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ABSTRACT 
Motivation: Statistical potentials have been widely used for 
modeling whole proteins and their parts (e.g., sidechains and loops) 
as well as interactions between proteins, nucleic acids and small 
molecules. Here, we formulate the statistical potentials entirely 
within a statistical framework, avoiding questionable statistical 
mechanical assumptions and approximations, including a definition 
of the reference state.  
Results: We derive a general Bayesian framework for inferring 
Statistically Optimized Atomic Potentials (SOAP), in which the 
reference state is replaced with data-driven “recovery” functions. 
Moreover, we restrain the relative orientation between two covalent 
bonds instead of a simple distance between two atoms, in an effort 
to capture orientation-dependent interactions such as hydrogen 
bonds. To demonstrate this general approach, we computed 
statistical potentials for protein-protein docking (SOAP-PP) and loop 
modeling (SOAP-Loop). For docking, a near-native model is within 
the top 10 scoring models in 52% of the PatchDock benchmark 
cases, compared to 23% and 27% for the state-of-the-art ZDOCK 
and FireDock scoring functions, respectively. Similarly, for modeling 
12-residue loops in the PLOP benchmark, the average mainchain 
RMSD of the best scored conformations by SOAP-Loop is 1.5Å, 
close to the average RMSD of the best sampled conformations  
(1.2Å) and significantly better than that selected by Rosetta (2.1Å), 
DFIRE (2.3Å), DOPE (2.5Å), and PLOP scoring functions (3.0Å). 
Our Bayesian framework may also result in more accurate statistical 
potentials for additional modeling applications, thus affording better 
leverage of the experimentally determined protein structures. 
Availability: SOAP-PP and SOAP-Loop are available as part of 
MODELLER (http://salilab.org/modeller). 
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1 INTRODUCTION  
Computational modeling can be used to predict the structures of 
whole proteins or their parts (e.g., loops and sidechains) as well as 
complexes involving proteins, peptides, nucleic acids and small 
molecules (Skolnick et al., 2013; Audie and Swanson, 2012; Dill 
and MacCallum, 2012; Wass et al., 2011; Ding et al., 2010; Baker 
and A Sali, 2001). A modeling method requires a conformational 
sampling scheme for proposing alternative structures and a scoring 
function for ranking them. Significant progress has been made on 
both fronts (Moult et al., 2011; Fernández-Recio and Sternberg, 
2010). In particular, many physics-based energy functions as well 
as statistical potentials computed from known protein structures 
have been described ( Tanaka and Scheraga, 1975; Hendlich et al., 
1990; Sippl, 1993; Colovos and Yeates, 1993; Kocher et al., 1994; 
Park and Levitt, 1996; Miyazawa and Jernigan, 1996; Melo and 
Feytmans, 1997; Reva et al., 1997; Simons et al., 1997; Samudrala 
and Moult, 1998; Rojnuckarin and Subramaniam, 1999; Jones, 
1999; Betancourt and Thirumalai, 1999; Gatchell et al., 2000; Lu 
and Skolnick, 2001; Melo et al., 2002; Zhou and Zhou, 2002; 
Keasar and Michael Levitt, 2003; McConkey et al., 2003; 
Betancourt and Skolnick, 2004; Wang et al., 2004; Summa et al., 
2005; Qiu and Elber, 2005; Dehouck et al., 2006; Shen and Sali, 
2006; Ferrada et al., 2007; Pierce and Weng, 2007; Andrusier et 
al., 2007; Zhu et al., 2008; Lu et al., 2008; Benkert et al., 2008; 
Chuang et al., 2008; Rajgaria et al., 2008; Gao and Jeffrey 
Skolnick, 2008; Xu et al., 2009; Zhang and Zhang, 2010; Rata et 
al., 2010; Rykunov and Fiser, 2010; Huang and Zou, 2010; 
Shapovalov and Dunbrack, 2011; Liu and Vakser, 2011; Fan et al., 
2011; Zhao and Xu, 2012; Brenke et al., 2012; Liu and Gong, 
2012; Zhou and Skolnick; Cossio et al., 2012; Li et al., 2013).  
Derivation of a statistical potential has often been guided by an 
analogy between a sample of known native structures and the 
canonical ensemble in statistical mechanics, suggesting that the 
distributions of spatial features in the sample of native structures 
follow the Boltzmann distribution (Sippl et al., 1990). Thus, 
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statistical potentials are generally calculated in two steps: (1) 
extracting a probability distribution of a spatial feature (e.g., a 
distance spanned by a specific pair of atom types) from a sample of 
known protein structures and (2) normalizing this distribution by a 
reference distribution (e.g., the distribution of all distances, 
regardless of the atom types). Statistical potentials can differ in a 
number of aspects, including the sample of known protein 
structures, the protein representation (e.g., centroids of amino acid 
residues, Cα atoms, and all atoms), the restrained spatial feature 
(e.g., solvent accessibility, distance, angles and orientation 
between two sets of atoms), the sequence features (e.g., amino acid 
residue types, atom types, residue separation in sequence and chain 
separation), the treatment of sparse samples and the definition of 
the reference state. Here, we optimize the accuracy of a statistical 
potential over most of these aspects. This optimization challenge is 
addressed by formulating a statistical potential independently from 
any assumptions grounded in statistical mechanics; instead, we 
rely on a Bayesian approach based on data alone. While the 
proposed theory applies to any kind of a statistical potential, we 
illustrate it by deriving specific statistical potentials for protein-
protein docking and loop modeling.  

