Enc: ModellerError: read_al_373E> Protein specified in ALIGN_CODES(i) was not found in the alignment file; ALIGN_CODES( 4) = G8EW14.fasta
Dear users, I'd tried to generate 5 models from Modeller v9.15 trough my model-multi.py script [1] and the program gave me this error:guest@labimm-118:~/Documents/charilma/CpLAN$ mod9.15 model-multi.py Could not find platform independent libraries <prefix> Could not find platform dependent libraries <exec_prefix> Consider setting $PYTHONHOME to <prefix>[:<exec_prefix>] 'import site' failed; use -v for traceback Traceback (most recent call last): File "model-multi.py", line 48, in ? a.make() File "/usr/lib/modeller9.15/modlib/modeller/automodel/automodel.py", line 110, in make self.homcsr(exit_stage) File "/usr/lib/modeller9.15/modlib/modeller/automodel/automodel.py", line 475, in homcsr aln = self.read_alignment() File "/usr/lib/modeller9.15/modlib/modeller/automodel/automodel.py", line 465, in read_alignment aln.append(file=self.alnfile, align_codes=codes) File "/usr/lib/modeller9.15/modlib/modeller/alignment.py", line 79, in append allow_alternates) _modeller.ModellerError: read_al_373E> Protein specified in ALIGN_CODES(i) was not found in the alignment file; ALIGN_CODES( 4) = G8EW14.fasta As I'm sending my alignment file [2] and my template file [3], I wonder if there is anyone that could help me to circumvent this error.Regards. [1] model-multi.py
# -*- coding: utf-8 -*- # File: model-multi.py # Reading the ali file and generating 5 model
from modeller import * from modeller.automodel import * from modeller.scripts import complete_pdb
log.verbose() env = environ()
# Give less weight to all soft-sphere restraints: env.schedule_scale = physical.values(default=1.0, soft_sphere=0.7)
#Considering heteroatoms and waters molecules env.io.hetatm = env.io.water = True # Directories with input atom files: env.io.atom_files_directory = './:../atom_files' env.libs.topology.read(file='$(LIB)/top_heav.lib') env.libs.parameters.read(file='$(LIB)/par.lib')
# Modelling 'sequence' with file.ali a = automodel(env, alnfile='CpLANcab.ali', knowns=('4LXJ','4K0F','4WMZ'), sequence=('G8EW14.fasta'), # assess_methods=(assess.DOPE, # assess.normalized_dope, # assess.GA341)) assess_methods= (assess.DOPE, assess.normalized_dope, assess.GA341) ) # Generating 5 models a.starting_model = 1 a.ending_model = 5
# Very thorough Variable Target Function Method (VTFM) optimization: a.library_schedule = autosched.slow a.max_var_iterations = 300
# Thorough MD optimization: a.md_level = refine.slow
# Repeat the whole cycle 2 times and do not stop unless obj.func. > 1E6 a.repeat_optimization = 2 a.max_molpdf = 1e6
a.make()
