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ABSTRACT

Motivation: Statistical potentials have been widely used for
modeling whole proteins and their parts (e.g., sidechains and loops)
as well as interactions between proteins, nucleic acids and small
molecules. Here, we formulate the statistical potentials entirely
within a statistical framework, avoiding questionable statistical
mechanical assumptions and approximations, including a definition
of the reference state.

Results: We derive a general Bayesian framework for inferring
Statistically Optimized Atomic Potentials (SOAP), in which the
reference state is replaced with data-driven “recovery” functions.
Moreover, we restrain the relative orientation between two covalent
bonds instead of a simple distance between two atoms, in an effort
to capture orientation-dependent interactions such as hydrogen
bonds. To demonstrate this general approach, we computed
statistical potentials for protein-protein docking (SOAP-PP) and loop
modeling (SOAP-Loop). For docking, a near-native model is within
the top 10 scoring models in 52% of the PatchDock benchmark
cases, compared to 23% and 27% for the state-of-the-art ZDOCK
and FireDock scoring functions, respectively. Similarly, for modeling
12-residue loops in the PLOP benchmark, the average mainchain
RMSD of the best scored conformations by SOAP-Loop is 1.5A,
close to the average RMSD of the best sampled conformations
(1.2A) and significantly better than that selected by Rosetta (2.1A),
DFIRE (2.3A), DOPE (2.5A), and PLOP scoring functions (3.0A).
Our Bayesian framework may also result in more accurate statistical
potentials for additional modeling applications, thus affording better
leverage of the experimentally determined protein structures.
Availability: SOAP-PP and SOAP-Loop are available as part of
MODELLER (http://salilab.org/modeller).
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1 INTRODUCTION

Computational modeling can be used to predict the structures of
whole proteins or their parts (e.g., loops and sidechains) as well as
complexes involving proteins, peptides, nucleic acids and small
molecules (Skolnick et al., 2013; Audie and Swanson, 2012; Dill
and MacCallum, 2012; Wass et al., 2011; Ding et al., 2010; Baker
and A Sali, 2001). A modeling method requires a conformational
sampling scheme for proposing alternative structures and a scoring
function for ranking them. Significant progress has been made on
both fronts (Moult ef al., 2011; Fernandez-Recio and Sternberg,
2010). In particular, many physics-based energy functions as well
as statistical potentials computed from known protein structures
have been described ( Tanaka and Scheraga, 1975; Hendlich et al.,
1990; Sippl, 1993; Colovos and Yeates, 1993; Kocher et al., 1994;
Park and Levitt, 1996; Miyazawa and Jernigan, 1996; Melo and
Feytmans, 1997; Reva et al., 1997; Simons et al., 1997; Samudrala
and Moult, 1998; Rojnuckarin and Subramaniam, 1999; Jones,
1999; Betancourt and Thirumalai, 1999; Gatchell et al., 2000; Lu
and Skolnick, 2001; Melo et al., 2002; Zhou and Zhou, 2002;
Keasar and Michael Levitt, 2003; McConkey et al., 2003;
Betancourt and Skolnick, 2004; Wang et al., 2004; Summa et al.,
2005; Qiu and Elber, 2005; Dehouck et al., 2006; Shen and Sali,
2006; Ferrada et al., 2007; Pierce and Weng, 2007; Andrusier et
al., 2007; Zhu et al., 2008; Lu et al., 2008; Benkert et al., 2008;
Chuang et al.,, 2008; Rajgaria et al., 2008; Gao and Jeffrey
Skolnick, 2008; Xu et al., 2009; Zhang and Zhang, 2010; Rata et
al., 2010; Rykunov and Fiser, 2010; Huang and Zou, 2010;
Shapovalov and Dunbrack, 2011; Liu and Vakser, 2011; Fan et al.,
2011; Zhao and Xu, 2012; Brenke et al., 2012; Liu and Gong,
2012; Zhou and Skolnick; Cossio et al., 2012; Li et al., 2013).

