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In order to investigate the level of representation required to simulate
folding and predict structure, we test the ability of a variety of reduced
representations to identify native states in decoy libraries and to recover
the native structure given the advanced knowledge of the very broad
native Ramachandran basin assignments. Simplifications include the
removal of the entire side-chain or the retention of only the Cβ atoms.
Scoring functions are derived from an all-atom statistical potential that
distinguishes between atoms and different residue types. Structures are
obtained by minimizing the scoring function with a computationally rapid
simulated annealing algorithm. Results are compared for simulations in
which backbone conformations are sampled from a Protein Data Bank-
based backbone rotamer library generated by either ignoring or including
a dependence on the identity and conformation of the neighboring
residues. Only when the Cβ atoms and nearest neighbor effects are
included do the lowest energy structures generally fall within 4 Å of the
native backbone root-mean square deviation (RMSD), despite the initial
configuration being highly expanded with an average RMSD≥10 Å. The
side-chains are reinserted into the Cβ models with minimal steric clash.
Therefore, the detailed, all-atom information lost in descending to a Cβ-
level representation is recaptured to a large measure using backbone
dihedral angle sampling that includes nearest neighbor effects and an
appropriate scoring function.
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Introduction

First principle models of protein folding gener-
ally are preferred over statistical approaches
because first principle models provide a theoretical
framework to explain the underlying mechanisms,
whereas purely statistical approaches only func-
tion as computational “black boxes”. However,

most first principles approaches have the disad-
vantage either of being too complex to be
computationally feasible for proteins with more
than a few residues1 or too simplistic to be useful
in situations where a more realistic representation
is required.2 In addition, knowledge based meth-
ods have improved substantially over the last
several years and today are capable of generating
native structures,3–10 changes in stability upon
mutation,11 disorder propensities,12 and binding
affinities.13

An interest in combining first principles methods
with statistical information has led us to construct
a computational model that accommodates both a
knowledge-based approach and a more funda-
mental methodology. Our present focus is on
whether protein folding can be accurately depicted
with a backbone representation that either lacks

Abbreviations used: DOPE, discrete optimized protein
energy-function; DOPER, DOPE reduced; PDB, Protein
Data Bank; SA, simulated annealing; RMSD, root-mean-
square deviation; RB, Ramachandran basin; MD,
molecular dynamics; LD, Langevin dynamics.
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any side-chain degrees of freedom or is repre-
sented by at most a Cβ atom. This simplified
representation greatly diminishes the conforma-
tional search as it only involves the backbone
dihedral angles, ϕ and ψ, with no consideration of
side-chain rotamers.
To make up for the loss of side-chain information,

local interactions are incorporated by sampling
using a backbone rotamer library, constructed
from the Protein Data Bank (PDB), that tabulates
dihedral angles for single residues and also for
sequences of dimers or trimers according to their
amino acid identities and Ramachandran basin (RB)
assignments.14 Secondly, the tertiary interactions are
treated using the scoring function, DOPE-Cβ, which
has residue-dependent parameters for all the atoms
in the backbone and for all the Cβ atoms. Structures
are obtained by minimizing the scoring function
with a computationally rapid simulated annealing
(SA) algorithm using the PDB-based backbone
rotamer sampling. These simplifications greatly
reduce the search space and have been adopted in
various fashions by other studies of protein
folding.15–20

Rather than conducting an extensive conforma-
tional search through the entire backbone confor-
mational space, effectively an ab initio structure
prediction, our investigation focuses on the much
less formidable task of generating structures given
the advanced knowledge of the very broad native
RB assignments for each residue. In spite of this
simplification, we address a variety of issues
including how to properly incorporate all-atom
information in a reduced description of proteins.
In the first place, it is not clear that a suitable scoring
function for a reduced model can encode detailed
packing propensities arising from all-atom
interactions.21–26 Our scoring function includes
only terms involving at most the heavy atoms in
the backbone and the Cβ atoms and is obtained from
a previously described all-atom statistical potential,
DOPE (discrete optimized protein energy-func-
tion)27,28 Heavy atoms are distinguished by the
residue type to which they belong (e.g. Cα

alanine

interacts differently than a Cα
valine).

Because our model omits certain fine-grained,
atomistic details of the system, we must ensure that
the SA algorithm samples realistic regions of
conformational space. For example, it is possible
that a transition that is acceptable in the reduced
representation would be forbidden if all additional
variables were explicitly treated because local
interactions between neighboring atoms impose
strong geometric constraints on the motions of the
backbone. As a primary consequence of these local
interactions, the RBs are observed as the five
predominantly occupied regions in ϕ, ψ maps for
each amino acid (Figure 1). Previous ab initio folding
simulations29,30 have suggested that using RBs to
constrain the conformational search in dihedral
space would allow incorporating underlying atom-
istic information into the motions of a simplified
model of a protein.

Neighboring amino acids have also been shown to
exert a substantial influence on the occupancies of
the RBs.31–33 This consideration provides the moti-
vation for constructing a rotamer library of allowed
backbone conformations for monomers, dimers and
trimers, where amino acid information is coupled
with RB assignments to reduce the number of
allowed backbone conformations when knowledge
is available concerning the basin occupancies. Even
more importantly, this library inherently satisfies the
constraints arising from the short range, all-atom
interactions between nearest neighbor residues,
information that is lost in the reduced representa-
tions. In a very recent paper, Rose and co-workers
take a similar approach with remarkable success,
although utilizing a library of pentamer rotamer
conformationss with up to sevenfold smaller Rama-
chandran “mesostates”, or sub-basins, along with
the specification of secondary structure assignments
for each amino acid.34

Here we describe the performance of the folding
simulations for more than 50 proteins using a
reduced representation that includes, in addition to
the heavy atoms of the backbone, either the removal
of the entire side-chain or the retention of only the
Cβ atom and that either neglects or includes nearest
neighbor (NN) effects in the backbone sampling. The
structures are generated with the residues being
constrained to their native RBs during the entire SA
minimization. Although such advanced knowledge
precludes this study from being an ab initio structure
prediction, when a protein is constrained to broad
RBs, the protein may adopt a huge number of non-
native, highly extended conformations as illustrated
in Figures below. Thus, success with this “simpler”
problem positions us to address our questions
related to what level of representation is required
to accurately generate native structures. In addition,
the approach is useful for screening the foldability of
designed sequences.

Figure 1. Specification of the five Ramanchandran
basins. β (blue), poly-proline II, PPII (green), αR (red), αL
(magenta) and ε (grey). The color intensity reflects the (ϕ,
ψ) occupancy as calculated from all 4701 PDB structures.
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Reasonable success is defined by whether native
structures can be obtained with decent accuracy
(<4 Å RMSD) and rapidity (<2 h of CPU time per
protein). This level of success is achieved when the
Cβ atom and NN correlations are included. A
variation is tested which enhances the Cβ–Cβ terms
to include contributions from the other side-chain
atoms, but this enhancement produces no significant
improvement. The performance is slightly inferior
for the protein model lacking the Cβ atom but
including NN effects, whereas the representation
ignoring NN correlations is noticeably worse.
Hence, the information lost in removing an explicit
side-chain largely can be recovered with a scoring
function that differentiates between heavy atoms on
different residue types and when the searching
algorithm contains a PDB-based backbone sampling
that includes NN correlations. As a further test, side-
chains have been inserted into each of the simulated
structures, and the resultant structures are scored
with the full all-atom statistical potential. The
average quality of the predictions is the same
whether or not the side groups are introduced,
demonstrating that the DOPE-Cβ statistical poten-
tial also encodes information concerning side group
packing.

Results

Reduced representations and scoring functions

To investigate the level of detail required to
reproduce native structures, we have utilized a
variety of reduced models involving different side-
chain representations, scoring functions, and back-
bone sampling schemes. The model either omits
side-chains entirely, or the side-chains are repre-
sented by single Cβ atoms. The scoring functions
are derived from DOPE, an all-atom statistical
potential.27,28 For the model lacking side-chains,
only the terms involving the backbone heavy
atoms are included in the scoring function termed
DOPE-BB. The Cβ side-chain scoring function
DOPE-Cβ includes terms involving the Cβ atoms
as well.
We also have tested a variant of this scoring

function, DOPER, which enhances the Cβ–Cβ terms
to include energetic contributions from the other
heavy atoms in the side-chains. This extra energy is
the sum of the terms between all heavy atoms on the
two side-chains, (averaged over all conformations in
the all-atom structures used to generate the DOPE
potential). Representative plots of the DOPE and
DOPER interaction scores between two different
amino acids are contrasted in Figure 2(a) and (b) as a
function of the spatial distance separating the
respective Cβs. The statistical Cβ–Cβ DOPER inter-
actions contrast sharply with the corresponding
explicit atom–atom Cβ–Cβ interactions from DOPE,
even for the same amino acid pairs. All Cβ–Cβ

interactions of DOPE are more similar to each other

Figure 2. The dependence of the DOPE and DOPER
statistical potentials on their inter-atomic distance for
different pairs of amino acids. (a) In the all-atom DOPE
statistical potential, Cβ–Cβ interactions are similar even
though the chemical compositions of the amino acids are
very dissimilar. (b) For the DOPER statistical potential,
which has enhanced Cβ–Cβ terms, the shape of the curves
changes substantially, showing that the effective Cβ–Cβ

interaction in the reduced Cβ model encodes information
concerning the amino acid type and the side group
constraints. Small hydrophobic residues, such as serine
and valine, yield a DOPER profile that resembles the
corresponding DOPE curve. Amino acids with large side-
chains display very distinctive profiles reflecting their
chemical compositions and complimentarity. (c) The Cα–
Cα interactions of DOPE and DOPER are the same, but
depend on amino acid type to a degree, and thus contain
information about the side groups.

