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SUMMARY

Cryo-electron microscopy (cryo-EM) has become a
mainstream technique for determining the structures
of complex biological systems. However, accurate
integrative structural modeling has been hampered
by the challenges in objectively weighing cryo-EM
data against other sources of information due to
the presence of random and systematic errors, as
well as correlations, in the data. To address these
challenges, we introduce a Bayesian scoring func-
tion that efficiently and accurately ranks alternative
structuralmodels of amacromolecular systembased
on their consistency with a cryo-EM density map as
well as other experimental and prior information.
The accuracy of this approach is benchmarked using
complexes of known structure and illustrated in three
applications: the structural determination of the
GroEL/GroES, RNA polymerase II, and exosome
complexes. The approach is implemented in the
open-source Integrative Modeling Platform (http://
integrativemodeling.org), thus enabling integrative
structure determination by combining cryo-EM data
with other sources of information.

INTRODUCTION

Over the last two decades, cryo-electron microscopy (cryo-EM)

has enabled the structural characterization of complex biological

systems beyond the capabilities of traditional techniques, such

as X-crystallography and nuclear magnetic resonance (NMR)

spectroscopy (Callaway, 2015; Kuhlbrandt, 2014; Nogales,

2016). This progress has been fueled by the continuous ad-

vances in both instrumentation and software for cryo-EM image

processing (Bai et al., 2015; Glaeser, 2016; Li et al., 2013). As a

result, the resolution of the structures from cryo-EM is rapidly

approaching that of X-ray crystallography. Most importantly,

cryo-EM does not require crystallizing the system prior to

data acquisition, needs a small amount of sample, does not
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require isotopic labeling, and is applicable to systems larger

than �100 kDa. Furthermore, cryo-EM has the potential of iden-

tifying multiple different structural states in a single experiment

(Bai et al., 2015; Callaway, 2015; Glaeser, 2016; Nogales,

2016), provided that they can be disentangled during image

classification.

A number of approaches have been proposed to model

macromolecular structures based on cryo-EM density maps

(Lopez-Blanco and Chacon, 2015; Schroder, 2015). Generally

speaking, these techniques can use one or more of the

following strategies: rigid-body fitting of components of known

structures, flexible refinement, use of homology modeling or

de novo protein structure prediction of the components, and inte-

grative modeling based on multiple types of experimental data.

The most popular software packages for cryo-EM-based

modeling include Chimera (Pettersen et al., 2004), EMfit (Ross-

mannetal., 2001),Modeller (Sali andBlundell, 1993), SITUS (Wrig-

gers, 2012), MultiFit (Lasker et al., 2009), EMFF (Zheng, 2011),

MDFF (Trabuco et al., 2008), Flex-EM (Topf et al., 2008), g-TEMPy

(Pandurangan et al., 2015), COAN (Volkmann and Hanein, 1999),

CAMPARI (Vitalis and Caflisch, 2014), MDFIT (Ratje et al., 2010),

Fold-EM (Saha and Morais, 2012), ROSETTA (DiMaio et al.,

2009), EM-fold (Lindert et al., 2012), IMP (integrative modeling

platform) (Russel et al., 2012), RELION (Scheres, 2012a), ISD (Ha-

beck, 2017), andPhenix (Adamset al., 2011). Themajority of these

approaches generate structural models that minimize the devia-

tion between observed and predicted cryo-EM density maps,

including by molecular dynamics, Monte Carlo (MC), or normal

modes analysis techniques (Lopez-Blanco and Chacon, 2015).

Several methods have been developed with the purpose of

fitting the components of large macromolecular complexes

into low-resolution density maps. A subset of these of methods

use scoring functions based on cross-correlation (CC) or lapla-

cian-filtered CC between a target map and a simulated map,

sampling using three-dimensional (3D) cartesian fast Fourier

transform (FFT) coupled with exhaustive rotational samples,

such as COLORES (Chacon and Wriggers, 2002), gEMfitter

(Hoang et al., 2013), and PowerFit (van Zundert and Bonvin,

2015). These methods are normally used incrementally; i.e., by

fitting one subunit at a time. In contrast, other modeling software

packages simultaneously assemble multiple components of

the complex. ATTRACT-EM (de Vries and Zacharias, 2012), for
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example, uses Gaussians positioned at the center of each voxel

of the map, a coarse-grained representation of the model struc-

ture, and a gradient vector matching as energy function.

Despite the success of these methods, the translation of cryo-

EM density maps into structural models still presents several

challenges, especially in integrative structural modeling, where

cryo-EM data are combined with other sources of information.

First, cryo-EM density maps are affected by random and sys-

tematic errors (Bonomi et al., 2017; Schneidman-Duhovny

et al., 2014). In particular, radiation damage to the sample

upon prolonged exposure to the electron beam often results in

regions of the density map at resolutions lower than the average.

Second, despite progress in methods for two-dimensional (2D)

classification and 3D reconstruction, the final maps might still

average out images of particles in different conformations

(Bonomi et al., 2016). Finally, cryo-EMmaps are typically defined

by a set of data points, or voxels, representing the electron

density on a grid in real space. Neighboring voxels do not pro-

vide independent information on the system but instead are

affected by a certain degree of spatial correlation. Accounting

for correlation as well as the presence of noise in the data is

crucial when integrating cryo-EM with other experimental data

(Ward et al., 2013), as the information and noise content of

each piece of data need to be accurately quantified to avoid

biasing a model (Schneidman-Duhovny et al., 2014).

Here, we introduce a Bayesian approach (Rieping et al., 2005)

to model the structure of a macromolecular system by optimally

combining cryo-EM data with other input information. Bayesian

inference and maximum-likelihood methods are not novel to

the cryo-EM field (Scheres, 2012b; Sigworth et al., 2010), as

they were initially introduced for aligning structurally homoge-

neous sets of 2D images (Sigworth, 1998) and they are now

widely used by software packages such as RELION (Scheres,

2012a) for single-particle reconstruction. In our approach, we

use Bayesian inference in a way similar to that discussed in a

recent paper (Habeck, 2017); i.e., to determine the optimal

weight of cryo-EM data in integrative structural modeling.

Our approach models the structure of the system while simul-

taneously and automatically quantifying the level of noise in the

data. Furthermore, the input data are represented in terms of a

Gaussian mixture model (GMM) (de Vries and Zacharias, 2012;

Jonic et al., 2016; Kawabata, 2008; Robinson et al., 2015), rather

than using the standard voxel representation. This procedure

has several advantages: (1) it alleviates the problem of voxel

correlation by decomposing the density map into a set of

nearly independent GMM components; (2) it is computationally

efficient; and (3) it enables a multi-scale representation of

the model, from coarse-grained for initial efficient sampling to

atomistic for refinement of high-resolution maps. By accounting

for both data noise and correlation, this approach enables an

effective use of cryo-EM density maps in integrative structural

modeling.

In the following, we first outline our modeling approach and

then benchmark its accuracy using synthetic low-resolution

data of several protein/DNA complexes. Finally, we apply our

approach to the integrative modeling of the GroEL/ES complex,

as well as the RNA polymerase II and the exosome complexes, in

which we combine cryo-EM with chemical cross-linking/mass

spectrometry (XL-MS) data. This method is implemented in
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the open-source IMP package (http://integrativemodeling.org)

(Russel et al., 2012), thus enabling integrative structure determi-

nation of biological systems based on a variety of experimental

data, including fluorescence resonance energy transfer and

NMR spectroscopies, XL-MS, small-angle X-ray scattering,

and various proteomics data.

RESULTS

Protocol for Low-Resolution Modeling of Cryo-EM
Density Maps
We implemented in IMP (Russel et al., 2012) a pipeline that

enables the multi-scale modeling of macromolecular structures

based on cryo-EM data and other structural information, given

partial knowledge of subunits structures. The details of our

approach are illustrated in the STAR Methods. The general

four-stage protocol proceeds as follows (Figure 1):

(1) Gather the data, including the sequences of subunits,

their structures (e.g., from X-ray crystallography, NMR

spectroscopy, homology modeling, and ab initio predic-

tion), and the target cryo-EM density map (Figure 1.1).