Derivation of a statistical potential has often been guided by an
analogy between a sample of known native structures and the
canonical ensemble in statistical mechanics, suggesting that the
distributions of spatial features in the sample of native structures
follow the Boltzmann distribution (Sippl et al, 1990). Thus,
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statistical potentials are generally calculated in two steps: (1)
extracting a probability distribution of a spatial feature (e.g., a
distance spanned by a specific pair of atom types) from a sample of
known protein structures and (2) normalizing this distribution by a
reference distribution (e.g., the distribution of all distances,
regardless of the atom types). Statistical potentials can differ in a
number of aspects, including the sample of known protein
structures, the protein representation (e.g., centroids of amino acid
residues, C, atoms, and all atoms), the restrained spatial feature
(e.g., solvent accessibility, distance, angles and orientation
between two sets of atoms), the sequence features (e.g., amino acid
residue types, atom types, residue separation in sequence and chain
separation), the treatment of sparse samples and the definition of
the reference state. Here, we optimize the accuracy of a statistical
potential over most of these aspects. This optimization challenge is
addressed by formulating a statistical potential independently from
any assumptions grounded in statistical mechanics; instead, we
rely on a Bayesian approach based on data alone. While the
proposed theory applies to any kind of a statistical potential, we
illustrate it by deriving specific statistical potentials for protein-
protein docking and loop modeling.

2 METHOD

We begin by defining statistical potentials in terms of distributions
extracted from known protein structures (Section 2.1), followed by a
description of a protocol to actually compute a statistical potential
(Sections 2.2-2.7, Fig. 1).
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Fig. 1. Flowchart for optimizing statistical potentials. The corresponding
sections in the text are indicated.

2.1 Theory

For structure characterization of a given protein sequence by either
experiment or theory, we ideally need a joint probability density function
(pdf) for the structure, given everything we know about it (Shen and Sali,
2006). In general, our knowledge can come from different kinds of
experiments with the protein (e.g., X-ray crystallography), physical
theories (e.g., a molecular mechanics force field), and/or statistical
inference (e.g., all known structures or only homologous known structures).
Here, we focus on a joint pdf for a given sequence based on the knowledge

of all known protein structures deposited in the Protein Data Bank (PDB)
(Kouranov et al, 2006); thus, our joint pdf is a statistical potential.

To derive the joint pdf for a structure of a sequence, we need to
approximate it by using terms that can actually be computed from the PDB.
The structure X of an amino acid sequence is defined by the set of its
features {f°™},m = 1..n, such as a distance between two specific
atoms. Thus, we can approximate the joint pdf by the product of pdfs
(restraints) for individual features:

p(X) = 1_[ P(fdm)) )

1smsn

Without any loss of accuracy, we define the restraint p( f c(m)) as the ratio
between the feature distribution p(f¢|Qy) from a sample of informative
features in a set of proteins Q4 with known structures (e.g., for a distance,
all distances spanned by the same atom types in Q4 ) and an unknown
recovery function g(f¢|Qy):

p(£°™) = p(£e19:)/9(f¢105) 6))

In other words, the recovery function is defined such that the product of
restraints approximates the joint pdf as well as possible (c.f,, Eq. 1), while
minimizing the number of parameters that need to be fit to the data.
Construction of the sample of informative features involves a compromise
between including only features of known structures that are most likely to
resemble the predicted feature f¢™ (which minimizes sample size) and
minimizing the statistical noise (which maximizes sample size). The
features used in the sample are termed to be of the same type c as the
inferred feature (Section 2.2). The restraints on all features of X of type ¢
are calculated from the same set of informative features, and thus are the
same. Here, the sample of informative features includes all features of the
same type from representative known protein structures (Section 2.3).

2.2 Feature types

To illustrate the general theory above, we derive optimized statistical
potentials for assessing protein-protein interfaces (SOAP-PP) and loop
conformations (SOAP-Loop). We restrain the following feature types:

2.2.1 Atomic distance Distance d|ay, a,, bs is considered to depend on
atom types a, and a, as well as the “covalent separation” between the two
atoms (by). The atom type depends on the residue type, resulting in the total
of 158 atoms types for the 20 standard residue types (Shen and Sali, 2006).
Covalent separation is measured in three ways. First, by the minimum
number of covalent bonds between the two atoms (bond separation).
Second, by the number of residues separating the two atoms in the
polypeptide chain (residue separation). Third, by chain separation, which is
0 if the atoms are in the same chain and 1 otherwise. The distance is
mapped in the range from 0 to a parameterized distance cutoff, such as

15A.