2 METHOD 
We begin by defining statistical potentials in terms of distributions 
extracted from known protein structures (Section 2.1), followed by a 
description of a protocol to actually compute a statistical potential 
(Sections 2.2-2.7, Fig. 1).  

 
Fig.	
   1.	
   Flowchart for optimizing statistical potentials. The corresponding 
sections in the text are indicated. 	
  

2.1 Theory 
For structure characterization of a given protein sequence by either 
experiment or theory, we ideally need a joint probability density function 
(pdf) for the structure, given everything we know about it (Shen and Sali, 
2006). In general, our knowledge can come from different kinds of 
experiments with the protein (e.g., X-ray crystallography), physical 
theories (e.g., a molecular mechanics force field), and/or statistical 
inference (e.g., all known structures or only homologous known structures). 
Here, we focus on a joint pdf for a given sequence based on the knowledge 

of all known protein structures deposited in the Protein Data Bank (PDB) 
(Kouranov et al, 2006); thus, our joint pdf is a statistical potential. 
To derive the joint pdf for a structure of a sequence, we need to 
approximate it by using terms that can actually be computed from the PDB. 
The structure X of an amino acid sequence is defined by the set of its 
features 𝑓!(!) ,𝑚 = 1… 𝑛 , such as a distance between two specific 
atoms. Thus, we can approximate the joint pdf by the product of pdfs 
(restraints) for individual features: 

𝑝(𝑋) ≈ 𝑝 𝑓!(!)

!!!!!

 (1) 

Without any loss of accuracy, we define the restraint 𝑝 𝑓!(!)  as the ratio 
between the feature distribution 𝑝 𝑓!|𝒬𝒦  from a sample of informative 
features in a set of proteins 𝒬𝒦  with known structures (e.g., for a distance, 
all distances spanned by the same atom types in 𝒬𝒦) and an unknown 
recovery function 𝑔 𝑓!|𝒬𝒦 :  

𝑝 𝑓!(!) =   𝑝 𝑓!|𝒬𝒦 /𝑔 𝑓!|𝒬𝒦  (2) 

In other words, the recovery function is defined such that the product of 
restraints approximates the joint pdf as well as possible (c.f., Eq. 1), while 
minimizing the number of parameters that need to be fit to the data. 
Construction of the sample of informative features involves a compromise 
between including only features of known structures that are most likely to 
resemble the predicted feature 𝑓!(!) (which minimizes sample size) and 
minimizing the statistical noise (which maximizes sample size). The 
features used in the sample are termed to be of the same type 𝑐 as the 
inferred feature (Section 2.2). The restraints on all features of 𝑋 of type 𝑐 
are calculated from the same set of informative features, and thus are the 
same. Here, the sample of informative features includes all features of the 
same type from representative known protein structures (Section 2.3). 

2.2 Feature types 
To illustrate the general theory above, we derive optimized statistical 
potentials for assessing protein-protein interfaces (SOAP-PP) and loop 
conformations (SOAP-Loop). We restrain the following feature types: 

2.2.1 Atomic distance Distance 𝑑|𝑎!, 𝑎!, 𝑏!    is considered to depend on 
atom types 𝑎! and 𝑎! as well as the “covalent separation” between the two 
atoms (𝑏!). The atom type depends on the residue type, resulting in the total 
of 158 atoms types for the 20 standard residue types (Shen and Sali, 2006). 
Covalent separation is measured in three ways. First, by the minimum 
number of covalent bonds between the two atoms (bond separation). 
Second, by the number of residues separating the two atoms in the 
polypeptide chain (residue separation). Third, by chain separation, which is 
0 if the atoms are in the same chain and 1 otherwise. The distance is 
mapped in the range from 0 to a parameterized distance cutoff, such as 
15Å. 

2.2.2 Orientation between a pair of covalent bonds Orientation 
𝑑,𝛼!,𝛼!,𝜓|𝑡!, 𝑡!, 𝑏!  is defined by a distance 𝑑, two angles 𝛼!,𝛼!  and a 
dihedral angle 𝜓 (Fig.	
  2). It is considered to depend on covalent bond types 
(𝑡!, 𝑡!) defined in turn by their atom types and covalent separation (𝑏!); 
there are 316 covalent bond types for the 20 standard residue types.  