# Get clusters a.cluster(cluster_cut=1.00) # END OF MODEL CONSTRUCTION
# PRINT RESULTS # Open a file fo = open("model-multi.out", "w")
# Get a list of all successfully built models from a.outputs ok_models = filter(lambda x: x['failure'] is None, a.outputs)
# Printing out a summary of all successfully generated models print >> fo, '\n>> Summary of successfully produced model' fields = [x for x in ok_models[0].keys() if x.endswith(' score')] fields.sort() fields = ['molpdf'] + fields header = '%-25s ' % 'Filename' + " ".join(['%14s' % x for x in fields]) print >> fo, header print >> fo, '-' * len(header) for mdl in ok_models: text = '%-25s' % mdl['name'] for field in fields: if isinstance(mdl[field], (tuple, list)): text = text + ' %14.5f' % mdl[field][0] else: text = text + ' %14.5f' % mdl[field] print >> fo, text print >> fo, ''
# Printing top model results print >> fo, '>> Top model results:' # Rank models by molpdf score key = 'molpdf' ok_models.sort(lambda a,b: cmp(a[key], b[key])) # Get top model - molpdf m = ok_models[0] print "Top model_molpdf: %s (molpdf %.3f)" % (m['name'], m[key]) print >> fo, 'molpdf: ', m[key], '(file: ', m['name'], ')'
# Rank models by DOPE score key = 'DOPE score' ok_models.sort(lambda a,b: cmp(a[key], b[key])) # Get top model - DOPE m = ok_models[0] print "Top model_DOPE: %s (DOPE score %.3f)" % (m['name'], m[key]) print >> fo, 'DOPE score: ', m[key], '(file: ', m['name'], ')'
# Rank models by normalized DOPE score key = 'GA341 score' ok_models.sort(lambda a,b: cmp(a[key], b[key])) # Get top model - normalized DOPE m = ok_models[0] print "Top model_GA341: %s (GA341 score %.3f)" % (m['name'], m[key][0]) print >> fo, 'GA341 score: ', m[key][0], '(file: ', m['name'], ')'
# Rank models by normalized DOPE score key = 'Normalized DOPE score' ok_models.sort(lambda a,b: cmp(a[key], b[key])) # Get top model - normalized DOPE m = ok_models[0] print "Top model_nDOPE (z): %s (Normalized DOPE score %.3f)" % (m['name'], m[key]) print >> fo, 'Normalized DOPE score: ', m[key], '(file: ', m['name'], ')'
# Read a model previously generated by Modeller's automodel class mdl = complete_pdb(env, './cluster.opt')
# Select all atoms in the first chain atmsel = selection(mdl)
score = atmsel.assess_dope() zscore = mdl.assess_normalized_dope() score2 = mdl.assess_ga341()
