Size: 171
Comment:
|
Size: 5551
Comment: Update for 9v1.
|
Deletions are marked like this. | Additions are marked like this. |
Line 2: | Line 2: |
{{{#!python import sys import os from modeller import * from modeller.optimizers import molecular_dynamics, conjugate_gradients from modeller.automodel import autosched # # mutate_model.py # # Usage: mod9v1 - < mutate_model.py modelname respos resname chain > logfile # # Example: mod9v1 - < mutate_model.py 1t29 1699 LEU A > 1t29.log # # # Creates a single in silico point mutation to sidechain type and at residue position # input by the user, in the structure whose file is modelname.pdb # The conformation of the mutant sidechain is optimized by conjugate gradient and # refined using some MD. # def optimize(atmsel, sched): #conjugate gradient for step in sched: step.optimize(atmsel, max_iterations=200, min_atom_shift=0.001) #md refine(atmsel) cg = conjugate_gradients() cg.optimize(atmsel, max_iterations=200, min_atom_shift=0.001) #molecular dynamics def refine(atmsel): # at T=1000, max_atom_shift for 4fs is cca 0.15 A. md = molecular_dynamics(cap_atom_shift=0.39, md_time_step=4.0, md_return='FINAL') init_vel = True for (its, equil, temps) in ((200, 20, (150.0, 250.0, 400.0, 700.0, 1000.0)), (200, 600, (1000.0, 800.0, 600.0, 500.0, 400.0, 300.0))): for temp in temps: md.optimize(atmsel, init_velocities=init_vel, temperature=temp, max_iterations=its, equilibrate=equil) init_vel = False #use homologs and dihedral library for dihedral angle restraints def make_restraints(mdl1, aln): rsr = mdl1.restraints rsr.clear() s = selection(mdl1) for typ in ('stereo', 'phi-psi_binormal'): rsr.make(s, restraint_type=typ, aln=aln, spline_on_site=True) for typ in ('omega', 'chi1', 'chi2', 'chi3', 'chi4'): rsr.make(s, restraint_type=typ+'_dihedral', spline_range=4.0, spline_dx=0.3, spline_min_points = 5, aln=aln, spline_on_site=True) #first argument modelname, respos, restyp, chain, = sys.argv[1:] log.verbose() env = environ(rand_seed=-49837) env.io.hetatm = True #soft sphere potential env.edat.dynamic_sphere=False #lennard-jones potential (more accuate) env.edat.dynamic_lennard=True env.edat.contact_shell = 4.0 env.edat.update_dynamic = 0.39 # Read customized topology file with phosphoserines (or standard one) env.libs.topology.read(file='$(LIB)/top_heav.lib') # Read customized CHARMM parameter library with phosphoserines (or standard one) env.libs.parameters.read(file='$(LIB)/par.lib') # Read the original PDB file and copy its sequence to the alignment array: mdl1 = model(env, file=modelname) ali = alignment(env) ali.append_model(mdl1, atom_files=modelname, align_codes=modelname) #set up the mutate residue selection segment s = selection(mdl1.chains[chain].residues[respos]) #perform the mutate residue operation s.mutate(residue_type=restyp) #get two copies of the sequence. A modeller trick to get things set up ali.append_model(mdl1, align_codes=modelname) # Generate molecular topology for mutant mdl1.clear_topology() mdl1.generate_topology(ali[-1]) # Transfer all the coordinates you can from the template native structure # to the mutant (this works even if the order of atoms in the native PDB # file is not standard): #here we are generating the model by reading the template coordinates mdl1.transfer_xyz(ali) # Build the remaining unknown coordinates mdl1.build(initialize_xyz=False, build_method='INTERNAL_COORDINATES') #yes model2 is the same file as model1. It's a modeller trick. mdl2 = model(env, file=modelname) #required to do a transfer_res_numb #ali.append_model(mdl2, atom_files=modelname, align_codes=modelname) #transfers from "model 2" to "model 1" mdl1.res_num_from(mdl2,ali) #It is usually necessary to write the mutated sequence out and read it in #before proceeding, because not all sequence related information about MODEL #is changed by this command (e.g., internal coordinates, charges, and atom #types and radii are not updated). mdl1.write(file=modelname+restyp+respos+'.tmp') mdl1.read(file=modelname+restyp+respos+'.tmp') #set up restraints before computing energy #we do this a second time because the model has been written out and read in, #clearing the previously set restraints make_restraints(mdl1, ali) #a non-bonded pair has to have at least as many selected atoms mdl1.env.edat.nonbonded_sel_atoms=1 sched = autosched.loop.make_for_model(mdl1) #only optimize the selected residue (in first pass, just atoms in selected #residue, in second pass, include nonbonded neighboring atoms) #set up the mutate residue selection segment s = selection(mdl1.chains[chain].residues[respos]) mdl1.restraints.unpick_all() mdl1.restraints.pick(s) s.energy() s.randomize_xyz(deviation=4.0) mdl1.env.edat.nonbonded_sel_atoms=2 optimize(s, sched) #feels environment (energy computed on pairs that have at least one member #in the selected) mdl1.env.edat.nonbonded_sel_atoms=1 optimize(s, sched) s.energy() #give a proper name mdl1.write(file=modelname+restyp+respos+'.pdb') #delete the temporary file os.remove(modelname+restyp+respos+'.tmp') }}} |
The script below takes a given PDB file, and mutates a single residue. The residue's position is then optimized, and the unoptimized and optimized energies are reported.
1 import sys
2 import os
3
4 from modeller import *
5 from modeller.optimizers import molecular_dynamics, conjugate_gradients
6 from modeller.automodel import autosched
7
8 #
9 # mutate_model.py
10 #
11 # Usage: mod9v1 - < mutate_model.py modelname respos resname chain > logfile
12 #
13 # Example: mod9v1 - < mutate_model.py 1t29 1699 LEU A > 1t29.log
14 #
15 #
16 # Creates a single in silico point mutation to sidechain type and at residue position
17 # input by the user, in the structure whose file is modelname.pdb
18 # The conformation of the mutant sidechain is optimized by conjugate gradient and
19 # refined using some MD.
20 #
21
22
23 def optimize(atmsel, sched):
24 #conjugate gradient
25 for step in sched:
26 step.optimize(atmsel, max_iterations=200, min_atom_shift=0.001)
27 #md
28 refine(atmsel)
29 cg = conjugate_gradients()
30 cg.optimize(atmsel, max_iterations=200, min_atom_shift=0.001)
31
32
33 #molecular dynamics
34 def refine(atmsel):
35 # at T=1000, max_atom_shift for 4fs is cca 0.15 A.