2.2.2 Orientation between a pair of covalent bonds Orientation
d,a,, a,, Y|ty t,, bg is defined by a distance d, two angles @, a, and a
dihedral angle ¥ (Fig. 2). It is considered to depend on covalent bond types
(ty, t;) defined in turn by their atom types and covalent separation (by);
there are 316 covalent bond types for the 20 standard residue types.

2.2.3 Relative atomic surface accessibility Accessibility s|a is considered
to depend on the atom type (a) (Sali and Blundell, 1993).

Fig. 2. Distance and angles between two covalent bonds, A-B and C-D. d,
distance between atoms A and C. a4, angle between atoms B, A and C. a,,
angle between atoms A, C and D. 3, dihedral angle between atoms B, A, C
and D. by is defined using atoms A and C.

2.3 Feature distributions

2.3.1 Known protein structures A small fraction of the known
protein structures from the PDB (and their decoy structures) are used only
for assessing the accuracy of statistical potentials (Section 2.5). The



remaining structures from the PDB are filtered to construct the known
protein structure set K, including only structures determined by X-ray
crystallography at the resolution better than 2.2 A and Ry better than 25%.
Three additional subsets of representative structures were obtained by
requiring at most 30%, 60% and 95% sequence identity to any other
representative structure, respectively, with preference for structures
determined at higher resolutions and with lower Ry.. values. A statistical
potential is optimized by choosing among the entire set K or its three
subsets to estimate the feature distributions p(f€|Qy).

232 Calculation of feature distributions The sample for
computing this distribution is the set of the individual features of type c in
protein set Q4, where each feature is represented by the distribution of this
feature - p(£™|Qy ). The feature distribution p(f¢|Qy) is the average of
these sample distributions. For a distance and an angle, p(f c(’")lQK) is
approximated by a Gaussian distribution p’( f C(m)lQK) with the mean equal
to the observed value and the standard deviation computed by the
propagation (Neuhauser, 2010) of the uncertainties of individual atomic
positions, which in turn are estimated from the atomic isotropic
temperature factors (Carugo and Argos, 1999; Schneider, 2000;
Cruickshank, 1999). For relative atomic surface accessibility p(f™|Qy)
is approximated using a delta function p’(f C("‘)lQK) centered at feature
£ in K. The approximated feature distribution p’(f€|Qs) is then
computed from the approximated sample distributions p'( femy QK).

2.4 Bayesian smoothing and smoothing
priors

The feature distributions p'(f€|Qs) can be noisy when the sample X is
relatively small, as is often the case for the orientation between a pair of
covalent bonds (Fig. 3A). Thus, we use Bayesian inference to calculate a
smooth feature distribution:

p(P(F12:)1p' (F12:0)) < p(p' (FE12:)Ip(F12:)) - p(p(F€10:))  (3)

where p(f€|Qy) is the ideal distribution without noise from an infinitely
large set of known structures. Both the likelihood p(p’(f¢|Qs) [p(f€|Qs))
and the prior § = p(p(f °|Q,C)) are multivariate Gaussian distributions
(Rasmussen and Williams, 2005). The smoothness of p(f€|Qy) is
specified by the prior §; here, the prior is a multivariate Gaussian
distribution with a zero mean and a squared exponential covariance
function (Mackay, 2003). The characteristic length scale of the covariance
function defines the range over which the two points are still correlated (the
smoothness of the curve). We set the characteristic length equal to a scale
parameter L multiplied by 0.2A for distance, 10° for angles and 0.1% for
atomic surface accessibility. A set of smoothing priors S is obtained by
varying L. Using a scale of 2.0 as an example, the inferred p(f€|Qy) is
significantly smoother than p'(f¢|Q,) (Fig. 3B).
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Fig. 3. Distance and dihedral angle joint distribution between alanine N-C,
and alanine O-C, when a; € [60°,90°] and a, € [60°,90°]. A) Original
distribution. B) Smoothed distribution.

2.5 Decoys and assessment criteria

2.5.1 Learning set for SOAP-PP This set consists of 176 native
complex structures in the pairwise protein docking benchmark 4.0 (Hwang
et al., 2010) as well as approximately 4,500 decoys for each of the
complexes generated using PatchDock (Duhovny et al., 2002).

