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Abstract

To understand the cell, we need to determine the macromolecular
assembly structures, which may consist of tens to hundreds of com-
ponents. First, we review the varied experimental data that char-
acterize the assemblies at several levels of resolution. We then de-
scribe computational methods for generating the structures using
these data. To maximize completeness, resolution, accuracy, preci-
sion, and efficiency of the structure determination, a computational
approach is required that uses spatial information from a variety
of experimental methods. We propose such an approach, defined
by its three main components: a hierarchical representation of the
assembly, a scoring function consisting of spatial restraints derived
from experimental data, and an optimization method that generates
structures consistent with the data. This approach is illustrated by
determining the configuration of the 456 proteins in the nuclear
pore complex (NPC) from baker’s yeast. With these tools, we are
poised to integrate structural information gathered at multiple lev-
els of the biological hierarchy—from atoms to cells—into a common
framework.

443



Annu. Rev. Biochem. 2008.77:443-477. Downloaded from arjournals.annualreviews.org
by University of California- San Francisco on 01/14/09. For personal use only

NPC: nuclear pore

complex

Configuration:

component positions
and the presence of

interactions

Resolution: for a

density map,
resolution is the

minimum distance
between two points
at which they can be

distinguished

444

Contents
INTRODUCTION................. 444
Assemblies as Functional Modules
oftheCell .................... 444
SOURCES OF SPATTAL
INFORMATION................ 446
X-ray Crystallography
and NMR Spectroscopy ....... avixy
Electron Microscopy ............. 448

Small-Angle X-Ray Scattering .... 449
Proteomics Methods

and Mass Spectrometry ........ 449
Labeling Techniques.............. 450
Biochemical and Biophysical

Methods...................... 451

COMPUTATIONAL METHODS
FOR ASSEMBLY STRUCTURE

DETERMINATION ............ 451
Template-Based Modeling ......... 451
Protein-Protein Docking ......... 453
Comparative Patch Analysis. ...... 454
Structure Characterization

from Density Maps............ 455

Structure Characterization from
Small-Angle X-ray Scattering .. 459

COMPREHENSIVE DATA
INTEGRATION BY
SATISFACTION OF
SPATTAL RESTRAINTS ........ 460
Theory and Method.............. 460

Structural Characterization of
the Nuclear Pore Complex. ... . 466
CONCLUSIONS......covviienn.. 470

INTRODUCTION

Assemblies as Functional Modules

of the Cell

Macromolecular assemblies consist of non-
covalently interacting macromolecular com-
ponents, such as proteins and nucleic acids.
They vary widely in size and play crucial roles
in most cellular processes (1). Many assem-
blies are composed of tens and even hun-
dreds of individual components. For exam-
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ple, the nuclear pore complex (NPC) of ~456
proteins regulates macromolecular transport
across the nuclear envelope (NE); the ri-
bosome consists of ~80 proteins and ~15
RNA molecules and is responsible for protein
biosynthesis.

Need for assembly structures. A compre-
hensive characterization of the structures and
dynamics of biological assemblies is essen-
tial for a mechanistic understanding of the
cell (2-5). Even a coarse characterization of
the configuration of macromolecular com-
ponents in a complex (Figure 1) helps to
elucidate the principles that underlie cellu-
lar processes, in addition to providing a nec-
essary starting point for a higher-resolution
description.

Scope. Complete lists of the macromolecu-
lar components of biological systems are be-
coming available (6). However, the identifica-
tion of complexes between these components
is a nontrivial task. This difficulty arises partly
from the multitude of component types and
the varying life spans of the complexes (7).
The most comprehensive information about
binary protein interactions is available for the
Saccharomyces cerevisine proteome, consisting
of ~6200 proteins. This data has been gener-
ated by methods such as the yeast two-hybrid
system (8, 9) and affinity purifications coupled
with mass spectrometry (10-12). The lower
bound on binary protein interactions in yeast
has been estimated to be ~30,000 (7), corre-
sponding to the average of ~9 protein part-
ners per protein, although not necessarily all
at the same time. The number of higher-order
complexes in yeast is estimated to be ~800 on
the basis of affinity purification experiments
(10-13). The human proteome may have an
order of magnitude more complexes than the
yeast cell, and the number of different com-
plexes across all relevant genomes may be sev-
eral times larger still. Therefore, there may
be thousands of biologically relevant macro-
molecular complexes in a few hundred key
cellular processes whose stable structures and
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Electron
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transient interactions are yet to be character-

ized (1, 14).

Difficulties. Compared to structure deter-
mination of the individual components, how-
ever, structural characterization of macro-
molecular assemblies is usually more difficult
and represents a major challenge in structural
biology (2, 3). For example, X-ray crystallog-
raphy is limited by the difficulties of growing
suitable crystals and building molecular mod-
els into large unit cells; nuclear magnetic reso-
nance (NMR) spectroscopy is limited by size;
electron microscopy (EM), affinity purifica-
tion, yeast two-hybrid system, calorimetry,
footprinting, chemical cross-linking, small-
angle X-ray scattering (SAXS), and fluo-
rescence resonance energy transfer (FRET)
spectroscopy are limited by low resolution
of the corresponding structural information;
and computational protein structure model-
ing and docking are limited by low accuracy.

Integrative approach. These shortcomings
can be minimized by simultaneous considera-
tion of all available information about a given
assembly (Figure 1) (3, 15-17). This infor-
mation may vary greatly in terms of its accu-
racy and precision and includes data from both
experimental methods and theoretical consid-
erations, such as those listed above. The in-
tegration of structural information about an
assembly from various sources can only be
achieved by computational means. In this re-
view, we focus on the computational aspects
of data integration.

Chapter outline. We begin by reviewing
the types of spatial information generated
by experimental and computational meth-
ods that have allowed structural biology to
shift its focus from individual proteins to
large assemblies. Such data include atomic and
residue positions from X-ray crystallography
and NMR spectroscopy, shape and density for
an assembly from EM and SAXS, as well as
component proximities and interactions from
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proteomics methods, mass spectrometry, and
labeling techniques.

Next, we review computational methods
that generate models of assembly structures
on the basis of given information. In partic-
ular, we focus on advances in computational
methods for comparative modeling of com-
plexes and for docking atomic structures of
proteins to other proteins. We also review
methods for the fitting of component struc-
tures into density maps, typically determined
by cryo-EM and cryo-electron tomography
(cryo-ET). In addition, we outline computa-
tional methods that use data from SAXS ex-
periments in solution.

Finally, we offer a perspective on generat-
ing macromolecular assemblies that are con-
sistent with all available information from ex-
perimental methods, physical theories, and
statistical preferences extracted from biolog-
ical databases. Such an integrative system, in
principle, achieves higher completeness, reso-
lution, accuracy, precision, and efficiency than
a structure characterization using any of the
individual types of data alone (3, 18). We illus-
trate this approach by its application to the de-
termination of the configuration of 456 pro-
teins in the yeast NPC (18, 19).

SOURCES OF SPATIAL
INFORMATION

Various experimental methods produce differ-
ent types of structural information (Figure 1).
This information differs in terms of the spatial
features it restrains as well as in resolution, ac-
curacy, and quantity. The stoichiometry and
composition of protein components in an as-
sembly can be determined by methods such as
quantitative immunoblotting and mass spec-
trometry. The positions of the components
can be elucidated by cryo-EM and labeling
techniques. Whether or not components in-
teract with each other can be measured by the
yeast two-hybrid system and affinity purifica-
tion. Relative orientations of components and
information about interacting residues can be
inferred from cryo-EM, hydrogen/deuterium
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(H/D) exchange, OH radical footprinting,
and chemical cross-linking. At the highest res-
olution, information about the atomic struc-
tures of components and their interactions can
be determined by X-ray crystallography and
NMR spectroscopy. Importantly, some meth-
ods do not distinguish between different in-
stances of a component of the same type, re-
sulting in ambiguity when more than one copy
of the component is present in the assembly
(e.g., proteomics methods, including the yeast
two-hybrid system and affinity purification).
Structures can be described at different levels
of resolution, including the component con-
figuration (specifying component positions
and the presence of interactions), the molec-
ular architecture (specifying the components’
configuration and relative orientations), pseu-
doatomic models (specifying atomic positions
with errors larger than the size of an atom),
and atomic structures (specifying atomic po-
sitions with precision smaller than the size of
an atom).

X-ray Crystallography
and NMR Spectroscopy

X-ray crystallography has been the most pro-
lific technique for the structural analysis of
proteins and protein complexes and is still the
“gold standard” in terms of accuracy and res-
olution. X-ray crystallography measures the
structure factor amplitudes and approximate
phases for a crystal sample. Together with a
molecular mechanics force field, this informa-
tion is used in an optimization process that can
result in an atomic structure of the assembly
0, 21).

