ah i see, yes i had no movers or optimizers ... 

so now i'm trying to set up a RigidBodyMover but i'm struggling to create the rigid bodies. There seem to be two different ways of doing this, either IMP.atom.create_rigid_body or IMP.atom.setup_as_rigid_body. 

If I use create_rigid_body then when i later try to add restraints i get told "leaf 'A' ... does not have mass"

If I use setup_as_rigid_body i can add the restraints but i when i try to add it to the RigidBodyMover i get told "Rigid body passed to RigidBodyMover must be set to be optimized" even though rb.set_coordinates_are_optimized(True)

what is the function of choice here ?

thanks !

josh

------------------------------

def create_representation():
    m= IMP.Model()
    all=IMP.atom.Hierarchy.setup_particle(IMP.Particle(m))
    all.set_name("the universe")
    # create a protein, represented as a set of connected balls of appropriate
    # radii and number, chose by the resolution parameter and the number of
    # amino acids.
    
    def create_protein_from_pdbs(name, files):
        
        def create_from_pdb(file):
            sls=IMP.SetLogState(IMP.NONE)
            datadir = os.getcwd()
            print datadir
   t=IMP.atom.read_pdb( datadir+'/' + file, m,
                                 IMP.atom.ATOMPDBSelector())
            del sls
            #IMP.atom.show_molecular_hierarchy(t)
            c=IMP.atom.Chain(IMP.atom.get_by_type(t, IMP.atom.CHAIN_TYPE)[0])
            
            # there is no reason to use all atoms, just approximate the pdb shape instead
            s=IMP.atom.create_simplified_along_backbone(c,1)
            
            # make the simplified structure rigid
            rb=IMP.atom.create_rigid_body(s) 
            #rb=IMP.atom.setup_as_rigid_body(s) 
            #rb=IMP.atom.create_rigid_body(c)
            rb.set_coordinates_are_optimized(True)
            print rb.get_coordinates_are_optimized()
            
            return rb               

        h= create_from_pdb(files[0])
        h.set_name(name)
        all.add_child(h)

    create_protein_from_pdbs("A", [Firstpdb])

(m,all)= create_representation()


On 11 July 2014 19:42, <imp-users-request@salilab.org> wrote:
Send IMP-users mailing list submissions to
        imp-users@salilab.org

To subscribe or unsubscribe via the World Wide Web, visit
        https://salilab.org/mailman/listinfo/imp-users
or, via email, send a message with subject or body 'help' to
        imp-users-request@salilab.org

You can reach the person managing the list at
        imp-users-owner@salilab.org

When replying, please edit your Subject line so it is more specific
than "Re: Contents of IMP-users digest..."


Today's Topics:

   1. getting the MCCGsampler to work (Josh Bullock)
   2. Re: getting the MCCGsampler to work (Ben Webb)
   3. Re: getting the MCCGsampler to work (Ben Webb)


----------------------------------------------------------------------

Message: 1
Date: Fri, 11 Jul 2014 13:12:01 +0100
From: Josh Bullock <jma.bullock@gmail.com>
To: imp-users@salilab.org
Subject: [IMP-users] getting the MCCGsampler to work
Message-ID:
        <CAHh_40_B9Ciag3LMdDMgFLJf2MCx2-tGPp3tmMke9MQriHwMJA@mail.gmail.com>
Content-Type: text/plain; charset="utf-8"

Hello again,

So I have the same overall problem as before - creating an ensemble of a
4-subunit complex using MSconnectivity restraints. Having visualised the
output (via RMF - thanks Barak :?) , it's clear that no matter how many
steps of CG or MC I put, the models do not change from their initial random
placement. I know that the restraints are present because the models are
evaluated and scored appropriately.

So I saw on an old (2011) nup84 example that MCCG can't handle rigid
bodies, is this still the case ? If so, should I switch to the DOMINO
sampler ? or it does work and likely there's an error in my code ...

Many thanks !

Josh

-------------------------------------------------

import IMP
import IMP.atom
import IMP.rmf
import inspect
import IMP.container
import IMP.display
import IMP.statistics
#import IMP.example
import sys, math, os, optparse
import RMF

from optparse import OptionParser


# Convert the arguments into strings and number
Firstpdb = str(sys.argv[1])
Secondpdb = str(sys.argv[2])
Thirdpdb = str(sys.argv[3])
Fourthpdb = str(sys.argv[4])
models = float(sys.argv[5])

#*****************************************

# the spring constant to use, it doesnt really matter
k=100
# the target resolution for the representation, this is used to specify how
detailed
# the representation used should be
resolution=300
# the box to perform everything
bb=IMP.algebra.BoundingBox3D(IMP.algebra.Vector3D(0,0,0),
                             IMP.algebra.Vector3D(100, 100, 100))


# this function creates the molecular hierarchies for the various involved
proteins
def create_representation():
    m= IMP.Model()
    all=IMP.atom.Hierarchy.setup_particle(IMP.Particle(m))
    all.set_name("the universe")
    # create a protein, represented as a set of connected balls of
appropriate
    # radii and number, chose by the resolution parameter and the number of
    # amino acids.

