nature %V 250 %P 120-123 %D 1974 %K 3ADK %A G.E. Schulz %A C.W. Muller %A K. Diederichs %T Induced-fit movements in adenylate kinase %J J. Mol. Biol. %V 213 %P 627-? %D 1990 %K 1AK3 %A G.E. Schulz %A E.F. Pai %A W. Sachsenheimer %A R.H. Schirmer %T Structural comparison of the flavoenzyme glutathione reductase with other proteins %B Biomolecular, structure, conformation, function and evolution %P 33-38 %V 1 %E R. Srinivasan %I Pergamon Press %C Oxford %A G.E. Schulz %A E. Schiltz %A A.G. Tomasselli %A R. Frank %A M. Brune %A A. Wittinghofer %A R.H. Schirmer %T Structural relationships in the adenylate kinase family %J Eur. J. Biochem. %V 161 %P 127-132 %D 1986 %K 3ADK 1AK3 %A G.E. Schulz %A R.H. Schirmer %T Topological comparison of adenylate kinase with other proteins %J Nature %V 250 %P 142-144 %D 1974 %K 3ADK %A G.E. Schulz %A R.H. Schirmer %T Principles of Protein Structure %I Springer-Verlag %C New York %D 1979 %K protein structure %A G.E. Schulz %A R.H. Schirmer %A E.F. Pai %T FAD-binding site of glutathione reductase %J J. Mol. Biol. %V 160 %P 287-? %D 1982 %K 3GRS %A G.E. Schulz %A R.H. Schirmer %A W. Sachsenheimer %A E.F. Pai %T The structure of the flavoenzyme glutathione reductase %J Nature %V 273 %P 120-124 %D 1978 %K 3GRS %A G.E. Schulz %A H. Zappe %A D.J. Worthington %A M.A. Rosemeyer %T Crystals of human erythrocyte glutathione reductase %J FEBS Lett. %V 54 %P 86-? %D 1975 %K 3GRS %A C.E. Schutt %J Nature %P 381-381 %T Protein structure: what's left out tells the story %V 334 %D 1988 %A C.E. Schutt %A J.C. Myslik %A M.D. Rozycki %A N.C.W. Goonesekere %A U. Lindberg %T The structure of crystalline profilin-\(*b-actin %J Nature %V 365 %P 810-816 %D 1993 %A C. Schwabe %J Trends Biochem. Sci. %P 280-283 %T On the validity of molecular evolution %V 11 %D 1986 %K TIBS %A D.E. Schwartz %A R. Tizard %A W. Gilbert %J Cell %V 32 %D 1983 %P 853-869 %T Nucleotide sequence of Rous sarcoma virus %K sequence RSV retrovirus %A T. Schweins %A R. Langen %A A. Warshel %T Why have mutagenesis studies not located the general base in ras p21 %J Nature Struct. Biol. %V 1 %P 476-484 %D 1994 %A H.-P. Sch\(a:r %A J.P. Priestle %A M.G. Gr\(u:tter %T Crystallization and preliminary X-ray difraction studies of recombinant human interleukin-1\(*b %J J. Biol. Chem. %V 262 %P 13724-? %D 1987 %K 2I1B Schar Grutter %A H.-P. Sch\(a:r %A H. Zuber %A M.G. Rossmann %T Crystallization of lactate dehydrogenase from \f2Bacillus stearothermophilus\f1 %J J. Mol. Biol. %V 154 %P 349-351 %D 1982 %K 1LDB Schar %A D.L. Scott %A Z. Otwinowski %A M.H. Gelb %A P.B. Sigler %T Crystal structure of bee-venom phospholipase A\d\s-42\s0\u in a complex with a transition-state analogue %J Science %V 250 %P 1563-1566 %D 1990 %A D.L. Scott %A S.P. White %A J.L. Browning %A J.J. Rosa %A M.H. Gelb %A P.B. Sigler %T Structures of free and inhibited human secretory phospholipase A\d\s-42\s0\u from inflammatory exudate %J Science %V 245 %P 1007-1010 %D 1991 %A J.K. Scott %T Discovering peptide ligands using epitope libraries %J Trends Biochem. Sci. %V 17 %P 241-245 %D 1992 %A M.P. Scott %A J.W. Tamkun %A G.W. Hartzell %T The structure and function of the homeodomain %J Biochim. Biophys. Acta %V 989 %D 1989 %P 25-48 %A H. Scouloudi %T A preliminary comparison of metmyoglobin molecules from seal and sperm whale %J J. Mol. Biol. %V 126 %P 661-? %D 1978 %K 1MBS %A H. Scouloudi %A E.N. Baker %T X-ray crystallographic studies of seal myoglobin: The molecule at 2.5\(Ao resolution %J J. Mol. Biol. %V 126 %P 637-? %D 1978 %K PDB1MBS %A M.C. Scrutton %A M.F. Utter %J J. Biol. Chem. %P 3714-3723 %T Pyruvate carboxylase: V. interaction of the enzyme with adenosine triphosphate %V 240 %D 1965 %A N.S. Scrutton %A A. Berry %A R.N. Perham %T Redesign of the coenzyme specificity of a dehydrogenase by protein engineering %J Nature %V 343 %D 1990 %P 38-43 %A J.L. Scully %A D.R. Evans %T Comparative modeling of mammalian aspartate transcarbamylase %J Proteins %V 9 %P 191-206 %D 1991 %A S. Seelmeier %A H. Schmidt %A V. Turk %A K. von\0der\0Helm %J Proc. Natl. Acad. Sci. USA %V 85 %D 1988 %P 6612-6616 %T Human immunodeficiency virus has an aspartic-type protease that can be inhibited by pepstatin A %K protease aspartic proteinase inhibitor pepstatin PNAS %A D.M. Segal %A G.H. Cohen %A D.R. Davies %A J.C. Powers %A P.E. Wilcox %T The stereochemistry of substrate binding to chymotrypsin A\(*g %J Cold Spring Harbor Symp. Quant. Biol. %V 36 %P 85-? %D 1972 %K 2GCH %A D.M. Segal %A E.A. Padlan %A G.H. Cohen %A S. Rudikoff %A M. Potter %A D.R. Davies %T The three-dimensional structure of a phosphorylcholine-binding mouse immunoglobulin Fab and the nature of the antigen binding site %J Proc. Natl. Acad. Sci. USA %V 71 %P 4298-4302 %D 1974 %K 1MCP PNAS %A D.M. Segal %A J.C. Powers %A G.H. Cohen %A D.R. Davies %A P.E. Wilcox %T Substrate binding site in chymotrypsin A\(*g, crystallographic study using peptide chloromethyl ketones as site-specific inhibitors %J Biochemistry %V 10 %P 3728-? %D 1971 %K 2GCH %A S. Segawa %A F.M. Richards %J Biopolymers %P 23-40 %T Identification of regions of potential flexibility in protein structures: folding units and correlations with intron positions %V 27 %D 1988 %A J.P. Segrest %A H. de\0Loof %A J.G. Dohlman %A C.G. Brouillette %A G.M. Anantharamaiah %T Amphipathic helix motif: classes and properties %J Proteins %V 8 %P 103-117 %D 1990 %O \f2Erratum, ibid\f1, \f39\f1, 79, 1991 %A M. Seiki %A S. Hattori %A Y. Hirayama %A M. Yoshida %J Proc. Natl. Acad. Sci. USA %V 80 %D 1983 %P 3618-3622 %T Human adult T-cell leukemia virus: complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA %K sequence HTLV retrovirus PNAS %A P.H. Sellers %J J. Comb. Theor. %P 253-258 %T An algorithm for the distance between two finite sequences %V A16 %D 1974 %A P.H. Sellers %J SIAM J. Appl. Math. %P 787-792 %T On the theory and computation of evolutionary distances %V 26 %D 1974 %A P.H. Sellers %J Proc. Natl. Acad. Sci. USA %P 3041-3041 %T Pattern recognition in genetic sequences %V 76 %D 1979 %K PNAS %A P.H. Sellers %J J. Algorithms %V 1 %P 359-373 %T The theory and computation of evolutionary distances: pattern recognition %D 1980 %A M.E. Selsted %A S.S.L. Harwig %J J. Biol. Chem. %V 264 %D 1989 %P 4003-4007 %T Determination of the disulphide array in the human defensin HNP-2 %K sequence structure defensin %A P. Sepulveda %A J. Marciniszyn,\0Jr. %A D. Liu %A J. Tang %J J. Biol. Chem. %V 250 %D 1975 %P 5082-5088 %T Primary structure of porcine pepsin %A Y.U. Sergeev %A Y.N. Chirgadze %A S.E. Mylvaganam %A H. Driessen %A C. Slingsby %A T.L. Blundell %J Proteins %V 4 %D 1988 %P 137-147 %T Surface interactions of \(*g-crystallins in the crystal medium to their association in the eye lens %K interactions surface %A L. Serrano %A A.R. Fersht %T Capping and \(*a-helix stability %J Nature %V 342 %D 1989 %P 296-299 %K alpha helix helix capping protein structure %A L. Serrano %A J.-L. Neira %A J. Sancho %A A.R. Fersht %T Effect of alanine versus glycine in \(*a-helices on protein stability %J Nature %V 356 %P 453-455 %D 1992 %A T.P. Seshadri %A A. Tulinsky %A E. Skrzypczak-Jankun %A C.H. Park %T Structure of bovine prothrombin fragment 1 refined at 2.25\(Ao resolution %J J. Mol. Biol. %V 220 %P 481-494 %D 1991 %A R.B. Sessions %A D.J. Osguthorpe %A P. Dauber-Osguthorpe %T Conformational falexibility of manxane revealed by adiabatic mapping, normal mode analysis, and molecular dynamics %J J. Phys. Chem. %V 99 %P 9034-9044 %D 1995 %A Y. Seto %A Y. Ikeuchi %A M. Kanehisa %T Fragment peptide library for classification and functional prediction of proteins %J Proteins %V 8 %P 341-351 %D 1990 %A J. Sevcik %A R.G. Sanishvili %A A.G. Pavlovsky %A K.M. Polyakov %T Comparison of active sites of some microbial ribonucleases: Structural basis of guanylic specificity %J Trends Biochem. Sci. %V 15 %P 158-162 %D 1990 %A B. Shaanan %T The iron-oxygen bond in human oxyhaemoglobin %J Nature %V 296 %P 683-684 %D 1982 %K 1HHO %A B. Shaanan %T Structure of human oxyhaemoglobin at 2.1\(Ao resolution %J J. Mol. Biol. %V 171 %P 31-59 %D 1983 %K PDB1HHO %A B. Shaanan %A A.M. Gronenborn %A G.H. Cohen %A G.L. Gilliland %A B. Veerapandian %A D.R. Davies %A G.M. Clore %T Combining experimental information from crystal and solution studies: Joint X-ray and NMR refinement %J Science %V 257 %P 961-964 %D 1992 %A B. Shaanan %A H. Lis %A N. Sharon %T Structure of a legume lectin with an ordered N-linked carbohydrate %J Science %V 254 %P 862-866 %D 1991 %A Z. Shaked %A R.P. Szajewski %A G.M. Whitesides %T Rates of thiol-disulphide interchange reactions involving proteins and kinetic measurements of thiol pK\d\s-2a\s0\u values %J Biochemistry %P 4156-4166 %V 19 %D 1980 %A E.I. Shakhnovich %A A.M. Gutin %T Implications of thermodynamics of protein folding for evolution of primary sequences %J Nature %V 346 %D 1990 %P 773-775 %A Z. Shakked %A D. Rabinovich %A W.B.T. Cruse %A E. Egert %A O. Kennard %A G. Sala %A S.A. Salisbury %A M.A. Viswamitra %T Crystalline A-DNA: the X-ray analysis of the fragment d(G-G-T-A-T-A-C-C) %J Proc. Roy. Soc. Lond. %V B 213 %P 479-? %D 1981 %K 0AN8 0ANB %A Z. Shakked %A D. Rabinovich %A O. Kennard %A W.B.T. Cruse %A S.A. Salisbury %A M.A. Viswamitra %T Sequence-dependent conformation of an A-DNA double helix: the crystal structure of the octamer d(G-G-T-A-T-A-C-C) %J J. Mol. Biol. %V 166 %P 183-? %D 1983 %K 0AN8 0ANB %A H.L. Sham %A G. Bolis %A H.H. Stein %A S.W. Fesik %A P.A. Marcotte %A J.J. Plattner %A C.A. Rempel %A J. Greer %T Renin inhibitors: design and synthesis of a new class of conformationally restricted analogs of angiotensinogen %J J. Med. Chem. %V 31 %P 284-295 %D 1987 %A C.E. Shannon %A W. Weaver %B The mathematical theory of communication %I University of Illinois Press %C Urbana %D 1949 %A L. Shapiro %A A.M. Fannon %A P.D. Kwong %A A. Thompson %A M.S. Lehman %A G. Grubel %A J.-F. Legrand %A J. Als-Nielsen %A D.R. Colman %A W.A. Hendrickson %T Structural basis of cell-cell adhesion by cadherins %J Nature %V 374 %P 327-337 %D 1995 %A L. Shapiro %A A.M. Fannon %A P.D. Kwong %A A. Thompson %A M.S. Lehmann %A G. Gr\(u:bel %A J.F. Legrand %A J. Als-Nielsen %A D.R. Colman %A W.A. Hendrickson %T Structural basis of cell-cell adhesion by cadherins %J Nature %V 374 %P 327-337 %D 1995 %A J. Sharon %T Structural characterization of idiotypes by using antibody variants generated by site directed mutagenesis %J J. Immunol. %V 144 %P 4863-4869 %D 1990 %A J. Sharon %T Structural correlates of high antibody affinity: Three engineered amino acid substitutions can increase the affinity of an anit-\f2p\f1-azophenylarsonate antibody 200 fold %J Proc. Natl. Acad. Sci. USA %V 87 %P 4814-4817 %D 1990 %K PNAS %A N. Sharon %T Lectin-carbohydrate complexes of plants and animals: An atomic view %J Trends Biochem. Sci. %V 18 %P 221-226 %D 1993 %A J. Vidgren %A L.A. Svensson %A A. Liljas %T Crystal structure of catechol O-methyltransferase %J Nature %V 368 %P 354-358 %D 1994 %A P.J. Shaw %A H. Muirhead %T The active site of glucose phosphate isomerase %J FEBS Lett. %V 65 %P 50-? %D 1976 %K 1PGI %A P.J. Shaw %A H. Muirhead %T Crystallographic structure analysis of glucose 6-phosphate isomerase at 3.5\(Ao resolution %J J. Mol. Biol. %V 109 %P 475-? %D 1977 %K PDB1PGI %A W.V. Shaw %A A.G.W. Leslie %T Chloramphenicol acetyltransferase %J Annu. Rev. Biophys. Biophys. Chem. %V 20 %P 363-? %D 1991 %K 4CLA %A V.I. Shcherbak %J J. Theor. Biol. %P 121-124 %T The co-operative symmetry of the genetic code %V 132 %D 1988 %A P.S. Shenkin %A B. Erman %A L.D. Mastrandrea %T Information-theoretical entropy as a measure of sequence variability %J Proteins %V 11 %P 297-313 %D 1991 %A P.S. Shenkin %A D.L. Yarmush %A R.M. Fine %A H. Wang %A C. Levinthal %T Predicting antibody hypervariable loop conformation: I. ensembles of random conformations for ring-like structures %J Biopolymers %V 26 %P 2053-2085 %D 1987 %A R.P. Sheridan %A J.S. Dixon %A R. Venkataraghavan %J Int. J. Pept. Prot. Res. %P 132-143 %T Generating plausible protein folds by secondary structure similarity %V 25 %D 1985 %A R.P. Sheridan %A R. Venkataraghavan %T A systematic search for protein signature sequences %J Proteins %V 14 %P 16-28 %D 1992 %A S. Sheriff %A W.A. Hendrickson %T Description of overall anisotropy in diffraction from macromolecular crystals %J Acta Cryst. %V A 43 %P 118-? %D 1987 %K 2MHR %A S. Sheriff %A W.A. Hendrickson %T Location of iron and sulfur atoms in myohemerythrin from anomalous-scattering measurements %J Acta Cryst. %V B 43 %P 209-? %D 1987 %K 2MHR %A S. Sheriff %A W.A. Hendrickson %A J.L. Smith %T Structure of the active center of hemerythrins %J Life Chem. Rep., Suppl. Ser. %V 1 %P 305-? %D 1983 %K 2MHR %A S. Sheriff %A W.A. Hendrickson %A J.L. Smith %T Structure of myohemerythrin in the azidomet state at 1.7/1.3\(Ao resolution %J J. Mol. Biol. %V 197 %P 273-? %D 1987 %K PDB2MHR %A S. Sheriff %A W.A. Hendrickson %A R.E. Stenkamp %A L.C. Sieker %A L.H. Jensen %T Influence of solvent accessibility and intermolecular contacts on atomic mobilities in hemerythrins %J Proc. Natl. Acad. Sci. USA %V 82 %P 1104-1107 %D 1985 %K 2MHR PNAS %A S. Sheriff %A J.R. Herriott %T Structure of ferredoxin-NADP\u\s-4\(pl\s0\d oxidoreductase and the location of the NADP binding site %J J. Mol. Biol. %P 441-451 %V 145 %D 1981 %K 1FNR 2FNR %A S. Sheriff %A E.W. Silverton %A E.A. Padlan %A G.H. Cohen %A S.J. Smith-Gill %A B.C. Finzel %A D.R. Davies %T Three-dimensional structure of an antibody-antigen complex %J Proc. Natl. Acad. Sci. USA %V 84 %P 8075-8079 %D 1987 %K PDB2HFL PNAS %A M.A. Sherman %A M.B. Bolger %T Haloperidol binding to monoclonal antibodies %J J. Biol. Chem. %V 263 %D 1988 %P 4064-4074 %K modelling immunoglobulin antibody %A J.G. Shewale %A J. Tang %J Proc. Natl. Acad. Sci. USA %V 81 %D 1984 %P 3703-3707 %T Amino acid sequence of porcine spleen cathepsin D %K sequence aspartic proteinase PNAS %A H.H.-L. Shih %A J. Brady %A M. Karplus %T Structure of proteins with single site mutations: a minimum perturbation approach %J Proc. Natl. Acad. Sci. USA %V 82 %D 1985 %P 1697-1700 %K PNAS %A M.-C. Shih %A P. Heinrich %A H.M. Goodman %T Intron existence predated the divergence of eukaryotes and prokaryotes %J Science %V 242 %P 1164-1166 %D 1988 %A L. Shimoni %A J.P. Glusker %T Hydrogen bonding motifs of protein side chains: Descriptions of binding of arginine and amide groups %J Prot. Sci. %V 4 %P 65-74 %D 1995 %A K. Shimotohno %A Y. Takahashi %A N. Shimuzi %A T. Gojobori %A D.W. Golde %A I.S.Y. Chen %A M. Miwa %A T. Sugimura %J Proc. Natl. Acad. Sci. USA %V 82 %D 1985 %P 3101-3105 %T Complete nucleotide sequence of an infectious clone of human T-cell leukemia virus type II: an open reading frame for the protease gene %K sequence retrovirus HTLV PNAS %A A. Shimuza %A I. Tepler %A P.N. Benfey %A E.H. Berenstein %A R.P. Siraganian %A P. Leder %T Human and rat mast cell high-affinity immunoglobulin E receptors: Characterization of putative \(*a-chain gene products %J Proc. Natl. Acad. Sci. USA %V 85 %P 1907-1911 %D 1988 %A W. Shinkai %A T. Hase %A T. Yagi %A H. Matsubara %T Amino acid sequence of cytochrome \f2c\f1\d\s-23\s0\u from \f2Desulfovibrio vulgaris, miyazaki\f1 %J J. Biochem. (Tokyo) %V 87 %P 1747-? %D 1980 %K 2CDV %A T.M. Shinnick %A R.A. Lerner %A J.G. Sutcliffe %J Nature %V 293 %D 1981 %P 543-548 %T Nucleotide sequence of Moloney murine leukemia virus %K sequence retrovirus %A L.L. Shipman %A R.E. Christoffersen %J J. Am. Chem. Soc. %P 1408-1416 %T \f2Ab initio\f1 calculation on large molecules using molecular fragments: model peptides studies %V 95 %D 1972 %A Y. Shirakihara %A P.R. Evans %T Crystal structure of the complex of phosphofructokinase from \f2Escherichia coli\f1 with its reaction products %J J. Mol. Biol. %V 204 %P 973-? %D 1988 %K PDB1PFK %A S.V. Shlyapnikov %A A.N. Myasnikov %A E.S. Severin %A M.A. Myagkova %A Y.M. Torchinsky %A A.E. Braunstein %T Primary structure of cytoplasmic aspartate aminotransferase from chicken heart and its homology with pig heart isoenzymes %J FEBS Lett. %V 106 %P 385-? %D 1979 %K 1AAT %A K.R. Shoemaker %A P.S. Kim %A E.J. York %A J.M. Stewart %A R.L. Baldwin %T Test of the helix dipole model for stabilization of \(*a-helices %J Nature %V 326 %D 1987 %P 563-567 %K protein structure helix dipole helix stability %A M. Shoham %A A. Yonath %A J.L. Sussman %A J. Moult %A W. Traub %A A.J. Kalb %T Crystal structure of demetallized concanavalin A: The metal-binding region %J J. Mol. Biol. %V 131 %P 137-? %D 1979 %K PDB1CN1 %A B.K. Shoichet %A I.D. Kuntz %T Protein docking and complementarity %J J. Mol. Biol. %V 221 %P 327-346 %D 1991 %A B.K. Shoichet %A I.D. Kuntz %T Matching chemistry and shape in molecular docking %J Prot. Eng. %V 6 %P 723-732 %D 1993 %A B.K. Shoichet %A R.M. Stroud %A D.V. Santi %A I.D. Kuntz %A K.M. Perry %T Structrue-based discovery of inhibitors of thymidylate synthase %J Science %V 259 %P 1445-1450 %D 1993 %A K.M. Shokat %A P.G. Schulz %T Catalytic antibodies %J Annu. Rev. Immunol. %J 8 %P 335-364 %D 1990 %A D. Shortle %T Probing the determinants of protein folding and stability with amino acid substitutions %J J. Biol. Chem. %V 264 %D 1989 %P 5315-5318 %K mutation protein folding denaturation free energy %A D. Shortle %T Protein fold recognition %J Nature Struct. Biol. %V 2 %P 91-93 %D 1995 %A D. Shortle %A A.K. Meeker %T Residual structure in large fragments of staphylococcal nuclease: Effects of amino acid substitutions %J Biochemistry %V 28 %P 936-944 %D 1989 %A D.M. Shotton %A B.S. Hartley %T Amino-acid sequence of porcine pancreatic elastase and its homologies with other serine proteinases %J Nature %V 225 %P 802-816 %D 1970 %K 1EST %A D.M. Shotton %A H.C. Watson %J Nature %V 225 %D 1970 %P 811-816 %T Three-dimensional structure of tosyl-elastase %K structure serine proteinase elastase %A A. Shrake %A J.A. Rupley %J J. Mol. Biol. %V 79 %D 1973 %P 351-371 %T Environment and exposure to solvent of protein atoms: lysozyme and insulin %K surface area protein structure %A B.L. Sibanda %A T.L. Blundell %A P.M. Hobart %A M. Fogliano %A J.S. Bindra %A B.W. Dominy %A J.M. Chirgwin %T Computer graphics modelling of human renin %J FEBS Lett. %V 174 %D 1984 %P 102-111 %K modelling aspartic proteinase renin %A B.L. Sibanda %A T.L. Blundell %A J.M. Thornton %T Conformation of \(*b-hairpins in protein structures: a systematic classification with applications to modelling by homology, electron density fitting and protein engineering %J J. Mol. Biol. %V 206 %D 1989 %P 759-777 %K beta hairpins protein structure prediction classification %A B.L. Sibanda %A A.M. Hemmings %A T.L. Blundell %T Computer graphics modelling and the subsite specificities of human and mouse renins %B Aspartic proteinases and their inhibitors %E V. Kostka %P 339-349 %C Berlin %I Walter de\0Gruyter %D 1985 %A B.L. Sibanda %A J.M. Thornton %T \(*b-hairpin families in globular proteins %J Nature %V 316 %D 1985 %P 170-174 %K beta hairpins classification protein structure %A B.L. Sibanda %A J.M. Thornton %T Conformation of \(*b-hairpins in homologous protein structures: Classification and diversity in homologous structures %J Methods Enzymol. %V 202 %P 59-82 %D 1991 %A P.R. Sibbald %A P. Argos %T Weighting aligned protein or nucleic acid sequences to correct for unequal representation %J J. Mol. Biol. %V 216 %P 813-818 %D 1990 %A P.R. Sibbald %A P. Argos %T \s-1SCRUTINEER\s0: A computer program that flexibly seeks and describes motifs and profiles in protein sequence databases %J CABIOS %V 6 %P 279-288 %D 1990 %A L.C. Sieker %A L.H. Jensen %A B.C. Pickril %A J. Le\0Gall %T Crystallographic study of rubredoxin from the bacterium \f2Desulfovibrio desulfuricans\f1 strain 27774 %J J. Mol. Biol. %V 171 %P 101-? %D 1983 %K 6RXN %A L.C. Sieker %A R.E. Stenkamp %A L.H. Jensen %A B. Prickril %A J. Le\0Gall %T Structure of rubredoxin from the bacterium \f2Desulfovibrio desulfuricans\f1 %J FEBS Lett. %V 208 %P 73-? %D 1986 %K 6RXN %A A.R. Sielecki %A A.A. Fedorov %A A. Boodhoo %A N.S. Andreeva %A M.N.G. James %T Molecular and crystal structures of monoclinic porcine pepsin refined at 1.8\(Ao resolution %J J. Mol. Biol. %D 1990 %V 214 %P 143-170 %K PDB4PEP %A A.R. Sielecki %A M. Fujinaga %A R.J. Read %A M.N.G. James %T Refined structure of porcine pepsinogen at 1.8\(Ao resolution %J J. Mol. Biol. %V 219 %P 671-692 %D 1991 %A A.R. Sielecki %A K. Hayakawa %A M. Fujinaga %A M.E.P. Murphy %A M. Fraser %A A.K. Muir %A C.T. Carilli %A J.A. Lewicki %A J.D. Baxter %A M.N.G. James %T Structure of recombinant human renin a target for cardiovascular-active drugs at 2.5\(Ao resolution %J Science %V 243 %D 1989 %P 1346-1350 %K modelling aspartic proteinase renin %A A.R. Sielecki %A W.A. Hendrickson %A C.G. Broughton %A L.T.J. Delbaere %A G.D. Brayer %A M.N.G. James %T Protein structure refinement: \f2Streptomyces griseus\f1 serine protease A at 1.8\(Ao resolution %J J. Mol. Biol. %V 134 %P 781-804 %D 1979 %K 3SGA 4SGA 5SGA %A A. Sielecki %A A. Yonath %T Conformational adjustment to substrate binding in crystals of triclinic lysozyme %B Biomolecular structure, conformation, function, and evolution %E R. Srinivasan %P 201-204 %V 1 %I Pergamon Press %C Oxford %D 1978 %A R.J. Siezen %A W.M. de\0Vos %A J.A.M. Leunissen %A B.W. Dijkstra %T Homology modelling and protein engineering strategy of subtilases, the family of subtilisin-like serine proteinases %J Prot. Eng. %V 4 %P 719-737 %D 1991 %A I.S. Sigal %T A structure and some function %J Nature %V 332 %P 485-486 %D 1988 %A P.B. Sigler %T Acid blobs and negative noodles %J Nature %V 333 %P 210-212 %D 1988 %K transcriptional-activation DNA-binding %A P.B. Sigler %A D.M. Blow %A B.W. Matthews %A R. Henderson %T Structure of crystalline \(*g-chymotrypsin: II. a preliminary report including a hypothesis for the activation mechanism %J J. Mol. Biol. %V 35 %P 143-? %D 1968 %K 2CHA %A P.B. Sigler %A H.C.W. Skinner %A C.L. Coulter %A J. Kallos %A H. Braxton %A D.R. Davies %T The isomorphous heavy-atom substitution at the active site of \(*g chymotrypsin %J Proc. Natl. Acad. Sci. USA %V 51 %P 1146-? %D 1964 %K 2GCH PNAS %A G. Signor %A M. Matsumura %A J.A. Schellman %A B.W. Matthews %T Engineering of multiple disulfide bonds dramatically stabilizes T4 lysozyme %B Current research in protein chemistry: Techniques, structure, and function %D 1990 %P 435-447 %A G. Signor %A C. Vita %A A. Fontana %A F. Frigerio %A M. Bolognesi %A S. Toma %A R. Gianna %A E. de\0Gregoriis %A G. Grandi %T Structural features of neutral protease from \f2Bacillus subtilis\f1 deduced from model-building and limited proteolysis experiments %J Eur. J. Biochem. %V 189 %D 1990 %P 221-227 %K modelling metalloproteinase thermolysin %A A. Sikorski %A J. Skolnick %T Monte Carlo simulation of equilibrium globular protein folding \(*a-helical bundles with long loops %J Proc. Natl. Acad. Sci. USA %V 86 %D 1989 %P 2668-2672 %K PNAS %A A.M. Silva %A M.G. Rossmann %T The refinement of southern bean mosaic virus in reciprocal space %J Acta Cryst. %V B 41 %P 147-? %D 1985 %K PDB4SBV %A M.L. Silver %A H.-C. Guo %A J.L. Strominger %A D.C. Wiley %T Atomic structure of a human MHC molecule presenting an influenza virus peptide %J Nature %V 360 %P 367-369 %D 1992 %A M.S. Silver %A M.N.G. James %J Biochemistry %P 3177-3182 %T Enzyme-catalyzed condensation reactions which initiate rapid peptic cleavage of substrates: 1. How the structure of an activating peptide determines its efficiency %V 20 %D 1981 %A M.S. Silver %A M.N.G. James %J Biochemistry %P 3183-3189 %T Enzyme catalyzed condensation reactions which initiate rapid peptic cleavage of substrates: 2. Proof of mechanism for three examples %V 20 %D 1981 %A E.W. Silverton %A M.A. Navia %A D.R. Davies %T Three-dimensional structure of an intact human immunoglobulin %J Proc. Natl. Acad. Sci. USA %V 74 %P 5140-? %D 1977 %K 0IG1 %A E.W. Silverton %A E.A. Padlan %A D.R. Davies %A S. Smith-Gill %A M. Potter %T Crystalline monoclonal antibody Fabs complexed to hen egg white lysozyme %J J. Mol. Biol. %V 180 %P 761-765 %D 1984 %K 3HFM %A G.A. Sim %T A note on the heavy atom method %J Acta Cryst. %V 13 %P 511-512 %D 1960 %A P.-S. Sim %A D.R.H. Fayle %A W.F. Doe %A R.W. Stephens %J Eur. J. Biochem. %V 158 %D 1986 %P 537-542 %T Monoclonal antibodies inhibitory to human plasmin %K antibody plasmin proenzyme urokinase %A I. Simon %J J. Theor. Biol. %P 247-258 %T Investigation of protein folding: uneven distribution af point mutations along polypeptide chains %V 81 %D 1979 %A I. Simon %J J. Theor. Biol. %P 487-493 %T Possible mechanism for the dynamic stabilisation of protein structure %V 90 %D 1981 %A I. Simon %J J. Theor. Biol. %P 703-710 %T Investigation of protein refolding: a special feature of native structure responsible for refolding ability %V 113 %D 1985 %A I. Simon %A B. Asboth %T Subunit contact surface \(em an additional argument in favour of continuous folding during biosynthesis of proteins %J J. Theor. Biol. %P 685-688 %V 82 %D 1980 %A I. Simon %A L. Glasser %A H.A Scheraga %T Calculation of protein conformation as an assembly of stable overlapping segments: Application to bovine pancreatic trypsin inhibitor %J Proc. Natl. Acad. Sci. USA %V 88 %P 3661-3665 %D 1991 %K PNAS %A R.I. Simon %A R.S. Kania %A R.N. Zuckermann %A V.D. Huebner %A D.A. Jewell %A S. Banville %A S. Ng %A L. Wang %A S. Rosenberg %A C.K. Marlowe %A D.C. Spellmeyer %A R. Tan %A A.D. Frankel %A D.V. Santi %A F.E. Cohen %A P.A. Bartlett %T Peptoids: A modular approach to drug discovery %J Proc. Natl. Acad. Sci. USA %V 89 %P 9367-9371 %D 1992 %A T. Simonson %A A.T. Br\(u:nger %T Thermodynamics of protein peptide interactions in the ribonuclease-S system studied by molecular dynamics and free energy calculations %J Biochemistry %V 31 %P 8661-8674 %D 1992 %K Brunger %A P.T. Singer %A A. Smalas %A R.P. Carty %A W.F. Mangel %A R.M. Sweet %T The hydrolytic water molecule in trypsin, revealed by time-resolved Laue crystallography %J Science %P 259 %P 669-673 %D 1993 %A J. Singh %A J. Saldanha %A J.M. Thornton %T A novel method for the modelling of peptide ligands to their receptors %J Prot. Eng. %V 4 %P 251-261 %D 1991 %A J. Singh %A J.M. Thornton %T The interaction between phenylalanine rings in proteins %J FEBS Lett. %D 1985 %V 191 %P 1-6 %A J. Singh %A J.M. Thornton %T \s-2SIRIUS\s0: an automated method for the analysis of the preferred packing arrangements between protein groups %J J. Mol. Biol. %V 211 %D 1990 %P 595-615 %K sidechains packing prediction modelling %A J. Singh %A J.M. Thornton %T Atlas of protein side-chain interactions %I IRL Press %C Oxford %D 1992 %O Volumes 1 and 2 %A J. Singh %A J.M. Thornton %A M. Snarey %A S.F. Campbell %T The geometries of interacting arginine-carboxyls in proteins %J FEBS Lett. %V 224 %P 161-171 %D 1987 %A O.M.P. Singh %A E.M.J. Roud\0Mayne %A M.P. Weir %T Dimerisation of the HIV-1 protease: preliminary analysis using gel permeation electrophoresis %B Retroviral proteases: Control of maturation and morphogenesis %E L.H. Pearl %I Macmillan Press %D 1990 %P 73-78 %C Basingstoke %Z chapter 8 %A T.P. Singh %A W. Bode %A R. Huber %T Low-temperature protein crystallography: Temperature factor, mosaic spread, extinction and diffuse scattering in two examples, bovine trypsinogen and Fc fragment %J Acta Cryst. %V B 36 %P 621-? %D 1980 %K 1TGB %A U.C. Singh %T Probing the salt bridge in the dihydrofolate reductase-methotrexate complex by using the coordinate-coupled free-energy perturbation method %J Proc. Natl. Acad. Sci. USA %V 85 %P 4280-4284 %D 1988 %A U.C. Singh %A S.J. Benkovic %T A free-energy perturbation study of the binding of methotrexate to mutants of dihydrofolate reductase %J Proc. Natl. Acad. Sci. USA %V 85 %P 9519-9523 %D 1988 %A U.C. Singh %A F.K. Brown %A P.A. Bash %A P.A. Kollman %T An approach to the application of free energy perturbation methods using molecular dynamics %J J. Amer. Chem. Soc. %V 109 %P 1607-1614 %D 1987 %A U.C. Singh %A F.K. Brown %A P.A. Bash %A P.A. Kollman %T An approach to the application of free energy perturbation method using molecular dynamics %J J. Am. Chem. Soc. %V 109 %D 1987 %P 1607-1614 %A M. Sippl %T Calculation of conformational ensembles from potentials of mean force: an approach to the knowledge-based prediction of local structures in globular proteins %J J. Mol. Biol. %D 1990 %V 213 %P 859-883 %A M.J. Sippl %J J. Mol. Biol. %V 156 %P 359-388 %T On the problem of comparing protein structures: development and applications of a new method for the assessment of structural similarity %D 1982 %A M.J. Sippl %T Recognition of errors in three-dimensional structures of proteins %J Proteins %V 17 %P 355-362 %D 1993 %A M.J. Sippl %A H. Flockner %T Threading thrills and spills %J Structure %V 4 %P 15-19 %D 1996 %A M.J. Sippl %A H.A. Scheraga %J Proc. Natl. Acad. Sci. USA %P 2283-2287 %T Cayley-Menger coordinates %V 83 %D 1986 %K PNAS %A M.J. Sippl %A S. Weitckus %T Detection of native-like models for amino acid sequences of unknown three-dimensional structure in a data base of known protein conformations %J Proteins %V 13 %P 258-271 %D 1992 %A T.K. Sixma %A S.E. Pronk %A K.H. Kalk %A B.A.M. van\0Zanten %A A.M. Berghuis %A W.G.J. Hol %T Lactose binding to heat-labile enterotoxin revealed by X-ray crystallography %J Nature %V 355 %P 561-564 %D 1992 %A T.K. Sixma %A S.E. Pronk %A K.H. Kalk %A E.S. Wartna %A B.A.M van\0Zanten %A B. Witholt %A W.G.J. Hol %T Crystal structure of a cholera toxin-related heat-labile enterotoxin from \f2E. coli\f1 %J Nature %V 351 %P 371-377 %D 1991 %A L. Sjolin %A L.A. Svensson %A E. Prince %A S. Sundell %T Phase improvement in the structure interpretation of fragment TR\d\s-22\s0\u from bull testis calmodulin using combined entropy maximization and solvent flattening %J Acta Cryst. %V B 46 %P 209-? %D 1990 %K PDB1TRC %A M. Sjostrom %A S. Wold %J J. Mol. Evol. %T A multivariate study of the relationship between the genetic code and the physical-chemical properties of amino acids %D 1989 %A B.