2.2.3 Relative atomic surface accessibility  Accessibility 𝑠|𝑎 is considered 
to depend on the atom type (𝑎) (Sali and Blundell, 1993).  
 

 
Fig.	
  2.	
  Distance and angles between two covalent bonds, A-B and C-D. 𝒅, 
distance between atoms A and C. 𝜶𝟏, angle between atoms B, A and C. 𝜶𝟐, 
angle between atoms A, C and D. 𝝍, dihedral angle between atoms B, A, C 
and D.  𝒃𝒔 is defined using atoms A and C.	
  

2.3 Feature distributions  
2.3.1 Known protein structures A small fraction of the known 
protein structures from the PDB (and their decoy structures) are used only 
for assessing the accuracy of statistical potentials (Section 2.5). The 



remaining structures from the PDB are filtered to construct the known 
protein structure set 𝕂, including only structures determined by X-ray 
crystallography at the resolution better than 2.2 Å and Rfree better than 25%. 
Three additional subsets of representative structures were obtained by 
requiring at most 30%, 60% and 95% sequence identity to any other 
representative structure, respectively, with preference for structures 
determined at higher resolutions and with lower Rfree values. A statistical 
potential is optimized by choosing among the entire set 𝕂 or its three 
subsets to estimate the feature distributions 𝑝 𝑓!|𝒬𝒦 . 

2.3.2 Calculation of feature distributions	
   The sample for 
computing this distribution is the set of the individual features of type 𝑐 in 
protein set 𝒬𝒦 , where each feature is represented by the distribution of this 
feature - 𝑝 𝑓!(!)|𝑄! . The feature distribution 𝑝 𝑓!|𝒬𝒦  is the average of 
these sample distributions. For a distance and an angle, 𝑝 𝑓!(!)|𝑄!  is 
approximated by a Gaussian distribution 𝑝′ 𝑓!(!)|𝑄!  with the mean equal 
to the observed value and the standard deviation computed by the 
propagation (Neuhauser, 2010) of the uncertainties of individual atomic 
positions, which in turn are estimated from the atomic isotropic 
temperature factors (Carugo and Argos, 1999; Schneider, 2000; 
Cruickshank, 1999). For relative atomic surface accessibility 𝑝 𝑓!(!)|𝑄!  
is approximated using a delta function 𝑝′ 𝑓!(!)|𝑄!  centered at feature 
𝑓!(!)  in K . The approximated feature distribution 𝑝′ 𝑓!|𝒬𝒦  is then 
computed from the approximated sample distributions 𝑝′ 𝑓!(!)|𝑄! .	
  

2.4 Bayesian smoothing and smoothing 
priors 

The feature distributions 𝑝′ 𝑓!|𝒬𝒦  can be noisy when the sample 𝒦 is 
relatively small, as is often the case for the orientation between a pair of 
covalent bonds (Fig.	
   3A). Thus, we use Bayesian inference to calculate a 
smooth feature distribution: 

𝑝 𝑝 𝑓!|𝒬𝒦 |𝑝′ 𝑓!|𝒬𝒦 ∝ 𝑝 𝑝′ 𝑓!|𝒬𝒦 |𝑝 𝑓!|𝒬𝒦 ∙ 𝑝 𝑝 𝑓!|𝒬𝒦  (3) 

where 𝑝 𝑓!|𝒬𝒦  is the ideal distribution without noise from an infinitely 
large set of known structures. Both the likelihood 𝑝 𝑝′ 𝑓!|𝒬𝒦 |𝑝 𝑓!|𝒬𝒦  
and the prior 𝒮 ≡ 𝑝 𝑝 𝑓!|𝒬𝒦  are multivariate Gaussian distributions 
(Rasmussen and Williams, 2005). The smoothness of 𝑝 𝑓!|𝒬𝒦  is 
specified by the prior 𝒮 ; here, the prior is a multivariate Gaussian 
distribution with a zero mean and a squared exponential covariance 
function (Mackay, 2003). The characteristic length scale of the covariance 
function defines the range over which the two points are still correlated (the 
smoothness of the curve). We set the characteristic length equal to a scale 
parameter 𝐿 multiplied by 0.2Å for distance, 10°for angles and 0.1% for 
atomic surface accessibility. A set of smoothing priors 𝕊 is obtained by 
varying 𝐿. Using a scale of 2.0 as an example, the inferred 𝑝 𝑓!|𝒬𝒦  is 
significantly smoother than 𝑝′ 𝑓!|𝒬𝒦  (Fig.	
  3B).  
  
  

 
Fig.	
  3.	
  Distance and dihedral angle joint distribution between alanine N-Cα 
and alanine O-C, when 𝜶𝟏 ∈ [𝟔𝟎𝐨,𝟗𝟎𝐨] and 𝜶𝟐 ∈ [𝟔𝟎𝐨,𝟗𝟎𝐨]. A) Original 
distribution. B) Smoothed distribution. 