NMR spectroscopy allows determination
of atomic structures of increasingly large sub-
units and even complexes in solution under
near-native conditions (22, 23). Data from
NMR spectroscopy include upper distance
bounds between pairs of atoms and dihe-
dral angle values of certain groups of atoms.
In combination with a molecular mechan-
ics force field, this information can result in
an atomic structure of the protein through

an optimization process (24). NMR spec-
troscopy is also increasingly used to deter-
mine the interacting surfaces of protein com-
ponents in complexes from chemical shift
perturbations (25) and residue dipolar cou-
pling (26). Such information can be combined
with computational docking to obtain approx-
imate structures of protein complexes (see
Protein-Protein Docking below). It is partic-
ularly useful that NMR spectroscopy meth-
ods can be applied to weak and transient pro-
tein complexes, which are difficult to study
by other structural methods (27, 28). For
instance, transient encounter complexes in
protein-protein associations can be visualized
(29). Moreover, in-cell NMR spectroscopy
provides a means of analyzing the structural
changes that accompany protein interactions
in vivo and at atomic resolution (30).

Number of structures. The number of
structures of macromolecular assemblies
solved by X-ray crystallography or NMR
spectroscopy is still relatively small. In the
Protein Data Bank (PDB) (31), there are ap-
proximately 5000 binary interfaces with less
than 30% sequence identity to each other. It
will likely be many years before we have a
complete repertoire of high-resolution struc-
tures for the hundreds of binary and higher-
order complexes in a typical cell. This discrep-
ancy is due mainly to the difficult production
of sufficient quantities of the sample and its
crystallization.

Utility of atomic structures. Atomic struc-
tures of protein complexes provide templates
for the comparative modeling (32) of protein
complexes (see Comparative modeling, be-
low). They are also used to derive statistical
potentials of mean force (33, 34) that are use-
ful for the generation and assessment of pro-
tein complexes by computational docking (see
Protein-Protein Docking, below). Several at-
tempts have been made to classify protein
complexes (35) and protein-protein interfaces
(33) on the basis of their atomic structures,
providing a basis for analysis of the physical
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principles, function, and evolution of interac-
tions between proteins.

Electron Microscopy

The different variants of EM are electron
crystallography (36, 37), single-particle EM
(38, 39), and ET (40-42).

Electron crystallography. Electron crystal-
lography requires macromolecules to be
arranged in two-dimensional crystals (typi-
cally for membrane proteins) (36, 37) or he-
lical fibers (often for proteins involved in
filaments) (43). The resolution obtained in
electron crystallography is frequently suffi-
cient to trace the protein backbone (<4.5 A)
or at the very least to obtain pseudoatomic
models by fitting component atomic struc-
tures into the map (~5-10 A) (44). However,
the technique is not used often owing to diffi-
culties in obtaining periodic arrays and to high
technical demands.

Single-particle EM. Single-particle EM can
be applied to a dried and heavy-metal-stained
sample (negative stain EM) or to a hydrated
and frozen sample (cryo-EM). Although neg-
ative stain EM can only determine the en-
velope of an assembly, cryo-EM also deter-
mines the whole electron-optical density dis-
tribution (38). Imaging by single-particle EM
requires neither large quantities of the sam-
ple nor the sample in a crystalline form (38,
39, 45). Single-particle EM is a powerful tool
for the investigation of macromolecular as-
sembly structures that exist in different con-
formational states (46) or for those whose
X-ray structure determination is difficult.
An assembly typically needs to weigh above
~250 kDa. Typical resolutions are currently
in the intermediate range (5-15 A) (47). The
cryo-EM density maps are particularly useful
when combined with atomic-resolution struc-
tures of the components, as reviewed in the
section Structure Characterization from Den-
sity Maps, below (48). For example, fitting
of atomic structures and models of proteins
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and nucleic acids into cryo-EM maps has re-
sulted in quasi-atomic models of viral subunit
assemblies (48, 49), ribosomes and ribosome-
interacting proteins (46), and various other as-
semblies (50). The number of single-particle
reconstructions deposited in the Electron Mi-
croscopy Database is 446 (January 3, 2008)
(51), indicating that single-particle EM is in-
creasingly becoming a standard method in
structural biology.

Cryo-ET. Cryo-ET can be used to obtain
three-dimensional structures of pleomorphic
objects such as whole cells (40-42). The
tremendous potential of cryo-ET lies in visu-
alizing assemblies in an unperturbed cellular
context (52). Prokaryotic and thin eukaryotic
cells can be imaged in toto, and recent ad-
vances in sectioning of vitrified samples make
it possible to gain insights into thicker cells,
such as tissue cells (53). The current achiev-
able resolution is in the range of 5-10 nm
(54). For some macromolecules, higher res-
olutions can be obtained by averaging puta-
tively identical particles. Cryo-ET is particu-
larly attractive for studying membrane-bound
complexes (55). Images of retroviral envelope
protein complexes in situ were obtained at
approximately 30-A resolution, where rigid-
body fitting is applicable, albeit with low ac-
curacy (56). Lower resolution, but invaluable,
insights have been obtained into important as-
semblies such as the NPC (57-59).

Cryo-ET can potentially characterize
transient interactions by imaging them in an
unperturbed environment. Prerequisite to an
analysis of proximities of macromolecules are
methods to systematically determine atlases of
stable assemblies. The problem of introduc-
ing electron-dense labels noninvasively favors
the identification of assemblies on the basis of
known structural signatures (i.e., using tem-
plate matching, see below) (60). Studies us-
ing phantom cells (i.e., liposomes with known
content) have indicated that this approach to
locating large assemblies (M > 1 MDa) is
feasible (61); recently, the first ribosomal atlas
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of the whole Spiroplasma melliferum cell was
determined (62).

Small-Angle X-Ray Scattering

Small-angle scattering of X-rays (SAXS) and
neutrons is another biophysical method that
can provide low-resolution information about
the shape of an assembly (63). These tech-
niques study purified proteins and complexes
in solution. In SAXS, the molecule’s rotation-
ally averaged scattering pattern is measured
as a function of spatial frequency, typically
to 1-3-nm resolution. This spectrum can be
readily transformed into a radial distribution
function, which is essentially a histogram of
all pairwise distances of the atoms in an as-
sembly weighted by their respective atomic
numbers. Because of rotational averaging, the
information content of a SAXS spectrum is
dramatically reduced compared to a diffrac-
tion pattern in X-ray crystallography or even
a density map from EM. A conservative esti-
mate of the information content is given by
the Whittaker-Shannon sampling criterion,
which specifies the number of independent
sampling points, N, as a function of resolu-
tion, 7, of the dataset and the diameter, D, of
the macromolecule under scrutiny: N = 2 Dr-.
For a particle with diameter of 100 A and a res-
olution of 20 A, this criterion yields N equal to
10. In comparison, if we apply this criterion to
an EM map at the same resolution, we obtain
Ney equal to 4190. Nevertheless, SAXS can
provide important shape information about
proteins and assemblies in the size range of
50-250 kDa, which are not amenable to cryo-
EM and NMR spectroscopy. In addition, the
ease of altering solution conditions makes
SAXS ideal for studying differences between
varied conformational states of the same as-
sembly (64). Examples where atomic quater-
nary structure models could be obtained using
SAXS in conjunction with atomic structures
of fragments include the Ras activator son of
sevenless (65) and the different nucleotide-
bound conformations of the ATPase GspE
(66).

Proteomics Methods
and Mass Spectrometry

A variety of proteomics methods produce spa-
tial information at relatively low resolution
whose use for structure determination is gen-
erally not straightforward.

