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4.10.1 Introduction

4.10.1.1 Structure-Based Drug Discovery

Over the past few years, structure-based or rational drug discovery has resulted in a number of drugs on the market and

many more in the development pipeline.1–4 Structure-based methods are now routinely used in almost all stages of

drug development, from target identification to lead optimization.5–8 Central to all structure-based discovery

approaches is the knowledge of the three-dimensional (3D) structure of the target protein or complex because the

structure and dynamics of the target determine which ligands it binds. The 3D structures of the target proteins are

best determined by experimental methods that yield solutions at atomic resolution, such as x-ray crystallography and

nuclear magnetic resonance (NMR) spectroscopy.9 Recent developments in the techniques of experimental structure

determination have enhanced the applicability, accuracy, and speed of structural studies.10,11 Despite these advances,

however, structural characterization of sequences remains an expensive and time-consuming task.

4.10.1.2 The Sequence–Structure Gap

The publicly available Protein Data Bank (PDB)12 currently contains B33 000 structures and grows at a rate of

approximately 40% every 2 years. On the other hand, the various genome-sequencing projects have resulted in B2.1 million

sequences, including the complete genetic blueprints of humans and hundreds of other organisms.13,14 This achievement

has resulted in a vast collection of sequence information about possible target proteins with little or no structural

information. Current statistics show that the structures available in the PDB account for only B1.5% of the sequences in

the UniProt database.13 Moreover, the rate of growth of the sequence information is more than twice that of the structures.

Due to this wide sequence–structure gap, reliance on experimentally determined structures limits the number of proteins

that can be targeted by structure-based drug discovery.

4.10.1.3 Structure Prediction Addresses the Sequence–Structure Gap

Fortunately, domains in protein sequences are gradually evolving entities that can be clustered into a relatively small

number of families with similar sequences and structures.15,16 For instance, 75–80% of the sequences in the UniProt

database have been grouped into fewer than 15 000 domain families.17,18 Similarly, all the structures in the PDB have

been classified into about 1000 distinct folds.19,20 Computational protein structure prediction methods, such as

threading21 and comparative protein structure modeling,22,23 strive to bridge the sequence–structure gap by utilizing

these evolutionary relationships. The speed, low cost, and relative accuracy of these computational methods have led to

the use of predicted 3D structures in the drug discovery process.24,25 The other class of prediction methods, de novo or

ab initio methods, attempts to predict the structure from sequence alone, without reliance on evolutionary

relationships. However, despite recent progress in these methods,26 especially for small proteins with fewer than

100 amino acid residues, comparative modeling remains the most reliable method of predicting the 3D structure of a

protein, with an accuracy that can be comparable to a low-resolution, experimentally determined structure.9

4.10.1.4 The Basis of Comparative Modeling

The primary requirement for reliable comparative modeling is a detectable similarity between the sequence of interest

(target sequence) and a known structure (template). As early as 1986, Chothia and Lesk27 showed that there is a strong

correlation between sequence and structural similarities. This correlation provides the basis of comparative modeling,

allows a coarse assessment of model errors, and also highlights one of its major challenges: modeling the structural

differences between the template and target structures28 (Figure 1).
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Figure 1 Average model accuracy as a function of sequence identity.28 As the sequence identity between the target sequence
and the template structure decreases, the average structural similarity between the template and the target also decreases
(dashed line, triangles).27 Structural overlap is defined as the fraction of equivalent Ca atoms. For the comparison of the model
with the actual structure (filled circles), two Ca atoms were considered equivalent if they belonged to the same residue and were
within 3.5 Å of each other after least-squares superposition. For comparisons between the template structure and the actual
target structure (triangles), two Ca atoms were considered equivalent if they were within 3.5 Å of each other after alignment and
rigid-body superposition. The difference between the model and the actual target structure is a combination of the target–
template differences (green area) and the alignment errors (red area). The figure was constructed by calculating 3993
comparative models based on a single template of varying similarity to the targets. All targets had known (experimentally
determined) structures.28
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4.10.1.5 Comparative Modeling Benefits from Structural Genomics

Comparative modeling stands to benefit greatly from the structural genomics initiative.29 Structural genomics aims to

achieve significant structural coverage of the sequence space with an efficient combination of experimental and

prediction methods.30 This goal is pursued by careful selection of target proteins for structure determination by x-ray

crystallography and NMR spectroscopy, such that most other sequences are within ‘modeling distance’ (e.g., 430%

sequence identity) of a known structure.15,16,29,31 The expectation is that the determination of these structures

combined with comparative modeling will yield useful structural information for the largest possible fraction of

sequences in the shortest possible timeframe. The impact of structural genomics is illustrated by comparative

modeling based on the structures determined by the New York Structural Genomics Research Consortium. For each

new structure, on average, 100 protein sequences without any prior structural characterization could be modeled at

least at the level of the fold.32 Thus, the structures of most proteins will eventually be predicted by computation, not

determined by experiment.

4.10.1.6 Outline

In this review, we begin by describing the various steps involved in comparative modeling. Next, we emphasize two

aspects of model refinement, loop modeling and side-chain modeling, due to their relevance in ligand docking and

rational drug discovery. We then discuss the errors in comparative models. Finally, we describe the role of comparative

modeling in drug discovery, focusing on ligand docking against comparative models. We compare successes of docking

against models and x-ray structures, and illustrate the computational docking against models with a number of

examples. We conclude with a summary of topics that will impact on the future utility of comparative modeling in drug

discovery, including an automation and integration of resources required for comparative modeling and ligand docking.

4.10.2 Steps in Comparative Modeling

Comparative modeling consists of four main steps23 (Figure 2a): (1) fold assignment that identifies similarity between

the target sequence of interest and at least one known protein structure (the template); (2) alignment of the target

sequence and the template(s); (3) building a model based on the alignment with the chosen template(s); and (4)

predicting model errors.
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Figure 2 Comparative protein structure modeling. (a) A flowchart illustrating the steps in the construction of a comparative
model.23 (b) Description of comparative modeling by extraction of spatial restraints as implemented in MODELLER.96 By default,
spatial restraints in MODELLER involve: (1) homology-derived restraints from the aligned template structures; (2) statistical
restraints derived from all known protein structures; and (3) stereochemical restraints from the CHARMM-22 molecular
mechanics force field. These restraints are combined into an objective function that is then optimized to calculate the final
3D structure of the target sequence.