# Printing assess results print >> fo, '\n>> Cluster results:'
fo2 = open("cluster.opt", "r") lines = [ i.rstrip() for i in fo2.readlines()] # 3rd line print >> fo, lines[1], '(molpdf)'
print >> fo, 'DOPE score: ', score print >> fo, 'GA341 score: ', score2[0] print >> fo, 'Normalized DOPE score: ', zscore
# Close opened file fo.close() #END OF PRINT RESULTS
[2] CpLANcab.ali>P1;4LXJ structureX:4LXJ: 6 :A:+715 :A:MOL_ID 1; MOLECULE LANOSTEROL 14-ALPHA DEMETHYLASE; CHAIN A; SYNONYM CYPLI, CYTOCHROME P450 51, CYTOCHROME P450-14DM, C P450-LIA1, STEROL 14-ALPHA DEMETHYLASE; EC 1.14.13.70; ENGINEERED YES:MOL_ID 1; ORGANISM_SCIENTIFIC SACCHAROMYCES CEREVISIAE; ORGANISM_COMMON BAKER'S YEAST; ORGANISM_TAXID 4932; GENE ERG11, CYP51, YHR007C; EXPRESSION_SYSTEM SACCHAROMYCES CEREVISIAE; EXPRESSION_SYSTEM_TAXID 4932: 1.90: 0.20 MSATKSIVGEALEYVNIGLSH-FLALPLAQRISLIII----IPFIYNIVWQLLYSLRKDRPPLVFYWIPWVGSAV VYGMKPYEFFEECQKKYGDIFSFVLLGRVMTVYLGPKGHEFVFNAKLADVSAEAAYAHLTTPVFGKGVIYDCPNS RLMEQKKFVKGALTKEAFKSYVPLIAEEVYKYFRDSKNFRLNERTTGTIDVMVTQPEMTIFTASRSLLGKEMRAK LDTDFAYLYSDLDKGFTPINFVFPNLPLEHYRKRDHAQKAISGTYMSLIKERRKNNDIQDRDLIDSLMKNSTYKD GVKMTDQEIANLLIGVLMGGQHTSAATSAWILLHLAERPDVQQELYEEQMRVL---DGGKKELTYDLLQEMPLLN QTIKETLRMHHPLHSLFRKVMKDMHVP--------NTSYVIPAGYHVLVSPGYTHLRDEYFPNAHQFNIHRWNND SASS------YSVGEEVDYGFGAISKGVSSPYLPFGGGRHRCIGEHFAYCQLGVLMSIFIRTLKWHYPEGKTVPP PDFTSMVTLPTGPAKIIWEKRNPEQKIGGRH---HH*
>P1;4K0F structureX:4K0F: 6 :A:+655 :A:MOL_ID 1; MOLECULE LANOSTEROL 14-ALPHA DEMETHYLASE; CHAIN A; ENGINEERED YES:MOL_ID 1; ORGANISM_SCIENTIFIC SACCHAROMYCES CEREVISIAE; ORGANISM_COMMON BAKER'S YEAST; ORGANISM_TAXID 307796; STRAIN YJM789; GENE ERG11, SCY_2394; EXPRESSION_SYSTEM SACCHAROMYCES CEREVISIAE; EXPRESSION_SYSTEM_TAXID 4932: 2.19: 0.20 MSATKSIVGEALEYVNIGLSH-FLALPLAQRISLIII----IPFIYNIVWQLLYSLRKDRPPLVFYWIPWVGSAV VYGMKPYEFFEECQKKYGDIFSFVLLGRVMTVYLGPKGHEFVFNAKLADVSAEAAYAHLTTPVFGKGVIYDCPNS RLMEQKKFVKGALTKEAFKSYVPLIAEEVYKYFRDSKNFRLNERTTGTIDVMVTQPEMTIFTASRSLLGKEMRAK LDTDFAYLYSDLDKGFTPINFVFPNLPLEHYRKRDHAQKAISGTYMSLIKERRKNNDIQDRDLIDSLMKNSTYKD GVKMTDQEIANLLIGVLMGGQHTSAATSAWILLHLAERPDVQQELYEEQMRVL---DGGKKELTYDLLQEMPLLN QTIKETLRMHHPLHSLFRKVMKDMHVP--------NTSYVIPAGYHVLVSPGYTHLRDEYFPNAHQFNIHRWNND SASS------YSVGEEVDYGFGAISKGVSSPYLPFGGGRHRCIGEHFAYCQLGVLMSIFIRTLKWHYPEGKTVPP PDFTSMVTLPTGPAKIIWEKRNPEQKIGGRHHHHHH*