2.5 Decoys and assessment criteria 
2.5.1	
   Learning set for SOAP-PP	
   This set consists of 176 native 
complex structures in the pairwise protein docking benchmark 4.0 (Hwang 
et al., 2010) as well as approximately 4,500 decoys for each of the 
complexes generated using PatchDock (Duhovny et al., 2002). 

2.5.2 Testing set for SOAP-PP This set consists of 176 native 
complex structures in the pairwise protein docking benchmark 4.0 (Hwang 
et al., 2010) as well as approximately 212,000 decoys for each of the 
complexes generated using PatchDock (Duhovny et al., 2002) and 
approximately 54,000 decoys for each of the complexes generated using 
ZDOCK (Pierce et al. 2011). 

2.5.3 Assessment criteria for SOAP-PP  Each model is 
assessed for accuracy based on Root-Mean-Square Deviation (RMSD) 
from the native structure, as used at CAPRI (Lensink et al, 2007). A 
docking model is considered acceptable if the ligand Cα RMSD (L-RMSD) 
after superposition of the receptors is less than 10Å or the interface Cα 
RMSD (I-RMSD) is less than 4Å. A docking model is of medium accuracy 
if L-RMSD is less than 5Å or I-RMSD is less than 2Å. The success rate for 
SOAP-PP is the percentage of benchmark cases with at least one medium 
or acceptable accuracy model in the top N predictions.  

2.5.4 Learning set for SOAP-Loop This set consists of 3,838 
native loop conformations of 4 to 20 residues as well as approximately 500 
decoys for each loop generated using Modeller (Sali and Blundell, 1993; 
Fiser and Sali, 2003). Loops were extracted from X-ray crystallography 
structures in the PDB using DSSP (Kabsch and Sander, 1983; Joosten et 
al., 2011). We only considered protein structures determined at a resolution 
better than 2Å, Rfree better than 0.25, and crystallized between pHs 6.5 and 
7.5; no pair of source structures had sequence identity higher than 30%. 
Each loop has only standard residues, no missing non-hydrogen atoms, 
average atomic surface accessibility between 5% and 60%, no crystal 
contacts, no clashes with nearby atoms, no contacts with metal ligands, and 
does not occur in the PLOP loop modeling decoy set (Jacobson et al., 
2004).  
2.5.5 Testing set for SOAP-Loop This set consists of 833 native 
loop conformations of 4 to 12 residues as well as approximately 450 
decoys for each loop generated using PLOP (Jacobson et al, 2004).  

2.5.6 Assessment criteria for SOAP-Loop Each model is 
assessed for accuracy based on its main-chain RMSD to the native 
conformation, after superposition of all non-loop atoms (RMSDglobal) (Fiser 
et al., 2000); main-chain atoms include amide nitrogen, Cα, as well as 
carbonyl carbon and oxygen. SOAP-Loop is assessed by the average 
RMSDglobal of the top ranked model for each loop. 

2.6 Recovery functions and functional forms 
We estimate the recovery function 𝑔 𝑓!|𝒬𝒦  by optimizing the accuracy of 
the corresponding statistical potential on a benchmark of interest. To avoid 
overfitting, we assume either a single recovery function for all feature types 
or the same recovery function for a subset of similarly distributed feature 
types. 
The set of recovery function forms 𝒢!  is different for distances, angles, and 
accessibility: The recovery function for the atomic distance is modeled 
using one of three functional forms: (1) 𝑑!  where d is distance and q is a 
constant (Zhou and Zhou, 2002); (2) the ideal gas distribution in spheres 
with varying radii (Shen and Sali, 2006); and (3) spliced cubic splines. For 
orientation, the recovery function is defined as the product of a recovery 
function for 𝑑 , 𝛼! , 𝛼! , and 𝜓,  respectively. The recovery functions for 
angles 𝛼! , 𝛼! , and dihedral angle 𝜓  are modeled using two different 
functional forms: (1) the feature distribution calculated using the ideal gas 
assumption and (2) spliced cubic splines. For the relative atomic surface 
accessibility, the recovery function form is spliced cubic splines. Control 
points of cubic splines are defined by their x and y values. When searching 
for the best cubic spline recovery function, the x values of the control 
points are either fixed at discrete sampling values or inferred together with 
the y values. 
To optimize the recovery functions, we need to balance minimizing noise 
and maximizing precision. Thus, for atomic distances, we clustered the 
distance distributions 𝑝 𝑓!|𝒬𝒦  for different atom type pairs using k-mean 
clustering, and assumed that the pairs of atom types with similar distance 
distributions have a similar recovery function (Fig.	
  4).  
 

Fig.	
   4.	
   Distance distributions 𝑝 𝑓!|𝒬𝒦  for different atom pairs are 
clustered into 15 different groups. Each line represents a distance 
distribution from a pair of atoms of certain types. Each group has 6 to 8401 

A B 



distributions. During k-mean clustering, the number of clusters was set to 
20, resulting in 14 clusters with more than 5 distributions and 6 clusters 
with less than 5 distributions; the latter 6 clusters are grouped together 
(bottom right panel). 	
  