252 Testing set for SOAP-PP This set consists of 176 native
complex structures in the pairwise protein docking benchmark 4.0 (Hwang
et al., 2010) as well as approximately 212,000 decoys for each of the
complexes generated using PatchDock (Duhovny et al., 2002) and
approximately 54,000 decoys for each of the complexes generated using
ZDOCK (Pierce et al. 2011).

2.5.3 Assessment criteria for SOAP-PP Each model is
assessed for accuracy based on Root-Mean-Square Deviation (RMSD)
from the native structure, as used at CAPRI (Lensink et al, 2007). A
docking model is considered acceptable if the ligand C, RMSD (L-RMSD)
after superposition of the receptors is less than 10A or the interface C.
RMSD (I-RMSD) is less than 4A. A docking model is of medium accuracy
if L-RMSD is less than 5A or I-RMSD is less than 2A. The success rate for
SOAP-PP is the percentage of benchmark cases with at least one medium
or acceptable accuracy model in the top N predictions.

254 Learning set for SOAP-Loop This set consists of 3,838
native loop conformations of 4 to 20 residues as well as approximately 500
decoys for each loop generated using Modeller (Sali and Blundell, 1993;
Fiser and Sali, 2003). Loops were extracted from X-ray crystallography
structures in the PDB using DSSP (Kabsch and Sander, 1983; Joosten et
al., 2011). We only considered protein structures determined at a resolution
better than 2A, Ry better than 0.25, and crystallized between pHs 6.5 and
7.5; no pair of source structures had sequence identity higher than 30%.
Each loop has only standard residues, no missing non-hydrogen atoms,
average atomic surface accessibility between 5% and 60%, no crystal
contacts, no clashes with nearby atoms, no contacts with metal ligands, and
does not occur in the PLOP loop modeling decoy set (Jacobson et al.,
2004).

255 Testing set for SOAP-Loop This set consists of 833 native
loop conformations of 4 to 12 residues as well as approximately 450
decoys for each loop generated using PLOP (Jacobson ef al, 2004).

2.5.6 Assessment criteria for SOAP-Loop Each model is
assessed for accuracy based on its main-chain RMSD to the native
conformation, after superposition of all non-loop atoms (RMSDyjobar) (Fiser
et al., 2000); main-chain atoms include amide nitrogen, C., as well as
carbonyl carbon and oxygen. SOAP-Loop is assessed by the average
RMSDyjobai of the top ranked model for each loop.

2.6 Recovery functions and functional forms

We estimate the recovery function g(f¢|Q4 ) by optimizing the accuracy of
the corresponding statistical potential on a benchmark of interest. To avoid
overfitting, we assume either a single recovery function for all feature types
or the same recovery function for a subset of similarly distributed feature
types.

The set of recovery function forms Gy is different for distances, angles, and
accessibility: The recovery function for the atomic distance is modeled
using one of three functional forms: (1) d9 where d is distance and ¢ is a
constant (Zhou and Zhou, 2002); (2) the ideal gas distribution in spheres
with varying radii (Shen and Sali, 2006); and (3) spliced cubic splines. For
orientation, the recovery function is defined as the product of a recovery
function for d, a,, @,, and 1, respectively. The recovery functions for
angles @, , a,, and dihedral angle ¥ are modeled using two different
functional forms: (1) the feature distribution calculated using the ideal gas
assumption and (2) spliced cubic splines. For the relative atomic surface
accessibility, the recovery function form is spliced cubic splines. Control
points of cubic splines are defined by their x and y values. When searching
for the best cubic spline recovery function, the x values of the control
points are either fixed at discrete sampling values or inferred together with
the y values.

To optimize the recovery functions, we need to balance minimizing noise
and maximizing precision. Thus, for atomic distances, we clustered the
distance distributions p(f€|Qy) for different atom type pairs using k-mean
clustering, and assumed that the pairs of atom types with similar distance
distributions have a similar recovery function (Fig. 4).
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Fig. 4. Distance distributions p(f¢|Qy) for different atom pairs are
clustered into 15 different groups. Each line represents a distance
distribution from a pair of atoms of certain types. Each group has 6 to 8401



distributions. During k-mean clustering, the number of clusters was set to
20, resulting in 14 clusters with more than 5 distributions and 6 clusters
with less than 5 distributions; the latter 6 clusters are grouped together
(bottom right panel).