-M. Sj\(o:berg %A B.-O. S\(o:derberg %T Thioredoxin induced by bacteriophage T4: crystallization and preliminary crystallographic data %J J. Mol. Biol. %V 100 %P 415-? %D 1976 %K 0TT4 Sjoberg Soderberg %A A.M. Skalka %T Retroviral proteases: first glimpses at the anatomy of a processing machine %J Cell %D 1989 %V 56 %P 911-913 %A T. Skarzynski %T Crystal structure of \(*a-dendrotoxin from the green mamba venom and its comparison with the structure of bovine pancreatic trypsin inhibitor %J J. Mol. Biol. %V 224 %P 671-683 %D 1992 %A T. Skarzynski %A P.C.E. Moody %A A.J. Wonacott %T Structure of \f2holo\f1-glyceraldehyde-3-phosphate dehydrogenase from \f2Bacillus stearothermophilus\f1 at 1.8\(Ao resolution %J J. Mol. Biol. %V 193 %P 171-145 %D 1987 %K PDB1GD1 %A T. Skarzynski %A A.J. Wonacott %T Coenzyme-induced conformational changes in glyceraldehyde-3-phosphate dehydrogenase from \f2Bacillus stearothermophillus\f1 %J J. Mol. Biol. %V 203 %P 1097-? %D 1988 %K PDB2GD1 %A H. Skelnar %A C. Etchebest %A R. Lavery %J Proteins %V 6 %D 1989 %P 46-60 %T Describing protein structure: a general algorithm yielding complete helicoidal parameters and a unique overall axis %K protein structure helix axis chain fold representation graphics %A J. Skolnick %A A. Kolinski %T Simulations of the folding of a globular protein %J Science %V 250 %P 1121-1125 %D 1990 %A J. Skolnick %A A. Kolinski %T Dynamic Monte Carlo simulations of a new lattice model of globular protein folding, structure and dynamics %J J. Mol. Biol. %V 221 %P 499-531 %D 1991 %A J. Skolnick %A A. Kolinski %T Monte Carlo simulations of the folding of \(*b-barrel globular proteins %A R. Yaris %J Proc. Natl. Acad. Sci. USA %V 85 %D 1988 %P 5057-5061 %K PNAS %A T.W.F. Slidel %A J.M. Thornton %T Chirality in Protein Structure %B Protein Folds: A Distance-Based Approach %E H. Bohr & S. Brunak %I CRC Press %C London %P 253-264 %D 1995 %A S.J. Smerdon %A T.J. Oldfield %A E.J. Dodson %A G.G. Dodson %A R.E. Hubbard %A A.J. Wilkinson %T The determination of the crystal structure of recombinant pig myoglobin by molecular replacement and refinement %J Acta Cryst. %V B 46 %P 370-? %D 1990 %K PDB1PMB %A I.E. Smiley %A R. Koekoek %A M.J. Adams %A M.G. Rossmann %T The 5\(Ao resolution structure of an abortive ternary complex of lactate dehydrogenase and its comparison with the \f2apo\f1-enzyme %J J. Mol. Biol. %V 55 %P 467-? %D 1971 %K 1LDM %A E.A. Smirnova %A V.V. Makhaldiani %A A.A. Voronova %A I.P. Kuranova %A E.G. Arutyunyan %A B.K. Vainshtein %A P. Heitmann %A W.E. Hoehne %T X-ray structural investigation of inorganic-pyrophosphatase of yeasts. I. Growth of crystals, formation of derivatives, and determination of the positions of their heavy atoms %J Sov. Phys. Cryst. (English trans.) %V 25 %P 58-? %D 1980 %K 1PYP %A J.D.G. Smit %A J.H. Ploegman %A M. Pierrot %A K.H. Kalk %A J.N. Jansonius %A J. Drenth %T The structure of rhodanese at 4\(Ao resolution: The conformation of the polypeptide chain %J Isr. J. Chem. %V 12 %P 287-? %D 1974 %K 1RHD %A C.A. Smith %A B.F. Anderson %A H.M. Baker %A E.N. Baker %T Metal substitution in transferrins: The crystal structure of human copper-lactoferrin at 2.1\(Ao resolution %J Biocehmistry %V 31 %P 4527-4533 %D 1992 %A D.L. Smith %A S.C. Almo %A M.D. Toney %A D. Ringe %T 2.8\(Ao resolution crystal structure of an active-site mutant of aspartate aminotransferase from \f2Escherichia coli\f1 %J Biochemistry %V 28 %P 8161-? %D 1989 %K 3AAT %A D.L. Smith %A D. Ringe %A W.L. Finlayson %A J.F. Kirsch %T Preliminary X-ray data for aspartate aminotransferase from \f2Escherichia coli\f1 %J J. Mol. Biol. %V 191 %P 301-? %D 1986 %K 2AAT %A G.D. Smith %A W.L. Duax %A E.J. Dodson %A G.G. Dodson %A R.A.G. de\0Graaf %A C.D. Reynolds %T The structure of \f2des\f1-Phe B1 bovine insulin %J Acta Cryst. %V B 38 %P 3028-? %D 1982 %K PDB2INS %A G.D. Smith %A D.C. Swenson %A E.J. Dodson %A G.G. Dodson %A C.D. Reynolds %T Structural stability in the 4-zinc human insulin hexamer %J Proc. Natl. Acad. Sci. USA %V 81 %P 7093-? %D 1984 %K 0IN4 %A G.P. Smith %T Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface %J Science %V 228 %P 1315-1317 %D 1985 %A H.O. Smith %A T.M. Annau %A S. Chandrasegaran %T Finding sequence motifs in groups of functionally related proteins %J Proc. Natl. Acad. Sci. USA %V 87 %D 1990 %P 826-830 %K amino acid sequence motifs searching computer PNAS %A J.L. Smith %A P.W.R. Corfield %A W.A. Hendrickson %A B.W. Low %T Refinement at 1.4\(Ao resolution of a model of erabutoxin B: Treatment of ordered solvent and discrete disorder %J Acta Cryst. %V A 44 %P 357-? %D 1988 %K 5EBX %A J.L. Smith %A W.A. Hendrickson %A A.W. Addison %T Structure of trimeric haemerythrin %J Nature %V 303 %P 86-88 %D 1983 %K PDB1HR3 %A J.L. Smith %A W.A. Hendrickson %A R.B. Honzatko %A S. Sheriff %T Structural heterogeneity in protein crystals %J Biochemistry %V 25 %P 5018-? %D 1986 %K 2MHR %A J.L. Smith %A E.J. Zaluzec %A J.-P. Wery %A L. Niu %A R.L. Switzer %A H. Zalkin %A Y. Satow %T Structure of the allosteric regulatory enzyme of purine biosynthesis %J Science %V 264 %P 1427-1433 %D 1994 %A K.C. Smith %A B. Honig %T Evaluation of the conformational free energies of loops in proteins %J Proteins %V 18 %P 119-132 %D 1994 %A M.W. Smith %A D.-F. Feng %A R.F. Doolittle %T Evolution by acquisition: the case for horizontal gene transfers %J Trends Biochem. Sci. %V 17 %P 489 %D 1992 %A P.J.C. Smith %A S. Arnott %T \s-1LALS\s0, a linked-atom least-squares reciprocal-space refinement system incorporating stereochemical restraints to supplement sparse diffraction data %J Acta Cryst. %V A 34 %P 3-? %D 1978 %K 3HYA %A R.F. Smith %A T.F. Smith %T Automatic generation of primary sequence patterns from sets of related protein sequences %J Proc. Natl. Acad. Sci. USA %V 87 %D 1990 %P 118-122 %K PNAS %A R.F. Smith %A T.F. Smith %T Pattern-induced multi-sequence alignment (PIMA) algorithm employing secondary structure-dependent gap penalties for use in comparative protein modelling %J Prot. Eng. %V 5 %P 35-41 %D 1992 %A S.G. Smith %A M. Lewis %A R. Aschaffenburg %A R.E. Fenna %A I.A. Wilson %A M. Sundaralingam %A D.I. Stuart %A D.C. Phillips %T Crystallographic analysis of the three-dimensional structure of baboon \(*a-lactalbumin at low resolution: homology with lysozyme %J Biochem. J. %V 242 %P 353-? %D 1987 %K 1ALC %A S.O. Smith %A S. Farr-Jones %A R.G. Griffin %A W.W. Bachovchin %T Crystal versus solution structure of enzymes: NMR spectroscopy of a crystalline serine protease %J Science %V 244 %P 961-964 %D 1989 %A T.F. Smith %A M.S. Waterman %T Identification of common molecular subsequences %J J. Mol. Biol. %V 147 %P 195-197 %D 1991 %A T.F. Smith %A M.S. Waterman %A W.M. Fitch %J J. Mol. Evol. %V 18 %D 1981 %P 38-46 %T Comparative biosequence metrics %K sequence comparison alignment scoring %A T.J. Smith %A M.J. Kremer %A M. Luo %A G. Vriend %A E. Arnold %A G. Kamer %A M.G. Rossmann %A M.A. McKinlay %A G.D. Diana %A M.J. Otto %T The site of attachment in human rhinovirus 14 for antiviral agents that inhibit uncoating %J Science %V 233 %P 1286-1293 %D 1986 %K 4RHV 1R09 %A W.W. Smith %A R.M. Burnett %A G.D. Darling %A M.L. Ludwig %T Structure of the semiquinone form of flavodoxin from \f2Clostridium mp.\f1: extension to 1.8\(Ao resolution and some comparisons with the oxidized state %J J. Mol. Biol. %V 117 %P 195-225 %D 1977 %K 0FX2 PDB3FXN PDB4FXN %A W.W. Smith %A B. Entsch %A M.L. Ludwig %A C.E. Nordman %A H.L. Crespi %T Crystallographic characterization of flavodoxin from \f2Anacystis nidulans\f1 %J J. Mol. Biol. %V 94 %P 123-? %D 1975 %K 0FX3 %A W.W. Smith %A K.A. Pattridge %A M.L. Ludwig %A G.A. Petsko %A D. Tsernoglou %A M. Tanaka %A K.T. Yasunobu %T Structure of oxidized flavodoxin from \f2Anacystis nidulans\f1 %J J. Mol. Biol. %V 165 %P 737-? %D 1983 %K 0FX3 %A S.J. Smith-Gill %A C. Mainhart %A T.B. Lavoie %A R.J. Feldmann %A W. Drohan %A B.R. Brooks %T A three-dimensional model of an anti-lysozyme antibody %J J. Mol. Biol. %V 194 %D 1987 %P 713-724 %K PDB1HFM %A P.E. Smouse %A W.-H. Li %D 1987 %T Likelihood analysis of mitochondrial restriction-cleavage patterns for the human-chimpanzee-gorilla trichotomy %J Evolution %V 41 %P 1162-1176 %A P.H.A. Sneath %J J. Theor. Biol. %P 157-195 %T Relations between chemical structure and biological activity in peptides %V 12 %D 1966 %A S.F. Sneddon %A D.J. Tobias %T The role of packing interactions in stabilizing folded proteins %J Biochemistry %V 31 %P 2842-2846 %D 1992 %A S.F. Sneddon %A D.J. Tobias %A C.L. Brooks\0III %J J. Mol. Biol. %P 817-820 %T Thermodynamics of amide hydrogen bond formation in polar and apolar solvents %V 209 %D 1989 %A M.E. Snow %A L.M. Amzel %J Proteins %V 1 %D 1986 %P 267-279 %T Calculating three-dimensional changes in protein structure due to amino-acid substitutions: The variable region of the immunoglobulins %K energy minimization mutation %A E. Sober %D 1983 %T A likelihood justification of parsimony %J Cladistics %V 1 %P 209-233 %A E. Sober %D 1983 %T Parsimony in systematics: philosophical issues %J Annu. Rev. Ecol. System. %V 14 %P 335-357 %A K. Sogawa %A Y. Fujii-Kuriyama %A Y. Mizukami %A Y. Ichihara %A K. Takahashi %T Primary structure of human pepsinogen gene %J J. Biol. Chem. %V 258 %D 1983 %P 5306-5311 %A R.R. Sokal %A P.H.A. Sneath %D 1963 %T Principles of Numerical Taxonomy %I W.H. Freeman %C San Francisco %A P. Sokoloff %A B. Giros %A M.-P. Martres %A M.-L. Bouthenet %A J.C. Schwartz %T Molecular cloning and characterization of a novel dopamine receptor (D\d\s-23\s0\u) as a target for neuroleptics %J Nature %V 347 %D 1990 %P 146-151 %A W. Somers %A M. Ultsch %A A.M. de\0Vos %A A.A. Kossiakoff %T The X-ray structure of a growth hormone-prolactin receptor complex %J Nature %V 372 %P 478-481 %D 1994 %A J. Sondek %A A. Bohm %A D.G. Lambright %A H.E. Hamm %A P.B. Sigler %T Crystal structure of a G\d\s-3A\s0\u protein \(*b\(*g dimer at 2.1\(Ao resolution %J Nature %V 379 %P 369-374 %D 1996 %A P. Sonigo %A M. Alizon %A K. Staskus %A D. Klatzmann %A S. Cole %A O. Danos %A E. Retzel %A P. Tiollais %A A. Haase %A S. Wain-Hobson %J Cell %V 42 %D 1985 %P 369-382 %T Nucleotide sequence of the visna lentivirus: relationship to the AIDS virus %K visna lentivirus phylogeny sequence retrovirus %A P. Sonigo %A C. Barker %A E. Hunter %A S. Wain-Hobson %J Cell %V 45 %D 1986 %P 375-385 %T Nucleotide sequence of Mason-Pfizer monkey virus: an immunosuppressive D-type retrovirus %K MPMV retrovirus sequence %A M. Soriano-Garcia %A K. Padmanabhan %A A.M. de\0Vos %A A. Tulinsky %T The Ca\u\s-42\(pl\s0\d ion and membrane binding structure of the Gla domain of Ca-prothrombin fragment 1 %J Biochemistry %V 31 %P 2554-2566 %D 1992 %A L. Sottrup-Jensen %A M. Zajdel %A H. Claeys %A T.E. Petersen %A S. Magnusson %T Amino acid sequence of activation cleavage site in plasminogen: homology with pro part of prothrombin %J Proc. Natl. Acad. Sci. USA %V 77 %D 1975 %P 2577-2581 %K plasminogen blood cascade sequence homology PNAS %A R. Sousa %A Y.J. Chung %A J.P. Rose %A B.-C. Wang %T Crystal structure of bacteriophage T7 RNA polymerase at 3.3\(oA resolution %J Nature %V 364 %P 593-599 %D 1993 %A R. Sowdamini %A N. Srinivasan %A C. Ramakrishnan %A P. Balaram %T Orthogonal \(*b\(*b motifs in proteins %J J. Mol. Biol. %V 223 %P 845-851 %D 1992 %A R. Sowdhamini %A T.L. Blundell %T An automatic method involving cluster analysis of secondary structures for the identification of domains in proteins %J Prot. Sci. %V 4 %P 506-520 %D 1995 %A R. Sowdhamini %A N. Srinivasan %A K. Guruprasad %A S. Rufino %A V. Dhanaraj %A S.P. Wood %A J. Emsley %A H.E. White %A T. Blundell %T Protein three-dimensional structure and molecular recognition: A story of soft locks and keys %J Pharm. Acta Helv. %V 69 %P 185-192 %D 1995 %A R. Sowdhamini %A N. Srinivasan %A B. Shoichet %A D.V. Santi %A C. Ramakrishnan %A P. Balaram %T Stereochemical modeling of disulphide bridges: criteria for introduction into proteins by site-directed mutagenesis %J Prot. Eng. %V 3 %P 95-103 %D 1989 %A G. Spraggon %A C. Phillips %A U.K. Nowak %A C.P. Ponting %A D. Saunders %A C.M. Dobson %A D.I. Stuart %A E.Y. Jones %T The crystal structure of the catalytic domain of human urokinase-type plasminogen activator %J Structure %V 3 %P 681-691 %D 1995 %A S. Sprang %T On a (\(*b-) roll %J Trends Biochem. Sci. %V 18 %P 313-314 %D 1993 %A S.R. Sprang %A K.R. Acharya %A E.J. Goldsmith %A D.I. Stuart %A K. Varvill %A R.J. Fletterick %A N.B. Madsen %A L.N. Johnson %T Structural changes in glycogen phosphorylase induced by phosphorylation %J Nature %V 336 %P 215-221 %D 1988 %K 0PB1 0PPA %A S. Sprang %A R.J. Fletterick %T The structure of glycogen phosphorylase A at 2.5\(Ao resolution %J J. Mol. Biol. %V 131 %P 523-? %D 1979 %K 0PPA %A S. Sprang %A E. Goldsmith %A R. Fletterick %T Structure of the nucleotide activation switch in glycogen phosphorylase A %J Science %V 237 %P 1012-? %D 1987 %K 0PPA %A S. Sprang %A T. Standing %A R.J. Fletterick %A R.M. Stroud %A J. Finer-Moore %A N.-H. Xuong %A R. Hamlin %A W.J. Rutter %A C.S. Craik %T The three-dimensional structure of Asn\d\s-2102\s0\u mutant of trypsin: role of Asp\d\s-2102\s0\u in serine protease catalysis %J Science %V 237 %P 905-909 %D 1987 %K PDB1TRM PDB2TRM %A S. Sprang %A D. Yang %A R.J. Fletterick %T Solvent accessibility properties of complex proteins %J Nature %V 280 %P 333-335 %D 1979 %K 0PPA %A B.A. Springer %A S.G. Sligar %T High-level expression of sperm whale myoglobin in escherichia coli\f1 %J Proc. Natl. Acad. Sci. USA %V 84 %P 8961-? %D 1987 %K 1MBW PNAS %A M.S. Springer %A E.H. Davidson %A R.J. Britten %T Retroviral-like element in a marine invertebrate %J Proc. Natl. Acad. Sci. USA %V 88 %P 8401-8404 %D 1991 %A J.C. Spurlino %A G.-Y. Lu %A F.A. Quiocho %T The 2.3\(Ao resolution structure of the maltose- or maltodextrin-binding protein, a primary receptor of bacterial active transport %J J. Biol. Chem. %V 266 %P 5202-5219 %D 1991 %A H. Sp\(a:th %T Cluster analysis algorithms for data reduction and classification of objects %I Ellis Horwood %C Chichester %D 1980 %K Spath %A U. Sreenivasan %A P.H. Axelson %T Buried waters in homologous serine proteinases %J Biochemistry %V 31 %P 12785-12791 %D 1992 %A N. Srinivasan %A T.L. Blundell %T An evaluation of the performance of an automated procedure for comparative modelling of protein tertiary structure %J Prot. Eng. %V 6 %P 501-512 %D 1993 %A N. Srinivasan %A H.E. White %A J. Emsley %A S.P. Wood %A M.B. Pepys %A T.L. Blundell %J Structure %V 2 %P 1017-1027 %D 1994 %A R. Srinivasan %A V. Ravichandran %A S.S. Rajan %T On the size and stability of \(*a-helices %B Biomolecular structure, conformation, function, and evolution %E R. Srinivasan %P 83-88 %V 1 %I Pergamon Press %C Oxford %D 1978 %A S. Srinivasan %A C.J. March %A S. Sudarsanam %T An automated method for modeling proteins on known templates using distance geometry %J Prot. Sci. %V 2 %P 277-289 %D 1993 %A R. St.\0Charles %A R.E. Ciaglowski %A D. Walz %A B.F.P. Edwards %T X-ray diffraction analysis of crystals of bovine platelet factor 4 %J J. Mol. Biol. %V 176 %P 421-? %D 1984 %K 0PFB %A R. Staden %T Methods to define and locate patterns of motifs in sequences %J CABIOS %V 4 %P 53-60 %D 1988 %A J.P. Staley %A P.S. Kim %T Role of a subdomain in the folding of bovine pancreatic trypsin inhibitor %J Nature %V 344 %D 1990 %P 685-688 %K BPTI folding NMR %A W.C. Stallings %A S.S. Abdel-Meguid %A L.W. Lim %A H.-S. Shieh %A H.E. Dayringer %A N.K. Leimgruber %A R.A. Steigeman %A K.S. Anderson %A J.A. Sikorski %A S.R. Padgette %A G.M. Kishore %T Structure and topological symmetry of the glyphosate target 5-\f2enol\f1-pyruvylshikimate-3-phosphate synthase: A distinctive protein fold %J Proc. Natl. Acad. Sci. USA %V 88 %P 5046-5050 %D 1991 %K PNAS %A W.C. Stallings %A K.A. Pattridge %A T.B. Powers %A J.A. Fee %A M.L. Ludwig %T Characterization of crystals of tetrameric manganese superoxide dismutase from \f2Thermus thermophilus\f1 hB8 %J J. Biol. Chem. %V 256 %P 5857-? %D 1981 %K 0SDM %A W.C. Stallings %A K.A. Pattridge %A R.K. Strong %A M.L. Ludwig %T The structure of manganese superoxide dismutase from \f2Thermus thermophilus\f1 hB8 at 2.4\(Ao resolution %J J. Biol. Chem. %V 260 %P 16424-? %D 1985 %K 0SDM %A W.C. Stallings %A K.A. Pattridge %A R.K. Strong %A M.L. Ludwug %T Manganese and iron superoxide dismutases are structural homologs %J J. Biol. Chem. %V 259 %P 10695-? %D 1984 %K 0SDM %A W.C. Stallings %A T.B. Powers %A K.A. Pattridge %A J.A. Fee %A M.L. Ludwig %T Iron superoxide dismutase from \f2Escherichia coli\f1 at 3.1\(Ao resolution: a structure unlike that of copper/zinc protein at both monomer and dimer levels %J Proc. Natl. Acad. Sci. USA %V 80 %P 3884-3888 %D 1983 %K 0SDE %A D.K. Stammers %A H. Muirhead %T Three-dimensional structure of cat muscle pyruvate kinase at 6\(Ao resolution %J J. Mol. Biol. %V 95 %P 213-? %D 1975 %K 1PYK %A D.K. Stammers %A H. Muirhead %T Three-dimensional structure of cat muscle pyruvate kinase at 3.1\(Ao resolution %J J. Mol. Biol. %V 112 %P 309-? %D 1977 %K 1PYK %A T. Stams %A J.C. Spurlino %A D.L. Smith %A R.C. Wahl %A T.F. Ho %A M.W. Qoronfleh %A T.M. Banks %A B. Rubin %T Structure of human neutrophil collagenase reveals large S1\(fm specificity pocket %J Nature Structural Biology %V 1 %P 119-? %D 1994 %A R.F. Standaert %A A. Galat %A G.L. Verdine %A S.L. Schreiber %T Molecular cloning and overexpression of the human FK506-binding protein FKBP %J Nature %V 346 %P 671-? %D 1990 %K 1FKF %A R.L. Stanfield %A T.M. Fieser %A R.A. Lerner %A I.A. Wilson %T Crystal structure of an antibody to a peptide and its complex with peptide antigen at 2.8\(Ao resolution %J Science %V 248 %D 1990 %P 712-719 %K immunoglobulin structure complex ligand binding conformational %A R.M. Starzyk %A T.A. Webster %A P. Schimmel %T Evidence for dispensible sequences inserted into a nucleotide fold %J Science %V 237 %P 1614-1618 %D 1987 %A G.L. Stebins %A F.J. Ayala %T The evolution of Darwinism %J Sci. Amer. %V 253 %N 7 %D 1985 %P 54-64 %A T. Stehle %A S.A. Ahmed %A A. Claiborne %A G.E. Schulz %T Structure of NADH peroxidase from \f2Streptococcus faecalis\f1 10C1 refined at 2.16\(Ao resolution %J J. Mol. Biol. %V 221 %P 1325-1344 %D 1991 %A T. Stehle %A G.E. Schulz %T Three-dimensional structure of the complex of guanylate kinase from yeast with its substrate GMP %J J. Mol. Biol. %V 211 %P 249-254 %D 1990 %K 1AK3 %A W. Steigemann %A E. Weber %T Structure of erythrocruorin in different ligand states refined at 1.4\(Ao resolution %J J. Mol. Biol. %V 127 %P 309-338 %D 1979 %K PDB1ECD PDB1ECA PDB1ECN PDB1ECO %A P.E. Stein %A A. Boodoo %A G.J. Tyrrell %A J.L. Brunton %A R.J. Read %T Crystal structure of the cell-binding B oligomer of verotoxin-1 from \f2E. coli\f1 %J Nature %V 355 %P 748-750 %D 1992 %K 1BOV %A P.E. Stein %A A.G.W. Leslie %A J.T. Finch %A W.G. Turnell %A P.J. McLaughlin %A R.W. Carrell %T Crystal structure of ovalbumin as a model for the reactive centre of the serpins %J Nature %V 347 %D 1990 %P 99-102 %A P. Stein %A C. Chothia %T Serpin tertiary structure transformation %J J. Mol. Biol. %V 221 %P 615-621 %D 1991 %A A. Steinkasserer %A P.N. Barlow %A A.C. Willis %A Z. Kertesz %A I.D. Campbell %A R.B. Sim %A D.G. Norman %T Activity, disulphide mapping and structural modelling of the fifth domain of human \(*b\d\s-32\s0\u-glycoprotein I %J FEBS Letts %V 313 %P 193-197 %D 1993 %A T.A. Steitz %A R. Henderson %A D.M. Blow %T Structure of crystalline \(*a-chymotrypsin: III. crystallographic studies of substrates and inhibitors bound to the active site of \(*a-chymotrypsin %J J. Mol. Biol. %V 46 %P 337-? %D 1969 %K 2CHA %A T.A. Steitz %A D.H. Ohlendorf %A D.B. McKay %A W.F. Anderson %A B.W. Matthews %T Structural similarity in the DNA-binding domains of catabolite gene activator and \f2cro\f1 repressor proteins %J Proc. Natl. Acad. Sci. USA %V 79 %P 3097-3100 %D 1982 %K 3GAP PNAS %A T.A. Steitz %A M. Shoham %A W.S. Bennett,\0Jr. %T Structural dynamics of yeast hexokinase during catalysis %J Phil. Trans. Roy. Soc. Lond. %V B 293 %P 43-? %D 1981 %K PDB1HKG %A W.G. Steler-Stevenson %A L.A. Liotta %A D.E. Kleiner,\0Jr. %T Extracellular matrix 6: Role of matrix metalloproteinases in tumor invasion and metastasis %J FASEB J. %V 7 %P 1434-1441 %D 1993 %A R.E. Stenkamp %A L.H. Jensen %T Hemerythrin and myohemerythrin: a review of models based on X-ray crystallographic data %J Adv. Inorg. Biochem. %V 1 %P 219-? %D 1979 %K 1HMQ %A R.E. Stenkamp %A P.J. Lammers %A B. Brimhall %A M.A. Hermodson %T Amino acid sequence of hemerythrin from \f2Themiste dyscritum\f1 %J J. Biol. Chem. %V 253 %P 5726-? %D 1978 %K 1HMD 1HMO %A R.E. Stenkamp %A L.C. Siecker %A L.H. Jensen %T The structure of rubredoxin from \f2Desulfovibrio desulfuricans\f1 strain 27774 at 1.5\\(Ao resolution %J Proteins %V 8 %P 352-364 %D 1990 %A R.E. Stenkamp %A L.C. Sieker %A L.H. Jensen %T Structure of the iron complex in methemerythrin %J Proc. Natl. Acad. Sci. USA %V 73 %P 349-? %D 1976 %K 1HMQ PNAS %A R.E. Stenkamp %A L.C. Sieker %A L.H. Jensen %T Crystallographic studies of azide, thiocyanate and perchlorate complexes of methemerythrin %J J. Mol. Biol. %V 126 %P 457-? %D 1978 %K 1HMQ %A R.E. Stenkamp %A L.C. Sieker %A L.H. Jensen %T Difference Fourier refinement of metaquohemerythrin %J Acta Cryst. %V A 34 %P 1014-? %D 1978 %K 1HMQ %A R.E. Stenkamp %A L.C. Sieker %A L.H. Jensen %T Restrained least-squares refinement of \f2Themiste dyscritum\f1 methydroxohemerythrin at 2.0\(Ao resolution %J Acta Cryst. %V B 38 %P 784-? %D 1982 %K 1HMQ %A R.E. Stenkamp %A L.C. Sieker %A L.H. Jensen %T Adjustment of restraints in the refinement of methemerythrin and azidomethemerythrin at 2.0\(Ao resolution %J Acta Cryst. %V B 39 %P 697-703 %D 1983 %K PDB1HMQ PDB1HMZ %A R.E. Stenkamp %A L.C. Sieker %A L.H. Jensen %T The structure of the iron complex in metaquohemerythrin %J J. Inorg. Biochem. %V 19 %P 247-? %D 1983 %K 1HMQ %A R.E. Stenkamp %A L.C. Sieker %A L.H. Jensen %T Binuclear iron complexes in methemerythrin and azidomethemerythrin at 2.0\(Ao resolution %J J. Am. Chem. Soc. %V 106 %P 618-622 %D 1984 %K 1HMQ %A R.E. Stenkamp %A L.C. Sieker %A L.H. Jensen %A J.S. Loehr %T Structure of methemerythrin at 5\(Ao resolution %J J. Mol. Biol. %V 100 %P 23-? %D 1976 %K 1HMQ %A R.E. Stenkamp %A L.C. Sieker %A L.H. Jensen %A J.D. McCallum %A J. Sanders-Loehr %T Active site structures of deoxyhemerythrin and oxyhemerythrin %J Proc. Natl. Acad. Sci. USA %V 82 %P 713-? %D 1985 %K 1HMD 1HMO 2HMQ 2HMZ %A R.E. Stenkamp %A L.C. Sieker %A L.H. Jensen %A J.E. McQueen,\0Jr. %T Structure of methemerythrin at 2.8\(Ao resolution: computer graphics fit of an averaged electron density map %J Biochemistry %V 17 %P 2499-? %D 1978 %K 1HMQ %A R.E. Stenkamp %A L.C. Sieker %A L.H. Jensen %A J. Sanders-Loehr %T Structure of the binuclear iron complex in metazidohaemerythrin from \f2Themiste dyscritum\f1 at 2.2\(Ao resolution %J Nature %V 291 %P 263-264 %D 1981 %K 1HMQ %A P.J. Stephens %A T.V. Morgan %A F. Devlin %A J.E. Penner-Hahn %A K.O. Hodgson %A R.A. Scott %A C.D. Stout %A B.K. Burgess %T (4Fe-4S)-cluster-depleted \f2Azotobacter vinelandii\f1 ferredoxin: I. a new 3Fe iron-sulfur protein %J Proc. Natl. Acad. Sci. USA %V 82 %P 5661-5665 %D 1985 %K 4FD1 2FD2 PNAS %A R.M. Stephens %A J.W. Casey %A N. Rice %J Science %V 231 %D 1986 %P 589-594 %T Equine infectious anemia virus \f2gag\f1 and \f2pol\f1 genes: relatedness to visna and AIDS virus %K EIAV phylogeny sequence lentivirus retrovirus %A L.J. Stern %A J.H. Brown %A T.S. Jardetzky %A J.C. Gorga %A R.G. Urban %A J.L. Strominger %A D.C. Wiley %T Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide %J Nature %V 368 %P 215-221 %D 1994 %A M.J.E. Sternberg %T The analysis and prediction of protein structure %B Computing in biological science %E M.J. Geisow and A.N. Barret %I Elsevier Biomedical Press %P 143-177 %D 1983 %A M.J.E. Sternberg %T Prediction of protein structure from amino acid sequence %J Anti-Cancer Drug Design %V 1 %P 169-178 %D 1986 %A M.J.E. Sternberg %T Inter-species sequence conservation of single-spanning transmembrane regions %J Prot. Eng. %V 4 %P 45-47 %D 1990 %A M.J.E. Sternberg %T Library of common protein motifs %J Nature %V 349 %P 111 %D 1991 %K PROMOT PROSITE motif database %A M.J.E. Sternberg %A F.E. Cohen %T Prediction of the secondary and tertiary structures of interferon from four homologous amino acid sequences %J Int. J. Biol. Macromol. %V 4 %P 137-144 %D 1982 %A M.J.E. Sternberg %A W.J. Gullick %T Neu receptor dimerization %J Nature %V 339 %P 587 %D 1989 %A M.J.E. Sternberg %A F.R.F. Hayes %A A.J. Russell %A P.G. Thomas %A A.R. Fersht %J Nature %P 86-88 %T Prediction of electrostatic effects of engineering of protein charges %V 330 %D 1987 %A M.J.E. Sternberg %A S. Islam %T Local protein sequence similarity does not imply a structural relationship %J Prot. Eng. %V 4 %P 125-131 %D 1990 %A M.J.E. Sternberg %A J.M. Thornton %D 1976 %T On the conformation of proteins: The handedness of the \(*b-strand\(em\(*a-helix\(em\(*b-strand unit %J J. Mol. Biol. %V 105 %P 367-382 %A M.J.E. Sternberg %A J.M. Thornton %D 1977 %T On the conformation of proteins: an analysis of \(*b-pleated sheets %J J. Mol. Biol. %V 110 %P 285-296 %A R.C. Stevens %A J.E. Gouaux %A W.N. Lipscomb %T Structural consequences of effector binding to the T state of aspartate carbamoyltransferase: crystal structures of the unligated and ATP-, and CTP-complexed enzymes at 2.6\(Ao resolution %J Biochemistry %V 29 %P 7691-? %D 1990 %K 8ATC 1AT1 2AT1 3AT1 4AT1 5AT1 6AT1 7AT1 8AT1 %A D.E. Stewart %A A. Sarkar %A J.E. Wampler %T Occurrence and role of \f2cis\f1 peptide bonds in protein structures %J J. Mol. Biol. %V 214 %P 253-260 %D 1990 %A D.E. Stewart %A P.K. Weiner %A J.E. Wampler %T Prediction of the structure of proteins using related structures energy minimization and computer graphics %J J. Mol. Graph. %V 5 %D 1987 %P 133-140 %K modelling energy minimization prediction homology %A D.F. Stickle %A L.G. Presta %A K.A. Dill %A G.D. Rose %T Hydrogen bonding in globular proteins %J J. Mol. Biol. %V 226 %P 1143-1159 %D 1992 %A D. Stigter %A D.O.V. Alonso %A K.A. Dill %T Protein stability: Electrostatics and compact denatured states %J Proc. Natl. Acad. Sci. USA %V 88 %P 4176-4180 %D 1991 %K PNAS %A A.M. Stock %A J.M. Mottonen %A J.B. Stock %A C.E. Schutt %T Three-dimensional structure of CheY, the response regulator of bacterial chemotaxis %J Nature %V 337 %P 745-748 %D 1989 %K 2CHY %A J.B. Stock %A A.M. Stock %A J.M. Mottonen %T Signal transduction in bacteria %J Nature %V 344 %P 395-? %D 1990 %K 2CHY %A B.L. Stoddard %A J. Bruhnke %A P. Koenig %A N. Porter %A D. Ringe %A G.A. Petsko %T Photolysis and deacylation of inhibited chymotrypsin %J Biochemistry %V 29 %P 8042-? %D 1990 %K 4GCH 6GCH 7GCH %A B.L. Stoddard %A J. Bruhnke %A N. Porter %A D. Ringe %A G.A. Petsko %T Structure and activity of two photoreversible cinnamates bound to chymotrypsin %J Biochemistry %V 29 %P 4871-? %D 1990 %K 4GCH 6GCH 7GCH %A B.L. Stoddard %A D.E. Koshland,\0Jr. %T Prediction of the structure of a receptor-protein complex using a binary docking method %J Nature %V 358 %P 774-776 %D 1992 %A B.L. Stoddard %A D.E. Koshland,\0Jr. %T Molecular recognition analyzed by docking simulations: The aspartate receptor and isocitrate dehydrogenase from \f2Escherichi coli\f1 %J Proc. Natl. Acad. Sci. USA %V 90 %P 1146-1153 %D 1993 %A D.L. Stokes %A W.R. Taylor %A N.M. Green %T Structure, transmembrane topology and helix packing of P-type ion pumps %J FEBS Letts. %V 346 %P 32-38 %D 1994 %A P. Stolorz %A A. Lapedes %A Y. Xia %T Predicting protein secondary structure using neural net and statistical methods %J J. Mol. Biol. %v 225 %P 363-377 %D 1992 %A R.H. Stote %A M. Karplus %T Zinc binding in proteins and solution: A simple but accurate nonbonded representation %J Proteins %V 23 %P 12-31 %D 1995 %A C.D. Stout %T Preliminary crystallographic data for \f2Azotobacter\f1 cytochrome \f2c\f1\d\s-25\s0\u %J J. Mol. Biol. %V 126 %P 105-? %D 1978 %K 1CC5 %A C.D. Stout %T Structure of the iron-sulphur clusters in \f2Azotobacter\f1 ferredoxin at 4.0\(Ao resolution %J Nature %V 279 %P 83-84 %D 1979 %K 1FD2 2FD2 %A C.D. Stout %T Two crystal forms of \f2Azotobacter\f1 ferredoxin %J J. Biol. Chem. %V 254 %P 3598-? %D 1979 %K 1FD2 2FD2 %A C.D. Stout %T 7-iron ferredoxin revisited %J J. Biol. Chem. %V 263 %D 1988 %P 9256-9260 %K 2FD2 4FD1 %A C.D. Stout %T Refinement of the 7 Fe ferredoxin from \f2Azobacter vinelandii\f1 at 1.9\(Ao resolution %J J. Mol. Biol. %V 205 %D 1989 %P 545-555 %K 2FD2 PDB4FD1 %A C.D. Stout %A D. Ghosh %A V. Pattabhi %A A.H. Robbins %T Iron-sulfur clusters in \f2Azotobacter\f1 ferredoxin at 2.5\(Ao resolution %J J. Biol. Chem. %V 255 %D 1980 %P 1797-1800 %K FeS clusters ferredoxin structure 2FD2 %A C.D. Stout %A H. Mizuno %A S.T. Rao %A P. Swaminathan %A J. Rubin %A T. Brennan %A M. Sundaralingam %T Crystal and molecular structure of yeast phenylalanyl transfer RNA: structure determination, difference Fourier refinement, molecular conformation, metal and solvent binding %J Acta Cryst. %V B 34 %P 1529-? %D 1978 %K 1TRA %A C.D. Stout %A H. Mizuno %A J. Rubin %A T. Brennan %A S.T. Rao %A M. Sundaralingam %T Atomic coordinates and molecular conformation of yeast phenylalanyl tRNA, an independent investigation %J Nucl. Acids Res. %V 3 %P 1111-? %D 1976 %K 1TRA %A G.H. Stout %A L.H. Jensen %T X-ray structure determination: A practical guide %I Wiley Interscience %C New York %D 1989 %O 2nd. edition %A G.H. Stout %A S. Turley %A L.C. Sieker %A L.H. Jensen %T Structure of ferredoxin I from \f2Azotobacter vinelandii\f1 %J Proc. Natl. Acad. Sci. USA %V 85 %P 1020-1022 %D 1988 %K 0FEI %A T.P. Straatsma %A J.A. McCammon %T Computational Chemistry %J Annu. Rev. Phys. Chem. %V 43 %P 407-435 %D 1992 %A G.M. Strasburg %A M.L. Greaser %A M. Sundaralingam %T X-ray diffraction studies of troponin-C crystals from rabbit and chicken skeletal muscles %J J. Biol. Chem. %V 255 %P 3806-? %D 1980 %K 4TNC %A D. Strauss %A R. Raines %A E. Kawashima %A J.R. Knowles %A W. Gilbert %J Proc. Natl. Acad. Sci. USA %P 2272-2276 %T Active site of triosephosphate isomerase: \f2In vitro\f1 mutagenesis and characterisation of an altered enzyme %V 82 %D 1985 %K PNAS %A W. Stra\(ssburger %A A. Wollmer %A J.E. Pitts %A I.D. Glover %A I.J. Tickle %A T.L. Blundell %A G.J. Steffens %A W.A. G\(u:nzler %A F. \(O:tting %A L. Floh\(e' %T Adaptation of plasminogen activator sequences to known protease structures %J FEBS Lett. %V 157 %D 1983 %P 219-223 %K modelling tpa serine proteinase Flohe Gunzler Otting Strassburger %A P. Strop %A J. Sedlacek %A J. Stys %A Z. Kaderabkova %A I. Blaha %A L. Pavlickova %A J. Phol %A M. Fabry %A V. Kostka %A M. Newman %A C. Frazao %A A. Shearer %A I.J. Tickle %A T.L. Blundell %T Engineering enzyme subsite specificity: preparation, kinetic characterization, and X-ray analysis at 2.0\(Ao resolution of Val111Phe site-mutated calf chymosin %J Biochemistry %V 29 %P 9863-9871 %D 1990 %K 4CMS %A R.M. Stroud %A L.M. Kay %A R.E. Dickerson %T The crystal and molecular structure of DIP-inhibited bovine trypsin at 2.7\(Ao resolution %J Cold Spring Harbor Symp. Quant. Biol. %V 36 %P 125-? %D 1972 %K 1NTP %A R.M. Stroud %A L.M. Kay %A R.E. Dickerson %T The structure of bovine trypsin, electron density maps of the inhibited enzyme at 5\(Ao and at 2.7\(Ao resolution %J J. Mol. Biol. %V 83 %P 185-? %D 1974 %K 1NTP %A R.M. Stroud %A A.A. Kossiakoff %A J.L. Chambers %T Mechanisms of zymogen activation %J Annu. Rev. Biophys. Bioeng. %V 6 %P 177-193 %D 1977 %K 1TGN %A R.M. Stroud %A M. Krieger %A R.E. Koeppe\0II %A A.A. Kossiakoff %A J.L. Chambers %T Structure-function relationships in the serine proteases %B Proteases and biological control %P 13-? %D 1975 %K 4PTP %A R.M. Stroud %A M.P. McCarthy %A M. Shuster %T Nictoinic acetylcholine receptor superfamily of ligand-gated ion channels %J Biochemistry %V 29 %P 11009-11023 %D 1990 %A R.S. Struthers %A D.H. Kitson %A A.T. Hagler %T Predicted three-dimensional structure of the protease inhibitor domain if the Alzheimer's disease \(*b-amyloid precursor %J Proteins %V 9 %P 1-11 %D 1991 %A L. Stryer %T Biochemistry %I W.H. Freeman and Co. %C New York %D 1988 %A N.C.J. Strynadka %A H. Adachi %A S.E. Jensen %A K. Johns %A A. Sielecki %A C. Betzel %A K. Sutoh %A M.N.G. James %T Molecular structure of the acyl-enzyme intermediate in \(*b-lactam hydrolysis at 1.7\(Ao resolution %J Nature %V 359 %P 700-705 %D 1992 %A N.C.J. Strynadka %A M.N.G. James %T Two trifluoperazine binding sites on calmodulin predicted from comparative modeling with troponin-C %J Proteins %V 3 %D 1988 %P 1-17 %K PDB2CLN %A N.C.J. Strynadka %A M.N.G. James %T Crystal structures of the helix-loop-helix calcium-binding proteins %J Annu. Rev. Biochem. %V 58 %D 1989 %P 951-998 %K calcium-binding troponin-C calmodulin alignment comparison %A N.C.J. Strynadka %A M.N.G. James %T Towards an understanding of the effects of calcium on protein structure and function %J Curr. Opin. Struct. Biol. %V 1 %P 905-914 %D 1991 %A N.C.J. Strynadka %A S.E. Jensen %A K. Johns %A H. Blanchard %A M. Page %A A. Matagne %A J.-M. Frere %A M.N.G. James %T Structural and kinetic characterization of a \(*b-lactamase-inhibitor protein %J Nature %V 368 %P 657-660 %D 1994 %A C.I.J.M. Stuart %T Bio-informational equivalence %J J. Theor. Biol. %P 611-636 %V 113 %D 1985 %A C.I.J.M. Stuart %T Physical models of biological information and adaptation %J J. Theor. Biol. %P 441-454 %V 113 %D 1985 %A D.I. Stuart %A K.R. Acharya %A N.P.C. Walker %A S.G. Smith %A M. Lewis %A D.C. Phillips %T \(*a-lactalbumin possesses a novel calcium binding loop %J Nature %V 324 %P 84-87 %D 1986 %K 1ALC %A D.I. Stuart %A M. Levine %A H. Muirhead %A D.K. Stammers %T Crystal structure of cat muscle pyruvate kinase at a resolution of 2.6\(Ao %J J. Mol. Biol. %V 134 %P 109-? %D 1979 %K PDB1PYK %A D. Stuart %A P. Artymiuk %T The use of phase combination in crystallographic refinement: The choice of amplitude coefficients in combined synthesis %J Acta Cryst. %V A 40 %P 713-716 %D 1985 %A M.T. Stubbs %A W. Bode %T Coagulation factors and their inhibitors %J Curr. Opin. Struct. Biol. %V 4 %P 823-832 %D 1994 %A M.T. Stubbs %A R. Huber %A W. Bode %T Crystal structures of factor Xa specific inhibitors in complex with trypsin: Structural grounds for inhibiton of factor Xa and selectivity against thrombin %J FEBS Letts. %V 375 %P 103-107 %D 1995 %A M.T. Stubbs %A B. Laber %A W. Bode %A R. Huber %A R. Jerala %A B. Lanar\(cvi\(cv %A V. Turk %T The refined 2.4\(Ao X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction %J EMBO J. %V 9 %D 1990 %P 1939-1947 %K Lanarcic %A M.T. Stubbs %A H. Oschkinat %A I. Mayr %A R. Huber %A H. Angliker %A S.R. Stone %A W. Bode %T The interaction of thrombin with fibrinogen: A structural basis for its specificity %J Eur. J. Biochem. %V 206 %P 187-195 %D 1992 %A E.A. Stura %A G. Zanotti %A Y.S. Babu %A M.S.P. Sansom %A D.I. Stuart %A K.S. Wilson %A L.N. Johnson %A G. van\0de\0Werve %T Comparison of AMP and NADPH binding to glycogen phosphorylase B %J J. Mol. Biol. %V 170 %P 529-? %D 1983 %K 0PB1 %A T. Sturchbury %A M. Shipton %A R. Norris %A J. Paul %A G. Malthouse %A K. Brocklehurst %A J.A.L. Herbert %A H. Suschitchzky %T A reporter group delivery system with both absolute and selective specificity for thiol groups and an improved fluorescent probe containing the 7-Nitrobenzo-2-oxa-1,3-diazole moiety %J Biochem. J. %P 417-432 %V 151 %D 1975 %A W. St\(:ocker %A F.-X. Gomis-R\(:uth %A W. Bode %A R. Zwilling %T Implications of the three-dimensional structure of astacin for the structure and function of the astacin family of zinc-endopeptidases %J Eur. J. Biochem. %V 214 %P 215-231 %D 1993 %K Gomis-Ruth Stocker %A S. Subbiah %T Are coiled-coil proteins evolutionarily related ? %J J. Mol. Biol. %V 206 %D 1989 %P 689-692 %K myosin collagen %A S. Subbiah %A S.C. Harrison %T A method for multiple sequence alignment with gaps %J J. Mol. Biol. %V 209 %D 1989 %P 539-548 %A S. Subbiah %A S.C. Harrison %D 1989 %T A simulated annealing approach to the search problem of protein crystallography %J Acta Cryst. %V A 45 %P 337-342 %A E. Subramanian %T Molecular structure of an acid protease from \f2Rhizopus chinensis\f1 and its homology with other acid-proteases %B Biomolecular, structure, conformation, function and evolution %P 19-31 %V 1 %E R. Srinivasan %I Pergamon Press %C Oxford %A E. Subramanian %T Molecular structure of acid-proteases %D 1978 %J Trends Biochem. Sci. %V 3 %P 1-3 %K TIBS %A E. Subramanian %A M. Liu %A I.D.A. Swan %A D.R. Davies %T The crystal structure of an acid protease from \f2Rhizopus chinensis\f1 at 2.5\(Ao resolution %J Adv. Exp. Med. Biol. %V 95 %P 33-? %D 1977 %K 2APR %A E. Subramanian %A I.D.A. Swan %A M. Liu %A D.R. Davies %A J.A. Jenkins %A I.J. Tickle %A T.L. Blundell %T Homology among acid proteases: comparison of crystal structures at 3\(Ao resolution of acid proteases from \f2Rhizopus chinensis\f1 and \f2Endothia parasitica\f1 %J Proc. Natl. Acad. Sci. USA %V 74 %P 556-559 %D 1977 %K PNAS %A D. Suck %T Crystallization and preliminary crystallographic data of bovine pancreatic deoxyribonuclease I %J J. Mol. Biol. %V 162 %P 511-? %D 1982 %K 0DNI %A D. Suck %A A. Lahm %A C. Oefner %T Structure refined to 2\(Ao of a nicked DNA octanucleotide complex with DNase I %J Nature %V 332 %P 464-468 %D 1988 %A D. Suck %A C. Oefner %T Structure of Dnase I at 2.0\(Ao resolution suggests a mechanism for binding to and cutting DNA %J Nature %V 321 %P 620-? %D 1986 %K 0DNI %A D. Suck %A C. Oefner %A W. Kabsch %T Three-dimensional structure of bovine pancreatic Dnase I at 2.5\(Ao resolution %J EMBO J. %V 3 %P 2423-? %D 1984 %K 0DNI %A D. Suck %A I. Rayment %A J.E. Johnson %A M.G. Rossmann %T The structure of southern bean mosaic virus at 5\(Ao resolution %J Virology %V 85 %P 187-? %D 1978 %K 4SBV %A K. Suguna %A R.R. Bott %A E.A. Padlan %A E. Subramanian %A S. Sheriff %A G.H. Cohen %A D.R. Davies %T Structure and refinement at 1.8\(Ao resolution of the aspartic proteinase from \f2Rhizopus chinensis\f1 %J J. Mol. Biol. %V 196 %D 1987 %P 877-900 %K PDB2APR %A K. Suguna %A E.A. Padlan %A R. Bott %A J. Boger %A K.D. Parris %A D.R. Davies %T Structures of complexes of rhizopuspepsin with pepstatin and other statine-containing inhibitors %J Proteins %V 13 %P 195-205 %D 1992 %A K. Suguna %A E.A. Padlan %A C.W. Smith %A W.D. Carlson %A D.R. Davies %T Binding of a reduced peptide inhibitor to the aspartic proteinase from \f2Rhizopus chinensis\f1: implications for a mechanism of action %J Proc. Natl. Acad. Sci. USA %V 84 %D 1987 %P 7009-7013 %K PNAS PDB3APR %A S.W. Suh %A T.N. Bhat %A M.A. Navia %A G.H. Cohen %A D.N. Rao %A S. Rudikoff %A D.R. Davies %T The galactan-binding immunoglobulin Fab J539: an X-ray diffraction study at 2.6\(Ao resolution %J Proteins %V 1 %P 74-80 %D 1986 %K PDB1FBJ PDB2FBJ %A J. Sulston %A Z. Du %A K. Thomas %A R. Wilson %A L. Hillier %A R. Staden %A N. Halloran %A P. Green %A J. Thierry-Mieg %A L. Qiu %A S. Dear %A A. Coulson %A M. Craxton %A R. Durbin %A M. Berks %A M. Metzstein %A T. Hawkins %A R. Ainscough %A R. Waterston %T The \f2C. elegans\f1 genome sequencing project: a beginning %J Nature %V 356 %P 37-41 %D 1992 %A L. Summers %A G. Wistow %A M. Narebor %A D. Moss %A P. Lindley %A C. Slingsby %A T. Blundell %A H. Bartunik %A K. Bartels %T X-ray studies of the lens specific proteins: The crystallins %J Pept. Prot. Rev. %V 3 %P 147-? %D 1984 %K PDB1GCR %A M.F. Summers %A T.L. South %A B. Kim %A D.R. Hare %T High-resolution structure of an HIV zinc fingerlike domain \f2via\f1 a new NMR-based distance geometry approach %J Biochemistry %V 29 %P 329-? %D 1990 %K PDB2ZNF %A N.L. Summers %A W.D. Carlson %A M. Karplus %T Analysis of side-chain orientations in homologous proteins %J J. Mol. Biol. %V 196 %D 1987 %P 175-198 %K sidechain torsion angles analysis %A N.L. Summers %A M. Karplus %T Construction of side-chains in homology modelling: application to the C-terminal lobe of rhizopuspepsin %J J. Mol. Biol. %V 210 %D 1989 %P 785-811 %K modelling sidechain %A N.L. Summers %A M. Karplus %T Modeling og globular proteins: a distance-based search procedure for the construction of insertion/deletion regions and Pro \(-> non-Pro mutations %J J. Mol. Biol. %V 216 %P 991-1016 %D 1990 %A R.K. Sunahara %A H.-C. Guan %A B.F. O'Dowd %A P. Seeman %A L.G. Laurier %A G. Ng %A S.R. George %A J. Torchia %A H.H.M. van\0Tol %A H.B. Niznik %T Cloning of the gene for a human dopamine D\d\s-25\s0\u receptor with higher affinity for dopamine than D\d\s-21\s0\u %J Nature %V 350 %P 614-619 %D 1991 %A R.K. Sunahara %A H.B. Niznik %A D.M. Weiner %A T.M. Stromann %A M.R. Brann %A J.L. Kennedy %A J.E. Gelernter %A R. Rozmahel %A Y. Yang %A Y. Israel %A P. Seeman %A B.F. O'Dowd %T Human dopamine D\d\s-21\s0\u receptor encoded by an intronless gene on chromosome 5 %J Nature %V 347 %P 80-83 %D 1990 %A M. Sundaralingam %A R. Bergstrom %A G. Strasburg %A S.T. Rao %A P. Roychowdhury %A M. Greaser %A B.C. Wang %T Molecular structure of troponin C from chicken skeletal muscle at 3\(Ao resolution %J Science %V 227 %P 945-948 %D 1985 %K 4TNC %A M. Sundaralingam %A R. Bergstrom %A G. Strasburg %A S.T. Rao %A P. Roychowdhury %A M. Greaser %A B.C. Wang %T Stabilization of the long central helix of troponin C by intrahelical salt bridges between charged amino acid side chains %J Proc. Natl. Acad. Sci. USA %V 82 %P 7944-7947 %D 1985 %K PNAS %A M. Sundaralingam %A H. Mizuno %A C.D. Stout %A S.T. Rao %A M. Liebman %A N. Yathindra %T Mechanisms of chain folding in nucleic acids, the (\(*W,\(*W) plot and its correlation to the nucleotide geometry in yeast tRNA(phe) %J Nucl. Acids Res. %V 3 %P 2471-? %D 1976 %K 1TRA %A M. Sundaralingam %A Y.C. Sekharudu %A N. Yathindra %A V. Ravichandran %T Ion pairs in \(*a helices %J Proteins %V 2 %P 64-71 %D 1987 %A M. Sunderstr\(o:m %A Y. Lindqvist %A G. Schneider %T Three-dimensional structure of apotransketolase %J FEBS Letts. %V 313 %P 229-231 %D 1992 %K Sunderstrom %A F. Sussman %A J.M. Goodfellow %A P. Barnes %A J.L. Finney %T Calculation of free energy differences for water from computer simulations %J Chem. Phys. Lett. %V 113 %D 1985 %P 372-379 %K water energy free energy simulation %A J.L. Sussman %A M. Harel %A F. Frolow %A A. Goldman %A C. Oefner %A L. Toker %A I. Silman %T 3-d structure of acetylcholinesterase from \f2Torpedo californica\f1 %J Proceedings of the 1991 Medical Defense Bioscience Review %P 441-? %D 1991 %K 1ACE %A J.L. Sussman %A M. Harel %A F. Frolow %A C. Oefner %A A. Goldman %A L. Toker %A I. Silman %T Atomic structure of acetylcholinesterase from \f2Torpedo californica\f1: A prototypic acetylcholine-binding protein %J Science %V 253 %P 872-879 %D 1991 %A J.L. Sussman %A M. Harel %A F. Frolow %A I. Silman %T X-ray crystallographic studies of acetylcholinesterase %J Proceedings of the 1989 Medical Defense Bioscience Review %P 309-? %D 1989 %K 1ACE %A J.L. Sussman %A M. Harel %A F. Frolow %A L. Varon %A L. Toker %A A.H. Futerman %A I. Silman %T Purification and crystallization of a dimeric form of acetylcholinesterase from \f2Torpedo californica\f1 subsequent to solubilization with phosphatidylinositol-specific phospholipase c %J J. Mol. Biol. %V 203 %P 821-? %D 1988 %K 1ACE %A J.L. Sussman %A S.R. Holbrook %A R.W. Warrant %A G.M. Church %A S.-H. Kim %T Crystal structure of yeast phenylalanine tRNA: I. crystallographic refinement %J J. Mol. Biol. %V 123 %P 607-? %D 1978 %K PDB6TNA 4TRA %A J.L. Sussman %A S.-H. Kim %T Idealized atomic coordinates of yeast phenylalanine transfer RNA %J Biochem. Biophys. Res. Comm. %V 68 %P 89-? %D 1976 %K 4TRA %A J.L. Sussman %A S.-H. Kim %T Three-dimensional structure of a transfer RNA in two crystal forms %J Science %V 192 %P 853-858 %D 1976 %K 4TRA %A J. Sussman %A M. Harel %A F. Frolow %A C. Oefner %A L. Toker %A I. Silman %T Structural studies on acetylcholinesterases from torpedo californica %B Cholinesterases: Structure Function, Mechanism Genetics, and Cell Biology %P 7-? %D 1991 %K 1ACE %A M.J. Sutcliffe %A C.M. Dobson %T Relaxation data in NMR structure determination: Model calculations for lysozyme\(emGd\u\s-43\(pl\s0\d complex %J Proteins %V 10 %P 117-129 %D 1991 %A M.J. Sutcliffe %A I. Haneef %A D. Carney %A T.L. Blundell %T Knowledge-based modelling of homologous proteins: I. Three-dimensional frameworks derived from the simultaneous superposition of multiple structures %J Prot. Eng. %V 1 %D 1987 %P 377-384 %K COMPOSER MNYFIT conserved core framework %A M.J. Sutcliffe %A F.R.F. Hayes %A T.L. Blundell %T Knowledge-based modelling of homologous proteins: II. Rules for the conformations of substituted side chains %J Prot. Eng. %V 1 %D 1987 %P 385-392 %K COMPOSER %A A. Suzuki %A Y. Tsunogae %A I. Tanaka %A T. Yamane %A T. Ashida %A S. Norioka %A S. Hara %A T. Ikenaka %T The structure of Bowman-Birk type protease inhibitor A-II from peanut (\f2Arachis hypogaea\f1) at 3.3\(Ao resolution %J J. Biochem. (Tokyo) %V 101 %P 267-? %D 1987 %K 1TAB %A E. Suzuki %A B. Robson %T Relationship between helix-coil transition parameters for synthetic polypeptides and helix conformation parameters for globular proteins: a simple model %J J. Mol. Biol. %V 107 %D 1976 %P 357-367 %K prediction helix propensity secondary structure %A E. Suzuki %A A. van\0Donkelaar %A J.N. Varghese %A G.G. Lilley %A R.J. Blagrove %A P.M. Colman %T Crystallization of phaseolin from \f2Phaseolus vulgaris\f1 %J J. Biol. Chem. %V 258 %P 2634-? %D 1983 %K 1PHS %A K. Suzuki %A J.I. Harris %T Glyceraldehyde-3-phosphate dehydrogenase from \f2Bacillus stearothermophilus\f1 %J FEBS Lett. %V 13 %P 217-? %D 1971 %K 1GD1 %A K. Suzuki %A H. Hayashi %A T. Hayashi %A K. Iwai %T Amino acid sequence around the active site cysteine residue of calcium-activated neutral protease (CANP) %J FEBS Lett. %V 152 %D 1983 %P 67-70 %K calcium-binding thiol protease sequence alignment %A B. Svensson %A I. Vass %A E. Cedergren %A S. Strying %T Structure of donor side components in photosystem II predicted by computer modelling %J EMBO J. %V 9 %P 2051-2060 %D 1990 %A L.A. Svensson %A L. Sj\(o:lin %A G.L. Gilliland %A B.C. Finzel %A A. Wlodawer %T Multiple conformations of amino acid residues in ribonuclease A %J Proteins %V 1 %P 370-? %D 1986 %K Sjolin %A A.L. Swain %A E.L. Amma %T The coordination polyhedron of Ca\u\s-22\(pl\s0\d, Cd\u\s-22\(pl\s0\d in parvalbumin %J Inorg. Chim. Acta %V 163 %P 5-? %D 1989 %K 5CPV 1CDP %A A.L. Swain %A M. Jaskolski %A D. Housset %A J.K.M. Rao %A A. Wlodawer %T Crystal structure of \f2Escherichia coli\f1 \d\s-2L\s0\u-asparaginase, an enzyme used in cancer therapy %J Proc. Natl. Acad. Sci. USA %V 90 %P 1474-1478 %D 1993 %A A.L. Swain %A R.H. Kretsinger %A E.L. Amma %T Restrained least squares refinement of native (calcium) and cadmium-substituted carp parvalbumin using X-ray crystallographic data at 1.6\(Ao resolution %J J. Biol. Chem. %V 264 %P 16620-? %D 1989 %K 5CPV 1CDP %A A.L. Swain %A M.L. Miller %A J. Green %A D.H. Rich %A J. Schneider %A S.B.H. Kent %A A. Wlodawer %T X-ray crystallographic structure of a complex between a synthetic protease of human immunodeficiency virus 1 and a substrate-based hydroxyethylamine inhibitor %J Proc. Natl. Acad. Sci. USA %V 87 %P 8805-8809 %D 1990 %K PNAS %A S. Swaminathan %A W. Furey %A J. Pletcher %A M. Sax %T Crystal structure of staphylococcal enterotoxin B, a superantigen %J Nature %V 351 %P 801-805 %D 1992 %A R. Swanson %A B.L. Trus %A N. Mandel %A G. Mandel %A O.B. Kallai %A R.E. Dickerson %T Tuna cytochrome \f2c\f1 at 2.0\(Ao resolution: I. ferricytochrome structure analysis %J J. Biol. Chem. %V 252 %P 759-? %D 1977 %K 3CYT %A R.M. Sweet %T Evolutionary similarity among peptide segments is a basis for prediction of protein folding %J Biopolymers %V 25 %P 1565-1577 %D 1986 %A M.K. Swenson %A A.W. Burgess %A H.A. Scheraga %T Conformational analysis of polypeptides: application to homologous proteins %B Frontiers in physiochemical biology %E B. Pulman %I Academic Press %C New York %D 1978 %A M.B. Swindells %T Structural similarity between transforming growth factor-\(*b2 and nerve growth factor %J Science %V 258 %P 1160-1161 %D 1992 %A M.B. Swindells %T A procedure for detecting structural domains in proteins %J Prot. Sci. %V 4 %P 103-112 %D 1995 %A M.B. Swindells %T A procedure for the automatic determination of hydrophobic cores in protein structures %J Prot. Sci. %V 4 %P 93-102 %D 1995 %A M.B. Swindells %A M.W. MacArthur %A J.M. Thornton %T Intrinsic \(*p\(*q propensities of amino acids, derived from the coil regions of known structures %J Nature Struct. Biol. %V 2 %P 596-603 %D 1995 %A M.B. Swindells %A C.A. Orengo %A D.T. Jones %A L.H. Pearl %A J.M. Thornton %T Recurrence of a binding motif ? %J Nature %V 362 %P 299 %D 1993 %A M.B. Swindells %A J.M. Thornton %T Modelling by homology %J Curr. Opin. Struct. Biol. %V 1 %P 219-223 %D 1991 %A J. Sygusch %A D. Beaudry %T Catalytic activity of rabbit skeletal muscle aldolase in the crystalline state %J J. Biol. Chem. %V 259 %P 10222-? %D 1984 %K 0ALD %A J. Sygusch %A D. Beaudry %A M. Allaire %T Molecular architecture of rabbit skeletal muscle aldolase at 2.7\(Ao resolution %J Proc. Natl. Acad. Sci. USA %V 84 %P 7846-7850 %D 1987 %A J. Sygusch %A H. Boulet %A D. Beaudry %T Structure of rabbit muscle aldolase at low resolution %J J. Biol. Chem. %V 260 %P 15286-? %D 1985 %K 0ALD %A J. Sygusch %A N.B. Madsen %A P.J. Kasvinsky %A R.J. Fletterick %T Location of pyridoxal phosphate in glycogen phosphorylase A %J Proc. Natl. Acad. Sci. USA %V 74 %P 4757-? %D 1977 %K 0PPA %A D.M.E. Szebenyi %A K. Moffat %T The refined structure of vitamin D-dependent calcium-binding protein from bovine intestine: molecular details, ion binding, and implications for the structure of other calcium-binding proteins %J J. Biol. Chem. %V 261 %D 1986 %P 8761-8777 %K PDB3ICB %A D.M.E. Szebenyi %A S.K. Obendorf %A K. Moffat %T Structure of vitamin D-dependent calcium-binding protein from bovine intestine %J Nature %V 294 %P 327-332 %D 1981 %K 3ICB %A M. Szelke %T Chemistry of renin inhibitors %B Aspartic proteinases and their inhibitors %E V. Kostka %P 421-441 %I Walter de\0Gruyter %C Berlin %D 1985 %A M. Szelke %A B.J. Leckie %A A. Hallett %A D.M. Jones %A J. Suerias-Diaz %A B. Atrash %A A.F. Lever %T Potent new inhibitors of human renin %J Nature %P 555-557 %V 299 %D 1982 %A B.-O. S\(o:derberg %A A. Holmgren %A C.-I. Br\(a:nd\(e'n %T Structure of oxidized thioredoxin to 4.5\(Ao resolution %J J. Mol. Biol. %V 90 %P 143-152 %D 1974 %K 1SRX Branden Soderberg 2TRX %A B.-O. S\(o:derberg %A B.-M. Sj\(o:berg %A U. Sonnerstam %A C.-I. Br\(a:nd\(e'n %T Three-dimensional structure of thioredoxin induced by bacteriophage T4 %J Proc. Natl. Acad. Sci. USA %V 75 %P 5827-? %D 1978 %K 0TT4 Branden Sodeberg Sjoberg %A F.D. S\(o:nnichsen %A B.D. Sykes %A H. Chao %A P.L. Davies %T The nonhelical structure of antifreeze protein type III %J Science %V 259 %P 1154-1157 %D 1993 %A Sonnichsen %A J.A. Tainer %A E.D. Getzoff %A H. Alexander %A R.A. Houghten %A A.J. Olsen %A R.A. Lerner %T The reactivity of anti-peptide antibodies is a function of the atomic mobility of sites in a protein %J Nature %P 127-134 %V 312 %D 1984 %A J.A. Tainer %A E.D. Getzoff %A K.M. Beem %A J.S. Richardson %A D.C. Richardson %T Determination and analysis of the 2\(Ao structure of copper, zinc superoxide dismutase %J J. Mol. Biol. %V 160 %P 181-? %D 1982 %K PDB2SOD %A K. Takahashi %T The amino acid sequence of rhizopuspepsin an aspartic proteinase from \f2Rhizopus chinensis\f1 %J J. Biol. Chem. %V 262 %D 1987 %P 1468-1478 %A L.H. Takahashi %A R. Radhakrishnan %A R.E. Rosenfield,\0Jr. %A E.F. Meyer,\0Jr. %A D.A. Trainor %T Crystal structure of the covalent complex formed by a peptidyl \(*a,\(*a-difluoro-\(*b-keto amide with porcine pancreatic elastase at 1.78\(Ao resolution %J J. Amer. Chem. Socs. %V 111 %P 3368-3374 %D 1989 %A L.H. Takahashi %A R. Radhakrishnan %A R.E. Rosenfield,\0Jr. %A E.F. Meyer,\0Jr. %A D.A. Trainor %A M. Stein %T X-ray diffraction analysis of the inhibition of porcine pancreatic elastase by a peptidyl trifluromethylketone %J J. Mol. Biol. %V 201 %P 423-428 %D 1988 %A M. Takahashi %A T. Hofmann %T Acyl intermediates in penicillopepsin-catalyzed reactions and a discussion of the mechanism of action of pepsin %J Biochemistry %P 549-563 %V 147 %D 1975 %A M. Takahashi %A T.T. Wang %A T. Hofmann %T Acyl intermediates in pepsin and penicillopepsin catalyzed reactions %J Biochem. Biophys. Res. Comm. %P 39-46 %V 57 %D 1974 %A T. Takano %T Structure of myoglobin refined at 2.0\(Ao resolution: II. structure of deoxymyoglobin from sperm whale %J J. Mol. Biol. %V 110 %D 1977 %P 569-584 %K structure globin %A T. Takano %T Structure of myoglobin refined at 2.0\(Ao resolution: I. crystallographic refinement of metmyoglobin from sperm whale %J J. Mol. Biol. %V 110 %P 537-568 %D 1977 %K 5MBN %A T. Takano %T Refinement of myoglobin and cytochrome \f2c\f1 %E S.R. Hall and T. Ashida %B Methods and applications in crystallographic computing %P 262-? %D 1984 %I Oxford University Press %C Oxford %K PDB4MBN PDB5MBN 5CYT %A T. Takano %A R.E. Dickerson %T Redox conformation changes in refined tuna cytochrome \f2c\f1 %J Proc. Natl. Acad. Sci. USA %V 77 %P 6371-6375 %D 1980 %K PDB3CYT PNAS %A T. Takano %A R.E. Dickerson %T Conformation change of cytochrome \f2c\f1. II. Ferricytochrome \f2c\f1 refinement at 1.8\(Ao and comparison with the ferrocytochrome structure %J J. Mol. Biol. %V 153 %P 95-? %D 1981 %K 3CYT %A T. Takano %A R.E. Dickerson %T Conformation change of cytochrome \f2c\f1: I. ferrocytochrome \f2c\f1 structure refined at 1.5\(Ao resolution %J J. Mol. Biol. %V 153 %P 79-? %D 1981 %K 3CYT %A T. Takano %A O.B. Kallai %A R. Swanson %A R.E. Dickerson %T The structure of ferrocytochrome \f2c\f1 at 2.45\(Ao resolution %J J. Biol. Chem. %V 248 %P 5234-? %D 1973 %K 3CYT %A T. Takano %A B.L. Trus %A N. Mandel %A G. Mandel %A O.B. Kallai %A R. Swanson %A R.E. Dickerson %T Tuna cytochrome \f2c\f1 at 2.0\(Ao resolution. II. Ferrocytochrome structure analysis %J J. Biol. Chem. %V 252 %P 776-? %D 1977 %K 3CYT %A Y. Takeda %A J.G. Kim %A C.G. Caday %A E. Steers,\0Jr. %A D.H. Ohlendorf %A W.F. Anderson %A B.W. Matthews %T Different interactions used by \f2cro\f1 repressor in specific and nonspecific DNA binding %J J. Biol. Chem. %V 261 %P 8608-? %D 1986 %K PDB1CRO %A Y. Takeda %A D.H. Ohlendorf %A W.F. Anderson %A B.W. Matthews %T DNA-binding proteins %J Science %V 221 %P 1020-1026 %D 1983 %K 1CRO %A Y. Takeda %A D.H. Ohlendorf %A W.F. Anderson %A B.W. Matthews %T The structure of \f2cro\f1 repressor protein %J Biol. Macromol. %V 2 %P 233-? %D 1985 %K 1CRO %A Y. Takeuchi %A T. Nonaka %A K.T. Nakamura %A S. Kojima %A K.