

    
      
          
            
  
MDT

MDT is a module for protein structure analysis.
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Introduction

MDT prepares a raw frequency table, given information from MODELLER
alignments and/or PDB files. It can also process the raw frequency table in
several ways (e.g., normalization with Table.normalize(), smoothing with
Table.smooth(), perform entropy calculations with
Table.entropy_full(), and write out the data in various formats,
including for plotting by ASGL
(Table.write_asgl()) and use as restraints by MODELLER.

More precisely, MDT uses a sample of sequences, structures, and/or
alignments to construct a table N(a,b,c,…,d) for features a, b, c, …, d.
The sample for generating the frequencies N is obtained depending on the type
of features a, b, c, …, d. The sample can contain individual proteins, pairs
of proteins, pairs of residues in proteins, pairs of aligned residues, pairs
of aligned pairs of residues, chemical bonds, angles, dihedral angles, and
pairs of tuples of atoms. Some features work with triple alignments, too.
All the needed features a, b, c, …, d are calculated automatically from the
sequences, alignments, and/or PDB files. The feature bins are defined by the
user when each feature is created.


MDT features

A ‘feature’ in MDT is simply some binnable property of your input alignment.
Example features include the
residue type,
chi1
and Phi dihedral angles,
sequence identity between two sequences,
X-ray resolution,
atom-atom distances,
atom type, and
bond length.

MDT understands that different features act on different sets of proteins,
or parts of proteins, and will automatically scan over the correct range to
collect necessary statistics (e.g. when you call Table.add_alignment()).
For example, to collect statistics for the residue type feature, it is
necessary to scan all residues in all proteins in the alignment. The
X-ray resolution feature, on the other hand, only requires each protein
in the alignment to be scanned, not each residue.
The atom-atom distance feature requires scanning over all pairs of atoms in
all proteins in the alignment, while the sequence identity feature requires
scanning all pairs of proteins in the alignment. If you construct a table of
multiple features, the most fine-grained of the features determines the scan -
for example, a table of X-ray resolution against Φ dihedral would require
a scan of all residues.
See the scan types table for all of the scan types.

When choosing which proteins to scan, MDT also considers the features. It
will scan each protein individually, all pairs of proteins, or all triples of
proteins. The latter two scans only happen if you have features in your table
that require multiple proteins (e.g.
protein pair or
aligned residue
features) or you have single-protein features such as
protein or residue features
but you have asked to evaluate them on the second or third protein (by setting
the protein argument to 1 or 2 rather than the default 0).

MDT also knows that some
residue pair or
atom pair features are symmetric,
and will perform a non-redundant scan in this case. If, however, any feature
in the table is asymmetric, a full scan is performed. If in doubt, you can query
Table.symmetric to see whether
a symmetric scan will be performed for the current set of features.
(Currently, any tuple pair
feature in your table forces a full scan.)

The feature bins determine how to convert a feature value into a frequency
table.
For most feature types, you can specify how many bins to use, and their value
ranges - see Specification of bins for more information. The last bin
is always reserved as an ‘undefined’ bin, for values that don’t fall into
any other bin 1.

(Some features are predetermined by the setup of the system - for
example, the residue type
feature always has 22 bins - 20 for the standard amino acids, 1 for gaps in
the alignment, and 1 for undefined.)







	Type

	Example feature





	Protein

	features.XRayResolution



	Residue 2

	features.Chi1Dihedral



	Residue pair 2 3

	features.ResidueIndexDifference



	Atom

	features.AtomType



	Atom pair 3

	features.AtomDistance



	Atom tuple

	features.TupleType



	Atom tuple pair

	features.TupleDistance



	Chemical bond

	features.BondType



	Chemical angle

	features.Angle



	Chemical dihedral angle

	features.Dihedral









Dependent and independent features

An MDT Table object is simply a table of
counts N(a,b,c,…,d) for features a, b, c, …, d. However, this is often used
to generate a conditional PDF, p(x,y,…,z | a,b,…,c) for independent features
a, b, …, c and dependent features x, y, …, z. By convention in MDT the
dependent features are the last or rightmost features in the table, and so
methods which are designed to deal with PDFs such as
Table.smooth(), Table.super_smooth(),
Table.normalize(), Table.offset_min(), Table.close()
expect the dependent features to be the last features. If necessary you can
reorder the features using Table.reshape() or Table.integrate().




Specification of bins

Most features take a bins argument when they are created,
which specifies the bin ranges. This is simply a list of (start, end, symbol)
triples, which specify the feature range for each bin, and the symbol to refer
to it by. For example, the following creates an
X-ray resolution feature,
with 4 bins, the first for 0.51-1.4 Å,
the second for 1.4-1.6 Å, and so on. Anything below 0.51 Å or
2.0 Å or above (or an undefined value) will be placed into a fifth
‘undefined’ bin.

xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 1.4, "<1.4"),
                                               (1.4,  1.6, "1.4-1.6"),
                                               (1.6,  1.8, "1.6-1.8"),
                                               (1.8,  2.0, "1.8-2.0")])






Note

Bin ranges in MDT are half-closed, i.e. a feature value must be greater
than or equal to the lower value of the range, and less than the upper
value, to be counted in the bin. For example, in the case above,
1.0 Å would be placed into the first bin, and 1.4 Å
into the second. (If you define bins with overlapping ranges, values
will be placed into the first bin that matches.)



In most cases, a set of bins of equal width is desired, and it is
tedious to specify these by hand. A utility function
uniform_bins() is provided, which takes
three arguments - the number of bins, the lower range of the first bin,
and the width of each bin - and creates a set of bins; all bins are of the
same size and follow after the first bin. For example, the following bins the
atom-atom distance feature into 60 bins,
each 0.5 Å wide, with the first bin starting at 0 Å.
The first bin is thus 0-0.5 Å, the second 0.5-1.0 Å, and so
on, up to bin 60 which is 29.5-30.0 Å. The additional ‘undefined’
bin thus counts anything below 0 Å, greater than or equal to
30.0 Å, or which could not be calculated for some reason.

atdist = mdt.features.AtomDistance(mlib, bins=mdt.uniform_bins(60, 0, 0.5))








Storage for bin data

By default, when a table is created in MDT it uses double precision floating
point to store the counts. This allows large counts themselves to be accurately
scored, and can also store floating point data such as PDFs. However, for
very large tables, this may use a prohibitive amount of memory. Therefore, it
is possible to change the data type used to store bin data, by specifying
the bin_type parameter when creating a
Table object. The same parameter can be
given to Table.copy(), to make a copy
of the table using a different data type for its storage. Note that other
data types use less storage, but can also store a smaller range of counts.
For example, the UnsignedInt8
data type uses only a single byte for each bin, but can only store integer
counts between 0 and 255 (floating point values, or values outside of this
range, will be truncated). MDT uses double precision floating point for all
internal operations, but any storage of bin values uses the user-selected
bin type. Thus you should be careful not to use an inappropriate bin type -
for example, don’t use an integer bin type if you are planning to store PDFs
or perform normalization, smoothing, etc.

Footnotes


	1

	You can, however, remove the ‘undefined’ bin using
Table.reshape() or by using the ‘shape’ argument when you create
the Table object.



	2(1,2)

	Residue and residue pair scans are also used for
‘one atom per residue’ features, such as
features.ResidueDistance, which is the distance between the
‘special atom’ in two residues. This special atom is usually
Cα, but can be overridden by specifying the
distance_atoms parameter when creating the
Library object.



	3(1,2)

	When looking at pairs of atoms or residues, it is useful to
extract information about the ‘other’ atom or residue in the pair. This
other atom or residue is termed ‘pos2’ in MDT, and can be asked for when
creating the feature. For example, when building a table of atom-atom
distances (features.AtomDistance) it may be useful to tabulate
it against the atom types of both the first and second atom. This is
done by also using two copies of the AtomType,
the second with pos2=True.











          

      

      

    

  

    
      
          
            
  
Usage

MDT is simply a Python extension module, and as such can be used in
combination with other Python modules, such as MODELLER or the Python
standard library.


Running pre-built binaries

The easiest way to use MDT is to install the pre-built binary RPM for your
variety of Linux (this will first require you to install the Modeller RPM).
Then you should simply be able to run an MDT script foo.py just like
any regular Python script with a command similar to:

python foo.py





In the Sali lab, MDT is built as part of the nightly build system at the
same time as MODELLER. Thus you can set up your system to run MDT scripts
by running:

module load modeller








Using with Anaconda Python

There is an MDT package available for Anaconda Python [https://store.continuum.io/cshop/anaconda/] for Mac and Linux.
To install it, simply run:

conda install -c salilab mdt








Using a Homebrew package

If you are using a Mac with homebrew [https://brew.sh] you can
get MDT by running in a terminal window:

brew tap salilab/salilab; brew install mdt





If you don’t already have Modeller installed, you can get it by running
brew install modeller before you install MDT.

Add –with-python3 to the end of each brew install command if you also
want to use Python 3.




Compilation from source code

The MDT source code can be downloaded from
GitHub [https://github.com/salilab/mdt/].

Install dependent packages needed for MDT: MODELLER, glib, SWIG,
pkg-config, and HDF5:


	MODELLER 9.15 or later is required.


	glib 2.4 or later is required. It is available as pre-built packages for most
modern Linux distributions; there is also a MacPorts package for Mac users.


	SWIG 1.3.39 or later is required.


	Unfortunately HDF5 only works if you use the exact same version that is
used by MODELLER. See the MODELLER ChangeLog for the version to use.




To compile, run scons in the same directory (and optionally scons test)
to build (and test) MDT. This will produce a script bin/mdtpy.sh
which can be used to run an MDT Python script foo.py:

bin/mdtpy.sh python foo.py






Note

If you didn’t use the RPM or Debian package to install Modeller then you
will need to tell MDT where it can find Modeller. To do this, create a file
called config.py, and in it set the modeller Python variable to
the directory where you have MODELLER installed (on a Mac, this would look
like modeller=”/Library/modeller-XXX” where XXX is the Modeller version).

If you installed any of the prerequisites in non-standard locations (i.e.
not /usr/include for glib and HDF5, and not /usr/bin for pkg-config
or SWIG) you will also need to tell scons where to find them. Add similar
lines to config.py to set path for pkg-config and SWIG
and includepath for glib and HDF5 (e.g. path=”/opt/local/bin”
and includepath=”/opt/local/include” on a Mac).



If you want to install MDT, run scons install. You can additionally specify
a prefix option (or set it in config.py) to install in a different
directory. For example, scons prefix=/foo install will install MDT in
the /foo directory.




Example MDT script

Generally speaking, to use MDT, you should



	Create a Library object.


	Read any necessary additional files into the library, such as the
definitions of chemical bonds (see Chemical bonds for an example),
or atom tuples.


	Define one or more features, which are classes in the mdt.features
module.


	Create one or more Table objects, using a selection of the
features you added to the Library, to hold the frequency tables
themselves.


	Collect statistics into the table using methods such as
Table.add_alignment().


	Post process (e.g. smoothing,
normalizing),
plot the data, or
write the table to a file.







A simple example, which simply collects the distribution of residue types in
a PDB file, is shown below:

import modeller
import mdt
import mdt.features

# Setup of Modeller and MDT system
env = modeller.environ()
mlib = mdt.Library(env)

# Creation of feature types
restyp = mdt.features.ResidueType(mlib)

# Create a 1D table of residue type
table = mdt.Table(mlib, features=restyp)

# Read in a PDB file and make an alignment of just this one structure
mdl = modeller.model(env, file='5fd1')
aln = modeller.alignment(env)
aln.append_model(mdl, align_codes='5fd1', atom_files='5fd1')

# Collect MDT statistics for this alignment
table.add_alignment(aln)

# Print out the MDT by treating it as a Python list
print "Distribution of residue types:"
print [bin for bin in table]





For more applied examples, see Sample studies with MDT.







          

      

      

    

  

    
      
          
            
  
Sample studies with MDT


Introduction

This section describes the use of MDT for updating many of the
MODELLER restraint libraries, including stereochemical, non-bonded, and
homology-derived restraints:



	Stereochemical restraints


	chemical bonds: p(Bond | BondType)


	chemical angles: p(Angle | AngleType)


	improper dihedral angles as defined in the CHARMM residue
topology file: p(Dihedral | DihedralType)


	chemical angles: p(Angle | AngleType)


	the ω dihedral angle of the peptide bond:
p(ω | ResidueType+1) where ResidueType+1 refers to the residue type
following the residue with the ω dihedral angle


	the Φ and Ψ dihedral angles:
p(Φ | ResidueType), p(Ψ | ResidueType)


	the sidechain dihedral angles:
p(χ1 | ResidueType), p(χ2 | ResidueType), p(χ3 | ResidueType),
p(χ4 | ResidueType)


	the mainchain conformation:
p(Φ, Ψ | ResidueType)






	Non-bonded restraints


	the mainchain hydrogen bonding restraints:
p(h | d, a)


	the non-bonded pair of atom triplets:
p(d, α1, α2, θ1, θ2, θ3 | t1, t2)






	Homology-derived restraints


	distance: p(d | d’)











The following sections will outline the process of starting with the Protein
Data Bank (PDB) and ending up with the MODELLER restraint
library files. We will describe the rationale for the process, input data sets,
programs and scripts used, and even the analysis of the results. All of the
input files should be found in the MDT distribution, in the
constr2005 directory.

The overall approach is to construct appropriately accurate, smooth, and
transformed surfaces based on the statistics in PDB for use as spatial
restraints for model building. The restraints from the first iteration will be
used to construct many models, which in turn will be used to re-derive the
equivalent restraints from the models. These model-derived restraints will
then be compared against the original PDB-derived restraints to find
problems and get indications as to how to change the restraints so that
models are statistically as similar to PDB structures as possible.