2.7 Bayesian inference and model selection

A statistical potential is defined by 4 discrete input variables (the known
protein structure subset ¥, the feature type subset F, the smoothing prior §
and the recovery function form Gf) and a vector of continuous input
variables (the recovery function parameters G5). We elected to define the
best values for the 4 discrete variables are those that result in the most
generalizable statistical potential, as judged by the Bayesian predictive
densities (Vehtari and Lampinen, 2002), while the best values for the
recovery function parameters are those that result in the most accurate
statistical potential, as judged by a given benchmark. Because each of the 5
variables can be sampled at many values, enumeration of all combinations
is not computationally feasible. Thus, the search for the best values is
carried out in four stages, as follows.

First, irrespective of the final restrained feature F, we begin with the
atomic distance and a single recovery function for all atom type pairs. The
optimal values of the discrete variables (?, xS, gf) are found by an
iterative discrete search:

1) Choose an arbitrary starting value for each variable, out of their
possible value sets {FF, KK, S, G¢} (Table S1 and S2).

2) For each variable, choose the best value and eliminate the worst
value in the value set using Bayesian model selection based on
Bayesian predictive densities (Vehtari and Lampinen, 2002). The
Bayesian predictive density for each value is calculated with other
variables fixed at their best previous values:

[1] r@iiz.55.61.60 - p(Gol7.5.5.6.,0) dGs @
{tv}

where the learning decoys D are randomly separated multiple times
into a training set D, and a validation set D,,, from which the integrals
are estimated using Monte Carlo sampling (Evans and Swartz, 2000).
p(gg |7’, x,,S, gf, Dt) is calculated following the Bayes rule:

p(GolF. %.,5,G;.D,) < p(D;|F,%,5,G:.G6) - (GolG/) )

where the likelihood p(D|F,%,S,Gr, Gg) is a Half-Normal
distribution whose corresponding normal distribution has the mean
equal to the accuracy of an imaginary statistical potential generating
scores that correlate perfectly with the decoy-native RMSD and the
standard deviation computed by dividing the mean by the number of
the cases in the training set D,; the prior p(Gg|Gy) is an informative
prior defining a reasonable range for Gg.

3) Repeat step 2 until the best values do not change.
4) Repeat 5 times steps 1-3 for different random initial values.

5) Keep the best performing variable values.

Second, keeping the optimal values from the previous step fixed, we find
the optimal values for the feature type, smoothing length scale, and the
number of spline anchor points using the same 5-step iterative discrete
search outlined above.

Third, if the optimal spatial feature selected in the previous step is not
orientation, we vary the number of recovery functions and the number of
anchor points to optimize their values, again using the 5-step iterative
discrete search.

Fourth, using the selected {F, X, S, G¢}, we infer the best recovery function
parameter values Gg by maximizing p(gelf, X,,S,G ,D) (Eq. 5). The
optimized statistical potential is then calculated (Eq. é), and assessed on
testing decoy sets.

SOAP-PP and SOAP-Loop are available as part of MODELLER
(http://salilab.org/modeller). All the training, learning, testing, decoys,
benchmark sets, and scripts are available at http://salilab.org/SOAP.

3 RESULTS

3.1 Scoring protein-protein interfaces

SOAP-PP is an atomic statistical potential for assessing a binary
protein interface, computed with our Bayesian framework by
optimizing its accuracy on the learning set for SOAP-PP (Table
Error! Reference source not found.).

Using the recovery function parameters optimized for 15 sets of
training decoys (each set is randomly selected 50% of the learning
set), the average top10 success rate (Section 2.5.3) is 51.7%+0.9%
on the sets of training decoys and 46.4%=+1.7% on the sets of
validation decoys. The relatively small difference between the two
success rates likely results from overfitting. To investigate
overfitting, we increased the size of the training decoy set from
50% to 67% of the entire learning set of 176 proteins. As a result,
the average topl0 success rate on the training decoys decreased
from 51.7% to 51.3%, but the average success rate on the
validation decoys (the remaining 33% of the learning set)
increased from 46.4% to 47.5%. This observation suggested that
increasing the size of the training set may be an effective way of
reducing overfitting (Murphy, 2012). Thus, we optimized SOAP-
PP using the entire learning set of 176 proteins as the training set,
even though this forces subsequent testing on the training protein
sequences. To estimate the resulting overfitting, we calculated 6
optimized statistical potentials, each one of which was based on a
training set that included a random subset of ~67% of the learning
set. Next, we tested these potentials on two testing sets: the first set
consisted only of the training proteins; the second set consisted of
the remaining learning proteins. The average top10 success rate for
the PatchDock decoys is 51.1% and 48.6% for the first and second
test set, respectively; for the ZDOCK decoys, the average topl0
success rate is 40.0% and 38.9% for the first and second test set,
respectively. Therefore, given that increasing the training set size
reduces overfitting as shown above, the accuracy of SOAP-PP
estimated based on a completely different testing set is expected to
be within 2.5% of the current estimate (below).