>P1;4WMZ structureX:4WMZ: 7 :A:+684 :A:MOL_ID 1; MOLECULE LANOSTEROL 14-ALPHA DEMETHYLASE; CHAIN A; ENGINEERED YES:MOL_ID 1; ORGANISM_SCIENTIFIC SACCHAROMYCES CEREVISIAE; ORGANISM_COMMON BAKER'S YEAST; ORGANISM_TAXID 307796; STRAIN YJM789; GENE ERG11, SCY_2394; EXPRESSION_SYSTEM SACCHAROMYCES CEREVISIAE; EXPRESSION_SYSTEM_TAXID 4932; EXPRESSION_SYSTEM_STRAIN AD2DELTA: 2.05: 0.20 MSATKSIVGEALEYVNIGLSH-FLALPLAQRISLIII----IPFIYNIVWQLLYSLRKDRPPLVFYWIPWVGSAV VYGMKPYEFFEECQKKYGDIFSFVLLGRVMTVYLGPKGHEFVFNAKLADVSAEAAYAHLTTPVFGKGVIYDCPNS RLMEQKKFVKGALTKEAFKSYVPLIAEEVYKYFRDSKNFRLNERTTGTIDVMVTQPEMTIFTASRSLLGKEMRAK LDTDFAYLYSDLDKGFTPINFVFPNLPLEHYRKRDHAQKAISGTYMSLIKERRKNNDIQDRDLIDSLMKNSTYKD GVKMTDQEIANLLIGVLMGGQHTSAATSAWILLHLAERPDVQQELYEEQMRVL---DGGKKELTYDLLQEMPLLN QTIKETLRMHHPLHSLFRKVMKDMHVP--------NTSYVIPAGYHVLVSPGYTHLRDEYFPNAHQFNIHRWNND SASS------YSVGEEVDYGFGAISKGVSSPYLPFGGGRHRCIGEHFAYCQLGVLMSIFIRTLKWHYPEGKTVPP PDFTSMVTLPTGPAKIIWEKRNPEQKIGGRHHHHHH*
>P1;G8EW14 sequence:G8EW14.fasta:::::::0.00: 0.00 MSAIIPQVQQLLGQVAQFFPPWFAALPTSLKVAIAVVGIPALIIGLNVFQQLCLPRKKDLPPVVFHYIPWFGSAA YYGENPYKFLFECRDKYGDLFTFILMGRRITVALGPKGNNLSLGGKISQVSAEEAYTHLTTPVFGKGVVYDCPNE MLMQQKKFIKSGLTTESLQSYPPMITSECEDFFTKEVGIS-PQKPSATLDLLKAMSELIILTASRTLQGKEVRES LNGQFAKYYEDLDGGFTPLNFMFPNLPLPSYKRRDEAQKAMSDFYLKIMENRRKGESDHEHDMIENL-QSCKYRN GVPLSDRDIAHIMIALLMAGQHTSSATSSWTLLHLADRPDVVEALYQEQKQKLGNPDGTFRDYRYEDLKELPIMD SIIRETLRMHAPIHSIYRKVLSDIPVPPSLSAPSENGQYIIPKGHYIMAAPGVSQMDPRIWQDAKVWNPARWHDE KGFAAAAMVQYTKAEQVDYGFGSVSKGTESPYQPFGAGRHRCVGEQFAYTQLSTIFTYVVRNFTLKLAVPK-FPE TNYRTMIVQPNNPL-VTFTLRNAEVKQEV-------* [3] G8EW14.fasta>G8EW14:A|PDBID|CHAIN|SEQUENCE MSAIIPQVQQLLGQVAQFFPPWFAALPTSLKVAIAVVGIPALIIGLNVFQQLCLPRKKDLPPVVFHYIPWFGSAAYYGEN PYKFLFECRDKYGDLFTFILMGRRITVALGPKGNNLSLGGKISQVSAEEAYTHLTTPVFGKGVVYDCPNEMLMQQKKFIK SGLTTESLQSYPPMITSECEDFFTKEVGISPQKPSATLDLLKAMSELIILTASRTLQGKEVRESLNGQFAKYYEDLDGGF TPLNFMFPNLPLPSYKRRDEAQKAMSDFYLKIMENRRKGESDHEHDMIENLQSCKYRNGVPLSDRDIAHIMIALLMAGQH TSSATSSWTLLHLADRPDVVEALYQEQKQKLGNPDGTFRDYRYEDLKELPIMDSIIRETLRMHAPIHSIYRKVLSDIPVP PSLSAPSENGQYIIPKGHYIMAAPGVSQMDPRIWQDAKVWNPARWHDEKGFAAAAMVQYTKAEQVDYGFGSVSKGTESPY QPFGAGRHRCVGEQFAYTQLSTIFTYVVRNFTLKLAVPKFPETNYRTMIVQPNNPLVTFTLRNAEVKQEV Em Quinta-feira, 6 de Agosto de 2015 10:35, "modeller_usage-owner@salilab.org" modeller_usage-owner@salilab.org escreveu:
----- Mensagem encaminhada -----
You are not allowed to post to this mailing list, and your message has been automatically rejected. If you think that your messages are being rejected in error, contact the mailing list owner at modeller_usage-owner@salilab.org.