(2) Convert the data into a scoring function for ranking alter-

native structural models:
A. Generate a GMM representation of the density map

(data-GMM) by using a divide-and-conquer algorithm

(Figures 1.2A, 2, and S1).

B. Assign a representation to the different components of

the complex (Figure 1.2B). Subunits are represented

by spherical beads to coarse-grain the atomic degrees

of freedom. For a given domain, the beads are either

constrained into a rigid body or allowed to move

flexibly, depending on the uncertainty about the

domain structure. The beads represent one or more

contiguous residues, depending on the level of

coarse-graining (Erzberger et al., 2014; Fernandez-

Martinez et al., 2016; Robinson et al., 2015).

C. The electron density of the model is also described by

a GMM (model-GMM) and is used to compute the fit of

the model to the cryo-EM density map (Figure 1.2C).

D. The scoring function that ranks the models according

to how well they fit the input information is derived

from the posterior probability, which includes a likeli-

hood function for the cryo-EM data (Figure S2), and

prior terms such as the bead sequence connectivity

and excluded volume (Figure 1.2D).

(3) Sample models using MC and replica exchange methods

(Swendsen and Wang, 1986), with an iterative approach

to maximize sampling exhaustiveness (Figures 1.3

and S3).

(4) Analyze the sampledmodels in terms of their variability by

clustering (Figure 1.4).

Benchmark of the Divide-and-Conquer Fit of the
Data-GMM
We assessed the accuracy of our divide-and-conquer approach

by determining the data-GMM of 20 experimental density maps

at different resolutions (Liu et al., 2016; Malet et al., 2010; Wang

et al., 2007), ranging from 3.6 Å to 25 Å (Table 1). This benchmark

http://integrativemodeling.org


Figure 1. Workflow for Multi-Scale Modeling

of Cryo-EM Data

(1) The input information for the modeling protocol

consists of an experimental cryo-EM density map

(left), the structures of the subunits (center), and the

sequences of the subunits (right). (2A) The density

map is fitted with a GMM (i.e., the data-GMM) using

our divide-and-conquer approach. (2B) The atom-

istic coordinates of the subunits are suitably coarse-

grained into large beads. Regions without a known

atomistic structure are represented by a string of

large beads, each representing a set of residues.

(2C) GMM for the subunits (i.e., the model-GMMs)

are also computed from the atomistic coordinates.

(2D) The Bayesian scoring function encodes prior

information about the system and measures the

agreement between the data-GMM and the model-

GMM. (3) Structural models are sampled by MC

coupled with replica exchange, with or without the

iterative sampling protocol. (4) The generated

models are analyzed.
revealed that the number of Gaussian components needed to

achieve a given accuracy of the optimal data-GMM varies with

the resolution of the map and molecular weight of the complex

(Figure 3A). Indeed, for a given number of components and

molecular weight, the data-GMM correlation coefficient is lower

for higher-resolution maps. In other words, high-resolution

maps and maps of high-molecular-weight complexes contain
Figure 2. Divide-and-Conquer Approach for Fitting Cryo-EM Density Maps with a GMM

(A) The input map is thresholded according to the recommended threshold.

(B) The resulting map is initially fitted using a GMM with two components.

(C) Each component of the GMM is used to partition the map into overlapping sub-maps.

(D) Each sub-map is fitted using a GMM with two components, similarly to step (B).

(E) The sum of all the GMMs of the sub-maps results in a data-GMM that approximates the original map. The a

(F) The fitting procedure is iterated until the data-GMM reaches an optimal accuracy. The green arrow ind

CC was higher than 0.95.
more information and therefore require

additional components to describe the

ensemble of their features.

We used this benchmark to calculate the

resolution of the cryo-EM density maps as

a function of the number of Gaussians per

mass unit of the optimal data-GMM (Fig-

ure 3B). This relationship can be used to

(1) estimate the resolution of a GMMgener-
ated from a known structure, and (2) estimate the number of

Gaussians needed to fit a cryo-EM density map of a given

mass and resolution.

Our divide-and-conquer approach allowed us to overcome

the computational inefficiency of the traditional expectation-

maximization algorithm for fitting GMM with a large number of

components. For example, in the case of the yeast cytoplasmic
ccuracy of approximation increases at every iteration.

icates a branch that was stopped because the local
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Table 1. Benchmark of the Divide-and-Conquer Approach for GMM Fitting

EMDB Code Reference

Molecular

Weight (kDa) Resolution [Å]

Resolution

Method (FSC)

Optimal Number of

Components GMM Resolution (Å) CC

1439 Wang et al., 2007 300 23.0 0.5 64 21.6 0.97

1438 Wang et al., 2007 400 19.0 0.5 184 19.5 0.97

1708 Malet et al., 2010 400 14.0 0.5 304 14.7 0.97

3368 Liu et al., 2016 350 13.0 0.143 256 10.8 0.93

3367 Liu et al., 2016 350 11.5 0.143 784 11.6 0.97

3371 Liu et al., 2016 350 11.0 0.143 844 10.5 0.96

3370 Liu et al., 2016 350 6.7 0.143 1023 6.5 0.92

3372 Liu et al., 2016 350 6.3 0.143 1023 5.7 0.90

3369 Liu et al., 2016 420 5.8 0.143 1024 6.2 0.85

3366 Liu et al., 2016 420 4.2 0.143 12,219 3.9 0.95

6231 Booth et al., 2014 457 25.0 0.143 64 24.2 0.97

1753 Vannini et al., 2010 700 21.0 0.5 100 24.0 0.98

1883 Czeko et al., 2011 550 20.9 0.5 64 19.1 0.82

1711 Julian et al., 2011 380 13.0 0.5 640 13.9 0.98

3198 Fernandez-Leiro et al., 2015 256 8.0 0.143 256 7.8 0.78

2923 Martinez-Rucobo et al., 2015 540 7.2 0.143 1012 6.8 0.90

2784 Plaschka et al., 2015 570 6.6 0.143 1024 6.9 0.84

3056 des Georges et al., 2015 450 6.0 0.143 1024 6.2 0.83

3202 Fernandez-Leiro et al., 2015 256 7.3 0.143 256 7.5 0.80

3219 Bernecky et al., 2016 590 3.6 0.143 14,225 3.6 0.94

For each of the systems studied, we report the EMDB accession code, the reference paper, the molecular weight of the complex, the resolution of the

map, the method used to quantify the experimental resolution, the optimal number of components, the resolution of the optimal GMM, and the CC

between the experimental cryo-EM map and the optimal GMM. FSC, Fourier shell correlation.
exosome at 4.2 Å resolution (Electron Microscopy Data Bank

[EMDB]: 3366) (Liu et al., 2016), our approach required 24 min

and less than 1 GB to generate GMMs with 4, 16, 64, 256,

1,024, and 4,096 components. In contrast, a serial implementa-

tion on a single computer required over 48 hr and 182 GB of

memory for fitting with 4,096 components.

Benchmark of the Modeling Protocol
We assessed the accuracy of the modeling protocol using a

benchmark of 21 protein/DNA complexes consisting of two to

seven subunits (Table 2) (Velazquez-Muriel et al., 2012) and

simulated cryo-EM density maps with a resolution of �10 Å.

No additional experimental data beside the crystal structure of

the individual components were included, as our aim was to

explore the performance of the cryo-EM scoring function alone.

The detailed results of the benchmark are reported in Table S1.

The average accuracy p(10) (STAR Methods) of the whole

benchmark was 88%. We classified the outcomes of our bench-

mark into three categories. We defined a full positive result when

the global root-mean-square deviation (RMSD) with respect to

the reference structure along with the RMSDs of all the individual

subunits was lower than 10 Å. A partial positive result was

achieved when the global RMSD was lower than 10 Å but

some of the subunits were misplaced, resulting in an RMSD

greater than 10 Å for at least one subunit. A negative result

was obtained when the global RMSD was greater than 10 Å.