Spatial information from proteomics. In-
formation about the presence of a binary pro-
tein interaction can be translated into an up-
per bound on the distance between the two
corresponding components in higher-order
complexes. Therefore, even when the details
about their binding interface are not avail-
able, the distance between the component
centroids can still be restrained. Moreover,
the protein composition of copurified com-
plexes can reveal the proximity of a group of
proteins without revealing the underlying bi-
nary interaction network. Nevertheless, such
data implies the presence of a minimum num-
ber of protein interactions, so that all compo-
nents are connected to each other. Any pre-
dicted assembly structure must be consistent
with such connectivity data. It is, in fact, pos-
sible to impose an appropriate spatial restraint
that enforces such a connectivity condition
during an optimization process (see below)
(19, 67).

distinctive

Ambiguity. A feature  of
proteomics-based data is that protein
interactions cannot be unambiguously as-
signed to distinct pairs of protein instances
if multiple copies of one or both proteins
are present in the assembly. This multiplicity
always applies if the assembly is built from
identical symmetry units. Moreover, it is, in
principle, also possible that not all in vitro
detected interactions are present in a given
complex at the same time. It is therefore
not always easy to define what constitutes
a unique biologically active complex on the
basis of binary protein interaction data alone.
"To incorporate spatial information from pro-
teomics methods, these spatial ambiguities
have to be considered (see below) (19, 67).
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Binary interactions from varied meth-
ods. Methods for detecting binary protein
interactions include the yeast two-hybrid
system (68, 69), protein fragment comple-
mentation (70), a combination of phage
display with other techniques (71), pro-
tein arrays (72), calorimetry (73), and solid-
phase detection by surface plasmon reso-
nance (74, 75). Physical protein interactions
have also been inferred from genetic inter-
actions through reduced activity or lethality
of double-knockout mutant yeast strains (76).
Because of the relatively low resolution of
some of these biochemical characterizations
and their relatively high false-positive rates,
care is needed in their interpretation. For
example, assessing the biochemically derived
interaction sets against known structures of
complexes identified potential sources of sys-
tematic errors in interaction discovery, such
as indirect interactions in yeast two-hybrid
systems, obstruction of interfaces by molec-
ular labels, and artificial promiscuity in the
detected interactions (77, 78).

Higher-order interactions from affinity
purification. An affinity purification exper-
iment combines the purification of protein
complexes with the identification of their indi-
vidual components by mass spectrometry (79).
The proximity between the identified com-
ponents is established because they are di-
rectly or indirectly associated with the tagged
bait protein (10-12). The method can also
be applied to characterize protein-DNA (80)
and protein-RNA complexes (81). Several dif-
ferent complex purification strategies exist
79).

A particularly powerful variant uses a sin-
gle fluorescent affinity tag that allows visu-
alization of the target protein in live cells,
followed by rapid extraction and detection
of interacting macromolecular partners (82).
This method determined the localization
and specific interactions of viral proteins
with host-cell interaction partners at differ-
ent stages during infection (83). With the ad-
vance of fast purification strategies, weak and
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transient interactions in complexes will also
be studied.

A powerful complement of affinity pu-
rification is electrospray ionization mass
spectrometry (84). This technique separates
unique intact complexes and their fragments
by their charge-to-mass ratios, which allows
the determination of their composition and
stoichiometry.

Although each affinity purification exper-
iment on its own is relatively uninformative
about the structure of the parent assembly,
considerable synergy exists when a set of in-
dependent affinity purifications represents as-
sembly fragments that vary in size and over-
lap in their composition. In fact, a relatively
modest set of affinity purifications that par-
tially overlap in their composition can be suf-
ficient for the identification of the configu-
ration of the protein components in an as-
sembly, especially if combined with other in-
dependent data from proteomic and labeling
methods (67). For instance, the combination
of a large set of affinity purification data has
contributed to the identification of the pro-
tein configuration and interaction map of the
NPC (see below) (18, 19). In other studies,
the generation of fragment complexes by mass
spectrometry has revealed the subunit archi-
tectures of the 19S proteasome (85) and other
complexes, such as the yeast exosome and the
tryptophan RNA-binding attenuation protein
(TRAP) complex (84).

Labeling Techniques

Several labeling techniques can be used to de-
termine the approximate positions of protein
components in an assembly (86). The idea is
to tag the protein component of interest with
a probe, which can then be detected by EM
or other methods.

Antibody labels in immuno-EM. In
immuno-EM, the recognized label is an
antibody, which is typically conjugated to
nanometer-sized gold beads to enhance the
visibility in EM images (86). The gold-labeled
antibody binds either to a primary antibody
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directed against an epitope in the protein of
interest or to a Protein A tag that is fused
with the protein (87). Usually, many images
of an assembly with the labeled protein are
superposed to obtain a distribution of the
gold particles for a more accurate positioning
of the tagged protein. The localization of
proteins using gold-tagged beads is usually
limited by the relatively large variability of
gold particle positions, typically because of
errors in EM image alignment and linker pro-
tein flexibility. Nevertheless, the experiment
is informative about the assembly structure if
the corresponding error bars are still smaller
than the dimension of the assembly. For
instance, immunogold labeling in combina-
tion with transmission EM determined the
organization of the NPC components along
two principal axes of the nuclear pore (87)
as well as the distribution of proteins in the
p97-Ufd1-Npl4 complex (88).

Other labels. The choice of labels is not lim-
ited to antibodies. For instance, histidine tags
can be detected using NiNTA-conjugated
gold particles (88), and proteins can also be
identified by interacting proteins that are co-

valently bound to beads of gold (59).

Labeling in single-particle EM. In single-
particle EM analysis, the precision is often
sufficiently high to detect the label without
the use of gold beads. The label is located
by comparison of the labeled and unlabeled
densities. This approach was used to deter-
mine the molecular architectures of numer-
ous complexes, including the CCT chaper-
onin (89). It also allowed the identification of
conformational variations among splicesoso-
mal complexes (90).

Biochemical and Biophysical
Methods

There are a variety of biochemical and bio-
physical methods that can be used to derive
information about the relative position as well
as the relative orientation of the components

inalarger complex. For example, site-directed
mutagenesis can identify residues mediat-
ing the interaction (91). Various forms of
chemical footprinting (92, 93) and hydrogen-
deuterium exchange (94) can identify surfaces
buried upon complex formation. Proximities
of labeled groups on interacting proteins can
be detected by chemical cross-linking (95—
97) and FRET spectroscopy (98-100); for in-
stance, the protein organization of the yeast
spindle pole body was established to a large
extent with distances from FRET experiments
(98). A method for obtaining long-range dis-
tance restraints in protein complexes is pulsed
dipolar spin resonance spectroscopy that pro-
vides the separation distance of two specifi-
cally placed spins within a protein complex.
It has been used for the rigid-body refine-
ment of the protein components in complexes
(101), such as the Escherichia coli chemosome
(102).

COMPUTATIONAL METHODS
FOR ASSEMBLY STRUCTURE
DETERMINATION

The experimental data about a structure, de-
scribed above, must be converted to an ex-
plicit structural model through computation.
We now describe such computational meth-
ods. We focus on the type of information they
use to calculate the assembly structures, rather
than on how they calculate them. The meth-
ods reviewed in this section use one or two
dominant types of information and do not aim
to combine explicitly many different types of
information.

Template-Based Modeling

Template-based modeling methods rely on
known structures of homologous complexes.
Such methods include comparative modeling
and threading.

Comparative modeling. It may be possi-
ble to model a protein assembly using stan-

dard comparative modeling techniques (32,

www.annualreviews.org o Integrative Structure Determination

451



Annu. Rev. Biochem. 2008.77:443-477. Downloaded from arjournals.annualreviews.org
by University of California- San Francisco on 01/14/09. For personal use only

Unbound

componen/ ll 1 Q\

Protein docking

Comparative modeling

L 9| mile

2 P

Methods @

Target-template alignment Scoring

Predicted \ Bl) /

complex

71N\
LB e

Comparative patch analysis

@E Q/y

O

N %

A
ko

NMEa”

Restrained docking

Figure 2

Three computational methods for modeling structures of protein complexes. Comparative modeling
builds a model of a complex by using a known structure of a similar complex as a template. Protein
docking can be applied when no structure of a similar assembly is known because it relies on searching
through possible complex configurations and assessing them by geometrical and physicochemical
complementarities. Comparative patch analysis is a hybrid of protein docking and comparative modeling;
it restrains docking to only refined interaction modes suggested by structurally defined interactions
between each of the complex components, or their homologs, with any other protein (138).

33, 103-105) (Figure 2). The requirement
is the availability of structural templates that
can be reliably aligned to the sequences of
the target assembly. Such templates may cover
the entire assembly or a sufficiently overlap-
ping set of its fragments. A comparative model
of an assembly can be assessed with a variety
of different energy and scoring functions, in-
cluding empirical statistical potentials that are
designed to score component interactions and
are derived from binary interfaces of known
structures (33, 77). Comparative modeling as-
sumes that homologous subunits constitut-
ing the target and template assemblies form
equivalentinteractions (33, 103, 104). Indeed,
interaction modes between proteins of the
same fold tend to be structurally similar [inter-
action root-mean-square deviation (iRMSD)
< 10 A] when the sequence identity is above
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~30% (106). Below this cutoff, the structures
of protein interfaces may be different.

Threading. Binary interfaces that are dis-
tantly related to template structures can
be modeled with MULTIPROSPECTOR,
which uses threading of individual protein se-
quences onto a library of structurally defined
interactions (107). The individual sequences
are then scored on the basis of how well they
fit the proposed folds as well as on the inter-
face between them (107).

