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MDT is a module for protein structure analysis.
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CHAPTER 1

Contents

1.1 Introduction

MDT prepares a raw frequency table, given information from MODELLER alignments and/or PDB files. It can
also process the raw frequency table in several ways (e.g., normalization with Table.normalize(), smoothing
with Table.smooth(), perform entropy calculations with Table.entropy_full(), and write out the data in
various formats, including for plotting by ASGL (Table.write_asgl()) and use as restraints by MODELLER.

More precisely, MDT uses a sample of sequences, structures, and/or alignments to construct a table N(a,b,c,. . . ,d) for
features a, b, c, . . . , d. The sample for generating the frequencies N is obtained depending on the type of features a, b,
c, . . . , d. The sample can contain individual proteins, pairs of proteins, pairs of residues in proteins, pairs of aligned
residues, pairs of aligned pairs of residues, chemical bonds, angles, dihedral angles, and pairs of tuples of atoms. Some
features work with triple alignments, too. All the needed features a, b, c, . . . , d are calculated automatically from the
sequences, alignments, and/or PDB files. The feature bins are defined by the user when each feature is created.

1.1.1 MDT features

A ‘feature’ in MDT is simply some binnable property of your input alignment. Example features include the residue
type, chi1 and Phi dihedral angles, sequence identity between two sequences, X-ray resolution,
atom-atom distances, atom type, and bond length.

MDT understands that different features act on different sets of proteins, or parts of proteins, and will automatically
scan over the correct range to collect necessary statistics (e.g. when you call Table.add_alignment()). For
example, to collect statistics for the residue type feature, it is necessary to scan all residues in all proteins in the
alignment. The X-ray resolution feature, on the other hand, only requires each protein in the alignment to be scanned,
not each residue. The atom-atom distance feature requires scanning over all pairs of atoms in all proteins in the
alignment, while the sequence identity feature requires scanning all pairs of proteins in the alignment. If you construct
a table of multiple features, the most fine-grained of the features determines the scan - for example, a table of X-ray
resolution against Φ dihedral would require a scan of all residues. See the scan types table for all of the scan types.

When choosing which proteins to scan, MDT also considers the features. It will scan each protein individually, all
pairs of proteins, or all triples of proteins. The latter two scans only happen if you have features in your table that
require multiple proteins (e.g. protein pair or aligned residue features) or you have single-protein features such as
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protein or residue features but you have asked to evaluate them on the second or third protein (by setting the protein
argument to 1 or 2 rather than the default 0).

MDT also knows that some residue pair or atom pair features are symmetric, and will perform a non-redundant scan
in this case. If, however, any feature in the table is asymmetric, a full scan is performed. If in doubt, you can query
Table.symmetric to see whether a symmetric scan will be performed for the current set of features. (Currently,
any tuple pair feature in your table forces a full scan.)

The feature bins determine how to convert a feature value into a frequency table. For most feature types, you can
specify how many bins to use, and their value ranges - see Specification of bins for more information. The last bin is
always reserved as an ‘undefined’ bin, for values that don’t fall into any other bin1.

(Some features are predetermined by the setup of the system - for example, the residue type feature always has
22 bins - 20 for the standard amino acids, 1 for gaps in the alignment, and 1 for undefined.)

Type Example feature
Protein features.XRayResolution
Residue2 features.Chi1Dihedral
Residue pair23 features.ResidueIndexDifference
Atom features.AtomType
Atom pair3 features.AtomDistance
Atom tuple features.TupleType
Atom tuple pair features.TupleDistance
Chemical bond features.BondType
Chemical angle features.Angle
Chemical dihedral angle features.Dihedral

1.1.2 Dependent and independent features

An MDT Table object is simply a table of counts N(a,b,c,. . . ,d) for features a, b, c, . . . , d. However, this is often
used to generate a conditional PDF, p(x,y,. . . ,z | a,b,. . . ,c) for independent features a, b, . . . , c and dependent features
x, y, . . . , z. By convention in MDT the dependent features are the last or rightmost features in the table, and so
methods which are designed to deal with PDFs such as Table.smooth(), Table.super_smooth(), Table.
normalize(), Table.offset_min(), Table.close() expect the dependent features to be the last features.
If necessary you can reorder the features using Table.reshape() or Table.integrate().

1.1.3 Specification of bins

Most features take a bins argument when they are created, which specifies the bin ranges. This is simply a list of (start,
end, symbol) triples, which specify the feature range for each bin, and the symbol to refer to it by. For example, the
following creates an X-ray resolution feature, with 4 bins, the first for 0.51-1.4 , the second for 1.4-1.6 , and so
on. Anything below 0.51 or 2.0 or above (or an undefined value) will be placed into a fifth ‘undefined’ bin.

1 You can, however, remove the ‘undefined’ bin using Table.reshape() or by using the ‘shape’ argument when you create the Table
object.

2 Residue and residue pair scans are also used for ‘one atom per residue’ features, such as features.ResidueDistance, which is the
distance between the ‘special atom’ in two residues. This special atom is usually C𝛼, but can be overridden by specifying the distance_atoms
parameter when creating the Library object.

3 When looking at pairs of atoms or residues, it is useful to extract information about the ‘other’ atom or residue in the pair. This other atom
or residue is termed ‘pos2’ in MDT, and can be asked for when creating the feature. For example, when building a table of atom-atom distances
(features.AtomDistance) it may be useful to tabulate it against the atom types of both the first and second atom. This is done by also using
two copies of the AtomType, the second with pos2=True.
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xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 1.4, "<1.4"),
(1.4, 1.6, "1.4-1.6"),
(1.6, 1.8, "1.6-1.8"),
(1.8, 2.0, "1.8-2.0")])

Note: Bin ranges in MDT are half-closed, i.e. a feature value must be greater than or equal to the lower value of the
range, and less than the upper value, to be counted in the bin. For example, in the case above, 1.0 would be placed
into the first bin, and 1.4 into the second. (If you define bins with overlapping ranges, values will be placed into the
first bin that matches.)

In most cases, a set of bins of equal width is desired, and it is tedious to specify these by hand. A utility function
uniform_bins() is provided, which takes three arguments - the number of bins, the lower range of the first bin,
and the width of each bin - and creates a set of bins; all bins are of the same size and follow after the first bin.
For example, the following bins the atom-atom distance feature into 60 bins, each 0.5 wide, with the first bin
starting at 0 . The first bin is thus 0-0.5 , the second 0.5-1.0 , and so on, up to bin 60 which is 29.5-30.0 . The additional
‘undefined’ bin thus counts anything below 0 , greater than or equal to 30.0 , or which could not be calculated for some
reason.

atdist = mdt.features.AtomDistance(mlib, bins=mdt.uniform_bins(60, 0, 0.5))

1.1.4 Storage for bin data

By default, when a table is created in MDT it uses double precision floating point to store the counts. This allows
large counts themselves to be accurately scored, and can also store floating point data such as PDFs. However, for
very large tables, this may use a prohibitive amount of memory. Therefore, it is possible to change the data type used
to store bin data, by specifying the bin_type parameter when creating a Table object. The same parameter can be
given to Table.copy(), to make a copy of the table using a different data type for its storage. Note that other data
types use less storage, but can also store a smaller range of counts. For example, the UnsignedInt8 data type uses
only a single byte for each bin, but can only store integer counts between 0 and 255 (floating point values, or values
outside of this range, will be truncated). MDT uses double precision floating point for all internal operations, but any
storage of bin values uses the user-selected bin type. Thus you should be careful not to use an inappropriate bin type -
for example, don’t use an integer bin type if you are planning to store PDFs or perform normalization, smoothing, etc.

1.2 Usage

MDT is simply a Python extension module, and as such can be used in combination with other Python modules, such
as MODELLER or the Python standard library.

1.2.1 Running pre-built binaries

The easiest way to use MDT is to install the pre-built binary RPM for your variety of Linux (this will first require you
to install the Modeller RPM). Then you should simply be able to run an MDT script foo.py just like any regular
Python script with a command similar to:

python foo.py

In the Sali lab, MDT is built as part of the nightly build system at the same time as MODELLER. Thus you can set up
your system to run MDT scripts by running:

1.2. Usage 5



MDT Documentation, Release 5.5

module load modeller

1.2.2 Using with Anaconda Python

There is an MDT package available for Anaconda Python for Mac and Linux. To install it, simply run:

conda install -c salilab mdt

1.2.3 Using a Homebrew package

If you are using a Mac with homebrew you can get MDT by running in a terminal window:

brew tap salilab/salilab; brew install mdt

If you don’t already have Modeller installed, you can get it by running brew install modeller before you install MDT.

Add –with-python3 to the end of each brew install command if you also want to use Python 3.

1.2.4 Compilation from source code

The MDT source code can be downloaded from GitHub.

Install dependent packages needed for MDT: MODELLER, glib, SWIG, pkg-config, and HDF5:

• MODELLER 9.15 or later is required.

• glib 2.4 or later is required. It is available as pre-built packages for most modern Linux distributions; there is
also a MacPorts package for Mac users.

• SWIG 1.3.39 or later is required.

• Unfortunately HDF5 only works if you use the exact same version that is used by MODELLER. See the MOD-
ELLER ChangeLog for the version to use.

To compile, run scons in the same directory (and optionally scons test) to build (and test) MDT. This will produce a
script bin/mdtpy.sh which can be used to run an MDT Python script foo.py:

bin/mdtpy.sh python foo.py

Note: If you didn’t use the RPM or Debian package to install Modeller then you will need to tell MDT where it can
find Modeller. To do this, create a file called config.py, and in it set the modeller Python variable to the directory
where you have MODELLER installed (on a Mac, this would look like modeller=”/Library/modeller-XXX” where
XXX is the Modeller version).

If you installed any of the prerequisites in non-standard locations (i.e. not /usr/include for glib and HDF5, and not
/usr/bin for pkg-config or SWIG) you will also need to tell scons where to find them. Add similar lines to config.
py to set path for pkg-config and SWIG and includepath for glib and HDF5 (e.g. path=”/opt/local/bin” and include-
path=”/opt/local/include” on a Mac).

If you want to install MDT, run scons install. You can additionally specify a prefix option (or set it in config.py)
to install in a different directory. For example, scons prefix=/foo install will install MDT in the /foo directory.
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1.2.5 Example MDT script

Generally speaking, to use MDT, you should

1. Create a Library object.

2. Read any necessary additional files into the library, such as the definitions of chemical bonds (see Chemical
bonds for an example), or atom tuples.

3. Define one or more features, which are classes in the mdt.features module.

4. Create one or more Table objects, using a selection of the features you added to the Library, to hold the
frequency tables themselves.

5. Collect statistics into the table using methods such as Table.add_alignment().

6. Post process (e.g. smoothing, normalizing), plot the data, or write the table to a
file.

A simple example, which simply collects the distribution of residue types in a PDB file, is shown below:

import modeller
import mdt
import mdt.features

# Setup of Modeller and MDT system
env = modeller.environ()
mlib = mdt.Library(env)

# Creation of feature types
restyp = mdt.features.ResidueType(mlib)

# Create a 1D table of residue type
table = mdt.Table(mlib, features=restyp)

# Read in a PDB file and make an alignment of just this one structure
mdl = modeller.model(env, file='5fd1')
aln = modeller.alignment(env)
aln.append_model(mdl, align_codes='5fd1', atom_files='5fd1')

# Collect MDT statistics for this alignment
table.add_alignment(aln)

# Print out the MDT by treating it as a Python list
print "Distribution of residue types:"
print [bin for bin in table]

For more applied examples, see Sample studies with MDT .

1.3 Sample studies with MDT

1.3.1 Introduction

This section describes the use of MDT for updating many of the MODELLER restraint libraries, including stereo-
chemical, non-bonded, and homology-derived restraints:

1. Stereochemical restraints

• chemical bonds: p(Bond | BondType)

1.3. Sample studies with MDT 7
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• chemical angles: p(Angle | AngleType)

• improper dihedral angles as defined in the CHARMM residue topology file: p(Dihedral | DihedralType)

• chemical angles: p(Angle | AngleType)

• the 𝜔 dihedral angle of the peptide bond: p(𝜔 | ResidueType+1) where ResidueType+1 refers to the residue
type following the residue with the 𝜔 dihedral angle

• the Φ and Ψ dihedral angles: p(Φ | ResidueType), p(Ψ | ResidueType)

• the sidechain dihedral angles: p(𝜒1 | ResidueType), p(𝜒2 | ResidueType), p(𝜒3 | ResidueType), p(𝜒4 |
ResidueType)

• the mainchain conformation: p(Φ, Ψ | ResidueType)

2. Non-bonded restraints

• the mainchain hydrogen bonding restraints: p(h | d, a)

• the non-bonded pair of atom triplets: p(d, 𝛼1, 𝛼2, 𝜃1, 𝜃2, 𝜃3 | t1, t2)

3. Homology-derived restraints

• distance: p(d | d’)

The following sections will outline the process of starting with the Protein Data Bank (PDB) and ending up with
the MODELLER restraint library files. We will describe the rationale for the process, input data sets, programs and
scripts used, and even the analysis of the results. All of the input files should be found in the MDT distribution, in the
constr2005 directory.

The overall approach is to construct appropriately accurate, smooth, and transformed surfaces based on the statistics
in PDB for use as spatial restraints for model building. The restraints from the first iteration will be used to construct
many models, which in turn will be used to re-derive the equivalent restraints from the models. These model-derived
restraints will then be compared against the original PDB-derived restraints to find problems and get indications as to
how to change the restraints so that models are statistically as similar to PDB structures as possible.

