hi list, sorry, just wanted to clarify a little more my ( lack of ) understanding re particles ...
so when i create a rigid body, i'm decorating a selection of particles - but it's the particles that hold all the information. and what i want to add to the root hierarchy are the decorated particles, not the decorator itself, correct ? i think that this is why i was getting no mass before.
so when i load a pdb into IMP, a particle is created for each atom ? I've been loading 4 pdb structures into IMP with a total number of 308 amino acids, but i seem to be creating at least 10,515 particles ( shown by printing IMP.kernel.Particle.get_index(IMP.Particle(m)) ) and i can't make that add up - conceptually i'm a bit lost ...
and finally is there a way to access each set of decorated particles iteratively ? i think my problems with creating the RigidBodyMover are because i'm trying to add the entire model at once ( as shown ) - and there are some particles in there which i haven't been able to decorate.
rb_mover = IMP.core.RigidBodyMover(m, IMP.kernel.Particle.get_index(IMP.Particle(m)), maxTranslation, maxRotation )
eagerly anticipating enlightenment,
josh
p.s. full script for reference https://gist.github.com/mysticvision/abb8d42e24f329b5388b
On 14 July 2014 17:09, imp-users-request@salilab.org wrote:
> Send IMP-users mailing list submissions to > imp-users@salilab.org > > To subscribe or unsubscribe via the World Wide Web, visit > https://salilab.org/mailman/listinfo/imp-users > or, via email, send a message with subject or body 'help' to > imp-users-request@salilab.org > > You can reach the person managing the list at > imp-users-owner@salilab.org > > When replying, please edit your Subject line so it is more specific > than "Re: Contents of IMP-users digest..." > > > Today's Topics: > > 1. Re: getting the MCCGsampler to work (Josh Bullock) > > > ---------------------------------------------------------------------- > > Message: 1 > Date: Mon, 14 Jul 2014 17:09:08 +0100 > From: Josh Bullock jma.bullock@gmail.com > To: imp-users@salilab.org > Subject: Re: [IMP-users] getting the MCCGsampler to work > Message-ID: > < > CAHh_40-ROvuH3Koy+cyBvjpi127Y67VBLk3pAo-FX0HEFYJpWg@mail.gmail.com> > Content-Type: text/plain; charset="utf-8" > > ah i see, yes i had no movers or optimizers ... > > so now i'm trying to set up a RigidBodyMover but i'm struggling to create > the rigid bodies. There seem to be two different ways of doing this, either > IMP.atom.create_rigid_body or IMP.atom.setup_as_rigid_body. > > If I use create_rigid_body then when i later try to add restraints i get > told "leaf 'A' ... does not have mass" > > If I use setup_as_rigid_body i can add the restraints but i when i try to > add it to the RigidBodyMover i get told "Rigid body passed to > RigidBodyMover must be set to be optimized" even > though rb.set_coordinates_are_optimized(True) > > what is the function of choice here ? > > thanks ! > > josh > > ------------------------------ > > def create_representation(): > m= IMP.Model() > all=IMP.atom.Hierarchy.setup_particle(IMP.Particle(m)) > all.set_name("the universe") > # create a protein, represented as a set of connected balls of > appropriate > # radii and number, chose by the resolution parameter and the number of > # amino acids. > > def create_protein_from_pdbs(name, files): > > def create_from_pdb(file): > sls=IMP.SetLogState(IMP.NONE) > datadir = os.getcwd() > print datadir > t=IMP.atom.read_pdb( datadir+'/' + file, m, > IMP.atom.ATOMPDBSelector()) > del sls > #IMP.atom.show_molecular_hierarchy(t) > c=IMP.atom.Chain(IMP.atom.get_by_type(t, > IMP.atom.CHAIN_TYPE)[0]) > > # there is no reason to use all atoms, just approximate the pdb > shape instead > s=IMP.atom.create_simplified_along_backbone(c,1) > > # make the simplified structure rigid > rb=IMP.atom.create_rigid_body(s) > #rb=IMP.atom.setup_as_rigid_body(s) > #rb=IMP.atom.create_rigid_body(c) > rb.set_coordinates_are_optimized(True) > print rb.get_coordinates_are_optimized() > > return rb > > h= create_from_pdb(files[0]) > h.set_name(name) > all.add_child(h) > > create_protein_from_pdbs("A", [Firstpdb]) > > (m,all)= create_representation() > > > On 11 July 2014 19:42, imp-users-request@salilab.org wrote: > > > Send IMP-users mailing list submissions to > > imp-users@salilab.org > > > > To subscribe or unsubscribe via the World Wide Web, visit > > https://salilab.org/mailman/listinfo/imp-users > > or, via email, send a message with subject or body 'help' to > > imp-users-request@salilab.org > > > > You can reach the person managing the list at > > imp-users-owner@salilab.org > > > > When replying, please edit