837Minimalist Models and Neighbor Effects in Folding
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than their DOPER counterparts, which exhibit
substantial variation among different amino acids.
This difference is expected because the DOPER Cβ–
Cβ interaction includes the sum of interaction of all
the heavy atoms in the entire side-chain. As we pass
from interactions between pairs of amino acids with
small side-chains (serine–valine, glutamic acid–
gtyrosine) to pairs of bulkier residues (phenylala-
nine–tryptophan and lysine–tryptophan), the
DOPER profiles increasingly differ from the explicit
atom-atom DOPE interaction curves. It is also
evident that the hydrophobicity of the amino acids
is captured by DOPER, as exemplified by the
significantly increased strength between the phe-
nylalanine–tryptophan and lysine–tryptophan ef-
fective interactions. The dependence of the DOPE
statistical potential on both the atom types and the
amino acid identities is illustrated in Figure 2(c) for
selected Cα–Cα interactions. This dependence on
amino acid identity, even for the otherwise chemi-
cally identical atom type, assists the statistical
potential in describing the influence of side-chain
packing.

Test with decoy sets

To examine the loss of information incurred by use
of the reduced models, we compare the energy
computed using the all-atom DOPE statistical
potential with those of the three other scoring
functions for reduced models of the seven proteins
included in the Park-Levitt four-state reduced decoy
set,35 which can be downloaded from the Decoy ‘R’
Us website†. In the resulting scatter plots (Figure 3),
the DOPE-Cβ potential has the highest correlation
coefficient R∼0.9 with the all-atom potential, al-
though the DOPE-BB and DOPER potentials yield
only slightly lower coefficients, R∼0.85.
We briefly describe the compilation of the three

libraries of decoys used in this study. The Zhou
decoy set includes 96 standard multiple decoy sets
of proteins with known X-ray structure.26 The Baker
decoy set includes over 75,000 members for 41
proteins whose structures have been determined
with either X-ray or NMR experiments. This decoy
set is generated using the Rosetta algorithm and is a
subset of the structures used to test an all-atom
scoring function.18 The study by Zhou et al. excludes
from the original decoy sets those associated with
proteins whose structures have been determined by
NMR as well as decoy sets of globins and
immunoglobin. The decoys sets excluded by Zhou
et al. comprise our third and final library, which is
labeled as Others.
To further examine the utility of the four scoring

functions, we test and compare their ability to
identify the native structure in three different
libraries of decoys (Table 1). The success rate (the
percent of native structures that are ranked by their
energy scores as number one) is highest for DOPE,

the all-atom potential, and decreases for reduced-
model scoring functions (Table 1). In addition, the
Top5 measure (the percent of native structures that
are ranked by their energy score as one of the five
structures with lowest energy) displays a similar
trend. Finally, we consider the Z-score, another
measure of the quality of these statistical potentials
for dealing with different decoy sets The Z-score is
defined as:

Z ¼ EnergyðNativeÞ � hEnergyðDecoyÞilibraryffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hEnergyðDecoyÞ2libraryi � hEnergyðDecoyÞi2library

q

ð1Þ
where the angular brackets denote the average over
the library.36 Z-scores reflect the quality of both the
scoring function and the decoy set (worse decoys
sets result in better Z-scores). The performance of
the energy functions is relatively poor for decoy sets
that include NMR structures. Moreover, the reduced
energy functions do not perform as well as the all-
atom potential. Regardless, our overall goal is to
develop an algorithm for generating native-like
structures and not a statistical potential that can
identify the native state from a decoy set using Z-
scores. From this perspective, we require a suitable
potential that can produce an accurate representa-
tion of the structure of the native state for any given
sequence when used in conjunction with an ade-
quate sampling protocol.

Intra-basin folding simulations

As a first test of the models, we consider
simulations that begin with a random assignment
of dihedral angles for each amino acid residue
within their native RBs, and proceed by minimizing
the DOPE-Cβ score using a SA algorithm (Figure 4).
The dihedral angles are constrained to remain
within their native RBs during the entire annealing
run. New conformations are generated by choosing
a trimer, dimer, or monomer from the backbone
rotamer library, subject to compatibility with the
amino acid sequence and basin assignments. The
algorithm first tries choosing dihedral angles from
trimers, and defaults to dimers and then to mono-
mers when configurations for the trimer or dimer
are absent, respectively, in the rotamer libraries.
After a fixed number of steps in which all moves are
accepted, the annealing follows a cooling schedule
that decreases the temperature until convergence is
reached. In the simulations presented here, the
number of steps at each temperature is 100.
We consider 50 small globular proteins to test the

intra-basin folding algorithm (Table 2). The 50-
protein set is generated by combining 41 proteins
used by Baker et al.36 with nine additional common-
ly studied proteins. This test set contains a hetero-
geneous sample of different protein topologies: α
helix bundles, α/β proteins, and β-only structures.
A total of 100 separate trajectories are performed for
each protein, with every trajectory starting from a†http://dd.stanford.edu/
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Figure 3. Correlation between all-atom DOPE scores and those of the three other reduced representations. Energies
are highly correlated between the all-atom DOPE statistical potential and the DOPE-Cβ, DOPE-BB only, and DOPER
scoring functions for seven proteins taken from the Park & Levitt four-state reduced decoy set. The high correlation
indicates that each of the reduced scoring functions captures a large majority of the information content of the all-atom
based statistical potential DOPE from which they are derived. (R values in parentheses.)

839Minimalist Models and Neighbor Effects in Folding
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different random assignment of dihedral angles
within the native basins. For each trajectory, each
successive minimum is recorded until the conver-
gence criterion is satisfied. Generally, about 50 such
minima from each trajectory are recorded. Using a
Pentium IV 2.8 Ghz with 512 Mb of RAM, each run
takes an average of 500 s for a protein of 70 residues,
when executing 100 annealing steps per tempera-
ture. The overall running time is roughly propor-
tional to the number of annealing steps per
temperature; hence, a simulation performed with
500 annealing steps per temperature is about five
times slower.
Because simulations using reduced models

could produce structures for which the side
groups clash significantly, tests are made of side-
chain packing. After each SA run using the
reduced representation, the side groups are
introduced employing the SCWRL program ver-
sion 3.0,37 without further backbone motions.
SCWRL employs a simple energy function based
on a backbone-dependent rotamer library and a
piece-wise linear repulsive steric energy to remove
atom clashes. A final scoring is made using the
full heavy atom statistical potential DOPE to
ensure that the final structure properly describes
the protein packing.
Comparisons of the RMSD for the lowest energy

structure obtained before and after the introduction
of the side groups, scored with the DOPE-Cβ

potential and with the all-atom DOPE potential,
respectively, indicates that the inclusion of side-
chains generally provides only a modest improve-
ment in the RMSD of the lowest energy structure
(Figure 5; Table 2, compare columns 5 and 6). This
test has the physical significance of demonstrating
that our protein structure algorithm is indeed
consistent with good side-chain packing. Because
the computational cost is minimal for introducing
side-chains with SCWRL and for scoring with the
all-atom DOPE potential of a single structure after
the SA process (which utilizes a model without
side-chain rotamers), this procedure of adding side-
chains is applied throughout our study when

identifying lowest energy structures and calculat-
ing RMSD values.

Intra-basin search is non-trivial

Even when the energy minimization constrains
each residue's backbone to remain within its very
broad native RBs, a huge number of conformations
are still available. Initial configurations, generated
from the rotamer library by a random assignment
of dihedral angles in the native RBs, are highly
unfolded with dimensions comparable to dena-
tured proteins. Moreover, these initial conforma-
tions are assembled by piecing together trimers and
dimers taken from the rotamer library, so that the
conformations even satisfy local chemical and
geometrical correlations. However, as demonstrat-
ed by Figure 6(a), the lowest RMSD of the initial
configurations never falls below 5 Å, with the
average around 10 Å or higher. It is also revealing
to examine the relationship between the initial
configuration and the final result of the minimiza-
tion. Figure 6(b) presents representative scatter
plots of the RMSD of the initial configuration
versus the RMSD of the final configuration and of
the initial against the final configurations' DOPE
energy for all annealing runs. The scatter plots
indicate that the outcome of the energy annealing is
independent of the proximity of the initial state to
the native structure.
Figure 4 depicts typical initial 3D structures for

1UBQ. The native structure of this protein features
an α-helix between residues 23 and 34, and the
Figure shows that this helix is also partially present
in the initial structures. This appearance of a helical
portion arises because stretches of more than four
consecutive residues in the α RB are highly
constrained to adopt a standard helical conforma-
tion. However, these pictures also display a com-
plete lack of native long-range interactions in these
initial structures. Nevertheless, the presence of
partial helical structure in the initial conformations
suggests that the SA minimization would be
expected to fare better for α proteins. Thus, the 50

Table 1. Success rates and Z-scores for different scoring functions and decoy sets

