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Abstract. Known protein sequences outnumber known protein structures by
more than two orders of magnitude. Given this huge sequence-structure
gap, most protein structures need to be predicted by computational methods
rather than determined by experimental techniques. This chapter outlines
various protein structure modeling approaches and associated resources.
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1. Introduction

Cellular functions are dependent on the three-dimensional (3D) structures of
proteins and their complexes with small molecules and other macromolecules.
Knowing the structures of the proteins is thus crucial for the understanding
of cellular processes. The 3D structures of the proteins and their complexes
are best determined by experimental methods that yield solutions at atomic
resolution, such as x-ray crystallography and nuclear magnetic resonance
(NMR) spectroscopy. However, despite recent advances in the application
of such techniques in high-throughput mode, experimental structural char-
acterization remains an expensive and time-consuming task (Chandonia and
Brenner, 2006).
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The publicly available Protein Data Bank (PDB) currently contains only
~50,000 structures (Berman et al., 2007). In contrast, rapid improvenients in
genome sequencing resulted in approximately five million protein sequences,
including the complete genetic blueprints of humans and hundreds of other
organisms (Bairoch et al., 2005; Benson et al., 2005). This wide sequence-
structure gap can only be bridged by computational means.

Fortunately, domains in protein sequences are evolving gradually and
can thus be clustered into a relatively small number of families with similar
sequences and structures (Vitkup et al. 2001; Chandonia and Breaner 2005b).
For instance, ~80% of all sequences in the UniProt database can be clustered
into approximately 10,000 families (Bru et al., 2005; Letunic et al.. 2006:
Finn et al., 2008). Similarly, all the structures in the PDB can be classified
into approximately 1,000 distinct folds (Andreeva et al., 2004; Pearl ct al.,
2005). Many computational methods for protcin structure modeling seek 1o
exploit these evolutionary relationships.

Computational approaches to protein structure prediction are greatly
facilitated by the structural genomics initiative (Liu et al., 2007; Moult, 2008).
Structural genomics aims to maximize the structural coverage of the sequence
space by experimentally determining the representative structures for as many
families as possible, thus allowing accurate modeling of the remaining
members of these families (Sali, 1998). Currently, most targets for experi-
mental structure determination are chosen from the largest protein families
such that, in combination with computational methods, each new structure
yields useful structural information for the largest possible fraction of
sequences in the shortest possible time frame (Chandonia and Brenner
2005a).

2. Computational structure determination

There are three main types of computational protein structure modeling
methods. First, ab initio methods aim to predict the structure of a target pro-
tein purely from its primary sequence using principles of physics that govem
protein folding and/or using information derived from known structures but
without relying on any evolutionary relationship to known folds (Simons
et al., 1999; Das and Baker, 2008). Currently, these methods can only be
applicd to individual domains of less than approximately 150 residues
(Baker and Sali, 2001).

Second, homology or comparative modeling methods rely on the fact
that similar sequences adopt similar 3D structures. Comparative modeling
consists of four main sieps (Marnti-Renem et al., 2000): (i) fold assignment
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that identifies similarity between the target sequence of interest and at least
one known protein structure (the template); (ii) alignment of the target
sequence and the template(s); (iii) building an atomic model of the targct
based on the alignment with the chosen template(s); and (iv) predicting
errors in the model. The first two steps, fold assignment and sequence-
alignment, are frequently achieved by sequence-structure threading methods
that seek to assess a coarse model derived by threading the target sequence
through cach structure within a library of protein folds (templates). The
threading methods are most useful when the similarity between a target
sequence and any of the known structures is not statistically significant
(Godzik, 2003). Threading methods achieve higher sensitivity than sequence
comparison methods by using structural information derived from the
templates. Comparative modeling is the most accurate approach that can
be easily applied on a large-scale to address the sequence-structure gap.
Though these three classes of methods seem to address distinct regimes of
the structure prediction problem, the divisions between them are increasingly
being blurred. State-of-the-art modeling methods tend to employ the best
features of each of these methods to improve the accuracy of the resulting
models.

Finally, a third group of methods, recently receiving a lot of attention, is
the “integrative” or “hybrid” methods that combine information from a
varied set of computational and experimental sources, including those listed
above (Alber et al., 2008).

3. Geometrical accuracy of comparative protein structurc models

We now focus on comparative protein structure modeling. The geometrical
accuracy of comparative models can be estimated by building models
for sequences with known structures and comparing them to their native
structures. Specifically, a measure of accuracy is usually plotted as a func-
tion of the sequence identity of the target-template alignment that was used
to calculate the target model (Fig. 1).

