








acceptable accuracy. D) Success rates on the ZDOCK decoy set for picking 
structures with medium accuracy.  

 
Fig.	   6.	   Comparison of the top ranked, best sampled, and native 
configurations. A) 2G77. B) 1OC0. The receptor is shown in grey. The 
ligand is shown in the native configuration (yellow), the best sampled 
configuration (green for 2G77 and black for 1OC0), and the top ranked 
configuration by SOAP (green), FireDock (blue), and ZRANK (red). 
	  
High accuracy of SOAP-PP can sometimes be attributed to the 
weaker short-distance repulsion (Fig.	   6A) compared to ZRANK 
(Pierce and Weng, 2007) and FireDock (Andrusier et al., 2007), 
both of which use a modified van der Waals repulsion term; thus, 
the clashes of the best sampled structure with a receptor are likely 
less penalized by SOAP than by ZRANK and FireDock. Although 
SOAP-PP is more successful than ZRANK and FireDock overall, 
picking near-native protein-protein complex models out of decoys 
remains a hard problem (Fig. 5). For some cases, all three scoring 
functions perform badly, especially when the protein-protein 
interfaces are small and have poor shape complementarity (Fig.	  
6B).  

3.2 Scoring loops 
SOAP-Loop is an atomic statistical potential for assessing protein 
loop conformations, computed with our Bayesian framework by 
optimizing its accuracy on the learning set for SOAP-Loop (Table 
S2).  
SOAP-Loop was assessed on the PLOP loop modeling decoy set 
(Jacobson et al, 2004). We compare SOAP-Loop to DOPE (Shen 
and Sali, 2006), DFIRE (Zhang et al., 2004), Rosetta 3.3 (Simons 
et al., 1999), and PLOP 25.6 scoring functions (Jacobson et al., 
2004) (Fig. 7A). For short loops, SOAP-Loop and Rosetta perform 
similarly and better than the other tested scoring functions: the 
main-chain RMSD of SOAP-Loop’s top ranked structure is close 
to that of the best decoy structure. For longer loops, the accuracy 
differences become larger. SOAP-Loop is still able to pick 
structures close to the best decoy structures: For 12-residue loops, 
the average main-chain RMSD of the best scored conformations by 
SOAP-Loop is 1.5Å, close to the average RMSD of the best decoy 
conformations  (1.2Å) and significantly better than that by DOPE 
(2.5Å), DFIRE (2.3Å), Rosetta (2.1Å), and PLOP scoring 
functions (3.0Å). We note that this assessment should not be used 
to rank the PLOP scoring function, because the decoy set used here 
was generated with PLOP. Thus, we further compare different 
scoring functions by their average all-atom RMSD values of the 
best scored conformations using our learning set for SOAP-Loop 
(Section 2.5.4; Table S3). 
Although no testing protein occurs in the learning set, 11 pairs of 
testing-learning loops have the same sequence. Excluding these 11 
loops from the testing set, the average RMSD of the top ranked 
loop by SOAP-Loop increases insignificantly from 0.895Å to 
0.897Å; the average RMSD of the best decoy conformations also 
increases insignificantly from 0.566Å to 0.567Å.  

	  
Fig.	   7.	  Accuracy of SOAP-Loop. The average main-chain RMSD of top 
ranked structures by DOPE, DFIRE, Rosetta, PLOP, and SOAP-Loop on 
PLOP loop modeling decoys. The average RMSD of the most accurate 
conformations sampled by PLOP is plotted by a grey dash-dotted line. 
 
The relative success of SOAP is attributed to the scoring of the 
orientation instead of distance as well as the use of the recovery 
functions instead of a reference state (Fig. 8). However, SOAP-
Loop still fails to identify the best-sampled conformation in some 
cases. For a loop in 1CYO, for example, the failure can be 
attributed to the lack of a sufficiently native conformation among 
the tested conformations and the absence of significant interactions 
between the loop and the rest of the protein (Fig.	   9A). It is also 
possible that some interactions, such as long-range interactions, are 
not treated accurately by any scoring function, indicating the need 
for further development of the theory of statistical potentials. 
 