Decoy (no. of proteins) Scoring function DOPE (all-atom) DOPE-Cβ DOPER DOPE-BB

Zhou (96) Success(%)a 83 65 57 59
top 5(%)b 89 76 72 72
Z-scorec 3.8±3.1 2.9±2.7 2.6±2.3 2.6±2.5

Baker (41) Success(%) 27 20 0 12
top 5(%) 44 27 15 27.5
Z-score 1.5±2.2 0.9±2.3 0.7±1.6 0.8±2.2

Others (171) Success(%) 18 11 9 6
top 5(%) 37 20 16 14
Z-score 0.7±2.1 −0.4±2.4 −0.08±2.03 −0.97±2.79

All (308) Success(%) 39 29 23 23
top 5(%) 54 39 33 34
Z-score 1.8±2.9 0.8±2.9 0.9±2.4 0.4±3.1

a Success is defined as the native structure having the lowest energy score.
b Top5 refers to number of total cases when the native is one of the five structures with lowest energy.
c Z-score values are given as the average and the standard deviation for the decoy sets.
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proteins studied also include β proteins whose
initial structures are even more devoid of native,
long-range structures.
Many examples demonstrate the highly non-

trivial character of the intra-basin search for gener-
ating a good approximation to the native structure
(Figure 7). For example, among the five lowest
energy structures for 1VII, a small α-helix bundle of
36 residues, the lowest energy conformation is
almost the correct native structure except for the
presence of an incorrect orientation for the C-
terminal helix. This observation implies that the
specification of the RBs does not uniquely determine
the spatial arrangement of the secondary structural
elements, even in very simple cases such as this one
where the initial structures contain some helical
portions.

Generated structures

The resulting all-atom structures are ranked
according to their all-atom DOPE energy score,
and the five conformations with lowest energies are
selected for comparison with the native structure.
From this set of five conformations, a structure
with less than 4 Å of backbone RMSD is found in
44% of the cases, with no obvious correlation to the
size and secondary structure topology (Table 2).
The accuracy tends to be slightly better for proteins
with only α-helices, perhaps because β structures
usually involve more complex topologies and long-
range interactions, but more likely, because
α-helices are easily formed during the initial
assignment of dihedral angles, thereby probably
expediting the annealing search. Figure 7 presents

Figure 4. Flow chart of the simulated annealing algorithm. 3D renderings of typical initial structures are shown at the
top for 1ubq. While these conformations display no native tertiary interactions, they feature the native α−helix in the
correct position. The helix appears because long stretches of α RBs almost uniquely determine alpha helical
conformations.

841Minimalist Models and Neighbor Effects in Folding
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3D renderings of the predicted (lowest energy)
structures for a selection of proteins, along with the
superimposed native fold, and the corresponding
scatter plots of the DOPE energy and RMSD for the
structures generated. Although the 50 target pro-
teins are not explicitly excluded from the rotomer

library, only ∼4, 6, 9, 12, and 16% of the pair of
dihedral angles from the 50 predicted structures
(3035 pairs total) are found to lie within 1, 2, 3, 4,
and 5° of the native dihedral angles, respectively.
The lack of native angles in our structures indicates
that the algorithm undergoes a meaningful search

Table 2. Results for SA runs using DOPE-Cβ

PDB
code

Class,
Nres Source

Native
lowest
energy

Predict
RMSD

(all-atom)a

Predict
RMSD
(Cβ)b

Lowest
RMSDc

RMSD<
2 Å (%)

RMSD<
4 Å (%)

RMSD <
6 Å (%)

RMSD<
8 Å (%)

Min
RMSD
in top5d

Max
RMSD
in top5

Ave
RMSD
in top5

1bdc α,60 NMR No 7.15 7.15 3.5 0 3 41 91 5.24 7.15 6.05
1bw6 α,56 NMR No 9.16 10.21 3.19 0 1 26 40 5.42 9.85 7.87
1bxy αβ,60 X-ray Yes 2.94 3.25 2.15 0 15 43 49 2.48 4.23 3.07
1ctf αβ,67 X-ray Yes 2.24 2.68 1.75 2 39 64 89 2.24 3.72 2.80
1kjs α,74 NMR No 4.12 5.24 3.67 0 4 49 78 4.12 6.98 5.55
1msi β,60 X-ray Yes 4.34 4.34 4.26 0 0 16 45 4.34 .96 6.23
1mzm α,71 X-ray Yes 4.07 6.29 2.88 0 33 51 81 3.49 4.07 3.71
1orc αβ,56 X-ray Yes 2.59 3.23 2.13 0 65 92 95 2.13 8.22 3.64
1ubq αβ,76 X-ray Yes 4.53 3.73 1.93 2 42 86 97 2.73 4.56 3.74
2pdd α,43 NMR No 8.78 3.61 3.61 0 2 33 79 4.26 8.78 6.99
1res α,35 NMR No 2.88 3.24 0.70 54 79 98 100 0.70 2.88 1.52
1vii α,36 NMR No 7.26 7.53 2.55 0 6 13 93 7.06 7.59 7.25
1uxd α,43 NMR No 2.86 2.85 2.85 0 5 10 78 2.85 6.03 3.66
1uba α,45 NMR No 6.72 6.72 3.07 0 22 67 98 6.09 6.72 6.36
1gab α,47 NMR No 2.01 1.97 1.79 22 97 99 99 1.96 2.40 2.18
1prb α,53 NMR No 2.10 1.98 1.84 15 96 100 100 2.00 2.25 2.12
1enh α,54 X-ray Yes 1.29 2.93 1.24 25 92 100 100 1.29 2.65 1.9
1am3 α,57 X-ray Yes 2.42 2.50 1.86 4 95 100 100 2.41 3.61 2.70
1r69 α,61 X-ray Yes 3.49 4.92 2.32 0 28 86 97 2.57 4.76 3.64
1utg α,62 X-ray No 4.20 4.63 2.67 0 24 98 100 4.20 5.13 4.52
2ezh α,65 NMR No 4.15 4.31 3.38 0 14 77 81 3.76 4.15 3.93
1a32 α,65 X-ray No 5.50 5.20 2.61 0 36 83 95 4.83 5.56 5.28
1nre α,66 NMR No 7.12 8.65 1.44 8 50 78 95 2.49 7.12 4.61
1ail α,67 X-ray Yes 2.18 8.05 1.97 1 39 41 71 2.09 7.60 3.49
1lfb α,69 X-ray No 2.54 3.47 1.76 3 83 97 98 2.54 3.86 3.12
1nkl α,70 NMR Yes 2.52 2.52 2.52 0 5 16 70 2.52 9.08 5.47
1pou α,70 NMR Yes 12.46 9.29 2.99 0 1 3 24 4.82 12.46 9.53
5icb α,72 X-ray Yes 3.15 2.78 2.56 0 44 57 73 2.78 5.40 3.50
1hyp α,75 X-ray Yes 8.11 4.94 3.00 0 18 58 83 4.82 8.11 6.80
1cc5 α,76 X-ray Yes 6.85 7.76 4.79 0 0 3 40 6.85 10.39 8.56
1cei α,85 X-ray Yes 6.51 12.65 4.29 0 0 2 13 6.14 11.67 7.81
1ptq αβ,43 X-ray Yes 2.07 7.69 1.46 6 17 26 54 1.87 8.32 4.39
3gb1 αβ,56 NMR Yes 5.93 5.19 2.51 0 11 62 92 3.62 6.16 5.34
1aa3 αβ,56 NMR No 6.44 6.35 5.51 0 0 9 94 5.88 6.78 6.41
1pgx αβ,57 X-ray Yes 4.27 3.05 2.67 0 31 83 95 2.92 5.94 3.98
1tif αβ,59 X-ray Yes 2.45 2.45 2.12 0 22 57 88 2.12 3.64 2.77
2ptl αβ,60 NMR Yes 7.70 6.12 4.48 0 0 3 30 4.48 10.73 7.66
1dol αβ,62 X-ray Yes 7.61 9.67 4.00 0 0 5 22 7.61 9.23 8.61
2fow αβ,66 NMR Yes 7.51 7.83 6.08 0 0 0 28 7.51 11.10 9.43
1afi αβ,72 NMR Yes 9.52 9.51 5.57 0 0 1 6 6.97 9.52 8.43
1vcc αβ,77 X-ray Yes 6.67 11.63 3.83 0 1 9 29 6.36 11.26 7.77
2fxb αβ,81 X-ray Yes 9.88 8.32 4.88 0 0 6 20 8.12 11.17 9.94
1e0l β,37 NMR Yes 8.49 4.78 3.77 0 1 37 48 4.70 8.81 7.10
1vif β,48 X-ray Yes 4.30 3.09 1.63 2 24 54 80 1.63 6.06 4.14
1bq9 β,53 X-ray Yes 7.95 7.8 2.32 0 23 42 64 3.48 9.38 6.62
5pti β,55 X-ray Yes 3.28 3.14 3.09 0 32 73 82 3.28 8.30 5.59
1tuc β,61 X-ray Yes 3.20 3.20 3.2 0 2 8 23 3.20 7.48 5.06
1csp β,64 X-ray Yes 3.98 3.98 3.82 0 2 8 45 3.82 9.08 6.16
1sro β,66 NMR Yes 5.33 6.14 4.57 0 0 6 36 5.33 9.87 7.59
1g6p β,66 NMR Yes 8.34 8.12 7.19 0 0 0 2 8.34 12.38 10.04

Structures are determined using the SA algorithm and the DOPE-Cβ scoring function and with sampling that includes nearest neighbor
effects. Unless specified otherwise, final energy rankings are determined for these structures using the all-atom DOPE statistical potential
after inserting side-chains using the SCWRL statistical potential. Cα RMSDs are relative to the native structure in Å.

a Cα RMSD for lowest energy structure relative to the native structure in Å (using the DOPE score) among the final structures from 100
trajectories.

b Cα RMSD for lowest energy structure relative to the native structure in Å (using the DOPE-Cβ score) among the final structures from
100 trajectories.

c Lowest RMSD for all the structures among the final structures from 100 trajectories.
d Minimum and maximum RMSD between the native and the five lowest energy structures (using DOPE score) among the final

structures from 100 trajectories.
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within the basins and that our successes are not
due to the insertion of native fragments, which
could trivialize our results, for example, if there
were only a few trimers in the library to search
though. Nevertheless, the recovery of the native
angles is desirable, indicating the algorithm and
potential can be improved. The algorithm yields
comparable accuracy over the range of chain
lengths from 20 to 80 residues.