1.3.2 Stereochemical restraints

The sample

The starting point for deriving the restraints in this section consists of 9,365 chains that are representative of the 65,629
chains in the October 2005 version of PDB. The representative set was obtained by clustering all PDB chains with
MODELLER, such that the representative chains are from 30 to 3000 residues in length and are sharing less than
60% sequence identity to each other (or are more than 30 residues different in length). This is the corresponding
MODELLER script:

from modeller import *
import re

log.verbose()
env = environ()
sdb = sequence_db(env, seq_database_file='pdball.pir',

seq_database_format='PIR',
chains_list='ALL', minmax_db_seq_len=(30, 3000),
clean_sequences=True)

sdb.filter(rr_file='${LIB}/blosum62.sim.mat', gap_penalties_1d=(-500, -50),
matrix_offset = -450, max_diff_res=30, seqid_cut=60,
output_grp_file='pdb_60.grp', output_cod_file='pdb_60.cod')

(continues on next page)
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(continued from previous page)

# Make pdb_60.pir file by copying every sequence listed in pdb_60.cod
# from pdball.pir:
out = file("pdb_60.pir", "w")
codes = [line.rstrip('\r\n') for line in file("pdb_60.cod")]
codes = dict.fromkeys(codes)

pirhead = re.compile(">P1;(.*)$")
printline = False
for line in file("pdball.pir"):

m = pirhead.match(line)
if m:

printline = m.group(1) in codes
if printline:

out.write(line)

The actual chains for restraint derivation are in fact a subset of the 9,365 representative chains, corresponding to the
4,532 crystallographic structures determined at least at 2 resolution (the representative structure for each group is
the highest resolution x-ray structure in the group). This decision was made by looking at the distribution of the
𝜒1 dihedral angles as a function of resolution (see Sidechain dihedral angle 𝜒1) and the distribution of resolutions
themselves for all 9,365 representative chains, using this MDT script:

from modeller import *
import mdt
import mdt.features

env = environ()
log.minimal()
env.io.atom_files_directory = ['/salilab/park2/database/pdb/divided/']

mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=mdt.uniform_bins(20, 0, 0.2))
m = mdt.Table(mlib, features=xray)

a = alignment(env)
f = modfile.File('../cluster-PDB/pdb_60.pir', 'r')
while a.read_one(f):

m.add_alignment(a)

m.write('mdt2.mdt')

This script creates a Library object and then adds an X-ray resolution feature. Values of this feature are placed into
20 bins of width 0.2, starting at 0. It then creates a Table object, which is the MDT table itself. This starts off as
an empty 1D table of the X-ray resolution feature. It then uses a MODELLER alignment object to read the sequences
from pdb_60.pir one by one, and for each one it updates the X-ray resolution feature in the MDT table by calling
Table.add_alignment(). Finally, the table is written out to the file mdt2.mdt using Table.write().

The resulting MDT table mdt2.mdt was then plotted with the script:

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=mdt.uniform_bins(20, 0, 0.2))

(continues on next page)
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(continued from previous page)

m = mdt.Table(mlib, file='mdt2.mdt')

text = """
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999, WORLD_WINDOW = -999 -999 -999 -999
"""
m.write_asgl(asglroot='asgl2-a', plots_per_page=8, dimensions=1,

plot_position=1, every_x_numbered=2, text=text, x_decimal=1)

os.system("asgl asgl2-a")
os.system("ps2pdf asgl2-a.ps")

where the Table.write_asgl() method writes out an ASGL script and the MDT data in a form suitable for
plotting (which we then execute with ASGL using Python’s os.system() method). This gives an impact of
resolution plot.

Chemical bonds

The MDT table is constructed with the following MDT Python script:

from modeller import *
import mdt
import mdt.features

env = environ()
log.minimal()
env.io.atom_files_directory = ['/salilab/park2/database/pdb/divided/']

mlib = mdt.Library(env)

# read the bond definitions in terms of the constituting atom type pairs:
mlib.bond_classes.read('${LIB}/bndgrp.lib')

# define the features:
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
bond_type = mdt.features.BondType(mlib)
bond_length = mdt.features.BondLength(mlib,

bins=mdt.uniform_bins(400, 1.0, 0.0025))

m = mdt.Table(mlib, features=(xray, bond_type, bond_length))

# make the MDT table using the pdb_60 sample chains:
a = alignment(env)
f = modfile.File('../cluster-PDB/pdb_60.pir', 'r')
while a.read_one(f):

m.add_alignment(a)

# write out the MDT table:
m.write('mdt.mdt')

In this case, we read the file bndgrp.lib which defines all chemical bonds, using the BondClasses.read()
method. The MDT we then construct is a 3D table of X-ray resolution, bond type, and bond length. The contents of
the MDT table are then plotted with ASGL as follows:
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from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
mlib.bond_classes.read('${LIB}/bndgrp.lib')
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
bond_type = mdt.features.BondType(mlib)
bond_length = mdt.features.BondLength(mlib,

bins=mdt.uniform_bins(400, 1.0, 0.0025))

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, bond_type, bond_length),

offset=(0,0,0), shape=(1,-1,-1))

text = """
SET X_LABEL_STYLE = 2, X_TICK_LABEL = -999 -999
SET X_TICK = -999 -999 -999
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
SET NO_XY_SCOLUMNS = 1 1, XY_SCOLUMNS = 2 1
FILL_COLUMN COLUMN = 2, COLUMN_PARAMETERS = 1. 0.0025
SET BAR_XSHIFT = 0.00125
ZOOM SCALE_WORLDX = 0.08
"""
m.write_asgl(asglroot='asgl1-a', plots_per_page=8, dimensions=1,

plot_position=1, every_x_numbered=999, text=text, x_decimal=0)

os.system("asgl asgl1-a")
os.system("ps2pdf asgl1-a.ps")

giving a set of bond plots. Notice that here we use the Table.reshape() method, which can reshape a
table by reordering the features, and/or reducing the bin ranges (offset or shape) of these features. In this case we don’t
change the feature order, or the offset (leaving it at the default 0,0,0) but we do change the shape. The first feature
is restricted to only one bin - because our X-ray resolution feature contains only two bins (for “less than 2 ” and the
undefined bin, which catches everything 2 or greater) this keeps only the good structures for our plot. The other two
features have their bin ranges reduced by 1 (a negative value for shape means “reduce the size by this amount”), which
effectively removes the final (“undefined”) bin.

Inspection of the plots shows that all distributions are mono-modal, but most are distinctly non-Gaussian. However, at
this point, Gaussian restraints are still favored because the ranges are very narrow and because the non-Gaussian shape
of the histograms may result from the application of all the other restraints (this supposition will be tested by deriving
the corresponding distributions from the models, not PDB structures). Also, although many distributions are quite
symmetrical, not all of them are. Therefore, there is the question of how best to fit a restraint to the data. There are
at least three possibilities, in principle: (i) calculating the average and standard deviation from all (subset) of the data,
(ii) least-squares fitting of the Gaussian model to the data, and (iii) using cubic splines of the data. The first option
was adopted here: the mean and standard deviation will be the parameters of the analytically defined bond restraint
for MODELLER.

The final MODELLER MDT library is produced with:

from modeller import *
import mdt
import mdt.features

(continues on next page)
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(continued from previous page)

env = environ()
mlib = mdt.Library(env)
mlib.bond_classes.read('${LIB}/bndgrp.lib')
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
bond_type = mdt.features.BondType(mlib)
bond_length = mdt.features.BondLength(mlib,

bins=mdt.uniform_bins(400, 1.0, 0.0025))

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, bond_type, bond_length),

offset=(0,0,0), shape=(0,-1,-1))

m = m.integrate(features=(bond_type, bond_length))

mdt.write_bondlib(file('bonds.py', 'w'), m, density_cutoff=0.1)

Here we use the Table.integrate()method, which removes a feature from the table by integrating the remaining
features over all of that feature’s bins, and the write_bondlib() function to write out a MODELLER script which
builds restraints using the MDT-derived distributions.

Chemical angles

As for the bonds above, the MDT table is constructed with the following MDT Python script:

from modeller import *
import mdt
import mdt.features

# See ../bonds/make_mdt.py for additional comments

env = environ()
log.minimal()
env.io.atom_files_directory = ['/salilab/park2/database/pdb/divided/']

mlib = mdt.Library(env)
mlib.angle_classes.read('${LIB}/anggrp.lib')
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
angle_type = mdt.features.AngleType(mlib)
angle = mdt.features.Angle(mlib, bins=mdt.uniform_bins(720, 0, 0.25))

m = mdt.Table(mlib, features=(xray, angle_type, angle))

a = alignment(env)
f = modfile.File('../cluster-PDB/pdb_60.pir', 'r')
while a.read_one(f):

m.add_alignment(a)

m.write('mdt.mdt')

The contents of the MDT table are then plotted with ASGL as follows:

from modeller import *
import os
import mdt

(continues on next page)
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(continued from previous page)

import mdt.features

env = environ()
mlib = mdt.Library(env)
mlib.angle_classes.read('${LIB}/anggrp.lib')
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
angle_type = mdt.features.AngleType(mlib)
angle = mdt.features.Angle(mlib, bins=mdt.uniform_bins(720, 0, 0.25))

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, angle_type, angle),

offset=(0,0,0), shape=(1,-1,-1))

text = """
SET X_LABEL_STYLE = 2, X_TICK_LABEL = -999 -999
SET X_TICK = -999 -999 -999
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
SET NO_XY_SCOLUMNS = 1 1, XY_SCOLUMNS = 2 1
FILL_COLUMN COLUMN = 2, COLUMN_PARAMETERS = 0. 0.25
SET BAR_XSHIFT = 0.125
ZOOM SCALE_WORLDX = 0.08
"""
m.write_asgl(asglroot='asgl1-a', plots_per_page=8, dimensions=1,

plot_position=1, every_x_numbered=999, text=text, x_decimal=0)

os.system("asgl asgl1-a")
os.system("ps2pdf asgl1-a.ps")

giving a set of angle plots.

The situation is similar to that for the chemical bonds, except that there are also four cases of bi-modal (as opposed to
mono-modal) distributions: Asp:CB:CG:OD2, Asp:OD2:CG,OD1, Pro:CB:CG:CD, and Pro:CD:N:CA angles. The
Asp bi-modal distribution may result from crystallographers mislabeling carboxyl oxygens for the protonated state of
the sidechain (which is interesting because the corresponding angles might be used as a means to assign the protonation
state). The mean values for these angles were edited by hand. Otherwise exactly the same considerations as for bonds
apply here.

The final MODELLER MDT library is produced with:

from modeller import *
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
mlib.angle_classes.read('${LIB}/anggrp.lib')
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
angle_type = mdt.features.AngleType(mlib)
angle = mdt.features.Angle(mlib, bins=mdt.uniform_bins(720, 0, 0.25))

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, angle_type, angle),

offset=(0,0,0), shape=(0,-1,-1))

m = m.integrate(features=(angle_type, angle))

(continues on next page)
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mdt.write_anglelib(file('angles.py', 'w'), m, density_cutoff=0.1)

Improper dihedral angles

Exactly the same situation applies as for the chemical bonds. The MDT table is constructed with the following MDT
Python script:

from modeller import *
import mdt
import mdt.features

# See ../bonds/make_mdt.py for additional comments

env = environ()
log.minimal()
env.io.atom_files_directory = ['/salilab/park2/database/pdb/divided/']

mlib = mdt.Library(env)
mlib.dihedral_classes.read('${LIB}/impgrp.lib')
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
impr_type = mdt.features.DihedralType(mlib)
improper = mdt.features.Dihedral(mlib, bins=mdt.uniform_bins(400, 1.0, 0.0025))

m = mdt.Table(mlib, features=(xray, impr_type, improper))

a = alignment(env)
f = modfile.File('../cluster-PDB/pdb_60.pir', 'r')
while a.read_one(f):

m.add_alignment(a)

m.write('mdt.mdt')

The contents of the MDT table are then plotted with ASGL as follows:

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
mlib.dihedral_classes.read('${LIB}/impgrp.lib')
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
impr_type = mdt.features.DihedralType(mlib)
improper = mdt.features.Dihedral(mlib, bins=mdt.uniform_bins(400, 1.0, 0.0025))

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, impr_type, improper),

offset=(0,0,0), shape=(1,-1,-1))

text = """
SET X_LABEL_STYLE = 2, X_TICK_LABEL = -999 -999
SET X_TICK = -999 -999 -999
SET TICK_FONT = 5, CAPTION_FONT = 5

(continues on next page)
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SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
SET NO_XY_SCOLUMNS = 1 1, XY_SCOLUMNS = 2 1
FILL_COLUMN COLUMN = 2, COLUMN_PARAMETERS = -180. 0.5
SET BAR_XSHIFT = 0.25
ZOOM SCALE_WORLDX = 0.08
"""
m.write_asgl(asglroot='asgl1-a', plots_per_page=8, dimensions=1,

plot_position=1, every_x_numbered=999, text=text, x_decimal=0)

os.system("asgl asgl1-a")
os.system("ps2pdf asgl1-a.ps")

giving a set of improper plots.

The final MODELLER MDT library is produced with:

from modeller import *
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
mlib.dihedral_classes.read('${LIB}/impgrp.lib')
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
impr_type = mdt.features.DihedralType(mlib)
improper = mdt.features.Dihedral(mlib, bins=mdt.uniform_bins(400, 1.0, 0.0025))

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, impr_type, improper),

offset=(0,0,0), shape=(1,-1,-1))

m = m.integrate(features=(impr_type, improper))

mdt.write_improperlib(file('impropers.py', 'w'), m, density_cutoff=0.1)

Sidechain dihedral angle 𝜒1

The first question asked was “What is the impact of resolution on the distributions of residue 𝜒1?”. The answer was
obtained by constructing and inspecting p(𝜒1 | R, resolution) with:

from modeller import *
import mdt
import mdt.features

env = environ()
log.minimal()
env.io.atom_files_directory = ['/salilab/park2/database/pdb/divided/']

mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 1.4, "under 1.4"),

(1.4, 1.6, "1.4-1.6"),
(1.6, 1.8, "1.6-1.8"),
(1.8, 2.001, "1.8-2.0")])

restyp = mdt.features.ResidueType(mlib)

(continues on next page)
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chi1 = mdt.features.Chi1Dihedral(mlib, bins=mdt.uniform_bins(144, -180, 2.5))

m = mdt.Table(mlib, features=(xray, restyp, chi1))

a = alignment(env)
f = modfile.File('../../cluster-PDB/pdb_60.pir', 'r')
while a.read_one(f):

m.add_alignment(a)

m.write('mdt.mdt')

and

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 1.4, "under 1.4"),

(1.4, 1.6, "1.4-1.6"),
(1.6, 1.8, "1.6-1.8"),
(1.8, 2.001, "1.8-2.0")])

restyp = mdt.features.ResidueType(mlib)
chi1 = mdt.features.Chi1Dihedral(mlib, bins=mdt.uniform_bins(144, -180, 2.5))

m = mdt.Table(mlib, file='mdt.mdt')
# Remove undefined bins (and gap residue type)
m = m.reshape(features=(xray, restyp, chi1), offset=m.offset, shape=(0,-2,-1))

text = """
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999, WORLD_WINDOW = -999 -999 -999 -999
"""
m.write_asgl(asglroot='asgl2-a', plots_per_page=8, dimensions=1,

plot_position=1, every_x_numbered=20, text=text, x_decimal=1)

os.system("asgl asgl2-a")
os.system("ps2pdf asgl2-a.ps")

giving this output which clearly shows that X-ray structures at resolution of at least 2.0 are just fine. X-ray
structures above that resolution and NMR structures (whose resolution is set artificially to 0.45 for the purposes
of MDT tabulation) do not appear to be suitable for deriving restraints for modeling, as the peaks are significantly
wider and there is a significant population at ~120°. Also, the peaks appear Gaussian. Thus, a weighted sum of three
Gaussians (except for Pro, which has two) was judged to be an appropriate model for these data. Again, the following
script was used to construct the MDT table:

from modeller import *
import mdt
import mdt.features

# See ../bonds/make_mdt.py for additional comments

env = environ()

(continues on next page)
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log.minimal()
env.io.atom_files_directory = ['/salilab/park2/database/pdb/divided/']

mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
chi1 = mdt.features.Chi1Dihedral(mlib, bins=mdt.uniform_bins(144, -180, 2.5))

m = mdt.Table(mlib, features=(xray, restyp, chi1))

a = alignment(env)
f = modfile.File('../cluster-PDB/pdb_60.pir', 'r')
while a.read_one(f):

m.add_alignment(a)

m.write('mdt.mdt')

and the contents then plotted with ASGL as follows:

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
chi1 = mdt.features.Chi1Dihedral(mlib, bins=mdt.uniform_bins(144, -180, 2.5))

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, restyp, chi1), offset=(0,0,0), shape=(1,-2,-1))

text = """
SET X_LABEL_STYLE = 2, X_TICK_LABEL = -999 -999
SET X_TICK = -999 -999 -999
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
SET NO_XY_SCOLUMNS = 1 1, XY_SCOLUMNS = 2 1
FILL_COLUMN COLUMN = 2, COLUMN_PARAMETERS = -180. 2.5
SET BAR_XSHIFT = 1.25
"""
m.write_asgl(asglroot='asgl1-a', plots_per_page=8, dimensions=1,

plot_position=1, every_x_numbered=20, text=text, x_decimal=0)

os.system("asgl asgl1-a")
os.system("ps2pdf asgl1-a.ps")

giving a set of 𝜒1 plots.