218 Comparative Modeling of Drug Target Proteins
4.10.2.1 Fold Assignment and Sequence–Structure Alignment

Although fold assignment and sequence–structure alignment are logically two distinct steps in the process of

comparative modeling, in practice almost all fold assignment methods also provide sequence–structure alignments. In

the past, fold assignment methods were optimized for better sensitivity in detecting remotely related homologs, often

at the cost of alignment accuracy. However, recent methods simultaneously optimize both the sensitivity and

alignment accuracy. Therefore, in the following discussion, we will treat fold assignment and sequence–structure

alignment as a single protocol, explaining the differences as needed.

4.10.2.1.1 Fold assignment
As mentioned earlier, the primary requirement for comparative modeling is the identification of one or more known

template structures with detectable similarity to the target sequence. The identification of suitable templates is

achieved by scanning structure databases, such as PDB,12 SCOP,19 DALI,33 and CATH,20 with the target sequence as

the query. The detected similarity is usually quantified in terms of sequence identity or statistical measures, such as

E-value or z-score, depending on the method used.

4.10.2.1.2 Three levels of similarity
Sequence–structure relationships are coarsely classified into three different regimes in the sequence similarity

spectrum: (1) the easily detected relationships characterized by 430% sequence identity; (2) the ‘twilight zone,’34

corresponding to relationships with statistically significant sequence similarity in the 10–30% range; and (3) the

‘midnight zone,’34 corresponding to statistically insignificant sequence similarity.

4.10.2.1.3 Sequence–sequence methods
For closely related protein sequences with identities higher than 30–40%, the alignments produced by all methods are

almost always largely correct. The quickest way to search for suitable templates in this regime is to use simple pairwise
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sequence alignment methods such as SSEARCH,35 BLAST,36 and FASTA.35 Brenner et al. showed that these methods

detect only B18% of the homologous pairs at less than 40% sequence identity, while they identify more than 90% of

the relationships when sequence identity is between 30% and 40%.37 Another benchmark, based on 200 reference

structural alignments with 0–40% sequence identity, indicated that BLAST is able to correctly align only 26% of the

residue positions.46

4.10.2.1.4 Sequence–profile methods
The sensitivity of the search and accuracy of the alignment become progressively difficult as the relationships move into

the twilight zone.34,38 A significant improvement in this area was the introduction of profile methods by Gribskov and

co-workers.39 The profile of a sequence is derived from a multiple sequence alignment and specifies residue-type

occurrences for each alignment position. The information in a multiple sequence alignment is most often encoded as

either a position-specific scoring matrix (PSSM)36,40,41 or as a hidden Markov model (HMM).42,43 In order to identify

suitable templates for comparative modeling, the profile of the target sequence is used to search against a database of

template sequences. The profile–sequence methods are more sensitive in detecting related structures in the twilight zone

than the pairwise sequence-based methods; they detect approximately twice the number of homologs under 40% sequence

identity.44–46 The resulting profile–sequence alignments correctly align approximately 43–48% of residues in the 0–40%

sequence identity range46,47; this number is almost twice as large as that of the pairwise sequence methods. Frequently

used programs for profile–sequence alignment are PSI-BLAST,36 SAM,48 HMMER,42 and BUILD PROFILE.49

4.10.2.1.5 Profile–profile methods
As a natural extension, the profile–sequence alignment methods have led to profile–profile alignment methods that

search for suitable template structures by scanning the profile of the target sequence against a database of template

profiles, as opposed to a database of template sequences. These methods have proven to include the most sensitive and

accurate fold assignment and alignment protocols to date.47,50–52 Profile–profile methods detect B28% more relationships

at the superfamily level and improve the alignment accuracy by 15–20% compared to profile–sequence methods.47,53

There are a number of variants of profile–profile alignment methods that differ in the scoring functions they use.47,50,53–59

However, several analyses have shown that the overall performances of these methods are comparable.47,50–52 Some of the

programs that can be used to detect suitable templates are FFAS,60 SP3,53 SALIGN,47 and PPSCAN.49

4.10.2.1.6 Sequence–structure threading methods
As the sequence identity drops below the threshold of the twilight zone, there is usually insufficient signal in the

sequences or their profiles for the sequence-based methods discussed above to detect true relationships.44 Sequence–

structure threading methods are most useful in this regime as they can sometimes recognize common folds, even in the

absence of any statistically significant sequence similarity.21 These methods achieve higher sensitivity by using

structural information derived from the templates. The accuracy of a sequence–structure match is assessed by the

score of a corresponding coarse model and not by sequence similarity, as in sequence comparison methods.21 The

scoring scheme used to evaluate the accuracy is either based on residue substitution tables dependent on structural

features such as solvent exposure, secondary structure type, and hydrogen bonding properties,53,61–63 or on statistical

potentials for residue interactions implied by the alignment.64–68 The use of structural data does not have to be

restricted to the structure side of the aligned sequence–structure pair. For example, SAM-T02 makes use of the

predicted local structure for the target sequence to enhance homolog detection and alignment accuracy.69 Commonly

used threading programs are GenTHREADER,61,70 3D-PSSM,71 FUGUE,63 SP3,53 and SAM-T02 multitrack