Both types of approaches have been ap-
plied to study large collections of sequences
and interactions (103, 104, 108). The applica-
bility of template-based modeling is limited
to protein assemblies whose homologs are
currently in the PDB (31) and Protein Qua-
ternary Structure (109) databases. In a recent
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study, 3387 binary and 1234 higher-order
protein complexes could be predicted for S.
cerevisiae (33).

Protein-Protein Docking

The structure of a binary protein complex
can be predicted by computational protein
docking if atomic structures of its compo-
nents are available from experiments or mod-
eling (110) (Figure 2). Unlike template-based
modeling, protein docking can also be ap-
plied when structures of homologous assem-
blies are unknown and can thus predict novel
binding modes. Protein docking relies on a
global search of a large set of possible as-
sembly configurations, maximizing geomet-
rical and physicochemical complementarities
between the pair of constituting components
(111-115). Although the vast majority of pro-
tein docking methods are applied to protein
assemblies of two components, an approach
of docking multiple components was recently
proposed (116). Protein docking methods
vary in component representation, scoring of
configurations, and optimization protocols.

Rigid and flexible docking. Most protein
docking methods treat components as rigid
bodies (111, 112, 115, 117). Other methods
incorporate side-chain and backbone flexibil-
ities of the component residues (113, 114).
However, these methods are usually compu-
tationally expensive because the search space
of possible assembly configurations is signifi-
cantly increased.

CAPRI. Docking methods are systematically
assessed every two years through blind trials
in the Critical Assessment of PRediction of
Interactions (CAPRI) (118). At the meeting
in 2005, 2 out of the 30 participating groups
predicted 8 out of 9 assemblies with acceptable
accuracy (118). One group was able to predict
four target assemblies with high accuracy (at
least 50% of native contacts, ligand backbone
RMSD < 5 A, interface backbone RMSD
<1 A). Even if the docking methods are not

sufficiently accurate to predict whether or not
two proteins actually interact with each other,
they can, in many cases, correctly identify the
interacting surfaces between two structurally
defined components.

Challenges. The low accuracy of computa-
tional protein docking is usually due to the
(@) conformational differences in the bound
and unbound states of assembly subunits, (/)
limitations in the sampling of relevant con-
figurations, or (¢) difficulty of discriminating
the native-like configurations from the large
number of nonnative alternatives (119, 120).
Asaresult, a typical docking method produces
an ensemble of candidate solutions, and it is
often difficult to select the native-like mode.

Restrained docking. Varied experimental
information about component interactions in
an assembly can be used to increase the ac-
curacy of protein docking (27). These meth-
ods incorporate the additional data either
after model building as a filter or during
model building to bias the search. The ex-
perimental data can provide information at
the atomic level, e.g., chemical shift perturba-
tion in NMR spectroscopy (121, 122); residue
level, e.g., hydrogen/deuterium exchange (94,
123); site-directed mutagenesis (91); lower-
resolution levels, e.g., chemical cross-linking
(124, 125); and residue dipolar coupling in
NMR spectroscopy (26, 126).

Many protein docking methods use experi-
mental data at the assessment stage to exclude
some of the candidate solutions that are in-
consistent with the data. Such programs in-
clude Hex (127), GRAMM (128), and Roset-
taDOCK (91) for use in combination with
mutagenesis data (91, 127); DOT (94) for use
together with hydrogen/deuterium exchange
data; BIGGER (121), AUTODOCK (129),
and FTDOCK (130), which employ NMR
chemical shift perturbation; and others (26,
124).

Another group of methods incorporates
the experimental data directly into the
scoring function to be optimized or the
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optimization protocol. The additional pseu-
doenergy term penalizes violations of the ex-
perimental data (131, 132). For instance, the
program HADDOCK can use ambiguous in-
teraction restraints implied by chemical shift
perturbations from NMR experiments or mu-
tagenesis data (27, 133); weighted geometric
docking uses experimental data to favor cer-
tain areas of the subunit surfaces during the
rotation-translation scan (134, 135). Another
method, TREEDOCK, limits the configu-

a
N PDZ, Linker SH3 GK C
T |
301 415 430 533 713
PSD-95 RAT (fragment)
b
Figure 3

Two predicted binding modes of the core fragment of rat PSD-95 (138).
PSD-95 consists of three domains, the PDZ3 domain (blue), the SH3
domain (red), and the GK domain (yellow). The gray spheres mimic the
residues of the interdomain linker between PDZ3 and SH3. (2) The
domain architecture of the PSD-95 core fragment. (b)) The two predicted
configurations of PSD-95 (138).
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rational search using pairs of anchor atoms,
which require contact between them (136).

Comparative Patch Analysis

The locations of protein-binding sites on pro-
teins are often conserved in evolution, irre-
spective of the folds of their binding part-
ners (Figure 2) (137). This feature is exploited
in comparative patch analysis, which is a
hybrid of protein docking and comparative
modeling. The method restrains computa-
tional docking to binding sites that are con-
served within families of homologous do-
mains (Figure 2) (138). To determine the
conserved binding sites, the following strat-
egy is applied. First, for each subunit in a bi-
nary complex, a set of protein-binding sites
of its homologs represented in the PIBASE
database of structurally defined interfaces is
identified (139). Second, these binding sites
are mapped onto the partner subunit surface
using structure-based alignments between the
subunit and each of its homologs. Third, all
pairs of the mapped binding sites are used as
starting points for restrained docking to ob-
tain candidate models of the binary complex.
This ensemble of models is then ranked us-
ing a measure of geometric complementarity
and a statistical potential score. Comparative
patch analysis has a greater applicability than
comparative modeling and a higher accuracy
than protein docking (138).

Application. Comparative patch analysis
was used to model the tertiary structure of the
core fragment of rat PSD-95 (Figure 3) (138).
PSD-95 is a key protein in the postsynaptic
density that serves as a structural scaffold
for other signaling proteins. Although the
structures of its five individual domains have
been solved, the complete structure of PSD-
95 has not been determined. In addition,
structures of neither the PDZ-SH3 nor
the PDZ-GK homologs are available, ren-
dering comparative modeling inapplicable.
Moreover, computational protein docking
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results are ambiguous,

ensemble of complexes without any predom-

generating an

inant binding modes. By contrast, each of
the subunit families is known to repeatedly
utilize a small number of binding sites for
different protein interactions, indicating
that comparative patch analysis may be
useful. Comparative patch analysis of the
PSD-95 core fragment suggests two alternate
configurations, which potentially correspond
to the different functional forms of PSD-95
(Figure 3). Thus, this finding provides
a possible structural explanation for the
experimentally observed cooperative folding
transitions in PSD-95 and its homologs.

Comparative modeling, protein docking,
and comparative patch analysis can benefit
from including not only local information on
protein-protein interfaces, but also global in-
formation about the overall shape of an as-
sembly, as discussed next.

Structure Characterization
from Density Maps

Structures of macromolecular assemblies, or-
ganelles, and even whole cells can be charac-
terized by density maps derived from single-
particle EM, electron crystallography, and
cryo-ET. If structural models of components
are available ata resolution higher than that of
the map, it is usually helpful to fit these mod-
els into the map (Figure 4). Here, we focus
on various fitting and segmentation methods,
first for single-particle EM and electron crys-
tallography and then for cryo-ET.

Segmentation. Interpretation ofan EM map
usually begins by identifying different struc-
tural units (e.g., secondary structure ele-
ments, domains, nucleic acids, proteins) in
the density map by means of segmentation
techniques (47). The size of the segmented
units depends on the resolution of the map.
For example, at 5 ~12-A resolution, secondary
structure segments can be seen (47). The
segmentation is usually performed manually,

with the aid of visualization tools such as
Amira (http://www.tgs.com/) and Chimera
(140). In addition, automated segmentation
methods have been developed recently for
both cryo-EM and cryo-ET maps (141, 142).
Methods for assigning structural units in a
given density map include skeletonization as
well asidentification of «-helices and 3-sheets
(47). If the component folds are known, the
identified units can be useful in detecting the
positions of the components in the map. Oth-
erwise, when the folds are unknown, the iden-
tified units can help in predicting the compo-
nent folds (143).

Pseudoatomic structures. In many cases,
atomic-resolution models of the components
are often available from experiment or pre-
diction (144). By fitting these models into the
corresponding density map at better than ap-
proximately 20-A resolution (145), a pseu-
doatomic interpretation of the map can be
obtained (48, 146). The utility of fitting
component structures into a cryo-EM map
is demonstrated by a detailed pseudoatomic
model of the mammalian 80S ribosome at
8.7-A resolution (186) (Figure 5).