-I. Miura %A Y. Mitsui %T Crystal structure of an engineered subtilisin inhibitor complexed with bovine trypsin %J Proc. Natl. Acad. Sci. USA %V 89 %P 4407-4411 %D 1992 %A K. Takio %A T. Towatari %A N. Katunuma %A K. Titani %J Biochem. Biophys. Res. Comm. %V 97 %D 1980 %P 340-346 %T Primary structure study of rat liver cathepsin B: a striking resemblance to papain %K thiol proteinase sequence alignment %A R.L. Talbott %A E.E. Sparger %A K.M. Lovelace %A W.M. Fitch %A N.C. Pedersen %A P.A. Luciw %A J.H. Elder %T Nucleotide sequence and genomic organization of feline immunodeficiency virus %J Proc. Natl. Acad. Sci. USA %V 86 %D 1989 %P 5743-5747 %K FIV sequence lentivirus retrovirus PNAS %A T.-A. Tamura %J J. Virol. %V 47 %D 1983 %P 137-145 %T Provirus of M7 baboon endogenous virus: nucleotide sequence of the \f2gag-pol\f1 region %K BaEV %K retrovirus sequence type-C retrovirus %A T. Tanabe %A H. Takeshima %A A. Mikami %A V. Flockerzi %A H. Takahashi %A K. Kangawa %A M. Kojima %A H. Matsuo %A T. Hirose %A S. Numa %J Nature %P 313-318 %T Primary structure of the receptor for calcium channel blockers from skeletal muscle %V 328 %D 1987 %A M. Tanaka %A M. Hanui %A G. Matsuda %A K.T. Yasunobu %A R.H. Himes %A J.M. Akagi %A E.M. Barnes %A T. Devanathan %J J. Biol. Chem. %V 246 %D 1971 %P 3953-3960 %T The primary structure of the \f2Clostridium tartarivorum\f1 ferredoxin, a heat-stable ferredoxin %K sequence %A N. Tanaka %A T. Yamane %A T. Tsukihara %A T. Ashida %A M. Kakudo %T The crystal structure of bonito (katsuo) ferrocytochrome \f2c\f1 at 2.3\(Ao resolution: II. structure and function %J J. Biochem. (Tokyo) %V 77 %P 147-? %D 1975 %K PDB1CYC %A S. Tanaka %A H.A. Scheraga %J Proc. Natl. Acad. Sci. USA %P 3802-3806 %T Model of protein folding: inclusion of short-, medium-, and long-range interactions %V 72 %D 1975 %K PNAS %A T. Tanaka %A Y. Minematsu %A C.F. Reilly %A J. Travis %A J.C. Powers %T Human leukocyte cathepsin G. Subsite mapping with 4-nitroanilides, chemical modification, and effect of possible cofactors %J Biochemistry %V 24 %P 2040-2047 %D 1985 %A J. Tang %A M.N.G. James %A I.-N. Hsu %A J.A. Jenkins %A T.L. Blundell %J Nature %V 271 %D 1978 %P 618-621 %T Structural evidence for gene duplication in the evolution of the acid proteases %A J. Tang %A P. Sepulveda %A J. Marciniszyn,\0Jr. %A K.C.S. Chen %A W.-Y. Huang %A N. Tao %A D. Liu %A J.P. Lanier %T Amino-acid sequence of porcine pepsin %J Proc. Natl. Acad. Sci. USA %D 1973 %V 70 %P 3437-3439 %K PNAS %A J. Tang %A R.N.S. Wong %J J. Cell. Biochem. %V 33 %D 1987 %P 53-63 %T Evolution in the structure and function of aspartic proteinases %K alignment %A C. Tapparelli %A R. Metternich %A C. Ehrhardt %A N.S. Cook %T Synthetic low-molecular weight thrombin inhibitors: Molecular design and pharmacological profile %J Trends Pharmacol. Sci. %V 14 %P 366-376 %D 1993 %A S.S. Taylor %A D.R. Knighton %A J. Zheng %A J.M. Sowadski %A C.S. Gibbs %A M.J. Zoller %T A template for the protein kinase family %J Trends Biochem. Sci. %V 18 %P 84-89 %D 1993 %A S.S. Taylor %A S.S. Oxley %A W.S. Allison %A N.O. Kaplan %T Amino-acid sequence of dogfish M\d\s-24\s0\u lactate dehydrogenase %J Proc. Natl. Acad. Sci. USA %V 70 %P 1790-1794 %D 1973 %K PNAS 1LDM %A W. Taylor %T New paths from dead ends %J Nature %V 356 %P 478-479 %D 1992 %A W.R. Taylor %T The classification of amino acid conservation %J J. Theor. Biol. %V 119 %D 1986 %P 205-218 %K structure Venn diagrams similarities templates %A W.R. Taylor %T Identification of protein sequence homology by consensus template alignment %J J. Mol. Biol. %V 188 %D 1986 %P 233-258 %A W.R. Taylor %T Protein structure prediction %B Nucleic acid and protein sequence analysis: A practical approach %E M.J. Bishop and C.J. Rawlings %P 285-322 %I IRL Press %C Oxford %D 1987 %A W.R. Taylor %T A flexible method to align large numbers of biological sequences %J J. Mol. Evol. %V 28 %P 161-169 %D 1988 %A W.R. Taylor %T Pattern matching methods in protein sequence comparison and structure prediction %J Prot. Eng. %V 2 %D 1988 %P 77-86 %K templates %A W.R. Taylor %T Hierarchical method to align large numbers of biological sequences %J Methods Enzymol. %D 1990 %V 183 %P 456-474 %A W.R. Taylor %T Spinning in hyperspace %J Nature %V 353 %P 388-389 %D 1991 %K sequence analysis %A W.R. Taylor %T Protein fold-refinement: Building models from idealized folds using motif constraints and multiple sequence data %J Prot. Eng. %V 6 %P 593-604 %D 1993 %A W.R. Taylor %T Protein structure modelling from remote sequence similarity %J J. Biotech. %V 35 %P 281-291 %D 1994 %A W.R. Taylor %A D.T. Jones %T Templates, consensus patterns and motifs %J Curr. Opin. Struct. Biol. %V 1 %P 327-333 %D 1991 %A W.R. Taylor %A D.T. Jones %A N.M. Green %T A method for \(*a-helical integral membrane protein fold prediction %J Proteins %V 18 %P 281-294 %D 1994 %A W.R. Taylor %A C.A. Orengo %J Prot. Eng. %V 2 %D 1989 %P 505-519 %T A holistic approach to protein structure alignment %K comparison paper2 %A W.R. Taylor %A C.A. Orengo %T Protein structure alignment %J J. Mol. Biol. %V 208 %D 1989 %P 1-22 %K comparison paper1 %A W.R. Taylor %A C.A. Orengo %A L.H. Pearl %T Comparison of predicted and X-ray crystal structures of retroviral proteases %B Protein Engineering %E M. Ikehara %I Japan Scientific Societies Press %C Tokyo %D 1990 %P 21-27 %A W.R. Taylor %A J.M. Thornton %J Nature %V 301 %D 1983 %P 540-542 %T Prediction of super-secondary structure in proteins %K templates %A W.R. Taylor %A J.M. Thornton %J J. Mol. Biol. %V 173 %D 1984 %P 487-514 %T Recognition of super-secondary structure in proteins %K structure templates prediction alpha-beta %A M.M. Teeter %T Water structure of a hydrophobic protein at atomic resolution: pentagon rings of water molecules in crystals of crambin %J Proc. Natl. Acad. Sci. USA %V 81 %P 6014-6018 %D 1984 %K PDB1CRN PNAS %A M.M. Teeter %A W.A. Hendrickson %T Highly ordered crystals of the plant seed protein crambin %J J. Mol. Biol. %V 12 %P 219-? %D 1979 %K 1CRN %A M.M. Teeter %A X.-Q. Ma %A U. Rao %A M. Whitlow %T Crystal structure of a protein-toxin \(*a\d\s-21\s0\u-purothionin at 2.5\(Ao and a comparison with predicted models %J Proteins %V 8 %P 118-132 %D 1990 %A M.M. Teeter %A U. Rao %T Crystal structure of a protein-toxin solved from a predicted model %B Current research in protein chemistry: Techniques, structure, and function %E J.J. Villafranca %C San Diego %I Academic Press %D 1990 %P 359-366 %A B.L. Tembe %A J.A. McCammon %T Ligand-receptor interactions %J Computers & Chemistry %V 8 %P 281-283 %D 1984 %A A.R. Templeton %D 1983 %T Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes %J Evolution %V 37 %P 221-244 %A L. Tentori %A G. Vivaldi %A S. Carta %A M. Marinucci %A A. Massa %A E. Antonini %A M. Brunori %T The amino acid sequence of myoglobin from the mollusc \f2Aplysia limacina\f1 %J Int. J. Pept. Prot. Res. %V 5 %P 187-? %D 1973 %K 3MBA %A L.F. Ten\0Eyck %A A. Arnone %T Three-dimensional Fourier synthesis of human deoxyhemoglobin at 2.5\(Ao resolution: I. X-ray analysis %J J. Mol. Biol. %V 100 %P 3-? %D 1976 %K 2HHB %A A.V. Teplyakov %A I.P. Kuranova %A E.H. Harutyunyan %A C. Fr\(o:mmel %A W.E. Hoehne %T Crystal structure of thermitase from \f2Thermoactinomyces vulgaris\f1 at 2.2\(Ao resolution %J FEBS Lett. %V 244 %P 208-? %D 1989 %K 0TMT Frommel %A A.V. Teplyakov %A I.P. Kuranova %A E.H. Harutyunyan %A B.K. Vainshtein %A C. Fr\(o:mmel %A W.E. H\(o:hne %A K.S. Wilson %T Crystal structure of thermitase at 1.4\(Ao resolution %J J. Mol. Biol. %V 214 %P 261-279 %D 1990 %K Frommel %A A.V. Teplyakov %A B.V. Strokopytov %A I.P. Kuranova %A A.N. Popov %A E.G. Arutyunyan %A B.K. Vainshtein %A K. Fr\(o:mmel %A V. Khene %T X-ray structural investigation of thermitase at a resolution of 2.5\(Ao %J Sov. Phys. Cryst. (English trans.) %V 31 %P 553-? %D 1987 %K 0TMT Frommel %A C.J. Terry %A C.C.F. Blake %T Comparison of the modelled thyroxine binding site in TBG with the experimentally determined site in transthyretin %J Prot. Eng. %V 5 %P 505-510 %D 1993 %A E. Terwilliger %A R. Burghoff %A R. Sia %A J. Sodroski %A W. Haseltine %A C. Rosen %J J. Virol. %V 62 %D 1988 %P 655-658 %T The \f2art\f1 gene product of human immunodeficiency virus is required for replication %K HIV art gene %A T.C. Terwilliger %A D. Eisenberg %T The structure of melittin: I. structure determination and partial refinement %J J. Biol. Chem. %V 257 %P 6010-6015 %D 1982 %K PDB1MLT 2MLT %A T.C. Terwilliger %A D. Eisenberg %T The structure of melittin: II. interpretation of the structure %J J. Biol. Chem. %V 257 %P 6016-? %D 1982 %K 1MLT 2MLT %A S. Thaisrivongs %A S.R. Turner %A J.W. Strohbach %A R.E. TenBrink %A W.G. Tarpley %A T.J. McQuade %A R.L. Henrikson %A A.G. Tomasselli %A J.O. Hui %A W.J. Howe %T Inhibitiors of the protease from human immunodeficiency virus: Synthesis, enzyme inhibition, and antiviral activity of a series of compounds containing the dihydroxyethylene transition-state isostere %J J. Med. Chem. %V 36 %P 941-952 %D 1993 %A N. Thanki %A J.M. Thornton %A J.M. Goodfellow %J J. Mol. Biol. %V 202 %D 1988 %P 637-657 %T Distribution of water around amino acid residues in proteins %K solvation %A N. Thanki %A J.M. Thornton %A J.M. Goodfellow %T Influence of secondary structure on the hydration of serine, threonine and tyrosine residues in proteins %J Prot. Eng. %V 3 %P 495-508 %D 1990 %K solvation %A N. Thanki %A Y. Umrania %A J.M. Thornton %A J.M. Goodfellow %T Analysis of protein main-chain solvation as a function of secondary structure %J J. Mol. Biol. %V 221 %P 669-691 %D 1991 %A M.M. Thayer %A K.M. Flaherty %A D.B. McKay %T Three-dimensional structure of the elastase of \f2Pseudomonas aeruginosa\f1 at 1.5\(Ao resolution %J J. Biol. Chem. %V 266 %P 2864-2871 %D 1991 %A R.M. Thayer %A M.D. Power %A M.L. Bryant %A M.B. Gardner %A P.J. Barr %A P.A. Luciw %T Sequence relationships of type D retroviruses which cause simian acquired immunodeficiency syndrome %J Virology %V 157 %D 1987 %P 317-329 %K retrovirus sequence type D retrovirus %A R. Thieme %A E.F. Pai %A R.H. Schirmer %A G.E. Schulz %T Three-dimensional structure of glutathione reductase at 2\(Ao resolution %J J. Mol. Biol. %V 152 %P 763-787 %D 1981 %K 3GRS %A D.J. Thomas %T A simplified mechanical model of proteins tested on the globin fold %J J. Mol. Biol. %V 222 %P 805-817 %D 1991 %A K.A. Thomas %A G.M. Smith %A T.B. Thomas %A R.J. Feldmann %T Electronic distributions within protein phenylalanine aromatic rings are reflected by the three-dimensional oxygen atom environments %J Proc. Natl. Acad. Sci. USA %V 79 %P 4843-4847 %D 1982 %K PNAS %A P.D. Thomas %A V.J. Basus %A T.L. James %T Protein solution structure determination using distances from two-dimensional nuclear Overhauser effect experiments: effect of approximations on the accuracy of derived structures %J Proc. Natl. Acad. Sci. USA %V 88 %P 1237-1241 %D 1991 %A P.G. Thomas %A A.J. Russel %A A.R. Fersht %T Tailoring the pH dependence of enzyme catalysis using protein engineering %J Nature %V 318 %P 375-376 %D 1985 %A E.A. Thompson %D 1975 %T Human Evolutionary Trees %I Cambridge University Press %C Cambridge %A W.J. Thompson %A P.M.D. Fitzgerald %A M.K. Holloway %A E.A. Emini %A P.L. Darke %A B.M. McKeever %A W.A. Schleif %A J.C. Quintero %A J.A. Zugay %A T.J. Tucker %A J.E. Schwering %A C.F. Homnick %A J. Nunberg %A J.P. Springer %A J.R. Huff %T Synthesis and antiviral activity of a series of HIV-1 protease inhibitors with functionality tethered to the P\d\s-41\s0\u or P\d\s-41\s0\u\(fm phenyl substituents: X-ray crystal structure assisted design %J J. Med. Chem. %V 35 %P 1685-1701 %D 1992 %A A.J. Thomson %T Radical copper in oxidases %J Nature %V 350 %P 22-23 %D 1991 %A N.A. Thornberry %A S.M. Molyneaux %T Interleukin-1\(*b converting enzyme: A novel cysteine protease required for IL-1\(*b production and implicated in programmed cell death %J Prot. Sci. %V 4 %P 3-12 %D 1995 %A J.M. Thornton %T Disulphide bridges in globular proteins %J J. Mol. Biol. %D 1981 %V 151 %P 261-287 %A J.M. Thornton %J Nature %P 13-14 %T Electrostatic interactions in proteins %V 295 %D 1982 %A J.M. Thornton %T Protein structure: The shape of things to come %J Nature %V 335 %P 10-11 %D 1988 %A J.M. Thornton %A B.L. Chakauya %J Nature %P 296-297 %T Conformation of terminal regions in proteins %V 298 %D 1982 %A J.M. Thornton %A T.P. Flores %A D.T. Jones %A M.B. Swindells %T Prediction of progress at last %J Nature %V 354 %P 105-106 %D 1991 %A J.M. Thornton %A S.P. Gardner %T Protein motifs and data-base searching %J Trends Biochem. Sci. %V 14 %D 1989 %P 300-304 %K motifs database BIPED structure searching TIBS %A J.M. Thornton %A S.P. Gardner %A E.G. Hutchinson %T Protein structure databases: design and applications %B Computer Modelling of Biomolecular Processes %E J.M. Goodfellow and D.S. Moss %I Ellis Horwood %C Chichester %P 211-230 %D 1992 %A J.M. Thornton %A B.L. Sibanda %A M.S. Edwards %A D.J. Barlow %T Analysis design and modification of loop regions in proteins %J BioEssays %V 8 %D 1988 %P 63-69 %K protein structure engineering analysis loops %A J.M. Thornton %A J. Singh %A S.F. Campbell %A T.L. Blundell %T Protein-protein recognition \f2via\f1 sidechain interactions %J Biochem. Soc. Trans. %D 1988 %V 16 %P 927-930 %A J.M. Thornton %A M.J.E. Sternberg %T On the conformation of proteins: Towards the prediction of strand arrangements in \(*b-pleated sheets %J J. Mol. Biol. %V 113 %D 1977 %P 401-418 %K prediction beta strands secondary structure %A J. Thornton %A M.S. Edwards %A W.R. Taylor %A D.J. Barlow %T Location of `continuous' antigenic determinants in the protruding regions of proteins %J EMBO J. %V 5 %P 409-413 %D 1986 %A L.H. Throckmorton %D 1965 %T Similarity versus relationship in \f2Drosophila\f1 %J System. Zool. %V 14 %P 221-236 %A M.M.G.M. Thunnissen %A A.B. Eiso %A K.H. Kalk %A J. Drenth %A B.W. Dijkstra %A O.P. Kuipers %A R. Dijkman %A G.H. de\0Haas %A H.M. Verheij %T X-ray structure of phospholipase A\d\s-22\s0\u complexed with a substrate-derived inhibitor %J Nature %V 347 %D 1990 %P 689-691 %A Y. Th\(e'riault %A T.M. Logan %A R. Meadows %A L. Yu %A E.T. Olejniczak %A T.F. Holzman %A R.L. Simmer %A S.W. Fesik %T Solution structure of the cyclosporin A/cyclophilin complex by NMR %J Nature %V 361 %P 88-91 %D 1993 %K Theriault %A B. Tidor %T Helix-capping interaction in \(*l cro protein: A free energy simulation analysis %J Proteins %V 19 %P 310-323 %D 1994 %A B. Tidor %A M. Karplus %T Simulation analysis of the stability mutant R96H of T4 lysozyme %J Biochemistry %V 30 %P 3217-3228 %D 1993 %A B. Tidor %A M. Karplus %T The contribution of vibrational entropy to molecular association: The dimerization of insulin %J J. Mol. Biol. %V 238 %P 405-414 %D 1994 %A R.F. Tilton,\0Jr. %A U.C. Singh %A I.D. Kuntz,\0Jr. %A P.A. Kollman %T Protein-ligand dynamics: a 96 picosecond simulation of a myoglobin-xenon complex %J J. Mol. Biol. %V 199 %D 1988 %P 195-211 %A R. Timkovich %A R.E. Dickerson %T The structure of \f2Paracoccus denitrificans\f1 cytochrome \f2c\f1\d\s-2550\s0\u %J J. Biol. Chem. %V 251 %P 4033-? %D 1976 %K PDB155C %A R. Timkovich %A R.E. Dickerson %A E. Margoliash %T Amino acid sequence of \f2Paracoccus denitrificans\f1 cytochrome \f2c\f1\d\s-2550\s0\u %J J. Biol. Chem. %V 251 %P 2197-? %D 1976 %K 155C %A D. Timm %A K. Salim %A I. Gout %A L. Guruprasad %A M. Waterfield %A T. Blundell %T Crystal structure of the pleckstrin homology domain from dynamin %J Nature Struct. Biol. %V 1 %P 782-788 %D 1994 %A K. Titani %A M.A. Hermodson %A L.H. Ericsson %A K.A. Walsh %A H. Neurath %T Amino-acid sequence of thermolysin %J Nature, New Biol. %V 238 %P 35-37 %D 1972 %K 3TLN %A D.J. Tobias %A S.F. Sneddon %A C.L. Brooks\0III %T The stability of protein secondary structures in aqueous solution %J AIP Conference Proceedings: Advances in Biomedical Simulations %V 239 %P 174-199 %D 1991 %C Obernai, France %A D.J. Tobias %A S.F. Sneddon %A C.L. Brooks\0III %T Stability of a model \(*b-sheet in water %J J. Mol. Biol. %V 227 %P 1244-1252 %D 1992 %A H. Toh %A H. Hayashida %A T. Miyata %T Sequence homology between retroviral reverse transcriptase and putative polymerases of hepatitis B virus and cauliflower mosaic virus %J Nature %V 305 %D 1983 %P 827-829 %K alignment reverse transcriptase homology %A H. Toh %A R. Kikuno %A H. Hayashida %A T. Miyata %A W. Kugimiya %A S. Inouye %A S. Yuki %A K. Saigo %T Close structural resemblance between putative polymerase of a \f2Drosophila\f1 transposable genetic element 17.6 and \f2pol\f1 gene product of Moloney murine leukemia virus %J EMBO J. %V 4 %D 1985 %P 1267-1272 %K sequence transposable element retrovirus protease %A H. Toh %A M. Ono %A K. Saigo %A T. Miyata %T Retroviral protease like sequence in the yeast transposon Ty1 %J Nature %V 315 %D 1985 %P 691-692 %A R.C. Tolman %T The Principles of Statistical Mechanics %I Oxford University Press %C London %D 1946 %A K. Toma %A N. Kitaguchi %A H. Ito %T Structure prediction of protease inhibitor region in amyloid precursor protein %J J. Mol. Graph. %V 7 %P 202-207 %D 1989 %A K. Toma %A S. Yamamoto %A Y. Deyashiki %A K. Suzuki %T Three-dimensional structure of protein C inhibitor from the structure of \(*a\d\s-21\s0\u-antitrypsin with computer graphics %J Prot. Eng. %V 1 %D 1987 %P 471-475 %K modelling alignment serine proteinase inhibitor complex %A S. Toma %A S. Campagnoli %A I. Margarit %A R. Gianna %A G. Grandi %A M. Bolognesi %A V. De\0Filippis %A A. Fontana %T Grafting of a calcium-binding loop of thermolysin to \f2Bacillus subtilis\f1 neutral protease %J Biochemistry %V 30 %P 97-106 %D 1991 %A A.G. Tomasselli %A R. Frank %A E. Schiltz %T The complete primary structure of GTP:AMP phosphotransferase from beef heart mitochondria %J FEBS Lett. %V 202 %P 303-? %D 1986 %K 1AK3 %A A.G. Tomasselli %A W.J. Howe %A T.K. Sawyer %A A. Wlodawer %A R.L. Heinrikson %T The complexities of AIDS: An assessment of the HIV protease as a therapeutic target %J Chimicaoggi %V ? %P ? %D 1991 %K No page numbers or vol no, May 1991 %A A.G. Tomasselli %A M.K. Olsen %A J.O. Hui %A D.J. Staples %A T.K. Sawyer %A R.L. Henrikson %A C.-S.C. Tomich %T Substrate analogue inhibition and active site titration of purified recombinant HIV-1 protease %J Biochemistry %D 1990 %V 29 %P 264-269 %A G.W. Tomlinson %A S.-H. Kim %T Preliminary crystallographic studies of a sweet protein, monellin %J J. Biol. Chem. %V 256 %P 12476-? %D 1981 %K 1MON %A G. Tomlinson %A C. Ogata %A W.-C. Shin %A S.-H. Kim %T Crystal structure of a sweet protein, monellin, at 5.5\(Ao resolution %J Biochemistry %V 22 %P 5772-? %D 1983 %K 1MON %A K. Tomoo %A H. Ohishi %A M. Doi %A T. Ishida %A M. Inoue %A K. Ikeda %A Y. Hata %A Y. Samejima %T Sructure of acidic phospholipase A\d\s-42\s0\u for the venom of \f2Agkistrodon halys blomhoffii\f1 at 2.8\(Ao resolution %J Biochem. Biophys. Res. Comm. %V 184 %P 137-143 %D 1992 %A M.D. Toney %A E. Hohenester %A S.W. Cowan %A J.N. Jansonius %T Dialkylglycine decarboxylase structure: Bifunctional active site an alkali metal sites %J Science %V 261 %P 756-759 %D 1993 %A L. Tong %A A.M. de\0Vos %A M.V. Milburn %A J. Jancarik %A S. Noguchi %A S. Nishimura %A K. Miura %A E. Ohtsuka %A S.-H. Kim %T Structural differences between a \f2ras\f1 oncogene protein and the normal protein %J Nature %V 337 %D 1989 %P 90-93 %A L. Tong %A A.M. de\0Vos %A M.V. Milburn %A S.-H. Kim %T Crystal structures at 2.2\(Ao resolution of the catalytic domains of normal \f2ras\f1 protein and an oncogenic mutant complexed with GDP %J J. Mol. Biol. %V 217 %P 503-516 %D 1991 %A L. Tong %A M.V. Milburn %A A.M. de\0Vos %A S.-H. Kim %T Structure of \f2ras\f1 protein %J Science %V 245 %P 244 %D 1989 %K PDB3P21 PDB2P21 %A L. Tong %A S. Pav %A C. Pargellis %A F. Do %A D. Lamerre %A P.C. Anderson %T Crystal structure of human immunodeficiency virus (HIV) type 2 protease in complex with a reduced amide inhibitor and comparison with HIV-1 protease structures %J Proc. Natl. Acad. Sci. USA %V 90 %P 8387-8391 %D 1993 %A C. Toniolo %A G.M. Bonora %A A. Bavoso %A E. Benedetti %A B. DiBlasio %A V. Pavone %A C. Pedone %T Preferred conformation of peptides containing \(*a,\(*a disubstituted \(*a-amino acids %J Biopolymers %D 1983 %V 22 %P 205 %A N. Tonouchi %A H. Shoun %A T. Uozumi %A T. Beppu %T Cloning and sequencing of a gene for mucor rennin an aspartate protease from \f2Mucor pusillus\f1 %J Nucl. Acids Res. %V 14 %D 1986 %P 7557-7568 %K aspartic proteinase sequence mucor %A E.J. Toone %T Structrue and energetics of protein-carbohydrate complexes %J Curr. Opin. Struct. Biol. %V 4 %P 719-728 %D 1994 %A C.M. Topham %J J. Theor. Biol. %P 169-173 %T Ill-conditioning associated with the `end-point' method for the determination of kinetic parameters describing irreversible enzyme inactivation by an unstable inhibitor %V 135 %D 1988 %A C.M. Topham %A A.McLeod %A F. Eisenmenger %A J.P. Overington %A M.S. Johnson %A T.L. Blundell %T Fragment ranking in modelling of protein structure: conformationally constrained environmental amino acid substitution tables %J J. Mol. Biol. %V 229 %P 194-220 %D 1993 %A C.M. Topham %A A. McLeod %A F. Eisenmenger %A J.P. Overington %A M.S. Johnson %A T.L. Blundell %T Fragment ranking in modelling of protein structure: Conformationally constrained environmental amino acid substitution tables %J J. Mol. Biol. %V 229 %P 194-220 %D 1993 %A C.M. Topham %A J.P. Overington %A D. Kowlessur %A M. Thomas %A E.W. Thomas %A K. Brocklehurst %T Investigation of mechanistic consequences of natural structural variation within the cysteine proteinases by knowledge-based modelling and kinetic methods %D 1990 %V 18 %J Biochem. Soc. Trans. %P 579-580 %A C.M. Topham %A J. Overington %A M. O'Driscoll %A E. Salih %A M. Thomas %A E.W. Thomas %A K. Brocklehurst %T The three-dimensional structure of a B-type papain %J Biochem. Soc. Trans. %V 18 %P 933-934 %D 1990 %A C.M. Topham %A J. Overington %A M. Thomas %A D. Kowlessur %A E.W. Thomas %A K. Brocklehurst %T The three-dimensional structure and thiol reactivity characteristics of chymopapain M (papaya proteinase IV) %J Biochem. Soc. Trans. %V 18 %P 934-935 %D 1990 %A C.M. Topham %A E. Salih %A C. Frazao %A D. Kowlessur %A J.P. Overington %A S.M. Brocklehurst %A M. Patel %A E.W. Thomas %A K. Brocklehurst %T Structure-function relationships in the cysteine proteinases actinidin, papain and papaya proteinase \(*W %J Biochem. J. %V 280 %P 79-92 %D 1991 %A C.M. Topham %A N. Srinivasan %A C.J. Thorpe %A J.P. Overington %A N.A. Kalshekar %T Comparative modelling of major house dust mite allergen \f2Der p\f1 I: Structrue validation using an extended environmental amino acid propensity table %J Prot. Eng. %V 7 %P 869-894 %D 1994 %A C.M. Topham %A P. Thomas %A J.P. Overington %A M.S. Johnson %A F. Eisenmenger %A T.L. Blundell %T An assessment of \s-2COMPOSER\s0: a rule-based approach to modelling protein structure %J Biochem. Soc. Symp. %V 57 %P 1-9 %D 1991 %A J.G. Topliss %T Utilization of operational schemes for analog synthesis in drug design %J J. Med. Chem. %V 15 %P 1006-1011 %D 1972 %A J.G. Topliss %T A manual method for applying the Hansch approach to drug design %J J. Med. Chem. %V 20 %P 463-469 %D 1977 %A J.G. Topliss %J J. Med. Chem. %T A manual method for applying the Hansch approach to drug design %V 20 %P 463-469 %D 1977 %A Y.U.M. Torchinsky %A E.G. Harutyunyan %A V.N. Malashkevich %A V.M. Kochkina %A V.L. Makarov %A A.E. Braunstein %T Aspartate aminotransferase from chicken heart cytosol: Three-dimensional structure and coenzyme reorientations in the active site %J Prog. Clin. Biol. Res. %V 102 %P 13-? %D 1982 %K 1AAT %A R.R. Torgerson %A R.A. Lew %A V.E. Reyes %A L. Harry %A R.E. Humphreys %T Highly restricted distributions of hydrophobic and charged amino acids in longitudinal quadrants of \(*a-helices %J J. Biol. Chem. %V 266 %P 5521-5524 %D 1991 %A J. Tormo %A E. Stadler %A T. Skern %A H. Auer %A O. Kanzler %A C. Betzel %A D. Blaas %A I. Fita %T Three-dimensional structure of the Fab fragment of a neutralizing antibody to human rhinovirus serotype 2 %J Protein Science %V 1 %P 1154-1161 %D 1992 %A M. Tosi %A C. Duponchel %A T. Meo %T Complement genes \f2C1r\f1 and \f2C1s\f1 feature an intronless serine protease domain closely related to haptoglobin %J J. Mol. Biol. %V 208 %D 1989 %P 709-714 %K haptoglobin evolution serine proteinase %A D.A. Trainor %T Synthetic inhibitors of human neutrophil elastase %J Trends Pharmacol. Sci. %V 8 %P 303-307 %D 1987 %A A. Tramontano %A C. Chothia %A A.M. Lesk %T Structural determinants of the conformations of medium-sized loops in proteins %J Proteins %V 6 %D 1989 %P 382-394 %K immunoglobulins hydrophobic effect %A A. Tramontano %A C. Chothia %A A.M. Lesk %T Framework position 71 is a major determinant of the position and conformation of the second hypervariable region in the V\d\s-2H\s0\u domains of immunoglobulins %J J. Mol. Biol. %V 215 %P 175-182 %D 1990 %A A. Tramontano %A K.D. Janda %A R.A. Lerner %T Catalytic antibodies %J Science %V 234 %P 1566-1570 %D 1986 %A A. Tramontano %A A.M. Lesk %T Common features of the conformations of antigen-binding loops in immunoglobulins and application to modelling loop conformations %J Proteins %V 13 %P 231-245 %D 1992 %A A. Traunecker %A J. Schneider %A H. Kiefer %A K. Karjalainen %T Highly efficient neutralization of HIV with recombinant CD4-immunoglobulin molecules %J Nature %V 339 %D 1989 %P 68-70 %A T.W. Traut %T Do exons code for structural or functional units in proteins ? %J Proc. Natl. Acad. Sci. USA %V 85 %D 1988 %P 2944-2948 %K exons domains genes evolution PNAS %A P. Travers %A T.L. Blundell %A M.J.E. Sternberg %A W.F. Bodmer %T Structural and evolutionary analysis of HLA-D region products %J Nature %V 310 %D 1984 %P 235-238 %K modelling immunology HLA immunoglobulin %A A.M. Treharne %A S.P. Wood %A I.J. Tickle %A J.E. Pitts %A J. Husain %A I.D. Glover %A S. Cooper %A T.L. Blundell %T X-ray analysis of polypeptide hormones at (less than or equal) 1\(Ao resolution: anisotropic thermal motion and secondary structure of pancreatic polypeptide and deamino-oxytocin %J Cryst. Mol. Biol. %V 126 %P 153-? %D 1988 %K 1XY1 %A E.N. Trifonov %A J.L. Sussman %T Smooth bending of DNA in chromatin %B Molecular mechanisms of biological recognition %P 227-? %D 1979 %K 1DNN %A H.L. Trong %A D.C. Parmelee %A K.A. Walsh %A H. Neurath %A R.G. Woodbury %T Amino acid sequence of rat mast-cell protease I (chymase) %J Biochemistry %V 26 %D 1987 %P 6988-6994 %K sequence serine proteinase %A D.E. Tronrud %A H.M. Holden %A B.W. Matthews %T Structures of two thermolysin-inhibitor complexes that differ by a single hydrogen bond %J Science %V 235 %P 571-574 %D 1987 %K 1TLP PDB6TMN %A D.E. Tronrud %A A.F. Monzingo %A B.W. Matthews %T Crystallographic structural analysis of phosphoramidates as inhibitors and transition-state analogs of thermolysin %J Eur. J. Biochem. %V 157 %P 261-? %D 1986 %K PDB1TLP PDB2TMN %A D.E. Tronrud %A M.F. Schmid %A B.W. Matthews %T Structure and X-ray amino acid sequence of a bacteriochlorophyll \f2a\f1 protein from \f2Prosthecochloris aestuarii\f1 refined at 1.9\(Ao resolution %J J. Mol. Biol. %V 188 %P 443-454 %D 1986 %K PDB3BCL %A A. Tropsha %A J. Hermans %T Application of free-energy simulations to the binding of a transition state analogue inhibitior to HIV protease %J Prot. Eng. %V 5 %P 29-33 %D 1992 %A G. Trout %A J.S. Fruton %T The side-chain specificity of pepsin %J Biochemistry %V 8 %P 4183-5247 %D 1969 %A T.C. Tsang %A D.R. Bentley %A R.S. Mibashan %A F. Giannelli %T A factor IX mutation verified by direct genomic sequencing causes haemophilia by a novel mechanism %J EMBO J. %V 7 %D 1988 %P 3009-3015 %K haemophilia mutation sequence serine proteinase regulation %A D. Tsernoglou %A E. Hill %A L.J. Banaszak %T Cytoplasmic malate dehydrogenase \(em heavy atom derivatives and low resolution structure %J J. Mol. Biol. %V 69 %P 75-? %D 1972 %K 4MDH %A D. Tsernoglou %A E. Hill %A L.J. Banaszak %T Structural studies on heart muscle malate dehydrogenases %J Cold Spring Harbor Symp. Quant. Biol. %V 36 %P 171-? %D 1972 %K 4MDH %A D. Tsernoglou %A G.A. Petsko %T The crystal structure of a post-synaptic neurotoxin from sea snake at 2.2\(Ao resolution %J FEBS Lett. %V 68 %P 1-? %D 1976 %K 1NXB %A D. Tsernoglou %A G.A. Petsko %T Three-dimensional structure of neurotoxin A from venom of the Philippines sea snake %J Proc. Natl. Acad. Sci. USA %V 74 %P 971-974 %D 1977 %K 1NXB PNAS %A D. Tsernoglou %A G.A. Petsko %A R.A. Hudson %T Structure and function of snake venom curarimimetic neurotoxins %J Mol. Pharmacol. %V 14 %P 710-? %D 1978 %K PDB1NXB %A D. Tsernoglou %A G.A. Petsko %A J.E. McQueen,\0Jr. %A J. Hermans %T Molecular graphics: application to the structure determination of a snake venom neurotoxin %J Science %V 197 %P 1378-1381 %D 1977 %K 1NXB %A D. Tsernoglou %A G.A. Petsko %A A.T. Tu %T Protein sequencing by computer graphics %J Biochim. Biophys. Acta %V 491 %P 605-608 %D 1977 %K 1NXB %A T. Tsuji %A E.T. Kaiser %T Design and synthesis of a pseudo-EF hand in calbindin D\d\s-49K\s0\u: Effect of amino acid substitutions in the \(*a-helical regions %J Proteins %P 12-22 %V 9 %D 1991 %A H. Tsujimoto %A A. Hasegawa %A N. Maki %A M. Fukusawa %A T. Miura %A S. Speidel %A R.W. Cooper %A E.N. Moriyama %A T. Gojobori %A M. Hayami %T Sequence of a novel simian immunodeficiency virus from a wild-caught African mandrill %J Nature %V 341 %D 1989 %P 539-541 %K SIV lentivirus sequence %A H. Tsukada %A D.M. Blow %T Structure of \(*a-chymotrypsin refined at 1.68\(Ao resolution %J J. Mol. Biol. %V 184 %P 703-711 %D 1985 %K PDB4CHA %A T. Tsukihara %A K. Fukuyama %A M. Mizushima %A T. Harioka %A M. Kusunoki %A Y. Katsube %A T. Hase %A H. Matsubara %T Structure of the [2Fe-2S] ferredoxin I from the blue-green alga \f2Aphanothece sacrum\f1 at 2.2\(Ao resolution %J J. Mol. Biol. %V 216 %P 399-? %D 1990 %K PDB1FXI %A T. Tsukihara %A K. Fukuyama %A M. Nakamura %A Y. Katsube %A N. Tanaka %A M. Kakudo %A K. Wada %A T. Hase %A H. Matsubara %T X-ray analysis of a (2Fe-2S) ferredoxin from \f2Spirulina platensis\f1: main chain fold and location of side chains at 2.5\(Ao resolution %J J. Biochem. (Tokyo) %V 90 %P 1763-? %D 1981 %K PDB3FXC %A T. Tsukihara %A K. Fukuyama %A H. Tahara %A Y. Katsube %A Y. Matsuura %A N. Tanaka %A M. Kakudo %A K. Wada %A H. Matsubara %T X-ray analysis of ferredoxin from \f2Spirulina platensis\f1. II. Chelate structure of active center %J J. Biochem. (Tokyo) %V 84 %P 1645-? %D 1978 %K 3FXC %A T. Tsukihara %A K. Homma %A K. Fukuyama %A Y. Katsube %A T. Hase %A H. Matsubara %A N. Tanaka %A M. Kakudo %T Preliminary X-ray diffraction studies on a (4Fe-4S) ferredoxin from \f2Bacillus thermoproteolyticus\f1 %J J. Mol. Biol. %V 152 %P 821-? %D 1981 %K 1FXB %A T. Tsukihara %A T. Yamane %A N. Tanaka %A T. Ashida %A M. Kakudo %T Oxidation of a ferrocytochrome \f2c\f1 in the crystalline state \(em structural change and anion binding %J J. Biochem. (Tokyo) %V 73 %P 1163-? %D 1973 %K 1CYC %A J.N. Tsunoda %A K.T. Yasunobu %A H.R. Whiteley %T Non-heme iron proteins: IX. the amino acid sequence of ferredoxin from \f2Micrococcus aerogenes\f1 %J J. Biol. Chem. %V 243 %D 1968 %P 6262-6272 %K sequence ferredoxin %A Y. Tsunogae %A I. Tanaka %A T. Yamane %A J.-I. Kikkawa %A T. Ashida %A C. Ishikawa %A K. Watanabe %A S. Nakamura %A K. Takahashi %T Structure of the trypsin-binding domain of Bowman-Birk type protease inhibitor and its interaction with trypsin %J J. Biochem. (Tokyo) %V 100 %P 1637-? %D 1986 %K PDB1TAB %A T. Tsutsui %A T. Tsukihara %A K. Fukuyama %A Y. Katsube %A T. Hase %A H. Matsubara %A Y. Nishikawa %A N. Tanaka %T Main chain fold of a (2Fe-2S) ferredoxin I from \f2Aphanothece sacrum\f1 at 2.5\(Ao resolution %J J. Biochem. (Tokyo) %V 94 %P 299-? %D 1983 %K 0FXI 1FXI %A A.D. Tucker %A D. Baty %A M.W. Parker %A F. Pattus %A C. Lazdunski %A D. Tsernoglou %T Crystallographic phases through genetic engineering: experiences with colicin A %J Prot. Eng. %V 2 %P 399-405 %D 1991 %A A.D. Tucker %A F. Pattus %A D. Tsernoglou %T Crystallization of the C-terminal domain of colicin A carrying the voltage-dependent pore activity of the protein %J J. Mol. Biol. %V 190 %P 133-? %D 1986 %K 0COL %A R.M. Tufty %A R.H. Kretsinger %T Troponin and parvalbumin calcium binding regions predicted in myosin light chain and T4 lysozyme %J Science %V 187 %P 167-169 %D 1975 %K 1CPV 5CPV 1CDP %A A. Tulinsky %T Structural changes accompanying expression of enzymic functionality: interaction of small molecules with \(*a-chymotrypsin %B Biomolecular structure, conformation, function, and evolution %E R. Srinivasan %P 183-199 %V 1 %I Pergamon Press %C Oxford %D 1978 %A A. Tulinsky %A R.A. Blevins %T Least-squares refinement of two protein molecules per asymmetric unit with and without non-crystallographic symmetry restrained %J Acta Cryst. %V B 42 %P 198-? %D 1986 %K 5CHA %A A. Tulinsky %A R.A. Blevins %T Structure of a tetrahedral transition state complex of \(*a-chymotrypsin at 1.8\(Ao resolution %J J. Biol. Chem. %V 262 %P 7737-? %D 1987 %K PDB6CHA %A A. Tulinsky %A N.V. Mani %A C.N. Morimoto %A R.L. Vandlen %T The structure of \(*a-chymotrypsin: I. the refinement of the heavy-atom isomorphous derivatives at 2.8\(Ao resolution %J Acta Cryst. %V B 29 %P 1309-? %D 1973 %K 5CHA %A A. Tulinsky %A C.H. Park %A B. Mao %A M. Llin\(a's %T Lysine/Fibrin binding sites of kringles modeled after the structure of kringle 1 of prothrombin %J Proteins %V 3 %D 1988 %P 85-96 %K kringle TPA structure NMR modelling Llinas %A A. Tulinsky %A C.H. Park %A T.J. Rydel %T The structure of prothrombin fragment 1 at 3.5\(Ao resolution %J J. Biol. Chem. %V 260 %P 10771-? %D 1985 %K 0PF1 %A A. Tulinsky %A C.H. Park %A E. Skrzypczak-Jankun %T Structure of prothrombin fragment 1 refined at 2.8\(Ao resolution %J J. Mol. Biol. %V 202 %D 1988 %P 885-901 %K 0PF1 kringle serine proteinase structure refinement sequences %A A. Tulinsky %A R.L. Vandlen %A C.N. Morimoto %A N.V. Mani %A L.H. Wright %T Variability in the tertiary structure of \(*a-chymotrypsin at 2.8\(Ao resolution %J Biochemistry %V 12 %P 4185-? %D 1973 %K 5CHA %A W.R. Tulip %A J.N. Varghese %A A.T. Baker %A A. van\0Donkelaar %A W.G. Laver %A R.G. Webster %A P.M. Colman %T Refined atomic structures of N9 subtype influenza virus neuraminidase and escape mutants %J J. Mol. Biol. %V 221 %P 487-497 %D 1991 %A V. Turk %A J. Brzin %A B. Lenar\(cvi\(cv %A A. \(Svali %A W. Machledit %T Human stefins and cystatins: Their properties and structural relationships %B Cysteine proteinases and their inhibitors %E V. Turk %I Walter de\0Gruyter %C Berlin %P 429-441 %D 1986 %K Lenarcic Sali %A M.S. Tute %T Drug design: The present and the future %J Adv. Drug. Res. %V 26 %P 46-142 %D 1995 %A S.S. Twining %A R.C. Sealy %A D.M. Glick %J Biochemistry %P 1267-1272 %T Preparation and activation of a spin-labeled pepsinogen %V 20 %D 1981 %A J.B. Udgaonkar %A R.L. Baldwin %T NMR evidence for an early framework intermediate on the folding pathway of ribonuclease A %J Nature %V 335 %D 1988 %P 694-699 %K NMR protein folding ribonuclease %A M. Ullner %A M. Selander %A E. Perrson %A J. Stenflo %A T. Drakenberg %A O. Teleman %T Three-dimensional structure of the apo-form of the N-terminal EGF-like module of blood coagulation factor X as determined by NMR spectroscopy and simulated folding %J Biochemistry %V 31 %P 5974-5983 %D 1992 %A J.S. Ulmer %A R.N. Lindquist %A M.S. Dennis %A R.A. Lazarus %T Ecotin is a potent inhibitor of the contact system proteases factor XIIa and plasma kallikrein %J FEBS Letts. %V 365 %P 159-163 %D 1995 %A T.C. Umland %A S. Swaminathan %A W. Furey %A G. Singh %A J. Pletcher %A M. Sax %T Refined structure of rat Clara cell 17kDa protein at 3.0\(Ao resolution %J J. Mol. Biol. %V 224 %P 441-448 %D 1992 %A L. Ungaretti %A M. Bolognesi %A E. Cannillo %A R. Oberti %A G. Rossi %T The crystal structure of met-myoglobin from \f2Aplysia limacina\f1 at 5\(Ao resolution %J Acta Cryst. %V B 34 %P 3658-? %D 1978 %K 1MBA %A R. Unger %A D. Harel %A S. Wherland %A J.L. Sussman %T A 3-D building blocks approach to analyzing and predicting structure of proteins %J Proteins %V 5 %D 1989 %P 355-373 %K modelling protein structure fragments clustering %A R. Untucht-Grau %A G.E. Schulz %A R.H. Schirmer %T The C-terminal fragment of human glutathione reductase contains the postulated catalytic histidine %J FEBS Lett. %V 105 %P 244-? %D 1979 %K 3GRS %A N. Unwin %A R. Henderson %T The structure of proteins in biological membranes %J Sci. Amer %V 250 %N 2 %P 78-95 %D 1984 %A T. Uzzell %A K.W. Corbin %T Fitting discrete probability distributions to evolutionary events %J Science %V 172 %P 1089-1096 %D 1972 %A J.P. Vacca %A J.P. Guare %A S.J. deSolms %A W.M. Sanders %A E.A. Giuliani %A S.D. Young %A P.L. Darke %A J. Zugray %A I.S. Sigal %A W.A. Schleif %A J.C. Quintero %A E.A. Emini %A P.S. Anderson %A J.R. Huff %T L-687-908, a potent hydroxyethylene-containing HIV protease inhibitor %J J. Med. Chem. %V 34 %P 1225-1228 %D 1991 %A B.K. Vainshtein %A E.G. Arutiunian %A I.P. Kuranova %A V.V. Borisov %A N.I. Sosfenov %A A.G. Pavlovskii %A A.I. Grebenko %A N.V. Konareva %T X-ray determination of three-dimensional structure of leghemoglobin from \f2Lupinus luteus l\f1. at 5\(Ao resolution %J Dokl. Akad. Nauk. SSSR %V 216 %P 690-? %D 1974 %K 1LH1 %A B.K. Vainshtein %A E.G. Arutiunian %A I.P. Kuranova %A V.V. Borisov %A N.I. Sosfenov %A A.G. Pavlovskii %A A.I. Grebenko %A N.V. Konareva %A I.V. Nekrasov %T Spatial structure of lupine leghemoglobin with the 2.8\(Ao resolution %J Dokl. Akad. Nauk. SSSR %V 233 %P 238-? %D 1977 %K 1LH1 %A B.K. Vainshtein %A E.G. Arutyunyan %A I.P. Kuranova %A V.V. Borisov %A N.I. Sosfenov %A A.G. Pavlovskii %A A.I. Grebenko %A N.V. Konareva %T X-ray diffraction determination of the three-dimensional structure of leghemoglobin of \f2Lupinus luteus l.\f1 with 5\(Ao resolution %J Dokl. Biochem. (English trans.) %V 216 %P 226-? %D 1974 %K 1LH1 %A B.K. Vainshtein %A E.G. Arutyunyan %A I.P. Kuranova %A V.V. Borisov %A N.I. Sosfenov %A A.G. Pavlovskii %A A.I. Grebenko %A N.V. Konareva %T The X-ray structural study of leghemoglobin: I. purification, crystallization, and production of derivatives containing heavy atoms %J Kristallografiya %V 19 %P 964-? %D 1974 %K 1LH1 %A B.K. Vainshtein %A E.G. Arutyunyan %A I.P. Kuranova %A V.V. Borisov %A N.I. Sosfenov %A A.G. Pavlovskii %A A.I. Grebenko %A N.V. Konareva %A Y.V. Nekrasov %T Three-dimensional structure of lupine leghemoglobin with a resolution of 2.8\(Ao %J Dokl. Biochem. (English trans.) %V 233 %P 67-? %D 1977 %K 1LH2 %A B.K. Vainshtein %A E.H. Harutyunyan %A I.P. Kuranova %A V.V. Borisov %A N.I. Sosfenov %A A.G. Pavlovsky %A A.I. Grebenko %A N.V. Konareva %T Structure of leghaemoglobin from lupin root nodules at 5\(Ao resolution %J Nature %V 254 %P 163-164 %D 1975 %K 1LH2 %A B.K. Vainshtein %A E.H. Harytyunyan %T X-ray structure of lupin leghemoglobin %B Biomolecular, structure, conformation, function and evolution %P 39-42 %V 1 %E R. Srinivasan %I Pergamon Press %C Oxford %A B.K. Vainshtein %A V.R. Melik-Adamyan %A V.V. Barynin %A A.A. Vagin %T X-ray diffraction investigation of catalase of \f2Penicillium vitale\f1 with 3.5\(Ao resolution %J Dokl. Biochem. (English trans.) %V 250 %P 9-? %D 1980 %K 4CAT %A B.K. Vainshtein %A V.R. Melik-Adamyan %A V.V. Barynin %A A.A. Vagin %A Y.N. Nekrasov %A L.V. Malinina %A M.F. Gulyi %A L.V. Gudkova %A R.G. Degtyar %T X-ray diffraction investigation of the structure of catalase of the fungus \f2Penicillium vitale pidopl. et bilai\f1 with a resolution of 6\(Ao %J Dokl. Biochem. (English trans.) %V 246 %P 151-? %D 1979 %K 4CAT %A B.K. Vainshtein %A W.R. Melik-Adamyan %A V.V. Barynin %A A.A. Vagin %A A.I. Grebenko %T Three-dimensional structure of the enzyme catalase %J Nature %V 293 %P 411-412 %D 1981 %K 4CAT %A B.K. Vainshtein %A W.R. Melik-Adamyan %A V.V. Barynin %A A.A. Vagin %A A.I. Grebenko %A V.V. Borisov %A K.S. Bartels %A I. Fita %A M.G. Rossmann %T Three-dimensional structure of catalase from \f2Penicillium vitale\f1 at 2.0\(Ao resolution %J J. Mol. Biol. %V 188 %P 49-61 %D 1986 %K PDB4CAT %A K. Valeg\(aord %A L. Liljas %A K. Fridborg %A T. Unge %T The three-dimensional structure of the bacterial virus MS2 %J Nature %V 345 %D 1990 %P 36-41 %K Valegard %A A. Valencia %A P. Chardin %A A. Wittinghofer %A C. Sander %T The \f2ras\f1 protein family: Evolutionary tree and role of conserved amino acids %J Biochemistry %V 30 %P 4637-4648 %D 1991 %A A. Valencia %A M. Kjeldgaard %A E.F. Pai %A C. Sander %T GTPase domains of \f2ras\f1 p21 oncogene protein and elongation factor Tu: Analysis of three-dimensional structures, sequence families, and functional sites %J Proc. Natl. Acad. Sci. USA %V 88 %P 5443-5447 %D 1991 %A B.L. Vallee %A D.S. Auld %J Proc. Natl. Acad. Sci. USA %V 87 %D 1990 %P 220-224 %T Active-site zinc ligands and activated H\d\s-22\s0\uO of zinc enzymes %K metalloproteases zinc coordination sequences PNAS %A B.L. Vallee %A D.S. Auld %T Cocatalytic zinc motifs in enzyme catalysis %J Proc. Natl. Acad. Sci. USA %V 90 %P 2715-2718 %D 1993 %A B.L. Vallee %A J.E. Coleman %A D.S Auld %T Zinc-fingers, zinc clusters, and zinc twists in DNA-binding protein domains %J Proc. Natl. Acad. Sci. USA %V 88 %P 999-1003 %D 1991 %A R.L. Vandlen %A D.L. Ersfeld %A A. Tulinsky %A W.A. Wood %T Confirmation of a trimeric subunit arrangement for 2-keto-3-deoxy-6-phosphogluconic aldolase using X-ray crystallographic methods %J J. Biol. Chem. %V 248 %P 2251-? %D 1973 %K 1KGA %A C. Vankatachalam %T Stereochemical criteria for polypeptides and proteins: V. Conformation of a system of three linked peptide units %J Biopolymers %V 6 %P 1425-1436 %D 1969 %A J. van\0Beeumen %A S. van\0Bun %A G.W. Canters %A A. Lommen %A C. Chothia %T The structural homology of amicyanin from \f2Thiobacillus versutus\f1 to plant plastocyanins %J J. Biol. Chem. %V 266 %P 4869-4877 %D 1991 %A F.G. van\0der\0Goot %A J.M. Gonz\(a'lez-Ma\(n~as %A J.H. Lakey %A F. Pattus %T A `molten-globule' membrane-insertion intermediate of the pore-forming domain of colicin A %J Nature %V 354 %P 408-410 %K Gonzalez-Manas %A J.M. van\0der\0Laan %A H.A. Schreuder %A M.B.A. Swarte %A R.K. Wierenga %A K.H. Kalk %A W.G.J. Hol %A J. Drenth %T The coenzyme analogue adenosine 5-diphosphoribose displaces FAD in the active site of \f2p\f1-hydroxybenzoate hydoxylase: an X-ray crystallographic investigation %J Biochemistry %V 28 %P 7199-? %D 1989 %K 2PHH %A J.M. van\0der\0Laan %A M.B.A. Swarte %A H. Gr\(o:ndijk %A W.G.J. Hol %A J. Drenth %T The influence of purification and protein heterogeneity on the crystallization of \f2p\f1-hydroxybenzoate hydroxylase %J Eur. J. Biochem. %V 179 %P 715-? %D 1989 %K 2PHH Grondijk %A J.M. van\0der\0Laan %A A.V. Teplyakov %A H. Kelders %A K.H. Kalk %A O. Misset %A L.J.S.M. Mulleners %A B.W. Dijkstra %T Crystal structure of the high-alkaline serine protease PB92 from \f2Bacillus alcalophilus\f1 %J Prot. Eng. %V 5 %P 405-411 %D 1992 %A H. van\0der\0Wel %A T.C. van\0Soest %A E.C. Royers %T Crystallization and crystal data of thaumatin I, a sweet-tasting protein from \f2Thaumatococcus daniellii Benth\f1 %J FEBS Lett. %V 56 %P 316-? %D 1975 %K 1THI %A S.R. van\0Doren %A A.V. Kurochkin %A Q.-Z. Ye %A L.L. Johnson %A D.J. Hupe %A E.R.P. Zuiderweg %T Assignments for the mainchain nuclear magnetic resonances and delineation of the secondary structure of the catalytic domain of human stromelysin-1 as obtained from triple-resonance 3D NMR experiments %J Biochemistry %V 32 %P 13109-13122 %D 1993 %A G.D van\0Duyne %A R.F. Standaert %A P.A. Karplus %A S.L. Schreiber %A J. Clardy %T Atomic structure of FKBP-FK506, an immunophilin-immunosuppressant complex %J Science %V 252 %P 839-842 %D 1991 %K 1FKF %A W.F. van\0Gunsteren %T The role of computer simulation technique in protein engineering %J Prot. Eng. %V 2 %D 1988 %P 5-13 %A W.F. van\0Gunsteren %T Methods for calculation of free energies and binding constants: Successes and problems %P 27-59 %B Computer simulation of biomolecular systems: Theoretical and experimental applications %E W.F. van\0Gunsteren and P.K. Weiner %I ESCOM %C Leiden %D 1989 %A W.F. van\0Gunsteren %A H.J.C. Berendsen %J Mol. Phys. %P 1311-1327 %T Algorithms for macromolecular dynamics and constraint dynamics %V 34 %D 1977 %A W.F. van\0Gunsteren %A H.J.C. Berendsen %A J. Hermans %A W.G.J. Hol %A J.P.M. Postma %D 1983 %T Computer simulation of the dynamics of hydrated protein crystals and its comparison with X-ray data %J Proc. Natl. Acad. Sci. USA %V 80 %P 4315-4319 %K PNAS %A W.F. van\0Gunsteren %A M. Karplus %T Effect of constraints, solvent and crystal environment on protein dynamics %J Nature %V 293 %D 1981 %P 677-678 %A W.F. van\0Gunsteren %A A.E. Mark %T On the interpretation of biochemical data by molecular dynamics computer simulation %J Eur. J. Biochem. %V 204 %P 947-961 %D 1992 %A M. van\0Heel %T A new family of powerful multivariate statistical sequence analysis techniques %J J. Mol. Biol. %V 220 %P 877-887 %D 1991 %A M.H.V. van\0Regenmortel %J Trends Biochem. Sci. %P 36-39 %T Which structural features determine protein antigenicity ? %V 11 %D 1986 %K TIBS %A E.J.M. van\0Schaick %A W.G. Schutter %A W.P.J. Gaykema %A A.M.H. Schepman %A W.G.J. Hol %T Structure of \f2Panulirus interruptus\f1 hemocyanin at 5\(Ao resolution %J J. Mol. Biol. %V 158 %P 457-? %D 1982 %K 0HPI %A H. van\0Tilbeurgh %A M.-P. Egloff %A C. Martinez %A N. Rugani %A R. Verger %A C. Cambillau %T Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography %J Nature %V 362 %P 814-820 %D 1993 %A H. van\0Tilbeurgh %A L. Sarda %A R. Verger %A C. Cambillau %T Structure of the pancreatic lipase-procolipase complex %J Nature %V 359 %P 159-162 %D 1992 %A H.H.M. van\0Tol %A J.R. Bunzow %A H.-C. Guan %A R.K. Sunahara %A P. Seeman %A H.B. Niznik %A O. Civelli %T Cloning of the gene for a human dopamine D\d\s-24\s0\u receptor with high affinity for the antipsychotic clozapine %J Nature %V 350 %P 610-614 %D 1991 %A H.E. van\0Wart %A B.L. Vallee %A R.K. Scheule %A H.A. Scheraga %T Resonance Raman probes of enzyme active sites %J Trends Biochem. Sci. %P 316-318 %V 6 %D 1981 %K TIBS %A L. van\0\der\0Voorn %A H.L. Ploegh %T The WD-40 repeat %J FEBS Letts. %V 307 %P 131-134 %D 1992 %A K.H.G. Verschueren %A F. Selj\(e'e %A H.J. Rozeboom %A K.H. Kalk %A B.W. Dijkstra %T Crystallogrpahic analysis of the catalytic mechanism of haloalkane dehalogenase %J Nature %V 363 %P 693-698 %D 1993 %K Seljee %A J.N. Varghese %A P.M. Colman %T Three-dimensional structure of the neuraminidase of influenza virus A/Tokyo/3/67 at 2.2\(Ao resolution %J J. Mol. Biol. %V 221 %P 473-486 %D 1991 %A J.N. Varghese %A W.G. Laver %A P.M. Colman %T Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9\(oA resolution %J Nature %V 303 %P 35-40 %D 1983 %A H.E. Varmus %T Reverse transcriptase rides again %J Nature %V 314 %D 1985 %P 583-584 %K reverse transcriptase %A M.D. Varney %A K. Appelt %A V. Kalish %A M.R. Reddy %A J. Tatlock %A C.L. Palmer %A W.H. Romines %A B.-W. Wu %A L. Musick %T Crystal-structure-based design and synthesis of novel C-terminal inhibitors of HIV protease %J J. Med. Chem. %V 37 %P 2274-2284 %D 1994 %A K.I. Varughese %A F.R. Ahmed %A P.R. Carey %A C.P. Hasnain %A A.C. Storer %J Biochemistry %P 1330-1332 %T Crystal structure of a papain-E-64 complex %V 28 %D 1989 %K 0PEC %A K.I. Varughese %A M.M. Skinner %A J.M. Whitely %A D.A. Matthews %A N.H. Xuong %T Crystal structure of rat liver dihyropteridine reductase %J Proc. Natl. Acad. Sci. USA %V 89 %P 6080-6084 %D 1992 %A K.I. Varughese %A Y. Su %A D. Cromwell %A S. Hasnain %A N-H. Xyoung %T Crystal structure of an actinidin-E64 complex %J Biochemsitry %V 31 %P 5172-5176 %D 1992 %A C.A. Veale %A P.R. Bernstein %A C. Bryant %A C. Ceccarelli %A J.R. Damewood %A R. Earley %A S.W. Feeney %A B. Gomes %A B.J. Kosmider %A G.B. Steelman %A R.M. Thomas %A E.P. Vacek %A J.C. Williams %A D.J. Wolanin %A S. Woolson %T Nonpeptidic inhibitors of human leukocyte elastase: 5. Design, synthesis, and X-ray crystallogrpahy of a series of orally active 5-aminopyrimidin-6-one-containing trifluoromethyl ketones %J J. Med. Chem. %V 38 %P 98-108 %D 1995 %A C.A. Veale %A J.R. Damewood %A G.B. Steelman %A C. Bryant %A B. Gomes %A J. Williams %T Non-peptidic inhibitors of human leukocyte elastase: 4. Design, synthesis. and \f2in vitro\f1 and \f2in vivo\f1 activity of a series of \(*b-carbolinone-containing trifluoromethylketones %J J. Med. Chem. %V 38 %P 86-97 %D 1995 %A B. Veerapandian %A J.B. Cooper %A A. \(Svali %A T.L. Blundell %T X-ray analyses of aspartic proteinases: III. three-dimensional structure of endothiapepsin complexed with a transition-state isostere inhibitor of renin at 1.6\(Ao resolution %J J. Mol. Biol. %V 216 %P 1017-1029 %D 1990 %A B. Veerapandian %A J.B. Cooper %A A. \(Svali %A T.L. Blundell %A R.L. Rosati %A B.W. Dominy %A D.B. Damon %A D.J. Hovver %T Direct observation by X-ray analysis of the tetrahedral ``intermediate'' of aspartic proteinases %J Prot. Sci. %V 1 %P 322-328 %D 1992 %K Sali %A F.M.D. Vellieux %A J. Frank %A M.B.A. Swarte %A H. Gr\(o:ndijk %A J.A. Duine %A J. Drenth %A W.G.J. Hol %T Purification, crystallization and preliminary X-ray investigation of quinoprotein methylamine dehydrogenase from \f2Thiobacillus versutus\f1 %J Eur. J. Biochem. %V 154 %P 383-? %D 1986 %K 1MAD Grondijk %A F.M.D. Vellieux %A W.G.J. Hol %T A new model for the pro-PQQ cofactor of quinoprotein methylamine dehydrogenase %J FEBS Lett. %V 255 %P 460-? %D 1989 %K 1MAD %A F.M.D. Vellieux %A F. Huitema %A H. Gr\(o:ndijk %A K.H. Kalk %A J. Frank %A J.A. Jongejan %A J.A. Duine %A K. Petratos %A J. Drenth %A W.G.J. Hol %T Structure of quinoprotein methylamine dehydrogenase at 2.25\(Ao resolution %J EMBO J. %V 8 %P 2171-? %D 1989 %K 1MAD Grondijk %A R.M. Venable %A B.R. Brooks %A F.W. Carson %T Theroetical studies of relaxation of a monomeric subunit of HIV-1 protease in water using molecular dynamics %J Proteins %V 15 %P 374-384 %D 1993 %A J.M. Vereijken %A J. Hofsteenge %A H.J. Bak %A J.J. Beintema %T The amino-acid sequence of the three smallest CNBr peptides from \f2p\f1-hydroxybenzoate hydroxylase from \f2Pseudomonas florescens\f1 %J Eur. J. Biochem. %V 113 %P 151-? %D 1980 %K 2PHH %A G. Verkhivker %A K. Appelt %A S.T. Freer %A J.E. Villafranca %T Empirical free energy calculations of ligand-protein crystallogrpahic complexes. I. Knowledge-based ligand-protein interaction potentials applied to the prediction of human immunodeficiency virus 1 protease binding affinity %J Prot. Eng. %V 8 %P 677-691 %D 1995 %A J. Verlet %T Computer "experiments" on classical fluids: I. thermodynamical properties of Lennard-Jones molecules %J Phys. Rev. %V 159 %D 1967 %P 98-103 %K molecular dynamics verlet algorithm %A P.S. Vermersch %A J.J.G. Tesmer %A D.D. Lemon %A F.A. Quiocho %T A pro to gly mutation in the hinge of the arabinose-binding protein enhances binding and alters specificity: sugar-binding and crystallographic studies %J J. Biol. Chem. %V 265 %P 16592-? %D 1990 %K 1BAP 9ABP 1APB %A M. Verstraete %A D. Collen %T Pharmacology of thrombolytic drugs %J J. Am. Coll. Cardiol. %V 8 %D 1986 %P 338-408 %K TPA thrombolysis UPA %A M. Verstraete %A D. Collen %T Thrombolytic therapy in the eighties %J Blood %V 67 %D 1986 %P 1529-1541 %K TPA thrombolysis UPA %A M. Vihinen %T Relationship of protein flexibility to thermostability %J Prot. Eng. %V 1 %P 477-480 %D 1987 %A S. Vijay-Kumar %A C.E. Bugg %A W.J. Cook %T Structure of ubiquitin refined at 1.8\(Ao resolution %J J. Mol. Biol. %V 194 %P 531-544 %D 1987 %K PDB1UBQ %A S. Vijay-Kumar %A C.E. Bugg %A K.D. Wilkinson %A W.J. Cook %T Three-dimensional structure of ubiquitin at 2.8\(Ao resolution %J Proc. Natl. Acad. Sci. USA %V 82 %P 3582-3585 %D 1985 %K 1UBQ PNAS %A S. Vijay-Kumar %A C.E. Bugg %A K.D. Wilkinson %A R.D. Vierstra %A P.M. Hatfield %A W.J. Cook %T Comparison of the three-dimensional structures of human, yeast, and oat ubiquitin %J J. Biol. Chem. %V 262 %P 6396-? %D 1987 %K 1UBQ %A S. Vijay-Kumar %A W.J. Cook %T Structure of a sarcoplasmic calcium-binding protein from \f2Nereis diversicolor\f1 refined at 2.0\(Ao resolution %J J. Mol. Biol. %V 224 %P 413-426 %D 1992 %A J. Vila %A R.L. Williams %A M. V\(a'squez %A H.A. Scheraga %T Empirical solvation models can be used to differentiate native from near-native conformations of bovine pancreatic trypsin inhibitor %J Proteins %V 10 %P 199-218 %K Vasquez %A J.E. Villafranca %A J.D. Robertus %T Crystallographic study of the anti-tumor protein ricin %J J. Mol. Biol. %V 116 %P 331-? %D 1977 %K 0RIC %A J.J. Villafranca %A E.E. Howell %A D.H. Voet %A M.S. Strobel %A R.C. Ogden %A J.N. Abelson %A J. Kraut %T Directed mutagenesis of dihydrofolate reductase %J Science %D 1983 %V 222 %P 782-788 %A M. Vingron %A P. Argos %T A fast and sensitive multiple sequence alignment algorithm %J CABIOS %V 5 %P 115-121 %D 1989 %A M. Vingron %A P. Argos %T Determination of reliable regions in protein sequence alignments %J Prot. Eng. %V 3 %D 1990 %P 565-569 %A M. Vingron %A P. Argos %T Motif recognition and alignment for many sequences by comparison of dot-matrices %J J. Mol. Biol. %V 218 %P 33-43 %D 1991 %A K. Volz %T Structural conservation in the CheY superfamily %J Biochemistry %V 32 %P 11741-11753 %D 1993 %A K.W. Volz %A D.A. Matthews %A R.A. Alden %A S.T. Freer %A C. Hansch %A B.T. Kaufman %A J. Kraut %T Crystal structure of avian dihydrofolate reductase containing phenyltriazine and NADPH %J J. Biol. Chem. %V 257 %D 1982 %P 2528-2536 %K structure reductase 3DFR 5DFR 6DFR 7DFR %A F. Vonderviszt %A G.Y. Matrai %T Characteristic sequential residue environment of amino acids in proteins %J Int. J. Pept. Prot. Res. %V 27 %D 1986 %P 482-492 %K residue contacts residue interactions preferences sidechain packing %A F. Vonderviszt %A I. Simon %T A possible way for prediction of domain boundaries in globular proteins from amino acid sequence %J Biochem. Biophys. Res. Comm. %P 11-17 %V 139 %D 1986 %A G. von\0Heijne %T Getting sense out of sequence data %J Nature %P 605-615 %V 333 %D 1988 %A G. von\0Heijne %T Proline kinks in transmembrane helices %J J. Mol. Biol. %V 218 %P 499-503 %D 1991 %A M. von\0Itzstein %A J.C. Dyason %A S.W. Oliver %A H.F. White %A W.-Y. Wu %A G.B. Kok %A M.S. Pegg %T A study of the active site of influenza virus sialidase: An approach to the rational design of novel anti-influenza drugs %J J. Med. Chem. %V 39 %P 388-391 %D 1996 %A M. von\0Itzstein %A W.