HMM.62,69

4.10.2.1.7 Iterative sequence–structure alignment
Yet another strategy is to optimize the alignment by iterating over the process of calculating alignments, building

models, and evaluating models. Such a protocol can sample alignments that are not statistically significant and identify

the alignment that yields the best model. Although this procedure can be time-consuming, it can significantly improve

the accuracy of the resulting comparative models in difficult cases.72

4.10.2.2 Alignment Errors are Unrecoverable

Regardless of the method used, searching in the twilight and midnight zones of the sequence–structure relationship

often results in false negatives, false positives, or alignments that contain an increasingly large number of gaps and
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alignment errors. Improving the performance and accuracy of methods in this regime remains one of the main tasks of

comparative modeling today.73 It is imperative to calculate an accurate alignment between the target–template pair, as

comparative modeling can almost never recover from an alignment error.74

4.10.2.3 Template Selection

After a list of all related protein structures and their alignments with the target sequence have been obtained, template

structures are prioritized depending on the purpose of the comparative model. Template structures may be chosen

purely based on the target–template sequence identity or a combination of several other criteria, such as experimental

accuracy of the structures (resolution of x-ray structures, number of restraints per residue for NMR structures),

conservation of active-site residues, holo-structures that have bound ligands of interest, and prior biological information

that pertains to the solvent, pH, and quaternary contacts. It is not necessary to select only one template. In fact, the

use of several templates approximately equidistant from the target sequence generally increases the model

accuracy.75,76
4.10.3 Model Building

4.10.3.1 Three Approaches to Comparative Model Building

Once an initial target–template alignment is built, a variety of methods can be used to construct a 3D model for the

target protein.23,74,77–80 The original and still widely used method is modeling by rigid-body assembly.78,79,81 This

method constructs the model from a few core regions, and from loops and side chains that are obtained by dissecting

related structures. Commonly used programs that implement this method are COMPOSER,82–85 3D-JIGSAW,86 and

SWISS-MODEL.87 Another family of methods, modeling by segment matching, relies on the approximate positions of

conserved atoms from the templates to calculate the coordinates of other atoms.88–92 An instance of this approach is

implemented in SegMod.91 The third group of methods, modeling by satisfaction of spatial restraints, uses either

distance geometry or optimization techniques to satisfy spatial restraints obtained from the alignment of the target

sequences with the template structures.93–97 Specifically, MODELLER,96,98,99 our own program for comparative

modeling, belongs to this group of methods.

4.10.3.2 MODELLER: Comparative Modeling by Satisfaction of Spatial Restraints

MODELLER implements comparative protein structure modeling by the satisfaction of spatial restraints that include:

(1) homology-derived restraints on the distances and dihedral angles in the target sequence, extracted from its

alignment with the template structures96; (2) stereochemical restraints such as bond length and bond angle

preferences, obtained from the CHARMM-22 molecular mechanics force field100; (3) statistical preferences for

dihedral angles and nonbonded interatomic distances, obtained from a representative set of known protein

structures101; and (4) optional manually curated restraints, such as those from NMR spectroscopy, rules of secondary

structure packing, cross-linking experiments, fluorescence spectroscopy, image reconstruction from electron

microscopy, site-directed mutagenesis, and intuition (Figure 2b). The spatial restraints, expressed as probability

density functions, are combined into an objective function that is optimized by a combination of conjugate gradients

and molecular dynamics with simulated annealing. This model-building procedure is similar to structure determination

by NMR spectroscopy.

4.10.3.3 Relative Accuracy, Flexibility, and Automation

Accuracies of the various model-building methods are relatively similar when used optimally.102,103 Other factors, such

as template selection and alignment accuracy, usually have a larger impact on the model accuracy, especially for models

based on less than 30% sequence identity to the templates. However, it is important that a modeling method allows a

degree of flexibility and automation to obtain better models more easily and rapidly. For example, a method should

allow for an easy recalculation of a model when a change is made in the alignment; it should be straightforward to

calculate models based on several templates; and the method should provide tools for incorporation of prior knowledge

about the target (e.g., cross-linking restraints and predicted secondary structure).
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4.10.4 Refinement of Comparative Models

Protein sequences evolve through a series of amino acid residue substitutions, insertions, and deletions. While

substitutions can occur throughout the length of the sequence, insertions and deletions mostly occur on the surface of

proteins in segments that connect regular secondary structure segments (i.e., loops). While the template structures are

helpful in the modeling of the aligned target backbone segments, they are generally less valuable for the modeling of

side chains and irrelevant for the modeling of insertions such as loops. The loops and side chains of comparative models

are especially important for ligand docking; thus, we discuss them in the following two sections.

4.10.4.1 Loop Modeling

4.10.4.1.1 Definition of the problem
Loop modeling is an especially important aspect of comparative modeling in the range from 30% to 50% sequence

identity. In this range of overall similarity, loops among the homologs vary while the core regions are still relatively

conserved and aligned accurately. Loops often play an important role in defining the functional specificity of a given

protein, forming the active and binding sites. Loop modeling can be seen as a mini protein folding problem because the

correct conformation of a given segment of a polypeptide chain has to be calculated mainly from the sequence of the

segment itself. However, loops are generally too short to provide sufficient information about their local fold. Even

identical decapeptides in different proteins do not always have the same conformation.104,105 Some additional restraints

are provided by the core anchor regions that span the loop and by the structure of the rest of the protein that cradles

the loop. Although many loop-modeling methods have been described, it is still challenging to correctly and confidently

model loops longer than approximately 8–10 residues.98,106

4.10.4.1.2 Two classes of methods
There are two main classes of loop-modeling methods: (1) database search approaches that scan a database of all known

protein structures to find segments fitting the anchor core regions90,107; and (2) conformational search approaches that

rely on optimizing a scoring function.108–110 There are also methods that combine these two approaches.111,112

4.10.4.1.2.1 Database-based loop modeling

The database search approach to loop modeling is accurate and efficient when a database of specific loops is created to

address the modeling of the same class of loops, such as b-hairpins,113 or loops on a specific fold, such as the

hypervariable regions in the immunoglobulin fold.107,114 There are attempts to classify loop conformations into more

general categories, thus extending the applicability of the database search approach.115–117 However, the database

methods are limited because the number of possible conformations increases exponentially with the length of a loop. As

a result, only loops up to 4–7 residues long have most of their conceivable conformations present in the database of

known protein structures.118,119 This limitation is made even worse by the requirement for an overlap of at least one

residue between the database fragment and the anchor core regions, which means that modeling a 5-residue insertion

requires at least a 7-residue fragment from the database.89 Despite the rapid growth of the database of known

structures, it does not seem possible to cover most of the conformations of a 9-residue segment in the foreseeable

future. On the other hand, most of the insertions in a family of homologous proteins are shorter than 10–12 residues.98