Rigid fitting. In some cases, the fitting of
a component into a given map can be per-
formed manually using interactive visualiza-
tion tools such as Chimera (140). However,
automated computational methods decrease
the level of subjectivity as well as increase
the accuracy and efficiency (145). Fitting of
component structures is usually designed to
optimize a similarity score between the com-
ponent and the density map (e.g., the cross-
correlation coefficient) as a function of its
translation and rotation relative to the map
(rigid fitting). Many methods for cryo-EM
density fitting have been developed, includ-
ing SITUS (147), COAN (148), EMFIT
(149), DOCKEM (150), FOLDHUNTER
(151), URO (152), CHARMM (153), Mod-
EM (146), and ADP-EM (153a). To im-
prove the positioning of components, one
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Figure 5

A model of the cytoplasmic 80S ribosome on the basis of an integrated protocol of comparative protein
structure modeling, ab initio RNA modeling, density fitting, and density map analysis (186). To construct
the model, thousands of comparative models of mammalian proteins were calculated and fitted into the
cryo-EM map at 8.7-A resolution using Mod-EM (146). The models with the highest combination of
cross-correlation and statistical potential (34) scores were selected (161). Conserved mammalian core
rRNA and ab initio models of expansion segments were fitted and refined in the density using RSRef
(159). In addition, the resolution of the map in combination with the final model enabled the
identification of the approximate positions of 20 novel proteins (without a homolog in bacteria), many
containing rod-like features corresponding to x-helices (Figure 4). As a result, it was possible to identify
unique interactions between mammalian proteins and expansion segments and obtain insights into
conformational changes during translation. The final model is shown in a front view within the density
map (2) and on its own (b). The E-site tRNA is shown in red between the small (ssu) and large subunits
(Isu) of the ribosome. This specimen contained a native ER channel (magenta) comprised of Sec61 and
the tryptophan RNA-binding attenuation protein (TRAP), with a prominent lumenal domain (LD). The
subunit rRNAs and conserved proteins are color coded. The novel proteins (spheres and rods) and
expansion segments (red helices) are also included.

can use additional experimental (e.g., labeling  complementarity between domains (154; K.
by gold) and computational information, Lasker, M. Topf, A. Sali, & H. Wolfson, un-
e.g., statistical potentials (34) and geometric  published information).

Figure 4

Analysis of a density map from single-particle EM. If the atomic structure of the component is not
known, bioinformatics methods for fold recognition can be applied to its sequence. These methods can
also be combined with analysis of its density to identify structural features, such as secondary structure
segments (47) or the complete fold (156). If a template fold has been detected, comparative modeling can
be used to obtain a structural model; if the fold is not known, ab initio modeling can be used instead (155).
Next, the component structure, experimentally determined or modeled, is rigidly fitted in the density
map. For models, multiple models can be fitted, and the one that fits the density best is selected (146,
158). Finally, if there are differences between the fitted model and the map, flexible fitting can be applied
to improve the fit by modifying the conformation of the component structure (145, 157, 185, 187).
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Conformational variations. A common
problem in fitting is that the isolated com-
ponent structure may be in a different
conformational state than in the intact
assembly structure. These conformational
differences can originate from the varied con-
ditions under which the isolated component
and assembly structures were determined
as well as from errors in the experimental
methods (such as crystal packing and noise).
Common conformational differences are
shear and hinge movements of domains and
secondary structure elements, as well as loop
distortions and movements. Furthermore,
when an experimentally determined structure
of the component is unavailable, the use
of structure prediction methods to obtain
component models (155) can introduce
additional errors, such as misassignment of
secondary structure elements to incorrect
sequence regions and their shifts in space
caused by target-template misalignment in
comparative modeling (144).

Fitting multiple conformations. The sim-
plest approach to consider conformational
variations of component structures in fitting is
to generate a set of different conformations, fit
each of them into the density map, and select
the top ranking conformation. This approach
relies on a high correlation between the ac-
curacy of a model and the cross-correlation
score between the model and the correspond-
ing density map (146). There are several dif-
ferent approaches to generating such mod-
els. First, candidate conformations can be
calculated by exploring the structural vari-
ability within the fold superfamily of a com-
ponent (Figure 4); for example, a number
of alternative comparative models, which are
based on different templates, can be fitted into
the map, and the best fitting one is selected
(MODELLER/Mod-EM) (146). Second, if
the component’s fold is unknown, candidate
models for fitting can correspond to represen-
tatives of all known domain folds (Spi-EM)
(156). Third, varied models can be created
through rigid-body transformations of sec-
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ondary structure segments guided by a princi-
pal component analysis of structurally aligned
protein domains in the target’s superfamily
(S-flexfit) (157). Finally, a large number of
models can also be produced by ab initio pre-
diction on the basis of protein sequence alone

(ROSETTA/FOLDHUNTER) (158).

Flexible fitting. The efficiency of conforma-
tional search is increased by considering the
fit between the component and the map dur-
ing the sampling. This goal can be achieved
by optimizing the conformation of the com-
ponent simultaneously with its position and
orientation in the cryo-EM map while ideally
maintaining correct stereochemistry. Such
flexible fitting methods are similar to crys-
tallographic refinement programs, except that
they generally refine rigid bodies consisting of
a number of atoms (e.g., secondary structure
segments and domains) instead of individual
atoms.

Several flexible fitting methods have been
developed, utilizing different sampling and
scoring schemes. For example, the real-space
refinement programs RSRef (145, 159) and
Flex-EM (187) rely on standard optimiza-
tion methods, including conjugate gradients,
molecular dynamics with simulated anneal-
ing, and Monte Carlo sampling. Another ap-
proach to flexible fitting attempts to improve
the efficiency of conformational sampling is
by a normal mode analysis of the component
structure (160).

Certain large conformational changes can
be efficiently sampled by Moulder-EM (161),
a genetic algorithm protocol that gener-
ates comparative models through iterative se-
quence alignment, model building, model fit-
ting, and model assessment. Conformational
sampling arises from the iterative changes in
the alignment on which the model is based.
The fitness function of this genetic algo-
rithm combines the cross-correlation score
between the model and the map with an
atomic distance-dependent statistical poten-
tial for model assessment (34).
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Cellular atlas. Compared to electron crys-
tallography and single-particle EM densities,
cryo-E'T maps are of lower resolution. How-
ever, cryo-E'T can be used to reconstruct den-
sity maps of large cellular volumes, even whole
cells. Such tomograms can be used to iden-
tify locations of assemblies in the cell (162).
"This task, also known as template matching, is
challenging owing to a low signal-to-noise ra-
tio, varying contrast throughout tomograms,
and missing structure factors because of the
limited tilt range (“missing wedge effect”)
(141, 162). The most common and general
molecular detection algorithm is a locally nor-
malized, matched filter, introduced for rigid-
body fitting (150, 163). It was modified to
account for the missing-wedge effect and ap-
plied to tomograms (61, 62, 164). These stud-
ies demonstrated that it is feasible to identify
large macromolecular complexes (>500 kDa)
within tomograms with high fidelity (61). De-
tection will be greatly facilitated by future in-
strumental advances in cryo-ET that will im-
prove the resolution of the tomograms to the
expected limit of approximately 2 nm (45).

Structure Characterization from
Small-Angle X-ray Scattering

SAXS provides an approximate radial distri-
bution function of a macromolecule in so-
lution. For structure determination, addi-
tional information is needed because the ra-
dial distribution function alone is relatively
uninformative about the details of molecular
structure. We summarize different methods
for integrating SAXS data into computational
modeling of macromolecules.

SAXS data as a filter. Similarly to other
types of experimental information, SAXS data
can be used as a filter for a set of models gener-
ated independently by other methods. At the
protein domain level, simulations have indi-
cated that SAXS spectra can be used to choose
close-to-native models from different com-
parative models (165). In quaternary struc-
ture determination, experimental SAXS spec-

tra have been employed to choose one of a
number of quaternary structure arrangements
that resulted from computational docking of
two assembly components to each other (65).
Furthermore, SAXS spectra have been used
to verify the accuracy of coarse-grained sim-
ulations of lipoproteins (166).

SAXS data in optimization. SAXS data can
also be a term in a scoring function that is op-
timized to obtain a model consistent with the
data. The first approaches to optimize models
on the basis of SAXS data relied on represent-
ing macromolecular surfaces using spherical
harmonics (167). However, this representa-
tion has a relatively low resolution and led to
the development of alternative methods. Ow-
ing to the sparseness of SAXS data, virtually all
subsequently developed methods aimed to in-
tegrate additional information into structure
determination.