SOAP-PP was assessed on the PatchDock (Schneidman-Duhovny
et al, 2012) and ZDOCK decoy sets (Pierce et al., 2011) (Fig. 5).
For PatchDock decoys, the top10 success rate of SOAP-PP is 50%
(Fig. 5A) compared to 23% for ZDOCK and 27% for FireDock. If
only models of medium or better accuracy are considered, the
top10 success rate is 40% for SOAP, 17% for ZDOCK, and 23%
for FireDock (Fig. 5B). For ZDOCK decoys, the top10 success rate
of SOAP-PP is 41% (Fig. 5C) compared to 30% for ZDOCK and
22% for FireDock. If only models of medium or better accuracy
are considered, the success rate is 32% for SOAP-PP, 22% for
ZDOCK, and 17% for FireDock (Fig. 5D).
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acceptable accuracy. D) Success rates on the ZDOCK decoy set for picking
structures with medium accuracy.
1T

Fig. 6. Comparison of the top ranked, best sampled, and native
configurations. A) 2G77. B) 10C0. The receptor is shown in grey. The
ligand is shown in the native configuration (yellow), the best sampled
configuration (green for 2G77 and black for 10C0), and the top ranked
configuration by SOAP (green), FireDock (blue), and ZRANK (red).

High accuracy of SOAP-PP can sometimes be attributed to the
weaker short-distance repulsion (Fig. 6A) compared to ZRANK
(Pierce and Weng, 2007) and FireDock (Andrusier et al., 2007),
both of which use a modified van der Waals repulsion term; thus,
the clashes of the best sampled structure with a receptor are likely
less penalized by SOAP than by ZRANK and FireDock. Although
SOAP-PP is more successful than ZRANK and FireDock overall,
picking near-native protein-protein complex models out of decoys
remains a hard problem (Fig. 5). For some cases, all three scoring
functions perform badly, especially when the protein-protein
interfaces are small and have poor shape complementarity (Fig.
6B).

3.2 Scoring loops

SOAP-Loop is an atomic statistical potential for assessing protein
loop conformations, computed with our Bayesian framework by
optimizing its accuracy on the learning set for SOAP-Loop (Table
S2).

SOAP-Loop was assessed on the PLOP loop modeling decoy set
(Jacobson et al, 2004). We compare SOAP-Loop to DOPE (Shen
and Sali, 2006), DFIRE (Zhang et al., 2004), Rosetta 3.3 (Simons
et al., 1999), and PLOP 25.6 scoring functions (Jacobson et al.,
2004) (Fig. 7A). For short loops, SOAP-Loop and Rosetta perform
similarly and better than the other tested scoring functions: the
main-chain RMSD of SOAP-Loop’s top ranked structure is close
to that of the best decoy structure. For longer loops, the accuracy
differences become larger. SOAP-Loop is still able to pick
structures close to the best decoy structures: For 12-residue loops,
the average main-chain RMSD of the best scored conformations by
SOAP-Loop is 1.5A, close to the average RMSD of the best decoy
conformations (1.2A) and significantly better than that by DOPE
(2.5A), DFIRE (2.3A), Rosetta (2.1A), and PLOP scoring
functions (3.0A). We note that this assessment should not be used
to rank the PLOP scoring function, because the decoy set used here
was generated with PLOP. Thus, we further compare different
scoring functions by their average all-atom RMSD values of the
best scored conformations using our learning set for SOAP-Loop
(Section 2.5.4; Table S3).