The weights, means, and standard deviations of the Gaussians were obtained by least-squares fitting with ASGL (with
the script below) and are manually added to the MODELLER MDT library.

SET TICK_FONT = 13
SET BAR_GRAYNESS = 1.00
SET CAPTION_FONT = 12

(continues on next page)
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# The parameters are initial guesses
# (number of points, (weight, mean, standard deviation)_i; last weight missing),
# to help ASGL a little, but not important; just check the fitted curves
# against the data in fit.ps:
SET FIT_PARAM_INITIAL = 30000 0.3 175 10 0.3 -65 10 60 10
CALL ROUTINE = 'gauss3', FILE = 'c.dat', POSITION = 1 0, CAPTION_TEXT = 'C'
SET FIT_PARAM_INITIAL = 118000 0.3 175 10 0.3 -65 10 60 10
CALL ROUTINE = 'gauss3', FILE = 'd.dat', POSITION = 2 0, CAPTION_TEXT = 'D'
CALL ROUTINE = 'gauss3', FILE = 'e.dat', POSITION = 3 0, CAPTION_TEXT = 'E'
CALL ROUTINE = 'gauss3', FILE = 'f.dat', POSITION = 4 0, CAPTION_TEXT = 'F'
CALL ROUTINE = 'gauss3', FILE = 'h.dat', POSITION = 5 0, CAPTION_TEXT = 'H'
CALL ROUTINE = 'gauss3', FILE = 'i.dat', POSITION = 6 0, CAPTION_TEXT = 'I'
CALL ROUTINE = 'gauss3', FILE = 'k.dat', POSITION = 7 0, CAPTION_TEXT = 'K'
CALL ROUTINE = 'gauss3', FILE = 'l.dat', POSITION = 8 0, CAPTION_TEXT = 'L'
NEW_PAGE

SET FIT_PARAM_INITIAL = 45000 0.3 175 10 0.3 -65 10 60 10
CALL ROUTINE = 'gauss3', FILE = 'm.dat', POSITION = 1 0, CAPTION_TEXT = 'M'
SET FIT_PARAM_INITIAL = 88000 0.3 175 10 0.3 -65 10 60 10
CALL ROUTINE = 'gauss3', FILE = 'n.dat', POSITION = 2 0, CAPTION_TEXT = 'N'
# Pro has two peaks only, "gauss3' will still work as is:
SET FIT_PARAM_INITIAL = 95000 0.4 -30 7 0.4 40 7 0 5
CALL ROUTINE = 'gauss3', FILE = 'p.dat', POSITION = 3 0, CAPTION_TEXT = 'P'
SET FIT_PARAM_INITIAL = 76000 0.3 175 10 0.6 -65 20 62 10
CALL ROUTINE = 'gauss3', FILE = 'q.dat', POSITION = 4 0, CAPTION_TEXT = 'Q'
SET FIT_PARAM_INITIAL = 104000 0.3 175 10 0.6 -65 20 62 10
CALL ROUTINE = 'gauss3', FILE = 'r.dat', POSITION = 5 0, CAPTION_TEXT = 'R'
SET FIT_PARAM_INITIAL = 124000 0.3 175 10 0.6 -65 20 62 10
CALL ROUTINE = 'gauss3', FILE = 's.dat', POSITION = 6 0, CAPTION_TEXT = 'S'
SET FIT_PARAM_INITIAL = 112000 0.1 -175 10 0.5 -65 10 65 10
CALL ROUTINE = 'gauss3', FILE = 't.dat', POSITION = 7 0, CAPTION_TEXT = 'T'
SET FIT_PARAM_INITIAL = 147000 0.7 180 10 0.1 -65 10 65 10
CALL ROUTINE = 'gauss3', FILE = 'v.dat', POSITION = 8 0, CAPTION_TEXT = 'V'
NEW_PAGE

SET FIT_PARAM_INITIAL = 28000 0.2 175 10 0.5 -65 10 60 10
CALL ROUTINE = 'gauss3', FILE = 'w.dat', POSITION = 1 0, CAPTION_TEXT = 'W'
SET FIT_PARAM_INITIAL = 72000 0.2 175 10 0.7 -65 10 60 10
CALL ROUTINE = 'gauss3', FILE = 'y.dat', POSITION = 2 0, CAPTION_TEXT = 'Y'

SUBROUTINE ROUTINE = 'gauss3'

READ_TABLE
SET X_TICK = -180 10 180, X_TICK_LABEL = 1 6
SET Y_TICK = -999 -999 -999, Y_TICK_LABEL = -999 -999
SET XY_COLUMNS = 0 1
# only to get 1, 2, 3, 4, 5, ... in column 2
WORLD
# get the right X-axis from -180 to +180:
TRANSFORM NO_XY_SCOLUMNS = 1 0, XY_SCOLUMNS = 2, ;

TRF_TYPE = 'LINEAR', TRF_PARAMETERS = -181.25 2.5
WORLD WORLD_WINDOW = -190 0 190 -999
AXES2D
RESET_CAPTIONS
CAPTION CAPTION_POSITION 1

(continues on next page)

18 Chapter 1. Contents



MDT Documentation, Release 5.5

(continued from previous page)

CAPTION CAPTION_POSITION 2, CAPTION_TEXT '@c@_1_'
CAPTION CAPTION_POSITION 3, CAPTION_TEXT 'FREQUENCY'
HIST2D

SET ERROR_COLUMN = 0
SET FIT_MODEL = POLYGAUSS360
# SET FIT_PARAM_INITIAL = 1639 0.3 175 10 0.3 -65 10 60 10
SET FIT_PARAM_INDICES = 1 2 3 4 5 6 7 8 9
FIT

SMOOTH_TABLE SMOOTH_TYPE = 'SPLINE'
PLOT2D PLOT2D_LINE_TYPE = 1, PLOT2D_SYMBOL_TYPE = 0

RETURN
END_SUBROUTINE

Sidechain dihedral angle 𝜒2

The situation is very similar to that for 𝜒1, except that the shapes of histograms are not Gaussian in most cases.
Therefore, 1D cubic splines are used to represent the restraints.

The MDT table is constructed with the following MDT Python script:

from modeller import *
import mdt
import mdt.features

# See ../bonds/make_mdt.py for additional comments

env = environ()
log.minimal()
env.io.atom_files_directory = ['/salilab/park2/database/pdb/divided/']

mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
chi2 = mdt.features.Chi2Dihedral(mlib, bins=mdt.uniform_bins(144, -180, 2.5))

m = mdt.Table(mlib, features=(xray, restyp, chi2))

a = alignment(env)
f = modfile.File('../cluster-PDB/pdb_60.pir', 'r')
while a.read_one(f):

m.add_alignment(a)

m.write('mdt.mdt')

The contents of the MDT table are then plotted with ASGL as follows:

from modeller import *
import os
import mdt
import mdt.features

env = environ()

(continues on next page)
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mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
chi2 = mdt.features.Chi2Dihedral(mlib, bins=mdt.uniform_bins(144, -180, 2.5))

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, restyp, chi2), offset=(0,0,0), shape=(1,-2,-1))

text = """
SET X_LABEL_STYLE = 2, X_TICK_LABEL = -999 -999
SET X_TICK = -999 -999 -999
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
SET NO_XY_SCOLUMNS = 1 1, XY_SCOLUMNS = 2 1
FILL_COLUMN COLUMN = 2, COLUMN_PARAMETERS = -180. 2.5
SET BAR_XSHIFT = 1.25
"""
m.write_asgl(asglroot='asgl1-a', plots_per_page=8, dimensions=1,

plot_position=1, every_x_numbered=20, text=text, x_decimal=0)

os.system("asgl asgl1-a")
os.system("ps2pdf asgl1-a.ps")

giving a set of 𝜒2 plots.

The final MODELLER MDT library is produced with:

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
chi2 = mdt.features.Chi2Dihedral(mlib, bins=mdt.uniform_bins(144, -180, 2.5))

m = mdt.Table(mlib, file='mdt.mdt')

# remove the bins corresponding to undefined values for each of the 3 variables:
m = m.reshape(features=(xray, restyp, chi2), offset=(0,0,0), shape=(1,-2,-1))

# Let's get rid of the resolution variable from the output MDT table:
m = m.integrate(features=(restyp, chi2))

# Process the raw histograms to get appropriate pdf 1D splines for restraints:

# Start by smoothing with a uniform prior (equal weight when 10 points per bin),
# producing a normalized distribution that sums to 1 (not a pdf when dx != 1):
m = m.smooth(dimensions=1, weight=10)

# Normalize it to get the true pdf (Integral p(x) dx = 1):
# (the scaling actually does not matter, because I am eventually taking the
# log and subtracting the smallest element of the final pdf, so this command
# could be omitted without impact):

(continues on next page)
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m = m.normalize(to_pdf=True, dimensions=1, dx_dy=2.5, to_zero=True)

# Take the logarithm of the smoothed frequencies
# (this is safe: none of bins is 0 because of mdt.smooth()):
m = m.log_transform(offset=0., multiplier=1.)

# Reverse the sign:
m = m.linear_transform(offset=0., multiplier=-1.)

# Offset the final distribution so that the lowest value is at 0:
m = m.offset_min(dimensions=1)

mdt.write_splinelib(file("chi2.py", "w"), m, "chi2", density_cutoff=0.1)

text = """
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
"""
m.write_asgl(asglroot='modlib-a', plot_type='PLOT2D', every_x_numbered=20,

text=text, dimensions=1, plot_position=1, plots_per_page=8)
os.system('asgl modlib-a')

This script also uses Table.smooth() to smooth the raw frequencies and Table.normalize() to convert the
distribution into a PDF. It is then converted into a statistical potential by taking the negative log of the values (using the
Table.log_transform(), Table.linear_transform(), and Table.offset_min() methods). The
smoothing parameter weight of 10 was selected by trial and error, inspecting the resulting restraints in modlib-a.ps,
also produced by the script above.

Sidechain dihedral angle 𝜒3

Exactly the same considerations apply as to 𝜒2. The MDT table is constructed with the following MDT Python script:

from modeller import *
import mdt
import mdt.features

# See ../bonds/make_mdt.py for additional comments

env = environ()
log.minimal()
env.io.atom_files_directory = ['/salilab/park2/database/pdb/divided/']

mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
chi3 = mdt.features.Chi3Dihedral(mlib, bins=mdt.uniform_bins(144, -180, 2.5))

m = mdt.Table(mlib, features=(xray, restyp, chi3))

a = alignment(env)
f = modfile.File('../cluster-PDB/pdb_60.pir', 'r')
while a.read_one(f):

m.add_alignment(a)

(continues on next page)
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m.write('mdt.mdt')

The contents of the MDT table are then plotted with ASGL as follows:

from modeller import *
import os
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
chi3 = mdt.features.Chi3Dihedral(mlib, bins=mdt.uniform_bins(144, -180, 2.5))

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, restyp, chi3), offset=(0,0,0), shape=(1,-2,-1))

text = """
SET X_LABEL_STYLE = 2, X_TICK_LABEL = -999 -999
SET X_TICK = -999 -999 -999
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
SET NO_XY_SCOLUMNS = 1 1, XY_SCOLUMNS = 2 1
FILL_COLUMN COLUMN = 2, COLUMN_PARAMETERS = -180. 2.5
SET BAR_XSHIFT = 1.25
"""
m.write_asgl(asglroot='asgl1-a', plots_per_page=8, dimensions=1,

plot_position=1, every_x_numbered=20, text=text, x_decimal=0)

os.system("asgl asgl1-a")
os.system("ps2pdf asgl1-a.ps")

giving a set of 𝜒3 plots. The final MODELLER MDT library is produced with:

from modeller import *
import os
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
chi3 = mdt.features.Chi3Dihedral(mlib, bins=mdt.uniform_bins(144, -180, 2.5))

m = mdt.Table(mlib, file='mdt.mdt')

# remove the bins corresponding to undefined values for each of the 3 variables:
m = m.reshape(features=(xray, restyp, chi3), offset=(0,0,0), shape=(1,-2,-1))

# Let's get rid of the resolution variable from the output MDT table:
m = m.integrate(features=(restyp, chi3))

# Process the raw histograms to get appropriate pdf 1D splines for restraints:

# Start by smoothing with a uniform prior (equal weight when 10 points per bin),
# producing a normalized distribution that sums to 1 (not a pdf when dx != 1):

(continues on next page)
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m = m.smooth(dimensions=1, weight=10)

# Normalize it to get the true pdf (Integral p(x) dx = 1):
# (the scaling actually does not matter, because I am eventually taking the
# log and subtracting the smallest element of the final pdf, so this command
# could be omitted without impact):
m = m.normalize(to_pdf=True, dimensions=1, dx_dy=2.5, to_zero=True)

# Take the logarithm of the smoothed frequencies
# (this is safe: none of bins is 0 because of mdt.smooth()):
m = m.log_transform(offset=0., multiplier=1.)