Stereochemical restraints


The sample

The starting point for deriving the restraints in this section consists of
9,365 chains that are representative of the 65,629 chains in the October 2005
version of PDB. The representative set was obtained by clustering all PDB
chains with MODELLER, such that the representative chains are from 30 to
3000 residues in length and are sharing less than 60% sequence identity to
each other (or are more than 30 residues different in length). This
is the corresponding MODELLER script:

from modeller import *
import re

log.verbose()
env = environ()
sdb = sequence_db(env, seq_database_file='pdball.pir',
                  seq_database_format='PIR',
                  chains_list='ALL', minmax_db_seq_len=(30, 3000),
                  clean_sequences=True)
sdb.filter(rr_file='${LIB}/blosum62.sim.mat', gap_penalties_1d=(-500, -50),
           matrix_offset = -450, max_diff_res=30, seqid_cut=60,
           output_grp_file='pdb_60.grp', output_cod_file='pdb_60.cod')

# Make pdb_60.pir file by copying every sequence listed in pdb_60.cod
# from pdball.pir:
out = file("pdb_60.pir", "w")
codes = [line.rstrip('\r\n') for line in file("pdb_60.cod")]
codes = dict.fromkeys(codes)

pirhead = re.compile(">P1;(.*)$")
printline = False
for line in file("pdball.pir"):
    m = pirhead.match(line)
    if m:
        printline = m.group(1) in codes
    if printline:
        out.write(line)





The actual chains for restraint derivation are in fact a subset of the 9,365
representative chains, corresponding to the 4,532 crystallographic structures
determined at least at 2 Å resolution (the representative structure for
each group is the highest resolution x-ray structure in the group). This
decision was made by looking at the distribution of the
χ1 dihedral angles as a function of resolution
(see Sidechain dihedral angle χ1) and the distribution of resolutions themselves
for all 9,365 representative chains, using this MDT script:

from modeller import *
import mdt
import mdt.features

env = environ()
log.minimal()
env.io.atom_files_directory = ['/salilab/park2/database/pdb/divided/']

mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=mdt.uniform_bins(20, 0, 0.2))
m = mdt.Table(mlib, features=xray)

a = alignment(env)
f = modfile.File('../cluster-PDB/pdb_60.pir', 'r')
while a.read_one(f):
    m.add_alignment(a)

m.write('mdt2.mdt')





This script creates a Library object and then adds an X-ray
resolution feature. Values of this feature are placed into 20 bins of width 0.2,
starting at 0. It then creates a
Table object, which is the MDT table itself.
This starts off as an empty 1D table of the X-ray
resolution feature. It then uses a MODELLER alignment object to read the
sequences from pdb_60.pir one by one, and for each one it
updates the X-ray resolution feature in the MDT table by calling
Table.add_alignment(). Finally,
the table is written out to the file mdt2.mdt using
Table.write().

The resulting MDT table mdt2.mdt was then
plotted with the script:

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=mdt.uniform_bins(20, 0, 0.2))

m = mdt.Table(mlib, file='mdt2.mdt')

text = """
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999, WORLD_WINDOW = -999 -999 -999 -999
"""
m.write_asgl(asglroot='asgl2-a', plots_per_page=8, dimensions=1,
             plot_position=1, every_x_numbered=2, text=text, x_decimal=1)

os.system("asgl asgl2-a")
os.system("ps2pdf asgl2-a.ps")





where the Table.write_asgl()
method writes out an ASGL script and the MDT data in a form suitable for
plotting (which we then execute with ASGL using Python’s
os.system() method). This gives an
impact of resolution plot.




Chemical bonds

The MDT table is constructed with the following MDT Python script:

from modeller import *
import mdt
import mdt.features

env = environ()
log.minimal()
env.io.atom_files_directory = ['/salilab/park2/database/pdb/divided/']

mlib = mdt.Library(env)

# read the bond definitions in terms of the constituting atom type pairs:
mlib.bond_classes.read('${LIB}/bndgrp.lib')

# define the features:
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
bond_type = mdt.features.BondType(mlib)
bond_length = mdt.features.BondLength(mlib,
                                      bins=mdt.uniform_bins(400, 1.0, 0.0025))

m = mdt.Table(mlib, features=(xray, bond_type, bond_length))

# make the MDT table using the pdb_60 sample chains:
a = alignment(env)
f = modfile.File('../cluster-PDB/pdb_60.pir', 'r')
while a.read_one(f):
    m.add_alignment(a)

# write out the MDT table:
m.write('mdt.mdt')





In this case, we read the file bndgrp.lib which defines all
chemical bonds, using the BondClasses.read() method. The
MDT we then construct is a 3D table of X-ray resolution, bond type, and bond
length. The contents of the MDT table are then plotted with ASGL as follows:

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
mlib.bond_classes.read('${LIB}/bndgrp.lib')
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
bond_type = mdt.features.BondType(mlib)
bond_length = mdt.features.BondLength(mlib,
                                      bins=mdt.uniform_bins(400, 1.0, 0.0025))

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, bond_type, bond_length),
              offset=(0,0,0), shape=(1,-1,-1))

text = """
SET X_LABEL_STYLE = 2, X_TICK_LABEL = -999 -999
SET X_TICK = -999 -999 -999
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
SET NO_XY_SCOLUMNS = 1 1, XY_SCOLUMNS = 2 1
FILL_COLUMN COLUMN = 2, COLUMN_PARAMETERS = 1. 0.0025
SET BAR_XSHIFT = 0.00125
ZOOM SCALE_WORLDX = 0.08
"""
m.write_asgl(asglroot='asgl1-a', plots_per_page=8, dimensions=1,
             plot_position=1, every_x_numbered=999, text=text, x_decimal=0)

os.system("asgl asgl1-a")
os.system("ps2pdf asgl1-a.ps")





giving a set of bond plots.
Notice that here we use the Table.reshape() method,
which can reshape a table by reordering the features, and/or reducing the bin
ranges (offset or shape) of these features. In this case we don’t change the
feature order, or the offset (leaving it at the default 0,0,0) but we do
change the shape. The first feature is restricted to only one bin - because
our X-ray resolution feature contains only two bins (for “less than
2 Å” and the undefined bin, which catches everything 2 Å or
greater) this keeps only the good structures
for our plot. The other two features have their bin ranges reduced by 1
(a negative value for shape means “reduce the size by this amount”),
which effectively removes the final (“undefined”) bin.

Inspection of the plots shows that all distributions are mono-modal, but most
are distinctly non-Gaussian. However, at this point, Gaussian restraints are
still favored because the ranges are very narrow and because the non-Gaussian
shape of the histograms may result from the application of all the other
restraints (this supposition will be tested by deriving the corresponding
distributions from the models, not PDB structures). Also, although many
distributions are quite symmetrical, not all of them are. Therefore, there is
the question of how best to fit a restraint to the data. There are at least
three possibilities, in principle: (i) calculating the average and standard
deviation from all (subset) of the data, (ii) least-squares fitting of the
Gaussian model to the data, and (iii) using cubic splines of the data. The
first option was adopted here: the mean and standard deviation will be the
parameters of the analytically defined bond restraint for MODELLER.

The final MODELLER MDT library is produced with:

from modeller import *
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
mlib.bond_classes.read('${LIB}/bndgrp.lib')
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
bond_type = mdt.features.BondType(mlib)
bond_length = mdt.features.BondLength(mlib,
                                      bins=mdt.uniform_bins(400, 1.0, 0.0025))

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, bond_type, bond_length),
              offset=(0,0,0), shape=(0,-1,-1))

m = m.integrate(features=(bond_type, bond_length))

mdt.write_bondlib(file('bonds.py', 'w'), m, density_cutoff=0.1)





Here we use the Table.integrate()
method, which removes a feature from the table by integrating the remaining
features over all of that feature’s bins, and the
write_bondlib() function
to write out a MODELLER script which builds restraints using the MDT-derived
distributions.




Chemical angles

As for the bonds above, the MDT table is constructed with the following
MDT Python script:

from modeller import *
import mdt
import mdt.features

# See ../bonds/make_mdt.py for additional comments

env = environ()
log.minimal()
env.io.atom_files_directory = ['/salilab/park2/database/pdb/divided/']

mlib = mdt.Library(env)
mlib.angle_classes.read('${LIB}/anggrp.lib')
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
angle_type = mdt.features.AngleType(mlib)
angle = mdt.features.Angle(mlib, bins=mdt.uniform_bins(720, 0, 0.25))

m = mdt.Table(mlib, features=(xray, angle_type, angle))

a = alignment(env)
f = modfile.File('../cluster-PDB/pdb_60.pir', 'r')
while a.read_one(f):
    m.add_alignment(a)

m.write('mdt.mdt')





The contents of the MDT table are then plotted with ASGL as follows:

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
mlib.angle_classes.read('${LIB}/anggrp.lib')
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
angle_type = mdt.features.AngleType(mlib)
angle = mdt.features.Angle(mlib, bins=mdt.uniform_bins(720, 0, 0.25))

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, angle_type, angle),
              offset=(0,0,0), shape=(1,-1,-1))

text = """
SET X_LABEL_STYLE = 2, X_TICK_LABEL = -999 -999
SET X_TICK = -999 -999 -999
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
SET NO_XY_SCOLUMNS = 1 1, XY_SCOLUMNS = 2 1
FILL_COLUMN COLUMN = 2, COLUMN_PARAMETERS = 0. 0.25
SET BAR_XSHIFT = 0.125
ZOOM SCALE_WORLDX = 0.08
"""
m.write_asgl(asglroot='asgl1-a', plots_per_page=8, dimensions=1,
             plot_position=1, every_x_numbered=999, text=text, x_decimal=0)

os.system("asgl asgl1-a")
os.system("ps2pdf asgl1-a.ps")





giving a set of angle plots.

The situation is similar to that for the chemical bonds, except that there are
also four cases of bi-modal (as opposed to mono-modal) distributions:
Asp:CB:CG:OD2, Asp:OD2:CG,OD1, Pro:CB:CG:CD, and Pro:CD:N:CA angles. The Asp
bi-modal distribution may result from crystallographers mislabeling carboxyl
oxygens for the protonated state of the sidechain (which is interesting
because the corresponding angles might be used as a means to assign the
protonation state). The mean values for these angles were edited by hand.
Otherwise exactly the same considerations as for bonds apply here.

The final MODELLER MDT library is produced with:

from modeller import *
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
mlib.angle_classes.read('${LIB}/anggrp.lib')
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
angle_type = mdt.features.AngleType(mlib)
angle = mdt.features.Angle(mlib, bins=mdt.uniform_bins(720, 0, 0.25))

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, angle_type, angle),
              offset=(0,0,0), shape=(0,-1,-1))

m = m.integrate(features=(angle_type, angle))

mdt.write_anglelib(file('angles.py', 'w'), m, density_cutoff=0.1)








Improper dihedral angles

Exactly the same situation applies as for the chemical bonds.
The MDT table is constructed with the following MDT Python script:

from modeller import *
import mdt
import mdt.features

# See ../bonds/make_mdt.py for additional comments

env = environ()
log.minimal()
env.io.atom_files_directory = ['/salilab/park2/database/pdb/divided/']

mlib = mdt.Library(env)
mlib.dihedral_classes.read('${LIB}/impgrp.lib')
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
impr_type = mdt.features.DihedralType(mlib)
improper = mdt.features.Dihedral(mlib, bins=mdt.uniform_bins(400, 1.0, 0.0025))

m = mdt.Table(mlib, features=(xray, impr_type, improper))

a = alignment(env)
f = modfile.File('../cluster-PDB/pdb_60.pir', 'r')
while a.read_one(f):
    m.add_alignment(a)

m.write('mdt.mdt')





The contents of the MDT table are then plotted with ASGL as follows:

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
mlib.dihedral_classes.read('${LIB}/impgrp.lib')
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
impr_type = mdt.features.DihedralType(mlib)
improper = mdt.features.Dihedral(mlib, bins=mdt.uniform_bins(400, 1.0, 0.0025))

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, impr_type, improper),
              offset=(0,0,0), shape=(1,-1,-1))

text = """
SET X_LABEL_STYLE = 2, X_TICK_LABEL = -999 -999
SET X_TICK = -999 -999 -999
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
SET NO_XY_SCOLUMNS = 1 1, XY_SCOLUMNS = 2 1
FILL_COLUMN COLUMN = 2, COLUMN_PARAMETERS = -180. 0.5
SET BAR_XSHIFT = 0.25
ZOOM SCALE_WORLDX = 0.08
"""
m.write_asgl(asglroot='asgl1-a', plots_per_page=8, dimensions=1,
             plot_position=1, every_x_numbered=999, text=text, x_decimal=0)

os.system("asgl asgl1-a")
os.system("ps2pdf asgl1-a.ps")





giving
a set of improper plots.

The final MODELLER MDT library is produced with:

from modeller import *
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
mlib.dihedral_classes.read('${LIB}/impgrp.lib')
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
impr_type = mdt.features.DihedralType(mlib)
improper = mdt.features.Dihedral(mlib, bins=mdt.uniform_bins(400, 1.0, 0.0025))

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, impr_type, improper),
              offset=(0,0,0), shape=(1,-1,-1))

m = m.integrate(features=(impr_type, improper))

mdt.write_improperlib(file('impropers.py', 'w'), m, density_cutoff=0.1)








Sidechain dihedral angle χ1

The first question asked was “What is the impact of resolution on the
distributions of residue χ1?”. The answer was
obtained by constructing and inspecting
p(χ1 | R, resolution) with:

from modeller import *
import mdt
import mdt.features

env = environ()
log.minimal()
env.io.atom_files_directory = ['/salilab/park2/database/pdb/divided/']

mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 1.4, "under 1.4"),
                                               (1.4,  1.6, "1.4-1.6"),
                                               (1.6,  1.8, "1.6-1.8"),
                                               (1.8,  2.001, "1.8-2.0")])
restyp = mdt.features.ResidueType(mlib)
chi1 = mdt.features.Chi1Dihedral(mlib, bins=mdt.uniform_bins(144, -180, 2.5))

m = mdt.Table(mlib, features=(xray, restyp, chi1))

a = alignment(env)
f = modfile.File('../../cluster-PDB/pdb_60.pir', 'r')
while a.read_one(f):
    m.add_alignment(a)

m.write('mdt.mdt')





and

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 1.4, "under 1.4"),
                                               (1.4,  1.6, "1.4-1.6"),
                                               (1.6,  1.8, "1.6-1.8"),
                                               (1.8,  2.001, "1.8-2.0")])
restyp = mdt.features.ResidueType(mlib)
chi1 = mdt.features.Chi1Dihedral(mlib, bins=mdt.uniform_bins(144, -180, 2.5))


m = mdt.Table(mlib, file='mdt.mdt')
# Remove undefined bins (and gap residue type)
m = m.reshape(features=(xray, restyp, chi1), offset=m.offset, shape=(0,-2,-1))

text = """
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999, WORLD_WINDOW = -999 -999 -999 -999
"""
m.write_asgl(asglroot='asgl2-a', plots_per_page=8, dimensions=1,
             plot_position=1, every_x_numbered=20, text=text, x_decimal=1)

os.system("asgl asgl2-a")
os.system("ps2pdf asgl2-a.ps")





giving
this output
which clearly shows that X-ray structures at resolution of at least 2.0 Å
are just fine. X-ray structures above that resolution and NMR structures
(whose resolution is set artificially to 0.45 Å for the purposes of MDT
tabulation) do not appear to be suitable for deriving restraints for modeling,
as the peaks are significantly wider and there is a significant population
at ~120°. Also, the peaks appear Gaussian. Thus, a weighted sum of three
Gaussians (except for Pro, which has two) was judged to be an appropriate
model for these data. Again, the following script was used to construct the
MDT table:

from modeller import *
import mdt
import mdt.features

# See ../bonds/make_mdt.py for additional comments

env = environ()
log.minimal()
env.io.atom_files_directory = ['/salilab/park2/database/pdb/divided/']

mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
chi1 = mdt.features.Chi1Dihedral(mlib, bins=mdt.uniform_bins(144, -180, 2.5))

m = mdt.Table(mlib, features=(xray, restyp, chi1))

a = alignment(env)
f = modfile.File('../cluster-PDB/pdb_60.pir', 'r')
while a.read_one(f):
    m.add_alignment(a)

m.write('mdt.mdt')





and the contents then plotted with ASGL as follows:

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
chi1 = mdt.features.Chi1Dihedral(mlib, bins=mdt.uniform_bins(144, -180, 2.5))

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, restyp, chi1), offset=(0,0,0), shape=(1,-2,-1))

text = """
SET X_LABEL_STYLE = 2, X_TICK_LABEL = -999 -999
SET X_TICK = -999 -999 -999
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
SET NO_XY_SCOLUMNS = 1 1, XY_SCOLUMNS = 2 1
FILL_COLUMN COLUMN = 2, COLUMN_PARAMETERS = -180. 2.5
SET BAR_XSHIFT = 1.25
"""
m.write_asgl(asglroot='asgl1-a', plots_per_page=8, dimensions=1,
             plot_position=1, every_x_numbered=20, text=text, x_decimal=0)

os.system("asgl asgl1-a")
os.system("ps2pdf asgl1-a.ps")





giving a set of χ1 plots.