Although no testing protein occurs in the learning set, 11 pairs of
testing-learning loops have the same sequence. Excluding these 11
loops from the testing set, the average RMSD of the top ranked
loop by SOAP-Loop increases insignificantly from 0.895A to
0.897A; the average RMSD of the best decoy conformations also
increases insignificantly from 0.566A to 0.567A.
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Fig. 7. Accuracy of SOAP-Loop. The average main-chain RMSD of top
ranked structures by DOPE, DFIRE, Rosetta, PLOP, and SOAP-Loop on
PLOP loop modeling decoys. The average RMSD of the most accurate
conformations sampled by PLOP is plotted by a grey dash-dotted line.

The relative success of SOAP is attributed to the scoring of the
orientation instead of distance as well as the use of the recovery
functions instead of a reference state (Fig. 8). However, SOAP-
Loop still fails to identify the best-sampled conformation in some
cases. For a loop in 1CYO, for example, the failure can be
attributed to the lack of a sufficiently native conformation among
the tested conformations and the absence of significant interactions
between the loop and the rest of the protein (Fig. 9A). It is also
possible that some interactions, such as long-range interactions, are
not treated accurately by any scoring function, indicating the need
for further development of the theory of statistical potentials.
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Fig. 8. Recovery functions for SOAP-PP and SOAP-Loop are compared
with DOPE and DFIRE’s reference states.

Fig. 9. Comparison of the top ranked, best sampled, and native
configurations. A) 1CYO. B) 2AYH. The native structure is shown in light
grey. The loop is shown in the native configuration (yellow), the best
sampled configuration (black for ICYO and green for 2AYH), and the top



ranked configuration by SOAP (green), DOPE (blue), DFIRE (red),
Rosetta (magenta) and PLOP (light-blue).

4 DISCUSSION

We developed a Bayesian approach to optimizing statistical
potentials, based on probability theory and without recourse to
questionable statistical mechanical assumptions and
approximations. We also applied this approach to calculate
optimized statistical potentials for assessing protein interactions
(SOAP-PP) and loops (SOAP-Loop). These two statistical
potentials perform better than others in their class. For PatchDock
and ZDOCK decoys, the top10 success rate of SOAP-PP is more
than 10% higher than that of FireDock and ZRANK (Fig. 5). For
12-residue loops in the PLOP benchmark, the average main-chain
RMSD of the best scored conformations by SOAP-Loop is 1.54,
close to the average RMSD of the best sampled conformations
(1.2A) and significantly better than that from DOPE (2.54),
DFIRE (2.3A), Rosetta (2.1A), and PLOP scoring functions (3.0A)
(Fig. 7). The relative accuracy of SOAP-PP and SOAP-Loop
results primarily from normalizing the raw distributions by the
recovery functions instead of a reference state, restraining of
orientation instead of only distance, and thoroughly optimizing
parameter values while avoiding over-fitting.

Next, we discuss three points in turn. First, we describe our
recovery functions and compare them to the reference states used
for other statistical potentials. Second, we discuss the importance
of restraining orientation and using covalent separation as an
independent variable. Finally, we conclude by commenting on
future improvements of our Bayesian approach and its
applications.

4.1 Cubic splines as a recovery function form

A key difference between statistical potentials is the definition of
their reference states, which are often derived by assuming that the
PDB provides a Boltzmann ensemble of structural features (Sippl
et al., 1990). Here, we replace the reference state by data-driven
recovery functions, defined self-consistently without recourse to
these questionable statistical mechanical assumptions (Finkelstein
et al., 1995; Shen and Sali, 2006). In an extreme case, we use cubic
splines to compute an optimal recovery functions, relying on
Bayesian inference to obtain parameter values that result in the
most accurate statistical potential given a benchmark.

The use of splines as recovery functions is motivated by a
qualitative analysis of the recovery function (Eq. S2). The
distribution p(f €™ Q) of a single feature £ ™ s the product of
the restraint on f°(™ and an integral involving the restraints on
Qg’s other features (i.e., the environment restraint). Then, the
recovery function g(f€|Qq) is the distribution of feature type ¢ in
structure set K resulting from the environmental restraints alone
(Eq. S2). We now discuss three implications of this perspective.
First, if we assume that atoms are placed randomly within the
protein shell, a recovery function will be similar to the DFIRE and
DOPE reference states based on the ideal gas assumption (Zhou
and Zhou, 2002; Shen and Sali, 2006).