# Reverse the sign:
m = m.linear_transform(offset=0., multiplier=-1.)

# Offset the final distribution so that the lowest value is at 0:
m = m.offset_min(dimensions=1)

mdt.write_splinelib(file("chi3.py", "w"), m, "chi3", density_cutoff=0.1)

text = """
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
"""
m.write_asgl(asglroot='modlib-a', plot_type='PLOT2D', every_x_numbered=20,

text=text, dimensions=1, plot_position=1, plots_per_page=8)
os.system('asgl modlib-a')

The resulting restraints are plotted in modlib-a.ps, also produced by the script above.

Sidechain dihedral angle 𝜒4

Exactly the same considerations apply as to 𝜒2 and 𝜒3. The MDT table is constructed with the following MDT Python
script:

from modeller import *
import mdt
import mdt.features

# See ../bonds/make_mdt.py for additional comments

env = environ()
log.minimal()
env.io.atom_files_directory = ['/salilab/park2/database/pdb/divided/']

mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
chi4 = mdt.features.Chi4Dihedral(mlib, bins=mdt.uniform_bins(144, -180, 2.5))

m = mdt.Table(mlib, features=(xray, restyp, chi4))

a = alignment(env)
f = modfile.File('../cluster-PDB/pdb_60.pir', 'r')

(continues on next page)
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while a.read_one(f):
m.add_alignment(a)

m.write('mdt.mdt')

The contents of the MDT table are then plotted with ASGL as follows:

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
chi4 = mdt.features.Chi4Dihedral(mlib, bins=mdt.uniform_bins(144, -180, 2.5))

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, restyp, chi4), offset=(0,0,0), shape=(1,-2,-1))

text = """
SET X_LABEL_STYLE = 2, X_TICK_LABEL = -999 -999
SET X_TICK = -999 -999 -999
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
SET NO_XY_SCOLUMNS = 1 1, XY_SCOLUMNS = 2 1
FILL_COLUMN COLUMN = 2, COLUMN_PARAMETERS = -180. 2.5
SET BAR_XSHIFT = 1.25
"""
m.write_asgl(asglroot='asgl1-a', plots_per_page=8, dimensions=1,

plot_position=1, every_x_numbered=20, text=text, x_decimal=0)

os.system("asgl asgl1-a")
os.system("ps2pdf asgl1-a.ps")

giving a set of 𝜒4 plots. The final MODELLER MDT library is produced with:

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
chi4 = mdt.features.Chi4Dihedral(mlib, bins=mdt.uniform_bins(144, -180, 2.5))

m = mdt.Table(mlib, file='mdt.mdt')

# remove the bins corresponding to undefined values for each of the 3 variables:
m = m.reshape(features=(xray, restyp, chi4), offset=(0,0,0), shape=(1,-2,-1))

# Let's get rid of the resolution variable from the output MDT table:
m = m.integrate(features=(restyp, chi4))

(continues on next page)
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# Process the raw histograms to get appropriate pdf 1D splines for restraints:

# Start by smoothing with a uniform prior (equal weight when 10 points per bin),
# producing a normalized distribution that sums to 1 (not a pdf when dx != 1):
m = m.smooth(dimensions=1, weight=10)

# Normalize it to get the true pdf (Integral p(x) dx = 1):
# (the scaling actually does not matter, because I am eventually taking the
# log and subtracting the smallest element of the final pdf, so this command
# could be omitted without impact):
m = m.normalize(to_pdf=True, dimensions=1, dx_dy=2.5, to_zero=True)

# Take the logarithm of the smoothed frequencies
# (this is safe: none of bins is 0 because of mdt.smooth()):
m = m.log_transform(offset=0., multiplier=1.)

# Reverse the sign:
m = m.linear_transform(offset=0., multiplier=-1.)

# Offset the final distribution so that the lowest value is at 0:
m = m.offset_min(dimensions=1)

mdt.write_splinelib(file("chi4.py", "w"), m, "chi4", density_cutoff=0.1)

text = """
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
"""
m.write_asgl(asglroot='modlib-a', plot_type='PLOT2D', every_x_numbered=20,

text=text, dimensions=1, plot_position=1, plots_per_page=8)
os.system('asgl modlib-a')

The resulting restraints are plotted in modlib-a.ps, also produced by the script above.

Mainchain dihedral angle Φ

Exactly the same considerations apply as to 𝜒2, 𝜒3, and 𝜒4. The MDT table is constructed with the following MDT
Python script:

from modeller import *
import mdt
import mdt.features

# See ../bonds/make_mdt.py for additional comments

env = environ()
log.minimal()
env.io.atom_files_directory = ['/salilab/park2/database/pdb/divided/']

mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
phi = mdt.features.PhiDihedral(mlib, bins=mdt.uniform_bins(72, -180, 5.0))

(continues on next page)
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m = mdt.Table(mlib, features=(xray, restyp, phi))

a = alignment(env)
f = modfile.File('../cluster-PDB/pdb_60.pir', 'r')
while a.read_one(f):

m.add_alignment(a)

m.write('mdt.mdt')

The contents of the MDT table are then plotted with ASGL as follows:

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
phi = mdt.features.PhiDihedral(mlib, bins=mdt.uniform_bins(72, -180, 5.0))

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, restyp, phi), offset=(0,0,0), shape=(-1,-2,-1))

text = """
SET X_LABEL_STYLE = 2, X_TICK_LABEL = -999 -999
SET X_TICK = -999 -999 -999
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
SET NO_XY_SCOLUMNS = 1 1, XY_SCOLUMNS = 2 1
FILL_COLUMN COLUMN = 2, COLUMN_PARAMETERS = -180. 2.5
SET BAR_XSHIFT = 1.25
"""
m.write_asgl(asglroot='asgl1-a', plots_per_page=8, dimensions=1,

plot_position=1, every_x_numbered=20, text=text, x_decimal=0)

os.system("asgl asgl1-a")
os.system("ps2pdf asgl1-a.ps")

giving a set of Φ plots. The final MODELLER MDT library is produced with:

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
phi = mdt.features.PhiDihedral(mlib, bins=mdt.uniform_bins(72, -180, 5.0))

m = mdt.Table(mlib, file='mdt.mdt')

(continues on next page)

26 Chapter 1. Contents



MDT Documentation, Release 5.5

(continued from previous page)

# remove the bins corresponding to undefined values for each of the 3 variables:
m = m.reshape(features=(xray, restyp, phi), offset=(0,0,0), shape=(-1,-2,-1))

# Let's get rid of the resolution variable from the output MDT table:
m = m.integrate(features=(restyp, phi))

# Process the raw histograms to get appropriate pdf 1D splines for restraints:

# Start by smoothing with a uniform prior (equal weight when 10 points per bin),
# producing a normalized distribution that sums to 1 (not a pdf when dx != 1):
m = m.smooth(dimensions=1, weight=10)

# Normalize it to get the true pdf (Integral p(x) dx = 1):
# (the scaling actually does not matter, because I am eventually taking the
# log and subtracting the smallest element of the final pdf, so this command
# could be omitted without impact):
m = m.normalize(to_pdf=True, dimensions=1, dx_dy=2.5, to_zero=True)

# Take the logarithm of the smoothed frequencies
# (this is safe: none of bins is 0 because of mdt.smooth()):
m = m.log_transform(offset=0., multiplier=1.)

# Reverse the sign:
m = m.linear_transform(offset=0., multiplier=-1.)

# Offset the final distribution so that the lowest value is at 0:
m = m.offset_min(dimensions=1)

mdt.write_splinelib(file("phi.py", "w"), m, "phi", density_cutoff=0.1)

text = """
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
"""
m.write_asgl(asglroot='modlib-a', plot_type='PLOT2D', every_x_numbered=20,

text=text, dimensions=1, plot_position=1, plots_per_page=8)
os.system('asgl modlib-a')

The resulting restraints are plotted in modlib-a.ps, also produced by the script above.

Mainchain dihedral angle Ψ

Exactly the same considerations apply as to 𝜒2, 𝜒3, 𝜒4, and Φ. The MDT table is constructed with the following
MDT Python script:

from modeller import *
import mdt
import mdt.features

# See ../bonds/make_mdt.py for additional comments

env = environ()
log.minimal()
env.io.atom_files_directory = ['/salilab/park2/database/pdb/divided/']

(continues on next page)
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mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
psi = mdt.features.PsiDihedral(mlib, bins=mdt.uniform_bins(72, -180, 5.0))

m = mdt.Table(mlib, features=(xray, restyp, psi))

a = alignment(env)
f = modfile.File('../cluster-PDB/pdb_60.pir', 'r')
while a.read_one(f):

m.add_alignment(a)

m.write('mdt.mdt')

The contents of the MDT table are then plotted with ASGL as follows:

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
psi = mdt.features.PsiDihedral(mlib, bins=mdt.uniform_bins(72, -180, 5.0))

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, restyp, psi), offset=(0,0,0), shape=(-1,-2,-1))

text = """
SET X_LABEL_STYLE = 2, X_TICK_LABEL = -999 -999
SET X_TICK = -999 -999 -999
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
SET NO_XY_SCOLUMNS = 1 1, XY_SCOLUMNS = 2 1
FILL_COLUMN COLUMN = 2, COLUMN_PARAMETERS = -180. 2.5
SET BAR_XSHIFT = 1.25
"""
m.write_asgl(asglroot='asgl1-a', plots_per_page=8, dimensions=1,

plot_position=1, every_x_numbered=20, text=text, x_decimal=0)

os.system("asgl asgl1-a")
os.system("ps2pdf asgl1-a.ps")

giving a set of Ψ plots. The final MODELLER MDT library is produced with:

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])

(continues on next page)
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restyp = mdt.features.ResidueType(mlib)
psi = mdt.features.PsiDihedral(mlib, bins=mdt.uniform_bins(72, -180, 5.0))

m = mdt.Table(mlib, file='mdt.mdt')

# remove the bins corresponding to undefined values for each of the 3 variables:
m = m.reshape(features=(xray, restyp, psi), offset=(0,0,0), shape=(-1,-2,-1))

# Let's get rid of the resolution variable from the output MDT table:
m = m.integrate(features=(restyp, psi))

# Process the raw histograms to get appropriate pdf 1D splines for restraints:

# Start by smoothing with a uniform prior (equal weight when 10 points per bin),
# producing a normalized distribution that sums to 1 (not a pdf when dx != 1):
m = m.smooth(dimensions=1, weight=10)

# Normalize it to get the true pdf (Integral p(x) dx = 1):
# (the scaling actually does not matter, because I am eventually taking the
# log and subtracting the smallest element of the final pdf, so this command
# could be omitted without impact):
m = m.normalize(to_pdf=True, dimensions=1, dx_dy=2.5, to_zero=True)

# Take the logarithm of the smoothed frequencies
# (this is safe: none of bins is 0 because of mdt.smooth()):
m = m.log_transform(offset=0., multiplier=1.)

# Reverse the sign:
m = m.linear_transform(offset=0., multiplier=-1.)

# Offset the final distribution so that the lowest value is at 0:
m = m.offset_min(dimensions=1)

mdt.write_splinelib(file("psi.py", "w"), m, "psi", density_cutoff=0.1)

text = """
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
"""
m.write_asgl(asglroot='modlib-a', plot_type='PLOT2D', every_x_numbered=20,

text=text, dimensions=1, plot_position=1, plots_per_page=8)
os.system('asgl modlib-a')

The resulting restraints are plotted in modlib-a.ps, also produced by the script above.

Mainchain dihedral angle 𝜔

This dihedral angle is a little different from all others explored thus far because it depends more strongly on the type
of the subsequent residue than the type of the residue whose dihedral angle is studied; that is, the 𝜔 of the residue
preceding Pro, not the Pro 𝜔, is impacted by the Pro residue. These dependencies are explored with MDT tables
in directory constr2005/omega/run1/. The bottom line is that we need to set delta to 1 when creating our
residue type feature (rather than the default value 0), which will make it refer to the type of the residue after the
residue with the dihedral angle 𝜔.

The next step is to obtain the p(𝜔 | R+1) distributions with finer sampling of 0.5°:
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from modeller import *
import mdt
import mdt.features

# See ../bonds/make_mdt.py for additional comments

env = environ()
log.minimal()
env.io.atom_files_directory = ['/salilab/park2/database/pdb/divided/']

mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp_1 = mdt.features.ResidueType(mlib, delta=1)
omega = mdt.features.OmegaDihedral(mlib, bins=mdt.uniform_bins(720, -180, 0.5))

# This table uses the subsequent residue type, relative to the omega
m = mdt.Table(mlib, features=(xray, restyp_1, omega))

a = alignment(env)
f = modfile.File('../cluster-PDB/pdb_60.pir', 'r')
while a.read_one(f):

m.add_alignment(a)

m.write('mdt.mdt')

The distribution in raw form is then plotted with:

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp_1 = mdt.features.ResidueType(mlib, delta=1)
omega = mdt.features.OmegaDihedral(mlib, bins=mdt.uniform_bins(720, -180, 0.5))

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, restyp_1, omega), offset=(0,0,0), shape=(1,-2,-1))

text = """
SET X_LABEL_STYLE = 2, X_TICK_LABEL = -999 -999
SET X_TICK = -999 -999 -999
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
SET NO_XY_SCOLUMNS = 1 1, XY_SCOLUMNS = 2 1
FILL_COLUMN COLUMN = 2, COLUMN_PARAMETERS = -180. 0.5
SET BAR_XSHIFT = 0.25
"""
m.write_asgl(asglroot='asgl1-a', plots_per_page=8, dimensions=1,

plot_position=1, every_x_numbered=20, text=text, x_decimal=0)

os.system("asgl asgl1-a")
os.system("ps2pdf asgl1-a.ps")

and in logarithmic form with:
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from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp_1 = mdt.features.ResidueType(mlib, delta=1)
omega = mdt.features.OmegaDihedral(mlib, bins=mdt.uniform_bins(720, -180, 0.5))

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, restyp_1, omega), offset=(0,0,0), shape=(1,-2,-1))

text = """
SET X_LABEL_STYLE = 2, X_TICK_LABEL = -999 -999
SET X_TICK = -999 -999 -999
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
SET NO_XY_SCOLUMNS = 1 1, XY_SCOLUMNS = 2 1
FILL_COLUMN COLUMN = 2, COLUMN_PARAMETERS = -180. 0.5
SET BAR_XSHIFT = 0.25
TRANSFORM TRF_TYPE = LOGARITHMIC4, ;

TRF_PARAMETERS = 1 1, NO_XY_SCOLUMNS = 0 1, XY_SCOLUMNS = 1
"""
m.write_asgl(asglroot='asgl2-a', plots_per_page=8, dimensions=1,

plot_position=1, every_x_numbered=20, text=text, x_decimal=0)

os.system("asgl asgl2-a")
os.system("ps2pdf asgl2-a.ps")

Clearly, the peaks are sharp and will best be modeled by Gaussian distributions.