    def create_protein_from_pdbs(name, files):

        def create_from_pdb(file):
            sls=IMP.SetLogState(IMP.NONE)
            datadir = os.getcwd()
            print datadir
    t=IMP.atom.read_pdb( datadir+'/' + file, m,
                                 IMP.atom.ATOMPDBSelector())
            del sls
            #IMP.atom.show_molecular_hierarchy(t)
            c=IMP.atom.Chain(IMP.atom.get_by_type(t,
IMP.atom.CHAIN_TYPE)[0])
            if c.get_number_of_children()==0:
                IMP.atom.show_molecular_hierarchy(t)
            # there is no reason to use all atoms, just approximate the pdb
shape instead
            s=IMP.atom.create_simplified_along_backbone(c,
                                                        1)
            #IMP.atom.destroy(t)
            # make the simplified structure rigid
            rb=IMP.atom.create_rigid_body(s)
            rb=IMP.atom.create_rigid_body(c)
            rb.set_coordinates_are_optimized(True)
            return s       # <------- swapping c with s will give a coarse
grain representation - much faster !
#            return c

        h= create_from_pdb(files[0])
        h.set_name(name)
        all.add_child(h)

    create_protein_from_pdbs("A", [Firstpdb])
    create_protein_from_pdbs("B", [Secondpdb])
    create_protein_from_pdbs("C", [Thirdpdb])
    create_protein_from_pdbs("D", [Fourthpdb])
    #create_protein_from_pdbs("C", ["rpt3_imp.pdb"])
    return (m, all)

# create the needed restraints and add them to the model

def create_restraints(m, all):
    def add_connectivity_restraint(s):

        tr= IMP.core.TableRefiner()
        rps=[]
        for sc in s:
            ps= sc.get_selected_particles()
            rps.append(ps[0])
            tr.add_particle(ps[0], ps)

        # duplicate the IMP.atom.create_connectivity_restraint functionality

        score=
IMP.core.KClosePairsPairScore(IMP.core.HarmonicSphereDistancePairScore(0,1),tr)

        #ub = IMP.core.HarmonicUpperBound(1.0, 0.1)
        #ss = IMP.core.DistancePairScore(ub)

        r= IMP.core.MSConnectivityRestraint(m,score)

        iA = r.add_type([rps[0]])
        iB = r.add_type([rps[1]])
        iC = r.add_type([rps[2]])
        iD = r.add_type([rps[3]])
        #n1 = r.add_composite([iA, iB])
        n1 = r.add_composite([iA, iB, iC, iD])
        n2 = r.add_composite([iA, iB],n1)
        n3 = r.add_composite([iB, iD],n1)
        n4 = r.add_composite([iA, iB, iC],n1)
        n5 = r.add_composite([iB, iC, iD],n1)

        m.add_restraint(r)

    evr=IMP.atom.create_excluded_volume_restraint([all])
    m.add_restraint(evr)
    # a Selection allows for natural specification of what the restraints
act on
    S= IMP.atom.Selection
    sA=S(hierarchy=all, molecule="A")
    sB=S(hierarchy=all, molecule="B")
    sC=S(hierarchy=all, molecule="C")
    sD=S(hierarchy=all, molecule="D")
    add_connectivity_restraint([sA, sB, sC, sD])

    nbl = IMP.container.ClosePairContainer([all], 0, 2)
    h = IMP.core.HarmonicLowerBound(0, 1)
    sd = IMP.core.SphereDistancePairScore(h)
    # use the lower bound on the inter-sphere distance to push the spheres
apart
    nbr = IMP.container.PairsRestraint(sd, nbl)
    m.add_restraint(nbr)


   # r1 = IMP.core.ExcludedVolumeRestraint(all)
   # m.add_restraint(r1)


# find acceptable conformations of the model
def get_conformations(m):
    sampler= IMP.core.MCCGSampler(m)
    sampler.set_bounding_box(bb)
    # magic numbers, experiment with them and make them large enough for
things to work
    sampler.set_number_of_conjugate_gradient_steps(200)
    sampler.set_number_of_monte_carlo_steps(40)
    sampler.set_number_of_attempts(models)
    # We don't care to see the output from the sampler
    #sampler.set_log_level(IMP.SILENT)
    # return the IMP.ConfigurationSet storing all the found configurations
that
    # meet the various restraint maximum scores.
    cs= sampler.create_sample()
    return cs


# cluster the conformations and write them to a file
def analyze_conformations(cs, all, gs):
    # we want to cluster the configurations to make them easier to
understand
    # in this case, the clustering is pretty meaningless
    embed= IMP.statistics.ConfigurationSetXYZEmbedding(cs,

 IMP.container.ListSingletonContainer(IMP.atom.get_leaves(all)), True)
    cluster= IMP.statistics.create_lloyds_kmeans(embed, 10, 10000)
    # dump each cluster center to a file so it can be viewed.
    for i in range(cluster.get_number_of_clusters()):
        center= cluster.get_cluster_center(i)
        cs.load_configuration(i)
        h = IMP.atom.Hierarchy.get_children(all)
        #tfn = IMP.create_temporary_file_name("cluster%d"%i, ".rmf")
        huh = "./models/CLUSTER%d"%i
        huh = huh +".rmf"
        #print "file is", tfn
        print "file is", huh
        rh = RMF.create_rmf_file(huh)