Second, using the distance d between atoms A and C in Fig. 2 as an
example, the environment restraint on d is a consequence of the
restraints on distances between A-D, C-B, and B-D as well as the
bonds between A-B and C-D. The restraints on A-D, C-B, and B-D
distances have short-range repulsion components. Thus, the
environment restraint on the distance A-C will include an effective
short-range repulsion. This qualitative analysis is consistent with
the observed recovery functions for SOAP-PP and SOAP-Loop,
which all have lower values at short distances than the DOPE
reference state based on the ideal gas assumption (Fig. 8).

Finally, the recovery functions for different feature types can vary,
due to their different environments, as observed for the recovery
functions for 15 clusters of atom type pairs used in SOAP-PP (Fig.
8).

Although splines can mimic almost any smooth function given a
sufficient number of anchor points, its flexibility could also lead to
overfitting; moreover, a large number of anchor points could lead
to oscillations (Fig. 8). While our Bayesian model selection
method helps with the generalizability of the optimized cubic
spline (Vehtari and Lampinen, 2002), it is conceivable that
applying Bayesian model selection to a less flexible but
appropriate functional form will result in a more accurate and
general statistical potential than that based on splines.

4.2 Spatial and sequence features

Our orientation restraints score a spatial relationship between two
sets of atoms in more detail than distance restraints alone, and
should be particularly useful for scoring spatial relationships
between polar atoms, especially for hydrogen bond donors and
acceptors. In fact, the relative accuracy of SOAP-Loop can be
attributed to the use of orientation and recovery functions instead
of distance and reference state, respectively (Table S1). However,
using orientation did not result in a better statistical potential for
ranking protein interfaces (Table S2). While we may not have
found the globally optimal statistical potential for orientation, a
more likely reason is insufficient accuracy of the tested
conformations produced by rigid docking.

Covalent separation is another important factor affecting the
accuracy of the derived statistical potentials. Surprisingly, for
ranking protein interfaces, statistical potentials derived from intra-
chain non-local atom pairs (bond separation > 9) work better than
statistical potentials derived from inter-chain atom pairs (chain
separation = 1) (Table S1). A likely reason is that many protein
interfaces in the PDB result from crystal contacts that do not
reflect interfaces between proteins in solution (Krissinel, 2010;
Carugo and Argos, 1997). In the future, a better statistical potential
for ranking protein interfaces might be obtained if only true
biological interfaces from PDB are used.

4.3 Bayesian inference

Statistical potentials can be derived for many different values of
the input variables, with little or no a priori reasons to choose one
set of values over the others. The Bayesian model selection based
on Bayesian predictive densities provides a statistically rigorous
way of choosing the values that result in most generalizable
statistical potentials (Vehtari and Lampinen, 2002). However, one
limitation of this method is that the calculation of predictive
densities is computational intensive, often requiring more than tens
of thousands of evaluations of the statistical potential on the
benchmark. Thus, such calculations are not always practical.
Fortunately, increases in the available computer power will enable
us to find more accurate statistical potentials in an increasingly
larger parameter space in the future. Another approach to
improving the search for optimal parameter values is to use
physically motivated feature types, functional forms, and allowed
value ranges.

In principle, normalizing the feature distributions by recovery
functions to obtain a statistical potential (Eq. 2) is not necessary.
Instead, we could use parametric (e.g., the mathematical functional
forms used in molecular mechanics force fields) or non-parametric
functions to represent the statistical potential and directly infer the
optimal statistical potential by its accuracy on a benchmark of
interest. However, this approach might not provide an accurate
statistical potential in practice, due to the large number of
parameters whose values would need to be optimized.

Our method for smoothing feature distributions is a generalization
of the two related methods used in calculating statistical potentials
(Sippl, 1990) and homology restraints (Sali and Blundell, 1993).
Both methods are equivalent to our Bayesian smoothing method
with a diagonal covariance matrix as the smoothing prior. Their
prior distribution is equivalent to the mean of our prior §, while the



weights on their prior distributions are defined by the standard
deviation in our covariance matrix.

In conclusion, our Bayesian framework can be applied to derive an
optimized statistical potential for many other kinds of modeling
problems for which sample structures are available, thus affording
better leverage of the experimentally determined protein structures.
Examples include membrane protein topology and complexes of
proteins with small molecules or peptides.
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