Similarly to 𝜒1, two Gaussian distributions are fit to the histograms with the following ASGL script:

SET TICK_FONT = 13
SET BAR_GRAYNESS = 1.00
SET CAPTION_FONT = 12

SET FIT_PARAM_INITIAL = 87000 0.95 179 5 0 5
CALL ROUTINE = 'gauss2', FILE = 'a.dat', POSITION = 1 0, CAPTION_TEXT = 'A'
CALL ROUTINE = 'gauss2', FILE = 'c.dat', POSITION = 2 0, CAPTION_TEXT = 'C'
CALL ROUTINE = 'gauss2', FILE = 'd.dat', POSITION = 3 0, CAPTION_TEXT = 'D'
CALL ROUTINE = 'gauss2', FILE = 'e.dat', POSITION = 4 0, CAPTION_TEXT = 'E'
CALL ROUTINE = 'gauss2', FILE = 'f.dat', POSITION = 5 0, CAPTION_TEXT = 'F'
CALL ROUTINE = 'gauss2', FILE = 'g.dat', POSITION = 6 0, CAPTION_TEXT = 'G'
CALL ROUTINE = 'gauss2', FILE = 'h.dat', POSITION = 7 0, CAPTION_TEXT = 'H'
CALL ROUTINE = 'gauss2', FILE = 'i.dat', POSITION = 8 0, CAPTION_TEXT = 'I'
NEW_PAGE

CALL ROUTINE = 'gauss2', FILE = 'k.dat', POSITION = 1 0, CAPTION_TEXT = 'K'
CALL ROUTINE = 'gauss2', FILE = 'l.dat', POSITION = 2 0, CAPTION_TEXT = 'L'
CALL ROUTINE = 'gauss2', FILE = 'm.dat', POSITION = 3 0, CAPTION_TEXT = 'M'
CALL ROUTINE = 'gauss2', FILE = 'n.dat', POSITION = 4 0, CAPTION_TEXT = 'N'
CALL ROUTINE = 'gauss2', FILE = 'p.dat', POSITION = 5 0, CAPTION_TEXT = 'P'
CALL ROUTINE = 'gauss2', FILE = 'q.dat', POSITION = 6 0, CAPTION_TEXT = 'Q'
CALL ROUTINE = 'gauss2', FILE = 'r.dat', POSITION = 7 0, CAPTION_TEXT = 'R'

(continues on next page)
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CALL ROUTINE = 'gauss2', FILE = 's.dat', POSITION = 8 0, CAPTION_TEXT = 'S'
NEW_PAGE

CALL ROUTINE = 'gauss2', FILE = 't.dat', POSITION = 1 0, CAPTION_TEXT = 'T'
CALL ROUTINE = 'gauss2', FILE = 'v.dat', POSITION = 2 0, CAPTION_TEXT = 'V'
CALL ROUTINE = 'gauss2', FILE = 'w.dat', POSITION = 3 0, CAPTION_TEXT = 'W'
CALL ROUTINE = 'gauss2', FILE = 'y.dat', POSITION = 4 0, CAPTION_TEXT = 'Y'

SUBROUTINE ROUTINE = 'gauss2'

READ_TABLE
SET X_TICK = -180 10 180, X_TICK_LABEL = 1 6
SET Y_TICK = -999 -999 -999, Y_TICK_LABEL = -999 -999
SET XY_COLUMNS = 0 1
# only to get 1, 2, 3, 4, 5, ... in column 2
WORLD
# get the right X-axis from -180 to +180:
TRANSFORM NO_XY_SCOLUMNS = 1 0, XY_SCOLUMNS = 2, ;

TRF_TYPE = 'LINEAR', TRF_PARAMETERS = -180.25 0.5
WORLD WORLD_WINDOW = -190 0 190 -999
AXES2D
RESET_CAPTIONS
CAPTION CAPTION_POSITION 1
CAPTION CAPTION_POSITION 2, CAPTION_TEXT '@w@'
CAPTION CAPTION_POSITION 3, CAPTION_TEXT 'FREQUENCY'
HIST2D

SET ERROR_COLUMN = 0
SET FIT_MODEL = POLYGAUSS360
# SET FIT_PARAM_INITIAL = 1639 0.3 175 10 0.3 -65 10 60 10
SET FIT_PARAM_INDICES = 1 2 3 4 5 6
FIT

SMOOTH_TABLE SMOOTH_TYPE = 'SPLINE'
PLOT2D PLOT2D_LINE_TYPE = 1, PLOT2D_SYMBOL_TYPE = 0

RETURN
END_SUBROUTINE

The means and standard deviations for each residue type are extracted from fit.log by the ASGL get_prms.F
program, but they are only used to guess the means of 179.8° and 0° and standard deviations of 1.5° and 1.5° for the
two peaks, respectively. The distribution of 𝜔 dihedral angles in the models calculated with these 𝜔 restraints will be
checked carefully and the restraint parameters will be adapted as needed.

The weights of the peaks are not determined reliably by least-squares fitting in this case because the second weight is
very close to 0 (in principle, they can even be less than zero). Therefore, they are determined separately by establishing
p(c𝜔 | R+1) where c𝜔 is the class of the 𝜔 dihedral angle (1 or 2, trans or cis).

The MDT table is constructed with the following MDT Python script:

from modeller import *
import mdt
import mdt.features

# See ../bonds/make_mdt.py for additional comments

(continues on next page)

32 Chapter 1. Contents



MDT Documentation, Release 5.5

(continued from previous page)

env = environ()
log.minimal()
env.io.atom_files_directory = ['/salilab/park2/database/pdb/divided/']

mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp_1 = mdt.features.ResidueType(mlib, delta=1)
omega_class = mdt.features.OmegaClass(mlib)

# Table of the subsequent residue type relative to the omega class
m = mdt.Table(mlib, features=(xray, restyp_1, omega_class))

a = alignment(env)
f = modfile.File('../../cluster-PDB/pdb_60.pir', 'r')
while a.read_one(f):

m.add_alignment(a)

m.write('mdt.mdt')

The contents of the MDT table are then plotted with ASGL as follows:

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp_1 = mdt.features.ResidueType(mlib, delta=1)
omega_class = mdt.features.OmegaClass(mlib)

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, restyp_1, omega_class),

offset=(0,0,0), shape=(1,-2,-1))

text = """
SET X_LABEL_STYLE = 2, X_TICK_LABEL = -999 -999
SET X_TICK = -999 -999 -999
SET TICK_FONT = 5, CAPTION_FONT = 5
SET Y_TICK = -999 -999 -999
SET WORLD_WINDOW = -999 -999 -999 -999
SET NO_XY_SCOLUMNS = 1 1, XY_SCOLUMNS = 2 1
FILL_COLUMN COLUMN = 2, COLUMN_PARAMETERS = 1 1
SET BAR_XSHIFT = 0.5
"""
m.write_asgl(asglroot='asgl1-a', plots_per_page=8, dimensions=1,

plot_position=1, every_x_numbered=20, text=text, x_decimal=0)

os.system("asgl asgl1-a")
os.system("ps2pdf asgl1-a.ps")

giving an omega weights plot.

The library omega.py is edited manually to replace the means and standard deviations with 179.8 0.0 2.3 2.3.
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Mainchain dihedral angles Φ and Ψ

The initial runs in run1 explored Ramachandran maps extracted from different representative sets of structures (e.g.,
clustered by 40% sequence identity) and stratification by the crystallographic residue Biso as well as resolution and
residue type. We ended up with the sample and stratification described above.

The 2D histograms p(Φ, Ψ | R) are derived with:

from modeller import *
import mdt
import mdt.features

# See ../bonds/make_mdt.py for additional comments

env = environ()
log.minimal()
env.io.atom_files_directory = ['/salilab/park2/database/pdb/divided/']

mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
psi = mdt.features.PsiDihedral(mlib, bins=mdt.uniform_bins(72, -180, 5.0))
phi = mdt.features.PhiDihedral(mlib, bins=mdt.uniform_bins(72, -180, 5.0))

m = mdt.Table(mlib, features=(xray, restyp, psi, phi))

a = alignment(env)
f = modfile.File('../cluster-PDB/pdb_60.pir', 'r')
while a.read_one(f):

m.add_alignment(a)

m.write('mdt.mdt')

They are plotted with

from modeller import *
import os
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
psi = mdt.features.PsiDihedral(mlib, bins=mdt.uniform_bins(72, -180, 5.0))
phi = mdt.features.PhiDihedral(mlib, bins=mdt.uniform_bins(72, -180, 5.0))

m = mdt.Table(mlib, file='mdt.mdt')
m = m.reshape(features=(xray, restyp, psi, phi),

offset=(0,0,0,0), shape=(1,-2,-1,-1))

text = """
SET TICK_FONT = 5, CAPTION_FONT = 5
SET WORLD_WINDOW = -999 -999 -999 -999
SET NO_XY_SCOLUMNS = 0 0, DPLOT_BOUNDS 0.0 -999
TRANSFORM TRF_TYPE=LOGARITHMIC4, TRF_PARAMETERS=10 1
"""
m.write_asgl(asglroot='asgl1-a', plots_per_page=3, dimensions=2,

(continues on next page)
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(continued from previous page)

plot_position=9, every_x_numbered=12, every_y_numbered=12,
text=text, x_decimal=0, y_decimal=0)

os.system("asgl asgl1-a")
os.system("ps2pdf asgl1-a.ps")

giving a set of Φ/Ψ plots.

The distributions are clearly not 2D Gaussian functions and need to be approximated by 2D cubic splines. Exploring
and visualizing various smoothing options results in the following file to produce the final MODELLER MDT library:

from modeller import *
import mdt
import mdt.features

env = environ()
mlib = mdt.Library(env)
xray = mdt.features.XRayResolution(mlib, bins=[(0.51, 2.001, 'High res(2.0A)')])
restyp = mdt.features.ResidueType(mlib)
psi = mdt.features.PsiDihedral(mlib, bins=mdt.uniform_bins(72, -180, 5.0))
phi = mdt.features.PhiDihedral(mlib, bins=mdt.uniform_bins(72, -180, 5.0))

m = mdt.Table(mlib, file='mdt.mdt')

# Eliminate the bins corresponding to undefined values:
m = m.reshape(features=(xray, restyp, psi, phi), offset=(0,0,0,0),

shape=(1,-2,-1,-1))

# Let's get rid of the resolution variable from the output MDT table:
m = m.integrate(features=(restyp, psi, phi))

# Process the raw histograms to get appropriate pdf 1D splines for restraints:

# Start by smoothing with a uniform prior (equal weight when 10 points per bin),
# producing a normalized distribution that sums to 1 (not a pdf when dx != 1):
m = m.smooth(dimensions=2, weight=10)

# Normalize it to get the true pdf (Integral p(x) dx = 1):
# (the scaling actually does not matter, because I am eventually taking the
# log and subtracting the smallest element of the final pdf, so this command
# could be omitted without impact):
m = m.normalize(to_pdf=True, dimensions=2, dx_dy=(5., 5.), to_zero=True)

# Take the logarithm of the smoothed frequencies
# (this is safe: none of bins is 0 because of mdt.smooth()):
m = m.log_transform(offset=0., multiplier=1.)

# Reverse the sign:
m = m.linear_transform(offset=0., multiplier=-1.)

# Offset the final distribution so that the lowest value is at 0:
m = m.offset_min(dimensions=2)

mdt.write_2dsplinelib(file("phipsi.py", "w"), m, density_cutoff=0.1)

The raw, smooth, and transformed surfaces are visualized and compared best with Mathematica.
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1.3.3 Non-bonded restraints

A general pairwise distance- and atom-type dependent statistical potential for all atom type pairs has been derived by
Min-yi Shen (DOPE). MDT could, however, be used to derive specialized pairwise non-bonded restraints.

1.4 The mdt Python module

MDT, a module for protein structure analysis.

Copyright 1989-2020 Andrej Sali.

MDT is free software: you can redistribute it and/or modify it under the terms of version 2 of the GNU General Public
License as published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with MDT. If not, see <http://www.gnu.
org/licenses/>.

1.4.1 Setup of the MDT system

class mdt.Library(env, distance_atoms=(’CA’, ’CA’), special_atoms=False, hbond_cutoff=3.5)
Library data used in the construction and use of MDTs.

Parameters

• env: the Modeller environment to use

• distance_atoms: the atom types to use for the features.ResidueDistance feature

• special_atoms: whether to treat disulfide and termini atoms specially for atom class features
(see features.AtomType)

• hbond_cutoff : maximum separation between two H-bonded atoms (see features.
HydrogenBondDonor)

angle_classes
Angle classes; see BondClasses

atom_classes
Atom classes; see BondClasses

bond_classes
Bond classes; see BondClasses

dihedral_classes
Dihedral classes; see BondClasses

hbond_classes
Hydrogen bond atom classes; see HydrogenBondClasses

tuple_classes
Atom tuple classes; see TupleClasses and Tuple features

class mdt.TupleClasses(mlib)
Classifications of tuples of atoms into classes. Usually accessed as Library.tuple_classes. These
classes are used by tuple or tuple pair features.
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read(filename)
Read atom tuple information from filename. This is a text file with a format similar to that accepted
by BondClasses.read(). The file can consist either of sets of atom triplets (named with TRPGRP
lines and containing triples of atoms named on TRIPLET lines) or sets of atom doublets using DBLGRP
and DOUBLET lines. Each atom but the first in each doublet or triplet can also be restricted to match
only in certain residue types by naming the residue in parentheses before the rest of the atom name (and
CHARMM-style + or - qualifier). For example, a suitable atom triplet file looks like:

TRPGRP 't1'
TRIPLET 'ALA' 'CA' '+C' '-C'

TRPGRP 't2'
TRIPLET 'ALA' 'CA' '(CYS)+C' '-C'

The first triplet is named ‘t1’ and will match any set of three atoms where the first is called CA in an ALA
residue, and the other two atoms are C atoms in the previous and next residue. The second triplet is similar
but will only include triplets where the next residue is a CYS.

class mdt.BondClasses(mlib, n_atom)
Classifications of atoms/bonds/angles/dihedrals into classes. These classes are used by atom and chemical
bond features. Usually accessed as Library.atom_classes, Library.bond_classes, Library.
angle_classes, or Library.dihedral_classes. (There is no need to create your own BondClasses
objects.)

read(filename)
Read class information from filename. This is a text file with a simple format. Each line either denotes the
start of a new named class, or names a member of the last-named class, as a residue name followed by one
or more atom names. For example, an atom class file might start with:

ATMGRP 'AC'
ATOM 'ALA' 'CA'
ATOM 'ALA' 'C'
ATOM '*' 'CB'

Thus, the first atom class is called ‘AC’ and any CA or C atom in an ALA residue, or the CB atom in any
residue, will be placed in this class.