4.10.4.1.2.2 Optimization-based methods

To overcome the limitations of the database search methods, conformational search methods were developed.108,109

There are many such methods, exploiting different protein representations, objective functions, and optimization or

enumeration algorithms. The search algorithms include the minimum perturbation method,120 molecular dynamics

simulations,111,121 genetic algorithms,122 Monte Carlo and simulated annealing,123–125 multiple-copy simultaneous

search,126 self-consistent field optimization,127 and enumeration based on graph theory.128 The accuracy of loop

predictions can be further improved by clustering the sampled loop conformations and partially accounting for the

entropic contribution to the free energy.129 Another way of improving the accuracy of loop predictions is to consider the

solvent effects. Improvements in implicit solvation models, such as the Generalized Born solvation model, motivated

their use in loop modeling. The solvent contribution to the free energy can be added to the scoring function for

optimization, or it can be used to rank the sampled loop conformations after they are generated with a scoring function

that does not include the solvent terms.98,130–132
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4.10.4.2 Side-Chain Modeling

4.10.4.2.1 Fixed backbone
Two simplifications are frequently applied in the modeling of side-chain conformations.133 First, amino acid residue

replacements often leave the backbone structure almost unchanged,26 allowing us to fix the backbone during the search

for the best side-chain conformations. Second, most side chains in high-resolution crystallographic structures can be

represented by a limited number of conformers that comply with stereochemical and energetic constraints.134 This

observation motivated Ponder and Richards135 to develop the first library of side-chain rotamers for the 17 types of

residues with dihedral angle degrees of freedom in their side chains, based on 10 high-resolution protein structures

determined by x-ray crystallography. Subsequently, a number of additional libraries have been derived.136–142

4.10.4.2.2 Rotamers
Rotamers on a fixed backbone are often used when all the side chains need to be modeled on a given backbone. This

approach reduces the combinatorial explosion associated with a full conformational search of all the side chains, and is

applied by some comparative modeling78 and protein design approaches.143 However, B15% of the side chains cannot

be represented well by these libraries.144 In addition, it has been shown that the accuracy of side-chain modeling on a

fixed backbone decreases rapidly when the backbone errors are larger than 0.5 Å.145

4.10.4.2.3 Methods
Earlier methods for side-chain modeling often put less emphasis on the energy or scoring function. The function was

usually greatly simplified, and consisted of the empirical rotamer preferences and simple repulsion terms for

nonbonded contacts.138 Nevertheless, these approaches have been justified by their performance. For example, a

method based on a rotamer library compared favorably with that based on a molecular mechanics force field,146 and new

methods continue to be based on the rotamer library approach.147,148 The various optimization approaches include a

Monte Carlo simulation,149 simulated annealing,150 a combination of Monte Carlo and simulated annealing,151 the

dead-end elimination theorem,152,153 genetic algorithms,142 neural network with simulated annealing,154 mean field

optimization,155 and combinatorial searches.138,156,157 Several recent papers focused on the testing of more

sophisticated potential functions for conformational search157,158 and development of new scoring functions for side-

chain modeling,159 reporting higher accuracy than earlier studies.
4.10.5 Errors in Comparative Models

The major sources of error in comparative modeling are discussed in the relevant sections above. The following is a

summary of these errors, dividing them into five categories (Figure 3).

4.10.5.1 Selection of Incorrect Templates

This error is a potential problem when distantly related proteins are used as templates (i.e., less than 30% sequence identity).

Distinguishing between a model based on an incorrect template and a model based on an incorrect alignment with a correct

template is difficult. In both cases, the evaluation methods (below) will predict an unreliable model. The conservation of the

key functional or structural residues in the target sequence increases the confidence in a given fold assignment.

4.10.5.2 Errors due to Misalignments

The single source of errors with the largest impact on comparative modeling is misalignments, especially when the

target–template sequence identity decreases below 30%. Alignment errors can be minimized in two ways. Using the

profile-based methods discussed above usually results in more accurate alignments than those from pairwise sequence

alignment methods. Another way of improving the alignment is iteratively to modify those regions in the alignment that

correspond to predicted errors in the model.75

4.10.5.3 Errors in Regions without a Template

Segments of the target sequence that have no equivalent region in the template structure (i.e., insertions or loops) are

one of the most difficult regions to model. Again, when the target and template are distantly related, errors in the

alignment can lead to incorrect positions of the insertions. Using alignment methods that incorporate structural
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Figure 3 Typical errors in comparative modeling.23 Shown are the typical sources of errors encountered in comparative
models. Two of the major sources of errors in comparative modeling are due to incorrect templates or incorrect alignments with
the correct templates. The modeling procedure can rarely recover from such errors. The next significant source of errors arises
from regions in the target with no corresponding region in the template, i.e., insertions or loops. Other sources of errors, which
occur even with an accurate alignment, are due to rigid-body shifts, distortions in the backbone, and errors in the packing of
side chains.
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information can often correct such errors. Once a reliable alignment is obtained, various modeling protocols can predict

the loop conformation, for insertions of fewer than 8–10 residues.98,106,111,169

4.10.5.4 Distortions and Shifts in Correctly Aligned Regions

As a consequence of sequence divergence, the main-chain conformation changes, even if the overall fold remains the

same. Therefore, it is possible that in some correctly aligned segments of a model, the template is locally different

(o3 Å) from the target, resulting in errors in that region. The structural differences are sometimes not due to

differences in sequence, but are a consequence of artifacts in structure determination or structure determination in

different environments (e.g., packing of subunits in a crystal). The simultaneous use of several templates can minimize

this kind of an error.75,76

4.10.5.5 Errors in Side-Chain Packing

As the sequences diverge, the packing of the atoms in the protein core changes. Sometimes even the conformation of

identical side chains is not conserved – a pitfall for many comparative modeling methods. Side-chain errors are critical if

they occur in regions that are involved in protein function, such as active sites and ligand-binding sites.
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4.10.6 Prediction of Model Errors

The accuracy of the predicted model determines the information that can be extracted from it. Thus, estimating the

accuracy of a model in the absence of the known structure is essential for interpreting it.