Dear users,
I'd tried to generate 5 models from Modeller v9.15 trough my model-multi.py script [1] and the program gave me this error:guest@labimm-118:~/Documents/charilma/CpLAN$ mod9.15 model-multi.py Could not find platform independent libraries <prefix> Could not find platform dependent libraries <exec_prefix> Consider setting $PYTHONHOME to <prefix>[:<exec_prefix>] 'import site' failed; use -v for traceback Traceback (most recent call last): File "model-multi.py", line 48, in ? a.make() File "/usr/lib/modeller9.15/modlib/modeller/automodel/automodel.py", line 110, in make self.homcsr(exit_stage) File "/usr/lib/modeller9.15/modlib/modeller/automodel/automodel.py", line 475, in homcsr aln = self.read_alignment() File "/usr/lib/modeller9.15/modlib/modeller/automodel/automodel.py", line 465, in read_alignment aln.append(file=self.alnfile, align_codes=codes) File "/usr/lib/modeller9.15/modlib/modeller/alignment.py", line 79, in append allow_alternates) _modeller.ModellerError: read_al_373E> Protein specified in ALIGN_CODES(i) was not found in the alignment file; ALIGN_CODES( 4) = G8EW14.fasta As I'm sending my alignment file [2] and my template file [3], I wonder if there is anyone that could help me to circumvent this error.Regards. [1] model-multi.py
# -*- coding: utf-8 -*- # File: model-multi.py # Reading the ali file and generating 5 model
from modeller import * from modeller.automodel import * from modeller.scripts import complete_pdb
log.verbose() env = environ()
# Give less weight to all soft-sphere restraints: env.schedule_scale = physical.values(default=1.0, soft_sphere=0.7)
#Considering heteroatoms and waters molecules env.io.hetatm = env.io.water = True # Directories with input atom files: env.io.atom_files_directory = './:../atom_files' env.libs.topology.read(file='$(LIB)/top_heav.lib') env.libs.parameters.read(file='$(LIB)/par.lib')
# Modelling 'sequence' with file.ali a = automodel(env, alnfile='CpLANcab.ali', knowns=('4LXJ','4K0F','4WMZ'), sequence=('G8EW14.fasta'), # assess_methods=(assess.DOPE, # assess.normalized_dope, # assess.GA341)) assess_methods= (assess.DOPE, assess.normalized_dope, assess.GA341) ) # Generating 5 models a.starting_model = 1 a.ending_model = 5
# Very thorough Variable Target Function Method (VTFM) optimization: a.library_schedule = autosched.slow a.max_var_iterations = 300
# Thorough MD optimization: a.md_level = refine.slow
# Repeat the whole cycle 2 times and do not stop unless obj.func. > 1E6 a.repeat_optimization = 2 a.max_molpdf = 1e6
a.make()