Out of the 21 complexes, we obtained 16 full positives (2UZX,

3R5D, 1CS4, 2WVY, 2DQJ, 1VCB, 2GC7, 2BO9, 2BBK, 1GPQ,

3V6D, 3SFD, 3PDU, 3NVQ, 2Y7H, and 1SUV), three partial
178 Structure 27, 175–188, January 2, 2019
positives (1Z5S, 3LU0, and 1MDA), and two negatives (3PUV

and 1TYQ) (Table 2 and Figure 4).

The majority of the complexes belonged to the full-positive

category and were accurately modeled, with an average

global RMSD from the reference structure equal to 2.2 Å. In

the following, we discuss the few partial positive and negative

results, highlighting the reasons behind their lower accuracy.

The best-scoring model of the four-subunit 1Z5S had an

RMSD of 9.0 Å, p(10) of 0.86, average placement score (APS)

of (1.8 Å, 32.1�), and CC of 0.87. All best-scoring models are

grouped into a single cluster. The origin of the inaccuracy was

subunit B, which was mis-rotated by almost 180�. The reason

was that this subunit has a cylindrical shape and therefore the

expected density is nearly invariant under rotations around the

main axis.

The best-scoring model of the five-subunit 3LU0 had an

RMSD of 9.3 Å, p(10) of 0.85, APS of (4.3 Å, 5.7�), and CC of

0.74. The best-scoring models were grouped into two clusters.

In the first cluster containing the best-scoring model, the lower

accuracy of the models was due to subunits A, B, and E.

Subunits A and B, while positioned in the correct region of the

density map, were displaced by 10.9 Å and 7.3 Å and mis-

rotated by 33.7� and 24.1�, respectively. Subunit E was also

displaced by 13.5 Å and mis-rotated by 34.6�. In the second

cluster, the situation was similar, with subunit E displaced even

farther apart in the incorrect region of the density, with a place-

ment score of (72.6 Å, 151.7�).
The best-scoring model of the six-subunit 1MDA had an

RMSD of 8.1 Å, p(10) of 0.85, APS of (3.2 Å, 34.0�), and CC of



A B

Figure 3. Benchmark of the Divide-and-Conquer Fit of the Data-GMM

(A) The accuracy of the divide-and-conquer approach is measured using the correlation coefficient between the input map and the corresponding data-GMMs

obtained at different iterations. The accuracy increases with the number of components in the mixture, and the saturation point (i.e., the number of components

beyond which the accuracy does not increase significantly) depends on the resolution of the experimental map (red and blue curves are low and high resolutions,

respectively).

(B) Relationship between map resolution and number of components of the data-GMM. For all the density maps of (A), the experimental resolution is plotted as a

function of the optimal number of components of the data-GMM normalized by the molecular weight of the complex (solid circles). The points are fitted using a

power law (blue line). The orange and purple circles correspond to maps whose resolution was determined by the Fourier shell correlation 0.143 and

0.5, respectively. (Inset) For each density map, the optimal number of components is computed as the minimal absolute relative deviation jDrj=r between the

data-GMM resolution and the density map resolution.
0.75. All best-scoring models were grouped into a single cluster.

The origin of the inaccuracy was the orientations of subunits A

and M, which were both mis-rotated by almost 180�. The reason

was that these subunits have near-cylindrical shape and there-

fore their expected densities are almost invariant under rotations

around the main axis.

The best-scoring model of the five-subunit 3PUV had an

RMSD of 23.4 Å, p(10) of 0.64, APS of (8.0 Å, 31.1�), and CC of

0.74. All best-scoring models were grouped into a single cluster.

In the best-scoring model, subunits E, F, and G were correctly

positioned. Subunits A and B were instead both misplaced and

mis-rotated, with APS of (17.6 Å, 17.7�) and (18.1 Å, 136.7�),
respectively. The reason was that these subunits formed a

closed dimer of roughly cubical shape, whose density could be

fit also by an incorrect model in which the positions of the domain

of subunits A and B were swapped.

The best-scoring model of the seven-subunit 1TYQ had an

RMSD of 19.8 Å, p(10) of 0.65, APS of (4.1 Å, 58.2�), and CC of

0.65. The best-scoring models were grouped into three clusters.

In all clusters, subunits D and F were both misplaced and mis-

rotated. The most likely reason for this inaccuracy was that these

subunits formed an elongated helical bundle of about 40 residues

in length, making samplingmore challenging due to steric effects.

In the first cluster containing the best-scoring model, subunit E

was also mis-rotated by almost 180�, due to its globular shape.

Modeling of the GroEL/ES Complex
The ADP-bound GroEL/ES is a 21-subunit molecular chaperone

that assists protein folding in bacteria. We used cryo-EM data at
23.5 Å resolution (EMDB: 1046) (Ranson et al., 2001) and

the crystallographic structures of the subunits (PDB: 1AON)

(Xu et al., 1997) (Figure S4).

The 100 best-scoring models grouped into three clusters,

which were mainly different in the orientation of the GroEL-trans

subunit (Figure 5 and Table S2). All three clusters presented a

mis-rotation of the GroES subunit, which was due to the small

size of the subunit and the low resolution of the map (de Vries

and Zacharias, 2012; Habeck, 2017; Kawabata, 2008). The

RMSD of the best-scoring model (Figure S4) with respect to

the reference structure was 9.0 Å, with p(10) of 0.98 and data-

model CC of 0.85. Notably, GroES and GroEL-cis proteins

were determined with lower precision than GroEL-trans.

Integrative Modeling of the RNA Polymerase II
The yeast RNA polymerase II is a 12-subunit complex that cata-

lyzes DNA transcription to synthesize mRNA strands (Armache

et al., 2005). To model this complex, we used the structures of

all its subunits as determined in the RNA polymerase II X-ray

structure (PDB: 1WCM) (Armache et al., 2005). We incorporated

a low-resolution cryo-EM map of the RNA polymerase II-Iwr1

complex (EMDB: 1883) (Czeko et al., 2011) and two XL-MS

datasets (Figures 6, S5, and S6).

Of the 1,000 best-scoring models, 997 grouped in the first

cluster. The RMSD of the best-scoring model with respect to

the reference structure was 32.9 Å, with a p(20) of 0.80 and a

data-model CC of 0.52. The major contribution for the inaccu-

racy was the misplacement of subunit Rpb8. The reason for

the misplacement was that Rpb8 was not cross-linked with the
Structure 27, 175–188, January 2, 2019 179



Table 2. Results of the Benchmark of the Modeling Protocol

PDB Code Reference

No. of

Subunits

No. of

Clusters

Time/

Frame (s)

Best-RMSD Model Best-Scoring Model

Rank RMSD (Å) RMSD (Å) p(10)

Correlation

Coefficient APS (Å,�)