4.10.6.1 Initial Assessment of the Fold

As discussed earlier, a model calculated using a template structure that shares more than 30% sequence identity is

indicative of an overall accurate structure. However, when the sequence identity is lower, the first aspect of model

evaluation is to confirm whether or not a correct template was used for modeling. It is often the case, when operating in

this regime, that the fold assignment step produces only false positives. A further complication is that at such low

similarities the alignment generally contains many errors, making it difficult to distinguish between an incorrect

template on one hand and an incorrect alignment with a correct template on the other hand. There are several methods

that use 3D profiles and statistical potentials,65,160,161 which assess the compatibility between the sequence and

modeled structure by evaluating the environment of each residue in a model with respect to the expected

environment, as found in native high-resolution experimental structures. These methods can be used to assess whether

or not the correct template was used for the modeling. They include VERIFY3D,160 PROSAII,162 HARMONY,163

ANOLEA,164 and DFIRE.165

Even when the model is based on alignments that have 430% sequence identity, other factors, including the

environment, can strongly influence the accuracy of a model. For instance, some calcium-binding proteins undergo large

conformational changes when bound to calcium. If a calcium-free template is used to model the calcium-bound state of

the target, it is likely that the model will be incorrect, irrespective of the target–template similarity or accuracy of the

template structure.166

4.10.6.2 Self-Consistency

The model should also be subjected to evaluations of self-consistency to ensure that it satisfies the restraints used to

calculate it. Additionally, the stereochemistry of the model (e.g., bond lengths, bond angles, backbone torsion angles,

and nonbonded contacts) may be evaluated using programs such as PROCHECK167 and WHATCHECK.168 Although

errors in stereochemistry are rare and less informative than errors detected by statistical potentials, a cluster of

stereochemical errors may indicate that there are larger errors (e.g., alignment errors) in that region.
4.10.7 Evaluation of Comparative Modeling Methods

It is crucial for method developers and users alike to assess the accuracy of their methods. An attempt to address this

problem has been made by the Critical Assessment of Techniques for Proteins Structure Prediction (CASP)170 and the

Critical Assessment of Fully Automated Structure Prediction (CAFASP) experiments.171 However, both CASP and

CAFASP assess methods only over a limited number of target protein sequences.102,172 To overcome this limitation, two

additional evaluation experiments have been described, LiveBench172 and EVA.173,174 EVA is a large-scale and

continuously running web server that automatically assesses protein structure prediction servers in the categories of

secondary structure prediction, residue–residue contact prediction, fold assignment, and comparative modeling. The

aims of EVA are: (1) to evaluate continuously and automatically blind predictions by prediction servers, based on

identical and sufficiently large data sets; (2) to provide weekly updates of the method assessments on the web; and (3)

to enable developers, nonexpert users, and reviewers to determine the performance of the tested prediction servers.
4.10.8 Applications of Comparative Models

There is a wide range of applications of protein structure models (Figure 4).1,175–180 For example, high- and medium-

accuracy comparative models are frequently helpful in refining functional predictions that have been based on a

sequence match alone because ligand binding is more directly determined by the structure of the binding site than by

its sequence. It is often possible to predict correctly features of the target protein that do not occur in the template

structure.181,182 For example, the size of a ligand may be predicted from the volume of the binding site cleft and the

location of a binding site for a charged ligand can be predicted from a cluster of charged residues on the protein.

Fortunately, errors in the functionally important regions in comparative models are many times relatively low because
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Figure 4 Accuracy and applications of protein structure models.9 Shown are the different ranges of applicability of
comparative protein structure modeling, threading, and de novo structure prediction, their corresponding accuracies, and their
sample applications.
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the functional regions, such as active sites, tend to be more conserved in evolution than the rest of the fold. Even low-

accuracy comparative models may be useful, for example, for assigning the fold of a protein. Fold assignment can be

very helpful in drug discovery, because it can shortcut the search for leads by pointing to compounds that have been

previously developed for other members of the same family.183,184

4.10.8.1 Comparative Models versus Experimental Structures in Virtual Screening

The remainder of this review focuses on the use of comparative models for ligand docking (see also Chapter

4.19.2.5 ).185–187 It is widely accepted that docking to comparative models is more challenging and less successful than

docking to crystallographic structures. However, it seems that surprisingly little work has been done to obtain

quantitative information about the accuracy of docking to comparative models, to determine in detail why the results

are inferior to those obtained with crystal structures, and to improve methods for docking to comparative models.

We begin our discussion with a study by McGovern and Shoichet188 that compared the success of docking against

three different conformations of 10 enzymes: holo (ligand-bound), apo, and homology modeled. All 10 enzymes had

known structures in both the holo and apo form. Comparative models for each of these enzymes were taken from

MODBASE, a database of comparative models for all protein sequences that are detectably related to at least one

known structure. The models were based on single template structures with sequence identities in the range of

28–87%. Each enzyme had multiple known inhibitors in the MDL Drug Data Report (MDDR) database, a library of

drug-like molecules where each molecule has been annotated by the receptor to which it binds. Success of the docking,

carried out with the Shoichet group’s version of DOCK,189,190 was assessed by enrichment: the ability to distinguish

known inhibitors from a large set of B100 000 ‘decoys’ relative to random selection. As might be expected, the holo

structures were the best at selecting the known ligands from among the MDDR decoys based on the docking score.