Bond class files are similar but use BNDGRP and BOND lines, each of which names two atoms:

BNDGRP 'ALA:C:+N'
BOND 'ALA' 'C' '+N'

Note that CHARMM-style + or - prefixes can be added to atom names for all but the first atom on a BOND
line, to indicate the atom must be found in the next or previous residue.

Angle class files use ANGGRP and ANGLE lines; each ANGLE line names three atoms. Dihedral class
files use DIHGRP and DIHEDRAL lines; each DIHEDRAL line names four atoms.

class mdt.HydrogenBondClasses(mlib)
Classifications of atoms into hydrogen bond classes. Usually accessed as Library.hbond_classes. These
classes are used by the features.HydrogenBondAcceptor, features.HydrogenBondDonor and
features.HydrogenBondSatisfaction features.

read(filename)
Read hydrogen bond atom class information from a file
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1.4.2 Creation and manipulation of data tables

class mdt.Table(mlib, file=None, features=None, bin_type=<mdt._BinType object>, shape=[])
A multi-dimensional table.

Parameters

• mlib: the MDT Library object to use

• file: if specified, the filename to read the initial table from (if the name ends with ‘.hdf5’,
Table.read_hdf5() is used, otherwise Table.read())

• features: if specified (and file is not), a list of feature types to initialize the table with (using
Table.make())

• bin_type: type of storage for bin data (see Storage for bin data).

• shape: if specified with features, the shape of the new table (see Table.make())

Individual elements from the table can be accessed in standard Python fashion, e.g.

>>> import mdt.features
>>> import modeller
>>> env = modeller.environ()
>>> mlib = mdt.Library(env)
>>> restyp1 = mdt.features.ResidueType(mlib, protein=0)
>>> restyp2 = mdt.features.ResidueType(mlib, protein=1)
>>> gap = mdt.features.GapDistance(mlib, mdt.uniform_bins(10, 0, 1))
>>> m = mdt.Table(mlib, features=(restyp1,restyp2,gap))
>>> print m[0,0,0]

You can also access an element as m[0][0][0], a 1D section as m[0][0], or a 2D section as m[0]. See
TableSection.

add_alignment(aln, distngh=6.0, surftyp=1, accessibility_type=8, residue_span_range=(-99999, -2,
2, 99999), chain_span_range=(-99999, 0, 0, 99999), bond_span_range=None, disul-
fide=False, exclude_bonds=False, exclude_angles=False, exclude_dihedrals=False,
sympairs=False, symtriples=False, io=None, edat=None)

Add data from a Modeller alignment to this MDT. This method will first scan through all proteins, pairs
of proteins, or triples of proteins in the alignment (it will scan all triples if the mdt.Library contains
features defined on all of proteins 0, 1 and 2, pairs if the features are defined on two different proteins, and
individual proteins otherwise). Within each protein, it may then scan through all residues, atoms, etc. if
the features request it (see the scan types table).

Parameters

• aln: Modeller alignment.

• distngh: distance below which residues are considered neighbors. Used by features.
NeighborhoodDifference.

• surftyp: 1 for PSA contact area, 2 for surface area. Used by features.
AtomAccessibility .

• accessibility_type: PSA accessibility type (1-10). Used by features.
AtomAccessibility .

• residue_span_range: sequence separation (inclusive) for residue pair, atom pair and tuple
pair features. For the two residue indices r1 and r2 in the tuple-tuple and atom- atom
cases, or two alignment position indices in the residue-residue case, the following must be
true:
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residue_span_range[0] <= (r2 - r1) <= residue_span_range[1]

residue_span_range[2] <= (r2 - r1) <= residue_span_range[3]

For symmetric residue-residue features, only one condition must be met:

residue_span_range[2] <= abs(r2 - r1) <= residue_span_range[3]

For example, the default value of (-99999, -2, 2, 99999) excludes all pairs within the same
residue (for which the sequence separation is 0) or within adjacent residues (for which the
separation is 1 or -1).

• chain_span_range: works like residue_span_range, but for the chain indices. It is used
only by the atom pair and tuple pair features. The default value of (-99999, 0, 0, 99999)
allows all interactions. For example, using (-99999, -1, 1, 99999) instead would exclude
all interactions within the same chain.

• bond_span_range: if given, it should be a list of two integers which specify the minimum
and maximum number of bonds that separate a pair of atoms in the scan. It is used only
by the atom pair and tuple pair features. (See features.AtomBondSeparation
for more details.) The bond library (see Library.bond_classes) must be loaded to
use this. For example, using (1, 2) will include only atoms that are directly chemically
bonded or that are both bonded to a third atom, while (0, 9999) will only exclude pairs of
atoms that have no path of bonds between them (e.g. atoms in different chains or when at
least one of the atoms is not involved in any bonds). As a special case, if the maximum
span is negative, no limit is enforced. For example, (2, 99999) will include all atoms that
have a path of bonds between them except directly bonded pairs (and thus exclude pairs in
different chains) while (2, -1) will also include inter-chain interactions.

• disulfide: if True, then the bond_span_range considers disulfide bonds (defined as any
pair of SG atoms in CYS residues less than 2.5 angstroms apart) when calculating the
bond separation between atoms. Only disulfide bridges within 3 residues of the atom pair
are considered for computational efficiency.

• exclude_bonds: if True, then all pairs of atoms involved in a chemical bond (see
Library.bond_classes) are excluded from atom pair and tuple pair features.

• exclude_angles: if True, then the 1-3 pair of atoms from each angle are excluded (see
exclude_bonds).

• exclude_dihedrals: if True, then the 1-4 pair of atoms from each dihedral are excluded
(see exclude_bonds).

• sympairs: if True, then protein pair scans are done in a symmetric fashion - e.g. when
scanning an alignment of A, B and C, the following pairs are scanned: AB, BC, AC. By
default a non-symmetric scan is performed, scanning AB, BC, AC, BA, CB, CA.

• symtriples: if True, then protein triple scans are done in a symmetric fashion - e.g. when
scanning an alignment of A, B and C, the following triples are scanned: ABC, ACB, BAC.
By default a non-symmetric scan is performed, scanning ABC, ACB, BAC, CBA, BCA,
CAB.

add_alignment_witherr(aln, distngh=6.0, surftyp=1, accessibility_type=8,
residue_span_range=(-99999, -2, 2, 99999), chain_span_range=(-
99999, 0, 0, 99999), bond_span_range=None, disulfide=False,
exclude_bonds=False, exclude_angles=False, exclude_dihedrals=False,
sympairs=False, symtriples=False, io=None, edat=None, er-
rorscale=1)

Add data from a Modeller alignment to this MDT. Same as add_alignment except the errors in data are
taken into account. The parameter errorscale controls how the error is used:
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• 0: the errors are ignored; this function is the same as add_alignment.

• >0 [the errors are taken into account by propagating the errors] in each axis of each atom into the
calculated distances or angles. The errors in the position of individual atoms are first calculated
using B-iso, X-ray resolution, and R-factor, and then divided by this errorscale value.

clear()
Clear the table (set all bins to zero)

close(dimensions)
Attempt to ‘close’ the MDT, so that it is useful for creating splines of periodic features.

If dimensions = 1, it makes the two terminal points equal to their average. If dimensions = 2, it applies the
averages to both pairs of edges and then again to all four corner points.

Returns the closed MDT.

Return type Table

copy(bin_type=None)
If bin_type is specified, it is the storage type to convert the bin data to (see Storage for bin data).

Returns a copy of this MDT table.

Return type Table

entropy_full()
Print full entropy information.

entropy_hx()
The MDT is integrated to get a 1D histogram, then normalized by the sum of the bin values. Finally,
entropy is calculated as Σi -pi ln pi

Returns the entropy of the last dependent variable.

Return type float

exp_transform(offset, expoffset, multiplier, power)
Apply an exponential transform to the MDT. Each element in the new MDT, b, is obtained from the original
MDT element a, using the following relation: b = offset + exp(expoffset + multiplier * a ^ power).

Return type Table

get_array_view()
Get a NumPy array ‘view’ of this Table. The array contains all of the raw data in the MDT table, allowing
it to be manipulated with NumPy functions. The data are not copied; modifications made to the data by
NumPy affect the data in the Table (and vice versa).

Functions that destroy the data in the Table (Table.make(), Table.read() and Table.
read_hdf5()) cannot be called if any NumPy array views exist, since they would invalidate the views.
The views must first be deleted.

If MDT was not built with NumPy support, a NotImplementedError exception is raised. If NumPy cannot
be loaded, an ImportError is raised.

Returns a view of this table.

Return type NumPy array

integrate(features)
Integrate the MDT, and reorder the features. This is useful for squeezing large MDT arrays into smaller
ones, and also for eliminating unwanted features (such as X-ray resolution) in preparation for Table.
write().

Parameters
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• features: the new features (all must be present in the original MDT).

Returns the integrated MDT.

Return type Table

inverse_transform(offset, multiplier, undefined=0.0)
Apply an inverse transform to the MDT. Each element in the new MDT, b, is obtained from the original
MDT element a, using the following relation: b = offset + multiplier / a. Where a is zero, b is assigned to
be undefined.

Returns the transformed MDT.

Return type Table

linear_transform(offset, multiplier)
Apply a linear transform to the MDT. Each element in the new MDT, b, is obtained from the original MDT
element a, using the following relation: b = offset + a * multiplier.

Returns the transformed MDT.

Return type Table

log_transform(offset, multiplier, undefined=0.0)
Apply a log transform to the MDT. Each element in the new MDT, b, is obtained from the original MDT
element a, using the following relation: b = ln(offset + multiplier * a). Where this would involve the
logarithm of a negative number, b is assigned to be undefined.

Returns the transformed MDT.

Return type Table

make(features, shape=[])
Clear the table, and set the features. features must be a list of previously created objects from the mdt.
features module. If given, shape has the same meaning as in Table.reshape() and causes the
table to use only a subset of the feature bins.

ValueError is raised if any views of the table exist (see Table.get_array_view()).

n_protein_pairs
Number of protein pairs

n_proteins
Number of proteins

normalize(dimensions, dx_dy, to_zero, to_pdf)
Normalize or scale the MDT. It does not really matter what the contents of the input MDT are; sensible
contents include the raw or normalized frequencies.

Parameters

• dimensions: specifies whether a 1D or a 2D table is normalized. More precisely, the input
distributions are p(x | a, b, c, . . . ) if dimensions = 1, or p(x, y | a, b, c, . . . ) if dimensions =
2, where y and x are the second to last and last features in the list of features.

• dx_dy: widths of the bins (either one or two numbers, depending on dimensions). If the
value of either dx or dy is -999, the corresponding bin width is extracted from the MDT
data structure (not available for all features).

• to_zero: if the histogram is empty, setting this True will set the bin values to zero, and
False will yield a uniform distribution. It has no effect when the histogram is not empty.
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• to_pdf : if False, the output is obtained by scaling the input such that for 1D histograms
Σ i p(x i) = 1, and for 2D histograms Σ i,j p(x i,j) = 1. Note that dx_dy is not taken into
account during this scaling.

If it is True, the normalization takes into account dx_dy so that the normalized distribution
is actually a PDF. That is, Σ i p(x i) dx = 1 for 1D and Σ i,j p(x i,j) dx dy = 1 for 2D, where
dx and dy are the widths of the bins.

Returns the normalized MDT.

Return type Table

offset_min(dimensions)
Offset the MDT by the minimum value, either in each 1D section (dimensions = 1) or in each 2D section
(dimensions = 2).

Returns the transformed MDT.

Return type Table

open_alignment(aln, distngh=6.0, surftyp=1, accessibility_type=8, sympairs=False,
symtriples=False, io=None, edat=None)

Open a Modeller alignment to allow MDT indices to be queried (see Source). Arguments are as for
Table.add_alignment().

Return type Source

pdf
Whether this MDT is a PDF

read(file)
Read an MDT from file. ValueError is raised if any views of the table exist (see Table.
get_array_view()).

read_hdf5(file)
Read an MDT in HDF5 format from file. ValueError is raised if any views of the table exist (see Table.
get_array_view()).

reshape(features, offset, shape)
Reorder the MDT features and optionally decrease their ranges. When an MDT is created, each feature
has exactly the bins defined in the Library’s bin file. However, for each feature, you can change the offset
(initial number of bins from the bin file to omit) from the default 0, and the shape (total number of bins).

All parameters should be lists with the same number of elements as the MDT has features.

Parameters

• features: the new ordering of the MDT features.

• offset: the new offset (see offset).

• shape: the new shape (see shape). If any element in this list is 0 or negative, it is added to
the MDT’s existing shape to get the new value. Thus, a value of 0 would leave the shape
unchanged, -1 would remove the last (undefined) bin, etc.

Returns the reshaped MDT.

Return type Table

sample_size
Number of sample points

smooth(dimensions, weight)
Smooth the MDT with a uniform prior. The MDT is treated either as a histogram (if dimensions = 1) or
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a 2D density (dimensions = 2) of dependent features (the last 1 or 2 features in the table) and a uniform
distribution is added followed by scaling:

pi = w1 / n + w2 vi / S

S = Σi
n vi

w1 = 1 / ( 1 + S / (weight * n))

w2 = 1 - w1

where v is the input MDT array, n is the number of bins in the histogram, and p is the output MDT array,
smoothed and normalized. weight is the number of points per bin in the histogram at which the relative
weights of the input histogram and the uniform prior are equal.

The sum of the bins in the output MDT array is 1, for each histogram.

Note that the resulting output MDT array is not necessarily a PDF, because the bin widths are not taken
into account during scaling. That is, the sum of all bin values multiplied by the bin widths is not 1 if the
bin widths are not 1.

Returns the smoothed MDT.

Return type Table

super_smooth(dimensions, prior_weight, entropy_weighing)
Multi-level smoothing. This super-smoothes the raw frequencies in the MDT using the hierarchical
smoothing procedure for 1D histograms described in Sali and Blundell, JMB 1993. It was also employed
in Sali and Overington, Prot Sci. 1994.

Briefly, the idea is to recursively construct the best possible prior distribution for smoothing 1D data p(x |
a, b, c, . . . ). The best prior is a weighted sum (weights optionally based on entropy) of the best possible
estimate of p(x | a, b, . . . ) integrated over c for each c. Each one of these can itself be obtained from a
prior and the data, and so on recursively.

The example above is for a single dependent feature (x), which is the case when dimensions = 1. x should
be the last feature in the table. dimensions can be set to other values if you have more dependent features
- for example, dimensions = 2 will work with p(x, y | a, b, c, . . . ) where x and y are the last two features in
the table.