2UZX Niemann et al., 2007 2 1 1.6 551 1.1 1.5 1.00 0.90 0.7 2.9

3R5D Schnell et al., 2012 3 1 1.1 63 1.4 1.9 1.00 0.93 1.1 2.6

1CS4 Tesmer et al., 2000 3 1 0.7 159 2.6 3.5 1.00 0.79 0.8 1.1

2WVY Zhu et al., 2010 3 1 3.0 480 0.9 1.3 1.00 0.98 0.5 0.6

2DQJ Shiroishi et al., 2007 3 3 0.4 89 2.0 2.5 1.00 0.93 1.6 3.0

1VCB Stebbins et al., 1999 3 1 0.2 453 1.8 2.2 1.00 0.82 1.0 2.7

2GC7 Chen et al., 1994 4 1 0.6 817 1.3 2.0 1.00 0.94 0.9 1.8

2BO9 Pallares et al., 2005 4 1 0.8 502 1.3 1.6 1.00 0.95 0.9 1.4

2BBK Chen et al., 1998 4 1 0.9 857 2.1 2.4 1.00 0.90 1.7 1.0

1GPQ Abergel et al., 2007 4 1 0.5 805 1.7 2.2 1.00 0.90 1.4 1.5

3V6D Das et al., 2012 4 2 1.0 686 1.6 2.1 1.00 0.92 1.0 5.2

3SFD Zhou et al., 2011 4 1 1.3 385 1.4 1.5 1.00 0.94 0.7 1.0

3PDU Zhang et al., 2014 4 1 1.3 802 1.3 1.6 1.00 0.93 1.3 0.9

3NVQ Liu et al., 2010 4 1 2.1 903 0.9 1.0 1.00 0.97 0.6 0.7

2Y7H Kennaway et al., 2009 5 1 1.9 465 1.7 2.2 1.00 0.88 1.9 1.5

1SUV Cheng et al., 2004 6 1 1.4 247 5.2 5.3 1.00 0.77 5.2 0.4

1Z5S Reverter and Lima, 2005 4 1 0.3 892 8.7 9.0 0.86 0.87 1.8 32.1

3LU0 Opalka et al., 2010 5 2 5.1 800 9.0 9.3 0.85 0.74 4.3 5.7

1MDA Chen et al., 1992 6 2 1.8 4286 7.8 8.1 0.85 0.75 3.2 34.0

3PUV Oldham and Chen, 2011 5 1 3.1 698 22.7 23.4 0.64 0.74 8.0 31.1

1TYQ Nolen et al., 2004 7 3 5.1 599 19.1 19.8 0.65 0.65 4.1 58.2

For each of the systems studied, we report the PDB accession code, the reference paper, the number of subunits, the number of clusters, the average

time needed to produce one model, and the rank and RMSD of the model with minimum RMSD with respect to the reference structure (best-RMSD

model). We also report the following information about the best-scoring model: RMSD, p(10), the data-model correlation coefficient, and the APS with

respect to the reference structure.
rest of the complex. Excluding Rpb8 from the RMSD calculation

yielded an RMSD of 21.2 Å.

We analyzed the position of each subunit of the complex (Fig-

ure 6D). Subunits 1 to 5 (81% of the mass of the complex) had

an RMSD with respect to the reference structure under 20 Å.

The following subunits had an RMSD over 20 Å with respect to

the reference structure: Rpb6 (32.0 Å), Rpb 7 (28.1 Å), Rpb 8

(133.3 Å), Rpb9 (51.9 Å), Rpb 10 (27.3 Å), Rpb 11 (25.5 Å), and

Rpb 12 (29.0 Å). Note that Rpb1 was correctly localized in the

cryo-EM map but the domain corresponding to residues

1,275–1,733 was misplaced. Another reason for the inaccuracy

is that subunits Rpb8, Rpb9, and Rpb12 were weakly cross-

linked with the rest of the complex, forming zero, one, and three

cross-links respectively.

There was a total of nine violated cross-links (3.5% of the total

dataset), which involved the following subunits: Rpb1-Rpb1 (two

cross-links) Rpb1-Rpb2 (two cross-links), Rpb1-Rpb4 (one

cross-link), Rpb1-Rpb6 (one cross-link), and Rpb2-Rpb2 (three

cross-links) (Figure 6E).

Integrative Modeling of the Exosome Complex
The 10-subunit yeast exosome complex is a macromolecular

machine responsible for processing and degrading RNA in eu-

karyotic cells (Houseley et al., 2006). To model this complex,

we used the structures of all subunits of the complex in one state,

the crystal structure of the RNA-bound exosome (PDB: 4IFD).
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We also incorporated independent data collected in another

state, the low-resolution cryo-EMmap of the RNA-free exosome

(EMDB: 3367) (Liu et al., 2016) and a dataset of 98 cross-linked

residue pairs obtained by XL-MS (Shi et al., 2015) (Figures 7,

S7, and S8).

To the best of our knowledge, no high-resolution structure of

the RNA-free 10-subunit exosome complex alone is available.

We thus used the structure of the RNA-free exosome in complex

with Ski7 (PDB: 5G06) as a reference to test the accuracy of our

models. We expected our models to differ from the reference,

especially in the region at the top where the complex interacts

with Ski7. Here, for instance, when one rigidly fits the entire refer-

ence structure to the RNA-free density map, the Csl4 subunit ex-

tends outside the density map (Figure 7D), most likely as a

consequence of the interaction with Ski7. On the other hand,

the lower region in which Dis3 is located is expected to be

structurally similar to the reference. In addition, cross-links

were extracted fromwhole-cell lysate and therefore might reflect

a mixture of different compositional and conformational states

(Shi et al., 2015).

The 1,000 best-scoring models grouped into a single cluster.

The RMSD of the best-scoring model with respect to the refer-

ence structure was 29.4 Å, with a p(10) of 0.47 and a data-model

CC of 0.79. We analyzed the position of each subunit of the

complex (Figure 7D). Strikingly, each domain of Dis3 was prop-

erly placed in its respective density region (Figure 7D). Subunit



Figure 4. Benchmark of the Modeling Protocol

Examples of each of the three possible outcomes of the benchmark: positive (first column, PDB: 3NVQ), partial positive (second column, PDB: 3LU0), and

negative (third column, PDB: 1TYQ).

(A) Native structures and simulated 10 Å resolution cryo-EM density maps.

(B) Fifty best-scoring models displayed with the simulated cryo-EM density maps.

(C) Residue-wise accuracy of the best-scoring models: residues whose positions deviate from the native structure less than 10 Å, between 10 and 20 Å, and

above 20 Å are colored in blue, green, and red, respectively.

(D) Total score of all the sampled models as a function of the RMSD from the native structure.
Csl4 was localized entirely inside the density map, at variance

with the reference structure. Subunits Rrp45, Ski6, Rrp46,

Rrp40, and Rrp4 occupied the correct regions of the density

map. Subunits Rrp42, Rrp43, and Mtr3 were misplaced but still

occupied the upper region of the density map. The majority of

the cross-links were satisfied, with measured distance between

cross-linked residue pairs below 35 Å, with a few exceptions.
The cross-link between residue 71 of Rrp43 and residue 104 of

Rrp42 was violated (Figure 7E). Three other cross-links involving

Dis3 were found to be inconsistent with the cryo-EM map and

therefore were violated. These distance restraints might be

satisfied in the RNA-bound exosome form, which we expect to

be present under the conditions in which the XL-MS data were

collected.
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Figure 5. Modeling of the GroEL/ES Complex

(A) Native structure of the GroEL/ES complex (PDB: 1AON).

(B) Cryo-EM density map of GroEL/ES (EMDB: 1046).

(C–F) (C) Residue indexes are color coded using a rainbow palette, where the N terminus is violet, the C terminus is red, and intermediate residues are green

and yellow. The three columns on the right are the representative structures of the three best-scoring clusters color coded using the RMSD from the native

structure per residue (D), the per-residue precision (E), and (F) the same color coding as in (C) to emphasize the orientation of the subunits. The color bar on the left

refers to (D) and (E).
DISCUSSION

A major problem in integrative structure modeling, in which data

of different types are combined to model the structure of a bio-

logical complex, is to determine the relative weight of each piece

of information. Inaccurate weighing results in models biased

toward a particular source of data, thus reducing the accuracy

of the model and under- or over-estimating its precision. To

optimally weigh each piece of information, two main factors

need to be considered: the accuracy or level of noise in the

data and the correlation between data points.

Our Bayesian approach addresses these challenges by intro-

ducing several technical features. First, building on the gmcon-
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vert utility (Kawabata, 2008), we developed a divide-and-

conquer strategy to efficiently compute GMM with a large

number of components in order to reduce the correlation be-

tween voxels. Second, our approach accounts for the presence

of variable levels of noise across the experimental map and

weighs each component of the GMM accordingly. Third, we

created a multi-scale modeling approach, as the scoring func-

tion can be adapted to any coarse-grained representation of

the model and any resolution of the experimental density map.