Unexpectedly, the comparative models often ranked known ligands among the top-scoring database molecules; in four

targets, the enrichment was 20 times higher than expected by chance.188 In one case, purine nucleoside phosphorylase,

the modeled structure actually performed better than the holo structure. For the comparative model, 25% of the known

ligands were found in the top 1.2% of the ranked database, whereas for the holo conformation, 2.8% of the ranked list

had to be searched before 25% of the ligands were found. In another example, the holo structure of thymidylate

synthase correctly recognized ligands similar in size to the ligand captured in the x-ray structure, but not ligands that

were markedly different from it. In contrast, the binding sites in the modeled conformations were more spacious and

could in fact correctly detect and accommodate larger ligands than the holo receptor (Figure 5). Thus, it appears that,

while x-ray crystallographic structures remain the first choice in docking, many comparative models seem sufficiently

accurate to rank highly known ligands from among a very large list of possible alternatives.
Trp83
Ala263

Asp169
Phe176

Ile79

Asp169 Phe176

lle79

Trp83Ala262

His51
His51

Figure 5 Docking predictions for thymidylate synthase. Shown are the x-ray structure of the holo receptor in gray, the
modeled receptor in blue, the docked conformation of the ligand in the holo structure in green, and the docked conformation of
the ligand in the modeled structure in yellow. A second holo complex, not used for docking but bound to a larger ligand, is also
shown with protein atoms in white and ligand atoms in purple. The ligand in the holo receptor was smaller in size than many of
the known ligands in the database. Consequently, while the holo structure yielded better enrichment of ligands that were similar
to the native ligand, it was unable to dock larger ligands correctly. The modeled receptors, in contrast, with their more spacious
binding sites, showed better competence in such cases. (Courtesy of Brian Shoichet.)
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4.10.8.2 Use of Comparative Models to Obtain Novel Drug Leads

Despite problems with comparative modeling and ligand docking, comparative models have been successfully used in

practice in conjunction with virtual screening to identify novel inhibitors. We briefly review a few of these success

stories’ to highlight the potential of the combined comparative modeling and ligand-docking approach to drug discovery

(see 4.19 Virtual Screening).

Comparative models have been employed to aid rational drug design against parasites for more than 20

years.122,191–193 As early as 1993, Ring et al.122 used comparative models for computational docking studies that

identified low micromolar nonpeptidic inhibitors of proteases in malarial and schistosome parasite lifecycles. Li et al.191

subsequently used similar methods to develop nanomolar inhibitors of falcipain that are active against chloroquine-

resistant strains of malaria. In a study by Selzer et al.193 comparative models were used to predict new nonpeptide

inhibitors of cathepsin L-like cysteine proteases in Leishmania major. Sixty-nine compounds were selected by DOCK 3.5

as strong binders to a comparative model of protein cpB, and of these, 21 had experimental IC50 values below 100 mmol

L� 1. Finally, in a recent study by Que et al.192 comparative models were used to rationalize ligand-binding affinities of

cysteine proteases in Entamoeba histolytica. Specifically, this work provided an explanation for why proteases ACP1 and

ACP2 had substrate specificity similar to that of cathepsin B, although their overall structure is more similar to that of

cathepsin D.

Enyedy et al.194 discovered 15 new inhibitors of matriptase by docking against its comparative model. The

comparative model employed thrombin as the template, sharing only 34% sequence identity with the target sequence.

Moreover, some residues in the binding site are significantly different; a trio of charged Asp residues in matriptase

correspond to 1 Tyr and 2 Trp residues in thrombin. Thrombin was chosen as the template, in part because it prefers

substrates with positively charged residues at the P1 position, as does matriptase. The comparative model was

constructed using MODELLER and refined with MD simulations in CHARMM. The National Cancer Institute

database was used for virtual screening that targeted the S1 site with the DOCK program. The 2000 best-scoring

compounds were manually inspected to identify positively charged ligands (the S1 site is negatively charged), and

69 compounds were experimentally screened for inhibition, identifying the 15 inhibitors. One of them, hexamidine,

was used as a lead to identify additional compounds selective for matriptase relative to thrombin. The Wang group has

also used similar methods to discover seven new, low-micromolar inhibitors of Bcl-2, using a comparative model based

on the NMR solution structure of Bcl-XL.195

Schapira et al.196 discovered a novel inhibitor of a retinoic acid receptor by virtual screening using a comparative

model. In this case, the target (RAR-a) and template (RAR-g) are very closely related; only three residues in the

binding site are not conserved. The ICM program was used for virtual screening of ligands from the Available

Chemicals Directory (ACD). The 5364 high-scoring compounds identified in the first round were subsequently docked

into a full atom representation of the receptor with flexible side chains to obtain a final set of 300 good-scoring hits.

These compounds were then manually inspected to choose the final 30 for testing. Two novel agonists were identified,

with 50-nanomolar activity.

Zuccotto et al.197 identified novel inhibitors of dihydrofolate reductase (DHFR) in Trypanosoma cruzi (the parasite

that causes Chagas disease) by docking into a comparative model based on B50% sequence identity to DHFR in

L. major, a related parasite. The virtual screening procedure used DOCK for rigid docking of over 50 000 selected

compounds from the Cambridge Structural Database (CSD). Visual inspection of the top 100 hits was used to select

36 compounds for experimental testing. This work identified several novel scaffolds with micromolar IC50 values. The

authors report attempting to use virtual screening results to identify compounds with greater affinity for T. cruzi DHFR

than human DHFR, but it is not clear how successful they were.

Following the recent outbreak of the severe acute respiratory syndrome (SARS) in 2003, Anand et al.198 used the

experimentally determined structures of the main protease from human coronavirus (MPRO) and an inhibitor complex

of porcine coronavirus (transmissible gastroenteritis virus, TGEV) MPRO to calculate a comparative model of the SARS

coronavirus MPRO. This model then provided a basis for the design of anti-SARS drugs. In particular, a comparison of

the active site residues in these and other related structures suggested that the AG7088 inhibitor of the human

rhinovirus type 2 3C protease is a good starting point for design of anticoronaviral drugs.199

Comparative models of protein kinases combined with virtual screening have also been intensely used for drug

discovery.200–204 The 4500 kinases in the human genome, the relatively small number of experimental structures

available, and the high level of conservation around the important adenosine triphosphate-binding site make

comparative modeling an attractive approach toward structure-based drug discovery.