-Y. Wu %A G.B. Kok %A M.S. Pegg %A J.C. Dyason %A B. Jin %A T.H. Phan %A M.L. Smythe %A H.F. White %A S.W. Oliver %A P.M. Colman %A J.N. Varghese %A D.M. Ryan %A J.M. Woods %A R.C. Bethell %A V.J. Hotham %A J.M. Cameron %A C.R. Penn %T Rational design of potent sialidase-based inhibitors of influenza virus replication %J Nature %V 363 %P 418-423 %D 1993 %K Tozsler %A F. Vovelle %A J.M. Goodfellow %A H.F.J. Savage %A P. Barnes %A J.L. Finney %T Solvent structure in vitamin B12 coenzyme crystals %J Eur. Biophys. J. %V 11 %D 1985 %P 225-237 %K water structure analysis %A A. Vrielink %A L.F. Lloyd %A D.M. Blow %T Crystal structure of cholesterol oxidase from \f2Brevibacterium sterolicum\f1 refined at 1.8\(Ao resolution %J J. Mol. Biol. %V 219 %P 533-554 %D 1991 %A A. Vrielink %A W. R\(:uger %A H.P.C. Driessen %A P.S. Freemont %T Crystal structure of the DNA modifying enzyme \(*b-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose %J EMBO J. %V 13 %P 3413-3422 %D 1994 %A G. Vriend %T \s-2WHATIF\s0: A molecular modelling and drug design program %J J. Mol. Graph. %V 8 %P 52-56 %D 1990 %A G. Vriend %A C. Sander %T Detection of common three-dimensional substructures in proteins %J Proteins %V 11 %P 52-58 %D 1991 %A S. Vuk-Pavlovic %A B. Benko %A S. Maricic %A G. Lahajnar %A I.P. Kuranova %A B.K. Vainshtein %T The haem-accessibility in leghaemoglobin of \f2Lupinus luteus\f1 as observed by proton magnetic relaxation %J Int. J. Pept. Prot. Res. %V 8 %P 427-? %D 1976 %K 1LH1 %A N.K. Vyas %A M.N. Vyas %A F.A. Quiocho %T The 3\(Ao resolution structure of a \s-2D\s0-galactose-binding protein for transport and chemotaxis in \f2Escherichia coli\f1 %J Proc. Natl. Acad. Sci. USA %V 80 %P 1792-? %D 1983 %K 0GBP 2GBP PNAS %A N.K. Vyas %A M.N. Vyas %A F.A. Quiocho %T A novel calcium binding site in the galactose-binding protein of bacterial transport and chemotaxis %J Nature %V 327 %P 635-? %D 1987 %K 0GBP 2GBP %A N.K. Vyas %A M.N. Vyas %A F.A. Quiocho %T Sugar and signal-transducer binding sites of the \f2Escherichia coli\f1 galactose chemoreceptor protein %J Science %V 242 %P 1290-? %D 1988 %K 2GBP %A N.K. Vyas %A M.N. Vyas %A F.A. Quiocho %T Comparison of the periplasmic receptors for \s-2L\s0-arabinose, \s-2D\s0-glucose/\s-2D\s0-galactose, and \s-2D\s0-ribose %J J. Biol. Chem. %V 266 %P 5226-5237 %D 1991 %A M. V\(a'squez %A H.A. Scheraga %T Calculation of protein conformation by the build-up procedure: application to bovine pancreatic trypsin inhibitor using limited simulated nuclear magnetic resonance data %J J. Biomol. Struct. Dyn. %V 5 %P 705-755 %D 1988 %K Vasquez %A M. V\(a'squez %A H.A. Scheraga %T Effect of sequence-specific interactions on the stability of helical conformations in polypeptides %J Biopolymers %P 41-58 %V 27 %D 1988 %K Vasquez %A A. Wada %A H. Nakamura %T Nature of charge distribution in proteins %J Nature %V 293 %P 757-758 %D 1981 %A B.M. Wagner %A R.A. Smith %A P.J. Coles %A L.J. Copp %A M.J. Ernest %A A. Krantz %T \f2In vivo\f1 inhibition of cathepsin B by peptidyl (acyloxy)methyl ketones %J J. Med. Chem. %V 37 %P 1833-1840 %D 1994 %A G. Wagner %A W. Braun %A T.F. Havel %A T. Schaumann %A N. Go %A K. W\(u:trhich %T Protein structures in solution by nuclear magnetic resonance and distance geometry; the polypeptide fold of the basic pancreatic trypsin inhibitor determined using two different algorithms, \s-2DISGEO\s0 and \s-2DISMAN\s0 %J J. Mol. Biol. %V 196 %P 611-639 %D 1987 %K Wuthrich %A R.L. Wagner %A J.W. Apriletti %A M.E. McGrath %A B.L. West %A J.D. Baxter %A R.J. Fletterick %T A structural role for hormone in the thyroid hormone receptor %J Nature %V 378 %P 690-697 %D 1995 %A S. Wain-Hobson %A M. Alizon %A L. Montagnier %T Relationship of AIDS to other retroviruses %J Nature %V 313 %D 1985 %P 743 %K AIDS HIV retrovirus lentivirus %A S. Wain-Hobson %A P. Sonigo %A O. Danos %A S. Cole %A M. Alizon %T Nucleotide sequence of the AIDS virus LAV %J Cell %V 40 %D 1985 %P 9-17 %K LAV HIV sequence analysis alignment %A S. Wakabayashi %A T. Kimura %A K. Fukuyama %A H. Matsubara %A L.J. Rogers %T The amino acid sequence of a flavodoxin from the eukaryotic red alga \f2Chondrus crispus\f1 %J Biochem. J. %V 263 %P 981-? %D 1989 %K 2FCR %A H. Wako %A T.L. BLundell %T Use of amino acid environment dependent substitution tables and conformational propensities in structure prediction from aligned sequences of homologous proteins: I. Solvent accessibility classes %J J. Mol. Biol. %V 238 %P 682-692 %D 1994 %A H. Wako %A T.L. BLundell %T Use of amino acid environment dependent substitution tables and conformational propensities in structure prediction from aligned sequences of homologous proteins: II. Secondary structures %J J. Mol. Biol. %V 238 %P 693-708 %D 1994 %A G. Waksman %A D. Kominos %A S.C. Robertson %A N. Pant %A D. Baltimore %A R.B. Birge %A D. Cowburn %A H. Hanafusa %A B.J. Mayer %A M. Overduin %A M.D. Resh %A C.B. Rios %A L. Silverman %A J. Kuriyan %T Crystal structure of the phosphotyrosine recognition domain SH2 of v-\f2src\f1 complexed with tyrosine-phosphorylated peptides %J Nature %V 358 %P 646-653 %D 1992 %A G. Waksman %A S.E. Shoelson %A N. Pant %A D. Cowburn %A J. Kuriyan %T Binding of a high affinity phosphotyrosyl peptide to the src SH2 domain: Crystal structure of the complexed and peptide-free forms %J Cell %V 72 %P 779-790 %D 1993 %A J.E. Walker %T Enzymes from thermophilic bacteria %J Proc. FEBS Meet. %V 52 %P 211-? %D 1978 %K 2GD1 %A N.P.C. Walker %A R.V. Talanian %A K.D. Brady %A L.C. Lang %A N.J. Bump %A C.R. Ferenz %A S. Franklin %A T. Ghayar %A M.C. Hackett %A L.D. Hammill %A L. Herzog %A M. Hugunin %A W. Houy %A J.A. Manovich %A L. McGuiness %A E. Orlewicz %A M. Paskind %A C.A. Pratt %A P. Reis %A A. Summani %A M. Terranova %A J.P. Welch %A L. Xiong %A A. M\(:oller %A D.E. Tracey %A R. Kamen %A W.W. Wong %T Crystal structure of the cysteine protease iterleukin-1\(*b-converting enzyme: A (p20/p10)\d\s-32\s0\u homodimer %J Cell %V 78 %P 343-352 %D 1994 %A M.D. Walkinshaw %A W. Saenger %A A. Maelicke %T Three-dimensional structure of the long-neurotoxin from cobra venom %J Proc. Natl. Acad. Sci. USA %V 77 %P 2400-2404 %D 1980 %K PDB1CTX PNAS %A A.C. Wallace %A R.A. Laskowski %A J.M. Thornton %T LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions %J Prot. Eng. %V 8 %P 127-134 %D 1995 %A B.A. Wallace %A R.W. Janes %A D.A. Bassolino %A S.R. krystek,\0Jr. %T A comparison of X-ray and NMR structures for human endothelin-1 %J Prot. Sci. %V 4 %P 75-83 %D 1995 %A B.A. Wallace %A K. Ravikumar %T The gramicidin pore: crystal structure of a cesium complex %J Science %V 241 %P 182-187 %D 1988 %A D.A. Waller %A R.C. Liddington %T Refinement of a partially oxygenated T state haemoglobin at 1.5\(Ao resolution %J Acta Cryst. %V B 46 %P 409-? %D 1990 %K 1THB %A J.-P. Waller %A J.-L. Risler %A C. Monteilhet %A C. Zelwer %T Crystallisation of trypsin-modified methionyl-tRNA synthetase from \f2Escherichia coli\f1 %J FEBS Lett. %V 16 %P 186-? %D 1971 %K 0MTS %A P.H. Walls %A M.J.E. Sternberg %T New algorithm to model protein-protein recognition based on surface complementarity: Applications to anitobody\(emantigen docking %J J. Mol. Biol. %V 228 %P 277-297 %D 1992 %A C. Walsh %T Enzymatic reaction mechanisms %I W.H. Freeman & Co. %D 1979 %A J. Walter %A W. Bode %T The X-ray crystal structure analysis of the refined complex formed by bovine trypsin and \f2p\f1-amidinophenylpyruvate at 1.4\(Ao resolution %J Hoppe-Seyler's Z. Physiol. Chem. %V 364 %P 949-? %D 1983 %K 1TPP %A J. Walter %A R. Huber %T Pancreatic trypsin inhibitor: a new crystal form and its analysis %J J. Mol. Biol. %V 167 %P 911-? %D 1983 %K 5PTI %A J. Walter %A W. Steigemann %A T.P. Singh %A H. Bartunik %A W. Bode %A R. Huber %T On the disordered activation domain in trypsinogen: chemical labelling and low-temperature crystallography %J Acta Cryst. %V B 38 %P 1462-1472 %D 1982 %K PDB2PTN PDB3PTN PDB2TGA PDB1TGT PDB2TGT PDB2PTI %A M.R. Walter %A W.J. Cook %A L.B. Cole %A S.A. Short %A G.W. Koszalka %A T.A. Krenitsky %A S.E. Ealick %T Three-dimensional structure of thymidine phosphorylase from \f2Escherichia coli\f1 at 2.8\(Ao resolution %J J. Biol. Chem. %V 265 %P 14016-? %D 1990 %K 1TPT %A M.R. Walter %A W.J. Cook %A S.E. Ealick %A T.L. Nagabhushan %A P.P. Trotta %A C.E. Bugg %T Three-dimensional structure of recombinant human granulocyte-macrophage colony-stimulating factor %J J. Mol. Biol. %V 224 %P 1075-1085 %D 1992 %A B.-C. Wang %A M. Sax %T Structure of a dimeric fragment related to the \(*l-type Bence-Jones protein: a preliminary study %J J. Mol. Biol. %V 87 %P 505-508 %D 1974 %K 2RHE %A B.-C. Wang %A C.S. Yoo %A M. Sax %T Crystal structure of Bence-Jones protein RHE (3\(Ao) and its unique domain-domain association %J J. Mol. Biol. %V 129 %P 657-? %D 1979 %K PDB2RHE %A D. Wang %A W. Bode %A R. Huber %T Bovine chymotrypsinogen A: X-ray crystal structure analysis and refinement of a new crystal form at 1.8\(Ao resolution %J J. Mol. Biol. %V 185 %P 595-624 %D 1985 %K PDB2CGA %A G. Wang %A C. Porta %A Z. Chen %A T.S. Baker %A J.E. Johnson %T Identification of a Fab interaction footprint site on an icosahedral virus by cryoelectron microscopy and X-ray crystallography %J Nature %V 355 %P 275-278 %D 1992 %A H. Wang %A J.-J. Wu %A P. Tang %T Superfamily expands %J Nature %V 337 %D 1989 %P 514 %K immunoglobulin fold template epstein-barr virus %A J.L. Wang %A B.A. Cunningham %A M.J. Waxdal %A G.M. Edelman %T The covalent and three-dimensional structure of concanavalin A: I. amino acid sequence of cyanogen bromide fragments F\d\s-21\s0\u and F\d\s-22\s0\u %J J. Biol. Chem. %V 250 %P 1490-? %D 1975 %K 2CNA %A J. Wang %A J.M. Mauro %A S.L. Edwards %A S.J. Oatley %A L.A. Fishel %A V.A. Ashford %A N.-H. Xuong %A J. Kraut %T X-ray structures of recombinant yeast cytochrome \f2c\f1 peroxidase and three heme-cleft mutants prepared by site-directed mutagenesis %J Biochemistry %V 29 %P 7160-? %D 1990 %K 1CCP 3CCP 4CCP 2CCP %A J. Wang %A Y. Yan %A T.P.J. Garrett %A J. Liu %A D.W. Rodgers %A R.L. Garlick %A G.E. Tarr %A Y. Husain %A E.L. Reinherz %A S.C. Harrison %T Atomic structure of a fragment of human CD4 containing two immunoglobulin-like domains %J Nature %V 348 %P 411-418 %D 1990 %K 2CD4 %A K.K.W. Wang %A P.-W. Yuen %T Calpain inhibition: An overview of its therapeutic potential %J Trends Pharmacol. Sci. %V 15 %P 412-419 %D 1994 %A T.T. Wang %A K.J. Dorrington %A T. Hofmann %T Activation of the action of penicillopepsin on leucyl-tyrosyl-amide by a non-substrate peptide and evidence for a conformational change associated with a secondary binding site %J Biochemistry %P 865-869 %V 57 %D 1974 %A T.T. Wang %A T. Hofmann %T Acyl and amino intermediates in reactions catalyzed by pig pepsin %J Biochemistry %P 691-699 %V 153 %D 1976 %A T.T. Wang %A T. Hofmann %T Effects of secondary binding by activator and inhibitor peptides on covalent intermediates of pig pepsin %J Biochemistry %P 701-712 %V 153 %D 1976 %A T.T. Wang %A T. Hofmann %T Acyl and amino intermediates in penicillopepsin-catalysed reactions and activation by nonsubstrate peptides %J Can. J. Biochem. %P 286-294 %V 55 %D 1977 %A K.B. Ward %A W.A. Hendrickson %A G.L. Klippenstein %T Quaternary and tertiary structure of haemerythrin %J Nature %V 257 %P 818-819 %D 1975 %K 1HRB %A P.K. Warme %A F.A. Momany %A S.V. Rumball %A R.W. Tuttle %A H.A. Scheraga %T Computation of structures of homologous proteins: \(*a-lactalbumin from lysozyme %J Biochemistry %V 13 %P 768-782 %D 1974 %A P.K. Warme %A R.S. Morgan %T A survey of amino acid side-chain interactions in 21 proteins %D 1978 %J J. Mol. Biol. %V 118 %P 289-304 %A P.K. Warme %A R.S. Morgan %T A survey of atomic interactions in 21 proteins %J J. Mol. Biol. %V 118 %P 273-287 %D 1978 %A P.K. Warme %A H.A. Scheraga %T Refinement of the X-ray structure of lysozyme by complete energy minimization %J Biochemistry %V 13 %P 757-767 %D 1974 %A S.G. Warren %A B.F.P. Edwards %A D.R. Evans %A D.C. Wiley %A W.N. Lipscomb %T Aspartate transcarbamoylase from \f2Escherichia coli\f1: electron density at 5.5\(Ao resolution %J Proc. Natl. Acad. Sci. USA %V 70 %P 1117-1121 %D 1973 %K 4ATC 8ATC 1AT1 2AT1 3AT1 4AT1 5AT1 6AT1 7AT1 8AT1 PNAS %A A. Warshel %T Calculations of enzymatic reactions: calculation of pK\d\s-2a\s0\u, proton transfer reactions, and general acid catalysis reactions in enzymes %J Biochemistry %P 3167-3177 %V 20 %D 1981 %A A. Warshel %T Computer modelling of chemical reactions in enzymes and solutions %I Wiley %D 1991 %C New York %A A. Warshel %A S. Creighton %T Microscopic free energy calculations in solvated macromolecules as a primary structure-function correlator and the MOLARIS program %P 120-138 %B Computer simulation of biomolecular systems: Theoretical and experimental applications %E W.F. van\0Gunsteren and P.K. Weiner %I ESCOM %C Leiden %D 1989 %A A. Warshel %A T. Schweins %A M Fothergill %T Linear free energy relationships in enzymes: Theoretical analysis of the reaction of tyrosyl-tRNA synthetase %J J. Amer. Chem. Soc. %V 116 %P 8437-8442 %D 1994 %A A. Warshel %A F. Sussman %T Toward computer-aided site-directed mutagenesis of enzymes %J Proc. Natl. Acad. Sci. USA %P 3806-3810 %V 83 %D 1986 %K PNAS %A A. Warshel %A H. Tao %A M. Fothergill %A Z.-T. Chu %T Effective methods for estimation of binding energies in computer-aided drug design %J Isr. J. Chem. %V 34 %P 253-256 %D 1994 %A A. Warshel %A J. \(Aoqvist %A S. Creighton %T Enzymes work by solvation rather than by desolvation %J Proc. Natl. Acad. Sci. USA %V 86 %D 1989 %P 5820-5824 %K mechanism Aqvist PNAS %A K.D. Watenpaugh %A T.N. Margulis %A L.C. Sieker %A L.H. Jensen %T Water structure in a protein crystal: rubredoxin at 1.2\(Ao resolution %J J. Mol. Biol. %V 122 %P 175-? %D 1978 %K 5RXN %A K.D. Watenpaugh %A L.C. Sieker %A J.R. Herriott %A L.H. Jensen %T The structure of a non-heme iron protein, rubredoxin at 1.5\(Ao resolution %J Cold Spring Harbor Symp. Quant. Biol. %V 36 %P 359-? %D 1972 %K 5RXN %A K.D. Watenpaugh %A L.C. Sieker %A J.R. Herriott %A L.H. Jensen %T Refinement of the model of a protein: rubredoxin at 1.5\(Ao resolution %J Acta Cryst. %V B 29 %P 943-? %D 1973 %K 5RXN %A K.D. Watenpaugh %A L.C. Sieker %A L.H. Jensen %T The binding of riboflavin-5-phosphate in a flavoprotein: flavodoxin at 2.0\(Ao resolution %J Proc. Natl. Acad. Sci. USA %V 70 %P 3857-3860 %D 1973 %K 1FX1 PNAS %A K.D. Watenpaugh %A L.C. Sieker %A L.H. Jensen %T Flavin mononucleotide conformation and environment in flavodoxin from \f2Desulfovibrio vulgaris\f1 %B Structure and conformation of nucleic acids and protein-nucleic acid interactions %C Baltimore, MD %I University Park Press %E M. Sundralingham and S.T. Rao %P 431-? %D 1975 %K 1FX1 %A K.D. Watenpaugh %A L.C. Sieker %A L.H. Jensen %T A crystallographic structural study of the oxidation states of \f2Desulfovibrio vulgaris\f1 flavodoxin %B Flavins and flavoproteins %E T.P. Singer %C Amsterdam %I Elsevier Scientific Publishing Co. %P 405-? %D 1976 %K PDB1FX1 %A K.D. Watenpaugh %A L.C. Sieker %A L.H. Jensen %T The structure of rubredoxin at 1.2\(Ao resolution %J J. Mol. Biol. %V 131 %P 509-? %D 1979 %K 5RXN PDB4RXN %A K.D. Watenpaugh %A L.C. Sieker %A L.H. Jensen %T Crystallographic refinement of rubredoxin at 1.2\(Ao resolution %J J. Mol. Biol. %V 138 %P 615-633 %D 1980 %K 4RXN %A K.D. Watenpaugh %A L.C. Sieker %A L.H. Jensen %A J. Le\0Gall %A M. Dubourdieu %T Structure of the oxidized form of a flavodoxin at 2.5\(Ao resolution: resolution of the phase ambiguity by anomalous scattering %J Proc. Natl. Acad. Sci. USA %V 69 %P 3185-3188 %D 1972 %K 1FX1 PNAS %A M.S. Waterman %T Efficient sequence alignment algorithms %J J. Theor. Biol. %P 333-337 %V 108 %D 1984 %A M.S. Waterman %T General methods of sequence comparison %J Bull. Math. Biol. %V 46 %D 1984 %P 473-500 %K comparison alignment scoring %A M.S. Waterman %A M. Eggert %A E. Lander %T Parametric sequence comparisons %J Proc. Natl. Acad. Sci. USA %V 89 %P 6090-6093 %D 1992 %A M.S. Waterman %A T.F. Smith %A W.A. Beyer %T Some biological sequence metrics %J Adv. Math. %P 367-387 %V 20 %D 1976 %A M.S. Waterman %A M. Vingron %T Rapid and accurate estimates of statistical significance for sequence data base searches %J Proc. Natl. Acad. Sci. USA %V 91 %P 4625-4628 %D 1994 %A D.C. Watson %A M. Yaguchi %A K.R. Lynn %T The amino acid sequence of chymopapain from \f2Carica papaya\f1 %J Biochem. J. %V 266 %D 1990 %P 75-81 %K thiol protease %A H.C. Watson %T The stereochemistry of the protein myoglobin %J Prog. Stereochem. %V 4 %P 299-? %D 1969 %K PDB1MBN %A H.C. Watson %A E. Du\(e'e %A W.D. Mercer %T Low resolution structure of glyceraldehyde 3-phosphate dehydrogenase %J Nature, New Biol. %V 240 %P 130-133 %D 1972 %K 3GPD Duee %A H.C. Watson %A D.M. Shotton %A J.M. Cox %A H. Muirhead %T Three-dimensional Fourier synthesis of tosyl-elastase at 3.5\(Ao resolution %J Nature %V 225 %P 806-811 %D 1970 %K 1EST %A H.C. Watson %A N.P.C. Walker %A P.J. Shaw %A T.N. Bryant %A P.L. Wendell %A L.A. Fothergill %A R.E. Perkins %A S.C. Conroy %A M.J. Dobson %A M.F. Tuite %A A.J. Kingsman %A S.M. Kingsman %T Sequence and structure of yeast phosphoglycerate kinase %J EMBO J. %V 1 %P 1635-1640 %D 1982 %K 3PGK %A H.C. Watson %A P.L. Wendell %A R.K. Scopes %T Crystallographic study of yeast phosphoglycerate kinase %J J. Mol. Biol. %V 57 %P 623-? %D 1971 %K 3PGK %A J.D. Watson %T Molecular Biology of the Gene %I Benjamin %C Menlo Park, California %O 3rd ed. %D 1976 %A J.D. Watson %A F.H.C. Crick %T Genetic implications of the structure of deoxyribonucleic acid %J Nature %V 171 %D 1953 %P 964-968 %K DNA double helix model structure %A J.D. Watson %A F.H.C. Crick %T Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid %J Nature %V 171 %D 1953 %P 737-738 %K DNA double helix model %A K.A. Watson %A E.P. Mitchell %A L.N. Johnson %A C.C. Son %A C.J.F. Bichard %A M.G. Orchard %A G.W.J. Fleet %A N.G. Oikonomakos %A D.D. Leonidas %A M. Kontou %A A. Papageorgioui %T Design of inhibitors of glycogen phosphorylase: A study of \(*a- and \(*b-C-glucosides and 1-thio-\(*b-\s-2D\s0-glucose compounds %J Biochemistry %V 33 %P 5745-5758 %D 1994 %A M.M.Y. Waye %A G. Winter %A A.J. Wilkinson %A A.R. Fersht %T Deletion mutagenesis using an M13 splint: The N-terminal structural domain of tyrosyl-tRNA synthetase (\f2B. stearothermophilus\f1) catalyses the formation of tyrosyl adenylate %J EMBO J. %V 2 %P 1827-1829 %D 1983 %K 4TS1 %A L.H. Weaver %A T.M. Gray %A M.G. Gr\(u:tter %A D.E. Anderson %A J.A. Wozniak %A F.W. Dahlquist %A B.W. Matthews %T High-resolution structure of the temperature-sensitive mutant of phage lysozyme, Arg 96 \(-> His %J Biochemistry %V 28 %P 3793-3797 %D 1989 %K 3LZM PDB1L34 Grutter %K 1L36 1L37 1L38 1L39 1L40 1L41 1L42 1L43 1L44 1L45 1L46 1L47 1L48 1L49 1L50 1L51 1L52 1L53 1L54 1L55 1L56 1L57 1L58 1L59 1L60 1L61 1L62 1L63 1L64 1L65 1L66 1L67 1L68 1L69 1L70 1L71 1L72 1L73 1L74 1L75 1L76 %A L.H. Weaver %A M.G. Gr\(u:tter %A S.J. Remington %A T.M. Gray %A N.W. Isaacs %A B.W. Matthews %T Comparison of goose-type, chicken-type and phage-type lysozymes illustrates the changes that occur in both amino acid sequence and three-dimensional structures during evolution %J J. Mol. Evol. %D 1985 %V 21 %P 97-111 %K Grutter %A L.H. Weaver %A W.R. Kester %A B.W. Matthews %T A crystallographic study of the complex of phosphoramidon with thermolysin: a model for the presumed catalytic transition state and for the binding of extended substrates %J J. Mol. Biol. %V 114 %P 119-? %D 1977 %K 1TLP %A L.H. Weaver %A W.R. Kester %A L.F. Ten\0Eyck %A B.W. Matthews %T The structure and stability of thermolysin %J Experientia, Suppl. %V 26 %P 31-? %D 1976 %K 1TLP %A L.H. Weaver %A B.W. Matthews %T Structure of bacteriophage T4 lysozyme refined at 1.7\(Ao resolution %J J. Mol. Biol. %V 193 %P 189-200 %D 1987 %K 1L09 PDB2LZM PDB3LZM %K 1L36 1L37 1L38 1L39 1L40 1L41 1L42 1L43 1L44 1L45 1L46 1L47 1L48 1L49 1L50 1L51 1L52 1L53 1L54 1L55 1L56 1L57 1L58 1L59 1L60 1L61 1L62 1L63 1L64 1L65 1L66 1L67 1L68 1L69 1L70 1L71 1L72 1L73 1L74 1L75 1L76 %A L.H. Weaver %A D.E. Tronrud %A H. Nicholson %A B.W. Matthews %T Some uses of the Ramachandran (\(*F,\(*W) diagram in the structural analysis of lysozymes %J Curr. Sci. %D 1990 %V 59 %P 833-837 %A L.E. Webb %A E.J. Hill %A L.J. Banaszak %T Conformation of nicotinamide adenine dinucleotide bound to cytoplasmic malate dehydrogenase %J Biochemistry %V 12 %P 5101-? %D 1973 %K 4MDH %A S.E. Webber %A T.M. Bleckman %A J. Attard %A J.G. Deal %A V. Kathardekar %A K.M. Welsh %A S. Webber %A C.A. Janson %A D.A. Matthews %A W.W. Smith %A S.T> Freer %A S.R. Jordan %A R.J. Bacquet %A E.F. Howland %A C.L.J. Booth %A R.W. Ward %A S.M. Hermann %A J. White %A C.A. Morse %A J.A. Hilliard %A C.A. Bartlett %T Design of thymidylate synthase inhibitors using protein crystal structure: The synthesis and biological evaluation of a novel class of 5-substituted quinazolines %J J. Med. Chem. %V 36 %P 733-746 %D 1993 %A E. Weber %A E. Papamokos %A W. Bode %A R. Huber %A I. Kato %A M. Laskowski,\0Jr. %T Crystallization, crystal structure analysis and molecular model of the third domain of Japanese quail ovomucoid, a Kazal type inhibitor %J J. Mol. Biol. %V 149 %P 109-? %D 1981 %K 2OVO %A E. Weber %A W. Steigemann %A T.A. Jones %A R. Huber %T The structure of oxy-erythrocruorin at 1.4\(Ao resolution %J J. Mol. Biol. %V 120 %P 327-? %D 1978 %K 1ECA %A I.T. Weber %T Structural alignment of retroviral protease sequences %J Gene %V 85 %D 1989 %P 565-566 %K modelling retroviral protease alignment sequence %A I.T. Weber %T Evaluation of homology modelling of HIV protease %J Proteins %V 7 %D 1990 %P 172-184 %K modelling comparison testing %A I.T. Weber %A G.L. Gilliland %A J.G. Harman %A A. Peterkofsky %T Crystal structure of a cyclic AMP-independent mutant of catabolite gene activator protein %J J. Biol. Chem. %V 262 %P 5630-? %D 1987 %K 0CPN 3GAP %A I.T. Weber %A L.N. Johnson %A K.S. Wilson %A D.G.R. Yeates %A D.L. Wild %A J.A. Jenkins %T Crystallographic studies on the activity of glycogen phosphorylase B %J Nature %V 274 %P 433-? %D 1978 %K 0PB1 %A I.T. Weber %A M. Miller %A M. Jask\(o'lski %A J. Leis %A A.M. Skalka %A A. Wlodawer %T Molecular modelling of the HIV-1 protease and its substrate binding site %J Science %V 243 %D 1989 %P 928-931 %K Jaskolski PDB1HVP %A I.T. Weber %A J.B. Shabb %A J.D. Corbin %T Predicted structures of the cGMP-dependent kinase: a key alanine/threonine difference in evolutionary divergence of cAMP and cGMP binding sites %J Biochemistry %V 28 %P 6122-6127 %D 1989 %A I.T. Weber %A T.A. Steitz %T A model for the non-specific binding of catabolite gene activator protein to DNA %J Nucl. Acids Res. %V 12 %P 8475-? %D 1984 %K 2GAP %A I.T. Weber %A T.A. Steitz %T Model of specific complex between catabolite gene activator protein and b-DNA suggested by electrostatic complementarity %J Proc. Natl. Acad. Sci. USA %V 81 %P 3973-3977 %D 1984 %K PDB2GAP PNAS %A I.T. Weber %A T.A. Steitz %T Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5\(Ao resolution %J J. Mol. Biol. %V 198 %P 311-? %D 1987 %K 1APK PDB3GAP %A I.T. Weber %A T.A. Steitz %A J. Bubis %A S.S. Taylor %T Predicted structures of cAMP binding domains of type I and II regulatory subunits of cAMP-dependent protein kinase %J Biochemistry %V 26 %P 343-351 %D 1987 %K PDB2APK PDB2BPK %A I.T. Weber %A K. Takio %A K. Titani %A T.A. Steitz %T The cAMP-binding domains of the regulatory subunit of cAMP-dependent protein kinase and the catabolite gene activator protein are homologous %J Proc. Natl. Acad. Sci. USA %V 79 %P 7679-7682 %D 1982 %K 1APK PNAS %A I.T. Weber %A J. T\(:ozs\('er %A J. Wu %A D. Friedman %A S. Oroszlan %T Molecular model of equine infectious anemia virus proteinase and kinetic measurments for peptide substrates with single amino acid substitutions %J Biochemistry %V 32 %P 3354-3362 %D 1993 %A P.C. Weber %T Correlations between structural and spectroscopic properties of the high-spin heme protein cytochrome \f2c\f1\(fm %J Biochemistry %V 21 %P 5116-? %D 1982 %K 2CCY %A P.C. Weber %A R.G. Bartsch %A M.A. Cusanovich %A R.C. Hamlin %A A. Howard %A S.R. Jordan %A M.D. Kamen %A T.E. Meyer %A D.W. Weatherford %A N.H. Xuong %A F.R. Salemme %T Structure of cytochrome \f2c\f1\(fm: a dimeric, high-spin haem protein %J Nature %V 286 %P 302-304 %D 1980 %K 2CCY %A P.C. Weber %A M.J. Cox %A F.R. Salemme %A D.H. Ohlendorf %T Crystallographic data for \f2Streptomyces avidinii\f1 streptavidin %J J. Biol. Chem. %V 262 %P 12728-? %D 1987 %K 0CSB %A P.C. Weber %A A. Howard %A N.H. Xuong %A F.R. Salemme %T Crystallographic structure of \f2Rhodospirillum molischianum\f1 ferricytochrome \f2c\f1\(fm at 2.5\(Ao resolution %J J. Mol. Biol. %V 153 %P 399-? %D 1981 %K 2CCY %A P.C. Weber %A D.H. Ohlendorf %A J.J. Wendoloski %A F.R. Salemme %T Structural origins of high-affinity biotin binding to streptavidin %J Science %V 243 %P 85-? %D 1989 %K 0CSB %A P.C. Weber %A M.W. Pantolino %A D.M. Simons %A F.R. Salemme %T Structure-based design of synthetic azobenzene ligands for streptavidin %J J. Amer. Chem. Soc. %V 116 %P 2717-2724 %D 1994 %A P.C. Weber %A F.R. Salemme %T Structural and functional diversity in 4-\(*A-helical proteins %J Nature %V 287 %P 82-84 %D 1980 %A P.C. Weber %A F.R. Salemme %T Structural and functional diversity in 4-\(*a-helical proteins %J Nature %V 287 %P 82-84 %D 1980 %K 2CCY %A P.C. Weber %A F.R. Salemme %A F.S. Mathews %A P.H. Bethge %T On the evolutionary relationship of the 4-\(*a-helical heme proteins: The comparison of cytochrome \f2b\f1\d\s-2562\s0\u and cytochrome \f2c\f1\(fm %J J. Biol. Chem. %V 256 %P 7702-? %D 1981 %K 2CCY %A P.C. Weber %A S. Sheriff %A D.H. Ohlendorf %A B.C. Finzel %A F.R. Salemme %T The 2\(Ao resolution structure of a thermostable ribonuclease A chemically cross-linked between lysine residues 7 and 41 %J Proc. Natl. Acad. Sci. USA %V 82 %P 8473-8477 %D 1985 %K PDB1RSM PNAS %A P.L. Weber %T Determining stereo-specific H nuclear magnetic resonance assignments from distance geometry calculations %J J. Mol. Biol. %P 483-487 %V 204 %D 1988 %A P. Weber %A F.R. Salemme %T Preliminary crystallographic data for cytochromes \f2c\f1\(fm of \f2Rhodopseudomonas capsulata\f1 and \f2Rhodospirillum molischianum\f1 %J J. Mol. Biol. %V 117 %P 815-? %D 1977 %K 2CCY %A T.A. Webster %A R.H. Lathrop %A T.F. Smith %T Prediction of a common structural domain in aminoacyl-tRNA synthetases through use of a new pattern-directed inference system %J Biochemistry %V 26 %D 1987 %P 6950-6957 %K prediction template pattern matching %A A.G. Weeds %A A.D. McLachlan %T Structural homology of myosin alkali light chains troponin-C and carp calcium-binding protein %J Nature %V 252 %D 1974 %P 646-649 %K calcium-binding homology alignment %A Y. Wei %A J.L. Schottel %A U. Derewenda %A L. Swenson %A S. Patkar %A Z.S. Derewenda %T A novel variant of the catalytic triad in the \f2Streptomyces scabies\f1 esterase %J Nature Struct. Biol. %V 2 %P 218-223 %D 1995 %A W.J. Weijer %A J. Hofsteenge %A J.J. Beintema %A R.K. Wierenga %A J. Drenth %T \f2p\f1-hydroxybenzoate hydroxylase from \f2Pseudomonas fluorescens\f1: 2. Fitting of the amino-acid sequence to the tertiary structure %J Eur. J. Biochem. %V 133 %P 109-? %D 1983 %K 1PHH 2PHH %A P.K. Weiner %A P.A. Kollman %T \s-1AMBER\s0: Assisted Model Building with Energy Refinement. A general program for modelling molecules and their interactions %J J. Comp. Chem. %V 2 %P 287-303 %D 1981 %A S.J. Weiner %A P.A. Kollman %T An all atomic force-field or simulations of proteinas and nucleic acids %J J. Comp. Chem. %V 7 %P 230-252 %D 1986 %A S.J. Weiner %A P.A. Kollman %A D.A. Case %A U.C. Singh %A C. Ghio %A G. Alagona %A S. Profeta %A P. Weiner %T A new field for molecular mechanical simulation of nucleic acids and proteins %J J. Am. Chem. Soc. %P 765-784 %V ? %D 1984 %A S.J. Weiner %A P.A. Kollman %A D.A. Case %A U.C. Singh %A C. Ghio %A G. Alagona %A S. Profeta,\0Jr. %A P. Weiner %T A new force field for molecular mechanical