2.7 Bayesian inference and model selection 
A statistical potential is defined by 4 discrete input variables (the known 
protein structure subset 𝒦, the feature type subset ℱ, the smoothing prior 𝒮 
and the recovery function form 𝒢! ) and a vector of continuous input 
variables (the recovery function parameters 𝒢!). We elected to define the 
best values for the 4 discrete variables are those that result in the most 
generalizable statistical potential, as judged by the Bayesian predictive 
densities (Vehtari and Lampinen, 2002), while the best values for the 
recovery function parameters are those that result in the most accurate 
statistical potential, as judged by a given benchmark. Because each of the 5 
variables can be sampled at many values, enumeration of all combinations 
is not computationally feasible. Thus, the search for the best values is 
carried out in four stages, as follows. 
First, irrespective of the final restrained feature ℱ , we begin with the 
atomic distance and a single recovery function for all atom type pairs. The 
optimal values of the discrete variables ℱ,𝒦,𝒮,𝒢!  are found by an 
iterative discrete search: 

1) Choose an arbitrary starting value for each variable, out of their 
possible value sets {𝔽,𝕂,𝕊,𝔾!} (Table S1 and S2).  

2) For each variable, choose the best value and eliminate the worst 
value in the value set using Bayesian model selection based on 
Bayesian predictive densities (Vehtari and Lampinen, 2002). The 
Bayesian predictive density for each value is calculated with other 
variables fixed at their best previous values:  

𝑝(𝐷!|ℱ,𝒦,𝒮,𝒢! ,𝒢!) ∙ 𝑝 𝒢! ℱ,𝒦, ,𝒮,𝒢! ,𝐷!
{!,!}

𝑑𝒢!  (4) 

where the learning decoys D are randomly separated multiple times 
into a training set 𝐷! and a validation set 𝐷! , from which the integrals 
are estimated using Monte Carlo sampling (Evans and Swartz, 2000). 
𝑝 𝒢! ℱ,𝒦, ,𝒮,𝒢! ,𝐷!  is calculated following the Bayes rule: 

𝑝 𝒢! ℱ,𝒦, ,𝒮,𝒢! ,𝐷! ∝ 𝑝 𝐷! ℱ,𝒦,𝒮,𝒢! ,𝒢! ∙ 𝑝 𝒢! 𝒢!   (5) 

where the likelihood 𝑝(𝐷!|ℱ,𝒦,𝒮,𝒢! ,𝒢!)  is a Half-Normal 
distribution whose corresponding normal distribution has the mean 
equal to the accuracy of an imaginary statistical potential generating 
scores that correlate perfectly with the decoy-native RMSD and the 
standard deviation computed by dividing the mean by the number of 
the cases in the training set 𝐷!; the prior 𝑝(𝒢!|𝒢!) is an informative 
prior defining a reasonable range for 𝒢! . 

3) Repeat step 2 until the best values do not change. 
4) Repeat 5 times steps 1-3 for different random initial values. 
5) Keep the best performing variable values. 

Second, keeping the optimal values from the previous step fixed, we find 
the optimal values for the feature type, smoothing length scale, and the 
number of spline anchor points using the same 5-step iterative discrete 
search outlined above. 

Third, if the optimal spatial feature selected in the previous step is not 
orientation, we vary the number of recovery functions and the number of 
anchor points to optimize their values, again using the 5-step iterative 
discrete search. 
Fourth,	
  using the selected {ℱ,𝒦,𝒮,𝒢!}, we infer the best recovery function 
parameter values 𝒢!  by maximizing 𝑝 𝒢! ℱ,𝒦, ,𝒮,𝒢! ,𝐷  (Eq. 5).	
   The 
optimized statistical potential is then calculated (Eq. 2), and assessed on 
testing decoy sets. 
SOAP-PP and SOAP-Loop are available as part of MODELLER 
(http://salilab.org/modeller). All the training, learning, testing, decoys, 
benchmark sets, and scripts are available at http://salilab.org/SOAP. 