G protein-coupled receptors are another interesting class of proteins that in principle allow drug discovery through

comparative modeling.205–209 Approximately 40% of current drug targets belong to this class of proteins. However,
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these proteins have been extremely difficult to crystallize and most comparative modeling has been based on the

atomic resolution structure of the bovine rhodopsin.210 Despite this limitation, a rather extensive test of docking

methods with rhodopsin-based comparative models shows encouraging results (see 4.26 Seven Transmembrane

G Protein-Coupled Receptors: Insights for Drug Design from Structure and Modeling).
4.10.9 Future Directions

Although reports of successful virtual screening against comparative models are encouraging, such efforts are not yet a

routine part of rational drug design. Even the successful efforts appear to rely strongly on visual inspection of the docking

results. Much work remains to be done to improve the accuracy, efficiency, and robustness of docking against comparative

models. Despite assessments of relative successes of docking against comparative models and native x-ray structures,188,202

surprisingly little has been done to compare the accuracy achievable by different approaches to comparative modeling and

to identify the specific structural reasons why comparative models generally produce less accurate virtual screening results

than the holo structures. Among the many issues that deserve consideration are the following:

* The inclusion of cofactors and bound water molecules in protein receptors is often critical for success of virtual

screening; however, cofactors are not routinely included in comparative models
* Most docking programs currently retain the protein receptor in a completely rigid conformation. While this approach

is appropriate for ‘lock-and-key’ binding modes, it does not work when the ligand induces conformational changes in

the receptor upon binding. A flexible receptor approach is necessary to address such induced-fit cases211,212

* The accuracy of comparative models is frequently judged by the Ca root mean square error or other similar measures

of backbone accuracy. For virtual screening, however, the precise positioning of side chains in the binding site is

likely to be critical; measures of accuracy for binding sites are needed to help evaluate the suitability of comparative

modeling algorithms for constructing models for docking
* Knowledge of known inhibitors, either for the target protein or the template, should help to evaluate and improve

virtual screening against comparative models. For example, comparative models constructed from holo’ template

structures implicitly preserve some information about the ligand-bound receptor conformation
* Improvement in the accuracy of models produced by comparative modeling will require methods that finely sample

protein conformational space using a free energy or scoring function that has sufficient accuracy to distinguish the

native structure from the nonnative conformations. Despite many years of development of molecular simulation

methods, attempts to refine models that are already relatively close to the native structure have met with relatively

little success. This failure is likely to be due in part to inaccuracies in the scoring functions used in the simulations,

particularly in the treatment of electrostatics and solvation effects. A combination of physics-based energy function

with the statistical information extracted from known protein structures may provide a route to the development of

improved scoring functions
* Improvements in sampling strategies are also likely to be necessary, for both comparative modeling and flexible

docking

4.10.10 Automation and Availability of Resources for Comparative Modeling and
Ligand Docking

Given the increasing number of target sequences for which no experimentally determined structures are available, drug

discovery stands to gain immensely from comparative modeling and other in silico methods. Despite unsolved problems

in virtually every step of comparative modeling and ligand docking, it is highly desirable to automate the whole process,

starting with the target sequence and ending with a ranked list of its putative ligands. Automation encourages

development of better methods, improves their testing, allows application on a large scale, and makes the technology

more accessible to both experts and nonspecialists alike. Through large-scale application, new questions, such as those

about ligand-binding specificity, can in principle be addressed. Enabling a wider community to use the methods

provides useful feedback and resources toward the development of the next generation of methods.

There are a number of servers for automated comparative modeling (Table 1). However, in spite of automation, the

process of calculating a model for a given sequence, refining its structure, as well as visualizing and analyzing its family

members in the sequence and structure spaces can involve the use of scripts, local programs, and servers scattered

across the internet and not necessarily interconnected. In addition, manual intervention is generally still needed to



Table 1 Programs and web servers useful in comparative protein structure modeling

Name World Wide Web address

Databases

BAliBASE222 http://bips.u-strasbg.fr/en/Products/Databases/BAliBASE/

CATH20 http://www.biochem.ucl.ac.uk/bsm/cath/

DBALI215 http://www.salilab.org/dbali

GENBANK14 http://www.ncbi.nlm.nih.gov/Genbank/

GENECENSUS223 http://bioinfo.mbb.yale.edu/genome/

MODBASE32 http://www.salilab.org/modbase/

PDB12 http://www.rcsb.org/pdb/

PFAM17 http://www.sanger.ac.uk/Software/Pfam/

SCOP19 http://scop.mrc-lmb.cam.ac.uk/scop/

SwissProt224 http://www.expasy.org

Uniprot13 http://www.uniprot.org

Template search

123D225 http://123d.ncifcrf.gov/

3D pssm71 http://www.sbg.bio.ic.ac.uk/B3dpssm

BLAST36 http://www.ncbi.nlm.nih.gov/BLAST/

DALI33 http://www2.ebi.ac.uk/dali/

FastA226 http://www.ebi.ac.uk/fasta33/

FFAS0360 http://ffas.ljcrf.edu/

PREDICTPROTEIN227 http://cubic.bioc.columbia.edu/predictprotein/

PROSPECTOR67 http://www.bioinformatics.buffalo.edu/current buffalo/skolnick/prospector.html