Fourth, we used a combination of flexible and rigid degrees of

freedom in the modeling: each domain with a known structure

is constrained into a rigid body, while all missing parts (loops,

termini, or unknown regions) are represented by flexible strings



Figure 6. Integrative Modeling of the RNA Polymerase II

(A) Absolute relative deviation between data-GMM and experimental map resolutions jDrj
r , plotted as a function of the number of components of the data-GMM.

The minimum (blue arrow) corresponds to the optimal number of components used in the modeling (64 Gaussians).

(legend continued on next page)
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of beads. Finally, we developed an enhanced-sampling tech-

nique based on an iterative replica exchange strategy and an

MC mover that randomly swaps rigid bodies with similar shape.

Comparison with Existing Approaches
To compare our approach with state-of-the-art methods for

modeling macromolecular complexes using low- and interme-

diate-resolution cryo-EM maps, we first examined the results

of the benchmark carried out with g-TEMPy (Pandurangan

et al., 2015). This method scores the models using mutual infor-

mation between model and experimental densities and uses a

genetic algorithm to accelerate sampling. In the following, we

compare our approach with g-TEMPy in terms of accuracy of

the scoring function, sampling efficiency, and computational

performances.

In order to compare the accuracy of the two approaches, we

examined our best-scoring model (Table 2) and the g-TEMPy

high-scoring model (HS in Table 1 of Pandurangan et al., 2015)

on a subset of nine test cases of our benchmark that were also

included in the g-TEMPy benchmark (PDB: 2DQJ, 2BO9,

2BBK, 2GC7, 1VCB, 1TYQ, 1MDA, 1GPQ, and 1CS4). In all

cases, our approach produced models that were significantly

more accurate. Particularly striking is the three-subunit

complex 1VCB, which our method and g-TEMPy modeled with

RMSD of 2.2 Å and 25.3 Å, respectively.

To assess sampling efficiency, we compared our best-RMSD

model with the g-TEMPy best prediction (BP in Table 1 of

Pandurangan et al., 2015). In eight out of nine cases, our

approach was able to sample more native-like models. Only in

the case of 1TYQ was our best-RMSD model less accurate

(19.1 Å) than the BP model generated with g-TEMPy (16.9 Å).

To assess the performances of the two approaches, we moni-

tored the computational cost of running the two benchmarks,

defined by the total number of core hours required to complete

one test case. Our benchmark was executed in parallel on

48 cores on a computer cluster equipped with 2.50 GHz Intel

Xeon E5-2670 v2 processors. The minimum, maximum, and

average computational costs across all test cases were 320,

6,840, and 2,166 core hours, respectively. Furthermore, this

computational cost depends on the number of components

of the data-GMM, which is particularly advantageous with

over-sampled low-resolution maps. Each computation of the

g-TEMPy benchmark was instead run on 160 cores distributed

on 40 AMD four-core 2.6 GHz processors. As the time measure-

ments for the benchmark with 10 Å-resolution maps were not

reported, we used the timings of the 20 Å-resolution benchmark

to estimate the computational cost. The reported minimum,

maximum, and average costs across all test cases were 640,

7,840, and 2,720 core hours, respectively.
(B) The experimental cryo-EM density map (transparent gray surface) is represe

green to red) is proportional to the weight uD,i of the corresponding Gaussian. Th

covariance matrix SD;i.

(C) Representation of the best-scoring model. Coarse-grained subunits are repres

20-residue fragments, respectively. For the data-GMM in (B), the model-GMM is

(D) All subunits of the model (red) and reference structure (PDB: 1WCM, blue) ar

name of the subunit is indicated in bold, together with the placement score of th

(E) Histogram of the distance between cross-linked residues. The histogram bins

red, respectively.
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We then compared our approach with other integrative

modeling tools in the case of the GroEL/ES complex

(Table S3). The accuracy of our approach was: (1) similar to

that of Attract-EM (de Vries and Zacharias, 2012), IQP (Zhang

et al., 2010), and g-TEMPy (Pandurangan et al., 2015) (2) superior

to MultiFit (Lasker et al., 2009) and gmfit (Kawabata, 2008);

and (3) worse than ISD (Habeck, 2017). Non-integrative

modeling tools, which fit proteins into the map sequentially,

such as gEMfitter (Hoang et al., 2013) and PowerFit (van Zundert

and Bonvin, 2015), performed equivalently or better, thanks

to their exhaustive search and/or prior map segmentation. It

has to be noted, however, that exhaustive search might not be

amenable to large multi-component complexes, sequential

fitting might bring bias to the final models, and segmentation

might be incorrect.

Our approach shares the same philosophy of the Bayesian

cryo-EM restraint recently developed in ISD (Habeck, 2017).

However, it is distinct from it because the weight of the restraint

in the ISD case is dependent on the sampling of the density map

as it does not consider spatial correlation between voxels.

In contrast, in our method, the number of Gaussians, and

thus the weight, is independent from the grid sampling of the

density map.

Current Limitations
In the few cases in which our approach produced results of

accuracy lower than the average, we identified two sources of

error: (1) positional ambiguity, where multiple placements

result in the same score; and (2) inefficient sampling of rigid

body configurations in crowded environments. For example,

helical bundles are difficult to model at low resolution because

they only define a cylindrical shape in which two or more helices

can be positioned in multiple ways. Similarly, pseudo-spherical

subunits can be rotated around their center of mass or

swapped with only minimal penalty. In addition, the placement

of DNA helices is degenerate, because their expected density

is symmetric by rotation. Finally, macromolecular complexes

present a crowded environment in which sampling of rigid

body configurations might be inefficient due to steric hindrance.

In applications with actual experimental density maps, we

foresee an additional source of error that could affect the accu-

racy of the modeled complex. This error is associated with the

fact that not all components of the modeled complex might

have a corresponding experimental density or that the experi-

mental density might represent more components than those

explicitly modeled. Our approach currently assumes that all

data-GMM components can be explained by a corresponding

density of the model. This assumption is encoded in the scoring

function by assigning the same total electron density to the
nted with the optimal data-GMM (colored ellipsoids). The color gradient (from

e length of the three axes and their orientation represent the three-dimensional

ented by the strings of beads: the small beads and large beads represent 1- or

represented by ellipsoids.

e represented along with the experimental cryo-EM map. For each panel, the

at subunit.

corresponding to satisfied and violated cross-links are represented in blue and



Figure 7. Integrative Modeling of the Exosome Complex

We report the same information as in Figure 6 for the case of the yeast exosome complex, with the following differences: (A) the optimal number of components

used in the modeling is 784; (D) the reference structure is taken from PDB (PDB: 5G06). (See Figure 6 caption for a full description of panels).
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data-GMM and the model-GMM; i.e., the two GMMs are

normalized to the same value. It should be noted that this

challenge, along with the two previously described, is not

specific to the modeling protocol presented here, but it is

faced by all the techniques to model architectures from low-

resolution cryo-EM data.