# Get clusters a.cluster(cluster_cut=1.00) # END OF MODEL CONSTRUCTION
# PRINT RESULTS # Open a file fo = open("model-multi.out", "w")
# Get a list of all successfully built models from a.outputs ok_models = filter(lambda x: x['failure'] is None, a.outputs)
# Printing out a summary of all successfully generated models print >> fo, '\n>> Summary of successfully produced model' fields = [x for x in ok_models[0].keys() if x.endswith(' score')] fields.sort() fields = ['molpdf'] + fields header = '%-25s ' % 'Filename' + " ".join(['%14s' % x for x in fields]) print >> fo, header print >> fo, '-' * len(header) for mdl in ok_models: text = '%-25s' % mdl['name'] for field in fields: if isinstance(mdl[field], (tuple, list)): text = text + ' %14.5f' % mdl[field][0] else: text = text + ' %14.5f' % mdl[field] print >> fo, text print >> fo, ''
# Printing top model results print >> fo, '>> Top model results:' # Rank models by molpdf score key = 'molpdf' ok_models.sort(lambda a,b: cmp(a[key], b[key])) # Get top model - molpdf m = ok_models[0] print "Top model_molpdf: %s (molpdf %.3f)" % (m['name'], m[key]) print >> fo, 'molpdf: ', m[key], '(file: ', m['name'], ')'
# Rank models by DOPE score key = 'DOPE score' ok_models.sort(lambda a,b: cmp(a[key], b[key])) # Get top model - DOPE m = ok_models[0] print "Top model_DOPE: %s (DOPE score %.3f)" % (m['name'], m[key]) print >> fo, 'DOPE score: ', m[key], '(file: ', m['name'], ')'
# Rank models by normalized DOPE score key = 'GA341 score' ok_models.sort(lambda a,b: cmp(a[key], b[key])) # Get top model - normalized DOPE m = ok_models[0] print "Top model_GA341: %s (GA341 score %.3f)" % (m['name'], m[key][0]) print >> fo, 'GA341 score: ', m[key][0], '(file: ', m['name'], ')'
# Rank models by normalized DOPE score key = 'Normalized DOPE score' ok_models.sort(lambda a,b: cmp(a[key], b[key])) # Get top model - normalized DOPE m = ok_models[0] print "Top model_nDOPE (z): %s (Normalized DOPE score %.3f)" % (m['name'], m[key]) print >> fo, 'Normalized DOPE score: ', m[key], '(file: ', m['name'], ')'
# Read a model previously generated by Modeller's automodel class mdl = complete_pdb(env, './cluster.opt')
# Select all atoms in the first chain atmsel = selection(mdl)
score = atmsel.assess_dope() zscore = mdl.assess_normalized_dope() score2 = mdl.assess_ga341()
# Printing assess results print >> fo, '\n>> Cluster results:'
fo2 = open("cluster.opt", "r") lines = [ i.rstrip() for i in fo2.readlines()] # 3rd line print >> fo, lines[1], '(molpdf)'
print >> fo, 'DOPE score: ', score print >> fo, 'GA341 score: ', score2[0] print >> fo, 'Normalized DOPE score: ', zscore