        IMP.rmf.add_hierarchies(rh, h)

        # add the current configuration to the file as frame 0
        IMP.rmf.save_frame(rh)

        #for g in gs:
         #   rh.add_geometry(g)


#******************************************************************************************
# now do the actual work

(m,all)= create_representation()
#IMP.atom.show_molecular_hierarchy(all)
create_restraints(m, all)

# in order to display the results, we need something that maps the
particles onto
# geometric objets. The IMP.display.Geometry objects do this mapping.
# IMP.display.XYZRGeometry map an IMP.core.XYZR particle onto a sphere
gs=[]
for i in range(all.get_number_of_children()):
    color= IMP.display.get_display_color(i)
    n= all.get_child(i)
    name= n.get_name()
    g= IMP.atom.HierarchyGeometry(n)
    g.set_color(color)
    gs.append(g)

cs= get_conformations(m)

print "found", cs.get_number_of_configurations(), "solutions"

ListScores = []
for i in range(0, cs.get_number_of_configurations()):
        cs.load_configuration(i)
        # print the configuration
        print "solution number: ",i,"scored :", m.evaluate(False)
        ListScores.append(m.evaluate(False))

# for each of the configuration, dump it to a file to view in pymol
for i in range(0, cs.get_number_of_configurations()):
    cs.load_configuration(i)
    h = IMP.atom.Hierarchy.get_children(all)
    #tfn = IMP.create_temporary_file_name("josh%d"%i, ".rmf")
    #print "file is", tfn
    huh = "./models/IMP%d"%i
    huh = huh +".rmf"
    print "file is", huh
    rh = RMF.create_rmf_file(huh)

    # add the hierarchy to the file
    IMP.rmf.add_hierarchies(rh, h)

    # add the current configuration to the file as frame 0
    IMP.rmf.save_frame(rh)

    #for g in gs:
     #   w.add_geometry(g)

analyze_conformations(cs, all, gs)
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://salilab.org/archives/imp-users/attachments/20140711/fc50f2fe/attachment.html>

------------------------------

Message: 2
Date: Fri, 11 Jul 2014 11:26:24 -0700
From: Ben Webb <ben@salilab.org>
To: Help and discussion for users of IMP <imp-users@salilab.org>
Subject: Re: [IMP-users] getting the MCCGsampler to work
Message-ID: <53C02C50.4020507@salilab.org>
Content-Type: text/plain; charset=ISO-8859-1; format=flowed

On 7/11/14, 5:12 AM, Josh Bullock wrote:
> So I have the same overall problem as before - creating an ensemble of a
> 4-subunit complex using MSconnectivity restraints. Having visualised the
> output (via RMF - thanks Barak :?) , it's clear that no matter how many
> steps of CG or MC I put, the models do not change from their initial
> random placement. I know that the restraints are present because the
> models are evaluated and scored appropriately.

A sampler that ignores the scoring function would be pretty useless!
Obviously MCCG doesn't do that. So my guess would be that you didn't add
the restraints to the scoring function, the thresholds are all wrong (so
that no MC moves are ever accepted), you have terrible starting
conditions (so that the optimizer can never improve the score) or you
have a poor choice of MC move set. I don't see you actually adding any
Movers to your sampler in the script, so I'd suspect the last one. The
underlying MonteCarlo class keeps some statistics (e.g. number of
accepted/rejected moves) which might shed some light on what's going on.

> So I saw on an old (2011) nup84 example that MCCG can't handle rigid
> bodies, is this still the case ?

No. You just need to add a suitable RigidBodyMover.

> If so, should I switch to the DOMINO
> sampler ?

DOMINO enumerates in a discrete space, so is a rather different kind of
optimizer. It is probably not the best choice in your case.

        Ben
--
ben@salilab.org                      http://salilab.org/~ben/
"It is a capital mistake to theorize before one has data."
        - Sir Arthur Conan Doyle


------------------------------

Message: 3
Date: Fri, 11 Jul 2014 11:42:19 -0700
From: Ben Webb <ben@salilab.org>
To: Help and discussion for users of IMP <imp-users@salilab.org>
Subject: Re: [IMP-users] getting the MCCGsampler to work
Message-ID: <53C0300B.5010504@salilab.org>
Content-Type: text/plain; charset=ISO-8859-1; format=flowed

To clarify a little, the MCCGSampler tries to wrap a common use of the
underlying MonteCarlo optimizer (that use case being a bunch of
independently movable x,y,z particles). If in your case you actually
have a bunch of rigid bodies, you should probably use the MonteCarlo
optimizer directly and add RigidBodyMovers to it.

        Ben
--
ben@salilab.org                      http://salilab.org/~ben/
"It is a capital mistake to theorize before one has data."
        - Sir Arthur Conan Doyle


------------------------------

_______________________________________________
IMP-users mailing list
IMP-users@salilab.org
https://salilab.org/mailman/listinfo/imp-users


End of IMP-users Digest, Vol 38, Issue 15
*****************************************