simulation of nucleic acids and proteins %J J. Amer. Chem. Soc. %V 106 %P 765-784 %D 1984 %A S.J. Weiner %A P.A. Kollman %A D.T. Nguyen %A D.A. Case %T An all atom force field for simulations of proteins and nucleic acids %J J. Comp. Chem. %V 7 %P 230-252 %D 1986 %A S.J. Weiner %A G.L. Seibel %A P.A. Kollman %T The nature of enzyme catalysis in trypsin %J Proc. Natl. Acad. Sci. USA %P 649-653 %V 83 %D 1986 %K PNAS %A E.G. Weinhold %A A. Glasfild %A A.D. Ellington %A S.A. Benner %T Structural determinants of stereospecificity in yeast alcohol dehydrogenase %J Proc. Natl. Acad. Sci. USA %V 88 %P 8420-8424 %D 1991 %A M.S. Weininger %A L.J. Banaszak %T Mitochondrial malate dehydrogenase: crystallographic properties of the pig heart enzyme %J J. Mol. Biol. %V 119 %P 443-? %D 1978 %K 0MMD %A H. Weinstein %T On the role of computational approaches to the enzyme structure and function in the study of molecular processes in Biology %J Enzyme %V 36 %D 1986 %A W.I. Weis %A A.T. Br\(u:nger %A J.J. Skehel %A D.C. Wiley %T Refinement of the influenza virus hemagglutinin by simulated annealing %J J. Mol. Biol. %V 212 %P 737-? %D 1990 %K 2HMG 3HMG 4HMG 5HMG Brunger %A W.I. Weis %A G.V. Crichlow %A H.M.K. Murthy %A W.A. Hendrickson %A K. Drickamer %T Physical characterization and crystallization of the carbohydrate-recognition domain of a mannose-binding protein from rat %J J. Biol. Chem. %V 266 %P 20678-? %D 1991 %K 1MSB %A W.I. Weis %A K. Drickamer %A W.A. Hendrickson %T Structure fo a C-type mannose-binding protein complexed with an oligosaccharide %J Nature %V 360 %P 127-134 %D 1992 %A W.I. Weis %A R. Kahn %A R. Fourme %A K. Drickamer %A W.A. Hendrickson %T Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing %J Science %V 254 %P 1608-1615 %D 1991 %A W. Weis %A J.H. Brown %A S. Cusack %A J.C. Paulson %A J.J. Skehel %A D.C. Wiley %T Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid %J Nature %V 333 %P 426-? %D 1988 %K 0HG1 0HG2 0HG3 0HG4 2HMG 3HMG 4HMG 5HMG %A W. Weis %A J.H. Brown %A S. Cusack %A J.C. Paulson %A J.J. Skehel %A D.C. Wiley %T Structure of the influenza virus haemoglutinin complexed with its receptor, sialic acid %J Nature %P 426-431 %V 333 %D 1988 %A M.S. Weiss %A U. Abele %A J. Weckesser %A W. Welte %A E. Schiltz %A G.E. Schulz %T Molecular architecture and electrostatic properties of a bacterial porin %J Science %V 254 %P 1627-1630 %D 1991 %A J.S. Weissman %A P.S. Kim %T Reexamination of the folding of BPTI: predominance of native intermediates %J Science %V 253 %P 1386-1393 %D 1991 %A J.S. Weissman %A P.S. Kim %T Response to T.E. Creighton %J Science %V 256 %P 112-114 %D 1992 %A A.R. Welch %A A.S. Woods %A L.M. McNally %A R.J. Cotter %A W. Gibson %T A herpesvirus maturational proteinase, assemblin: Identification of its gene, putative active site domain, and cleavage site %J Proc. Natl. Acad. Sci. USA %V 88 %P 10792-10796 %D 1991 %A G.R. Welch %A B. Somogyi %A S. Damjanovich %T The role of protein fluctuations in enzyme action: a review %J Prog. Biophys. Mol. Biol. %P 109-146 %V 39 %D 1982 %A K.G. Welinder %A L. Mikkelsen %A B. Foltmann %T Zymogens for aspartic proteinases: structure predictions from amino acid sequences %B Aspartic proteinases and their inhibitors %E V. Kostka %P 197-202 %C Berlin %I Walter de\0Gruyter %D 1985 %A J.A. Wells %A D.A. Estell %T Subtilisin \(em an enzyme designed to be engineered %J Trends Biochem. Sci. %V 13 %P 291-297 %D 1988 %A J.A. Wells %A W.J. Fairbrother %A J. Otlewski %A M. Laskowski,\0Jr. %A J. Burnier %T A reinvestigation of a synthetic peptide (TrPepz) designed to mimic trypsin %J Proc. Natl. Acad. Sci. USA %V 91 %P 4110-4114 %D 1994 %A J.A. Wells %A E. Ferrari %A D.J. Henner %A D.A. Estell %A E.Y. Chen %T Cloning, sequencing and secretion of \f2Bacillus amyloliquefaciens\f1 subtilisin in \f2Bacillus subtilis\f1 %J Nucl. Acids Res. %V 11 %P 7911-? %D 1983 %K 2ST1 1ST2 %A T.N.C. Wells %A A.R. Fersht %T Hydrogen bonding in enzymatic catalysis analyzed by protein engineering %J Nature %V 316 %P 657-658 %D 1985 %A P.L. Wendell %A T.N. Bryant %A H.C. Watson %T Low resolution structure of yeast phosphoglycerate kinase %J Nature, New Biol. %V 240 %P 134-137 %D 1972 %K 3PGK %A J.P. Wery %A O. Dideberg %A P. Charlier %A C. Gerday %T Crystallization and structure at 3.2\(Ao resolution of a terbium parvalbumin %J FEBS Lett. %V 182 %P 103-? %D 1985 %K 0CPT %A J.P. Wery %A R.W. Schevitz %A D.K. Clawson %A J.L. Bobbitt %A E.R. Dow %A G. Gamboa %A T. Goodson,\0Jr. %A R.B. Hermann %A R.M. Kramer %A D.B. McClure %A E.D. Mihelich %A J.E. Putnam %A J.D. Sharp %A D.H. Stark %A C. Teater %A M.W. Warrick %A N.D. Jones %T Structure of recombinant human rheumatoid arthritic synovial fluid phospholipase A\d\s-42\s0\u at 2.2\(Ao resolution %J Nature %V 352 %P 79-82 %D 1991 %A B. Westerlund %A P. Nordlund %A U. Uhlin %A D. Eaker %A H. Eklund %T The three-dimensional structure of notexin, a presynaptic neurotoxic phospholipase A\d\s-42\s0\u at 2.0\(Ao resolution %J FEBS Lett. %V 301 %P 159-164 %D 1992 %A E. Westhof %A P. Dumas %A D. Moras %T Loop stereochemistry and dynamics in transfer RNA %J J. Biomol. Struct. Dyn. %V 1 %P 337-? %D 1983 %K 3TRA %A E. Westhof %A P. Dumas %A D. Moras %T Crystallographic refinement of yeast aspartic acid transfer RNA %J J. Mol. Biol. %V 184 %P 119-145 %D 1985 %K 3TRA %A E. Westhof %A P. Dumas %A D. Moras %T Hydration of transfer RNA molecules: a crystallographic study %J Biochimie %V 70 %P 145-165 %D 1988 %K 3TRA %A E. Westhof %A P. Dumas %A D. Moras %T Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine transfer RNA crystals %J Acta Cryst. %V A 44 %P 112-? %D 1988 %K PDB2TRA PDB3TRA PDB4TRA %A E. Westhof %A M. Sundaralingam %T Restrained refinement of the monoclinic form of yeast phenylalanine transfer RNA: Temperature factors and dynamics, coordinated waters, and base-pair propeller twist angles %J Biochemistry %V 25 %P 4868-? %D 1986 %K PDB1TRA %A R. Wetzel %T Harnessing disulphide bonds using protein engineering %J Trends Biochem. Sci. %V 12 %P 478-482 %D 1987 %A H.E. White %A H.P.C. Driessen %A C. Slingsby %A D.S. Moss %A P.F. Lindley %T Packing interactions in the eye lens: structural analysis internal symmetry and lattice interactions of bovine \(*gIVa-crystallin %J J. Mol. Biol. %V 207 %D 1989 %P 217-235 %K structure crystallin comparison sequence packing %A J.L. White %A M.L. Hackert %A M. Buehner %A M.J. Adams %A G.C. Ford %A P.J. Lentz,\0Jr. %A I.E. Smiley %A S.J. Steindel %A M.G. Rossmann %T A comparison of the structures of \f2apo\f1 dogfish M\d\s-24\s0\u lactate dehydrogenase and its ternary complexes %J J. Mol. Biol. %V 102 %P 759-779 %D 1976 %K PDB3LDH %A J. White %A M.G. Rossmann %A G.C. Ford %T A 5\(Ao X-ray diffraction study of coenzyme-deficient lactate dehydrogenase, NAD-pyruvate ternary complex %J J. Mol. Biol. %V 98 %P 259-? %D 1975 %K 1LDM %A S.P. White %A D.L. Scott %A Z. Otwinowski %A M.H. Gelb %A P.B. Sigler %T Crystal structure of cobra-venom phospholipase A\d\s-42\s0\u in a complex with a transition state analogue %J Science %V 250 %P 1560-1563 %D 1990 %A A.K. Whiting %A W.L. Peticolas %T Details of the acyl-enzyme intermediate and the oxyanion hole in serine protease catalysis %J Biochemistry %V 33 %P 552-561 %D 1994 %A P.J. Whittle %A T.L. Blundell %T Protein structure-based drug design %J Annu. Rev. Biophys. Biomol. Struct. %V 23 %P 349-375 %D 1994 %A G. Wiegand %A D. Kukla %A H. Scholze %A T.A. Jones %A R. Huber %T Crystal structure analysis of the tetragonal crystal form and preliminary molecular model of pig-heart citrate synthase %J Eur. J. Biochem. %V 93 %P 41-? %D 1979 %K 1CTS %A G. Wiegand %A S. Remington %A J. Deisenhofer %A R. Huber %T Crystal structure analysis and molecular model of a complex of citrate synthase with oxaloacetate and S-acetonyl-coenzyme A %J J. Mol. Biol. %V 174 %P 205-? %D 1984 %K PDB4CTS %A R.K. Wierenga %A R.J. de\0Jong %A K.H. Kalk %A W.G.J. Hol %A J. Drenth %T Crystal structure of \f2p\f1-hydroxybenzoate hydroxylase %J J. Mol. Biol. %V 131 %D 1979 %P 55-73 %K structure hydroxylase nucleotide binding fold 1PHH 2PHH %A R.K. Wierenga %A M.C.H. De\0Maeyer %A W.G.J. Hol %T Interaction of pyrophosphate moieties with \(*a-helices in dinucleotide binding proteins %J Biochemistry %V 24 %P 1346-1357 %D 1985 %A R.K. Wierenga %A J. Drenth %A G.E. Schulz %T Comparison of the three-dimensional protein and nucleotide structure of the FAD-binding domain of \f2p\f1-hydroxybenzoate hydroxylase with the FAD- as well as NADPH-binding domains of glutathione reductase %J J. Mol. Biol. %V 167 %D 1983 %P 725-739 %K structure comparison nucleotide binding 1PHH 2PHH %A R.K. Wierenga %A W.G.J. Hol %A O. Misset %A F.R. Opperdoes %T Preliminary crystallographic studies of triosephosphate isomerase from the blood parasite \f2Trypanosoma brucei brucei\f1 %J J. Mol. Biol. %V 178 %P 487-? %D 1984 %K 2TIM 3TIM %A R.K. Wierenga %A K.H. Kalk %A W.G.J. Hol %T Structure determination of the glycosomal triosephosphate isomerase from \f2Trypanosoma brucei brucei\f1 at 2.4\(Ao resolution %J J. Mol. Biol. %V 198 %P 109-? %D 1987 %K 2TIM 3TIM %A R.K. Wierenga %A M.E.M. Noble %A J.P.M. Postma %A H. Groendijk %A K.H. Kalk %A W.G.J. Hol %A F.R. Opperdoes %T The crystal structure of the ``open'' and the ``closed'' conformation of the flexible loop of trypanosomal triosephosphate isomerase %J Proteins %V 10 %P 33-? %D 1991 %K PDB2TIM PDB3TIM %A R.K. Wierenga %A M.E.M. Noble %A G. Vriend %A S. Nauche %A W.G.J. Hol %T Refined 1.83\(Ao structure of trypanosomal triophosphate isomerase crystallized in the presence of 2.4\s-2M\s0 ammonium sulphate: A comparison with the structure of the trypanosomal triosephosphate isomerase-glycerol-3-phosphate complex %J J. Mol. Biol. %V 220 %P 995-1015 %D 1991 %A R.K. Wierenga %A P. Terpstra %A W.G.J. Hol %T Prediction of the occurrence of the ADP-binding \(*b\(*a\(*b-fold in proteins using an amino acid fingerprint %J J. Mol. Biol. %V 187 %D 1986 %P 101-107 %K template conservation comparison %A D.B. Wigley %A G.J. Davies %A E.J. Dodson %A A. Maxwell %A G. Dodson %T Crystal structure of an N-terminal fragment of DNA gyrase B protein %J Nature %V 351 %P 624-629 %D 1991 %A D.B. Wigley %A A. Lyall %A K.W. Hart %A J.J. Holbrook %T The greater strength of arginine \(em carboxylate over lysine \(em carboxylate ion pairs implications for the design of novel enzymes and drugs %J Biochem. Biophys. Res. Comm. %V 149 %D 1987 %P 927-929 %K salt bridge ion pairs energy %A A.F. Wilderspin %A R.J. Sugrue %T Crystallization and preliminary X-ray investigation of recombinant simian immunodeficiency virus proteinase %J J. Mol. Biol. %V 231 %P 1139-1142 %D 1993 %A A.F. Wilderspin %A R.J. Sugrue %T Alternative native flap conformation revealed by 2.3\(oA resolution structure of SIV proteinase %J J. Mol. Biol. %V 239 %P 97-103 %D 1994 %A A. Wilderspin %A D. Gaskin %A R. Lapatto %A T. Blundell %A A. Hemmings %A J. Overington %A J. Pitts %A S. Wood %A Z.-Y. Zhu %A L.H. Pearl %A D.E. Danley %A K.F. Geoghegan %A S. Hawrylik %A S.E. Lee %A K. Shield %A P.M. Hobart %A J. Merson %A P. Whittle %T Three-dimensional structure and evolution of HIV-1 protease %P 79-91 %B Retroviral proteases: Control of maturation and morphogenesis %E L.H. Pearl %I Macmillan Press %D 1990 %C Basingstoke %Z chapter 9 %A D.C. Wiley %T Recognition at membrane surfaces %B Protein design and the development of new therapeutics and vaccines %E J.B. Hook and G. Poste %I Plenum %C New York %D 1990 %P 449-475 %A D.C. Wiley %A J.J. Skehel %T Crystallization and X-ray diffraction studies on the haemagglutinin glycoprotein from the membrane of influenza virus %J J. Mol. Biol. %V 112 %P 343-? %D 1977 %K 2HMG 3HMG 4HMG 5HMG 1HMG %A D.C. Wiley %A I.A. Wilson %A J.J. Skehel %T Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation %J Nature %V 289 %P 373-? %D 1981 %K 2HMG 3HMG 4HMG 5HMG 1HMG %A K.C. Wilhelmsen %A K. Eggleton %A H.W. Temin %T Nucleic acid sequences of the oncogene v-\f2rel\f1 in reticuloendotheliosis virus strain T and its cellular homolog, the proto-oncogene c-\f2rel\f1 %J J. Virol. %V 52 %D 1984 %P 172-182 %A J.M. Wilkinson %T The amino acid sequence of troponin C from chicken skeletal muscle %J FEBS Lett. %V 70 %P 254-? %D 1976 %K 4TNC %A H.M. Wilks %A D.J. Halsall %A T. Atkinson %A W.N. Chia %A A.R. Clarke %A J.J. Holbrook %T Designs for a broad substrate specificity keto acid dehydrogenase %J Biochemistry %V 29 %P 8587-8591 %D 1990 %A H.M. Wilks %A K.W. Hart %A R. Feeney %A C.R. Dunn %A H. Muirhead %A W.N. Chia %A D.A. Barstow %A T. Atkinson %A J.J. Holbrook %T A specific, highly active malate dehydrogenase by redesign of a lactate dehydrogenase framework %J Science %V 242 %P 1541-1544 %D 1988 %A A.F. Williams %T Immunoglobulin-related domains for cell surface recognition %J Nature %V 314 %D 1985 %P 579-580 %K immunoglobulin superfamily sequences domains %A A.F. Williams %T A year in the life of the immunoglobulin superfamily %J Immunol. Today %V 8 %P 298-303 %D 1987 %A A.F. Williams %A A.N. Barclay %T The immunoglobulin superfamily-domains for cell surface recognition %J Annu. Rev. Immunol. %V 6 %P 381-405 %D 1988 %A A.F. Williams %A J. Gagnon %T Neuronal cell Thy-1 glycoprotein: homology with immunoglobulin %J Science %V 216 %D 1982 %P 696-703 %K immunoglobulin superfamily sequence alignment %A H.R. Williams %A T.-Y. Lin %A M.A. Navia %A J.P. Springer %A B.M. McKeever %A K. Hoogsteen %A C.P. Dorn,\0Jr. %T Crystallization of human neutrophil elastase %J J. Biol. Chem. %V 262 %P 17178-? %D 1987 %K 1HNE %A M.A. Williams %A J.M. Goodfellow %A J.M. Thornton %T Buried waters and internal cavities in monomeric proteins %J Prot. Sci. %V 3 %P 1224-1235 %D 1994 %A M.A. Williams %A J.M. Goodfellow %A J.M. Thornton %T Buried waters and internal cavities in monomeric proteins %J Prot. Sci. %V 3 %P 1224-1235 %D 1994 %A M.J. Williams %A I. Phan %A R.T. Applin %A M. Baron %A I.D. Campbell %T Towrd the structure of mosaic proteins: Expression, purification and structural analysis of a pair of fibronectin type 1 modules %J Techniques in Protein Chemistry VI %E R.H. Agletti %I Academic Press %C London %D 1993 %P 623-631 %A T.N. Stitt %A G. Conn %A M. Gore %A C. Lai %A J. Bruno %A C. Radziejewski %A K. Mattsson %A J. Fisher %A D.R. Gies %A P.F. Jones %A P. Masikowski %A T.E. Ryan %A N.J. Tobkes %A D.H. Chen %A P.S. DiStefano %A G.L. Long %A C. Basilico %A M.P. Goldfarb %A G. Lemke %A D.J. Glass %A G.D. Yancopoulos %T The anticoagulation factor protein S and its relative, Gas6, are ligands for the tyro 3/Axl family of receptor tyrosine kinases %J Cell %V 80 %P 661-670 %D 1995 %A M.V. Williams %A T. Kieber-Emmons %A J. VonFeldt %A M.I. Greene %A D.B. Weiner %T Design of bioactive peptides based on antibody hypervariable region structures %J J. Biol. Chem. %V 266 %P 5182-5190 %D 1991 %A K.L. Clark %A E.D. Halay %A E. Lai %A S.K. Burley %T Co-crystal structure of the HNF-3/\f2fork head\f1 DNA-recognition motif resembles histone H5 %J Nature %V 364 %P 412-420 %D 1993 %A R.L. Williams %A S.M. Greene %A A. McPherson %T The crystal structure of ribonuclease B at 2.5\(Ao resolution %J J. Biol. Chem. %V 262 %P 16020-? %D 1987 %K PDB1RBB %A R.P. Williams %A G.R. Moore %T Protein antigenicity, organisation and mobility %J Trends Biochem. Sci. %P 96-97 %V 10 %D 1985 %K TIBS %A M.P. Williamson %T \u\s-21\s0\dH nuclear magnetic resonance assignments and secondary structure of porcine c5a\d\s-2des Arg\s0\u %J J. Mol. Biol. %V 206 %P 407-? %D 1989 %K 1C5A %A M.P. Williamson %A V.S. Madison %T Three-dimensional structure of porcine c5a\d\s-2des Arg\s0\u from \u\s-41\s0\dH nuclear magnetic resonance data %J Biochemistry %V 29 %P 2895-? %D 1990 %K PDB1C5A %A M. Wilmanns %A D. Eisenberg %T Three-dimensional profiles from residue-pair preferences: Identification of sequences with \(*b/\(*a-barrel fold %J Proc. Natl. Acad. Sci. USA %V 90 %P 1379-1383 %D 1993 %A M. Wilmanns %A C.C. Hyde %A D.R. Davies %A K. Kirschner %A J.N. Jansonius %T Structural conservation in parallel \(*b/\(*a-barrel enzymes that catalyze three sequential reactions in the pathway of tryptophan biosynthesis %J Biochemistry %V 30 %P 9161-9169 %D 1991 %A C.M. Wilmot %A J.M. Thornton %T Analysis and prediction of the different types of \(*b-turn in proteins %J J. Mol. Biol. %V 203 %D 1988 %P 221-232 %K beta turns analysis secondary structure prediction %A C.M. Wilmot %A J.M. Thornton %T \(*b-turns and their distortions: a proposed new nomenclature %J Prot. Eng. %V 3 %D 1990 %P 479-493 %K protein structure beta turns comparison analysis prediction %A A.C. Wilson %A S.S. Carlson %A T.J. White %T Biochemical evolution %J Annu. Rev. Biochem. %P 573-639 %V 46 %D 1977 %A A.C. Wilson %A H. Ochman %A E.M. Prager %T Molecular time scale for evolution %J Trends Biochem. Sci. %V 12 %P 241-247 %D 1987 %K TIBS %A C. Wilson %A S. Doniach %T A computer model to dynamically simulate protein folding: studies with crambin %J Proteins %V 6 %P 193-209 %D 1989 %A C. Wilson %A L.M. Gregoret %A D.A. Agard %T Modeling side-chain conformation for homologous proteins using an energy-based rotamer search %J J. Mol. Biol. %V 229 %P 996-1006 %D 1993 %A C. Wilson %A J.E. Mace %A D.A. Agard %T Computational method for the design of enzymes with altered substrate specificity %J J. Mol. Biol. %V 220 %P 495-506 %D 1991 %A C. Wilson %A M.R. Wardell %A K.H. Weisgraber %A R.W. Mahley %A D.A. Agard %T Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E %J Science %V 252 %P 1817-1822 %D 1991 %A D.K. Wilson %A K.M. Bohren %A K.H. Gabbay %A F.A. Quiocho %T An unlikely sugar substrate site in the 1.65\(Ao structure of the human aldose reductase holoenzyme implicated in diabetic complications %J Science %V 257 %P 81-84 %D 1992 %A D.K. Wilson %A F.A. Quicho %T Crystallogrpahic observation of a trapped tetrahedral intermediate in a metalloenzyme %J Nature Struct. Biol. %V 1 %P 691-694 %D 1994 %A D.K. Wilson %A F.B. Rudolph %A M.L. Harrison %A R.E. Kellems %A F.A. Quiocho %T Preliminary X-ray analysis of crystals of murine adenosine deaminase %J J. Mol. Biol. %V 200 %P 613-? %D 1988 %K 1ADA %A D.K. Wilson %A F.B. Rudolph %A F.A Quiocho %T Atomic structure of adenosine deaminase complexed with a transition-state analog: Understanding catalysis and immunodeficiency mutations %J Science %V 252 %P 1278-1284 %D 1991 %A I.A. Wilson %A D.H. Haft %A E.D. Getzoff %A J.A. Tainer %A R.A. Lerner %A S. Brenner %T Identical short peptide sequences in unrelated proteins can have different conformations: A testing ground for theories of immune recognition %J Proc. Natl. Acad. Sci. USA %V 82 %P 5255-5259 %D 1985 %A I.A. Wilson %A J.J. Skehel %A D.C. Wiley %T Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3\(Ao resolution %J Nature %V 289 %P 366-? %D 1981 %K 0HG1 0HG1 0HG2 0HG3 2HMG 3HMG 4HMG 5HMG PDB1HMG %A K.S. Wilson %A K. Appelt %A J. Badger %A I. Tanaka %A S.W. White %T Crystal structure of a prokaryotic ribosomal protein %J Proc. Natl. Acad. Sci. USA %V 83 %P 7251-? %D 1986 %K 0RPL %A K.S. Wilson %A J.A. Jenkins %A L.N. Johnson %A E.A. Stura %A I.T. Weber %A D.L. Wild %T The structure of glycogen phosphorylase B and its complexes with a number of metabolites at 3\(Ao resolution %J Acta Cryst. %V A 34 %P 69-? %D 1978 %K 0PB1 %A M. Wimanns %A J.P. Priestle %A T. Niermann %A J.N. Jansonius %T Three-dimensioanl structure of the bifunctional enzyme phosphoribosylanthranilate isomerase: Indoleglycerolphosphate synthase from \f2Escherichia coli\f1 at 2.0\(Ao resolution %J J. Mol. Biol. %V 223 %P 477-507 %D 1992 %A R. Wing %A H. Drew %A T. Takano %A C. Broka %A S. Tanaka %A K. Itakura %A R.E. Dickerson %T Crystal structure analysis of a complete turn of b-DNA %J Nature %V 287 %P 755-? %D 1980 %K 1NDN %A F.K. Winkler %A A. D'Arcy %A H. Bloecker %A R. Frank %A J.H. van\0Boom %T Crystallization of complexes of eco/RV endonuclease with cognate and non-cognate DNA fragments %J J. Mol. Biol. %V 217 %P 235-? %D 1991 %K 2RVE %A F.K. Winkler %A A. D'Arcy %A W. Hunziker %T Structure of human pancreatic lipase %J Nature %V 343 %P 771-774 %D 1990 %K convergent-evolution %A S.I. Winn %A H.C. Watson %A R.N. Harkins %A L.A. Fothergill %T Structure and activity of phosphoglycerate mutase %J Phil. Trans. Roy. Soc. Lond. %V B 293 %P 121-? %D 1981 %K 3PGM %A G.A.R. Winter %A A.J. Fersht %A M. Wilkinson %A M. Zoller %A M. Smith %T Redesigning enzyme structure by site-directed mutagenesis %J Nature %V 299 %D 1982 %P 756-758 %A G. Winter %A C. Milstein %T Man-made antibodies %J Nature %V 349 %P 293-299 %D 1991 %A W.T. Winter %A S. Arnott %T Hyaluronic acid, the role of divalent cations in conformation and packing %J J. Mol. Biol. %V 117 %P 761-? %D 1977 %K PDB4HYA %A W.T. Winter %A S. Arnott %A D.H. Isaac %A E.D.T. Atkins %T Chondroitin-4-sulfate: The structure of a sulfated glycosaminoglycan %J J. Mol. Biol. %V 125 %P 1-? %D 1978 %K PDB1C4S %A W.T. Winter %A P.J.C. Smith %A S. Arnott %T Hyaluronic acid, structure of a fully extended 3-fold helical sodium salt and comparison with the less extended 4-fold helical forms %J J. Mol. Biol. %V 99 %P 219-? %D 1975 %K PDB1HYA %A B.C. Wishner %A K.B. Ward %A E.E. Lattman %A W.E. Love %T Crystal structure of sickle-cell deoxyhemoglobin at 5\(Ao resolution %J J. Mol. Biol. %V 98 %P 179-? %D 1975 %K 1HBS %A G. Wistow %T Lens crystallins: Gene recruitment and evolutionary dynamism %J Trends Biochem. Sci. %V 18 %P 301-306 %D 1993 %A G. Wistow %A C. Slingsby %A T. Blundell %A H. Driessen %A W. de\0Jong %A H. Bloemdal %T Eye-lens proteins: The three-dimensional structure of \(*b-crystallin predicted from monomeric \(*g-crystallin %J FEBS Lett. %V 133 %P 9-16 %D 1981 %A G. Wistow %A L. Summers %A T.L. Blundell %T \f2Myxococcus xanthus\f1 spore coat protein A may have a similar structure to vertebrate lens \(*b \(*g-crystallins %J Nature %V 316 %D 1985 %P 771-773 %A G. Wistow %A B. Turnell %A L. Summers %A C. Slingsby %A D. Moss %A L. Miller %A P. Lindley %A T. Blundell %T X-ray analysis of the eye lens protein \(*g-II crystallin at 1.9\(Ao resolution %J J. Mol. Biol. %V 170 %P 175-202 %D 1983 %K 1GCR %A J. Wittekind %A P. Rajagopal %A B.R. Branchini %A J. Reizer %A M.H. Saier,\0Jr. %A R.E. Klevitt %T Solution structure of the phosphocarrier protein HPr from \f2Bacillus subtilis\f1 by two dimensional NMR spectroscopy %J Prot. Sci. %V 1 %P 1363-1376 %D 1992 %A A. Wlodawer %T Studies of ribonuclease-A by X-ray and neutron diffraction %J Acta Cryst. %V B 36 %P 1826-? %D 1980 %K 5RSA %A A. Wlodawer %T Another piece of the HIV puzzle falls into place %J Science %V 256 %P 766 %D 1992 %A A. Wlodawer %A N. Borkakoti %A D.S. Moss %A B. Howlin %T Comparison of two independently refined models of ribonuclease A %J Acta Cryst. %V B 42 %P 379-? %D 1986 %K PDB5RSA 3RN3 %A A. Wlodawer %A R. Bott %A L. Sj\(o:lin %T Structure of ribonuclease A: X-ray and neutron refinement %J Acta Cryst. %V A 37 %P 13-? %D 1981 %K 5RSA Sjolin %A A. Wlodawer %A R. Bott %A L. Sj\(o:lin %T The refined crystal structure of ribonuclease A at 2.0\(Ao resolution %J J. Biol. Chem. %V 257 %P 1325-1332 %D 1982 %K 5RSA Sjolin %A A. Wlodawer %A J. Deisenhofer %A R. Huber %T Comparison of two highly refined structures of bovine pancreatic trypsin inhibitor %J J. Mol. Biol. %V 193 %P 145-? %D 1987 %K 5PTI %A A. Wlodawer %A J.W. Erickson %T Structure-based inhibitors of HIV-1 protease %J Annu. Rev. Biochem. %V 62 %P 543-585 %D 1993 %A A. Wlodawer %A W.A. Hendrickson %T Joint refinement of macromolecular structures with X-ray and neutron single-crystal diffraction data %J Acta Cryst. %V A 37 %P 8-? %D 1981 %K 5RSA %A A. Wlodawer %A M. Miller %A M. Jask\(o'lski %A B.K. Sathyanarayana %A E. Baldwin %A I.T. Weber %A L.M. Selk %A L. Clawson %A J. Schneider %A S.B.H. Kent %T Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease %J Science %V 245 %D 1989 %P 616-621 %K Jaskolski PDB3HVP %A A. Wlodawer %A M. Miller %A L. Sj\(o:lin %T Active site of RNase: neutron diffraction study of a complex with uridine vanadate, a transition-state analog %J Proc. Natl. Acad. Sci. USA %V 80 %P 3628-3631 %D 1983 %K 5RSA PNAS Sjolin %A A. Wlodawer %A J. Nachman %A G.L. Gilliland %A W. Gallagher %A C. Woodward %T Structure of form III crystals of bovine pancreatic trypsin inhibitor %J J. Mol. Biol. %V 198 %P 469-? %D 1987 %K PDB6PTI %A A. Wlodawer %A A. Pavlovsky %A A. Gustchina %T Crystal structure of human recombinant interleukin-4 at 2.25\(Ao resolution %J FEBS Letts. %V 309 %P 59-64 %D 1992 %A A. Wlodawer %A H. Savage %A G. Dodson %T Structure of insulin: results of joint neutron and X-ray refinement %J Acta Cryst. %V B 45 %P 99-? %D 1989 %K PDB3INS %A A. Wlodawer %A L. Sj\(o:lin %T Orientation of histidine residues in RNase A: neutron diffraction study %J Proc. Natl. Acad. Sci. USA %V 78 %P 2853-2855 %D 1981 %K 5RSA PNAS Sjolin %A A. Wlodawer %A L. Sj\(o:lin %T Hydrogen exchange in RNase A. Neutron diffraction study %J Proc. Natl. Acad. Sci. USA %V 79 %P 1418-1422 %D 1982 %K 5RSA PNAS Sjolin %A A. Wlodawer %A L. Sj\(o:lin %T Structure of ribonuclease A: results of joint neutron and X-ray refinement at 2.0\(Ao resolution %J Biochemistry %V 22 %P 2720-2728 %D 1983 %K 5RSA Sjolin %A A. Wlodawer %A L.A. Svensson %A L. Sj\(o:lin %A G.L. Gilliland %T Structure of phosphate-free ribonuclease A refined at 1.26\(Ao %J Biochemistry %V 27 %P 2705-2717 %D 1988 %K Sjolin PDB7RSA %A A. Wlodawer %A J. Walter %A R. Huber %A L. Sj\(o:lin %T Structure of bovine pancreatic trypsin inhibitor: results of joint neutron and X-ray refinement of crystal form II %J J. Mol. Biol. %V 180 %P 301-329 %D 1984 %K PDB5PTI Sjolin %A S.J. Wodak %A M. de\0Crombrugghe %A J. Janin %T Computer studies of interactions between macromolecules %J Prog. Biophys. Mol. Biol. %V 42 %D 1987 %P 21-55 %K protein-protein interactions ligand binding %A S.J. Wodak %A J. Janin %T Analytical approximation to the accessible surface of proteins %J Proc. Natl. Acad. Sci. USA %V 77 %D 1980 %P 1736-1740 %K surface area PNAS %A S.J. Wodak %A J. Janin %T Location of structural domains in proteins %J Biochemistry %V 20 %D 1981 %P 6544-6552 %K surface area folding unit %A S.J. Wodak %A M.J. Rooman %T Generating and testing protein folds %J Curr. Opin. Struct. Biol. %V 3 %P 247-259 %D 1993 %A C. Wolberger %A Y. Dong %A M. Ptashne %A S.C. Harrison %T Structure of a phage 434 Cro/DNA complex %J Nature %V 335 %P 789-795 %D 1988 %A C. Wolberger %A A.K. Vershon %A B. Liu %A A.D. Johnson %A C.O. Pabo %T Crystal structure of a MAT\(*a2 homeodomain-operator complex suggests a general model for homeodomain-DNA interactions %J Cell %V 67 %P 517-528 %D 1991 %A R. Wolfenden %T Transition state analog inhibitors and enzyme catalysis %J Annu. Rev. Biophys. Bioeng. %V 5 %P 271-306 %D 1976 %A R. Wolfenden %A A. Radzicka %T Transition-state analogues %J Curr. Opin. Struct. Biol. %V 1 %P 780-787 %D 1991 %A Z.S. Derewenda %A A.M. Sharp %T News from the interface: the molecular structures of triacylglyceride lipases %J Trends Biochem. Sci. %V 18 %P 20-25 %D 1993 %A T.G. Wolfsberg %A J.F. Bazan %A C.P. Blobel %A D.G. Myles %A P. Primakoff %A J.M. White %T The precursor region of a protein active in sperm-egg fusion contains a metalloprotease and a disintegrin domain: Structural, functional, and evolutionary implications %J Proc. Natl. Acad. Sci. USA %V 90 %P 10783-10787 %D 1993 %A P.G. Wolynes %A J.N. Onuchic %A D. Thirumalai %T Navigating the folding routes %J Science %V 267 %P 1619-1620 %D 1995 %A A. Wonacott %A R. Cooke %A F.R. Hayes %A M.M. Hahn %A H. Jhoti %A P. McMeekin %A A. Mistry %A P. Murray-Rust %A O.M.P. Singh %A M.P. Weir %T A series of penicillin-derived C\d\s-42\s0\u-symmetric inhibitors of HIV-1 proteinase: Structural and modeling studies %J J. Med. Chem. %V 36 %P 3113-3119 %D 1993 %A A.K.C. Wong %A T.S. Liu %A C.C. Wang %T Statistical analysis of residue variability in cytochrome \f2c\f1 %J J. Mol. Biol. %V 102 %D 1976 %P 287-295 %K conservation coupling invariance alignment %A C.