The weights, means, and standard deviations of the Gaussians were obtained
by least-squares fitting with ASGL (with the script below) and are manually
added to the MODELLER MDT library.

SET TICK_FONT = 13
SET BAR_GRAYNESS = 1.00
SET CAPTION_FONT = 12

# The parameters are initial guesses 
# (number of points, (weight, mean, standard deviation)_i; last weight missing),
# to help ASGL a little, but not important; just check the fitted curves
# against the data in fit.ps:
SET FIT_PARAM_INITIAL = 30000   0.3 175 10   0.3 -65 10   60  10
CALL ROUTINE = 'gauss3', FILE = 'c.dat', POSITION = 1 0, CAPTION_TEXT = 'C'
SET FIT_PARAM_INITIAL = 118000   0.3 175 10   0.3 -65 10   60  10
CALL ROUTINE = 'gauss3', FILE = 'd.dat', POSITION = 2 0, CAPTION_TEXT = 'D'
CALL ROUTINE = 'gauss3', FILE = 'e.dat', POSITION = 3 0, CAPTION_TEXT = 'E'
CALL ROUTINE = 'gauss3', FILE = 'f.dat', POSITION = 4 0, CAPTION_TEXT = 'F'
CALL ROUTINE = 'gauss3', FILE = 'h.dat', POSITION = 5 0, CAPTION_TEXT = 'H'
CALL ROUTINE = 'gauss3', FILE = 'i.dat', POSITION = 6 0, CAPTION_TEXT = 'I'
CALL ROUTINE = 'gauss3', FILE = 'k.dat', POSITION = 7 0, CAPTION_TEXT = 'K'
CALL ROUTINE = 'gauss3', FILE = 'l.dat', POSITION = 8 0, CAPTION_TEXT = 'L'
NEW_PAGE

SET FIT_PARAM_INITIAL =  45000   0.3 175 10   0.3 -65 10   60  10
CALL ROUTINE = 'gauss3', FILE = 'm.dat', POSITION = 1 0, CAPTION_TEXT = 'M'
SET FIT_PARAM_INITIAL = 88000   0.3 175 10   0.3 -65 10   60  10
CALL ROUTINE = 'gauss3', FILE = 'n.dat', POSITION = 2 0, CAPTION_TEXT = 'N'
# Pro has two peaks only, "gauss3' will still work as is:
SET FIT_PARAM_INITIAL = 95000   0.4 -30 7   0.4 40 7   0  5
CALL ROUTINE = 'gauss3', FILE = 'p.dat', POSITION = 3 0, CAPTION_TEXT = 'P'
SET FIT_PARAM_INITIAL = 76000   0.3 175 10   0.6 -65 20   62  10
CALL ROUTINE = 'gauss3', FILE = 'q.dat', POSITION = 4 0, CAPTION_TEXT = 'Q'
SET FIT_PARAM_INITIAL = 104000   0.3 175 10   0.6 -65 20   62  10
CALL ROUTINE = 'gauss3', FILE = 'r.dat', POSITION = 5 0, CAPTION_TEXT = 'R'
SET FIT_PARAM_INITIAL = 124000   0.3 175 10   0.6 -65 20   62  10
CALL ROUTINE = 'gauss3', FILE = 's.dat', POSITION = 6 0, CAPTION_TEXT = 'S'
SET FIT_PARAM_INITIAL = 112000   0.1 -175 10   0.5 -65 10   65  10
CALL ROUTINE = 'gauss3', FILE = 't.dat', POSITION = 7 0, CAPTION_TEXT = 'T'
SET FIT_PARAM_INITIAL = 147000   0.7 180 10   0.1 -65 10   65  10
CALL ROUTINE = 'gauss3', FILE = 'v.dat', POSITION = 8 0, CAPTION_TEXT = 'V'
NEW_PAGE

SET FIT_PARAM_INITIAL = 28000    0.2 175 10   0.5 -65 10   60  10
CALL ROUTINE = 'gauss3', FILE = 'w.dat', POSITION = 1 0, CAPTION_TEXT = 'W'
SET FIT_PARAM_INITIAL = 72000   0.2 175 10   0.7 -65 10   60  10
CALL ROUTINE = 'gauss3', FILE = 'y.dat', POSITION = 2 0, CAPTION_TEXT = 'Y'


SUBROUTINE ROUTINE = 'gauss3'

   READ_TABLE
   SET X_TICK = -180   10  180, X_TICK_LABEL =    1    6
   SET Y_TICK = -999 -999 -999, Y_TICK_LABEL = -999 -999
   SET XY_COLUMNS = 0 1
   # only to get 1, 2, 3, 4, 5, ... in column 2
   WORLD 
   # get the right X-axis from -180 to +180:
   TRANSFORM NO_XY_SCOLUMNS = 1 0, XY_SCOLUMNS = 2, ;
             TRF_TYPE = 'LINEAR', TRF_PARAMETERS = -181.25 2.5
   WORLD WORLD_WINDOW = -190 0 190 -999
   AXES2D
   RESET_CAPTIONS
   CAPTION CAPTION_POSITION 1
   CAPTION CAPTION_POSITION 2, CAPTION_TEXT '@c@_1_'
   CAPTION CAPTION_POSITION 3, CAPTION_TEXT 'FREQUENCY'
   HIST2D
   
   SET ERROR_COLUMN = 0
   SET FIT_MODEL = POLYGAUSS360
   # SET FIT_PARAM_INITIAL = 1639   0.3 175 10   0.3 -65 10   60  10
   SET FIT_PARAM_INDICES =  1 2 3 4 5 6 7 8 9
   FIT

   SMOOTH_TABLE SMOOTH_TYPE = 'SPLINE'
   PLOT2D PLOT2D_LINE_TYPE = 1, PLOT2D_SYMBOL_TYPE = 0

RETURN
END_SUBROUTINE








Sidechain dihedral angle χ2

The situation is very similar to that for χ1,
except that the shapes of histograms are not Gaussian in most cases.
Therefore, 1D cubic splines are used to represent the restraints.

The MDT table is constructed with the following MDT Python script:

from modeller import *
import mdt
import mdt.features

# See ../bonds/make_mdt.py for additional comments

env = environ()
log.minimal()
env.io.atom_files_directory = ['/salilab/park2/database/pdb/divided/']

mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
chi2 = mdt.features.Chi2Dihedral(mlib, bins=mdt.uniform_bins(144, -180, 2.5))

m = mdt.Table(mlib, features=(xray, restyp, chi2))

a = alignment(env)
f = modfile.File('../cluster-PDB/pdb_60.pir', 'r')
while a.read_one(f):
    m.add_alignment(a)

m.write('mdt.mdt')





The contents of the MDT table are then plotted with ASGL as follows:

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
chi2 = mdt.features.Chi2Dihedral(mlib, bins=mdt.uniform_bins(144, -180, 2.5))

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, restyp, chi2), offset=(0,0,0), shape=(1,-2,-1))

text = """
SET X_LABEL_STYLE = 2, X_TICK_LABEL = -999 -999
SET X_TICK = -999 -999 -999
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
SET NO_XY_SCOLUMNS = 1 1, XY_SCOLUMNS = 2 1
FILL_COLUMN COLUMN = 2, COLUMN_PARAMETERS = -180. 2.5
SET BAR_XSHIFT = 1.25
"""
m.write_asgl(asglroot='asgl1-a', plots_per_page=8, dimensions=1,
             plot_position=1, every_x_numbered=20, text=text, x_decimal=0)

os.system("asgl asgl1-a")
os.system("ps2pdf asgl1-a.ps")





giving a set of χ2 plots.

The final MODELLER MDT library is produced with:

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
chi2 = mdt.features.Chi2Dihedral(mlib, bins=mdt.uniform_bins(144, -180, 2.5))

m = mdt.Table(mlib, file='mdt.mdt')

# remove the bins corresponding to undefined values for each of the 3 variables:
m = m.reshape(features=(xray, restyp, chi2), offset=(0,0,0), shape=(1,-2,-1))

# Let's get rid of the resolution variable from the output MDT table:
m = m.integrate(features=(restyp, chi2))

# Process the raw histograms to get appropriate pdf 1D splines for restraints:

# Start by smoothing with a uniform prior (equal weight when 10 points per bin),
# producing a normalized distribution that sums to 1 (not a pdf when dx != 1):
m = m.smooth(dimensions=1, weight=10)

# Normalize it to get the true pdf (Integral p(x) dx = 1):
# (the scaling actually does not matter, because I am eventually taking the
#  log and subtracting the smallest element of the final pdf, so this command
#  could be omitted without impact):
m = m.normalize(to_pdf=True, dimensions=1, dx_dy=2.5, to_zero=True)

# Take the logarithm of the smoothed frequencies
# (this is safe: none of bins is 0 because of mdt.smooth()):
m = m.log_transform(offset=0., multiplier=1.)

# Reverse the sign:
m = m.linear_transform(offset=0., multiplier=-1.)

# Offset the final distribution so that the lowest value is at 0:
m = m.offset_min(dimensions=1)

mdt.write_splinelib(file("chi2.py", "w"), m, "chi2", density_cutoff=0.1)

text = """
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
"""
m.write_asgl(asglroot='modlib-a', plot_type='PLOT2D', every_x_numbered=20,
             text=text, dimensions=1, plot_position=1, plots_per_page=8)
os.system('asgl modlib-a')





This script also uses Table.smooth() to smooth the raw
frequencies and Table.normalize() to convert the
distribution into a PDF. It is then converted into a statistical potential
by taking the negative log of the values (using the
Table.log_transform(),
Table.linear_transform(), and
Table.offset_min() methods).
The smoothing parameter weight of 10 was selected by trial and error,
inspecting the resulting restraints in modlib-a.ps, also produced
by the script above.




Sidechain dihedral angle χ3

Exactly the same considerations apply as to χ2.
The MDT table is constructed with the following MDT Python script:

from modeller import *
import mdt
import mdt.features

# See ../bonds/make_mdt.py for additional comments

env = environ()
log.minimal()
env.io.atom_files_directory = ['/salilab/park2/database/pdb/divided/']

mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
chi3 = mdt.features.Chi3Dihedral(mlib, bins=mdt.uniform_bins(144, -180, 2.5))

m = mdt.Table(mlib, features=(xray, restyp, chi3))

a = alignment(env)
f = modfile.File('../cluster-PDB/pdb_60.pir', 'r')
while a.read_one(f):
    m.add_alignment(a)

m.write('mdt.mdt')





The contents of the MDT table are then plotted with ASGL as follows:

from modeller import *
import os
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
chi3 = mdt.features.Chi3Dihedral(mlib, bins=mdt.uniform_bins(144, -180, 2.5))

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, restyp, chi3), offset=(0,0,0), shape=(1,-2,-1))

text = """
SET X_LABEL_STYLE = 2, X_TICK_LABEL = -999 -999
SET X_TICK = -999 -999 -999
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
SET NO_XY_SCOLUMNS = 1 1, XY_SCOLUMNS = 2 1
FILL_COLUMN COLUMN = 2, COLUMN_PARAMETERS = -180. 2.5
SET BAR_XSHIFT = 1.25
"""
m.write_asgl(asglroot='asgl1-a', plots_per_page=8, dimensions=1,
             plot_position=1, every_x_numbered=20, text=text, x_decimal=0)

os.system("asgl asgl1-a")
os.system("ps2pdf asgl1-a.ps")





giving a set of χ3 plots.
The final MODELLER MDT library is produced with:

from modeller import *
import os
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
chi3 = mdt.features.Chi3Dihedral(mlib, bins=mdt.uniform_bins(144, -180, 2.5))

m = mdt.Table(mlib, file='mdt.mdt')

# remove the bins corresponding to undefined values for each of the 3 variables:
m = m.reshape(features=(xray, restyp, chi3), offset=(0,0,0), shape=(1,-2,-1))

# Let's get rid of the resolution variable from the output MDT table:
m = m.integrate(features=(restyp, chi3))

# Process the raw histograms to get appropriate pdf 1D splines for restraints:

# Start by smoothing with a uniform prior (equal weight when 10 points per bin),
# producing a normalized distribution that sums to 1 (not a pdf when dx != 1):
m = m.smooth(dimensions=1, weight=10)

# Normalize it to get the true pdf (Integral p(x) dx = 1):
# (the scaling actually does not matter, because I am eventually taking the
#  log and subtracting the smallest element of the final pdf, so this command
#  could be omitted without impact):
m = m.normalize(to_pdf=True, dimensions=1, dx_dy=2.5, to_zero=True)

# Take the logarithm of the smoothed frequencies
# (this is safe: none of bins is 0 because of mdt.smooth()):
m = m.log_transform(offset=0., multiplier=1.)