# Close opened file fo.close() #END OF PRINT RESULTS
[2] CpLANcab.ali>P1;4LXJ structureX:4LXJ: 6 :A:+715 :A:MOL_ID 1; MOLECULE LANOSTEROL 14-ALPHA DEMETHYLASE; CHAIN A; SYNONYM CYPLI, CYTOCHROME P450 51, CYTOCHROME P450-14DM, C P450-LIA1, STEROL 14-ALPHA DEMETHYLASE; EC 1.14.13.70; ENGINEERED YES:MOL_ID 1; ORGANISM_SCIENTIFIC SACCHAROMYCES CEREVISIAE; ORGANISM_COMMON BAKER'S YEAST; ORGANISM_TAXID 4932; GENE ERG11, CYP51, YHR007C; EXPRESSION_SYSTEM SACCHAROMYCES CEREVISIAE; EXPRESSION_SYSTEM_TAXID 4932: 1.90: 0.20 MSATKSIVGEALEYVNIGLSH-FLALPLAQRISLIII----IPFIYNIVWQLLYSLRKDRPPLVFYWIPWVGSAV VYGMKPYEFFEECQKKYGDIFSFVLLGRVMTVYLGPKGHEFVFNAKLADVSAEAAYAHLTTPVFGKGVIYDCPNS RLMEQKKFVKGALTKEAFKSYVPLIAEEVYKYFRDSKNFRLNERTTGTIDVMVTQPEMTIFTASRSLLGKEMRAK LDTDFAYLYSDLDKGFTPINFVFPNLPLEHYRKRDHAQKAISGTYMSLIKERRKNNDIQDRDLIDSLMKNSTYKD GVKMTDQEIANLLIGVLMGGQHTSAATSAWILLHLAERPDVQQELYEEQMRVL---DGGKKELTYDLLQEMPLLN QTIKETLRMHHPLHSLFRKVMKDMHVP--------NTSYVIPAGYHVLVSPGYTHLRDEYFPNAHQFNIHRWNND SASS------YSVGEEVDYGFGAISKGVSSPYLPFGGGRHRCIGEHFAYCQLGVLMSIFIRTLKWHYPEGKTVPP PDFTSMVTLPTGPAKIIWEKRNPEQKIGGRH---HH*
>P1;4K0F structureX:4K0F: 6 :A:+655 :A:MOL_ID 1; MOLECULE LANOSTEROL 14-ALPHA DEMETHYLASE; CHAIN A; ENGINEERED YES:MOL_ID 1; ORGANISM_SCIENTIFIC SACCHAROMYCES CEREVISIAE; ORGANISM_COMMON BAKER'S YEAST; ORGANISM_TAXID 307796; STRAIN YJM789; GENE ERG11, SCY_2394; EXPRESSION_SYSTEM SACCHAROMYCES CEREVISIAE; EXPRESSION_SYSTEM_TAXID 4932: 2.19: 0.20 MSATKSIVGEALEYVNIGLSH-FLALPLAQRISLIII----IPFIYNIVWQLLYSLRKDRPPLVFYWIPWVGSAV VYGMKPYEFFEECQKKYGDIFSFVLLGRVMTVYLGPKGHEFVFNAKLADVSAEAAYAHLTTPVFGKGVIYDCPNS RLMEQKKFVKGALTKEAFKSYVPLIAEEVYKYFRDSKNFRLNERTTGTIDVMVTQPEMTIFTASRSLLGKEMRAK LDTDFAYLYSDLDKGFTPINFVFPNLPLEHYRKRDHAQKAISGTYMSLIKERRKNNDIQDRDLIDSLMKNSTYKD GVKMTDQEIANLLIGVLMGGQHTSAATSAWILLHLAERPDVQQELYEEQMRVL---DGGKKELTYDLLQEMPLLN QTIKETLRMHHPLHSLFRKVMKDMHVP--------NTSYVIPAGYHVLVSPGYTHLRDEYFPNAHQFNIHRWNND SASS------YSVGEEVDYGFGAISKGVSSPYLPFGGGRHRCIGEHFAYCQLGVLMSIFIRTLKWHYPEGKTVPP PDFTSMVTLPTGPAKIIWEKRNPEQKIGGRHHHHHH*
>P1;4WMZ structureX:4WMZ: 7 :A:+684 :A:MOL_ID 1; MOLECULE LANOSTEROL 14-ALPHA DEMETHYLASE; CHAIN A; ENGINEERED YES:MOL_ID 1; ORGANISM_SCIENTIFIC SACCHAROMYCES CEREVISIAE; ORGANISM_COMMON BAKER'S YEAST; ORGANISM_TAXID 307796; STRAIN YJM789; GENE ERG11, SCY_2394; EXPRESSION_SYSTEM SACCHAROMYCES CEREVISIAE; EXPRESSION_SYSTEM_TAXID 4932; EXPRESSION_SYSTEM_STRAIN AD2DELTA: 2.05: 0.20 MSATKSIVGEALEYVNIGLSH-FLALPLAQRISLIII----IPFIYNIVWQLLYSLRKDRPPLVFYWIPWVGSAV VYGMKPYEFFEECQKKYGDIFSFVLLGRVMTVYLGPKGHEFVFNAKLADVSAEAAYAHLTTPVFGKGVIYDCPNS RLMEQKKFVKGALTKEAFKSYVPLIAEEVYKYFRDSKNFRLNERTTGTIDVMVTQPEMTIFTASRSLLGKEMRAK LDTDFAYLYSDLDKGFTPINFVFPNLPLEHYRKRDHAQKAISGTYMSLIKERRKNNDIQDRDLIDSLMKNSTYKD GVKMTDQEIANLLIGVLMGGQHTSAATSAWILLHLAERPDVQQELYEEQMRVL---DGGKKELTYDLLQEMPLLN QTIKETLRMHHPLHSLFRKVMKDMHVP--------NTSYVIPAGYHVLVSPGYTHLRDEYFPNAHQFNIHRWNND SASS------YSVGEEVDYGFGAISKGVSSPYLPFGGGRHRCIGEHFAYCQLGVLMSIFIRTLKWHYPEGKTVPP PDFTSMVTLPTGPAKIIWEKRNPEQKIGGRHHHHHH*