Alternative scoring functions

We have repeated the SA using both the DOPER
scoring function, for which the Cβ–Cβ interaction
energy includes the total interaction energy for all
the heavy atoms in the two side-chains, and a
backbone-only DOPE-BB scoring function. The
quality of the predictions is not significantly
different when using the DOPE-Cβ and DOPER
potentials (Table 3); however, the DOPE-BB poten-
tial performs worse (Table 4).
We next test whether the inclusion of information

about the identity and conformation of the neigh-
boring residues in the backbone sampling is critical
to the success of the reduced model. Using the
DOPE-Cβ scoring function but ignoring neighbor
information in the backbone sampling, the results
are severely degraded, even below those generated
using the DOPE-BB scoring function (Table 5).
Hence, the detailed, all-atom information lost in
descending to a Cβ-level representation can be
recaptured to a large measure using backbone
sampling that includes NN effects. In summary, in

order to obtain reliable structures which often are
within 4 Å RMSD of the native structure, the SA
treatment requires the use of a statistical potential
that minimally employs a Cβ side-chain representa-
tion and backbone dihedral angle sampling that
incorporates nearest neighbor effects.

Longer cooling schedules

The current version of the annealing algorithm
uses a fixed number of conformational transitions at
each temperature. This fixed number is a critical
parameter affecting the outcome of the minimization
procedure. We expect that the treatment of larger
proteins will require more steps in the folding
process because larger proteins have more total
conformations available. Figure 8 presents profiles
for the DOPE scoring function and the RMSD as a
function of the number of steps per temperature.
Convergence is attained in all cases, but only when
the simulations involve more than 100 of steps per
temperature does the annealing process appear to
equilibrate towards the proper low energy config-
urations. The use of longer cooling schedules has the
disadvantage of rendering the computations more
expensive. On the other hand, quenching the system
more rapidly might not be too disadvantageous
provided that the algorithm is still capable of finding
good, near-native conformations. Additional simu-
lations for 1UBQ indicate that while longer anneal-
ing runs do not yield significantly higher accuracy,
they merely increase the number of structures that
are close to the native (Table 6). This number of near
native structures appears to plateau at 200 steps per
annealing temperature, which seems to indicate that
the optimal number of steps is between 100 and 200,
at least for proteins with less than 80 residues.
Longer annealing runs do not improve the results for
those proteins poorly covered by the trimer library
(see below), thus reinforcing the conclusion that
having enough trimer configurations is fundamental
for the algorithm to provide good predictions.

Correlation between accuracy and richness of
the trimer library

Figure 9 displays the presence of a clear correla-
tion between the RMSD for the most native-like
simulated model and the number of positions along
the input sequence for which trimer conformations
are unavailable in the rotamer library, given the
sequence and basin specifications for the trimer.
Even though such a correlation is expected, it also
reflects a non-trivial feature of our approach:
simulated low energy structures are very good for
a protein when the trimer library is rich enough for
that protein's sequence. If we define an amino acid
sequence together with its basin assignment to be
well covered by the trimer library when there are
less than ten missing trimers, 93% (38 out of 41) of
the well covered sequences from the proteins
considered in this study have predicted structures
with less than 4 Å backbone RMSD from the native

Figure 5. Scoring after the introduction of side-chains
produces only marginal improvement in predicted
RMSD. For the 50 proteins investigated, multiple
structures are obtained using the SA algorithm with the
reduced Cβ-only representation and the DOPE-Cβ

scoring function. The RMSD of the lowest energy
structures are nearly the same on average, whether
they are scored before the introduction of the side groups
with the DOPE-Cβ statistical potential or after the
introduction of side groups (with SCWRL)37,38 and then
scored with the all-atom DOPE statistical potential. The
y=x line is inserted for the reader's benefit.
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structure. This result is particularly significant
because it demonstrates that if the algorithm can
sample from a number of local structures for each
trimer fragment, the simulations produce the correct
global fold. Recalling that the SA minimization
routine defaults to dimer or monomer conforma-
tions when there are no trimer conformations
available with the sequence and basin assignments,
we can further conclude that the backbone dihedral
search becomes ineffective if the (ϕ, ψ) torsional
angles are sampled by taking monomers or dimers
as the basic units.

Energy function and hydrogen bonds

Leaving aside the fact that a Cβ-only energy
function has intrinsic inaccuracies that can only be
rectified with a more detailed model that includes

explicit side-chains, our current statistical potential
might be improved by adding additional terms to
the energy function. First of all, even predictions
close to the native structure (∼2 Å) have a distinctive
feature that readily differentiates them from the
native structures. The simulated structures lack the
optimal hydrogen bond patterns of the native
conformation (Figure 10). Even though the current
energy function has terms accounting for the
interaction between the main-chain oxygen and
nitrogen atoms and thus encodes preferences due
to hydrogen bonding, these interactions depend
only on distance and not orientation. The hydrogen
bonds, however, are very sensitive to the angular
orientations between the donor and acceptor
groups. Hence, an explicit orientation-dependent
hydrogen bond term38 should improve the descrip-
tion of the hydrogen bonds.

Figure 6. Intra-basin search is non-trivial. (a) Scatter plots for two proteins in which the RMSD values of the initial
configurations for the SA runs are plotted against the corresponding DOPE score. The initial configurations bear little
resemblance to the native structure, even though the dihedral angles are taken from the backbone library and are
restricted to remain within the native RBs. The native structure is also included in the scatter plots as the leftmost star-
shaped point with RMSD=0 Å. (b) Scatter plots are generated from the same set of runs for 1ubq. The initial and final
structures for each of these runs are recorded, and the RMSD values to the native structure and the DOPE score are
calculated. The scatter plots reveal the lack of a correlation between the initial and final structures for a given annealing
run. The initial conformation might be very high in energy and have a poor RMSD value , and still the run might lead to a
reasonable structure.
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Comparison with other methods

After completion of these calculations, a related
work by Rose and co-workers was published,34

motivating a detailed comparison between their
algorithm and ours. They build models using
native-like pentamer fragments and an energy
function composed of hydrogen bonds, steric
repulsion and favorable interactions induced by
minimizing the radius of gyration. They often obtain
a very high degree of success for the six proteins
studied, with the most stable structure being within
2 Å of the native structure for three of their targets.
The initial dihedral angles in each pentamer are
constrained to one of the 36 more confined 60°×60°
mesostates than our five broader RBs (for example,
our α-basin covers the area of 7.5 mesostates in their
model), and their pentamer library specifies second-
ary structures, implying that their approach
includes considerably more constraints concerning
the native structure than our method. Moreover,
these additional constraints are more likely to
facilitate a better identification of the correct
structure for turn fragments.
In order to perform an in-depth comparison using

the DOPE-Cβ potential with NN effects for the six
proteins investigated by Rose and co-workers, it is
also necessary to investigate the importance of
adding a hydrogen bond term because of the central
role played by these bonds in the simulations by
Rose and co-workers. Thus, to render the compar-
ison more a test of using a reduced basin size with
larger fragments, on the one hand, against using a
more sophisticated interaction potential, on the
other hand, we provide the results of preliminary
simulations obtained with HOPE-Cβ, a generaliza-
tion of DOPE-Cβ which includes the amide proton
to better represent hydrogen bonding, followed by
clustering of the final structures,39 a step Gong et al.
find necessary for identifying the native fold. In
addition to these simulations, a test is also made for
a version of the statistical potential DOPE-Cβ where
the heavy atom backbone interactions depend only
on the atom type but not on amino acids, while the
Cβ atoms are still distinguished based on residue
types, to provide more comparable situation to the
poly-alanine representation by Gong et al.
The results of the simulations using DOPE-Cβ and

HOPE-Cβ are summarized in Tables 7 and 8,
respectively, for the half-dozen proteins studied by
Gong et al. The predicted structures are marginally
better when HOPE-Cβ is used as a scoring function
for the simulations. Lower RMSD structures emerge
from the simulations, but the scoring function fails
to identify these structures as the lowest energy
predictions. The predicted structures, however, are
closer to the lowest RMSD structures when cluster-
ing is used to sort the final structures obtained from
each trajectory (Table 9). Finally, the third set of
simulations (with heavy backbone atom interactions
independent of residue type) yield predicted struc-
tures that are marginally poorer, so the details are
not presented.