# Reverse the sign:
m = m.linear_transform(offset=0., multiplier=-1.)

# Offset the final distribution so that the lowest value is at 0:
m = m.offset_min(dimensions=1)

mdt.write_splinelib(file("chi3.py", "w"), m, "chi3", density_cutoff=0.1)

text = """
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
"""
m.write_asgl(asglroot='modlib-a', plot_type='PLOT2D', every_x_numbered=20,
             text=text, dimensions=1, plot_position=1, plots_per_page=8)
os.system('asgl modlib-a')





The resulting restraints are plotted in modlib-a.ps,
also produced by the script above.




Sidechain dihedral angle χ4

Exactly the same considerations apply as to χ2 and χ3. The MDT table is
constructed with the following MDT Python script:

from modeller import *
import mdt
import mdt.features

# See ../bonds/make_mdt.py for additional comments

env = environ()
log.minimal()
env.io.atom_files_directory = ['/salilab/park2/database/pdb/divided/']

mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
chi4 = mdt.features.Chi4Dihedral(mlib, bins=mdt.uniform_bins(144, -180, 2.5))

m = mdt.Table(mlib, features=(xray, restyp, chi4))

a = alignment(env)
f = modfile.File('../cluster-PDB/pdb_60.pir', 'r')
while a.read_one(f):
    m.add_alignment(a)

m.write('mdt.mdt')





The contents of the MDT table are then plotted with ASGL as follows:

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
chi4 = mdt.features.Chi4Dihedral(mlib, bins=mdt.uniform_bins(144, -180, 2.5))

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, restyp, chi4), offset=(0,0,0), shape=(1,-2,-1))

text = """
SET X_LABEL_STYLE = 2, X_TICK_LABEL = -999 -999
SET X_TICK = -999 -999 -999
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
SET NO_XY_SCOLUMNS = 1 1, XY_SCOLUMNS = 2 1
FILL_COLUMN COLUMN = 2, COLUMN_PARAMETERS = -180. 2.5
SET BAR_XSHIFT = 1.25
"""
m.write_asgl(asglroot='asgl1-a', plots_per_page=8, dimensions=1,
             plot_position=1, every_x_numbered=20, text=text, x_decimal=0)

os.system("asgl asgl1-a")
os.system("ps2pdf asgl1-a.ps")





giving a set of χ4 plots.
The final MODELLER MDT library is produced with:

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
chi4 = mdt.features.Chi4Dihedral(mlib, bins=mdt.uniform_bins(144, -180, 2.5))

m = mdt.Table(mlib, file='mdt.mdt')

# remove the bins corresponding to undefined values for each of the 3 variables:
m = m.reshape(features=(xray, restyp, chi4), offset=(0,0,0), shape=(1,-2,-1))

# Let's get rid of the resolution variable from the output MDT table:
m = m.integrate(features=(restyp, chi4))

# Process the raw histograms to get appropriate pdf 1D splines for restraints:

# Start by smoothing with a uniform prior (equal weight when 10 points per bin),
# producing a normalized distribution that sums to 1 (not a pdf when dx != 1):
m = m.smooth(dimensions=1, weight=10)

# Normalize it to get the true pdf (Integral p(x) dx = 1):
# (the scaling actually does not matter, because I am eventually taking the
#  log and subtracting the smallest element of the final pdf, so this command
#  could be omitted without impact):
m = m.normalize(to_pdf=True, dimensions=1, dx_dy=2.5, to_zero=True)

# Take the logarithm of the smoothed frequencies
# (this is safe: none of bins is 0 because of mdt.smooth()):
m = m.log_transform(offset=0., multiplier=1.)

# Reverse the sign:
m = m.linear_transform(offset=0., multiplier=-1.)

# Offset the final distribution so that the lowest value is at 0:
m = m.offset_min(dimensions=1)

mdt.write_splinelib(file("chi4.py", "w"), m, "chi4", density_cutoff=0.1)

text = """
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
"""
m.write_asgl(asglroot='modlib-a', plot_type='PLOT2D', every_x_numbered=20,
             text=text, dimensions=1, plot_position=1, plots_per_page=8)
os.system('asgl modlib-a')





The resulting restraints are plotted in modlib-a.ps,
also produced by the script above.




Mainchain dihedral angle Φ

Exactly the same considerations apply as to χ2, χ3, and χ4. The MDT
table is constructed with the following MDT Python script:

from modeller import *
import mdt
import mdt.features

# See ../bonds/make_mdt.py for additional comments

env = environ()
log.minimal()
env.io.atom_files_directory = ['/salilab/park2/database/pdb/divided/']

mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
phi = mdt.features.PhiDihedral(mlib, bins=mdt.uniform_bins(72, -180, 5.0))

m = mdt.Table(mlib, features=(xray, restyp, phi))

a = alignment(env)
f = modfile.File('../cluster-PDB/pdb_60.pir', 'r')
while a.read_one(f):
    m.add_alignment(a)

m.write('mdt.mdt')





The contents of the MDT table are then plotted with ASGL as follows:

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
phi = mdt.features.PhiDihedral(mlib, bins=mdt.uniform_bins(72, -180, 5.0))

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, restyp, phi), offset=(0,0,0), shape=(-1,-2,-1))

text = """
SET X_LABEL_STYLE = 2, X_TICK_LABEL = -999 -999
SET X_TICK = -999 -999 -999
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
SET NO_XY_SCOLUMNS = 1 1, XY_SCOLUMNS = 2 1
FILL_COLUMN COLUMN = 2, COLUMN_PARAMETERS = -180. 2.5
SET BAR_XSHIFT = 1.25
"""
m.write_asgl(asglroot='asgl1-a', plots_per_page=8, dimensions=1,
             plot_position=1, every_x_numbered=20, text=text, x_decimal=0)

os.system("asgl asgl1-a")
os.system("ps2pdf asgl1-a.ps")





giving a set of Φ plots.
The final MODELLER MDT library is produced with:

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
phi = mdt.features.PhiDihedral(mlib, bins=mdt.uniform_bins(72, -180, 5.0))

m = mdt.Table(mlib, file='mdt.mdt')

# remove the bins corresponding to undefined values for each of the 3 variables:
m = m.reshape(features=(xray, restyp, phi), offset=(0,0,0), shape=(-1,-2,-1))

# Let's get rid of the resolution variable from the output MDT table:
m = m.integrate(features=(restyp, phi))

# Process the raw histograms to get appropriate pdf 1D splines for restraints:

# Start by smoothing with a uniform prior (equal weight when 10 points per bin),
# producing a normalized distribution that sums to 1 (not a pdf when dx != 1):
m = m.smooth(dimensions=1, weight=10)

# Normalize it to get the true pdf (Integral p(x) dx = 1):
# (the scaling actually does not matter, because I am eventually taking the
#  log and subtracting the smallest element of the final pdf, so this command
#  could be omitted without impact):
m = m.normalize(to_pdf=True, dimensions=1, dx_dy=2.5, to_zero=True)

# Take the logarithm of the smoothed frequencies
# (this is safe: none of bins is 0 because of mdt.smooth()):
m = m.log_transform(offset=0., multiplier=1.)

# Reverse the sign:
m = m.linear_transform(offset=0., multiplier=-1.)

# Offset the final distribution so that the lowest value is at 0:
m = m.offset_min(dimensions=1)

mdt.write_splinelib(file("phi.py", "w"), m, "phi", density_cutoff=0.1)

text = """
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
"""
m.write_asgl(asglroot='modlib-a', plot_type='PLOT2D', every_x_numbered=20,
             text=text, dimensions=1, plot_position=1, plots_per_page=8)
os.system('asgl modlib-a')





The resulting restraints are plotted in modlib-a.ps,
also produced by the script above.




Mainchain dihedral angle Ψ

Exactly the same considerations apply as to χ2, χ3, χ4, and Φ.
The MDT table is constructed with the following MDT Python script:

from modeller import *
import mdt
import mdt.features

# See ../bonds/make_mdt.py for additional comments

env = environ()
log.minimal()
env.io.atom_files_directory = ['/salilab/park2/database/pdb/divided/']

mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
psi = mdt.features.PsiDihedral(mlib, bins=mdt.uniform_bins(72, -180, 5.0))

m = mdt.Table(mlib, features=(xray, restyp, psi))

a = alignment(env)
f = modfile.File('../cluster-PDB/pdb_60.pir', 'r')
while a.read_one(f):
    m.add_alignment(a)

m.write('mdt.mdt')





The contents of the MDT table are then plotted with ASGL as follows:

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
psi = mdt.features.PsiDihedral(mlib, bins=mdt.uniform_bins(72, -180, 5.0))

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, restyp, psi), offset=(0,0,0), shape=(-1,-2,-1))

text = """
SET X_LABEL_STYLE = 2, X_TICK_LABEL = -999 -999
SET X_TICK = -999 -999 -999
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
SET NO_XY_SCOLUMNS = 1 1, XY_SCOLUMNS = 2 1
FILL_COLUMN COLUMN = 2, COLUMN_PARAMETERS = -180. 2.5
SET BAR_XSHIFT = 1.25
"""
m.write_asgl(asglroot='asgl1-a', plots_per_page=8, dimensions=1,
             plot_position=1, every_x_numbered=20, text=text, x_decimal=0)

os.system("asgl asgl1-a")
os.system("ps2pdf asgl1-a.ps")





giving a set of Ψ plots.
The final MODELLER MDT library is produced with:

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
psi = mdt.features.PsiDihedral(mlib, bins=mdt.uniform_bins(72, -180, 5.0))

m = mdt.Table(mlib, file='mdt.mdt')

# remove the bins corresponding to undefined values for each of the 3 variables:
m = m.reshape(features=(xray, restyp, psi), offset=(0,0,0), shape=(-1,-2,-1))

# Let's get rid of the resolution variable from the output MDT table:
m = m.integrate(features=(restyp, psi))

# Process the raw histograms to get appropriate pdf 1D splines for restraints:

# Start by smoothing with a uniform prior (equal weight when 10 points per bin),
# producing a normalized distribution that sums to 1 (not a pdf when dx != 1):
m = m.smooth(dimensions=1, weight=10)

# Normalize it to get the true pdf (Integral p(x) dx = 1):
# (the scaling actually does not matter, because I am eventually taking the
#  log and subtracting the smallest element of the final pdf, so this command
#  could be omitted without impact):
m = m.normalize(to_pdf=True, dimensions=1, dx_dy=2.5, to_zero=True)

# Take the logarithm of the smoothed frequencies
# (this is safe: none of bins is 0 because of mdt.smooth()):
m = m.log_transform(offset=0., multiplier=1.)

# Reverse the sign:
m = m.linear_transform(offset=0., multiplier=-1.)

# Offset the final distribution so that the lowest value is at 0:
m = m.offset_min(dimensions=1)

mdt.write_splinelib(file("psi.py", "w"), m, "psi", density_cutoff=0.1)

text = """
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
"""
m.write_asgl(asglroot='modlib-a', plot_type='PLOT2D', every_x_numbered=20,
             text=text, dimensions=1, plot_position=1, plots_per_page=8)
os.system('asgl modlib-a')





The resulting restraints are plotted in modlib-a.ps,
also produced by the script above.




Mainchain dihedral angle ω

This dihedral angle is a little different from all others explored thus far
because it depends more strongly on the type of the subsequent residue than
the type of the residue whose dihedral angle is studied; that is, the ω
of the residue preceding Pro, not the Pro ω, is impacted by the Pro
residue. These dependencies are explored with MDT tables in directory
constr2005/omega/run1/. The bottom line is that we need
to set delta to 1 when creating our
residue type feature (rather
than the default value 0), which will make it refer to the type of the
residue after the residue with the dihedral angle ω.

The next step is to obtain the p(ω | R+1)
distributions with finer sampling of 0.5°:

from modeller import *
import mdt
import mdt.features

# See ../bonds/make_mdt.py for additional comments

env = environ()
log.minimal()
env.io.atom_files_directory = ['/salilab/park2/database/pdb/divided/']

mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp_1 = mdt.features.ResidueType(mlib, delta=1)
omega = mdt.features.OmegaDihedral(mlib, bins=mdt.uniform_bins(720, -180, 0.5))

# This table uses the subsequent residue type, relative to the omega
m = mdt.Table(mlib, features=(xray, restyp_1, omega))

a = alignment(env)
f = modfile.File('../cluster-PDB/pdb_60.pir', 'r')
while a.read_one(f):
    m.add_alignment(a)

m.write('mdt.mdt')





The distribution in raw form
is then plotted with:

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp_1 = mdt.features.ResidueType(mlib, delta=1)
omega = mdt.features.OmegaDihedral(mlib, bins=mdt.uniform_bins(720, -180, 0.5))

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, restyp_1, omega), offset=(0,0,0), shape=(1,-2,-1))

text = """
SET X_LABEL_STYLE = 2, X_TICK_LABEL = -999 -999
SET X_TICK = -999 -999 -999
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
SET NO_XY_SCOLUMNS = 1 1, XY_SCOLUMNS = 2 1
FILL_COLUMN COLUMN = 2, COLUMN_PARAMETERS = -180. 0.5
SET BAR_XSHIFT = 0.25
"""
m.write_asgl(asglroot='asgl1-a', plots_per_page=8, dimensions=1,
             plot_position=1, every_x_numbered=20, text=text, x_decimal=0)

os.system("asgl asgl1-a")
os.system("ps2pdf asgl1-a.ps")





and in logarithmic form
with:

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp_1 = mdt.features.ResidueType(mlib, delta=1)
omega = mdt.features.OmegaDihedral(mlib, bins=mdt.uniform_bins(720, -180, 0.5))

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, restyp_1, omega), offset=(0,0,0), shape=(1,-2,-1))

text = """
SET X_LABEL_STYLE = 2, X_TICK_LABEL = -999 -999
SET X_TICK = -999 -999 -999
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
SET NO_XY_SCOLUMNS = 1 1, XY_SCOLUMNS = 2 1
FILL_COLUMN COLUMN = 2, COLUMN_PARAMETERS = -180. 0.5
SET BAR_XSHIFT = 0.25
TRANSFORM TRF_TYPE = LOGARITHMIC4, ;
          TRF_PARAMETERS = 1 1, NO_XY_SCOLUMNS = 0 1, XY_SCOLUMNS = 1
"""
m.write_asgl(asglroot='asgl2-a', plots_per_page=8, dimensions=1,
             plot_position=1, every_x_numbered=20, text=text, x_decimal=0)

os.system("asgl asgl2-a")
os.system("ps2pdf asgl2-a.ps")





Clearly, the peaks are sharp and will best be modeled by Gaussian distributions.