Coarse-grained approaches represent the
macromolecule as an assembly of beads on a
grid (168-170). This representation enforces
an overall mass by using a required number
of beads and potential geometrical symmetry
by symmetric sampling. In addition, compact-
ness of the models is ensured by restricting the
sampling to the vicinity of a compact initial
model (168, 169) or by including appropri-
ate terms into the scoring function (170, 171).
Higher-resolution modeling approaches rep-
resent a protein as a chain of beads rather than
a grid (171).

Ifhigh-resolution structural information is
available for some parts of the protein, the
conformational sampling can be focused only
on the undefined segments. One approach
has been developed to approximate the struc-
ture of missing loops in structures derived
by X-ray crystallography using coarse-grained
beads (172). Another approach was developed
to determine the spatial arrangement of do-
mains of known structure and the structures
of their connecting linkers (173). Here, the
elements of a known structure are kept rigid,
and their translations and rotations are opti-
mized using a simulated annealing protocol.
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If flexible linkers are present, they are repre-
sented as beads that tether the domains.

Heterogeneous samples. All SAXS model-
ing methods described above assume that the
protein is present in only one conformation
under the conditions examined. If multiple
conformations are present, the SAXS spec-
trum of the sample is a weighted average of
the SAXS spectra of each conformation. Re-
cently, methods have been proposed to fit an
ensemble of models to a given spectrum (174).

Integration of SAXS data with other in-
formation. The recent renaissance of SAXS
is to a large extent the result of efforts on inte-
grating SAXS with other structural informa-
tion from additional complementary sources
(64). This integration is necessary because
the information content of SAXS data is
low, given the number of degrees of free-
dom that typically need to be determined
and even more so for heterogeneous samples.
For example, the SAXS data of proteins
or smaller complexes can be considered si-
multaneously with corresponding cryo-EM
maps (175). Another approach, which in-
cluded SAXS data into molecular dynam-
ics simulations, has shown promising results
for simulated examples (176). Recently, SAXS
spectra have been incorporated into a pro-
tocol for structure determination by NMR
spectroscopy (177). The SAXS data contain
global information on the protein thatis com-
plementary to the short-range restraints from
NMR spectroscopy and, hence, significantly
increase the accuracy of models for multido-
main proteins compared to models based on
NMR spectra only.

To generalize further, we have incor-
porated the use of SAXS data into our
program, the Integrated Modeling Platform
(IMP), for the modeling of proteins and their
assemblies by satisfaction of spatial restraints
(http://salilab.org/imp; 167a; F. Forster, B.
Webb, K.A. Krukenberg, H. Tsuruta, D.A.
Agard, & A. Sali, unpublished information).
We have used the SAXS-based restraint in
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conjunction with restraints on the rigidity of
domains, steric clashes, stereochemistry, and
an atomic distance-based statistical potential
(34) (Figure 6). By thorough sampling of
the configurational space and subsequent
clustering of low scoring solutions, we aim
to enumerate models that are consistent with
the given SAXS data. The integration of
additional information reduces the ambiguity
of such models.

COMPREHENSIVE DATA
INTEGRATION BY
SATISFACTION OF
SPATIAL RESTRAINTS

Detailed structural characterization of assem-
blies is often difficult by any single existing
experimental or computational method. We
suggest that this barrier can be overcome by
hybrid approaches that integrate data from
diverse biochemical and biophysical experi-
ments as well as computational methods. This
information may vary greatly in terms of its
resolution, accuracy, and quantity. Here, we
outline an approach for generating structures
of macromolecular assemblies that are consis-
tent with all available information from exper-
imental methods, physical theories, and sta-
tistical preferences extracted from biological
databases. Such an integrative system will help
maximize efficiency, resolution, accuracy, pre-
cision, and completeness of the structural cov-
erage of macromolecular assemblies.

Theory and Method

We begin this section by describing the un-
derlying theory and methods of our hybrid
approach to characterizing macromolecular
assembly structures. Then, we highlight an
example, the structure determination of the

NPC (2, 17-19).

Formalization of the problem. The com-
plete process of structure determination can
be seen as a potentially iterative series of four
steps, including data generation by experi-
ments, data translation into spatial restraints,
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Figure 6

Modeling influenza hemagglutinin using SAXS. (#) Native hemagglutinin consists of two domains (b/ue
and red) (PDB code 1a0d). The SAXS spectrum of this structure was simulated with the addition of some
white noise, which typically occurs in experimental data. (b)) We approximated the hemagglutinin
domains by their structures in the postcleavage forms (2viu). (c) Models were obtained by optimization
from 600 different initial “seeds.” The optimized models were subsequently clustered into four major
groups. The models with the lowest SAXS penalty (x? of the experimental data and the SAXS spectrum
of the model) from each cluster (fop) and the corresponding SAXS spectra (bottonz) are shown. The model
from cluster IIT has the lowest SAXS score (x*> = 0.84 compared to 5.13, 3.86, and 3.68 for the models
from clusters I, II, and IV, respectively) and is closest to the native state in terms of its Co RMSD (2.7 A
compared to 13.6, 16.4, and 14.6 A). However, the differences between the cluster scores are small,
demonstrating the problem of ambiguity in modeling an assembly structure on the basis of its SAXS
spectrum. Abbreviations: I(¢), scattering intensity; native, simulated spectrum, which was used as the
input for modeling; g[A~1], spatial frequency in A~1.

calculation of an ensemble of structures by sat-
isfaction of spatial restraints, and an analysis
of the ensemble. The structural characteriza-
tion part of the process can be expressed as

an optimization problem (Figure 7). In this
view, models that are consistent with the in-
put information are calculated by optimizing
a scoring function. The three components of
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Figure 7

Characterization of an assembly configuration on the basis of data simulated from a known native
structure (67). The simulated data include protein positions (e.g., from immuno-EM), assembly shape
(e.g., from EM), relative proximity of components (e.g., from cross-linking and affinity purification). The
data is translated into spatial restraints that are then summed to obtain a scoring function. A random
starting structure is optimized by a combination of conjugate gradients and molecular dynamics with
simulated annealing to minimize violations of all restraints. The listed data were sufficient to identify the
coarse relative position of each protein (i.e., the protein configuration). To illustrate the possibility of
using different representations for different proteins, a protein is represented either by an X-ray structure
or by a single sphere that best reproduces its hydrodynamic properties determined by ultracentrifugation.
Abbreviations: DRMS, distance root-mean-square difference between the protein centroids in the
determined model and the native structure; EM, electron microscopy.

this approach are () a representation of the
modeled assembly, (4) a scoring function con-
sisting of the individual spatial restraints, and
(¢) optimization of the scoring function to ob-
tain all possible models that satisfy the input
restraints.

Representation. The modeled structure is
represented by a hierarchy of particles, de-
fined by their positions and other proper-
ties (Figure 7). For a protein assembly, the
hierarchy can include atoms, atomic groups,
amino acid residues, secondary structure seg-
ments, domains, proteins, protein subcom-
plexes, symmetry units, and the whole assem-
bly. The coordinates and properties of parti-

Alber et al.

cles at any level are calculated from those at
the highest resolution level. Different parts of
the assembly can be represented at different
resolutions to reflect the input information
about the structure (Figure 7). Moreover, dif-
ferent representations can also apply to the
same part of the system. For example, affinity
purification may indicate proximity between
two proteins, and cross-linking may indicate
which specific residues are involved in the in-
teraction.

Scoring function. The most important as-
pect of structure characterization is to ac-
curately capture all experimental, physical,
and statistical information about the modeled
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structure. This objective is achieved by ex-
pressing knowledge of any kind as a scoring
function whose global optimum corresponds
to the native assembly structure (34). One
such function is a joint probability density
function (pdf) of the Cartesian coordinates of
all assembly proteins, given the available in-
formation, /, about the system, p(C|I), where
C = (c1,¢2,...,c,) is the list of the Carte-
sian coordinates, ¢;, of the » component pro-
teins in the assembly. The joint pdf, p, gives
the probability density that a component, 7,
of the native configuration is positioned very
close to ¢;, given the information, I, we wish
to consider in the calculation. In general, [
may include any structural information from
experiments, physical theories, and statistical
preferences. For example, when [ reflects only
the sequence and the laws of physics under
the conditions of the canonical ensemble, the
joint pdf corresponds to the Boltzmann dis-
tribution. If I also includes a crystallographic
dataset sufficient to define the native structure
precisely, the joint pdfis a Dirac delta function
centered on the native atomic coordinates.