3 RESULTS 

3.1 Scoring protein-protein interfaces 

SOAP-PP is an atomic statistical potential for assessing a binary 
protein interface, computed with our Bayesian framework by 
optimizing its accuracy on the learning set for SOAP-PP (Table 
Error! Reference source not found.).  
Using the recovery function parameters optimized for 15 sets of 
training decoys (each set is randomly selected 50% of the learning 
set), the average top10 success rate (Section 2.5.3) is 51.7%±0.9% 
on the sets of training decoys and 46.4%±1.7% on the sets of 
validation decoys. The relatively small difference between the two 
success rates likely results from overfitting. To investigate 
overfitting, we increased the size of the training decoy set from 
50% to 67% of the entire learning set of 176 proteins. As a result, 
the average top10 success rate on the training decoys decreased 
from 51.7% to 51.3%, but the average success rate on the 
validation decoys (the remaining 33% of the learning set) 
increased from 46.4% to 47.5%. This observation suggested that 
increasing the size of the training set may be an effective way of 
reducing overfitting (Murphy, 2012). Thus, we optimized SOAP-
PP using the entire learning set of 176 proteins as the training set, 
even though this forces subsequent testing on the training protein 
sequences. To estimate the resulting overfitting, we calculated 6 
optimized statistical potentials, each one of which was based on a 
training set that included a random subset of ~67% of the learning 
set. Next, we tested these potentials on two testing sets: the first set 
consisted only of the training proteins; the second set consisted of 
the remaining learning proteins. The average top10 success rate for 
the PatchDock decoys is 51.1% and 48.6% for the first and second 
test set, respectively; for the ZDOCK decoys, the average top10 
success rate is 40.0% and 38.9% for the first and second test set, 
respectively. Therefore, given that increasing the training set size 
reduces overfitting as shown above, the accuracy of SOAP-PP 
estimated based on a completely different testing set is expected to 
be within 2.5% of the current estimate (below). 
 
SOAP-PP was assessed on the PatchDock (Schneidman-Duhovny 
et al, 2012) and ZDOCK decoy sets (Pierce et al., 2011) (Fig. 5). 
For PatchDock decoys, the top10 success rate of SOAP-PP is 50% 
(Fig. 5A) compared to 23% for ZDOCK and 27% for FireDock. If 
only models of medium or better accuracy are considered, the 
top10 success rate is 40% for SOAP, 17% for ZDOCK, and 23% 
for FireDock (Fig. 5B). For ZDOCK decoys, the top10 success rate 
of SOAP-PP is 41% (Fig. 5C) compared to 30% for ZDOCK and 
22% for FireDock. If only models of medium or better accuracy 
are considered, the success rate is 32% for SOAP-PP, 22% for 
ZDOCK, and 17% for FireDock (Fig. 5D). 
 

 

 
Fig.	
   5.	
   Success rates of SOAP-PP, ZRANK, and FireDock on the 
PatchDock and ZDOCK decoy sets.  A) Success rates on the PatchDock 
decoy set, where a success is defined as having an acceptable accuracy 
structure in the top N predictions (x-axis). B) Success rates on the 
PatchDock decoy set for picking structures with medium accuracy. C) 
Success rates on the ZDOCK decoy set for picking structures with 
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acceptable accuracy. D) Success rates on the ZDOCK decoy set for picking 
structures with medium accuracy.  

 
Fig.	
   6.	
   Comparison of the top ranked, best sampled, and native 
configurations. A) 2G77. B) 1OC0. The receptor is shown in grey. The 
ligand is shown in the native configuration (yellow), the best sampled 
configuration (green for 2G77 and black for 1OC0), and the top ranked 
configuration by SOAP (green), FireDock (blue), and ZRANK (red). 
	
  
High accuracy of SOAP-PP can sometimes be attributed to the 
weaker short-distance repulsion (Fig.	
   6A) compared to ZRANK 
(Pierce and Weng, 2007) and FireDock (Andrusier et al., 2007), 
both of which use a modified van der Waals repulsion term; thus, 
the clashes of the best sampled structure with a receptor are likely 
less penalized by SOAP than by ZRANK and FireDock. Although 
SOAP-PP is more successful than ZRANK and FireDock overall, 
picking near-native protein-protein complex models out of decoys 
remains a hard problem (Fig. 5). For some cases, all three scoring 
functions perform badly, especially when the protein-protein 
interfaces are small and have poor shape complementarity (Fig.	
  
6B).  

3.2 Scoring loops 
SOAP-Loop is an atomic statistical potential for assessing protein 
loop conformations, computed with our Bayesian framework by 
optimizing its accuracy on the learning set for SOAP-Loop (Table 
S2).  
SOAP-Loop was assessed on the PLOP loop modeling decoy set 
(Jacobson et al, 2004). We compare SOAP-Loop to DOPE (Shen 
and Sali, 2006), DFIRE (Zhang et al., 2004), Rosetta 3.3 (Simons 
et al., 1999), and PLOP 25.6 scoring functions (Jacobson et al., 
2004) (Fig. 7A). For short loops, SOAP-Loop and Rosetta perform 
similarly and better than the other tested scoring functions: the 
main-chain RMSD of SOAP-Loop’s top ranked structure is close 
to that of the best decoy structure. For longer loops, the accuracy 
differences become larger. SOAP-Loop is still able to pick 
structures close to the best decoy structures: For 12-residue loops, 
the average main-chain RMSD of the best scored conformations by 
SOAP-Loop is 1.5Å, close to the average RMSD of the best decoy 
conformations  (1.2Å) and significantly better than that by DOPE 
(2.5Å), DFIRE (2.3Å), Rosetta (2.1Å), and PLOP scoring 
functions (3.0Å). We note that this assessment should not be used 
to rank the PLOP scoring function, because the decoy set used here 
was generated with PLOP. Thus, we further compare different 
scoring functions by their average all-atom RMSD values of the 
best scored conformations using our learning set for SOAP-Loop 
(Section 2.5.4; Table S3). 
Although no testing protein occurs in the learning set, 11 pairs of 
testing-learning loops have the same sequence. Excluding these 11 
loops from the testing set, the average RMSD of the top ranked 
loop by SOAP-Loop increases insignificantly from 0.895Å to 
0.897Å; the average RMSD of the best decoy conformations also 
increases insignificantly from 0.566Å to 0.567Å.  