Similarly to χ1, two Gaussian distributions are
fit to the histograms with the following ASGL script:

SET TICK_FONT = 13
SET BAR_GRAYNESS = 1.00
SET CAPTION_FONT = 12

SET FIT_PARAM_INITIAL = 87000   0.95 179 5   0 5
CALL ROUTINE = 'gauss2', FILE = 'a.dat', POSITION = 1 0, CAPTION_TEXT = 'A'
CALL ROUTINE = 'gauss2', FILE = 'c.dat', POSITION = 2 0, CAPTION_TEXT = 'C'
CALL ROUTINE = 'gauss2', FILE = 'd.dat', POSITION = 3 0, CAPTION_TEXT = 'D'
CALL ROUTINE = 'gauss2', FILE = 'e.dat', POSITION = 4 0, CAPTION_TEXT = 'E'
CALL ROUTINE = 'gauss2', FILE = 'f.dat', POSITION = 5 0, CAPTION_TEXT = 'F'
CALL ROUTINE = 'gauss2', FILE = 'g.dat', POSITION = 6 0, CAPTION_TEXT = 'G'
CALL ROUTINE = 'gauss2', FILE = 'h.dat', POSITION = 7 0, CAPTION_TEXT = 'H'
CALL ROUTINE = 'gauss2', FILE = 'i.dat', POSITION = 8 0, CAPTION_TEXT = 'I'
NEW_PAGE

CALL ROUTINE = 'gauss2', FILE = 'k.dat', POSITION = 1 0, CAPTION_TEXT = 'K'
CALL ROUTINE = 'gauss2', FILE = 'l.dat', POSITION = 2 0, CAPTION_TEXT = 'L'
CALL ROUTINE = 'gauss2', FILE = 'm.dat', POSITION = 3 0, CAPTION_TEXT = 'M'
CALL ROUTINE = 'gauss2', FILE = 'n.dat', POSITION = 4 0, CAPTION_TEXT = 'N'
CALL ROUTINE = 'gauss2', FILE = 'p.dat', POSITION = 5 0, CAPTION_TEXT = 'P'
CALL ROUTINE = 'gauss2', FILE = 'q.dat', POSITION = 6 0, CAPTION_TEXT = 'Q'
CALL ROUTINE = 'gauss2', FILE = 'r.dat', POSITION = 7 0, CAPTION_TEXT = 'R'
CALL ROUTINE = 'gauss2', FILE = 's.dat', POSITION = 8 0, CAPTION_TEXT = 'S'
NEW_PAGE

CALL ROUTINE = 'gauss2', FILE = 't.dat', POSITION = 1 0, CAPTION_TEXT = 'T'
CALL ROUTINE = 'gauss2', FILE = 'v.dat', POSITION = 2 0, CAPTION_TEXT = 'V'
CALL ROUTINE = 'gauss2', FILE = 'w.dat', POSITION = 3 0, CAPTION_TEXT = 'W'
CALL ROUTINE = 'gauss2', FILE = 'y.dat', POSITION = 4 0, CAPTION_TEXT = 'Y'


SUBROUTINE ROUTINE = 'gauss2'

   READ_TABLE
   SET X_TICK = -180   10  180, X_TICK_LABEL =    1    6
   SET Y_TICK = -999 -999 -999, Y_TICK_LABEL = -999 -999
   SET XY_COLUMNS = 0 1
   # only to get 1, 2, 3, 4, 5, ... in column 2
   WORLD 
   # get the right X-axis from -180 to +180:
   TRANSFORM NO_XY_SCOLUMNS = 1 0, XY_SCOLUMNS = 2, ;
             TRF_TYPE = 'LINEAR', TRF_PARAMETERS = -180.25 0.5
   WORLD WORLD_WINDOW = -190 0 190 -999
   AXES2D
   RESET_CAPTIONS
   CAPTION CAPTION_POSITION 1
   CAPTION CAPTION_POSITION 2, CAPTION_TEXT '@w@'
   CAPTION CAPTION_POSITION 3, CAPTION_TEXT 'FREQUENCY'
   HIST2D
   
   SET ERROR_COLUMN = 0
   SET FIT_MODEL = POLYGAUSS360
   # SET FIT_PARAM_INITIAL = 1639   0.3 175 10   0.3 -65 10   60  10
   SET FIT_PARAM_INDICES =  1 2 3 4 5 6 
   FIT

   SMOOTH_TABLE SMOOTH_TYPE = 'SPLINE'
   PLOT2D PLOT2D_LINE_TYPE = 1, PLOT2D_SYMBOL_TYPE = 0

RETURN
END_SUBROUTINE





The means and standard deviations for each residue type are extracted from
fit.log by the ASGL get_prms.F
program, but they are only used to guess the means of 179.8° and 0°
and standard deviations of 1.5° and 1.5° for the two peaks,
respectively. The distribution of ω dihedral angles in the models
calculated with these ω restraints will be checked carefully and the
restraint parameters will be adapted as needed.

The weights of the peaks are not determined reliably by least-squares fitting
in this case because the second weight is very close to 0 (in principle, they
can even be less than zero). Therefore, they are determined separately by
establishing p(cω | R+1) where cω is the class of the
ω dihedral angle (1 or 2, trans or cis).

The MDT table is constructed with the following MDT Python script:

from modeller import *
import mdt
import mdt.features

# See ../bonds/make_mdt.py for additional comments

env = environ()
log.minimal()
env.io.atom_files_directory = ['/salilab/park2/database/pdb/divided/']

mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp_1 = mdt.features.ResidueType(mlib, delta=1)
omega_class = mdt.features.OmegaClass(mlib)

# Table of the subsequent residue type relative to the omega class
m = mdt.Table(mlib, features=(xray, restyp_1, omega_class))

a = alignment(env)
f = modfile.File('../../cluster-PDB/pdb_60.pir', 'r')
while a.read_one(f):
    m.add_alignment(a)

m.write('mdt.mdt')





The contents of the MDT table are then plotted with ASGL as follows:

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp_1 = mdt.features.ResidueType(mlib, delta=1)
omega_class = mdt.features.OmegaClass(mlib)

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, restyp_1, omega_class),
              offset=(0,0,0), shape=(1,-2,-1))

text = """
SET X_LABEL_STYLE = 2, X_TICK_LABEL = -999 -999
SET X_TICK = -999 -999 -999
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
SET NO_XY_SCOLUMNS = 1 1, XY_SCOLUMNS = 2 1
FILL_COLUMN COLUMN = 2, COLUMN_PARAMETERS = 1 1
SET BAR_XSHIFT = 0.5
"""
m.write_asgl(asglroot='asgl1-a', plots_per_page=8, dimensions=1,
             plot_position=1, every_x_numbered=20, text=text, x_decimal=0)

os.system("asgl asgl1-a")
os.system("ps2pdf asgl1-a.ps")





giving
an omega weights plot.

The library omega.py is edited manually to replace the
means and standard deviations with 179.8  0.0   2.3  2.3.




Mainchain dihedral angles Φ and Ψ

The initial runs in run1 explored Ramachandran maps
extracted from different representative sets of structures (e.g., clustered by
40% sequence identity) and stratification by the crystallographic residue
Biso as well as resolution and residue type. We ended up with
the sample and stratification described above.

The 2D histograms p(Φ, Ψ | R) are derived with:

from modeller import *
import mdt
import mdt.features

# See ../bonds/make_mdt.py for additional comments

env = environ()
log.minimal()
env.io.atom_files_directory = ['/salilab/park2/database/pdb/divided/']

mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
psi = mdt.features.PsiDihedral(mlib, bins=mdt.uniform_bins(72, -180, 5.0))
phi = mdt.features.PhiDihedral(mlib, bins=mdt.uniform_bins(72, -180, 5.0))

m = mdt.Table(mlib, features=(xray, restyp, psi, phi))

a = alignment(env)
f = modfile.File('../cluster-PDB/pdb_60.pir', 'r')
while a.read_one(f):
    m.add_alignment(a)

m.write('mdt.mdt')





They are plotted with

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
psi = mdt.features.PsiDihedral(mlib, bins=mdt.uniform_bins(72, -180, 5.0))
phi = mdt.features.PhiDihedral(mlib, bins=mdt.uniform_bins(72, -180, 5.0))

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, restyp, psi, phi),
              offset=(0,0,0,0), shape=(1,-2,-1,-1))

text = """
SET TICK_FONT = 5, CAPTION_FONT = 5
SET WORLD_WINDOW = -999 -999 -999 -999
SET NO_XY_SCOLUMNS = 0 0, DPLOT_BOUNDS 0.0 -999
TRANSFORM TRF_TYPE=LOGARITHMIC4, TRF_PARAMETERS=10 1
"""
m.write_asgl(asglroot='asgl1-a', plots_per_page=3, dimensions=2,
             plot_position=9, every_x_numbered=12, every_y_numbered=12,
             text=text, x_decimal=0, y_decimal=0)

os.system("asgl asgl1-a")
os.system("ps2pdf asgl1-a.ps")





giving a set of Φ/Ψ plots.

The distributions are clearly not 2D Gaussian functions and need to be
approximated by 2D cubic splines. Exploring and visualizing various smoothing
options results in the following file to produce the final MODELLER MDT
library:

from modeller import *
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
psi = mdt.features.PsiDihedral(mlib, bins=mdt.uniform_bins(72, -180, 5.0))
phi = mdt.features.PhiDihedral(mlib, bins=mdt.uniform_bins(72, -180, 5.0))

m = mdt.Table(mlib, file='mdt.mdt')

# Eliminate the bins corresponding to undefined values:
m = m.reshape(features=(xray, restyp, psi, phi), offset=(0,0,0,0),
              shape=(1,-2,-1,-1))

# Let's get rid of the resolution variable from the output MDT table:
m = m.integrate(features=(restyp, psi, phi))

# Process the raw histograms to get appropriate pdf 1D splines for restraints:

# Start by smoothing with a uniform prior (equal weight when 10 points per bin),
# producing a normalized distribution that sums to 1 (not a pdf when dx != 1):
m = m.smooth(dimensions=2, weight=10)

# Normalize it to get the true pdf (Integral p(x) dx = 1):
# (the scaling actually does not matter, because I am eventually taking the
#  log and subtracting the smallest element of the final pdf, so this command
#  could be omitted without impact):
m = m.normalize(to_pdf=True, dimensions=2, dx_dy=(5., 5.), to_zero=True)

# Take the logarithm of the smoothed frequencies
# (this is safe: none of bins is 0 because of mdt.smooth()):
m = m.log_transform(offset=0., multiplier=1.)

# Reverse the sign:
m = m.linear_transform(offset=0., multiplier=-1.)

# Offset the final distribution so that the lowest value is at 0:
m = m.offset_min(dimensions=2)

mdt.write_2dsplinelib(file("phipsi.py", "w"), m, density_cutoff=0.1)





The raw, smooth, and transformed surfaces are visualized and compared best
with Mathematica.






Non-bonded restraints

A general pairwise distance- and atom-type dependent statistical potential
for all atom type pairs has been derived by Min-yi Shen (DOPE).
MDT could, however, be used to derive specialized pairwise non-bonded
restraints.







          

      

      

    

  

    
      
          
            
  
The mdt Python module

MDT, a module for protein structure analysis.

Copyright 1989-2020 Andrej Sali.

MDT is free software: you can redistribute it and/or modify
it under the terms of version 2 of the GNU General Public License
as published by the Free Software Foundation.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with MDT.  If not, see <http://www.gnu.org/licenses/>.


Setup of the MDT system


	
class mdt.Library(env, distance_atoms=('CA', 'CA'), special_atoms=False, hbond_cutoff=3.5)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Library data used in the construction and use of MDTs.


	Parameters

	
	env: the Modeller environment to use


	distance_atoms: the atom types to use for the
features.ResidueDistance feature


	special_atoms: whether to treat disulfide and termini atoms
specially for atom class features (see features.AtomType)


	hbond_cutoff: maximum separation between two H-bonded atoms
(see features.HydrogenBondDonor)









	
angle_classes[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Angle classes; see BondClasses






	
atom_classes[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Atom classes; see BondClasses






	
bond_classes[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Bond classes; see BondClasses






	
dihedral_classes[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Dihedral classes; see BondClasses






	
hbond_classes[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Hydrogen bond atom classes; see HydrogenBondClasses






	
tuple_classes[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Atom tuple classes; see TupleClasses and Tuple features










	
class mdt.TupleClasses(mlib)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Classifications of tuples of atoms into classes.
Usually accessed as Library.tuple_classes.
These classes are used by tuple or
tuple pair features.


	
read(filename)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Read atom tuple information from filename.
This is a text file with a format similar to that accepted by
BondClasses.read(). The file can consist either of sets
of atom triplets (named with TRPGRP lines and containing triples
of atoms named on TRIPLET lines) or sets of atom doublets
using DBLGRP and DOUBLET lines. Each atom but the first in each
doublet or triplet can also be restricted to match only in
certain residue types by naming the residue in parentheses before
the rest of the atom name (and CHARMM-style + or - qualifier).
For example, a suitable atom triplet file looks like:

TRPGRP 't1'
  TRIPLET 'ALA' 'CA' '+C' '-C'
TRPGRP 't2'
  TRIPLET 'ALA' 'CA' '(CYS)+C' '-C'





The first triplet is named ‘t1’ and will match any set of three
atoms where the first is called CA in an ALA residue, and the
other two atoms are C atoms in the previous and next residue.
The second triplet is similar but will only include triplets where
the next residue is a CYS.










	
class mdt.BondClasses(mlib, n_atom)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Classifications of atoms/bonds/angles/dihedrals into classes.
These classes are used by
atom and
chemical bond features.
Usually accessed as Library.atom_classes,
Library.bond_classes, Library.angle_classes, or
Library.dihedral_classes. (There is no
need to create your own BondClasses objects.)


	
read(filename)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Read class information from filename.
This is a text file with a simple format. Each line either
denotes the start of a new named class, or names a member of the
last-named class, as a residue name followed by one or more atom
names. For example, an atom class file might start with:

ATMGRP 'AC'
  ATOM 'ALA' 'CA'
  ATOM 'ALA' 'C'
  ATOM '*' 'CB'





Thus, the first atom class is called ‘AC’ and any CA or C atom in
an ALA residue, or the CB atom in any residue, will be placed in
this class.

Bond class files are similar but use BNDGRP and BOND lines,
each of which names two atoms:

BNDGRP 'ALA:C:+N'
  BOND 'ALA' 'C' '+N'





Note that CHARMM-style + or - prefixes can be added to atom names
for all but the first atom on a BOND line, to indicate the atom
must be found in the next or previous residue.