	  

	  
Fig.	   8.	   Recovery functions for SOAP-PP and SOAP-Loop are compared 
with DOPE and DFIRE’s reference states.   
	  

	  
Fig.	   9.	   Comparison of the top ranked, best sampled, and native 
configurations. A) 1CYO. B) 2AYH. The native structure is shown in light 
grey. The loop is shown in the native configuration (yellow), the best 
sampled configuration (black for 1CYO and green for 2AYH), and the top 
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ranked configuration by SOAP (green), DOPE (blue), DFIRE (red), 
Rosetta (magenta) and PLOP (light-blue).	  

4 DISCUSSION 
We developed a Bayesian approach to optimizing statistical 
potentials, based on probability theory and without recourse to 
questionable statistical mechanical assumptions and 
approximations. We also applied this approach to calculate 
optimized statistical potentials for assessing protein interactions 
(SOAP-PP) and loops (SOAP-Loop). These two statistical 
potentials perform better than others in their class. For PatchDock 
and ZDOCK decoys, the top10 success rate of SOAP-PP is more 
than 10% higher than that of FireDock and ZRANK (Fig. 5). For 
12-residue loops in the PLOP benchmark, the average main-chain 
RMSD of the best scored conformations by SOAP-Loop is 1.5Å, 
close to the average RMSD of the best sampled conformations  
(1.2Å) and significantly better than that from DOPE (2.5Å), 
DFIRE (2.3Å), Rosetta (2.1Å), and PLOP scoring functions (3.0Å) 
(Fig. 7). The relative accuracy of SOAP-PP and SOAP-Loop 
results primarily from normalizing the raw distributions by the 
recovery functions instead of a reference state, restraining of 
orientation instead of only distance, and thoroughly optimizing 
parameter values while avoiding over-fitting.  
Next, we discuss three points in turn. First, we describe our 
recovery functions and compare them to the reference states used 
for other statistical potentials. Second, we discuss the importance 
of restraining orientation and using covalent separation as an 
independent variable. Finally, we conclude by commenting on 
future improvements of our Bayesian approach and its 
applications.  

4.1 Cubic splines as a recovery function form 
A key difference between statistical potentials is the definition of 
their reference states, which are often derived by assuming that the 
PDB provides a Boltzmann ensemble of structural features (Sippl 
et al., 1990). Here, we replace the reference state by data-driven 
recovery functions, defined self-consistently without recourse to 
these questionable statistical mechanical assumptions (Finkelstein 
et al., 1995; Shen and Sali, 2006). In an extreme case, we use cubic 
splines to compute an optimal recovery functions, relying on 
Bayesian inference to obtain parameter values that result in the 
most accurate statistical potential given a benchmark. 
The use of splines as recovery functions is motivated by a 
qualitative analysis of the recovery function (Eq. S2). The 
distribution 𝑝 𝑓!(!)|𝑄!  of a single feature 𝑓!(!) is the product of 
the restraint on 𝑓!(!) and an integral involving the restraints on 
𝑄! ’s other features (i.e., the environment restraint). Then, the 
recovery function 𝑔 𝑓!|𝒬𝒦  is the distribution of feature type 𝑐 in 
structure set 𝒦 resulting from the environmental restraints alone 
(Eq. S2). We now discuss three implications of this perspective. 
First, if we assume that atoms are placed randomly within the 
protein shell, a recovery function will be similar to the DFIRE and 
DOPE reference states based on the ideal gas assumption (Zhou 
and Zhou, 2002; Shen and Sali, 2006). 
Second, using the distance d between atoms A and C in Fig.	  2 as an 
example, the environment restraint on d is a consequence of the 
restraints on distances between A-D, C-B, and B-D as well as the 
bonds between A-B and C-D. The restraints on A-D, C-B, and B-D 
distances have short-range repulsion components. Thus, the 
environment restraint on the distance A-C will include an effective 
short-range repulsion. This qualitative analysis is consistent with 
the observed recovery functions for SOAP-PP and SOAP-Loop, 
which all have lower values at short distances than the DOPE 
reference state based on the ideal gas assumption (Fig. 8).  
Finally, the recovery functions for different feature types can vary, 
due to their different environments, as observed for the recovery 
functions for 15 clusters of atom type pairs used in SOAP-PP (Fig. 
8).  