The complete joint pdf is generally un-
known but can be approximated as a product
of pdfs, pr, that describe individual assembly
features (e.g., distances, angles, interactions,
or relative orientations of proteins):

p@CID =[] psClp.
y

The scoring function F(C) is then defined as
the logarithm of the joint pdf:

FC)=—-In[]psClLp)=> r/(C).
f f

For convenience, we refer to the logarithm of
a feature pdf as a restraint, 7y, and the scoring
function is therefore a sum of the individual
restraints.

Restraints. A restraint, 7y, can in principle
have any functional form. However, it is con-
venient if ideal solutions consistent with the
data correspond to values of 0 and values
larger than O correspond to a violated re-

straint; for example, a restraint is frequently
a harmonic function of the restrained feature.

Restrained features. The restrained fea-
tures, in principle, include any structural
aspect of an assembly, such as contacts, prox-
imity, distances, angles, chirality, surface, vol-
ume, excluded volume, shape, symmetry, and
localization of particles and sets of particles.

Translating data into restraints. A key
challenge is to accurately express the input
data and their uncertainties in terms of the
individual spatial restraints. An interpretation
of the data in terms of a spatial restraint
generally involves identifying the restrained
components (i.e., structural interpretation)
and the possible values of the restrained fea-
ture implied by the data. For instance, the
shape, density, and symmetry of a complex
or its subunits may be derived from X-ray
crystallography and EM (38); upper distance
bounds on residues from different proteins
may be obtained from NMR spectroscopy
(22) and chemical cross-linking (95); protein-
protein interactions may be discovered by the
yeast two-hybrid system (178) and calorime-
try (73); two proteins can be assigned to
be in proximity if they are part of an iso-
lated subcomplex identified by affinity purifi-
cation in combination with mass spectrom-
etry (79). Increasingly, important restraints
will be derived from pairwise molecular dock-
ing (118), statistical preferences observed in
structurally defined protein-protein interac-
tions (139), and analysis of multiple sequence
alignments (179).

Conditional restraints. If structural inter-
pretation of the data is ambiguous (i.e., the
data cannot be uniquely assigned to specific
components), only “conditional restraints”
can be defined. For example, when there is
more than one copy of a protein per as-
sembly, a yeast two-hybrid system indicates
only which protein types but not which in-
stances interact with each other. Such am-
biguous information must be translated into
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a conditional restraint that considers all al-
ternative structural interpretations of the data
(Figure 8). The selection of the best alterna-
tive interpretation is then achieved as part of
the structure optimization process.

Optimization methods. Structures can be
generated by simultaneously minimizing the
violations of all restraints, resulting in con-
figurations that minimize the scoring func-
tion F. It is crucial to have access to multi-
ple optimization methods to choose one that
works best with a specific scoring function
and representation. Optimization methods
implemented in IMP currently include con-
jugate gradients, quasi-Newton minimiza-
tion, and molecular dynamics, as well as
more sophisticated schemes, such as self-
guided Langevin dynamics, the replica ex-
change method, and exact inference (belief
propagation) (K. Lasker, M. Topf, A. Sali, &
H. Wolfson, unpublished information); all of
these methods can refine positions of the in-
dividual particles as well as treat subsets of
particles as rigid bodies.

Outcomes. There are three possible out-
comes of the calculation. First, if only a single
model satisfies all input information, there is
probably sufficient data for prediction of the
unique native state. Second, if different mod-
els are consistent with the input information,
the data are insufficient to define the single
native state, or there are multiple native struc-
tures. If the number of distinct models is small,
the structural differences between the models
may suggest additional experiments to narrow
down the possible solutions. Third, if no mod-
els satisfy all input information, the data or
their interpretation in terms of the restraints
are incorrect.

Analysis. In general, a number of different
configurations may be consistent with the in-
put restraints. The aim is to obtain as many
structures as possible that satisfy all input
restraints. To comprehensively sample such
structural solutions consistent with the data,
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independent optimizations of randomly gen-
erated initial configurations need to be per-
formed until an ensemble of structures sat-
isfying the input restraints is obtained. The
ensemble can then be analyzed in terms of
assembly features, such as the protein posi-
tions, contacts, and configuration. These fea-
tures can generally vary among the individ-
ual models in the ensemble. To analyze this
variability, a probability distribution of each
feature can be calculated from the ensemble.
Of particular interest are the features that are
present in most configurations in the ensem-
ble and have a single maximum in their prob-
ability distribution. The spread around the
maximum describes how precisely the feature
was determined by the input restraints. When
multiple maxima are presentin the feature dis-
tribution at the precision of interest, the input
restraints are insufficient to define the single
native state of the corresponding feature (or
there are multiple native states).

Predicting accuracy. Assessing the accuracy
of a structure is important and difficult.
The accuracy of a model is defined as the
difference between the model and the na-
tive structure. Therefore, it is impossible to
know with certainty the accuracy of the pro-
posed structure without knowing the real na-
tive structure. Nevertheless, our confidence
can be modulated by five considerations:
(@) self-consistency of independent experi-
mental data; (b) structural similarity among
all configurations in the ensemble that sat-
isfy the input restraints; (¢) simulations where
a native structure is assumed, corresponding
restraints are simulated from it, and the re-
sulting calculated structure is compared with
the assumed native structure; (d) confirma-
tory spatial data that were not used in the cal-
culation of the structure (e.g., criterion similar
to the crystallographic free R-factor (180) can
be used to assess both the model accuracy and
the harmony among the input restraints); and
(e) patterns emerging from a mapping of in-
dependent and unused data on the structure
that are unlikely to occur by chance (18, 19).
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Conditional restraint (19). As an example, shown is a conditional restraint on protein contacts derived
from a single affinity purification experiment that identified 4 protein types (yellow, blue, red, green),
obtained from an assembly containing a single copy of the yellow, blue, and red protein and two copies of
the green protein (18, 19, 67). (#) A single protein is represented by either one bead (b/ue and green
proteins) or two beads (yellow and red proteins); alternative interactions between proteins are indicated by
different edges. (b) Protein contacts are selected in a decision tree-like evaluation process by operator
functions O, and O,,. Red vertical lines indicate restraints that encode a protein contact; thick vertical
lines are a subset of restraints that are selected for contribution to the final value of the conditional
restraint, whereas dotted vertical lines indicate restraints that are not selected. Also shown are spanning
trees of a “composite graph.” (¢) The composite graph is a fully connected graph that consists of nodes
for all identified protein types (square nodes) and edges for all pairwise interactions between protein types
(left of the Oy, operator); edge weights correspond to violations of interaction restraints and quantify how
consistent the corresponding interaction is with the current assembly structure. A “spanning tree” is a
graph with the smallest possible number of edges that connect all nodes; a subset of 4 out of 16 spanning
trees is indicated to the right of the Oj operator. The “minimal spanning tree” is the spanning tree with
the minimal sum of edge weights (i.e., restraints violations). The sample affinity purification implies that
at least three of the following six possible types of interactions must occur: blue-red, blue-yellow,
blue-green, red-green, red-yellow, and yellow-green. In addition, (i) the three selected interactions must
form a spanning tree of the composite graph; (i7) each type of interaction can involve either copy of the
green protein; and (777 ) each protein can interact through any of its beads. These considerations can be
encoded through a tree-like evaluation of the conditional restraint. At the top level, all possible bead-bead
interactions between all protein copies are clustered by protein types. Each alternative bead interaction
can be restrained by a restraint corresponding to a harmonic upper bound on the distance between the
beads; these are termed “optional restraints” because only a subset is selected for contribution to the final
value of the conditional restraint. Next, an operator function (O,) selects only the least violated optional
restraint from each interaction type, resulting in six restraints (¢thick red lines) at the middle level of the
tree. Finally, a minimal spanning tree operator (Op) finds the minimal spanning tree corresponding to the
combination of three restraints that are most consistent with the affinity purification (¢thick red lines). The
whole restraint evaluation process is executed at each optimization step on the basis of the current
configuration, thus resulting in possibly different subsets of selected optional restraints at each step (19).
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Advantages. The integrative approach to
structure determination has several advan-
tages. It benefits from the synergy among the
input data, minimizing the drawback of in-
complete, inaccurate, and/or imprecise data
sets (although each individual restraint may
contain little structural information, the con-
current satisfaction of all restraints derived
from independent experiments may drasti-
cally reduce the degeneracy of structural so-
lutions). It can potentially produce all struc-
tures that are consistent with the data, not
just one. The variation among the struc-
tures, consistent with the data, allows an as-
sessment of the sufficiency of the data and
the precision of the representative structure.
Finally, this approach makes the process of
structure determination more efficient by in-
dicating what measurements would be most
informative.