Angle class files use ANGGRP and ANGLE lines; each ANGLE line
names three atoms. Dihedral class files use DIHGRP and DIHEDRAL
lines; each DIHEDRAL line names four atoms.










	
class mdt.HydrogenBondClasses(mlib)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Classifications of atoms into hydrogen bond classes.
Usually accessed as Library.hbond_classes.
These classes are used by the features.HydrogenBondAcceptor,
features.HydrogenBondDonor and
features.HydrogenBondSatisfaction features.


	
read(filename)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Read hydrogen bond atom class information from a file












Creation and manipulation of data tables


	
class mdt.Table(mlib, file=None, features=None, bin_type=<mdt._BinType object>, shape=[])[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	A multi-dimensional table.


	Parameters

	
	mlib: the MDT Library object to use


	file: if specified, the filename to read the initial table from
(if the name ends with ‘.hdf5’, Table.read_hdf5() is used,
otherwise Table.read())


	features: if specified (and file is not), a list of feature
types to initialize the table with (using Table.make())


	bin_type: type of storage for bin data (see Storage for bin data).


	shape: if specified with features, the shape of the new table
(see Table.make())








Individual elements from the table can be accessed in standard Python
fashion, e.g.

>>> import mdt.features
>>> import modeller
>>> env = modeller.environ()
>>> mlib = mdt.Library(env)
>>> restyp1 = mdt.features.ResidueType(mlib, protein=0)
>>> restyp2 = mdt.features.ResidueType(mlib, protein=1)
>>> gap = mdt.features.GapDistance(mlib, mdt.uniform_bins(10, 0, 1))
>>> m = mdt.Table(mlib, features=(restyp1,restyp2,gap))
>>> print m[0,0,0]





You can also access an element as m[0][0][0], a 1D section as m[0][0],
or a 2D section as m[0]. See TableSection.


	
add_alignment(aln, distngh=6.0, surftyp=1, accessibility_type=8, residue_span_range=(-99999, -2, 2, 99999), chain_span_range=(-99999, 0, 0, 99999), bond_span_range=None, disulfide=False, exclude_bonds=False, exclude_angles=False, exclude_dihedrals=False, sympairs=False, symtriples=False, io=None, edat=None)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Add data from a Modeller alignment to this MDT.
This method will first scan through all proteins, pairs of proteins,
or triples of proteins in the alignment (it will scan all triples if
the mdt.Library contains features defined on all of
proteins 0, 1 and 2, pairs if the features are defined on two
different proteins, and individual proteins otherwise). Within each
protein, it may then scan through all residues, atoms, etc. if the
features request it (see the scan types table).


	Parameters

	
	aln: Modeller alignment.


	distngh: distance below which residues are considered neighbors.
Used by features.NeighborhoodDifference.


	surftyp: 1 for PSA contact area, 2 for surface area.
Used by features.AtomAccessibility.


	accessibility_type: PSA accessibility type (1-10).
Used by features.AtomAccessibility.


	residue_span_range: sequence separation (inclusive) for
residue pair,
atom pair and
tuple pair features. For the two
residue indices r1 and r2 in the tuple-tuple and atom- atom cases,
or two alignment position indices in the residue-residue case,
the following must be true:

residue_span_range[0] <= (r2 - r1) <= residue_span_range[1]

residue_span_range[2] <= (r2 - r1) <= residue_span_range[3]

For symmetric residue-residue features, only one condition
must be met:

residue_span_range[2] <= abs(r2 - r1) <= residue_span_range[3]

For example, the default value of (-99999, -2, 2, 99999) excludes
all pairs within the same residue (for which the sequence
separation is 0) or within adjacent residues (for which the
separation is 1 or -1).



	chain_span_range: works like residue_span_range, but for the
chain indices. It is used only by the
atom pair and
tuple pair features. The default value
of (-99999, 0, 0, 99999) allows all interactions. For example, using
(-99999, -1, 1, 99999) instead would exclude all interactions
within the same chain.


	bond_span_range: if given, it should be a list of two integers
which specify the minimum and maximum number of bonds that separate
a pair of atoms in the scan. It is used only by the
atom pair and
tuple pair features. (See
features.AtomBondSeparation for more details.) The bond
library (see Library.bond_classes) must be loaded to use
this. For example, using (1, 2) will include only atoms that
are directly chemically bonded or that are both bonded to a third
atom, while (0, 9999) will only exclude pairs of atoms that have
no path of bonds between them (e.g. atoms in different chains or
when at least one of the atoms is not involved in any bonds).
As a special case, if the maximum span is negative, no limit is
enforced. For example, (2, 99999) will include all atoms that have
a path of bonds between them except directly bonded pairs (and
thus exclude pairs in different chains) while (2, -1) will also
include inter-chain interactions.


	disulfide: if True, then the bond_span_range considers
disulfide bonds (defined as any pair of SG atoms in CYS residues
less than 2.5 angstroms apart) when calculating the bond separation
between atoms. Only disulfide bridges within 3 residues of the
atom pair are considered for computational efficiency.


	exclude_bonds: if True, then all pairs of atoms involved in a
chemical bond (see Library.bond_classes) are excluded from
atom pair and
tuple pair features.


	exclude_angles: if True, then the 1-3 pair of atoms from each
angle are excluded (see exclude_bonds).


	exclude_dihedrals: if True, then the 1-4 pair of atoms from each
dihedral are excluded (see exclude_bonds).


	sympairs: if True, then protein pair scans are done in a
symmetric fashion - e.g. when scanning an alignment of A, B and
C, the following pairs are scanned: AB, BC, AC. By default a
non-symmetric scan is performed, scanning AB, BC, AC, BA, CB, CA.


	symtriples: if True, then protein triple scans are done in a
symmetric fashion - e.g. when scanning an alignment of A, B and
C, the following triples are scanned: ABC, ACB, BAC. By default a
non-symmetric scan is performed, scanning ABC, ACB, BAC, CBA,
BCA, CAB.













	
add_alignment_witherr(aln, distngh=6.0, surftyp=1, accessibility_type=8, residue_span_range=(-99999, -2, 2, 99999), chain_span_range=(-99999, 0, 0, 99999), bond_span_range=None, disulfide=False, exclude_bonds=False, exclude_angles=False, exclude_dihedrals=False, sympairs=False, symtriples=False, io=None, edat=None, errorscale=1)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Add data from a Modeller alignment to this MDT. Same as add_alignment
except the errors in data are taken into account.
The parameter errorscale controls how the error is used:



	
	0: the errors are ignored; this function is the same as

	add_alignment.







	
	>0the errors are taken into account by propagating the errors

	in each axis of each atom into the calculated distances
or angles. The errors in the position of individual
atoms are first calculated using B-iso, X-ray resolution,
and R-factor, and then divided by this errorscale value.

















	
clear()[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Clear the table (set all bins to zero)






	
close(dimensions)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Attempt to ‘close’ the MDT, so that it is useful for creating splines
of periodic features.

If dimensions = 1, it makes the two terminal points equal to their
average. If dimensions = 2, it applies the averages to both pairs
of edges and then again to all four corner points.


	Returns

	the closed MDT.



	Return type

	Table










	
copy(bin_type=None)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	If bin_type is specified, it is the storage type to convert the
bin data to (see Storage for bin data).


	Returns

	a copy of this MDT table.



	Return type

	Table










	
entropy_full()[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Print full entropy information.






	
entropy_hx()[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	The MDT is integrated to get a 1D histogram, then normalized by
the sum of the bin values. Finally, entropy is calculated as
Σi -pi ln pi


	Returns

	the entropy of the last dependent variable.



	Return type

	float










	
exp_transform(offset, expoffset, multiplier, power)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Apply an exponential transform to the MDT.
Each element in the new MDT, b, is obtained from the original
MDT element a, using the following relation:
b = offset + exp(expoffset + multiplier * a ^ power).


	Return type

	Table










	
get_array_view()[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Get a NumPy array ‘view’ of this Table. The array contains all of
the raw data in the MDT table, allowing it to be manipulated with
NumPy functions. The data are not copied; modifications made to
the data by NumPy affect the data in the Table (and vice versa).

Functions that destroy the data in the Table (Table.make(),
Table.read() and Table.read_hdf5()) cannot be called
if any NumPy array views exist, since they would invalidate the
views. The views must first be deleted.

If MDT was not built with NumPy support, a NotImplementedError
exception is raised. If NumPy cannot be loaded, an ImportError
is raised.


	Returns

	a view of this table.



	Return type

	NumPy array










	
integrate(features)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Integrate the MDT, and reorder the features. This is useful for
squeezing large MDT arrays into smaller ones, and also for
eliminating unwanted features (such as X-ray resolution) in
preparation for Table.write().


	Parameters

	
	features: the new features (all must be present in the
original MDT).






	Returns

	the integrated MDT.



	Return type

	Table










	
inverse_transform(offset, multiplier, undefined=0.0)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Apply an inverse transform to the MDT.
Each element in the new MDT, b, is obtained from the original
MDT element a, using the following relation:
b = offset + multiplier / a. Where a is zero, b is
assigned to be undefined.


	Returns

	the transformed MDT.



	Return type

	Table










	
linear_transform(offset, multiplier)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Apply a linear transform to the MDT.
Each element in the new MDT, b, is obtained from the original
MDT element a, using the following relation:
b = offset + a * multiplier.


	Returns

	the transformed MDT.



	Return type

	Table










	
log_transform(offset, multiplier, undefined=0.0)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Apply a log transform to the MDT.
Each element in the new MDT, b, is obtained from the original
MDT element a, using the following relation:
b = ln(offset + multiplier * a). Where this would involve the
logarithm of a negative number, b is assigned to be undefined.


	Returns

	the transformed MDT.



	Return type

	Table










	
make(features, shape=[])[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Clear the table, and set the features. features must be a list of
previously created objects from the mdt.features module.
If given, shape has the same meaning as in Table.reshape()
and causes the table to use only a subset of the feature bins.

ValueError is raised if any views of the table exist
(see Table.get_array_view()).






	
n_protein_pairs[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Number of protein pairs






	
n_proteins[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Number of proteins






	
normalize(dimensions, dx_dy, to_zero, to_pdf)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Normalize or scale the MDT. It does not really matter what the
contents of the input MDT are; sensible contents include the raw
or normalized frequencies.


	Parameters

	
	dimensions: specifies whether a 1D or a 2D table is
normalized. More precisely, the input distributions are
p(x | a, b, c, …) if dimensions = 1, or
p(x, y | a, b, c, …) if dimensions = 2, where y and x are
the second to last and last features in the list of features.


	dx_dy: widths of the bins (either one or two numbers,
depending on dimensions). If the value of either dx or dy
is -999, the corresponding bin width is extracted from the MDT
data structure (not available for all features).


	to_zero: if the histogram is empty, setting this True will set
the bin values to zero, and False will yield a uniform
distribution. It has no effect when the histogram is not empty.


	to_pdf: if False, the output is obtained by scaling the input
such that for 1D histograms Σ i p(x i) = 1,
and for 2D histograms Σ i,j p(x i,j) = 1. Note
that dx_dy is not taken into account during this scaling.

If it is True, the normalization takes into account dx_dy so
that the normalized distribution is actually a PDF. That is,
Σ i p(x i) dx = 1 for 1D and
Σ i,j p(x i,j) dx dy = 1 for 2D, where dx and
dy are the widths of the bins.







	Returns

	the normalized MDT.



	Return type

	Table










	
offset_min(dimensions)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Offset the MDT by the minimum value, either in each 1D section
(dimensions = 1) or in each 2D section (dimensions = 2).


	Returns

	the transformed MDT.



	Return type

	Table










	
open_alignment(aln, distngh=6.0, surftyp=1, accessibility_type=8, sympairs=False, symtriples=False, io=None, edat=None)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Open a Modeller alignment to allow MDT indices to be queried
(see Source). Arguments are as for Table.add_alignment().


	Return type

	Source










	
pdf[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Whether this MDT is a PDF






	
read(file)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Read an MDT from file.
ValueError is raised if any views of the table exist
(see Table.get_array_view()).






	
read_hdf5(file)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Read an MDT in HDF5 format from file.
ValueError is raised if any views of the table exist
(see Table.get_array_view()).






	
reshape(features, offset, shape)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Reorder the MDT features and optionally decrease their ranges.
When an MDT is created, each feature has exactly the bins defined in
the Library’s bin file. However, for each feature, you can change
the offset (initial number of bins from the bin file to omit) from the
default 0, and the shape (total number of bins).

All parameters should be lists with the same number of elements as
the MDT has features.


	Parameters

	
	features: the new ordering of the MDT features.


	offset: the new offset (see offset).


	shape: the new shape (see shape). If any element in this list is
0 or negative, it is added to the MDT’s existing shape to get the
new value. Thus, a value of 0 would leave the shape unchanged, -1
would remove the last (undefined) bin, etc.






	Returns

	the reshaped MDT.



	Return type

	Table










	
sample_size[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Number of sample points






	
smooth(dimensions, weight)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Smooth the MDT with a uniform prior. The MDT is treated either as a
histogram (if dimensions = 1) or a 2D density (dimensions = 2)
of dependent features (the last 1 or 2 features in the table)
and a uniform distribution is added followed by scaling:

pi = w1 / n + w2 vi / S

S = Σin vi

w1 = 1 / ( 1 + S / (weight * n))

w2 = 1 - w1

where v is the input MDT array, n is the number of bins in the
histogram, and p is the output MDT array, smoothed and normalized.
weight is the number of points per bin in the histogram at which
the relative weights of the input histogram and the uniform prior
are equal.

The sum of the bins in the output MDT array is 1, for each histogram.

Note that the resulting output MDT array is not necessarily a PDF,
because the bin widths are not taken into account during scaling.
That is, the sum of all bin values multiplied by the bin widths is not
1 if the bin widths are not 1.


	Returns

	the smoothed MDT.



	Return type

	Table










	
super_smooth(dimensions, prior_weight, entropy_weighing)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Multi-level smoothing. This super-smoothes the raw frequencies in
the MDT using the hierarchical smoothing procedure for 1D histograms
described in Sali and Blundell, JMB 1993. It was also employed in
Sali and Overington, Prot Sci. 1994.

Briefly, the idea is to recursively construct the best possible
prior distribution for smoothing 1D data p(x | a, b, c, …).
The best prior is a weighted sum (weights optionally based on
entropy) of the best possible estimate of p(x | a, b, …)
integrated over c for each c. Each one of these can itself be
obtained from a prior and the data, and so on recursively.

The example above is for a single dependent feature (x), which is the
case when dimensions = 1. x should be the last feature in the table.
dimensions can be set to other values if you have more dependent
features - for example, dimensions = 2 will work with
p(x, y | a, b, c, …) where x and y are the last two features
in the table.