36 md = molecular_dynamics(cap_atom_shift=0.39, md_time_step=4.0,
37 md_return='FINAL')
38 init_vel = True
39 for (its, equil, temps) in ((200, 20, (150.0, 250.0, 400.0, 700.0, 1000.0)),
40 (200, 600,
41 (1000.0, 800.0, 600.0, 500.0, 400.0, 300.0))):
42 for temp in temps:
43 md.optimize(atmsel, init_velocities=init_vel, temperature=temp,
44 max_iterations=its, equilibrate=equil)
45 init_vel = False
46
47
48 #use homologs and dihedral library for dihedral angle restraints
49 def make_restraints(mdl1, aln):
50 rsr = mdl1.restraints
51 rsr.clear()
52 s = selection(mdl1)
53 for typ in ('stereo', 'phi-psi_binormal'):
54 rsr.make(s, restraint_type=typ, aln=aln, spline_on_site=True)
55 for typ in ('omega', 'chi1', 'chi2', 'chi3', 'chi4'):
56 rsr.make(s, restraint_type=typ+'_dihedral', spline_range=4.0,
57 spline_dx=0.3, spline_min_points = 5, aln=aln,
58 spline_on_site=True)
59
60 #first argument
61 modelname, respos, restyp, chain, = sys.argv[1:]
62
63
64 log.verbose()
65
66 env = environ(rand_seed=-49837)
67 env.io.hetatm = True
68 #soft sphere potential
69 env.edat.dynamic_sphere=False
70 #lennard-jones potential (more accuate)
71 env.edat.dynamic_lennard=True
72 env.edat.contact_shell = 4.0
73 env.edat.update_dynamic = 0.39
74
75 # Read customized topology file with phosphoserines (or standard one)
76 env.libs.topology.read(file='$(LIB)/top_heav.lib')
77
78 # Read customized CHARMM parameter library with phosphoserines (or standard one)
79 env.libs.parameters.read(file='$(LIB)/par.lib')
80
81
82 # Read the original PDB file and copy its sequence to the alignment array:
83 mdl1 = model(env, file=modelname)
84 ali = alignment(env)
85 ali.append_model(mdl1, atom_files=modelname, align_codes=modelname)
86
87 #set up the mutate residue selection segment
88 s = selection(mdl1.chains[chain].residues[respos])
89
90 #perform the mutate residue operation
91 s.mutate(residue_type=restyp)
92 #get two copies of the sequence. A modeller trick to get things set up
93 ali.append_model(mdl1, align_codes=modelname)
94
95 # Generate molecular topology for mutant
96 mdl1.clear_topology()
97 mdl1.generate_topology(ali[-1])
98
99
100 # Transfer all the coordinates you can from the template native structure
101 # to the mutant (this works even if the order of atoms in the native PDB
102 # file is not standard):
103 #here we are generating the model by reading the template coordinates
104 mdl1.transfer_xyz(ali)
105
106 # Build the remaining unknown coordinates
107 mdl1.build(initialize_xyz=False, build_method='INTERNAL_COORDINATES')
108
109 #yes model2 is the same file as model1. It's a modeller trick.
110 mdl2 = model(env, file=modelname)
111
112 #required to do a transfer_res_numb
113 #ali.append_model(mdl2, atom_files=modelname, align_codes=modelname)
114 #transfers from "model 2" to "model 1"
115 mdl1.res_num_from(mdl2,ali)
116
117 #It is usually necessary to write the mutated sequence out and read it in
118 #before proceeding, because not all sequence related information about MODEL
119 #is changed by this command (e.g., internal coordinates, charges, and atom
120 #types and radii are not updated).
121
122 mdl1.write(file=modelname+restyp+respos+'.tmp')
123 mdl1.read(file=modelname+restyp+respos+'.tmp')
124
125 #set up restraints before computing energy
126 #we do this a second time because the model has been written out and read in,
127 #clearing the previously set restraints
128 make_restraints(mdl1, ali)
129
130 #a non-bonded pair has to have at least as many selected atoms
131 mdl1.env.edat.nonbonded_sel_atoms=1
132
133 sched = autosched.loop.make_for_model(mdl1)
134
135 #only optimize the selected residue (in first pass, just atoms in selected
136 #residue, in second pass, include nonbonded neighboring atoms)
137 #set up the mutate residue selection segment
138 s = selection(mdl1.chains[chain].residues[respos])
139
140 mdl1.restraints.unpick_all()
141 mdl1.restraints.pick(s)
142
143 s.energy()
144
145 s.randomize_xyz(deviation=4.0)
146
147 mdl1.env.edat.nonbonded_sel_atoms=2
148 optimize(s, sched)
149
150 #feels environment (energy computed on pairs that have at least one member
151 #in the selected)
152 mdl1.env.edat.nonbonded_sel_atoms=1
153 optimize(s, sched)
154
155 s.energy()
156
157 #give a proper name
158 mdl1.write(file=modelname+restyp+respos+'.pdb')
159
160 #delete the temporary file
161 os.remove(modelname+restyp+respos+'.tmp')