-H. Wong %A S.-T. Chen %A W.J. Hennen %A J.A. Bibbs %A Y.-F. Wang %A J.L.-C. Liu %A M.W. Pantoliano %A M. Whitlow %A P.N. Bryan %T Enzymes in organic synthesis: use of subtilisin and a highly stable mutant derived from multiple site-specific mutations %J J. Am. Chem. Soc. %V 112 %P 945-? %D 1990 %K 1S01 %A C.-H. Wong %A T.J. Lee %A T.-Y. Lee %A T.-H. Lu %A I-H. Yang %T Structure of acid protease from \f2Endothia parasitica\f1 in cross-linked form at 2.45\(Ao resolution %J Biochemistry %V 18 %P 1638-? %D 1979 %K 0EAP %A C.F. Wong %A J.A. McCammon %T Dynamics and design of enzymes and inhibitors %J J. Amer. Chem. Soc. %V 108 %P 3830-3832 %D 1986 %A C. Wong %A T.J. Lee %A T.Y. Lee %A T.H. Lu %A C.S. Hung %T Intermolecular cross-linking of a protein crystal-acid protease from \f2Endothia parasitica\f1 in 2.7M ammonium sulfate solution %J Biochem. Biophys. Res. Comm. %V 80 %P 886-? %D 1978 %K 0EAP %A C. Wong %A T.J. Lee %A T.Y. Lee %A T.H. Lu %A C.S. Hung %T The structure of acid protease from \f2Endothia parasitica\f1 in cross-linked form at 3.5\(Ao resolution %J Biochem. Biophys. Res. Comm. %V 80 %P 891-? %D 1978 %K 0EAP %A J.T.-F. Wong %T A co-evolution theory of the genetic code %D 1975 %J Proc. Natl. Acad. Sci. USA %V 72 %P 1909-1912 %K PNAS %A F. Wong-Staal %A R.C. Gallo %T Human T-lymphotropic retroviruses %J Nature %V 317 %D 1985 %P 395-403 %K HTLV HIV T-cell %A N.H. Woo %A B.A. Roe %A A. Rich %T Three-dimensional structure of \f2Escherichia coli\f1 initiator tRNA\d\s-2met\s0\u F %J Nature %V 286 %P 346-? %D 1980 %K 0FMT %A S.P. Wood %A G. Oliva %A B.P. O'Hara %A H.E. White %A T.L. Blundell %A S.J. Perkins %A I. Sardhawalla %A M.B. Pepys %T A pentameric form of human serum amyloid P component %J J. Mol. Biol. %V 202 %D 1988 %P 169-173 %A S.P. Wood %A J.E. Pitts %A T.L. Blundell %A I.J. Tickle %A J.A. Jenkins %T Purification, crystallisation and preliminary X-ray studies on avian pancreatic polypeptide %J Eur. J. Biochem. %V 78 %P 119-? %D 1977 %K 1PPT %A S.P. Wood %A I.J. Tickle %A A.M. Treharne %A J.E. Pitts %A Y. Mascarenhas %A J.Y. Li %A J. Husain %A S. Cooper %A T.L. Blundell %A V.J. Hruby %A A. Buku %A A.J. Fischman %A H.R. Wyssbrod %T Crystal structure analysis of deamino-oxytocin: conformational flexibility and receptor binding %J Science %V 232 %P 633-639 %D 1986 %K PDB1XY1 PDB1XY2 %A R.G. Woodbury %A G.M. Gruzenski %A D. Lagunoff %T Immunofluorescent localization of a serine protease in rat small intestine %J Proc. Natl. Acad. Sci. USA %V 75 %P 2785-2789 %D 1978 %K 3RP2 PNAS %A R.G. Woodbury %A N. Katunuma %A K. Kobayashi %A K. Titani %A H. Neurath %T Covalent structure of a group-specific protease from rat small intestine %J Biochemistry %V 17 %P 811-? %D 1978 %K 3RP2 %A D.W. Woolfson %A P.A. Evans %A E.G. Hutchinson %A J.M. Thornton %T Topological and stereochemical restrictions in \(*b-sandwich protein structures %J Prot. Eng. %V 6 %P 461-470 %D 1993 %A C.S. Wright %T Non-crystallographic symmetry in the crystal dimer of wheat germ agglutinin %J J. Mol. Biol. %V 87 %P 835-841 %D 1974 %K 3WGA 1WGC 2WGC 7WGA 9WGA %A C.S. Wright %T The crystal structure of wheat germ agglutinin at 2.2\(Ao resolution %J J. Mol. Biol. %V 111 %P 439-? %D 1977 %K 3WGA 1WGC 7WGA 9WGA %A C.S. Wright %T Multidomain structure of the dimeric lectin wheat germ agglutinin %B Biomolecular, structure, conformation, function and evolution %P 9-17 %V 1 %E R. Srinivasan %I Pergamon Press %C Oxford %D 1978 %A C.S. Wright %T Crystallographic elucidation of the saccharide binding mode in wheat germ agglutinin and its biological significance %J J. Mol. Biol. %V 141 %P 267-? %D 1980 %K 2WGC 7WGA 9WGA 1WGC 2WGC 3WGA %A C.S. Wright %T Location of the N-acetyl-\s-2D\s0-neuraminic acid binding site in wheat germ agglutinin. a crystallographic study at 2.8\(Ao resolution %J J. Mol. Biol. %V 139 %P 53-? %D 1980 %K 3WGA 2WGC 7WGA 9WGA 1WGC %A C.S. Wright %T Histidine determination in wheat germ agglutinin isolectin by X-ray diffraction analysis %J J. Mol. Biol. %V 145 %P 453-? %D 1981 %K 3WGA 1WGC 7WGA 9WGA %A C.S. Wright %T Structural comparison of the two distinct sugar binding sites in wheat germ agglutinin isolectin II %J J. Mol. Biol. %V 178 %P 91-104 %D 1984 %K 3WGA 2WGC 7WGA 9WGA 1WGC %A C.S. Wright %T Refinement of the crystal structure of wheat germ agglutinin isolectin 2 at 1.8\(Ao resolution %J J. Mol. Biol. %V 194 %P 501-? %D 1987 %K 9WGA 1WGC 7WGA 2WGC PDB3WGA %A C.S. Wright %T \f2Erratum\f1. Refinement of the crystal structure of wheat germ agglutinin isolectin 2 at 1.8\(Ao resolution %J J. Mol. Biol. %V 199 %P 239-? %D 1988 %K 7WGA 1WGC 2WGC %A C.S. Wright %T Comparison of the refined crystal structures of two wheat germ isolectins %J J. Mol. Biol. %V 209 %P 475-? %D 1989 %K 7WGA 9WGA 1WGC 2WGC %A C.S. Wright %T 2.2\(Ao resolution structure analysis of two refined N-acetylneuraminyllactose-wheat germ agglutinin isolectin complexes %J J. Mol. Biol. %V 215 %P 635-? %D 1990 %K 7WGA 9WGA 1WGC 2WGC %A C.S. Wright %A R.A. Alden %A J. Kraut %T Structure of subtilisin BPN\(fm at 2.5\(Ao resolution %J Nature %V 221 %D 1969 %P 235-242 %A C.S. Wright %A F. Gavilanes %A D.L. Peterson %T Primary structure of wheat germ agglutinin isolectin 2: peptide order deduced from X-ray structure %J Biochemistry %V 23 %P 280-? %D 1984 %K 3WGA 1WGC 2WGC 7WGA 9WGA %A C.S. Wright %A G.P. Hess %A D.M. Blow %T Structure of crystalline methyl-chymotrypsin %J J. Mol. Biol. %V 63 %P 295-? %D 1972 %K 2CHA %A C.S. Wright %A I. Kahane %T Preliminary X-ray diffraction results on co-crystals of wheat germ agglutinin with a sialoglycopeptide from the red cell receptor glycophorin A %J J. Mol. Biol. %V 194 %P 353-? %D 1987 %K 9WGA 1WGC 7WGA 2WGC %A C.S. Wright %A C. Keith %A R. Langridge %A Y. Nagata %A M.M. Burger %T A preliminary crystallographic study of wheat germ agglutinin %J J. Mol. Biol. %V 87 %P 843-846 %D 1974 %K 3WGA 1WGC 2WGC 7WGA 9WGA %A C.S. Wright %A S. Olafsdottir %T Structural differences in the two major wheat germ agglutinin isolectins %J J. Biol. Chem. %V 261 %P 7191-? %D 1986 %K 2WGC 7WGA 9WGA 1WGC %A C.S. Wright %A N. Raikhel %T Sequence variability in three wheat germ agglutinin isolectins: products of multiple genes in polyploid wheat %J J. Mol. Evol. %V 28 %P 327-? %D 1989 %K 9WGA 7WGA 1WGC 2WGC %A H.T. Wright %T Activation of chymotrypsinogen-A %J J. Mol. Biol. %V 79 %D 1973 %P 13-23 %K serine proteinase structure activation mechanism %A H.T. Wright %T Comparison of the crystal structures of chymotrypsinogen-A and \(*a-chymotrypsin %J J. Mol. Biol. %V 79 %D 1973 %P 1-11 %K serine proteinase comparison %A H.T. Wright %A D.M. Brooks %A C.S. Wright %T Evolution of the multidomain protein wheat germ agglutinin %J J. Mol. Evol. %V 21 %P 133-? %D 1985 %K 3WGA 1WGC 2WGC 7WGA 9WGA %A H.T. Wright %A Z.X. Qian %A R. Huber %T Crystal structure of plakalbumin, a proteolytically nicked form of ovalbumin: its relationship to the structure of \(*a\-proteinase inhibitor %J J. Mol. Biol. %V 213 %P 513-528 %D 1990 %A P.E. Wright %T What can two dimensional NMR tell us about proteins ? %J Trends Biochem. Sci. %V 14 %D 1989 %P 255-260 %K TIBS %A P.E. Wright %A H.J. Dyson %A R.A. Lerner %T Conformation of peptide fragments of proteins in aqueous solution: implications for initiation of protein folding %J Biochemistry %P 7167-7174 %V 27 %D 1988 %A H. Wu %A J.W. Lustbader %A Y. Liu %A R.E. Canfield %A W.A. Hendrickson %T Structure of human chorionic gonadotropin at 2.6\(oA resolution from MAD analysis of the selenomethionyl protein %J Structure %V 2 %P 545-558 %D 1994 %A T.-P. Wu %A K. Padmanabhan %A A. Tulinsky %A A.M. Mulichak %T The refined structure of the \(*e-aminocaproic acid complex of human plasminogen kringle 4 %J Biochemistry %V 30 %P 10589-10594 %D 1991 %A T.P. Wu %A V. Yee %A A. Tulinsky %A H. Nakanishi %A R. Shen %A C. Priebe %A M. Kahn %T The structure of a designed peptidomimetic inhibitor complex of \(*a-thrombin %J Prot. Eng. %V 6 %P 471-478 %D 1993 %A T.T. Wu %T Matching nucleotide sequences of human antibodies with other known sequences %J J. Theor. Biol. %P 231-234 %V 131 %D 1988 %A T.T. Wu %A E.A. Kabat %T An analysis of the sequences of the variable regions of Bence-Jones proteins and myeloma light chains and their implications for antibody complementarity %J J. Med. Chem. %V 132 %D 1970 %P 211-250 %K immunoglobulin structure conservation %A T.T. Wu %A E.A. Kabat %T An attempt to locate the non-helical and permissively helical sequences of proteins: application to the variable regions of immunoglobulin light and heavy chains %J Proc. Natl. Acad. Sci. USA %V 68 %D 1971 %P 1501-1506 %K prediction secondary structure analysis PNAS %A T.T. Wu %A E.A. Kabat %T An attempt to evaluate the influence the neighbouring amino acids (\f2n\(mi1\f1) and (\f2n\(pl1\f1) on the backbone conformation of amino acid (\f2n\f1) in proteins: use in predicting the three-dimensional structure of the polypeptide backbone of other proteins %J J. Mol. Biol. %V 75 %D 1973 %P 13-31 %A C. Wuilmart %A J. Urbain %T \(*a secondary structures generate weak but recurrent periodicity in proteins %J Eur. J. Biochem. %P 35-40 %V 139 %D 1984 %A H.W. Wyckoff %T Compensating nature of substitutions in pancreatic ribonucleases %J Brookhaven Symp. Biol. %V 21 %P 252-258 %D 1968 %A H.W. Wyckoff %A K.D. Hardman %A N.M. Allewell %A T. Inagami %A D. Tsernoglou %A L.N. Johnson %A F.M. Richards %T The structure of ribonuclease-S at 6\(Ao resolution %J J. Biol. Chem. %V 242 %P 3749-? %D 1967 %K 1RNS %A H.W. Wyckoff %A D. Tsernoglou %A A.W. Hanson %A J.R. Knox %A B. Lee %A F.M. Richards %T The three-dimensional structure of ribonuclease-S, interpretation of an electron density map at a nominal resolution of 2\(Ao %J J. Biol. Chem. %V 245 %P 305-328 %D 1970 %K 1RNS %A K. W\(u:thrich %T NMR of Proteins and Nucleic Acids %I Wiley %C New York %D 1986 %K Wuthrich %A K. W\(u:thrich %T The Ramachandran plot and the NMR method for protein structure determination %J Curr. Sci. %D 1990 %V 59 %P 825-831 %K Wuthrich %A K. W\(u:thrich %A M. Billeter %A W. Braun %T Pseudo-structures for the 20 common amino-acids for use in studies of protein conformations by measurements of intramolecular proton-proton distances %J J. Mol. Biol. %P 949-961 %V 169 %D 1983 %K Wuthrich %A K. W\(u:thrich %A B. Von\0Freyberg %A C. Weber %A G. Wider %A R. Traber %A H. Widmer %A W. Braun %T Receptor-induced conformation change of the immunosuppressant cyclosporin A %J Science %V 254 %P 953-954 %D 1991 %K Wuthrich %A K. W\(u:thrich %A G. Wagner %T Internal motion in globular proteins %J Trends Biochem. Sci. %V 3 %P 227-230 %D 1978 %K TIBS Wuthrich %A K. W\(u:thrich %A G. Wagner %T Internal dynamics of proteins %J Trends Biochem. Sci. %P 152-154 %V 10 %D 1985 %K TIBS Wuthrich %A K. W\(u:thrich %A G. Wider %A G. Wagner %A W. Braun %T Spatial resonance assignments as a basis for determination of spatial protein structures by high resolution proton NMR %J J. Mol. Biol. %P 311-319 %V 155 %D 1982 %K Wuthrich %A T.-H. Xia %A J.H. Bushweller %A P. Sodano %A M. Billeter %A O. Bj\(o:rnberg %A A. Holmgren %A K. W\(u:thrich %T NMR structure of oxidized \f2Escerichia coli\f1 glutaredoxin: Comparison with reduced \f2E. coli\f1 glutaredoxin and functionall related proteins %J Prot. Sci. %V 1 %P 310-321 %D 1992 %K Wuthrich Bjornberg %A Z.-X. Xia %A N. Shamala %A P.H. Bethge %A L.W. Lim %A H.D. Bellamy %A N.H. Xuong %A F. Lederer %A F.S. Mathews %T Three-dimensional structure of flavocytochrome \f2b\f1\d\s-22\s0\u from baker's yeast at 3.0\(Ao resolution %J Proc. Natl. Acad. Sci. USA %V 84 %P 2629-2633 %D 1987 %K 0FCB %A Z. Xia %A F.S. Mathews %T Molecular structure of flavocytochrome \f2b\f1\d\s-22\s0\u at 2.4\(Ao resolution %J J. Mol. Biol. %V 212 %P 837-? %D 1990 %K 1FCB %A Z. Xu %A D.A. Bernlohr %A L.J. Banaszak %T Crystal structure of recombinant murine adipocyte lipid-binding protein %J Biochemistry %V 31 %P 3484-3492 %D 1992 %A D. Donnelly %T Modelling \(*a-helical transmembrane domains %J Biochem Soc. Trans. %V 21 %P ?-? %D 1993 %A Y. Yamamoto %A K.T. Nakamura %A Y. Iitaka %A Y. Mitsui %A K. Miyamoto %A H. Matsuo %A K. Narita %A N. Yoshida %T Crystallization of ribonuclease ST %J J. Mol. Biol. %V 145 %P 285-? %D 1981 %K 0RST %A M.M. Yamashita %A R.J. Almassy %A C.A. Janson %A D. Cascio %A D. Eisenberg %T Refined atomic model of glutamine synthetase at 3.5\(Ao resolution %J J. Biol. Chem. %V 264 %P 17681-? %D 1989 %K PDB2GLS %A T. Yamazaki %A L.K. Nicholson %A D.A. Torchia %A S.J. Stahl %A J.D. Kaufman %A P.T. Wingfield %A P.J. Domaille %A S. Campbell-Burk %T Secondary structure and signal assignments of human immunodeficiency virus 1 protease complexed to a novel, structure-based inhibitor %J Eur. J. Biochem. %V 219 %P 707-712 %D 1994 %A Y. Yan %A E. Winograd %A A. Viel %A T. Cronin %A S.C. Harrison %A D. Branton %T Crystal structure of the repetetive segments of actin %J Science %V 262 %P 2027-2030 %D 1993 %A D.S.C. Yang %A Y.J. Chung %A P. Chen %A J.P. Rose %A C.L. Hew %T Single crystals of a winter flounder antifreeze polypeptide %J J. Mol. Biol. %V 189 %P 725-? %D 1986 %K 0AFP %A D.S.C. Yang %A M. Sax %A A. Chakrabartty %A C.L. Hew %T Crystal structure of an antifreeze polypeptide and its mechanistic implications %J Nature %V 333 %D 1988 %P 232-237 %A W. Yang %A W.A. Hendrickson %A R.J. Crouch %A Y. Satow %T Structure of ribonuclease H phased at 2\(Ao resolution by MAD analysis of the selenomethionyl protein %J Science %V 249 %D 1990 %P 1398-1405 %K PDB1RNH %A W. Yang %A W.A. Hendrickson %A E.T. Kalman %A R.J. Crouch %T Expression, purification, and crystallization of natural and selenomethionyl recombinant ribonuclease H from \f2Escherichia coli\f1 %J J. Biol. Chem. %V 265 %P 13553-? %D 1990 %K 1RNH %A T. Yasunaga %A N. Sagata %A Y. Ikawa %T Protease gene structure and \f2env\f1 gene variability of the AIDS virus %J FEBS Lett. %V 199 %D 1986 %P 145-150 %K retrovirus protease sequence alignment %A R.D. Ye %A T.-C. Wun %A J.E. Sadler %T cDNA cloning and expression in \f2E. coli\f1 of a plasminogen activator inhibitor from human placenta %J J. Biol. Chem. %V 262 %D 1987 %P 3718-3725 %K serpin TPA PAI %A T.O. Yeates %A H. Komiya %A A. Chirino %A D.C. Rees %A J.P. Allen %A G. Feher %T Structure of the reaction center from \f2Rhodobacter sphaeroides\f1 R26 and 2.4.1: protein-cofactor (bacteriochlorophyll, bacteriopheophytin, and carotenoid) interactions %J Proc. Natl. Acad. Sci. USA %V 85 %P 7993-7997 %D 1988 %A T.O. Yeates %A H. Komiya %A D.C. Rees %A J.P. Allen %A G. Feher %T Structure of the reaction center from \f2Rhodobacter sphaeroides\f1 R-26: membrane-protein interactions %J Proc. Natl. Acad. Sci. USA %V 84 %P 6438-6442 %D 1987 %K 0RCR %A D.P. Yee %A K.A. Dill %T Families and the structural relatedness among globular proteins %J Protein Sci. %V 2 %P 884-899 %D 1993 %A M.D. Yoder %A N.T. Keen %A F. Jurnak %T New domain motif: The structure of pectate lyase C, a secreted plant virulence factor %J Science %V 260 %P 1503-1507 %D 1993 %A H.S. Yoon %A P.J. Hajduk %A A.M. Petros %A E.T. Olejniczak %A R.P. Meadows %A S.W. Fesik %T Solution structure of a pleckstrin-homology domain %J Nature %V 369 %P 672-675 %D 1994 %A D.M. York %A T.A. Darden %A L.G. Pedersen %A M.W. Anderson %T Molecular dynamics simulation of HIV-1 protease in a crystalline environment and in solution %J Biochemistry %V 32 %P 1443-1453 %D 1993 %A J.D. York %A J.W. Ponder %A Z.-W. Chen %A F.S. Matthews %A P.W. Majerus %T Crystal structure of inositol polyphosphate 1-phosphatase at 2.3\(oA resolution %J Biochemistry %V 33 %P 13164-13171 %D 1994 %A Y. Yoshinaka %A I. Katoh %A T.D. Copeland %A S. Oroszlan %T Murine leukemia virus protease is encoded by the \f2gag-pol\f1 gene and is synthesized through suppression of an amber termination codon %J Proc. Natl. Acad. Sci. USA %V 82 %D 1985 %P 1618-1622 %K retrovirus MoMLV sequence PNAS %A Y. Yoshinaka %A I. Katoh %A T.D. Copeland %A S. Oroszlan %T Translational readthrough of an amber termination codon during synthesis of feline leukemia virus protease %J J. Virol. %V 55 %D 1985 %P 870-873 %K sequence FLV synthesis %A Y. Yoshinaka %A I. Katoh %A T.D. Copeland %A G.W. Smythers %A S. Oroszlan %T Bovine leukemia virus protease: purification, chemical analysis and \f2in vitro\f1 processing of \f2gag\f1 precursor polyproteins %J J. Virol. %V 57 %D 1986 %P 826-832 %A Y. Yoshinaka %A R.B. Shames %A R.B. Luftig %A G.W. Smythers %A S. Oroszlan %T \f2In vitro\f1 cleavage of Pr65\u\s-2gag\s0\d by the Moloney murine leukemia virus proteolytic activity yields p30 whose NH\d\s-22\s0\u-terminal sequence is identical to virion p30 %J J. Gen. Virol. %V 66 %D 1985 %P 379-383 %K protease retrovirus MoMLV processing %A M.F. Ypma-Wong %A D.J. Filman %A J.M. Hogle %A B.L. Semler %T Structural domains of the poliovirus polyprotein are major determinants for proteolytic cleavage at Gln-Gly pairs %J J. Biol. Chem. %V 263 %P 17846-? %D 1988 %K 2PLV %A L. Yu %A E.A. Dennis %T Critical role of a hydrogen bond in the interaction of phospholipase A\d\s-42\s0\u with transition-state and substrate analogues %J Proc. Natl. Acad. Sci. USA %V 88 %P 9325-9329 %D 1991 %A Z.-X. Xia %A W.-W. Dei %A J.-P. Xiong %A Z.-P. Hao %A V.L. Davidson %A S. White %A F.S. Mathews %T The three-dimensional structures of methanol dehydrogenase from two methyltrophic bacteria at 2.6\(Ao resolution %J J. Biol. Chem. %V 267 %P 22289-22297 %D 1992 %A K. Yue %A K.A. Dill %T Inverse protein folding problem: Designing polymer sequences %J Proc. Natl. Acad. Sci. USA %V 89 %P 4163-4167 %D 1992 %A S.-Y. Yue %A J. DiMaio %A Z. Szewczuk %A E.O. Purisima %A F. Ni %A Y. Konishi %T Characterization of the interactions of a bifunctional inhibitor with \(*a-thrombin by molecular modelling and peptide synthesis %J Prot. Eng. %V 5 %P 77-85 %D 1992 %A S. Yun-yu %A A.E. Mark %A W. Cun-xin %A H. Fuhua %A H.J.C. Berendsen %A W.F. van\0Gunsteren %T Can the stability of protein mutants be predicted by free energy calculations ? %J Prot. Eng. %V 6 %P 289-295 %D 1993 %A T.J. Yuschok %A G.D. Rose %T Hierarchic organization of globular proteins %J Int. J. Pept. Prot. Res. %V 21 %D 1983 %P 479-484 %A G. Zanotti %A G. Scapin %A P. Spadon %A J.H. Veerkamp %A J.C. Sacchettini %T Three-dimensional structure of recombinant human muscle fatty acid-binding protein %J J. Biol. Chem. %V 267 %P 18541-18550 %D 1992 %A H.A. Zappe %A G. Krohne-Ehrich %A G.E. Schulz %T Low resolution structure of human erythrocyte glutathione reductase %J J. Mol. Biol. %V 113 %P 141-? %D 1977 %K 3GRS %A M. Zehfus %T Continuous compact protein domains %J Proteins %V 1 %D 1987 %P 90-110 %A M. Zehfus %A G.D. Rose %T Compact units in proteins %J Biochemistry %V 25 %P 5759-5765 %D 1986 %A C. Zelwer %A J.L. Risler %A S. Brunie %T Crystal structure of \f2Escherichia coli\f1 methionyl-tRNA synthetase at 2.5\(Ao resolution %J J. Mol. Biol. %V 155 %P 63-81 %D 1982 %K 0MTS %A D. Zhang %A I. Botos %A F.-X. Gomis-R\(:uth %A R. Doll %A C. Blood %A F.G. Njoroge %A J.W. Fox %A W. Bode %A E.F. Meyer %T Structural interaction of natural and synthetic inhibitors with the venom metalloprtoeinase, atrolysin C (form d) %J Proc. Natl. Acad. Sci. USA %V 91 %P 8447-8451 %D 1994 %A J. Zhang %A L.S. Cousens %A P.J. Barr %A S.R. Sprang %T Three-dimensional structure of human basic fibroblast growth factor, a structural homolog of interleukin 1\(*b %J Proc. Natl. Acad. Sci. USA %V 88 %P 3446-3450 %D 1991 %K PNAS %A K.Y.J. Zhang %A D. Eisenberg %T The three-dimensional profile method using residue preference as a continuous function of residue environment %J Prot. Sci. %V 3 %P 687-695 %D 1994 %A R.-G. Zhang %A A. Joachimiak %A C.L. Lawson %A R.W. Schevitz %A Z. Otwinowski %A P.B. Sigler %T The crystal structure of \f2trp\f1 aporepressor at 1.8\(Ao shows how binding tryptophan enhances DNA affinity %J Nature %V 327 %P 591-597 %D 1987 %K 3WRP %A X.-J. Zhang %A W.A. Baase %A B.W. Matthews %T Toward a simplification of the protein folding problem: A stabilizing polyalanine \(*a-helix engineered in T4 lysozyme %J Biochemistry %V 30 %P 2012-? %D 1991 %K 1L44 1L45 1L46 1L47 1L48 1L49 1L50 1L51 1L52 1L53 1L54 1L55 1L56 1L57 1L58 1L59 1L60 1L61 1L62 1L63 1L64 1L65 1L66 1L67 1L68 1L69 1L70 1L71 1L72 1L38 1L39 1L40 1L41 1L42 1L43 1L73 1L74 1L75 1L76 PDB1L36 %A B. Zhao %A E. Winborne %A M.D. Minnich %A J.S. Culp %A C. Debouck %A S.S. Abdel-Meguid %T Three-dimensional structure of a simian immunodeficiency virus protease/inhibitor complex: Implications for the design of human immunodeficiency virus type 1 and 2 protease inhibitors %J Biochemistry %V 32 %P 13054-13060 %D 1993 %A L.S. Zhigis %A I.A. Stoyachenko %A B.Z. Cherches %A P.D. Reshetov %A A.S. Khokhlov %T Actinoxanthin: VII. determination of the positions of the disulfide bonds %J Sov. J. Bioorg. Chem. (English trans.) %V 2 %P 366-? %D 1976 %K 1ACX %A L. Zhong %A W.C. Johnson,\0Jr. %T Environment affects amino acid preference for secondary structure %J Proc. Natl. Acad. Sci. USA %V 89 %P 4462-4465 %D 1992 %A D.W. Banner %A A. D'Arcy %A W. Janes %A R. Gentz %A H.-J. Schoenfeld %A C. Broger %A H. Loetscher %A W. Lesslauer %T Crystal structure of the soluble human 55kD TNF receptor\(em human TNF\(*b complex: Implications for TNF receptor activation %J Cell %V 73 %P 431-445 %D 1993 %A M.-M. Zhou %A K.S. Ravichandran %A E.T. Olejniczak %A A.M. Petros %A R.P. Meadows %A M. Sattler %A J.E. Harlan %A W.S. Wade %A S.J. Burakoff %A S.W. Fesik %T Structure and ligand recognition of the phosphotyrosine binding domain of Shc %J Nature %V 378 %P 584-591 %D 1995 %A Q.-Y. Zhou %A D.K. Grundy %A L. Thambi %A J.A. Kushner %A H.H.M. van\0Tol %A R. Cone %A D. Pribnow %A J. Salon %A J.R. Bunzow %A O. Civelli %T Cloning and expression of human and rat D\d\s-21\s0\u dopamine receptors %J Nature %V 347 %D 1990 %P 76-80 %A L. Zhu %A S.K. Weller %T The six conserved helicase motifs of the UL5 gene product, a component of the herpes simplex virus type 1 helicase-primase, are essential for its function %J J. Virol. %V 66 %P 469-479 %D 1992 %A L. Pearl %T Similarity of active-site structures %J Nature %V 362 %P 24 %D 1993 %A X. Zhu %A H. Komiya %A A. Chirono %A S. Faham %A G.M. Fox %A T. Arakawa %A B.T. Hsu %A D.C. Rees %T Three-dimensional structures of acidic and basic fibroblast growth factors %J Science %V 251 %P 90-93 %D 1991 %A Z. Zhu %A A. \(Svali %A T.L. Blundell %T A variable gap penalty function and feature weights for protein 3-D structure comparisons %J Prot. Eng. %V 5 %P 43-51 %D 1992 %K COMPARER Sali %A J.S. Zigler %A J. Goosey %T Ageing of protein molecules: lens crystallins as a model system %J Trends Biochem. Sci. %V 6 %P 133-136 %D 1981 %K TIBS %A B.H. Zimm %A J.K. Bragg %T Theory of the one-dimensional phase transition in polypeptide chain %J J. Chem. Phys. %P 1246-1248 %V 28 %D 1958 %A B.H. Zimm %A J.K. Bragg %T Theory of the phase transition between helix and random coils in polypeptide chains %J J. Chem. Phys. %V 31 %P 526-535 %D 1959 %A E. Zuckerlandl %A L. Pauling %T Molecules as documents of evolutionary history %J J. Theor. Biol. %V 8 %P 357-366 %D 1965 %A F. Zuelli %A H. Weber %A H. Zuber %T Nucleotide sequences of lactate dehydrogenase genes from the thermophilic bacteria \f2Bacillus stearothermophilus\f1, \f2B. caldolyticus\f1 and \f2B. caldotenax\f1 %J Hoppe-Seyler's Z. Physiol. Chem. %V 368 %P 1167-? %D 1987 %K 1LDB %A E.R.P. Zuiderweg %A J. Henkin %A K.W. Mollison %A G.W. Carter %A J. Greer %T Comparison of model and nuclear magnetic resonance structures for the human inflammatory protein C5a %J Proteins %V 3 %P 139-145 %D 1988 %A M. Zuker %T Suboptimal sequence alignment in molecular biology: Alignment with error analysis %J J. Mol. Biol. %V 221 %P 403-420 %D 1991 %A A. Musacchio %A M. Noble %A R. Pauptit %A R. Wierenga %A M. Saraste %T Crystal structure of a Src-homology s (SH3) domain %J Nature %V 359 %P 851-855 %D 1992 %A M. Zuker %A R.L. Somorjai %T The alignment of protein structures in three-dimensions %J Bull. Math. Biol. %P 55-78 %V 51 %D 1989 %A M.J.J.M. Zvelebil %A C.R. Wolf %A M.J.E. Sternberg %T A predicted three-dimensional structure of human cytochrome \f2p\f1450: implications for substrate specificity %J Prot. Eng. %V 4 %P 271-282 %D 1991 %A M.J. Zvelebil %A G.J. Barton %A W.R. Taylor %A M.J.E. Sternberg %T Prediction of protein secondary structure and active sites using the alignment of homologous sequences %J J. Mol. Biol. %V 195 %D 1987 %P 957-961 %K catalytic residues conservation %A M.J. Zvelebil %A M.J.E. Sternberg %T Analysis and prediction of the location of catalytic residues in enzymes %J Prot. Eng. %V 2 %D 1988 %P 127-138 %K metal-binding conservation %A R. Zwanzig %A A. Szabo %A B. Bagchi %T Levinthal's paradox %J Proc. Natl. Acad. Sci. USA %V 89 %P 20-22 %D 1992 %A A. \(Aoberg %A P. Nordlund %A H. Eklund %T Unusual clustering of carboxyl side chains in the core of iron-free ribonucleotide reductase %J Nature %V 361 %P 276-278 %D 1993 %K Aberg %A J. \(Aoqvist %A C. Medina %A J.-E. Samuelsson %T A new method for predicting binding affinity in computer-aided drug design %J Prot. Eng. %V 7 %P 385-391 %D 1994 %A J. \(Aoqvust %A H. Luecke %A F.A. Quiocho %A A. Warshel %T Dipoles localized at helix termini of proteins stabilize charges %J Proc. Natl. Acad. Sci. USA %V 88 %P 2026-2030 %D 1991 %A A. \(Svali %A T.L. Blundell %T Definition of general topological equivalence in protein structures: a procedure involving comparison of properties and relationships through simulated annealing and dynamic programming %J J. Mol. Biol. %V 212 %D 1990 %P 403-428 %K alignment COMPARER structure sequence dynamic programming Sali %A A. \(Svali %A J.P. Overington %A M.S. Johnson %A T.L. Blundell %T From comparisons of protein sequences and structures to protein modelling and design %J Trends Biochem. Sci. %V 15 %D 1990 %P 235-240 %K TIBS %A A. \(Svali %A J.P. Overington %A M.S. Johnson %A T.L. Blundell %T From modelling homologous proteins to prediction of structure %B Computer Modelling of Biomolecular Processes %E J.M. Goodfellow and D.S. Moss %I Ellis Horwood %C Chichester %P 231-245 %D 1992 %K Sali %A A. \(Svali %A B. Veerapandian %A J.B. Cooper %A S.I. Foundling %A D.J. Hoover %A T.L. Blundell %T High resolution X-ray diffraction study of the complex between endothiapepsin and an oligopeptide inhibitor: an analysis of the inhibitor binding and description of the rigid body shift in the enzyme %J EMBO J. %V 8 %D 1989 %P 2179-2188 %K Sali %A A. \(Svali %A B. Veerapandian %A J.B. Cooper %A D.S. Moss %A T. Hofmann %A T.L. Blundell %T Domain flexibility in aspartic proteinases %J Proteins %V 12 %P 158-172 %D 1992 %K Sali %A D.L. Gerloff %A T.F. Jenny %A L.J. Knecht %A G.H. Gonnert %A S.A. Benner %T The nitrogenase MoFe protein: A secondary structure prediction %J FEBS Letts. %V 318 %P 118-124 %D 1993 %A D. \(Svali %A M. Bycroft %A A.R. Fersht %T Stabilization of protein structure by interaction of \(*a-helix dipole with a charged side chain %J Nature %V 335 %D 1988 %P 740-743 %K stability Sali %A D. \(Svali %A M. Bycroft %A A.R. Fersht %T Stabilization of barnase by an interaction between two oppositely charged side chains %B Techniques in protein chemistry %P 295-303 %E J.J. Villafranca %D 1991 %I Academic Press %C San Diego %A D. \(Svali %A M. Bycroft %A A.R. Fersht %T Surface electrostatic interactions contribute little to stability of barnase %J J. Mol. Biol. %V 220 %P 779-788 %D 1991 %A A. \(vSali %A R. Matsumoto %A H.P. McNeil %A M. Karplus %A R.L. Stevens %T Three-dimensional models of four mouse mast cell chymases %J J. Biol. Chem. %V 268 %P 9023-9034 %D 1993 %K Sali %A A. \(vSali %A J.P. Overington %T Derivation of rules for comparative protein modelling from a database of protein structure alignments %J Prot. Sci. %V 3 %P 1582-1596 %D 1994 %A A. \(vSali %A E. Shakhnovich %A M. Karplus %T How does a protein fold ? %J Nature %V 369 %P 248-251 %D 1994