	Parameters

	
	dimensions: Number of dependent features.


	prior_weight: Weight for the prior distribution.


	entropy_weighing: Whether to weight distributions by their
entropies.






	Returns

	the smoothed MDT.



	Return type

	Table










	
symmetric[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	True if a symmetric scan can be performed






	
write(file, write_preamble=True)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Write the table to file. If write_preamble is False, it will
only write out the contents of the MDT table, without the preamble
including the feature list, bins, etc. This is useful for example
for creating a file to be read by another program, such as
Mathematica.






	
write_asgl(asglroot, text, dimensions, plot_position, plots_per_page, plot_density_cutoff=-1.0, plot_type='HIST2D', every_x_numbered=1, every_y_numbered=1, x_decimal=1, y_decimal=1)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Make input files for ASGL.


	Parameters

	
	asglroot: filename prefix for ASGL TOP script and data files.


	text: ASGL command lines that are written for each plot.


	dimensions: whether to make 1D or 2D plots.


	plot_position: position of the plot on the page, in
ASGL convention.


	plots_per_page: number of plots per page.


	plot_density_cutoff: the minimal sum of the bin values that
each plot has to have before it is actually written out;
otherwise it is ignored. This helps to avoid wasting paper
on empty plots when the MDT array data are sparse.


	plot_type: select ‘HIST2D’ or ‘PLOT2D’ when dimensions = 2.


	every_x_numbered: spacing for labels on the X axis.


	every_y_numbered: spacing for labels on the Y axis.


	x_decimal: the number of decimal places used to write
X feature values.


	y_decimal: the number of decimal places used to write
Y feature values.













	
write_hdf5(file, gzip=False, chunk_size=10485760)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Write an MDT in HDF5 format to file.
Certain library information (such as the mapping from feature
values to bin indices, and atom or tuple class information)
and information about the last scan is also written to the file.
(This information will be missing or incomplete if
add_alignment() hasn’t first been called.)
Note that this information is not read back in by read_hdf5();
it is intended primarily for other programs that want to reproduce
the environment in which the MDT was generated as closely as possible.


	Parameters

	
	gzip: If True, compress the table in the HDF5 file with gzip
using the default compresion level; if a number from 0-9, compress
using that gzip compression level (0=no compression, 9=most);
if False (the default) do not compress.


	chunk_size: when using gzip, the table must be split up into
chunks (otherwise it is written contiguously). This parameter
can either be a list (the same length as the number of features)
defining the size of each chunk, or it can be the approximate
number of data points in each chunk, in which case the dimensions
of the chunk are chosen automatically.

















	
class mdt.TableSection(mdt, indices)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	A section of a multi-dimensional table. You should not create
TableSection objects directly, but rather by indexing a Table
object, as a TableSection is just a ‘view’ into an existing table.
For example,

>>> m = mdt.Table(mlib, features=(residue_type, xray_resolution))
>>> print m[0].entropy()





would create a section (using m[0]) which is a 1D table over the 2nd
feature (X-ray resolution) for the first bin (0) of the first feature
(residue type), and then get the entropy using the
TableSection.entropy() method.


	
entropy()[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Entropy of all points in the table






	
features[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Features in this MDT; a list of Feature objects






	
mean_stdev()[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Mean and standard deviation of the table






	
offset[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Array offsets; see Feature.offset






	
shape[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Array shape; the number of bins for each feature






	
sum()[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Sum of all points in the table










	
class mdt.Feature(mdt, indx)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	A single feature in an MDT. Generally accessed as
TableSection.features.


	
bins[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Feature bins; a list of Bin objects






	
ifeat[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Integer type






	
offset[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Offset of first bin compared to the MDT library feature (usually 0, but can be changed with Table.reshape())






	
periodic[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Whether feature is periodic










	
class mdt.Bin(feature, indx)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	A single bin in a feature. Generally accessed as Feature.bins.


	
range[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Bin range; usually the minimum and maximum floating-point values for the feature to be placed in this bin.






	
symbol[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Bin symbol










	
class mdt.Source(mdt, mlib, aln, distngh, surftyp, accessibility_type, sympairs, symtriples, io, edat)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	A source of data for an MDT (generally a Modeller alignment, opened
with Table.open_alignment()).


	
index(feat, is1, ip1, is2, ir1, ir2, ir1p, ir2p, ia1, ia1p, ip2, ibnd1, ibnd1p, is3, ir3, ir3p)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Return the bin index (starting at 1) of a single MDT feature.
(Arguments ending in 2 and 3 are used for features involving pairs
or triples of proteins.)


Warning

This is a low-level interface, and no bounds checking is
performed on these parameters. Avoid this function if possible.




	Parameters

	
	feat: MDT feature object from mdt.features module.


	is1: index of the sequence within the alignment.


	ip1: position within the sequence (i.e. including gaps).


	ir1: residue index (i.e. not including alignment gaps).


	ir1p: second residue index for residue-residue features.


	ia1: atom index.


	ia1p: second atom index for atom-atom features.


	ibnd1: bond or tuple index.


	ibnd1p: second bond/tuple index for bond-bond or tuple-tuple
features.













	
sum(residue_span_range=(-99999, -2, 2, 99999), chain_span_range=(-99999, 0, 0, 99999), bond_span_range=None, disulfide=False, exclude_bonds=False, exclude_angles=False, exclude_dihedrals=False)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Scan all data points in the source, and return the sum.
See Table.add_alignment() for a description of the
residue_span_range, chain_span_range and exclude_*
arguments.












Library information


	
mdt.version[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	The full MDT version number, as a string, e.g. ‘5.0’ or ‘SVN’.






	
mdt.version_info[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	For release builds, the major and minor version numbers as a tuple of
integers - e.g. (5, 0). For SVN builds, this is the same as ‘version’.








Utility functions


	
mdt.uniform_bins(num, start, width)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Make a list of num equally-sized bins, each of which has the given
width, and starting at start. This is suitable for input to any of
the classes in mdt.features which need a list of bins.






	
mdt.write_bondlib(fh, mdt, density_cutoff=None, entropy_cutoff=None)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Write out a Modeller bond library file from an MDT. The input MDT should be
a 2D table (usually of bond type and bond distance). For each bond type,
the 1D MDT section (see TableSection) of bond distance is
examined, and its mean and standard deviation used to generate a
Modeller harmonic restraint.


	Parameters

	
	fh: Python file to write to


	mdt: input MDT Table object


	density_cutoff: if specified, MDT bond distance sections with sums
below this value are not used


	entropy_cutoff: if specified, MDT bond distance sections with
entropies above this value are not used













	
mdt.write_anglelib(fh, mdt, density_cutoff=None, entropy_cutoff=None)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Write out a Modeller angle library file from an MDT. See
write_bondlib() for more details. The MDT should be a 2D table,
usually of angle type and bond angle.






	
mdt.write_improperlib(fh, mdt, density_cutoff=None, entropy_cutoff=None)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Write out a Modeller dihedral angle library file from an MDT. See
write_bondlib() for more details. The MDT should be a 2D table,
usually of dihedral type and bond dihedral angle.






	
mdt.write_splinelib(fh, mdt, dihtype, density_cutoff=None, entropy_cutoff=None)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Write out a Modeller 1D spline library file from an MDT.
The MDT should be a 2D table, usually of residue type and a chi dihedral
angle. dihtype should identify the dihedral type
(i.e. chi1/chi2/chi3/chi4). The operation is similar to
write_bondlib(),
but each MDT section is treated as the spline values. No special processing
is done, so it is expected that the user has first done any necessary
transformations (e.g. normalization with Table.normalize() to
convert raw counts into a PDF, negative log transform with
Table.log_transform() and Table.linear_transform() to
convert a PDF into a statistical potential).






	
mdt.write_2dsplinelib(fh, mdt, density_cutoff=None, entropy_cutoff=None)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Write out a Modeller 2D spline library file from an MDT.
See write_splinelib() for more details. The input MDT should be
a 3D table, e.g. of residue type, phi angle, and psi angle.






	
mdt.write_statpot(fh, mdt)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	Write out a Modeller statistical potential file (as accepted by
group_restraints.append()). The MDT is assumed to be a 3D table of distance
against the types of the two atoms. No special processing
is done, so it is expected that the user has first done any necessary
transformations (e.g. normalization with Table.normalize() to
convert raw counts into a PDF, negative log transform with
Table.log_transform() and Table.linear_transform() to
convert a PDF into a statistical potential).








Bin storage types


	
mdt.Float[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	
mdt.Double

	
mdt.Int32

	
mdt.UnsignedInt32

	
mdt.Int16

	
mdt.UnsignedInt16

	
mdt.Int8

	
mdt.UnsignedInt8

	See Storage for bin data.








Exceptions


	
exception mdt.MDTError[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	A generic MDT error.






	
exception mdt.FileFormatError[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/__init__.py]

	A file is of the wrong format.











          

      

      

    

  

    
      
          
            
  
The mdt.features Python module

MDT features.

Copyright 1989-2020 Andrej Sali.

MDT is free software: you can redistribute it and/or modify
it under the terms of version 2 of the GNU General Public License
as published by the Free Software Foundation.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with MDT.  If not, see <http://www.gnu.org/licenses/>.


Protein features

These features yield a single value for each protein in the alignment.
Each feature takes some common arguments:



	mlib: the mdt.Library to create the feature in.


	bins: list of bins (see Specification of bins).


	protein: the protein index on which to evaluate the feature
from each group of proteins (individual protein, pairs, triples)
selected from the alignment (0 for the first, 1 for the second, 2 for
the third). See mdt.Table.add_alignment() for more details.








	
class mdt.features.XRayResolution(mlib, bins, protein=0, nmr=0.45)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Protein X-ray resolution in angstroms.
Proteins with a resolution of -1.00 (generally NMR structures) are
actually reported as having a resolution of nmr.
This decreases the number of bins required to hold all defined
resolutions while still separating NMR from X-ray structures.






	
class mdt.features.RadiusOfGyration(mlib, bins, protein=0)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Protein radius of gyration in angstroms. The calculation of the center
of mass used for this feature is not mass weighted.






	
class mdt.features.SequenceLength(mlib, bins, protein=0)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Protein sequence length (number of residues).






	
class mdt.features.HydrogenBondSatisfaction(mlib, bins, protein=0)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Hydrogen bond satisfaction index for a protein. This is the average
difference, over all atoms in the protein, between the HydrogenBondDonor
value and the atom’s donor valency plus the same for the acceptor,
as defined in the hydrogen bond file (see
mdt.Library.hbond_classes).






	
class mdt.features.AlphaContent(mlib, bins, protein=0)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Alpha content of the protein. This is simply the fraction, between 0
and 1, of residues in the first mainchain conformation class
(see MainchainConformation).








Protein pair features

These features yield a single value for each pair of proteins in the alignment.
Each feature takes some common arguments:



	mlib: the mdt.Library to create the feature in.


	bins: list of bins (see Specification of bins).


	protein1 and protein2: the indexes of proteins in each group of
proteins selected from the alignment to evaluate the feature on; each can
range from 0 to 2 inclusive. See mdt.Table.add_alignment() for more
details.








	
class mdt.features.SequenceIdentity(mlib, bins, protein1=0, protein2=1)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Fractional sequence identity, between 0 and 1, between two sequences.
This is the number of identical aligned residues divided by the length
of the shorter sequence.








Residue features

These features yield a single value for each residue in each sequence
in the alignment. Each feature takes some common arguments:



	delta: if non-zero, don’t calculate the feature for the residue
position returned by the residue scan - instead, offset it by
delta residues in the sequence. Applied before align_delta.


	align_delta: if non-zero, don’t calculate the feature for the
alignment position returned by the residue scan - instead, offset
it by align_delta alignment positions. Applied after delta.


	pos2: if True, force a residue pair scan, and evaluate the
feature on the second residue in each pair.


	mlib, bins, protein: see Protein features. Note that some
residue features do not use the bins argument, because they have a
fixed number of bins.








	
class mdt.features.ResidueType(mlib, protein=0, delta=0, align_delta=0, pos2=False)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Residue type (20 standard amino acids, gap, undefined).






	
class mdt.features.ResidueAccessibility(mlib, bins, protein=0, delta=0, align_delta=0, pos2=False)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Residue solvent accessibility. This is derived from the atomic solvent
accessibility; see AtomAccessibility.






	
class mdt.features.Chi1Dihedral(self, mlib, protein=0, delta=0, align_delta=0, pos2=False)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	
class mdt.features.Chi2Dihedral

	
class mdt.features.Chi3Dihedral

	
class mdt.features.Chi4Dihedral

	
class mdt.features.PhiDihedral

	
class mdt.features.PsiDihedral

	
class mdt.features.OmegaDihedral

	
class mdt.features.AlphaDihedral

	Residue dihedral angle, from -180 to 180 degrees.






	
class mdt.features.Chi1Class(self, mlib, protein=0, delta=0, align_delta=0, pos2=False)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	
class mdt.features.Chi2Class

	
class mdt.features.Chi3Class

	
class mdt.features.Chi4Class

	
class mdt.features.Chi5Class

	
class mdt.features.PhiClass

	
class mdt.features.PsiClass

	
class mdt.features.OmegaClass

	Residue dihedral class. These classes are defined by MODELLER to
group common regions of dihedral space for each residue type.






	
class mdt.features.MainchainConformation(mlib, protein=0, delta=0, align_delta=0, pos2=False)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Residue mainchain conformation (Ramachandran) class.
This is a classification of the residue’s phi/psi angles into classes
as defined in Modeller’s modlib/af_mnchdef.lib file and described in
Sali and Blundell, JMB (1993) 234, p785. The default classes are
A (right-handed alpha-helix), P (poly-proline conformation),
B (idealized beta-strand), L (left-handed alpha-helix), and
E (extended conformation).






	
class mdt.features.ResidueGroup(mlib, protein=0, delta=0, align_delta=0, pos2=False, residue_grouping=0)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Residue group.






	
class mdt.features.SidechainBiso(mlib, bins, protein=0, delta=0, align_delta=0, pos2=False)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Residue average sidechain Biso. A zero average Biso is treated as
undefined. If the average of these values over the whole protein is less
than 2, each residue’s value is multiplied by 4 π 2.








Residue pair features

These features yield a single value for each pair of residues in each sequence
in the alignment. See Protein features for a description of the common
arguments.


	
class mdt.features.ResidueDistance(mlib, bins, protein=0)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Distance between a pair of residues. This is defined as the distance
between the ‘special’ atoms in each residue. The type of this special
atom can be specified by the distance_atoms argument when creating a
mdt.Library object.
The feature is considered undefined if any of the atom coordinates
are equal to the Modeller ‘undefined’ value (-999.0).






	
class mdt.features.AverageResidueAccessibility(mlib, bins, protein=0)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Average solvent accessibility of a pair of residues.
See ResidueAccessibility.






	
class mdt.features.ResidueIndexDifference(mlib, bins, protein=0, absolute=False)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Difference in sequence index between a pair of residues. This can
either be the simple difference (if absolute is False) in which case
the feature is asymmetric, or the absolute value (if absolute is True)
which gives a symmetric feature.