Dissemination
We implemented our modeling protocol in a series of scripts

based on IMP.pmi (Webb et al., 2018), a module of the IMP

(http://integrativemodeling.org) (Russel et al., 2012) that can be

used to build the system representation, set up the scoring

function, define the degrees of freedom to sample, and finally

analyze the solutions. Our approach was also implemented in

the PLUMED-ISDB module (Bonomi and Camilloni, 2017) of

the open-source PLUMED library (www.plumed.org) (Tribello

et al., 2014). Thanks to the differentiability of the scoring

function, this implementation can be used for real-space,

flexible refinement of individual models using molecular dy-

namics at atomistic resolution or, in combination with metainfer-

ence (Bonomi et al., 2016), to model ensemble of structures

representing the conformational heterogeneity hidden in low-

resolution areas of atomistic density maps (Bonomi et al.,

2018; Vahidi et al., 2018).
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METHOD DETAILS

Theory
In general terms, the Bayesian approach (Rieping et al., 2005) estimates the probability of a model, given information available about

the system, including both prior knowledge and newly acquired experimental data. The posterior probability pðMjDÞ of model M,

which is defined in terms of its structure X and other Bayesian parameters, given data D and prior knowledge is:

pðMjDÞfpðDjMÞ,pðMÞ (Equation 1)

where the likelihood function pðDjMÞ is the probability of observing data D given M and the prior p(M) is the probability of

model M given prior information. To define the likelihood function, one needs a forward model f(X) that predicts the data point

that would be observed for structure X in the absence of experimental noise, and a noise model that specifies the distribution of

the deviation between the experimentally observed and predicted data points. The Bayesian scoring function is defined as

SðMÞ = � log½pðDjMÞ,pðMÞ�, which ranks the models in the same order as the posterior probability pðMjDÞ. The prior p(M) includes

the sequence connectivity, the excluded volume, and rigid body constraints. To compute these priors, the domains of the proteins

are coarse-grained using beads of varying size. The sequence connectivity term is a sum of upper harmonic distance restraints that

apply to all pairs of consecutive beads in the sequence, implied by the covalent structure of the polypeptide/polynucleotide main-

chain. The excluded volume is computed from a soft-sphere potential where the radius of a bead is estimated from the sum of

the masses of its residues. The structures derived from X-ray data or homology models are coarse-grained using two categories

of resolution, where beads are represented either individual residues or segments of up to 10 residues. Beads can be constrained

into a rigid body, in which relative distances are fixed during sampling. Alternatively, strings of beads representing parts without

structural information can be flexible with respect to each other. In the following, we define the components of the Bayesian scoring

function specifically for a cryo-EM density map.

Experimental cryo-EM Density Map

We represent the experimental density mapJD in terms of a Gaussian mixture model (GMM) fj
D with j components (ie, data-GMM):

f
j
DðxÞ=

Xj

i = 1

f
j
D;iðxÞ=

Xj

i = 1

u
j
D;i,G

�
x
��xj

D;i;S
j
D;i

�
(Equation 2)

where u
j
D;i is the (normalized) weight of the i-th component of the GMM and G is a normalized Gaussian function with mean xjD;i and

covariance matrix S
j
D;i:
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(Equation 3)

This description presents three advantages. First, it circumvents the problem of dealing with correlations in the data and noise

that are typical of voxel-based representations, as each f
j
D;iðxÞ might be regarded as an independent component of the density

map. Second, it provides a computationally-convenient representation of the data in terms of analytical functions. Finally, it allows

representing the density map at multiple resolutions, which is exploited here to accelerate sampling of structural models compatible

with the data (ie, see Model Sampling paragraph below).

xiNET (Combe et al., 2015) http://crosslinkviewer.org
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The posterior probability of modelM given the cryo-EM density mapJD can be written in terms of all possible GMMs that can be

used to represent the data:

pðMjJDÞ=
X
j

p
�
Mjfj

D

�
p
�
f
j
DjJD

�
(Equation 4)

In the following, we assume that the conditional probability pðfj
DjJDÞ selects a single GMM fD with ND components, which

optimally represents the data. In this situation:

pðMjJDÞfpðMjfDÞfpðfDjMÞ$pðMÞ (Equation 5)

Divide-and-Conquer Fit of the Data-GMM

To fit the experimental density map JD with a GMM fD, we used the Expectation Maximization algorithm implemented in the

gmconvert software (Kawabata, 2008). This approach determines the parameters of the GMM (mean, weight, and covariance

matrix of each Gaussian component) by maximizing the likelihood that the GMM density function generates the density of the voxels

inJD. As the resolution of themap increases, the number of Gaussians required for the GMM to accurately reproduce all the features

of the experimental map increases exponentially along with the computational time and memory required to perform the fit. To over-

come these challenges, we developed a divide-and-conquer approach (Figure 2). First, the mapJD is masked and all voxels with a

density lower than the threshold recommended in the EMDBdatabase are removed. Second, a recursive procedure starts from a first

iteration in which the mapJD (Figure 2A) is fit with a GMM consisting of a small number of Gaussians ND (typically 2 or 4) (Figure 2B).

Each of the components fD,i of this initial GMM is used to partition the original map into sub-maps JD,i (Figure 2C):

JD;iðxÞ=JDðxÞ,
fD;iðxÞPND

j =1fD;jðxÞ
(Equation 6)

This partitioning has two properties: a) each sub-map selects the part of the original map that overlaps with the component fD,i;

b) the sum of all sub-maps results in the original density map:JDðxÞ =
PND

i = 1JD;iðxÞ. The process is repeated, and each sub-mapJD,i

is again fitted using a GMM with a small number of Gaussians ND (Figure 2D), dividing the process into as many branches as the

number of Gaussians ND.

At each iteration the portion of the original map that is fit by a given GMM is reduced, so that a small number of Gaussians will

eventually be sufficient to accurately reproduce high-resolution details. Furthermore, because of property b), the globalGMMdefined

by the sum of all the GMMs obtained at any given iteration also fits the original map (Figure 2E). This procedure is repeated until the

global GMM reaches the desired accuracy (Figure 2F). The accuracy of the fit was defined as the correlation coefficient CC (Frenkel

and Smit, 2002) between the cryo-EM density map JD and the map generated by rasterizing the data-GMM into a 3D grid with the

same mesh properties as the original density map (ie, voxel size, offsets, and box lengths) (Figure 3A). The CC was computed using

only those voxels whose density exceeds the recommended threshold value reported in the EMDB. A given branch was stopped

when the local CC between a sub-map and its GMM was greater than 0.95. Since the resolution of the original map can vary locally,

individual branches will be terminated at different iterations.

This procedure generates at each step a global data-GMMwith increasing number of components, thus with increasing resolution.

To quantify the resolution of each of these global data-GMMs, we computed their Fourier Shell Correlations (FSCs) with respect to the

original mapJD. By analogy with the method of the two half-maps (Rosenthal and Henderson, 2003), the resolution was defined as

the inverse of the frequency at which the FSC crossed the 0.5 threshold (Figure S1A). Finally, we defined the optimal data-GMMas the

fit with resolution closest to the original map JD (Figure S1B).

The entire process was parallelized to run efficiently on a computer cluster.

The Forward Model

We developed a forward model to compute a cryo-EM density map from a single structural model. As for the data representation

above, the forward model fM is a GMM with NM components (ie, model-GMM):

fMðxÞ=
XNM

i =1

fM;iðxÞ=
XNM

i =1

uM;i,Gðx��xM;i;SM;iÞ (Equation 7)

For high-resolution maps, each atom can be represented by a single Gaussian, whose parameters can be obtained by fitting the

electron atomic scattering factors for a given atom type (Prince, 2004). For low-resolution maps or for an efficient initial sampling of

high-resolution maps, we use a single Gaussian to represent each coarse-grained bead, with the Gaussian width proportional to the

size of the bead. If multiple coarse-grained beads of the model are part of the same rigid body, the parameters of the model-GMM

associated to these beads are computed by applying the Expectation-Maximization algorithm to the positions of the centers of the

beads, weighed by their mass.

The Noise Model

At variance with our previous effort in modeling cryo-EM data (Robinson et al., 2015), in this approach we will not use the global cor-

relation coefficient (CC) as measure of agreement between predicted and observed density maps, but a likelihood obtained from the
e2 Structure 27, 175–188.e1–e6, January 2, 2019



product of functions of local cross-correlation-like terms, as explained below. First, we define the global overlap between model and

data density maps as:

ovMD =

Z
dx fMðxÞfDðxÞ (Equation 8)

The standard CC can then be expressed in terms of the overlap functions as (Robinson et al., 2015):

CC=
2ovMD

ovMM +ovDD
(Equation 9)

Notably, maximum correlation is obtained with maximum overlap ovMD, since the quantities at the denominator of Equation 9 do

not depend on the coordinates of the particles in the structural model.