Compared to the work of Gong et al., our HOPE-
Cβ results are slightly better in two of the six
proteins, but significantly worse for 1IFB, a 131
residue protein. This intestinal fatty acid binding
protein has a solvated core,40 which we fail to find
whereas Rose and co-workers generate a native-like
structure for this sequence. It is, thus, critical to have
additional constraints, such as mesostates and
secondary structure, in identifying the native-like
structures for this unusual protein architecture.

Discussion

Intra-basin folding simulations

The intra-basin folding simulations are promising
in the sense of demonstrating that, given knowledge
of local geometrical constraints in the native state, it
is possible to rapidly obtain reasonable predictions
of the native structure for a wide range of proteins
using a Cβ-based model and sampling that includes
the influence of nearest neighbor interactions. Given
the non-trivial nature of the intra-basin conforma-
tional search, these results are important by them-
selves, and not only as one necessary validation of a
more complete folding algorithm that does not
require the specification of the native RBs. In
addition, the RMSDs are comparable for the lowest
energy structures before and after the introduction
of the side groups with SCWRL,37 scored with the
DOPE-Cβ and the all-atom DOPE potentials, re-
spectively (Figure 5). This result demonstrates that
the algorithm generates physically reasonable pro-
tein structures consistent with good side-chain
packing.
Overall, the all-atom DOPE energy value is the

minimum for the native structure in 68% of the
proteins tested in this study, and the decoys close to
the native state are those with similarly low
energies. The scatter plots in Figure 7 show that
the RMSD values and the DOPE scores are highly
correlated. The appearance of false positives,
impacting negatively on the success rates, is
probably due for the most part to the standard
deviation and low specificity of the DOPE statistical
potential at the current level of resolution of DOPE
(∼3 Å).
A recent, related work by Rose and co-workers

considers protein structure identification using a
poly-alanine representation of the protein, an initial
dihedral angle specification, an explicit hydrogen
bond term, a specification of each amino acid's
secondary structure type, and an analysis based on
clustering of final structures.34 Their performance is
often, but not always, better than ours, and they
obtain a very high degree of success for the six
proteins studied, with the most stable structure
being within 2 Å of the native structure for three of
their six targets (Table 9). Their initial dihedral
angles are constrained to one of the 36 60o×60o

mesostates whereas we utilize five broader RBs (for
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example, our α-basin covers the area of 7.5 meso-
states in their model). Their fragment library uses
pentamers and specifies secondary structures, im-
plying that their approach includes considerably
more constraints concerning the native structure
than our method. The prediction of our model
improves when we include hydrogen bond interac-
tions (using the HOPE-Cβ scoring function) and
clustering, in agreement with their findings. Also,
the speed of our method (∼2 CPU hours per protein)
enables us to consider 50 different proteins.
Our method shares common elements with

Baker's Rosetta prediction algorithm.18,41 Their
PDB-based backbone sampling uses the conforma-

tions from the PDB for trimers or nonamers, biased
according to secondary structure prediction. Rosetta
also employs a Cβ-representation. However, their
statistical potential only distinguishes the Cβ heavy
atom for different residue types; the backbone
interactions depend only on atom type and not on
amino acids, as is the case for the DOPE statistical
potential used here. Moreover, an additional envi-
ronmental dependence is incorporated into their
statistical potential using Bayesian methods. In
addition, their docking of structural elements is
based upon observed statistics in the PDB.
The presentwork differs from studies byColubri&

Fernandez29 in that these works are aimed at

Figure 7. Lowest energy structures. 3D X-ray-traced renderings and corresponding scatter plots of the RMSDs and
DOPE scores from the simulations using DOPE-Cβ for six of the 56 proteins simulated in this study. The predicted (lowest
energy, blue) structures are displayed for six representative proteins spanning the range of low to high RMSD values from
the native structure (orange). In the scatter plots, the X and Y coordinates of each point correspond, respectively, to the
RMSD between the simulated and the native structures and to the DOPE score for the computed structure. The native
structure is also included in the scatter plots as the leftmost star-shaped point with RMSD=0 Å. In 68% of the energy
RMSD scatter plots, the native structure corresponds to the conformation with lowest energy. The renderings have been
generated with PyMol [http://www.pymol.org/ (DeLano, W.L. (2002). The PyMOLMolecular Graphics System, DeLano
Scientific, San Carlos, CA, USA].
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generating coarse-grained folding pathways that
capture features of real pathways, such as their
diversity and transition states structures. Algorith-
mically, the major similarity is that ϕ,ψ moves are
constrained by RBs. In their study, theϕ,ψ values are
obtained by uniformly sampling from one of the four
Ramachandran quadrants. The present basin defini-
tions are more accurate (e.g. separating β and PPII
conformers and including turns in the helical basin,
rather than with the β and PPII conformers). Also,
we sample dihedral angles from a library obtained
from PDB structures according to residue type and
with the inclusion of nearest neighbor effects. In
addition, the scoring function is different. The earlier

work uses a semi-empirical energy function that
stresses the importance of three-body interactions,42

rather than a residue-dependent statistical potential
in the present treatment. Previously, a kinetic Monte
Carlo routine was used, while a SA is now employed
tominimize the statistical potential. Using the earlier
algorithm, Colubri predicts native structures with
some success by incorporating independent second-
ary structure knowledge.30

Free energy surfaces

The study by Gong et al. stresses that the use of
native-like pentamers, hydrogen bonding, steric

Figure 7 (legend on previous page)
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repulsion and compaction, generates only a “re-
markably small number of topologically distinct
clusters”.34 A recent study by Takada et al.20

similarly finds that the local biases, encoded by the
use of fragments obtained from the PDB, are strong
enough that even non-specific collapse often pro-
duces native-like conformations and funnel-like
landscapes for many small proteins. Takada et al.
conclude that these properties rationalize the suc-
cess of fragment insertion methods in ab initio
structure predictions. Their reasoning also rationa-
lizes why the inclusion of NN effects, which is
inherent to fragment insertion, has a greater impact
on our predictions than the inclusion of the Cβ terms
in the statistical potential.
However, several studies, including ours, Ta-

kada et al.7 and Gong et al.,34 obtain plots of

RMSD versus energy containing many low ener-
gy, non-native minima (RMSD>5 Å). Hence, the
accompanying free energy surface is quite rugged
when a single folding trajectory is considered,
even if the RMSD for multiple trajectories
correlates well with the energy. Native local
biases and collapse often are insufficient to
uniquely define the native fold. In order to
identify the native folds, clustering or other
methods are required. In contrast, real proteins
readily fold to the native state in a two-state
manner,43,44 and hence, do not traverse the
complicated landscapes observed in many simu-
lations. This difference suggests that improve-
ments in energy functions or better move sets are
required for a more realistic description of the
folding process.
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Future improvements

The previous sections indicate three areas where
the algorithm might be substantially improved: a
richer rotamer library, a better cooling schedule, and
a more detailed energy function. The rotamer library

could be enriched by two different approaches. The
first approach would be to include more structures
in our training set, while the second would be to
construct a library of trimer conformations using
dimer information already available in the library.
Another interesting possibility is to generate

Table 3. Results for SA runs using DOPER1

PDB
code

Class,
Nres Source

Native
lowest
energy

Predict
RMSD

(all-atom)a

Predict
RMSD
(Cβ)b

Lowest
RMSDc

RMSD<
2 Å (%)

RMSD<
4 Å (%)

RMSD<
6 Å (%)

RMSD<
8 Å (%)