Although splines can mimic almost any smooth function given a 
sufficient number of anchor points, its flexibility could also lead to 
overfitting; moreover, a large number of anchor points could lead 
to oscillations (Fig. 8). While our Bayesian model selection 
method helps with the generalizability of the optimized cubic 
spline (Vehtari and Lampinen, 2002), it is conceivable that 
applying Bayesian model selection to a less flexible but 
appropriate functional form will result in a more accurate and 
general statistical potential than that based on splines. 

4.2 Spatial and sequence features 
Our orientation restraints score a spatial relationship between two 
sets of atoms in more detail than distance restraints alone, and 
should be particularly useful for scoring spatial relationships 
between polar atoms, especially for hydrogen bond donors and 
acceptors. In fact, the relative accuracy of SOAP-Loop can be 
attributed to the use of orientation and recovery functions instead 
of distance and reference state, respectively (Table S1). However, 
using orientation did not result in a better statistical potential for 
ranking protein interfaces (Table S2). While we may not have 
found the globally optimal statistical potential for orientation, a 
more likely reason is insufficient accuracy of the tested 
conformations produced by rigid docking.  
Covalent separation is another important factor affecting the 
accuracy of the derived statistical potentials. Surprisingly, for 
ranking protein interfaces, statistical potentials derived from intra-
chain non-local atom pairs (bond separation > 9) work better than 
statistical potentials derived from inter-chain atom pairs (chain 
separation = 1) (Table S1). A likely reason is that many protein 
interfaces in the PDB result from crystal contacts that do not 
reflect interfaces between proteins in solution (Krissinel, 2010; 
Carugo and Argos, 1997). In the future, a better statistical potential 
for ranking protein interfaces might be obtained if only true 
biological interfaces from PDB are used.  

4.3 Bayesian inference 
Statistical potentials can be derived for many different values of 
the input variables, with little or no a priori reasons to choose one 
set of values over the others. The Bayesian model selection based 
on Bayesian predictive densities provides a statistically rigorous 
way of choosing the values that result in most generalizable 
statistical potentials (Vehtari and Lampinen, 2002). However, one 
limitation of this method is that the calculation of predictive 
densities is computational intensive, often requiring more than tens 
of thousands of evaluations of the statistical potential on the 
benchmark. Thus, such calculations are not always practical. 
Fortunately, increases in the available computer power will enable 
us to find more accurate statistical potentials in an increasingly 
larger parameter space in the future. Another approach to 
improving the search for optimal parameter values is to use 
physically motivated feature types, functional forms, and allowed 
value ranges.  
In principle, normalizing the feature distributions by recovery 
functions to obtain a statistical potential (Eq. 2) is not necessary. 
Instead, we could use parametric (e.g., the mathematical functional 
forms used in molecular mechanics force fields) or non-parametric 
functions to represent the statistical potential and directly infer the 
optimal statistical potential by its accuracy on a benchmark of 
interest. However, this approach might not provide an accurate 
statistical potential in practice, due to the large number of 
parameters whose values would need to be optimized. 
Our method for smoothing feature distributions is a generalization 
of the two related methods used in calculating statistical potentials 
(Sippl, 1990) and homology restraints (Sali and Blundell, 1993). 
Both methods are equivalent to our Bayesian smoothing method 
with a diagonal covariance matrix as the smoothing prior. Their 
prior distribution is equivalent to the mean of our prior 𝒮, while the 



weights on their prior distributions are defined by the standard 
deviation in our covariance matrix. 
In conclusion, our Bayesian framework can be applied to derive an 
optimized statistical potential for many other kinds of modeling 
problems for which sample structures are available, thus affording 
better leverage of the experimentally determined protein structures. 
Examples include membrane protein topology and complexes of 
proteins with small molecules or peptides.  
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