Parameters

• dimensions: Number of dependent features.

• prior_weight: Weight for the prior distribution.

• entropy_weighing: Whether to weight distributions by their entropies.

Returns the smoothed MDT.

Return type Table

symmetric
True if a symmetric scan can be performed

write(file, write_preamble=True)
Write the table to file. If write_preamble is False, it will only write out the contents of the MDT table,
without the preamble including the feature list, bins, etc. This is useful for example for creating a file to
be read by another program, such as Mathematica.

write_asgl(asglroot, text, dimensions, plot_position, plots_per_page, plot_density_cutoff=-
1.0, plot_type=’HIST2D’, every_x_numbered=1, every_y_numbered=1, x_decimal=1,
y_decimal=1)

Make input files for ASGL.
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Parameters

• asglroot: filename prefix for ASGL TOP script and data files.

• text: ASGL command lines that are written for each plot.

• dimensions: whether to make 1D or 2D plots.

• plot_position: position of the plot on the page, in ASGL convention.

• plots_per_page: number of plots per page.

• plot_density_cutoff : the minimal sum of the bin values that each plot has to have before it
is actually written out; otherwise it is ignored. This helps to avoid wasting paper on empty
plots when the MDT array data are sparse.

• plot_type: select ‘HIST2D’ or ‘PLOT2D’ when dimensions = 2.

• every_x_numbered: spacing for labels on the X axis.

• every_y_numbered: spacing for labels on the Y axis.

• x_decimal: the number of decimal places used to write X feature values.

• y_decimal: the number of decimal places used to write Y feature values.

write_hdf5(file, gzip=False, chunk_size=10485760)
Write an MDT in HDF5 format to file. Certain library information (such as the mapping from feature
values to bin indices, and atom or tuple class information) and information about the last scan is also
written to the file. (This information will be missing or incomplete if add_alignment() hasn’t first
been called.) Note that this information is not read back in by read_hdf5(); it is intended primarily
for other programs that want to reproduce the environment in which the MDT was generated as closely as
possible.

Parameters

• gzip: If True, compress the table in the HDF5 file with gzip using the default compresion
level; if a number from 0-9, compress using that gzip compression level (0=no compres-
sion, 9=most); if False (the default) do not compress.

• chunk_size: when using gzip, the table must be split up into chunks (otherwise it is written
contiguously). This parameter can either be a list (the same length as the number of fea-
tures) defining the size of each chunk, or it can be the approximate number of data points
in each chunk, in which case the dimensions of the chunk are chosen automatically.

class mdt.TableSection(mdt, indices)
A section of a multi-dimensional table. You should not create TableSection objects directly, but rather by
indexing a Table object, as a TableSection is just a ‘view’ into an existing table. For example,

>>> m = mdt.Table(mlib, features=(residue_type, xray_resolution))
>>> print m[0].entropy()

would create a section (using m[0]) which is a 1D table over the 2nd feature (X-ray resolution) for the first
bin (0) of the first feature (residue type), and then get the entropy using the TableSection.entropy()
method.

entropy()
Entropy of all points in the table

features
Features in this MDT; a list of Feature objects

mean_stdev()
Mean and standard deviation of the table
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offset
Array offsets; see Feature.offset

shape
Array shape; the number of bins for each feature

sum()
Sum of all points in the table

class mdt.Feature(mdt, indx)
A single feature in an MDT. Generally accessed as TableSection.features.

bins
Feature bins; a list of Bin objects

ifeat
Integer type

offset
Offset of first bin compared to the MDT library feature (usually 0, but can be changed with Table.
reshape())

periodic
Whether feature is periodic

class mdt.Bin(feature, indx)
A single bin in a feature. Generally accessed as Feature.bins.

range
Bin range; usually the minimum and maximum floating-point values for the feature to be placed in this
bin.

symbol
Bin symbol

class mdt.Source(mdt, mlib, aln, distngh, surftyp, accessibility_type, sympairs, symtriples, io, edat)
A source of data for an MDT (generally a Modeller alignment, opened with Table.open_alignment()).

index(feat, is1, ip1, is2, ir1, ir2, ir1p, ir2p, ia1, ia1p, ip2, ibnd1, ibnd1p, is3, ir3, ir3p)
Return the bin index (starting at 1) of a single MDT feature. (Arguments ending in 2 and 3 are used for
features involving pairs or triples of proteins.)

Warning: This is a low-level interface, and no bounds checking is performed on these parameters.
Avoid this function if possible.

Parameters

• feat: MDT feature object from mdt.features module.

• is1: index of the sequence within the alignment.

• ip1: position within the sequence (i.e. including gaps).

• ir1: residue index (i.e. not including alignment gaps).

• ir1p: second residue index for residue-residue features.

• ia1: atom index.

• ia1p: second atom index for atom-atom features.

• ibnd1: bond or tuple index.
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• ibnd1p: second bond/tuple index for bond-bond or tuple-tuple features.

sum(residue_span_range=(-99999, -2, 2, 99999), chain_span_range=(-99999, 0, 0, 99999),
bond_span_range=None, disulfide=False, exclude_bonds=False, exclude_angles=False, ex-
clude_dihedrals=False)
Scan all data points in the source, and return the sum. See Table.add_alignment() for a description
of the residue_span_range, chain_span_range and exclude_* arguments.

1.4.3 Library information

mdt.version
The full MDT version number, as a string, e.g. ‘5.0’ or ‘SVN’.

mdt.version_info
For release builds, the major and minor version numbers as a tuple of integers - e.g. (5, 0). For SVN builds, this
is the same as ‘version’.

1.4.4 Utility functions

mdt.uniform_bins(num, start, width)
Make a list of num equally-sized bins, each of which has the given width, and starting at start. This is suitable
for input to any of the classes in mdt.features which need a list of bins.

mdt.write_bondlib(fh, mdt, density_cutoff=None, entropy_cutoff=None)
Write out a Modeller bond library file from an MDT. The input MDT should be a 2D table (usually of bond
type and bond distance). For each bond type, the 1D MDT section (see TableSection) of bond distance is
examined, and its mean and standard deviation used to generate a Modeller harmonic restraint.

Parameters

• fh: Python file to write to

• mdt: input MDT Table object

• density_cutoff : if specified, MDT bond distance sections with sums below this value are not
used

• entropy_cutoff : if specified, MDT bond distance sections with entropies above this value
are not used

mdt.write_anglelib(fh, mdt, density_cutoff=None, entropy_cutoff=None)
Write out a Modeller angle library file from an MDT. See write_bondlib() for more details. The MDT
should be a 2D table, usually of angle type and bond angle.

mdt.write_improperlib(fh, mdt, density_cutoff=None, entropy_cutoff=None)
Write out a Modeller dihedral angle library file from an MDT. See write_bondlib() for more details. The
MDT should be a 2D table, usually of dihedral type and bond dihedral angle.

mdt.write_splinelib(fh, mdt, dihtype, density_cutoff=None, entropy_cutoff=None)
Write out a Modeller 1D spline library file from an MDT. The MDT should be a 2D table, usually of residue
type and a chi dihedral angle. dihtype should identify the dihedral type (i.e. chi1/chi2/chi3/chi4). The op-
eration is similar to write_bondlib(), but each MDT section is treated as the spline values. No special
processing is done, so it is expected that the user has first done any necessary transformations (e.g. normal-
ization with Table.normalize() to convert raw counts into a PDF, negative log transform with Table.
log_transform() and Table.linear_transform() to convert a PDF into a statistical potential).
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mdt.write_2dsplinelib(fh, mdt, density_cutoff=None, entropy_cutoff=None)
Write out a Modeller 2D spline library file from an MDT. See write_splinelib() for more details. The
input MDT should be a 3D table, e.g. of residue type, phi angle, and psi angle.

mdt.write_statpot(fh, mdt)
Write out a Modeller statistical potential file (as accepted by group_restraints.append()). The MDT is assumed
to be a 3D table of distance against the types of the two atoms. No special processing is done, so it is expected
that the user has first done any necessary transformations (e.g. normalization with Table.normalize()
to convert raw counts into a PDF, negative log transform with Table.log_transform() and Table.
linear_transform() to convert a PDF into a statistical potential).

1.4.5 Bin storage types

mdt.Float
mdt.Double
mdt.Int32
mdt.UnsignedInt32
mdt.Int16
mdt.UnsignedInt16
mdt.Int8
mdt.UnsignedInt8

See Storage for bin data.

1.4.6 Exceptions

exception mdt.MDTError
A generic MDT error.

exception mdt.FileFormatError
A file is of the wrong format.

1.5 The mdt.features Python module

MDT features.

Copyright 1989-2020 Andrej Sali.

MDT is free software: you can redistribute it and/or modify it under the terms of version 2 of the GNU General Public
License as published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with MDT. If not, see <http://www.gnu.
org/licenses/>.

1.5.1 Protein features

These features yield a single value for each protein in the alignment. Each feature takes some common arguments:

• mlib: the mdt.Library to create the feature in.

• bins: list of bins (see Specification of bins).
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• protein: the protein index on which to evaluate the feature from each group of proteins (individual protein,
pairs, triples) selected from the alignment (0 for the first, 1 for the second, 2 for the third). See mdt.Table.
add_alignment() for more details.

class mdt.features.XRayResolution(mlib, bins, protein=0, nmr=0.45)
Protein X-ray resolution in angstroms. Proteins with a resolution of -1.00 (generally NMR structures) are
actually reported as having a resolution of nmr. This decreases the number of bins required to hold all defined
resolutions while still separating NMR from X-ray structures.

class mdt.features.RadiusOfGyration(mlib, bins, protein=0)
Protein radius of gyration in angstroms. The calculation of the center of mass used for this feature is not mass
weighted.

class mdt.features.SequenceLength(mlib, bins, protein=0)
Protein sequence length (number of residues).

class mdt.features.HydrogenBondSatisfaction(mlib, bins, protein=0)
Hydrogen bond satisfaction index for a protein. This is the average difference, over all atoms in the protein,
between the HydrogenBondDonor value and the atom’s donor valency plus the same for the acceptor, as defined
in the hydrogen bond file (see mdt.Library.hbond_classes).

class mdt.features.AlphaContent(mlib, bins, protein=0)
Alpha content of the protein. This is simply the fraction, between 0 and 1, of residues in the first mainchain
conformation class (see MainchainConformation).

1.5.2 Protein pair features

These features yield a single value for each pair of proteins in the alignment. Each feature takes some common
arguments:

• mlib: the mdt.Library to create the feature in.

• bins: list of bins (see Specification of bins).

• protein1 and protein2: the indexes of proteins in each group of proteins selected from the alignment to evaluate
the feature on; each can range from 0 to 2 inclusive. See mdt.Table.add_alignment() for more details.

class mdt.features.SequenceIdentity(mlib, bins, protein1=0, protein2=1)
Fractional sequence identity, between 0 and 1, between two sequences. This is the number of identical aligned
residues divided by the length of the shorter sequence.

1.5.3 Residue features

These features yield a single value for each residue in each sequence in the alignment. Each feature takes some
common arguments:

• delta: if non-zero, don’t calculate the feature for the residue position returned by the residue scan - instead,
offset it by delta residues in the sequence. Applied before align_delta.

• align_delta: if non-zero, don’t calculate the feature for the alignment position returned by the residue scan -
instead, offset it by align_delta alignment positions. Applied after delta.

• pos2: if True, force a residue pair scan, and evaluate the feature on the second residue in each pair.

• mlib, bins, protein: see Protein features. Note that some residue features do not use the bins argument, because
they have a fixed number of bins.

class mdt.features.ResidueType(mlib, protein=0, delta=0, align_delta=0, pos2=False)
Residue type (20 standard amino acids, gap, undefined).
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class mdt.features.ResidueAccessibility(mlib, bins, protein=0, delta=0, align_delta=0,
pos2=False)

Residue solvent accessibility. This is derived from the atomic solvent accessibility; see
AtomAccessibility .

class mdt.features.Chi1Dihedral(self, mlib, protein=0, delta=0, align_delta=0, pos2=False)
class mdt.features.Chi2Dihedral
class mdt.features.Chi3Dihedral
class mdt.features.Chi4Dihedral
class mdt.features.PhiDihedral
class mdt.features.PsiDihedral
class mdt.features.OmegaDihedral
class mdt.features.AlphaDihedral

Residue dihedral angle, from -180 to 180 degrees.

class mdt.features.Chi1Class(self, mlib, protein=0, delta=0, align_delta=0, pos2=False)
class mdt.features.Chi2Class
class mdt.features.Chi3Class
class mdt.features.Chi4Class
class mdt.features.Chi5Class
class mdt.features.PhiClass
class mdt.features.PsiClass
class mdt.features.OmegaClass

Residue dihedral class. These classes are defined by MODELLER to group common regions of dihedral space
for each residue type.

class mdt.features.MainchainConformation(mlib, protein=0, delta=0, align_delta=0,
pos2=False)

Residue mainchain conformation (Ramachandran) class. This is a classification of the residue’s phi/psi angles
into classes as defined in Modeller’s modlib/af_mnchdef.lib file and described in Sali and Blundell, JMB (1993)
234, p785. The default classes are A (right-handed alpha-helix), P (poly-proline conformation), B (idealized
beta-strand), L (left-handed alpha-helix), and E (extended conformation).

class mdt.features.ResidueGroup(mlib, protein=0, delta=0, align_delta=0, pos2=False,
residue_grouping=0)

Residue group.

class mdt.features.SidechainBiso(mlib, bins, protein=0, delta=0, align_delta=0, pos2=False)
Residue average sidechain Biso. A zero average Biso is treated as undefined. If the average of these values over
the whole protein is less than 2, each residue’s value is multiplied by 4 𝜋 2.

1.5.4 Residue pair features

These features yield a single value for each pair of residues in each sequence in the alignment. See Protein features
for a description of the common arguments.

class mdt.features.ResidueDistance(mlib, bins, protein=0)
Distance between a pair of residues. This is defined as the distance between the ‘special’ atoms in each residue.
The type of this special atom can be specified by the distance_atoms argument when creating a mdt.Library
object. The feature is considered undefined if any of the atom coordinates are equal to the Modeller ‘undefined’
value (-999.0).

class mdt.features.AverageResidueAccessibility(mlib, bins, protein=0)
Average solvent accessibility of a pair of residues. See ResidueAccessibility .

class mdt.features.ResidueIndexDifference(mlib, bins, protein=0, absolute=False)
Difference in sequence index between a pair of residues. This can either be the simple difference (if absolute
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is False) in which case the feature is asymmetric, or the absolute value (if absolute is True) which gives a
symmetric feature.