Min
RMSD
in top5d

Max
RMSD
in top5

Ave
RMSD
in top5

1bdc α,60 NMR No 7.44 7.44 5.96 0 0 2 67 6.37 8.00 7.07
1bw6 α,56 NMR Yes 6.62 6.62 3.06 0 7 29 39 3.41 6.62 4.57
1bxy αβ,60 X-ray Yes 2.97 2.69 1.68 1 33 46 62 2.67 4.27 3.11
1ctf αβ,67 X-ray Yes 3.05 3.05 2.36 0 33 67 92 2.36 3.77 3.20
1kjs α,74 NMR Yes 3.59 7.34 3.59 0 1 28 69 3.59 7.34 5.89
1msi β,60 X-ray Yes 4.99 4.99 4.08 0 0 6 44 4.08 10.82 7.18
1mzm α,71 X-ray Yes 5.57 10.08 2.93 0 24 51 73 3.21 8.83 5.95
1orc αβ,56 X-ray Yes 7.35 8.15 2.68 0 14 72 88 3.65 8.15 5.60
1ubq αβ,76 X-ray Yes 3.41 2.97 2.92 0 29 79 95 3.02 4.26 3.46
2pdd α,43 NMR No 8.39 7.67 3.47 0 2 35 66 5.50 8.58 7.68
1res α,35 NMR No 1.13 1.13 1.13 77 99 100 100 1.13 1.56 1.29
1vii α,36 NMR No 3.32 7.95 3.01 0 6 19 95 3.32 7.17 5.84
1uxd α,43 NMR Yes 2.95 2.95 2.19 0 13 19 69 2.66 3.92 3.11
1uba α,45 NMR Yes 5.06 5.06 4.57 0 0 78 96 5.06 5.59 5.42
1gab α,47 NMR No 2.08 1.72 1.72 16 84 99 100 1.72 2.08 1.95
1prb α,53 NMR No 2.81 2.81 2.67 0 24 61 91 2.81 4.01 3.22
1enh α,54 X-ray Yes 3.24 2.49 2.42 0 96 100 100 2.45 3.98 3.37
1am3 α,57 X-ray Yes 3.40 2.93 2.71 0 50 91 98 2.93 6.79 4.11
1r69 α,61 X-ray Yes 3.27 4.59 2.27 0 12 92 99 3.27 5.08 4.30
1utg α,62 X-ray Yes 5.40 5.57 4.54 0 0 75 99 5.38 5.67 5.48
2ezh α,65 NMR Yes 5.18 4.78 4.42 0 0 45 79 5.18 7.60 6.48
1a32 α,65 X-ray Yes 6.72 5.53 3.37 0 3 35 72 5.53 6.72 6.20
1nre α,66 NMR Yes 7.59 3.67 2.64 0 9 19 41 3.67 7.59 5.88
1ail α,67 X-ray Yes 6.99 4.65 4.26 0 0 68 84 4.61 9.86 6.29
1lfb α,69 X-ray Yes 4.27 3.98 2.84 0 27 53 75 2.84 4.27 3.47
1nkl α,70 NMR Yes 4.11 9.01 3.05 0 5 16 59 4.11 9.24 7.94
1pou α,70 NMR Yes 9.01 7.19 3.37 0 3 11 30 4.89 10.72 8.05
5icb α,72 X-ray Yes 4.21 3.43 2.72 0 30 50 60 2.72 8.50 4.59
1hyp α,75 X-ray Yes 4.94 4.94 3.93 0 1 26 73 3.93 7.30 5.74
1cc5 α,76 X-ray Yes 9.59 7.56 5.03 0 0 3 36 7.34 9.79 8.71
1cei α,85 X-ray Yes 11.49 6.53 5.06 0 0 5 23 6.02 11.49 7.89
1ptq αβ,43 X-ray Yes 8.83 2.70 1.96 1 39 58 78 1.96 8.83 5.59
3gb1 αβ,56 NMR Yes 4.21 4.95 2.40 0 28 71 90 4.21 7.16 5.29
1aa3 αβ,56 NMR Yes 6.23 7.06 5.00 0 0 25 87 5.92 6.47 6.16
1pgx αβ,57 X-ray Yes 2.64 2.79 2.05 0 45 86 95 2.64 4.59 3.38
1tif αβ,59 X-ray Yes 6.06 2.80 2.66 0 23 51 85 2.80 6.06 4.11
2ptl αβ,60 NMR Yes 6.98 7.63 4.41 0 0 6 55 6.98 9.17 7.91
1dol αβ,62 X-ray Yes 7.27 9.33 4.08 0 0 11 54 5.61 9.33 7.88
2fow αβ,66 NMR Yes 5.11 7.46 4.54 0 0 4 32 5.07 9.91 7.50
1afi αβ,72 NMR Yes 10.17 10.17 6.43 0 0 0 14 8.05 10.39 9.48
1vcc αβ,77 X-ray Yes 10.36 10.36 6.30 0 0 0 26 7.97 11.31 9.41
2fxb αβ,81 X-ray Yes 8.22 8.22 4.34 0 0 12 32 4.65 11.32 7.95
1e0l β,37 NMR Yes 7.90 4.83 4.44 0 0 39 95 4.67 7.90 5.99
1vif β,48 X-ray Yes 2.26 3.39 2.26 0 17 65 93 2.26 8.32 4.67
1bq9 β,53 X-ray Yes 4.79 3.95 2.50 0 27 50 83 3.62 4.79 4.02
5pti β,55 X-ray Yes 6.73 4.88 2.76 0 15 60 86 3.78 7.14 5.17
1tuc β,61 X-ray Yes 4.71 4.57 3.05 0 1 17 42 4.71 9.14 8.01
1csp β,64 X-ray Yes 7.93 7.93 3.85 0 1 14 51 5.57 10.65 7.53
1sro β,66 NMR Yes 4.54 6.17 4.51 0 0 10 46 4.54 9.72 7.41
1g6p β,66 NMR Yes 10.00 8.96 6.62 0 0 0 9 7.94 10.79 9.95

Structures are determined using the SA algorithm using the enhanced Cβ-only DOPER scoring function with sampling that includes
nearest neighbor effects. Final energy rankings are determined for these structures after inserting side-chains using SCWRL, along with
the all-atom DOPE statistical potential. Cα RMSD structures are relative to the native structure in Å.

a Cα RMSD for lowest energy structure relative to the native structure in Å (using DOPE score) among the final structures from 100
trajectories.

b Cα RMSD for lowest energy structure relative to the native structure in Å (using DOPE-Cβ score) among the final structures from 100
trajectories.

c Lowest RMSD for all the structures among the final structures from 100 trajectories.
d Minimum and maximum RMSD between the native and the five lowest energy structures (using DOPE score) among the final

structures from 100 trajectories.
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“synthetic” rotamers by means of MD or LD
simulations of short peptides.45

The SA minimization could be improved by
implementing an adaptive cooling schedule, where
the chain length dictates the number of steps at
constant annealing temperature, to ensure reaching
thermal equilibrium. As for improving the energy
function, we are currently considering adding an
orientation-dependent backbone hydrogen bond
term.
All these issues are interconnected. For example,

even with the addition of an explicit hydrogen
bond term, if the search is not sufficiently precise to
attain the resolution needed to form the correct
hydrogen bonding pattern, the final structure

might not necessarily be improved. A more precise
search might require a gradient minimization to
relax the dihedral angles in smaller increments
than that possible using the PDB-based library.
This later enhancement of the algorithm could use
splines46 or another interpolation method to
construct a differentiable function from DOPE-Cβ,
which currently is represented by linearly interpo-
lation from grid values and, thus, is unsuitable for
gradient minimization.

Future perspectives

Our long-term goal is to develop a full ab initio
algorithm for structure prediction. This paper

Table 4. Results for SA runs using DOPE-BB

PDB
code

Class,
Nres Source

Native
lowest
energy

Predict
RMSDa

Predict
RMSDb

Lowest
RMSDc

RMSD<
2 Å (%)

RMSD<
4 Å (%)

RMSD<
6 Å (%)

RMSD<
8 Å (%)

Min
RMSD
in top5d

Max
RMSD
in top5

Ave
RMSD
in top5

1bdc α,60 NMR No 6.96 7.50 4.18 0 0 21 94 5.16 7.50 6.68
1bw6 α,56 NMR No 5.51 5.51 4.63 0 0 40 66 5.51 10.06 8.06
1bxy αβ,60 X-ray Yes 2.83 2.83 1.90 1 24 41 49 1.90 2.98 2.56
1ctf αβ,67 X-ray Yes 5.00 5.00 4.35 0 0 37 69 4.41 5.75 5.10
1kjs α,74 NMR No 5.48 5.48 3.7 0 2 33 68 5.48 6.97 6.34
1msi β,60 X-ray Yes 8.30 8.30 8.17 0 0 0 0 8.30 10.73 9.64
1mzm α,71 X-ray Yes 8.65 7.06 5.62 0 0 1 46 7.06 8.65 7.43
1orc αβ,56 X-ray Yes 8.54 8.54 7.91 0 0 0 4 8.29 8.85 8.50
1ubq αβ,76 X-ray Yes 3.74 3.46 2.67 0 22 77 94 3.20 3.74 3.51
2pdd α,43 NMR No 5.03 5.03 3.93 0 3 42 70 5.03 8.83 7.30

Structures are determined using the SA algorithm, the DOPE-BB scoring function and nearest neighbor effect in sampling. Unless
specified otherwise, final energy rankings are determined for these structures after inserting side-chains using SCWRL, using the all-atom
DOPE statistical potential. Cα RMSD structures are relative to the native structure in Å.

a Cα RMSD for lowest energy structure relative to the native structure in Å (using DOPE score) among the final structures from 100
trajectories.

b Cα RMSD for lowest energy structure relative to the native structure in Å (using DOPE-Cβ score) among the final structures from 100
trajectories.

c Lowest RMSD for all the structures among the final structures from 100 trajectories.
d Minimum and maximum RMSD between the native and the five lowest energy structures (using DOPE score) among the final

structures from 100 trajectories.