PSIPRED228 http://bioinf.cs.ucl.ac.uk/psipred/

RAPTOR68 http://genome.math.uwaterloo.ca/Braptor/

SUPERFAMILY229 http://supfam.mrc-lmb.cam.ac.uk/SUPERFAMILY/

SAM-T0269 http://www.soe.ucsc.edu/research/compbio/HMM-apps/

SP353 http://phyyz4.med.buffalo.edu/

SPARKS2230 http://phyyz4.med.buffalo.edu/

THREADER231 http://bioinf.cs.ucl.ac.uk/threader/threader.html

UCLA-DOE FoLD SERVER232 http://fold.doe-mbi.ucla.edu

Target–template alignment

BCM SERVERF233 http://searchlauncher.bcm.tmc.edu

BLOCK MAKERF234 http://blocks.fhcrc.org/

CLUSTALW235 http://www2.ebi.ac.uk/clustalw/

COMPASS57 ftp://iole.swmed.edu/pub/compass/

FUGUE63 http://www-cryst.bioc.cam.ac.uk/fugue

MULTALIN236 http://prodes.toulouse.inra.fr/multalin/

MUSCLE237 http://www.drive5.com/muscle

SALIGN213 http://www.salilab.org/modeller

SEA238 http://ffas.ljcrf.edu/sea/

TCOFFEE239 http://www.ch.embnet.org/software/TCoffee.html

USC SEQALN240 http://www-hto.usc.edu/software/seqaln

Modeling

3d-jigsaw86 http://www.bmm.icnet.uk/servers/3djigsaw/

COMPOSER83 http://www.tripos.com

CONGEN121 http://www.congenomics.com/

ICM123 http://www.molsoft.com

JACKAL241 http://trantor.bioc.columbia.edu/programs/jackal/

DISCOVERY STUDIO http://www.accelrys.com

MODELLER96 http://www.salilab.org/modeller/

continued
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Table 1 Continued

Name World Wide Web address

SYBYL http://www.tripos.com

SCWRL147 http://dunbrack.fccc.edu/SCWRL3.php

SNPWEB213 http://salilab.org/snpweb

SWISS-MODEL87 http://www.expasy.org/swissmod

WHAT IF242 http://www.cmbi.kun.nl/whatif/

Prediction of model errors

ANOLEA164 http://protein.bio.puc.cl/cardex/servers/

AQUA243 http://urchin.bmrb.wisc.edu/Bjurgen/aqua/

BIOTECH244 http://biotech.embl-heidelberg.de:8400

ERRAT245 http://www.doe-mbi.ucla.edu/Services/ERRAT/

PROCHECK167 http://www.biochem.ucl.ac.uk/Broman/procheck/procheck.html

ProsaII162 http://www.came.sbg.ac.at

PROVE246 http://www.ucmb.ulb.ac.be/UCMB/PROVE

SQUID247 http://www.ysbl.york.ac.uk/Boldfield/squid/

VERIFY3D160 http://www.doe-mbi.ucla.edu/Services/Verify 3D/

WHATCHECK168 http://www.cmbi.kun.nl/gv/whatcheck/

Methods evaluation

CAFASP171 http://cafasp.bioinfo.pl

CASP248 http://predictioncenter.llnl.gov

CASA249 http://capb.dbi.udel.edu/casa

EVA174 http://cubic.bioc.columbia.edu/eva/

LiveBench172 http://bioinfo.pl/LiveBench/

External resources
PDB, Uniprot, GENBANK, NR, PIR, INTERPRO, Kinase resource

UCSC Genome browser, CHIMERA, Pfam, SCOP, CATH

ICEDB
Database/LIMS

http://nysgxro.org
Tracks targets for structural 

genomics by NYSGXRC

MODPIPE
Program

Automatically calculates
comparative models of

many protein sequences

EVA
Web server

http://salilab.org/eva
Evaluates and ranks web 

servers for protein structure
prediction

DBALI
Database

http://salilab.org/dbali
Contains a comprehensive 
set of pairwise and multiple
structure-based alignments

LIGBASE
Database

Ligand-binding sites and
inheritance (accessible

through MODBASE)

MODLOOP
Web server

http://salilab.org/modloop
Models loops in proteins 

structures

CCPR
Center for computational

proteomics research
http://www.ccpr.ucsf.edu

PIBASE
Database

http://salilab.org/pibase
Contains structurally 

defined protein interfaces

LS-SNP
Web server

http://salilab.org/LS-SNP
Predicts functional impact

of residue substitution

MODBASE
Database

http://salilab.org/modbase
Fold assignments, alignments
models, model assessments 

for all sequences related 
to a known structure

MODWEB
Web server

http://salilab.org/modweb
Provides a web interface to

MODPIPE

MODELLER
Program

http://salilab.org/modeller
Implements most 

operations in 
comparative modeling

Figure 6 An integrated set of resources for comparative modeling.32 Various databases and programs required for
comparative modeling and docking are usually scattered over the internet, and require manual intervention or a good deal of
expertise to be useful. Automation and integration of these resources are efficient ways to put these resources in the hands of
experts and nonspecialists alike. We have outlined a comprehensive interconnected set of resources for comparative modeling
and hope to integrate it with a similar effort in the area of ligand docking made by the Shoichet group.220
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maximize the accuracy of the models in the difficult cases. The two main repositories for precomputed comparative

models, SWISS-MODEL87 and MODBASE,31 begin to address these deficiencies. They provide access to web-based

comparative modeling tools, cross-links to other sequence and structure databases, and annotations of sequences and

their models.

A schematic of our own attempt at integrating several useful tools for comparative modeling is shown in

Figure 6.32,213 MODBASE is a comprehensive database that contains predicted models for domains in approximately

one-half of all B2.1 million known protein sequences. The models were calculated using MODPIPE28,213 and

MODELLER.96 The web interface to the database allows flexible querying for fold assignments, sequence–structure

alignments, models, and model assessments. An integrated sequence–structure viewer, Chimera,214 allows inspection

and analysis of the query results. Models can also be calculated using MODWEB,213,250 a web interface to MODPIPE

and stored in MODBASE to facilitate sharing, presentation, distribution, and annotation. For example, MODBASE

contains binding site predictions for small ligands and a set of predicted interactions between pairs of modeled

sequences from the same genome. Other resources associated with MODBASE include a comprehensive database of

multiple protein structure alignments (DBALI),215 a server for modeling of loops in protein structures

(MODLOOP),216,251 structurally defined ligand-binding sites,217 structurally defined binary domain interfaces

(PIBASE),218,252 predictions of ligand-binding sites, interactions between yeast proteins, and functional consequences

of human nsSNPs (LS-SNP).175,219,253

Compared to protein structure prediction, the attempts at automation and integration of resources in the field of

docking for virtual screening are still in their nascent stages. One of the recent successful efforts in this direction is

ZINC,220 a publicly available database of commercially available druglike compounds. ZINC contains more than

3.3 million ‘ready-to-dock’ compounds organized in several subsets and allows the user to query the compounds by

molecular properties and constitution. In the future, ZINC will rely on DOCKBLASTER that will enable end-users to

dock the compounds against their target structures using DOCK.189,190

In the future, we will no doubt see efforts to improve the accuracy of comparative modeling and ligand docking. But

perhaps more importantly, the two techniques will be integrated into a single protocol for more accurate and automated

docking of ligands against sequences without known structures. As a result, the number and variety of applications of

both comparative modeling and ligand docking will continue to increase.
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