	
  
Fig.	
   7.	
  Accuracy of SOAP-Loop. The average main-chain RMSD of top 
ranked structures by DOPE, DFIRE, Rosetta, PLOP, and SOAP-Loop on 
PLOP loop modeling decoys. The average RMSD of the most accurate 
conformations sampled by PLOP is plotted by a grey dash-dotted line. 
 
The relative success of SOAP is attributed to the scoring of the 
orientation instead of distance as well as the use of the recovery 
functions instead of a reference state (Fig. 8). However, SOAP-
Loop still fails to identify the best-sampled conformation in some 
cases. For a loop in 1CYO, for example, the failure can be 
attributed to the lack of a sufficiently native conformation among 
the tested conformations and the absence of significant interactions 
between the loop and the rest of the protein (Fig.	
   9A). It is also 
possible that some interactions, such as long-range interactions, are 
not treated accurately by any scoring function, indicating the need 
for further development of the theory of statistical potentials. 
 
	
  

	
  
Fig.	
   8.	
   Recovery functions for SOAP-PP and SOAP-Loop are compared 
with DOPE and DFIRE’s reference states.   
	
  

	
  
Fig.	
   9.	
   Comparison of the top ranked, best sampled, and native 
configurations. A) 1CYO. B) 2AYH. The native structure is shown in light 
grey. The loop is shown in the native configuration (yellow), the best 
sampled configuration (black for 1CYO and green for 2AYH), and the top 
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ranked configuration by SOAP (green), DOPE (blue), DFIRE (red), 
Rosetta (magenta) and PLOP (light-blue).	
  

4 DISCUSSION 
We developed a Bayesian approach to optimizing statistical 
potentials, based on probability theory and without recourse to 
questionable statistical mechanical assumptions and 
approximations. We also applied this approach to calculate 
optimized statistical potentials for assessing protein interactions 
(SOAP-PP) and loops (SOAP-Loop). These two statistical 
potentials perform better than others in their class. For PatchDock 
and ZDOCK decoys, the top10 success rate of SOAP-PP is more 
than 10% higher than that of FireDock and ZRANK (Fig. 5). For 
12-residue loops in the PLOP benchmark, the average main-chain 
RMSD of the best scored conformations by SOAP-Loop is 1.5Å, 
close to the average RMSD of the best sampled conformations  
(1.2Å) and significantly better than that from DOPE (2.5Å), 
DFIRE (2.3Å), Rosetta (2.1Å), and PLOP scoring functions (3.0Å) 
(Fig. 7). The relative accuracy of SOAP-PP and SOAP-Loop 
results primarily from normalizing the raw distributions by the 
recovery functions instead of a reference state, restraining of 
orientation instead of only distance, and thoroughly optimizing 
parameter values while avoiding over-fitting.  
Next, we discuss three points in turn. First, we describe our 
recovery functions and compare them to the reference states used 
for other statistical potentials. Second, we discuss the importance 
of restraining orientation and using covalent separation as an 
independent variable. Finally, we conclude by commenting on 
future improvements of our Bayesian approach and its 
applications.  