The global overlap ovMD can be expressed in terms of local overlaps ovMD,k between model and the k-th component of the

data-GMM fD,k:

ovMD =
XND

k = 1

ovMD;k =
XND

k = 1

Z
dx fMðxÞfD;kðxÞ (Equation 10)

Each local overlap measures the agreement of the model with the part of the experimental density map represented by a compo-

nent of the data-GMM. Because fM is also a GMM, we can write the local overlap as the sum of overlaps for the individual

components:

ovMD;k =
X
j

Z
dx fM;jðxÞfD;kðxÞ (Equation 11)

where the overlap between two Gaussians fM,j and fD,k is given by:Z
dx fM;jðxÞfD;kðxÞ=

uM;juD;k

ð2pÞ3=2��SM;j +SD;k

��1=2 exp
�
� 1

2
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�
(Equation 12)

We treat the ND individual components of the data-GMM as independent pieces of information and express the data likelihood in

terms of local overlaps ovMD,k, using a log-normal noise model:

pðfDjMÞ=
YND

k = 1

1ffiffiffiffiffiffi
2p

p
ovDD;ksk

,exp

�
� 0:5 log2



ovDD;k
ovMD;k

��
s2
k

�
(Equation 13)

where sk is the unknown tolerance associated with the k-th component of the data-GMM and ovDD,k is the overlap of the k-th compo-

nent with the entire data-GMM. It should be noted that a GMM represents the experimental data with less correlated components

compared to the voxel representation. However, we expect a residual correlation among GMM components, which we explicitly

neglect when writing Equation 13.

Marginal Likelihood

For simplicity, in the following we assume that different parts of the map have the same tolerance s and we marginalize this variable

using an uninformative Jeffreys prior p(s) = 1/s. The resulting marginal data likelihood can be written as:

pðfDjMÞ=
2�3

2+
ND
2 G

 
ND

2

! QND

k = 1 log
2

 
ovMD;k

ovDD;k

!!�ND=2

pND=2
QND

k = 1ovDD;k
(Equation 14)

Alternatively, one can assume a variable level of noise in themap andmarginalize each sk using a Jeffreys prior. Themarginal likeli-

hood in Equation 14 is maximized when the local overlap ovMD,k reproduces the overlap ovDD,k for all data-GMM components

(Figure S2).

Bayesian Scoring Function

Omitting constant quantities, the final Bayesian scoring function for a fit of a model to a cryo-EM map can be written as:

SðXÞ= kBT,

(
� log½pðXÞ�+ND

2
log

"XND

k =1

log2



ovMD;k

ovDD;k

�#)
(Equation 15)

where p(X) is the structural prior and depends on the resolution of the model. In our coarse-grained representation, p(X)is the sum of

an excluded volume potential to avoid steric clashes and a sequence connectivity restraint.

Importantly, the number of components ND of the data-GMM determines the overall weight of the cryo-EM restraint by increasing

the number of log-harmonic functions. On the other hand, the weight is less sensitive to the number of components of the model-

GMM. As a consequence, the data-GMM has to be rigorously fit to the experimental density map with the divide-and-conquer

approach, while there are no strict guidelines for the maximum number of components of the model-GMM. Here, we followed a
Structure 27, 175–188.e1–e6, January 2, 2019 e3



parsimonious approach and we empirically chose the number of components in the model-GMM to match the number of Gaussians

per unit of mass in the data-GMM. With high-resolution density maps and atomistic models, we expect to use one component of the

model-GMM per heavy atom of the system.

Benchmark of the Divide-and-Conquer Fit of the Data-GMM
Weassessed the accuracy of our divide-and-conquer approach to computing a data-GMMby using 20 experimental densitymaps of

protein complexes at different resolutions, ranging from 3.6 to 25 Å (Table 1). We used the divide-and-conquer approach described

above to obtain GMMs of each map with a number of Gaussians varying from 16 to 16384. At each step of the divide-and-conquer

each sub-map was fit using a GMM with 4 components.

Benchmark of the Modeling Protocol

Data Generation. We benchmarked our modeling protocol using 21 protein/DNA complexes consisting of 2 to 7 subunits (Velaz-

quez-Muriel et al., 2012) (Table 2 and Figure 4). For each of these complexes, we generated a simulated cryo-EM density map, using

the structures extracted from the PDB. We used one Gaussian for every 1.090 kDa of assembly mass, which corresponded

approximately to the mass of 10 residues and resulted in a resolution of approximately 10 Å, as obtained by extrapolation from

the stretched-exponential regression (Figure 3B). For example, the human transferrin receptor complex (PDB code 1SUV) (Cheng

et al., 2004) consists of 6 subunits and has a molecular mass of 290 kDa. Therefore, the simulated map was determined using

262 Gaussians. The simulated GMMswere generated from the reference structures using the program gmconvert (Kawabata, 2008).

Subunits Representation and Forward Model. Molecules (protein and DNA chains) were represented by a set of spherical beads,

each with the volume of the corresponding residue. When available, the positions of beads were obtained from the PDB structures

and constrained into one or more rigid bodies. Missing regions were constructed as strings of flexible coarse-grained beads. When

molecules were intertwined or if amolecule was composed of structurally independent domains, we defined several rigid bodies, one

for each domain. Furthermore, in some cases, two domains belonging to distinct molecules were merged into the same rigid body,

such as the DNA double-strands in 3V6D and 2Y7H or the helical bundle of 3PUV. The model-GMMwas computed as follows. First,

for each rigid body defined above, we computed a GMM based on the corresponding atomic coordinates using the implementation

of the expectation-maximization algorithm available in the scikit-learn python library (Pedregosa et al., 2011). The number of

Gaussians of a model-GMMwas determined by dividing the molecular weight of the corresponding rigid body by the average weight

of a 10-residue peptide (1.09kDa). The center and covariancematrix rotation of eachGaussianwere constrained into the correspond-

ing rigid body. Second, each flexible bead was treated as an individual spherical Gaussian.

Model Sampling. The initial positions and orientations of rigid bodies and flexible beads were randomized. The generation of struc-

tural models was performed using MC coupled with replica exchange (Swendsen andWang, 1986). 48 replicas were used to cover a

temperature range between 1 and 2.5 score units (SU). Intermediate temperatures followed a geometrical progression. EachMCstep

consisted of: A) a series of random transformations of the positions of the flexible beads and the rigid bodies, B) rigid body trans-

formation of the whole system, and C) rigid-body swapping moves. In (A), each individual flexible bead and rigid body was translated

in a random direction by up to 4 Å, and each individual rigid body was rotated around its center of mass by up to 0.04 radians about a

randomly oriented axis. In (B), a rigid-body transformation was applied to thewhole system. In (C) we swapped the position and orien-

tation of two rigid-bodies, randomly chosen among those with similar shape, to allow efficient sampling of alternative conformations

equally consistent with the data. The shape similarity was assessed by computing the rmsd of the inertia moments of the two

rigid-bodies. Each MC step was accepted or rejected according to the Metropolis criterion.

Our scoring function becomes more rugged at higher resolutions. In fact, as discussed above, the number of components for

the data-GMM (ND) increases with the resolution, and at the same time their variance decreases to better describe high-frequency

features. As a consequence, the log-square score term (Equation 15) becomes more peaked, thus increasing the frustration of the

total score. To alleviate this issue, we implemented an iterative sampling procedure (Figure S3). The idea is to progressively increase

NDusing all fits obtained at different stages of the divide-and-conquer procedure, from the minimum (ie, 4) to the ND of the optimal

data-GMM. In each iteration, we: 1) sampled the models at a given ND; 2) generated a pool of initial models (seeds) for the next

iteration; and 3) incremented ND. During step (1), we produced an ensemble of 12,000 models using the MC and replica exchange

protocol described above. After extracting the 100 best scoringmodels of the resulting ensemble, we identified a subset of models as

structurally diverse as possible, using rmsd criterion. The number of models in the subset was constrained to the number of replicas

(ie, 48). In the first iteration (ND = 4), the score-landscape is shallow, which allows the system to explore a large variety of conforma-

tions. As ND increases, the structural variability among seeds is reduced.