Table 5. Results for SA runs using DOPE-Cβ with without NN effects

PDB
code

Class,
Nres Source

Native
lowest
energy

Predict
RMSDa

Predict
RMSDb

Lowest
RMSDc

RMSD<
2 Å (%)

RMSD<
4 Å (%)

RMSD<
6 Å (%)

RMSD<
8 Å (%)

Min
RMSD
in top5d

Max
RMSD
in top5

Ave
RMSD
in top5

1bdc α,60 NMR No 7.49 7.41 4.52 0 0 7 84 7.01 7.57 735
1bw6 α,56 NMR No 6.21 5.55 4.08 0 0 39 67 6.21 7.97 6.94
1bxy αβ,60 X-ray Yes 8.75 5.22 3.31 0 7 27 43 3.77 8.75 5.80
1ctf αβ,67 X-ray Yes 5.92 5.79 3.90 0 2 53 85 4.98 7.31 6.13
1kjs α,74 NMR No 10.55 4.73 4.38 0 0 46 68 5.57 10.55 6.78
1msi β,60 X-ray Yes 12.18 9.53 6.61 0 0 0 5 7.99 12.18 9.37
1mzm α,71 X-ray Yes 5.85 8.27 5.85 0 0 8 25 5.85 5.85 5.85
1orc αβ,56 X-ray Yes 7.91 7.91 7.13 0 0 0 28 7.91 7.91 7.91
1ubq αβ,76 X-ray Yes 4.41 3.78 3.78 0 6 41 46 4.41 4.54 4.43
2pdd α,43 NMR No 4.58 8.81 4.58 0 0 6 53 4.58 4.58 4.58

Structures are determined using the SA algorithm and the DOPE-Cβ scoring function but with sampling that does not include nearest
neighbor effects. Unless specified otherwise, final energy rankings are determined for these structures after inserting side-chains using
SCWRL, using the all-atom DOPE statistical potential. Cα RMSD structures are relative to the native structure in Å.

a Cα RMSD for lowest energy structure relative to the native structure in Å (using DOPE score) among the final structures from 100
trajectories.

b Cα RMSD for lowest energy structure relative to the native structure in Å (using DOPE-Cβ score) among the final structures from 100
trajectories.

c Lowest RMSD for all the structures among the final structures from 100 trajectories.
d Minimum and maximum RMSD between the native and the five lowest energy structures (using DOPE score) among the final

structures from 100 trajectories.
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describes an approach that can determine folded
protein structures with an acceptable accuracy if the
native RBs are given, a necessary but not sufficient
hurdle for any folding algorithm. Thus, the ultimate
goal requires the development and implementation
of an efficient method to search through different
basins and to couple this search with the intra-basin
minimization module tested here. In this regard, the
intra-basin minimization algorithm could serve as
the “structure generation” module for a more
physically grounded algorithm, where the folding

kinetics are simulated at the level of the RB
transitions.29,30

Another important application of the intra-basin
minimization routines involves using as input
estimates of the ϕ,ψ angles from easily generated
NMR measurements (e.g. J-couplings and chemical
shifts)47 rather than native basin assignments. Then,
the minimization algorithm could help in finding
the three-dimensional protein structure using these
estimates as constraints.
We are also interested in using this model as a test

bed for comparing statistically based approaches
with first principle ones. For instance, the reduced
scoring function could be recalculated using a
physically based energy function, such as one
containing explicit electrostatic and non-polar con-
tributions. A comparison between the purely
knowledge based and the more physically based
approaches might reveal insights about the weak-
nesses and strengths of each of them.

Methods

Reduced protein representation and Ramachandran
basins

The only atoms explicitly included in the simulated
annealing simulations are the heavy atoms of the main-
chain, the nitrogen (N), α carbon (Cα), carbonyl carbon (C)
and oxygen (O) atoms, together with the β carbons (Cβ) of
the side-chains for all amino acids except glycine. The
backbone planar angles and bond lengths are held fixed at
their mean values, so that the only variables considered
are the main-chain dihedral angles ϕ, ψ and ω. Since ω
occurs in the trans conformation for the great majority of
the protein structures, ω is also chosen as fixed at 180°
during the simulations. Initial structures retain ω in the cis
conformation (ω=0) for residues with such geometries in
the native conformation.
Our model permits each amino acid to reside in one of

five RBs, called the β, poly-proline II (PPII), right handed
α (αR), left handed α (αL), and ε basins (Figure 1). The
specification of these basins for every residue in the
protein codifies a substantial amount of information

Figure 8. Different annealing schedules. The evolution
of the DOPER scoring function (top) and the native RMSD
(bottom) along the intra-basin annealing pathway for
1ubq. In (a), 20 steps are performed at each annealing
temperature; in (b), 100 steps; and in (c), 200 steps. A low
energy conformation is obtained in all cases, and
convergence is attained. However, a substantial decrease
in the RMSD occurs only when using 100 and 200 steps.
The simulations presented here are generated using 20
steps per temperature. Hence, the fact that results in good
agreement with the native structure are generated
demonstrates that using only 20 steps can also lead to
structures with small RMSD values, but it appears that the
number of failures, as the one displayed in (a), also
increases. The advantage of using 20 steps over using 100
or a higher number of steps is that the simulations take
fivefold less computer time. The first ∼2000 steps are used
to determine the initial “temperature” t for the subsequent
annealing portion of the simulation.
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regarding local chain conformations. For example,
stretches of more than four consecutive residues in the
αR basin are usually found in α−helices. Likewise,
stretches of residues in the β basin indicate the location
of beta strands. Turns and bends are also associated with
specific RB patterns.

Training set

The scoring function and rotamer library are param-
eterized by constructing a training set consisting of high
quality resolved X-ray and NMR structures with low
sequence similarity. The stand alone version of the
Pisces culling server is used for this purpose.48 The
training set includes X-ray structures with 2.2 Å
maximum resolution and R-factor of 0.3, appended
with NMR structures, both with less than 30% mutual
sequence identity. This selection of culling parameters
yields 4701 unique structures. Although the 50 target
structures are not explicitly excluded from the library,
only two of the 3035 native dihedral angle pairs are
found in the predicted structures. This result indicates
that the algorithm undergoes a meaningful search
within the basins, and our successes are not due to the
insertion the native fragments, which could trivialize
our successes.

DOPE, statistical potential

The discrete optimized protein energy function27,28 is
a distance-dependent statistical potential that is similar
to DFIRE,26 except for the reference state. DOPE is
based on an improved reference state that corresponds
to non-interacting atoms in a homogeneous sphere with
the radius dependent on the sample native structure.
The DOPE potential thus accounts for the finite and
spherical shape of the native structures. DOPE and five
other scoring functions were tested by the detection of
the native state among six multiple target decoy sets,25

the correlation between the score and the model error,
and the identification of the most accurate non-native
structure in the decoy set. For all decoy sets, DOPE was
the best performing function in terms of all criteria.
Moreover, in another comparative study of 23 different
physics-based energy functions, statistical potentials,
and machine learning-based scoring functions, the
DOPE statistical potential was one of the best at
identifying non-native decoys.28 Our DOPE-Cβ statisti-
cal potential includes interactions involving only the
backbone heavy atoms and the Cβ. The interaction
parameters for these atoms are the same as in DOPE,
while those involving the side-chain atoms other than

the Cβ are set to zero. Similarly, the DOPE-BB potential
includes interactions involving the backbone heavy
atoms only.

DOPER, side chain average of DOPE

We also test DOPER, a modified version of DOPE-Cβ in
which the Cβ interactions are modified to include the
average effects of the inter-residue interactions between all
heavy atoms in the side-chains. To determine the energy
score for the interactions involving the Cβs, the DOPE
score is averaged over the side-chain–side-chain and side-
chain–main-chain interactions for all side-chain conforma-
tions that present the same Cβ–Cβ interatomic separation.
Equation (2) summarizes the averaging procedure for the
Cβ–Cβ interactions:

Ea1 ; a2ðrÞ ¼ hX ūijðrijÞiSCða1;a2 ;rÞ ð2Þ

where Ea1,a2(r) represents the average interaction energy
between two Cβs that are separated by the distance r, one
on amino acid a1 and the other on amino acid a2, and
ūij (rij) stands for the DOPE energy score between atoms i
and j when separated by the distance r= rij. Given the
side-chain pair (a1,a2), the set P(a1,a2) is formed by all the
atom pairs in which the first atom belongs to the side-
chain of residue a1 and the second to the side-chain of

Table 6.Minimization results as a function of the number
of annealing steps

Number of stepsa RMSDmin,all (Å) N≤4.0
b

20 3.0 36
100 2.9 68
200 2.7 96
300 2.5 90

These results correspond to 1000 minimization runs for the
protein 1UBQ using the DOPER scoring function.

a Number of annealing steps per constant temperature value.
b Number of final structures with a backbone RMSD to the

native of less or equal than 4.0 Å.

Figure 9. Improvement in RMSD with trimer cover-
age. The RMSD for the most native-like structure among
all conformations is depicted for each protein versus the
number of amino acids whose basin trimer assignments
have no compatible ϕ,ψ coordinates within the rotamer
library. The correlation coefficient is 0.74, indicating that
the dominant source of failures of our folding algorithm
likely arises from the lack in the rotamer library of a
sufficient set of compatible trimer conformations for the
given protein. Moreover, when the rotamer library
contains enough compatible trimers to span the proteins
sequence (e.g. less than ten trimers with no entries in the
rotamer library), the program generates quite reasonable
predictions in most cases: for 93% of the proteins with less
than ten trimers lacking entries in the library, the best
model among the five lowest DOPE score structures is less
than 4 Å RMSD from the native conformation. As
expected, the proteins from the control set always have
at least one compatible trimer, the X-ray structures have
enough trimers in most cases, while the NMR structures
repeatedly fail to be covered well by the rotamer library.
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residue a2. The average is calculated over all occurrences
of the pair of amino acids a1 and a2, whose Cβs are
separated by the distance r, within a single protein in the
training set, a collection denoted by the set SC(a1,a2,r). By
using PDB structures, we weight the contribution from
each side-chain conformation according to the frequency
with which the conformation appears in the native
structures of the training set. Similar equations are used
to calculate the Cβ–N, Cβ– Cα, Cβ–C and Cβ–O effective
interaction terms.