4.1 Cubic splines as a recovery function form 
A key difference between statistical potentials is the definition of 
their reference states, which are often derived by assuming that the 
PDB provides a Boltzmann ensemble of structural features (Sippl 
et al., 1990). Here, we replace the reference state by data-driven 
recovery functions, defined self-consistently without recourse to 
these questionable statistical mechanical assumptions (Finkelstein 
et al., 1995; Shen and Sali, 2006). In an extreme case, we use cubic 
splines to compute an optimal recovery functions, relying on 
Bayesian inference to obtain parameter values that result in the 
most accurate statistical potential given a benchmark. 
The use of splines as recovery functions is motivated by a 
qualitative analysis of the recovery function (Eq. S2). The 
distribution 𝑝 𝑓!(!)|𝑄!  of a single feature 𝑓!(!) is the product of 
the restraint on 𝑓!(!) and an integral involving the restraints on 
𝑄! ’s other features (i.e., the environment restraint). Then, the 
recovery function 𝑔 𝑓!|𝒬𝒦  is the distribution of feature type 𝑐 in 
structure set 𝒦 resulting from the environmental restraints alone 
(Eq. S2). We now discuss three implications of this perspective. 
First, if we assume that atoms are placed randomly within the 
protein shell, a recovery function will be similar to the DFIRE and 
DOPE reference states based on the ideal gas assumption (Zhou 
and Zhou, 2002; Shen and Sali, 2006). 
Second, using the distance d between atoms A and C in Fig.	
  2 as an 
example, the environment restraint on d is a consequence of the 
restraints on distances between A-D, C-B, and B-D as well as the 
bonds between A-B and C-D. The restraints on A-D, C-B, and B-D 
distances have short-range repulsion components. Thus, the 
environment restraint on the distance A-C will include an effective 
short-range repulsion. This qualitative analysis is consistent with 
the observed recovery functions for SOAP-PP and SOAP-Loop, 
which all have lower values at short distances than the DOPE 
reference state based on the ideal gas assumption (Fig. 8).  
Finally, the recovery functions for different feature types can vary, 
due to their different environments, as observed for the recovery 
functions for 15 clusters of atom type pairs used in SOAP-PP (Fig. 
8).  

Although splines can mimic almost any smooth function given a 
sufficient number of anchor points, its flexibility could also lead to 
overfitting; moreover, a large number of anchor points could lead 
to oscillations (Fig. 8). While our Bayesian model selection 
method helps with the generalizability of the optimized cubic 
spline (Vehtari and Lampinen, 2002), it is conceivable that 
applying Bayesian model selection to a less flexible but 
appropriate functional form will result in a more accurate and 
general statistical potential than that based on splines. 

4.2 Spatial and sequence features 
Our orientation restraints score a spatial relationship between two 
sets of atoms in more detail than distance restraints alone, and 
should be particularly useful for scoring spatial relationships 
between polar atoms, especially for hydrogen bond donors and 
acceptors. In fact, the relative accuracy of SOAP-Loop can be 
attributed to the use of orientation and recovery functions instead 
of distance and reference state, respectively (Table S1). However, 
using orientation did not result in a better statistical potential for 
ranking protein interfaces (Table S2). While we may not have 
found the globally optimal statistical potential for orientation, a 
more likely reason is insufficient accuracy of the tested 
conformations produced by rigid docking.  
Covalent separation is another important factor affecting the 
accuracy of the derived statistical potentials. Surprisingly, for 
ranking protein interfaces, statistical potentials derived from intra-
chain non-local atom pairs (bond separation > 9) work better than 
statistical potentials derived from inter-chain atom pairs (chain 
separation = 1) (Table S1). A likely reason is that many protein 
interfaces in the PDB result from crystal contacts that do not 
reflect interfaces between proteins in solution (Krissinel, 2010; 
Carugo and Argos, 1997). In the future, a better statistical potential 
for ranking protein interfaces might be obtained if only true 
biological interfaces from PDB are used.  

4.3 Bayesian inference 
Statistical potentials can be derived for many different values of 
the input variables, with little or no a priori reasons to choose one 
set of values over the others. The Bayesian model selection based 
on Bayesian predictive densities provides a statistically rigorous 
way of choosing the values that result in most generalizable 
statistical potentials (Vehtari and Lampinen, 2002). However, one 
limitation of this method is that the calculation of predictive 
densities is computational intensive, often requiring more than tens 
of thousands of evaluations of the statistical potential on the 
benchmark. Thus, such calculations are not always practical. 
Fortunately, increases in the available computer power will enable 
us to find more accurate statistical potentials in an increasingly 
larger parameter space in the future. Another approach to 
improving the search for optimal parameter values is to use 
physically motivated feature types, functional forms, and allowed 
value ranges.  
In principle, normalizing the feature distributions by recovery 
functions to obtain a statistical potential (Eq. 2) is not necessary. 
Instead, we could use parametric (e.g., the mathematical functional 
forms used in molecular mechanics force fields) or non-parametric 
functions to represent the statistical potential and directly infer the 
optimal statistical potential by its accuracy on a benchmark of 
interest. However, this approach might not provide an accurate 
statistical potential in practice, due to the large number of 
parameters whose values would need to be optimized. 
Our method for smoothing feature distributions is a generalization 
of the two related methods used in calculating statistical potentials 
(Sippl, 1990) and homology restraints (Sali and Blundell, 1993). 
Both methods are equivalent to our Bayesian smoothing method 
with a diagonal covariance matrix as the smoothing prior. Their 
prior distribution is equivalent to the mean of our prior 𝒮, while the 



weights on their prior distributions are defined by the standard 
deviation in our covariance matrix. 
In conclusion, our Bayesian framework can be applied to derive an 
optimized statistical potential for many other kinds of modeling 
problems for which sample structures are available, thus affording 
better leverage of the experimentally determined protein structures. 
Examples include membrane protein topology and complexes of 
proteins with small molecules or peptides.  
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