your Subject line so it is more specific > > than "Re: Contents of IMP-users digest..." > > > > > > Today's Topics: > > > > 1. getting the MCCGsampler to work (Josh Bullock) > > 2. Re: getting the MCCGsampler to work (Ben Webb) > > 3. Re: getting the MCCGsampler to work (Ben Webb) > > > > > > ---------------------------------------------------------------------- > > > > Message: 1 > > Date: Fri, 11 Jul 2014 13:12:01 +0100 > > From: Josh Bullock jma.bullock@gmail.com > > To: imp-users@salilab.org > > Subject: [IMP-users] getting the MCCGsampler to work > > Message-ID: > > < > > CAHh_40_B9Ciag3LMdDMgFLJf2MCx2-tGPp3tmMke9MQriHwMJA@mail.gmail.com> > > Content-Type: text/plain; charset="utf-8" > > > > Hello again, > > > > So I have the same overall problem as before - creating an ensemble of a > > 4-subunit complex using MSconnectivity restraints. Having visualised the > > output (via RMF - thanks Barak :?) , it's clear that no matter how many > > steps of CG or MC I put, the models do not change from their initial > random > > placement. I know that the restraints are present because the models are > > evaluated and scored appropriately. > > > > So I saw on an old (2011) nup84 example that MCCG can't handle rigid > > bodies, is this still the case ? If so, should I switch to the DOMINO > > sampler ? or it does work and likely there's an error in my code ... > > > > Many thanks ! > > > > Josh > > > > ------------------------------------------------- > > > > import IMP > > import IMP.atom > > import IMP.rmf > > import inspect > > import IMP.container > > import IMP.display > > import IMP.statistics > > #import IMP.example > > import sys, math, os, optparse > > import RMF > > > > from optparse import OptionParser > > > > > > # Convert the arguments into strings and number > > Firstpdb = str(sys.argv[1]) > > Secondpdb = str(sys.argv[2]) > > Thirdpdb = str(sys.argv[3]) > > Fourthpdb = str(sys.argv[4]) > > models = float(sys.argv[5]) > > > > #***************************************** > > > > # the spring constant to use, it doesnt really matter > > k=100 > > # the target resolution for the representation, this is used to specify > how > > detailed > > # the representation used should be > > resolution=300 > > # the box to perform everything > > bb=IMP.algebra.BoundingBox3D(IMP.algebra.Vector3D(0,0,0), > > IMP.algebra.Vector3D(100, 100, 100)) > > > > > > # this function creates the molecular hierarchies for the various > involved > > proteins > > def create_representation(): > > m= IMP.Model() > > all=IMP.atom.Hierarchy.setup_particle(IMP.Particle(m)) > > all.set_name("the universe") > > # create a protein, represented as a set of connected balls of > > appropriate > > # radii and number, chose by the resolution parameter and the number > of > > # amino acids. > > > > def create_protein_from_pdbs(name, files): > > > > def create_from_pdb(file): > > sls=IMP.SetLogState(IMP.NONE) > > datadir = os.getcwd() > > print datadir > > t=IMP.atom.read_pdb( datadir+'/' + file, m, > > IMP.atom.ATOMPDBSelector()) > > del sls > > #IMP.atom.show_molecular_hierarchy(t) > > c=IMP.atom.Chain(IMP.atom.get_by_type(t, > > IMP.atom.CHAIN_TYPE)[0]) > > if c.get_number_of_children()==0: > > IMP.atom.show_molecular_hierarchy(t) > > # there is no reason to use all atoms, just approximate the > pdb > > shape instead > > s=IMP.atom.create_simplified_along_backbone(c, > > 1) > > #IMP.atom.destroy(t) > > # make the simplified structure rigid > > rb=IMP.atom.create_rigid_body(s) > > rb=IMP.atom.create_rigid_body(c) > > rb.set_coordinates_are_optimized(True) > > return s # <------- swapping c with s will give a > coarse > > grain representation - much faster ! > > # return c > > > > h= create_from_pdb(files[0]) > > h.set_name(name) > > all.add_child(h) > > > > create_protein_from_pdbs("A", [Firstpdb]) > > create_protein_from_pdbs("B", [Secondpdb]) > > create_protein_from_pdbs("C", [Thirdpdb]) > > create_protein_from_pdbs("D", [Fourthpdb]) > > #create_protein_from_pdbs("C", ["rpt3_imp.pdb"]) > > return (m, all) > > > > # create the needed restraints and add them to the model > > > > def create_restraints(m, all): > > def add_connectivity_restraint(s): > > > > tr= IMP.core.TableRefiner() > > rps=[] > > for sc in s: > > ps= sc.get_selected_particles() > > rps.append(ps[0]) > > tr.add_particle(ps[0], ps) > > > > # duplicate the IMP.atom.create_connectivity_restraint > > functionality > > > > score= > > > > > IMP.core.KClosePairsPairScore(IMP.core.HarmonicSphereDistancePairScore(0,1),tr) > > > > #ub = IMP.core.HarmonicUpperBound(1.0, 0.1) > > #ss = IMP.core.DistancePairScore(ub) > > > > r= IMP.core.MSConnectivityRestraint(m,score) > > > > iA = r.add_type([rps[0]]) > > iB = r.add_type([rps[1]]) > > iC = r.add_type([rps[2]]) > > iD = r.add_type([rps[3]]) > > #n1 = r.add_composite([iA, iB]) > > n1 = r.add_composite([iA, iB, iC, iD]) > > n2 = r.add_composite([iA, iB],n1) > > n3 = r.add_composite([iB, iD],n1) > > n4 = r.add_composite([iA, iB, iC],n1) > > n5 = r.add_composite([iB, iC, iD],n1) > > > > m.add_restraint(r) > > > > evr=IMP.atom.create_excluded_volume_restraint([all]) > > m.add_restraint(evr) > > # a Selection allows for natural specification of what the restraints > > act on > > S= IMP.atom.Selection > > sA=S(hierarchy=all, molecule="A") > > sB=S(hierarchy=all, molecule="B") > > sC=S(hierarchy=all, molecule="C") > > sD=S(hierarchy=all, molecule="D") > > add_connectivity_restraint([sA, sB, sC, sD]) > > > > nbl = IMP.container.ClosePairContainer([all], 0, 2) > > h = IMP.core.HarmonicLowerBound(0, 1) > > sd = IMP.core.SphereDistancePairScore(h) > > # use the lower bound on the inter-sphere distance to push the > spheres > > apart > > nbr = IMP.container.PairsRestraint(sd, nbl) > > m.add_restraint(nbr) > > > > > > # r1 = IMP.core.ExcludedVolumeRestraint(all) > > # m.add_restraint(r1) > > > > > > # find acceptable conformations of the model > > def get_conformations(m): > > sampler= IMP.core.MCCGSampler(m) > > sampler.set_bounding_box(bb) > > # magic numbers, experiment with them and make them large enough for > > things to work > > sampler.set_number_of_conjugate_gradient_steps(200) > > sampler.set_number_of_monte_carlo_steps(40) > > sampler.set_number_of_attempts(models) > > # We don't care to see the output from the sampler > > #sampler.set_log_level(IMP.SILENT) > > # return the IMP.ConfigurationSet storing all the found > configurations > > that > > # meet the various restraint maximum scores. > > cs= sampler.create_sample() > > return cs > > > > > > # cluster the conformations and write them to a file > > def analyze_conformations(cs, all, gs): > > # we want to cluster the configurations to make them easier to > > understand > > # in this case, the clustering is pretty meaningless > > embed= IMP.statistics.ConfigurationSetXYZEmbedding(cs, > > > > IMP.container.ListSingletonContainer(IMP.atom.get_leaves(all)), True) > > cluster= IMP.statistics.create_lloyds_kmeans(embed, 10, 10000) > > # dump each cluster center to a file so it can be viewed. > > for i in range(cluster.get_number_of_clusters()): > > center= cluster.get_cluster_center(i) > > cs.load_configuration(i) > > h = IMP.atom.Hierarchy.get_children(all) > > #tfn = IMP.create_temporary_file_name("cluster%d"%i, ".rmf") > > huh = "./models/CLUSTER%d"%i > > huh = huh +".rmf" > > #print "file is", tfn > > print "file is", huh > > rh = RMF.create_rmf_file(huh) > > > > > > IMP.rmf.add_hierarchies(rh, h) > > > > # add the current configuration to the file as frame 0 > > IMP.rmf.save_frame(rh) > > > > #for g in gs: > > # rh.add_geometry(g) > > > > > > > > > #****************************************************************************************** > > # now do the actual work > > > > (m,all)= create_representation() > > #IMP.atom.show_molecular_hierarchy(all) > > create_restraints(m, all) > > > > # in order to display the results, we need something that maps the > > particles onto > > # geometric objets. The IMP.display.Geometry objects do this mapping. > > # IMP.display.XYZRGeometry map an IMP.core.XYZR particle onto a sphere > > gs=[] > > for i in range(all.get_number_of_children()): > > color= IMP.display.get_display_color(i) > > n= all.get_child(i) > > name= n.get_name() > > g= IMP.atom.HierarchyGeometry(n) > > g.set_color(color) > > gs.append(g) > > > > cs= get_conformations(m) > > > > print "found", cs.get_number_of_configurations(), "solutions" > > > > ListScores = [] > > for i in range(0, cs.get_number_of_configurations()): > > cs.load_configuration(i) > > # print the configuration > > print "solution number: ",i,"scored :", m.evaluate(False) > > ListScores.append(m.evaluate(False)) > > > > # for each of the configuration, dump it to a file to view in pymol > > for i in range(0, cs.get_number_of_configurations()): > > cs.load_configuration(i) > > h = IMP.atom.Hierarchy.get_children(all) > > #tfn = IMP.create_temporary_file_name("josh%d"%i, ".rmf") > > #print "file is", tfn > > huh = "./models/IMP%d"%i > > huh = huh +".rmf" > > print "file is", huh > > rh = RMF.create_rmf_file(huh) > > > > # add the hierarchy to the file > > IMP.rmf.add_hierarchies(rh, h) > > > > # add the current configuration to the file as frame 0 > > IMP.rmf.save_frame(rh) > > > > #for g in gs: > > # w.add_geometry(g) > > > > analyze_conformations(cs, all, gs) > >