HOPE-Cβ statistical potential with hydrogen bond
term

We also include preliminary tests for an extension of the
statistical potential DOPE-Cβ, which has an additional
term corresponding to interaction of the amide hydrogen
atoms with all the other atoms in the protein. These
parameters are obtained in a similar fashion to that for any
other pair of atoms described earlier for DOPE. The
program REDUCE49 is used to add amide H to the PDB
structures in our training set. This version of the statistical
potential (HOPE) is only used in comparison of our model
with the recent work of Rose and co-workers.34

Sampling method

The model has been implemented computationally
using a low level C++ library, called the Protein Library
(PL), which provides the basic routines for handling
protein structures and motions. The program that
integrates all the components of the model and that
performs the constrained SA minimization of the statisti-
cal potential is named OOPS (OOPS is an Open Protein
Simulator). The word “open” implies that the code is
licensed as GPL and that the program is architecturally
open to different methodologies and strategies for
simulating protein folding. The PL and OOPS can be
downloaded from the webpage‡.
The sampling routine consists of a discrete SA

algorithm in which the (ϕ, ψ, ω) dihedral angles are
changed in groups of one, two, or three consecutive
residues at a time. The move set is constrained to the set
of (ϕ, ψ, ω) dihedral angles contained in a rotamer library
for the particular backbone fragments. This rotamer
library is constructed (as described below) using all the
occurrences of particular configurations of one, two, or
three consecutive residues that are found in the native
structures of our training set. Throughout the entire
annealing run, all residues are constrained to remain
within their pre-assigned RBs.

Backbone rotamer library

We have constructed a library of monomer, dimer, and
trimer backbone (ϕ, ψ) rotamers. The dimer and trimer
libraries correlate the amino acid sequence for pairs and
triples, respectively, of sequential residues with the
specific backbone RB occupancies, thereby incorporating
local correlations that arise from all-atom nearest neighbor
interactions. Hence, for every monomer, dimer, and trimer
fragment contained in the training set, the corresponding
amino acids, RBs and dihedral angles are computed and
stored in a database that indexes the rotamer dihedral
angles by the amino acid sequence and their basin
occupancies. The library provides the set of available
dihedral angles for a monomer, dimer, or trimer peptide
fragment given a specification of the residue amino acids'
identity and basin occupancies.

Clustering

For the comparison with Rose and co-workers,
structures are clustered using the program Cluster

‡http://protlib.uchicago.edu/index.html

Figure 10. Hydrogen bonds. (a) The native structure
of 1di2 with the backbone hydrogen bonds. (b) The
backbone hydrogen bonds for a simulated model with
2.5 Å RMSD from the native. It is apparent from this
comparison that even though the simulated structure
has the right topology, it lacks most of the hydrogen
bonding pattern present in the native structure. This
might be due to the absence of an explicit orientationally
dependent hydrogen bond term in the scoring function
used for the simulations. The 3D renderings have been
generated with YAPView [http://protlib.uchicago.edu/
dloads.html].
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3.039 Final structures from each trajectory are chosen
and are clustered based on their Cα atom RMSD to
each other. The lowest average energy (based on the
all-atom DOPE scoring function) cluster is selected
from a group of clusters that have a correlation
coefficient of ≥95% between the structures comprising
the clusters.

Simulated annealing minimization

The SA routine is based on the algorithm described by
Aarts & Korst.50 It begins with a random assignment of
dihedral angles within the native basin and converges to
the global minimum by gradually diminishing the
annealing temperature. This annealing temperature con-
trols the fraction of transitions that increase the energy of
the system, and the initial annealing temperature is chosen
so that half of the transitions at the beginning of the
minimization result in increasing energy. For each
annealing temperature, a fixed number of elementary
conformational transitions are computed in order to
achieve thermal equilibrium. The annealing temperature
is decreased according to a Cauchy cooling schedule, until

convergence is reached. The temperature update formula
is:

t ¼ tV

1þ tVlogy
3jt V

ð3Þ

where t′ and t are the old and new annealing tempera-
tures, respectively, σt′ is the standard deviation for the
energy distribution at temperature t′, and δ is a tunable
parameter for the cooling schedule. Lower case t is used
for the annealing temperature to distinguish from the
physical temperature T. The convergence criterion is based
on the magnitude of the energy fluctuations for each
annealing temperature, and annealing stops when the
inequality:

jt V et ð4Þ

is satisfied, where ε is the convergence tolerance, also a
tunable parameter.
An elementary move in this algorithm begins by

randomly choosing a residue along the chain. The amino
acid and basin of the three consecutive residues, starting at
the N terminus of the selected residue, are recorded, and a

Table 7. Results for SA runs using DOPE-Cβ for proteins studied by Gong et al.

PDB
code

Class,
Nres Source

Native
lowest
energy

Predict
RMSDa

Predict
RMSDb

Lowest
RMSDc

RMSD<
2 Å (%)

RMSD<
4 Å (%)

RMSD<
6 Å (%)

RMSD<
8 Å (%)

Min
RMSD
in top5d

Max
RMSD
in top5

Ave
RMSD
in top5

2gb1 αβ,56 NMR Yes 8.93 4.61 2.87 0 6 82 94 3.16 8.93 5.05
1ubq αβ,76 X-ray Yes 3.18 3.16 1.93 1 39 93 98 3.18 4.58 3.58
1c90a β,66 X-ray Yes 2.96 3.72 2.56 0 13 49 84 2.56 5.91 3.80
1ifb β,131 X-ray Yes 14.79 16.16 10.52 0 0 0 0 13.97 15.73 14.91
1vii α,36 NMR No 7.60 7.52 2.68 0 4 15 95 5.33 7.66 7.12
1r69 α,63 X-ray Yes 3.43 4.74 2.38 0 39 83 92 2.76 3.43 3.10

Structures are determined using the SA algorithm and the DOPE-Cβ scoring function but with sampling that does not include nearest
neighbor effects. Unless specified otherwise, final energy rankings are determined for these structures after inserting side-chains with
SCWRL, using the all-atom DOPE statistical potential. Cα RMSD structures are relative to the native structure in Å.

a Cα RMSD for lowest energy structure relative to the native structure in Å (using DOPE score) among the final structures from 100
trajectories. Values in parenthesis are from Gong et al.34

b Cα RMSD for lowest energy structure relative to the native structure in Å (using DOPE-Cβ score) among the final structures from 100
trajectories.

c Lowest RMSD for all the structures among the final structures from 100 trajectories.
d Minimum and maximum RMSD between the native and the five lowest energy structures (using DOPE score) among the final

structures from 100 trajectories.

Table 8. Results for SA runs using HOPE-Cβ for proteins studied by Gong et al.

PDB
code

Class,
Nres Source

Native
lowest
energy

Predict
RMSDa

Predict
RMSDb

Lowest
RMSDc

RMSD<
2 Å (%)

RMSD<
4 Å (%)

RMSD<
6 Å (%)

RMSD<
8 Å (%)

Min
RMSD
in top5d

Max
RMSD
in top5

Ave
RMSD
in top5

2gb1 αβ,56 NMR Yes 4.04 3.24 3.24 0.00 10.00 86.00 93.00 3.24 5.14 4.22
1ubq αβ,76 X-ray Yes 1.57 3.27 1.57 1.00 46.00 87.00 96.00 1.57 5.25 3.27
1c90a β,66 X-ray Yes 3.43 3.68 3.16 0.00 11.00 47.00 85.00 3.43 4.71 3.96
1ifb β,131 X-ray Yes 10.24 13.80 10.24 0.00 0.00 0.00 0.00 10.24 14.52 13.15
1vii α,36 NMR No 7.38 7.38 2.58 0.00 4.58 10.75 80.73 7.17 7.39 7.28
1r69 α,63 X-ray Yes 5.42 5.22 2.16 0.00 28.00 83.00 97.00 2.51 5.33 3.56

Structures are determined using the SA algorithm, the HOPE-Cβ scoring function, and sampling that does include nearest neighbor
effects. Unless specified otherwise, final energy rankings are determined for these structures after inserting side-chains with SCWRL,
using the all-atom DOPE statistical potential. Cα RMSD structures are relative to the native structure in Å.

a Cα RMSD for lowest energy structure relative to the native structure in Å (using HOPE score) among the final structures from 100
trajectories.

b Cα RMSD for lowest energy structure relative to the native structure in Å (using HOPE-Cβ score) among the final structures from 100
trajectories.

c Lowest RMSD for all the structures among the final structures from 100 trajectories.
d Minimum and maximum RMSD between the native and the five lowest energy structures (using HOPE score) among the final

structures from 100 trajectories.
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trimer is retrieved from the rotamer library. If more than
one set of dihedral angles is available for this trimer with
the given amino acid and basin specifications, one of the
trimer conformations is randomly chosen from the
available set by weighting all possible trimer conforma-
tions uniformly. If the library fails to contain examples
with the specified sequence for the trimer and its basins,
the algorithm considers the dimer starting at the selected
residue, and repeats the same procedure. If the required
dimer conformations are also absent, monomer informa-
tion is used. The energy of the new conformation is
evaluated, and the change is accepted according with
probability:

P ¼ min 1; e�DE=t
n o

ð5Þ

where ΔE is the energy difference between the new and
old conformations.

On line material

The homepage of the Protein Library and OOPS is:

http://protlib.uchicago.edu/index.html

All the raw simulation data can be downloaded from:

http://protlib.uchicago.edu/decoys.html
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