Structural Characterization of
the Nuclear Pore Complex

Using the approach outlined above, we de-
termined the native configuration of proteins
in the yeast NPC (18, 19). These NPCs are
large (~50 MDa) proteinaceous assemblies
spanning the NE, where they function as the
sole mediators of bidirectional macromolecu-
lar exchange between the nucleoplasmic and
cytoplasmic compartments in all eukaryotes
(181). EM images of the yeast NPC at ~200-A
resolution revealed that the nuclear pore
forms a channel by stacking two similar rings,
each one consisting of eight radially arranged
“half-spoke” units (182). The yeast NPC is
built from multiple copies of 30 different pro-
teins, totaling ~456 proteins (called nucleo-
porins or nups).

Although low-resolution EM has provided
valuable insights into the overall shape of the
NPC, the spatial configuration of its com-
ponent proteins and the detailed interaction
network between them were unknown. A de-
scription of the NPC’s structure was needed
to understand its function and assembly as

Alber et al.

well as to provide clues to its evolutionary
origins. Owing to its size and flexibility, de-
tailed structural characterization of the com-
plete NPC assembly has proven to be extraor-
dinarily challenging. Further compounding
the problem, atomic structures have only been
solved for domains covering ~5% of the pro-
tein sequence (183).

To determine the protein configuration of
the NPC, we collected a large and diverse set
of biophysical and biochemical data. The data
were derived from six experimental sources
(Figure 9).

1. Quantitative immunoblotting experi-
ments determined the stoichiometry of
all 30 nups in the NPC.

2. Hydrodynamics experiments provided
information about the approximate ex-
cluded volume and the coarse shape of
each nup.

3. Immuno-EM provided a coarse local-
ization for each nup along two principal
axes of the NPC.

4. An exhaustive set of affinity purification
experiments determined the composi-
tion of 77 NPC complexes.

5. Overlay experiments determined five
direct binary nup interactions.

6. Symmetry considerations and the di-
mensions of the NE were extracted
from cryo-EM. Moreover, bioinformat-
ics analysis provided information about
the position of transmembrane helices
for the three integral membrane nups.
These data were translated into spatial
restraints on the NPC (Figure 9).

The relative positions and proximities of
the NPC’s constituent proteins were then pro-
duced by satisfying these spatial restraints,
using the approach described above and il-
lustrated in Figure 10. Optimization relies
on conjugate gradients and molecular dy-
namics with simulated annealing. It starts
with a random configuration of proteins
and then iteratively moves these proteins so
as to minimize violations of the restraints
(Figure 10). To comprehensively sample all
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Calculation of the NPC bead structure by satisfaction of spatial restraints. () Representation of the
optimization process as it progresses from an initial random configuration to an optimal solution. () The
graph shows the relationship between the score (a measure of the consistency between the configuration
and the input data) and the average contact similarity. The contact similarity quantifies how similar two
configurations are in terms of the number and types of their protein contacts; two proteins are considered
to be in contact when they are sufficiently close to one another given their size and shape. The average
contact similarity at a given score is determined from the contact similarities between the lowest scoring
configuration and a sample of 100 configurations with that given score. Error bars indicate standard
deviation. Representative configurations at various stages of the optimization process from left (very
large scores) to right (with a score of 0) are shown above the graph; a score of 0 indicates that all input
restraints have been satisfied. As the score approaches zero, the contact similarity increases, showing that
there is only a single cluster of closely related configurations that satisfies the input data. (¢) Distribution
of configuration scores demonstrates that our sampling procedure finds configurations consistent with
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the input data. These configurations satisfy all the input restraints within the experimental error (19).

possible structural solutions that are consis-
tent with the data, we obtained an ensemble
of 1000 independently calculated structures
thatsatisfied the input restraints (Figure 10c).
After superposition of these structures, the
ensemble was converted into the probabil-
ity of finding a given protein at any point in
space (i.e., the localization probability). The
resulting localization probabilities yielded a
single pronounced maximum for almost ev-
ery protein, demonstrating that the input
restraints define a single NPC architecture

Alber et al.

(Figure 11). The average standard deviation
for the separation between neighboring pro-
tein centroids is 5 nm. Given that this level
of precision is less than the diameter of many
proteins, our map is sufficient to determine
the relative position of proteins in the NPC.
Although each individual restraint may con-
tain little structural information, the concur-
rent satisfaction of all restraints derived from
independent experiments drastically reduces
the degeneracy of the structural solutions
(Figure 12).
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Outer rings

Nucleoplasm

Figure 11

Linker nups

Localization of major substructures and their component proteins in the NPC. The proteins are
represented by their localization volumes and have been colored according to their classification into five
distinct substructures on the basis of their location and functional properties: the outer rings in yellow, the
inner rings in purple, the membrane rings in brown, the linker nups in blue and pink, and the FG nups
(for which only the structured domains are shown) in green. The pore membrane is shown in gray (18).

Our structure (Figure 11) reveals that half
of the NPC is made of a core scaffold, which is
structurally analogous to vesicle coating com-
plexes. This scaffold forms an interlaced net-
work that coats the entire curved surface of
the NE within which the NPC is embedded.
The selective barrier for transport is formed
by large numbers of proteins with disordered
regions that line the inner face of the scaf-
fold. The NPC consists of only a few struc-
tural modules. These modules resemble each
other in terms of the configuration of their
homologous constituents. The architecture of
the NPC thus appears to be based on the hier-

archical repetition of the modules that likely
evolved through a series of gene duplications
and divergences. Thus, the determination of
the NPC configuration in combination with
the fold prediction (183, 184) of its constituent
proteins can provide clues to the ancient evo-
lutionary origins of the NPC.

In the future, we envision combining
cryo-ET, proteomics, cross-linking, cryo-EM
of subcomplexes, and experimentally de-
termined or modeled atomic structures of
the individual subunits to obtain a pseu-
doatomic model of the whole NPC assembly
in action.
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NPC symmetry

Figure 12

Synergy between varied datasets results in increased precision of structure determination. The proteins
are increasingly localized by the addition of different types of synergistic experimental information. As an
example, each panel illustrates the localization of 16 copies of Nup192 in the ensemble of nuclear pore
complex (NPC) structures generated, using the datasets indicated below. The smaller the volume (red),
the better localized is the protein. The NPC structure is therefore essentially “molded” into shape by the
large amount of experimental data (19). Abbreviations: NE, nuclear envelope; Nup, nucleoporin protein.

CONCLUSIONS

There is a wide spectrum of experimental and
computational methods for identification and
structural characterization of macromolecular
complexes. The data from these methods need
to be combined through integrative compu-
tational approaches to achieve higher resolu-
tion, accuracy, precision, completeness, and
efficiency than any of the individual meth-
ods. New methods must be capable of gen-
erating possible alternative models consistent
with information from various sources, such

SUMMARY POINTS

as stoichiometry, interaction data, similarity
to known structures, docking results, and low-
resolution images.

Structural biology is a great unifying dis-
cipline of biology. Thus, structural charac-
terization of many protein complexes will
bridge the gaps between genome sequencing,
functional genomics, proteomics, and systems
biology. The goal seems daunting, but the
prize will be commensurate with the effort
invested, given the importance of molecular
machines and functional networks in biology
and medicine.

1. To understand the cell, we need to determine the structures of macromolecular as-

semblies, many of which consist of tens and even hundreds of components.

2. A variety of experimental methods exists that generates structural information about

assemblies, from atomic-resolution data to coarse descriptions of the component ar-

rangement in the complex.

3. To maximize the completeness, accuracy, and resolution of the structural determi-

nation, a computational approach is needed that can use spatial information from a

variety of experimental methods.

4. The complete process of structure determination can be seen as a potentially iterative

series of four steps, including data generation by experiments, data interpretation in

terms of spatial restraints, calculation of an ensemble of structures by satisfaction of
spatial restraints, and an analysis of the ensemble.

Alber et al.
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5. The structure calculation part of this process is conveniently expressed as an optimiza-
tion problem, and the solution requires three main components: the representation
of an assembly, a scoring function, and optimization.

6. The power of the integrative approach is illustrated by its use of the proteomic data
to define the configuration of proteins in large assemblies, such as the NPC.

FUTURE ISSUES

1. Information from experimental and theoretical sources in terms of individual spatial
restraints needs to be quantified.

2. Individual restraints should be combined into an accurate scoring function.

3. Thorough sampling schemes for finding good solutions to a scoring function are
needed.

4. Methods for a comprehensive analysis of the ensemble of models consistent with the
data can be developed.

5. Accurate methods for predicting the likely accuracy of the input data and the corre-
sponding structure are needed.

6. Robust, efficient, user friendly, and generally applicable computer software for calcu-
lating assembly structures on the basis of varied datasets should be developed.

7. Descriptions of the structures as well as dynamics of both stable and transient com-
plexes are needed.
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