Finally, to assess sampling exhaustiveness, at the end of each iterative modeling run we analyzed the agreement of the best

scoring models with the cryo-EM map by computing the cross correlation between the model-GMM and data-GMM. If the resulting

cross correlations were below 0.7, we started another iteration run. The threshold of 0.7 was chosen by experience, as we noticed

that lower cross correlation coefficients usually indicate poor agreement of the model with the cryo-EM data with clearly misplaced

subunits. This procedure was applied to all cases for which the simple replica exchange above did not yield satisfying results (PDB

codes 1MDA, 1SUV, 1TYQ, and 3PUV in the synthetic benchmark and the application to the RNA polymerase II and exosome

complexes).
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Analysis. All models produced by the modeling protocol described above were ranked by score, and the 1000 best scoring models

were considered for further analysis. The accuracy of the fit was assessed by computing a series of structural metrics, namely the

rmsd, p(10), the correlation coefficient between the model- and data- GMMs, as well as the average placement score of the best

scoring model. These metrics are defined in the next paragraph.

Structural Metrics. To compare two models, we used several metrics, including the rmsd of residue positions, p(10), the Average

Placement Score (APS), and the data-model correlation coefficient CC. The rmsd of residue positions was defined as the rmsd be-

tween the positions of corresponding centers of the coarse-grained spheres in two structures, without structural alignment. When

multiple copies of the same protein were present, the rmsd was defined as the minimum rmsd across all possible assignments of

the identical components. p(10) was defined as the percentage of residues whose deviation between the two structures is lower

than 10 Å. The Placement Score of the model is a two-number metrics that measures the translation and the rotation needed to opti-

mally align each subunit of the model to a reference. The APS is average of the Placement Score calculated over all subunits and

weighted by the number of residues. The data-model correlation coefficient (CC) was defined by Equation 9 and quantifies the agree-

ment of the model with the data.

Clustering. For each complex, the 1000 best scoring models selected for analysis were clustered using a hierarchical clustering

approach (Johnson, 1967). Initially, all 1000models were placed in a listL of models not yet clustered. Then, we applied the following

iterative procedure:

1. The best scoring model m0 from the list L was selected to define a new cluster Ck and removed from L.
2. All models mi from L with rmsd from m0 lower than 10 Å were defined as members of the cluster Ck and removed from L.
3. We iterated step 1 and 2 until all models were clustered into spheres of radius equal to 10 Å.

At the end of this iterative procedure, we merged all those pairs of clusters that contained at least two elements within 10 Å one

from each other. By construction, the first cluster produced by the algorithm (labelled as C1) contained the best scoring model.

Modeling of the GroEL/ES Complex
Wemodeled the architecture of the 21-subunit GroEL/ES ADP-bound complex using cryo-EM data at 23.5 Å resolution (EMDB code

1046) (Figure 5). The GroEL/ES complex consists of 2 sequences, the chaperonin GroEL and the cochaperonin GroES, with a stoi-

chiometry 14:7. The 14 copies of GroEL have two distinct structures, named GroEL-cis and GroEL-trans. The 7 GroES, 7 GroEL-cis,

and 7 GroES-trans are arranged in a C7 symmetry, each one occupying one centro-symmetric ring (Figure 5). The optimal data-GMM

contained 256 components (Figure S4A). We followed the modeling protocol and the model representation used for the benchmark

with synthetic cryo-EM maps (Figure S4B). The coordinates of the beads used to represent our system were obtained from PDB

code 1AON (Armache et al., 2005). Each protein was constrained into a rigid-body based on the crystallographic structure, and a

C7 symmetry constraint is applied. The number of residues per coarse-grained bead was set to 20, and the number of residues

per component of themodel-GMMwas set to 10. The quality of the resulting models was assessed using the same structural metrics

as in the benchmark with synthetic data, using the structure of PDB code 1AON as reference.

Integrative Modeling of the RNA Polymerase II Complex
Wemodeled the architecture of the 12-subunit RNA polymerase II using cryo-EM data at 20.9 Å resolution (EMDB code 1883) (Czeko

et al., 2011) and two datasets of 108 (Chen et al., 2010) and 157 (Robinson et al., 2015) cross-links (107 inter- and 158 intra-molecular)

(Figures 6 and S5). The RNA polymerase II complex consists of 12 subunits, named Rpb1 to Rpb12. The optimal data-GMM

contained 64 components (Figure 6A). We followed the modeling protocol and the model representation used for the benchmark

with synthetic cryo-EM maps (Figure S6). The coordinates of the beads used to represent our system were obtained from PDB

code 1WCM (Armache et al., 2005). Based on a prior domain analysis of Rpb1 and Rpb2, we constrained the coordinates

of these two large subunits into four rigid-bodies corresponding to: 1) residues 1141-1274 of Rpb1, 2) residues 1275-1733

of Rpb1, 3) residues 1-1102 of Rpb2, and 4) residues 1-1140 of Rpb1 together with residues 1103-1224 of Rpb2. The number of

residues per coarse-grained bead was set to 20, and the number of residues per component of the model-GMM was set to 10.

The quality of the resulting models was assessed using the same structural metrics as in the benchmark with synthetic data, using

the structure of PDB code 1WCM as reference. The XL-MS data was encoded using a previously developed Bayesian scoring func-

tion (Shi et al., 2015).

Integrative Modeling of the Exosome Complex
Wemodeled the architecture of the 10-subunit yeast exosome complex using cryo-EM data at 11.5 Å resolution (EMDB code 3367)

(Liu et al., 2016) and a dataset of 98 cross-links (26 inter- and 72 intra-molecular) (Shi et al., 2015) (Figures 7 and S7). The exosome

complex consists of a core complex of 9 proteins (Csl4, Mtr3, Rrp4, Rrp40, Rrp42, Rrp43, Rrp45, Rrp46, and Ski6), and an RNase

protein (Dis3). The top of the core complex recruits RNAs that are then transferred to Dis3 through a central channel in the core com-

plex. The optimal data-GMM contained 784 components (Figure 7A). We followed the modeling protocol and the model represen-

tation (Figure S8) used for the benchmark with synthetic cryo-EM maps, with few variations. We split the largest subunit, Dis3, into

three rigid-bodies, corresponding to residues 1-237, 238-471, and 472-1001, which is the domain organization of this subunit based

on its structure in PDB code 4IFD (Figure S7) (Makino et al., 2013). The quality of the resulting models was assessed using the same
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structural metrics as in the benchmark with synthetic data. The only difference was that the reference structure used to compute

the accuracy (PDB code 5G06) was different from the structure used to initialize the positions of beads in rigid-bodies (PDB

code 4IFD) (Liu et al., 2016). As for the modeling of RNA polymerase II, XL-MS data was encoded using a Bayesian scoring function

(Shi et al., 2015).

QUANTIFICATION AND STATISTICAL ANALYSIS

The analysis of the results was performed using the IMP.pmi module of the IMP software (Russel et al., 2012).

DATA AND SOFTWARE AVAILABILITY

Our Bayesian approach for cryo-EM data is implemented in the Integrative Modeling Platform (IMP) (Russel et al., 2012), which is

freely available at https://integrativemodeling.org. In particular, the representations and degrees of freedom of each complex

were encoded in a standard way using the IMP.pmi topology tables. The IMPmodule implementing the Bayesian restraint, the scripts

of the divide-and-conquer GMM fitting and of the modeling benchmark with synthetic data are freely available at https://gitlab.

pasteur.fr/rpellari/bayesianem, https://gitlab.pasteur.fr/rpellari/recursive-gmconvert, https://gitlab.pasteur.fr/rpellari/bayesianem-

benchmark, respectively.
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