Aligned residue features

These features yield a single value for residues aligned between two proteins.
For each pair of proteins, every alignment position is scanned, and the
feature is evaluated for each pair of aligned residues.
See Protein pair features for a description of the common arguments.


	
class mdt.features.PhiDihedralDifference(self, mlib, bins, protein1=0, protein2=1)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	
class mdt.features.PsiDihedralDifference

	
class mdt.features.OmegaDihedralDifference

	Shortest difference in dihedral angle (in degrees) between a pair of
aligned residues.






	
class mdt.features.NeighborhoodDifference(mlib, bins, protein1=0, protein2=1)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Residue neighborhood difference. This is the average of the distance
scores (from a residue-residue scoring matrix) of all aligned residues
where the residue in the first sequence is within a cutoff distance
of the scanned residue. (This cutoff is set by the distngh argument to
mdt.Table.add_alignment().)






	
class mdt.features.GapDistance(mlib, bins, protein1=0, protein2=1)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Distance, in alignment positions, to the nearest gap. Note that positions       which are gapped in both sequences are ignored for the purposes of this
calculation (a ‘gap’ is defined as a gap in one sequence aligned with a
residue in the other).








Aligned residue pair features

These features yield a single value for each pair of residues aligned
between two proteins. For each pair of proteins, each pair of alignment
positions is scanned, and the feature is evaluated for each pair of pairs
of aligned residues.
See Protein pair features for a description of the common arguments.


	
class mdt.features.ResidueDistanceDifference(mlib, bins, protein1=0, protein2=1)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Distance between two residues in the second protein, minus the distance
between the equivalent residues in the first protein.
See ResidueDistance.
The feature is considered undefined if any of the atom coordinates
are equal to the Modeller ‘undefined’ value (-999.0).






	
class mdt.features.AverageNeighborhoodDifference(mlib, bins, protein1=0, protein2=1)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Average residue neighborhood difference for a pair of alignment
positions. See NeighborhoodDifference.






	
class mdt.features.AverageGapDistance(mlib, bins, protein1=0, protein2=1)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Average distance to a gap from a pair of alignment positions.
See GapDistance.








Atom features

These features yield a single value for each atom in the first protein
in each group of proteins selected from the alignment.
Each feature takes some common arguments:



	pos2: if True, force an atom pair scan, and evaluate the
feature on the second atom in each pair.


	mlib, bins: see Protein features. Note that some
atom features do not use the bins argument, because they have a
fixed number of bins.








	
class mdt.features.AtomAccessibility(mlib, bins, pos2=False)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Atom solvent accessibility. This is calculated by the PSA algorithm,
and controlled by the surftyp and accessibility_type arguments to
mdt.Table.add_alignment().
The feature is considered undefined if the atom’s Cartesian
coordinates are equal to the Modeller ‘undefined’ value (-999.0).






	
class mdt.features.FractionalAtomAccessibility(mlib, bins, pos2=False)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Fractional atom solvent accessibility, from 0 to 1. This is the atom
solvent accessibility (see AtomAccessibility) divided by
the volume of the atom, derived from its van der Waals radius.
The feature is considered undefined if the atom’s Cartesian
coordinates are equal to the Modeller ‘undefined’ value (-999.0).






	
class mdt.features.AtomType(mlib, pos2=False)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Type of an atom, as classified by the atom class file.
See mdt.Library.atom_classes.






	
class mdt.features.HydrogenBondDonor(mlib, bins, pos2=False)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Number of hydrogen bond donors. It is defined as the sum, over all atoms
within hbond_cutoff (see mdt.Library) of the atom, of their
donor valencies as defined in the hydrogen bond file
(see mdt.Library.hbond_classes).
The feature is considered undefined if the atom’s Cartesian
coordinates are equal to the Modeller ‘undefined’ value (-999.0).






	
class mdt.features.HydrogenBondAcceptor(mlib, bins, pos2=False)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Number of hydrogen bond acceptors. It is defined as the sum, over all
atoms within hbond_cutoff (see mdt.Library) of the atom,
of their acceptor valencies as defined in the hydrogen bond file
(see mdt.Library.hbond_classes).
The feature is considered undefined if the atom’s Cartesian
coordinates are equal to the Modeller ‘undefined’ value (-999.0).






	
class mdt.features.HydrogenBondCharge(mlib, bins, pos2=False)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Hydrogen bond charge. It is defined as the sum, over all
atoms within hbond_cutoff (see mdt.Library) of the atom,
of their charges as defined in the hydrogen bond file (see
mdt.Library.hbond_classes).






	
class mdt.features.AtomTable(mlib, bins, table_name, func, pos2=False)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	A tabulated atom feature. The feature is simply a table of N
floating-point numbers, where N is the number of atoms in the system.
This table is provided by a Python function, so can be used to implement
user-defined features or to pass in features from other software.
A simple example to use the x coordinate as a feature:

def func(aln, struc, mlib, libs):
    return [a.x for a in struc.atoms]
f = mdt.features.AtomTable(mlib, bins, "x coordinate", func)












Atom pair features

These features yield a single value for each pair of atoms in the first
protein in each group of proteins selected from the alignment.
See Protein features for a description of the common arguments.


	
class mdt.features.AtomDistance(mlib, bins)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Distance in angstroms between a pair of atoms.
The feature is considered undefined if any of the atom coordinates
are equal to the Modeller ‘undefined’ value (-999.0).






	
class mdt.features.AtomBondSeparation(mlib, bins, disulfide=False)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Number of bonds between a pair of atoms.
For example, two atoms that are directly bonded return ‘1’, while two
at opposite ends of an angle return ‘2’. The bonds between atoms in
each standard amino acid are derived from the bond class file, so this
must be read in first (see mdt.Library.bond_classes). For
atoms in different residues, the residues are assumed to be linked by
a peptide backbone, and the number of bonds is calculated accordingly.
Atoms in different chains, or atoms of types not referenced in the bond
class file, are not connected. If disulfide is set to True, disulfide
bridges are also considered (if two residues have SG atoms within 2.5
angstroms, they are counted as bonded). If disulfide is set to False (the
default) any disulfide bridges are ignored. Either way, no account is
taken of patches and other modifications such as terminal oxygens
(unless bonds to OXT are explicitly listed in the bond class file).
If a pair of atoms is not connected it is placed in the ‘undefined’
bin.








Tuple features

These features yield a single value for each tuple of atoms in the first
protein in each group of proteins selected from the alignment. (The set of
tuples must first be read into the mdt.Library.)
Each feature takes some common arguments:



	mlib: the mdt.Library to create the feature in.


	pos2: if True, force a tuple pair scan, and evaluate the
feature on the second tuple in each pair.








	
class mdt.features.TupleType(mlib, pos2=False)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Type of an atom tuple, as classified by the tuple class file.
See mdt.Library.tuple_classes.








Tuple pair features

These features yield a single value for each pair of tuples of atoms in the
first protein in each group of proteins selected from the alignment. (The set of
tuples must first be read into the mdt.Library.)
See Protein features for a description of the common arguments.


	
class mdt.features.TupleType(mlib, pos2=False)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Type of an atom tuple, as classified by the tuple class file.
See mdt.Library.tuple_classes.






	
class mdt.features.TupleDistance(mlib, bins)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Distance in angstroms between the first atom in each of two tuples
The feature is considered undefined if any of the atom coordinates
are equal to the Modeller ‘undefined’ value (-999.0).






	
class mdt.features.TupleAngle1(mlib, bins)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Angle (0-180) between the first atom in the first tuple, the first atom
in the second tuple, and the second atom in the second tuple.
The feature is considered undefined if any of the atom coordinates
are equal to the Modeller ‘undefined’ value (-999.0).






	
class mdt.features.TupleAngle2(mlib, bins)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Angle (0-180) between the second atom in the first tuple, the first atom
in the first tuple, and the first atom in the second tuple.
The feature is considered undefined if any of the atom coordinates
are equal to the Modeller ‘undefined’ value (-999.0).






	
class mdt.features.TupleDihedral1(mlib, bins)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Dihedral (-180-180) between the second atom in the first tuple, the
first atom in the first tuple, the first atom in the second tuple, and
the second atom in the second tuple.
The feature is considered undefined if any of the atom coordinates
are equal to the Modeller ‘undefined’ value (-999.0).






	
class mdt.features.TupleDihedral2(mlib, bins)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Dihedral (-180-180) between the third atom in the first tuple, the
second atom in the first tuple, the first atom in the first tuple, and
the first atom in the second tuple. Only works for atom triplets.
The feature is considered undefined if any of the atom coordinates
are equal to the Modeller ‘undefined’ value (-999.0).






	
class mdt.features.TupleDihedral3(mlib, bins)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Dihedral (-180-180) between the first atom in the first tuple, the
first atom in the second tuple, the second atom in the second tuple, and
the third atom in the second tuple. Only works for atom triplets.
The feature is considered undefined if any of the atom coordinates
are equal to the Modeller ‘undefined’ value (-999.0).








Chemical bond features

These features yield a single value for each defined chemical bond, angle
or dihedral in the first protein in each group of proteins selected from the
alignment. (The definitions of the chemical connectivity must first be read
from a bond class file; see the bond_clases, angle_classes and
dihedral_classes attributes in mdt.Library.)
See Protein features for a description of the common arguments.


	
class mdt.features.BondType(mlib)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Type of a bond, as classified by the bond class file.
See mdt.Library.bond_classes.






	
class mdt.features.AngleType(mlib)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Type of an angle, as classified by the angle class file.
See mdt.Library.angle_classes.






	
class mdt.features.DihedralType(mlib)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Type of a dihedral, as classified by the dihedral class file.
See mdt.Library.dihedral_classes.






	
class mdt.features.BondLength(mlib, bins)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Length of a bond in angstroms. See mdt.Library.bond_classes.
The feature is considered undefined if any of the atom coordinates
are equal to the Modeller ‘undefined’ value (-999.0).






	
class mdt.features.Angle(mlib, bins)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Angle (0-180). See mdt.Library.angle_classes.
The feature is considered undefined if any of the atom coordinates
are equal to the Modeller ‘undefined’ value (-999.0).






	
class mdt.features.Dihedral(mlib, bins)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Dihedral angle (-180-180). See mdt.Library.dihedral_classes.
The feature is considered undefined if any of the atom coordinates
are equal to the Modeller ‘undefined’ value (-999.0).








Group features

These features are used to make combinations of other features.
Each feature takes some common arguments:



	mlib: the mdt.Library to create the feature in.


	feat1: an existing feature object that will be included in this group.


	feat2: another existing feature object to include.


	nbins: the number of bins in this feature.








	
class mdt.features.Cluster(mlib, feat1, feat2, nbins)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Cluster feature. When evaluated, it evaluates the two other features
grouped in this feature, and converts the pair of bin indices for
those features into a single bin index, which is returned. Use the
add() method to control this conversion.


	
add(child_bins, bin_index)[source] [https://github.com/salilab/mdt/blob/develop/pyext/mdt/features.py]

	Add a single mapping from a pair of child feature bin indices into
this feature’s bin index (all indexes start at 0). For example,
calling add((1,2), 3) would cause this Cluster feature to return
bin index 3 if the child features were in bins 1 and 2 respectively.
This method can be called multiple times (even for the same
bin_index) to add additional mappings from child bin indices
to bin index. If no mapping from a given pair of child indices is
present, the undefined bin index is returned.















          

      

      

    

  

    
      
          
            
  
Copyright and license

MDT is Copyright 1989-2020 Andrej Sali.

MDT is free software: you can redistribute it and/or modify
it under the terms of version 2 of the
GNU General Public License
as published by the Free Software Foundation.

MDT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.





          

      

      

    

  

    
      
          
            
  
MDT change history


MDT 5.5   04-07-2020



	Add more Python 3 support to the build system.










MDT 5.4   05-25-2017



	Development is now open and hosted at GitHub.


	Experimental cmake build support.


	Installation packages now available for Homebrew
(“brew tap salilab/salilab; brew install mdt”) and
Anaconda Python (“conda install -c salilab mdt”).










MDT 5.3   05-19-2015



	A new function write_statpot() can generate a Modeller statistical
potential file given a suitable input table.


	A new feature Cluster allows clustering of two features
into a single one.


	A new feature AtomTable takes as input a table of
precalculated per-atom values, and can be used to implement user-defined
features or to use externally-calculated properties.


	To save space, the data for the MDT table itself can be compressed when
writing to an HDF5 file with Table.write_hdf5().


	Certain library information (such as the mapping from feature values to
bin indices, and atom or tuple class information) and information about
the last scan is now written into MDT files in HDF5 format by
Table.write_hdf5().


	The maximum value of bond_span_range can now be -1, to allow atom pairs
that have no path of bonds between them. This is helpful to include
inter-chain interactions, for example.










MDT 5.2   10-29-2012



	A new method Table.get_array_view() allows the raw MDT table data
to be modified using NumPy functions.


	Disulfide bonds can now be considered in the calculation of atom bond
separation, by the AtomBondSeparation feature and
the Table.add_alignment() method.


	Atoms in atom tuples can now be restricted to match only in certain
residue types.










MDT 5.1   09-29-2011



	All atom features, with the exception of AtomType,
are now considered undefined if the atom coordinates are equal to the
Modeller undefined value (-999.0).


	Support for bond separation, with a new AtomBondSeparation
feature and a bond_span_range argument to Table.add_alignment().


	Support Python 3 (requires Modeller 9.10 or later).


	“scons test” now reports the Python coverage (and also C coverage,
if using gcc and adding “coverage=true” to the scons command line).


	The Table constructor now takes an optional ‘shape’ argument,
which acts identically to that accepted by Table.reshape().










MDT 5.0   03-31-2011



	First open source (GPLv2) release.


	Duplicated Modeller Fortran code removed; MDT now uses Modeller itself for
handling of protein structures and alignments.


	Added scans over atom pairs, atom tuples, atom tuple pairs, and chemical
bonds.


	Complete documentation, examples, and unit tests added.


	TOP scripting interface replaced with Python.


	Support storing MDT tables in binary form, using the HDF5 format and
library.










MDT 4.0  April 2002



	Reorganize directory structure.










MDT 3.1  March 2002



	Allow for a structure to be assessed against an existing MDT table.
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