>P1;G8EW14 sequence:G8EW14.fasta:::::::0.00: 0.00 MSAIIPQVQQLLGQVAQFFPPWFAALPTSLKVAIAVVGIPALIIGLNVFQQLCLPRKKDLPPVVFHYIPWFGSAA YYGENPYKFLFECRDKYGDLFTFILMGRRITVALGPKGNNLSLGGKISQVSAEEAYTHLTTPVFGKGVVYDCPNE MLMQQKKFIKSGLTTESLQSYPPMITSECEDFFTKEVGIS-PQKPSATLDLLKAMSELIILTASRTLQGKEVRES LNGQFAKYYEDLDGGFTPLNFMFPNLPLPSYKRRDEAQKAMSDFYLKIMENRRKGESDHEHDMIENL-QSCKYRN GVPLSDRDIAHIMIALLMAGQHTSSATSSWTLLHLADRPDVVEALYQEQKQKLGNPDGTFRDYRYEDLKELPIMD SIIRETLRMHAPIHSIYRKVLSDIPVPPSLSAPSENGQYIIPKGHYIMAAPGVSQMDPRIWQDAKVWNPARWHDE KGFAAAAMVQYTKAEQVDYGFGSVSKGTESPYQPFGAGRHRCVGEQFAYTQLSTIFTYVVRNFTLKLAVPK-FPE TNYRTMIVQPNNPL-VTFTLRNAEVKQEV-------* [3] G8EW14.fasta>G8EW14:A|PDBID|CHAIN|SEQUENCE MSAIIPQVQQLLGQVAQFFPPWFAALPTSLKVAIAVVGIPALIIGLNVFQQLCLPRKKDLPPVVFHYIPWFGSAAYYGEN PYKFLFECRDKYGDLFTFILMGRRITVALGPKGNNLSLGGKISQVSAEEAYTHLTTPVFGKGVVYDCPNEMLMQQKKFIK SGLTTESLQSYPPMITSECEDFFTKEVGISPQKPSATLDLLKAMSELIILTASRTLQGKEVRESLNGQFAKYYEDLDGGF TPLNFMFPNLPLPSYKRRDEAQKAMSDFYLKIMENRRKGESDHEHDMIENLQSCKYRNGVPLSDRDIAHIMIALLMAGQH TSSATSSWTLLHLADRPDVVEALYQEQKQKLGNPDGTFRDYRYEDLKELPIMDSIIRETLRMHAPIHSIYRKVLSDIPVP PSLSAPSENGQYIIPKGHYIMAAPGVSQMDPRIWQDAKVWNPARWHDEKGFAAAAMVQYTKAEQVDYGFGSVSKGTESPY QPFGAGRHRCVGEQFAYTQLSTIFTYVVRNFTLKLAVPKFPETNYRTMIVQPNNPLVTFTLRNAEVKQEV
On 8/6/15 7:52 AM, Samuel Silva Pita wrote: > I'd tried to generate 5 models from Modeller v9.15 trough my > model-multi.py script [1] and the program gave me this error: ... > _modeller.ModellerError: read_al_373E> Protein specified in > ALIGN_CODES(i) was not found in the alignment file; ALIGN_CODES( > 4) = G8EW14.fasta
You asked Modeller to read the sequence called "G8EW14.fasta" from your alignment file by saying sequence=('G8EW14.fasta') in your Python script:
> # Modelling 'sequence' with file.ali > a = automodel(env, alnfile='CpLANcab.ali', > knowns=('4LXJ','4K0F','4WMZ'), > sequence=('G8EW14.fasta'),
But you don't have a sequence by that name in your alignment file:
>>P1;G8EW14 > sequence:G8EW14.fasta:::::::0.00: 0.00
Note that the G8EW14.fasta on the second line is the name of the PDB file that Modeller will read the structure from (see http://salilab.org/modeller/9.15/manual/node494.html, field 2). The name of the sequence is the part after P1;, i.e. "G8EW14". Modify your Python script accordingly.
Ben Webb, Modeller Caretaker
participants (2)
-
Modeller Caretaker
-
Samuel Silva Pita