1.5.5 Aligned residue features

These features yield a single value for residues aligned between two proteins. For each pair of proteins, every align-
ment position is scanned, and the feature is evaluated for each pair of aligned residues. See Protein pair features for a
description of the common arguments.

class mdt.features.PhiDihedralDifference(self, mlib, bins, protein1=0, protein2=1)
class mdt.features.PsiDihedralDifference
class mdt.features.OmegaDihedralDifference

Shortest difference in dihedral angle (in degrees) between a pair of aligned residues.

class mdt.features.NeighborhoodDifference(mlib, bins, protein1=0, protein2=1)
Residue neighborhood difference. This is the average of the distance scores (from a residue-residue scoring
matrix) of all aligned residues where the residue in the first sequence is within a cutoff distance of the scanned
residue. (This cutoff is set by the distngh argument to mdt.Table.add_alignment().)

class mdt.features.GapDistance(mlib, bins, protein1=0, protein2=1)
Distance, in alignment positions, to the nearest gap. Note that positions which are gapped in both sequences are
ignored for the purposes of this calculation (a ‘gap’ is defined as a gap in one sequence aligned with a residue
in the other).

1.5.6 Aligned residue pair features

These features yield a single value for each pair of residues aligned between two proteins. For each pair of proteins,
each pair of alignment positions is scanned, and the feature is evaluated for each pair of pairs of aligned residues. See
Protein pair features for a description of the common arguments.

class mdt.features.ResidueDistanceDifference(mlib, bins, protein1=0, protein2=1)
Distance between two residues in the second protein, minus the distance between the equivalent residues in the
first protein. See ResidueDistance. The feature is considered undefined if any of the atom coordinates are
equal to the Modeller ‘undefined’ value (-999.0).

class mdt.features.AverageNeighborhoodDifference(mlib, bins, protein1=0, protein2=1)
Average residue neighborhood difference for a pair of alignment positions. See
NeighborhoodDifference.

class mdt.features.AverageGapDistance(mlib, bins, protein1=0, protein2=1)
Average distance to a gap from a pair of alignment positions. See GapDistance.

1.5.7 Atom features

These features yield a single value for each atom in the first protein in each group of proteins selected from the
alignment. Each feature takes some common arguments:

• pos2: if True, force an atom pair scan, and evaluate the feature on the second atom in each pair.

• mlib, bins: see Protein features. Note that some atom features do not use the bins argument, because they have
a fixed number of bins.

class mdt.features.AtomAccessibility(mlib, bins, pos2=False)
Atom solvent accessibility. This is calculated by the PSA algorithm, and controlled by the surftyp and ac-
cessibility_type arguments to mdt.Table.add_alignment(). The feature is considered undefined if the
atom’s Cartesian coordinates are equal to the Modeller ‘undefined’ value (-999.0).
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class mdt.features.FractionalAtomAccessibility(mlib, bins, pos2=False)
Fractional atom solvent accessibility, from 0 to 1. This is the atom solvent accessibility (see
AtomAccessibility) divided by the volume of the atom, derived from its van der Waals radius. The
feature is considered undefined if the atom’s Cartesian coordinates are equal to the Modeller ‘undefined’ value
(-999.0).

class mdt.features.AtomType(mlib, pos2=False)
Type of an atom, as classified by the atom class file. See mdt.Library.atom_classes.

class mdt.features.HydrogenBondDonor(mlib, bins, pos2=False)
Number of hydrogen bond donors. It is defined as the sum, over all atoms within hbond_cutoff (see mdt.
Library) of the atom, of their donor valencies as defined in the hydrogen bond file (see mdt.Library.
hbond_classes). The feature is considered undefined if the atom’s Cartesian coordinates are equal to the
Modeller ‘undefined’ value (-999.0).

class mdt.features.HydrogenBondAcceptor(mlib, bins, pos2=False)
Number of hydrogen bond acceptors. It is defined as the sum, over all atoms within hbond_cutoff (see mdt.
Library) of the atom, of their acceptor valencies as defined in the hydrogen bond file (see mdt.Library.
hbond_classes). The feature is considered undefined if the atom’s Cartesian coordinates are equal to the
Modeller ‘undefined’ value (-999.0).

class mdt.features.HydrogenBondCharge(mlib, bins, pos2=False)
Hydrogen bond charge. It is defined as the sum, over all atoms within hbond_cutoff (see mdt.Library) of
the atom, of their charges as defined in the hydrogen bond file (see mdt.Library.hbond_classes).

class mdt.features.AtomTable(mlib, bins, table_name, func, pos2=False)
A tabulated atom feature. The feature is simply a table of N floating-point numbers, where N is the number
of atoms in the system. This table is provided by a Python function, so can be used to implement user-defined
features or to pass in features from other software. A simple example to use the x coordinate as a feature:

def func(aln, struc, mlib, libs):
return [a.x for a in struc.atoms]

f = mdt.features.AtomTable(mlib, bins, "x coordinate", func)

1.5.8 Atom pair features

These features yield a single value for each pair of atoms in the first protein in each group of proteins selected from
the alignment. See Protein features for a description of the common arguments.

class mdt.features.AtomDistance(mlib, bins)
Distance in angstroms between a pair of atoms. The feature is considered undefined if any of the atom coordi-
nates are equal to the Modeller ‘undefined’ value (-999.0).

class mdt.features.AtomBondSeparation(mlib, bins, disulfide=False)
Number of bonds between a pair of atoms. For example, two atoms that are directly bonded return ‘1’, while
two at opposite ends of an angle return ‘2’. The bonds between atoms in each standard amino acid are derived
from the bond class file, so this must be read in first (see mdt.Library.bond_classes). For atoms in
different residues, the residues are assumed to be linked by a peptide backbone, and the number of bonds is
calculated accordingly. Atoms in different chains, or atoms of types not referenced in the bond class file, are
not connected. If disulfide is set to True, disulfide bridges are also considered (if two residues have SG atoms
within 2.5 angstroms, they are counted as bonded). If disulfide is set to False (the default) any disulfide bridges
are ignored. Either way, no account is taken of patches and other modifications such as terminal oxygens (unless
bonds to OXT are explicitly listed in the bond class file). If a pair of atoms is not connected it is placed in the
‘undefined’ bin.

1.5. The mdt.features Python module 51



MDT Documentation, Release 5.5

1.5.9 Tuple features

These features yield a single value for each tuple of atoms in the first protein in each group of proteins selected from
the alignment. (The set of tuples must first be read into the mdt.Library .) Each feature takes some common
arguments:

• mlib: the mdt.Library to create the feature in.

• pos2: if True, force a tuple pair scan, and evaluate the feature on the second tuple in each pair.

class mdt.features.TupleType(mlib, pos2=False)
Type of an atom tuple, as classified by the tuple class file. See mdt.Library.tuple_classes.

1.5.10 Tuple pair features

These features yield a single value for each pair of tuples of atoms in the first protein in each group of proteins
selected from the alignment. (The set of tuples must first be read into the mdt.Library .) See Protein features for a
description of the common arguments.

class mdt.features.TupleType(mlib, pos2=False)
Type of an atom tuple, as classified by the tuple class file. See mdt.Library.tuple_classes.

class mdt.features.TupleDistance(mlib, bins)
Distance in angstroms between the first atom in each of two tuples The feature is considered undefined if any of
the atom coordinates are equal to the Modeller ‘undefined’ value (-999.0).

class mdt.features.TupleAngle1(mlib, bins)
Angle (0-180) between the first atom in the first tuple, the first atom in the second tuple, and the second atom in
the second tuple. The feature is considered undefined if any of the atom coordinates are equal to the Modeller
‘undefined’ value (-999.0).

class mdt.features.TupleAngle2(mlib, bins)
Angle (0-180) between the second atom in the first tuple, the first atom in the first tuple, and the first atom in
the second tuple. The feature is considered undefined if any of the atom coordinates are equal to the Modeller
‘undefined’ value (-999.0).

class mdt.features.TupleDihedral1(mlib, bins)
Dihedral (-180-180) between the second atom in the first tuple, the first atom in the first tuple, the first atom
in the second tuple, and the second atom in the second tuple. The feature is considered undefined if any of the
atom coordinates are equal to the Modeller ‘undefined’ value (-999.0).

class mdt.features.TupleDihedral2(mlib, bins)
Dihedral (-180-180) between the third atom in the first tuple, the second atom in the first tuple, the first atom
in the first tuple, and the first atom in the second tuple. Only works for atom triplets. The feature is considered
undefined if any of the atom coordinates are equal to the Modeller ‘undefined’ value (-999.0).

class mdt.features.TupleDihedral3(mlib, bins)
Dihedral (-180-180) between the first atom in the first tuple, the first atom in the second tuple, the second atom in
the second tuple, and the third atom in the second tuple. Only works for atom triplets. The feature is considered
undefined if any of the atom coordinates are equal to the Modeller ‘undefined’ value (-999.0).

1.5.11 Chemical bond features

These features yield a single value for each defined chemical bond, angle or dihedral in the first protein in each group
of proteins selected from the alignment. (The definitions of the chemical connectivity must first be read from a bond
class file; see the bond_clases, angle_classes and dihedral_classes attributes in mdt.Library .) See Protein features
for a description of the common arguments.
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class mdt.features.BondType(mlib)
Type of a bond, as classified by the bond class file. See mdt.Library.bond_classes.

class mdt.features.AngleType(mlib)
Type of an angle, as classified by the angle class file. See mdt.Library.angle_classes.

class mdt.features.DihedralType(mlib)
Type of a dihedral, as classified by the dihedral class file. See mdt.Library.dihedral_classes.

class mdt.features.BondLength(mlib, bins)
Length of a bond in angstroms. See mdt.Library.bond_classes. The feature is considered undefined if
any of the atom coordinates are equal to the Modeller ‘undefined’ value (-999.0).

class mdt.features.Angle(mlib, bins)
Angle (0-180). See mdt.Library.angle_classes. The feature is considered undefined if any of the
atom coordinates are equal to the Modeller ‘undefined’ value (-999.0).

class mdt.features.Dihedral(mlib, bins)
Dihedral angle (-180-180). See mdt.Library.dihedral_classes. The feature is considered undefined
if any of the atom coordinates are equal to the Modeller ‘undefined’ value (-999.0).

1.5.12 Group features

These features are used to make combinations of other features. Each feature takes some common arguments:

• mlib: the mdt.Library to create the feature in.

• feat1: an existing feature object that will be included in this group.

• feat2: another existing feature object to include.

• nbins: the number of bins in this feature.

class mdt.features.Cluster(mlib, feat1, feat2, nbins)
Cluster feature. When evaluated, it evaluates the two other features grouped in this feature, and converts the pair
of bin indices for those features into a single bin index, which is returned. Use the add() method to control
this conversion.

add(child_bins, bin_index)
Add a single mapping from a pair of child feature bin indices into this feature’s bin index (all indexes start
at 0). For example, calling add((1,2), 3) would cause this Cluster feature to return bin index 3 if the child
features were in bins 1 and 2 respectively. This method can be called multiple times (even for the same
bin_index) to add additional mappings from child bin indices to bin index. If no mapping from a given
pair of child indices is present, the undefined bin index is returned.

1.6 Copyright and license

MDT is Copyright 1989-2020 Andrej Sali.

MDT is free software: you can redistribute it and/or modify it under the terms of version 2 of the GNU General
Public License as published by the Free Software Foundation.

MDT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
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1.7 MDT change history

1.7.1 MDT 5.5 04-07-2020

• Add more Python 3 support to the build system.

1.7.2 MDT 5.4 05-25-2017

• Development is now open and hosted at GitHub.

• Experimental cmake build support.

• Installation packages now available for Homebrew (“brew tap salilab/salilab; brew install mdt”) and Anaconda
Python (“conda install -c salilab mdt”).

1.7.3 MDT 5.3 05-19-2015

• A new function write_statpot() can generate a Modeller statistical potential file given a suitable input
table.

• A new feature Cluster allows clustering of two features into a single one.

• A new feature AtomTable takes as input a table of precalculated per-atom values, and can be used to imple-
ment user-defined features or to use externally-calculated properties.

• To save space, the data for the MDT table itself can be compressed when writing to an HDF5 file with Table.
write_hdf5().

• Certain library information (such as the mapping from feature values to bin indices, and atom or tuple class
information) and information about the last scan is now written into MDT files in HDF5 format by Table.
write_hdf5().

• The maximum value of bond_span_range can now be -1, to allow atom pairs that have no path of bonds between
them. This is helpful to include inter-chain interactions, for example.

1.7.4 MDT 5.2 10-29-2012

• A new method Table.get_array_view() allows the raw MDT table data to be modified using NumPy
functions.

• Disulfide bonds can now be considered in the calculation of atom bond separation, by the
AtomBondSeparation feature and the Table.add_alignment() method.

• Atoms in atom tuples can now be restricted to match only in certain residue types.

1.7.5 MDT 5.1 09-29-2011

• All atom features, with the exception of AtomType, are now considered undefined if the atom coordinates are
equal to the Modeller undefined value (-999.0).

• Support for bond separation, with a new AtomBondSeparation feature and a bond_span_range argument
to Table.add_alignment().

• Support Python 3 (requires Modeller 9.10 or later).
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• “scons test” now reports the Python coverage (and also C coverage, if using gcc and adding “coverage=true” to
the scons command line).

• The Table constructor now takes an optional ‘shape’ argument, which acts identically to that accepted by
Table.reshape().

1.7.6 MDT 5.0 03-31-2011

• First open source (GPLv2) release.

• Duplicated Modeller Fortran code removed; MDT now uses Modeller itself for handling of protein structures
and alignments.

• Added scans over atom pairs, atom tuples, atom tuple pairs, and chemical bonds.

• Complete documentation, examples, and unit tests added.

• TOP scripting interface replaced with Python.

• Support storing MDT tables in binary form, using the HDF5 format and library.

1.7.7 MDT 4.0 April 2002

• Reorganize directory structure.

1.7.8 MDT 3.1 March 2002

• Allow for a structure to be assessed against an existing MDT table.

1.7. MDT change history 55



MDT Documentation, Release 5.5

56 Chapter 1. Contents



CHAPTER 2

Indices and tables

• genindex

• search
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mdt, 36
mdt.features, 47
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49
ResidueType (class in mdt.features), 48

S
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shape (mdt.TableSection attribute), 45
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super_smooth() (mdt.Table method), 43
symbol (mdt.Bin attribute), 45
symmetric (mdt.Table attribute), 43

T
Table (class in mdt), 38
TableSection (class in mdt), 44
tuple_classes (mdt.Library attribute), 36
TupleAngle1 (class in mdt.features), 52
TupleAngle2 (class in mdt.features), 52
TupleClasses (class in mdt), 36
TupleDihedral1 (class in mdt.features), 52
TupleDihedral2 (class in mdt.features), 52
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