Based on such comparisons, sequence-structure relationships are coarsely
classified into three different regimes in the scquence similarity spectrum:
(i) the casily detected relationships characterized by >30% sequence identity,
(ii) the “twilight zone” (Rost, 1999) corresponding to relationships with
statistically significant sequence similarity in the 10-30% rmange, and (jii) the
“midnight zone” (Rost, 1999) comesponding to statistically insignificant
sequence similarity ~ the regime where threading methods show the greatest
promise.
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Figure 1. The median accuracy of comparative models plotted as a function of scquence
identity. Structural overlap is defined as the fraction of cquivatemt C° aloms. For the
comparison of the model with the native structure (filled circles). two C° atoms were
considered equivalent if they belonged to the sante residue and were within 3.5 A of cach
other afler least-squares supemosition. For comparisons between the native siruclure and the
template used for modeling (squares), two C° atoms were considered cquivalent if they were
within 3.5 A of cach other after a structural alignment. The difference between the model
and the actual target siructure is a combination of the larget-template differcnoes (dark gray
arca) und the alignment crrors (light gray area). The lower-pancl indicates the most
commonly seen model errors. The data was derived by analyzing approximately | million
maodels produced by MODPIPE far sequences with known siructures.

Modecls based on alignments with >30% sequence identity almost always
have the correct fold. On average, such models also usually have >70-75%
of the backbone atoms correctly modeled with a root-mean-squared-deviation
(RMSD) of less than 3.5 A (Fig. ). However, as the sequence identity drops
below 30%, even evolutionarily related proteins tend to show significant
differences in their structures. These differences lead to errors in the align-
ment that, in tum, decrease the accuracy of the resulting model. Nevertheless,
state-of-the-art alignment methods, including profile-scquence, profite~profile
methods and structure-based environment dependent substitution matrices,
have significantly improved the accuracy of such alignments (Shi et al.,
2001; Wang and Dunbrack, 2004; Soding, 2005; Zhou and Zhou, 2005; Wu
and Zhang, 2008). On average, it is not uncommon for models based on
alignments with 20-30% sequence identity to have more than half the back-
bone atoms modeled accurately. For most alignments below 20% sequence
identity, it still remains a challenge to calculate an accurate alignment. Geltting
a model that is close to the native structure, in this regime of sequence
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identity. involves exploring the conformational space without reliance on
the alignment. There have been recent reponts of success in addressing this
problem (Bradley et al., 2005; Misura et al., 2006; Chen and Skolnick, 2008:
Zhang, 2008). However, such approaches involve computationally expensive
search strategies that prevent their application on a large-scale.

4. Prediction of model accurncy

The accuracy of the predicted model determines the information that can be
extracted from it. Thus, estimating the accuracy of a model in the absence
of the known structure is essential for its interpretation. As discussed above,
a model calculated using a template structure that shares more than 30%
sequence identity is indicative of an overall accurate structure (i.e.. RMSD
of the backbone atems when compared to the native structure is within
~0.5-3.0 A).

It is generally useful to assess crrors in (i) the choice of template
structures, (i) the alignment, (iii) the modeling of loops, (iv) rigid-body
shifts and distortions, and (v) the packing of side-chains. Thus, a number of
assessment scores have been developed that specialize in evaluating specific
aspects of protein structure models, such as: (i) determining whether or not
a model has the correct fold (Tanaka and Scheraga, 1976: Sippl, 1993;
Miyazawa and Jernigan, 1996; Domingues et al., 1999; Melo et al., 2002);
(ii) discriminating between the native and near-native states (Lazaridis and
Karplus. 1999; Gatchell ct al., 2000; Vorobjev and Hermans, 2001; Tsai
et al., 2003; Zhang ct al., 2004; Shen and Sali, 2006); and (iiii) selecting the
most native-like model in a set of decoys that does not contain the native
structure (Shortle et al., 1998; Eramian et al., 2006). Different measures
to predict crrors in a protein structure perform best at different levels of
accuracy. For instance, physics-based force-fields may be helpful at iden-
lifying the best model when all models are very close to the native state
(<1.5 A RMSD over all backbone C° atoms, corresponding to ~85% target-
template sequence identity). In contrast, coarse-grained scores such as atomic
distance-dependent statistical potentials have been shown to have the greatest
ability to differentiate between models in the ~3 A C* RMSD range. Tests
show that such scores are often able to identify a model within 0.5 A C*
RMSD of the most accurate model produced (Eramian et al., 2006).

5. Evaluation of protein structure modeling methods

Itis crucial for method developers and users alike 1o assess the accuracy of
their methods. An attempt to address this problem has been made by the
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CASP (Critical Assessment of Techniques for Proteins Structure Prediction)
experiments (Kryshtafovych ct al., 2005). These biannual competitions acquire
experimentally determined protein structures before they are released to the
public and allow participants to predict the structures, which are then eva-
luated by human experts. However, the major limitation of this competition
is that it can assess methods only over a limited number of target protein
sequences (Bujnicki et al., 2001; Marti-Renom et al., 2002) and only once
every 2 years. To overcome these limitations, two additional evaluation
experiments have been described, LiveBench (Bujnicki et al., 2001) and
EVA (Eyrich et al., 2001; Koh ct al., 2003), which continuously evaluate
participating modeling web-servers over a cumulative period of time. For
example, the aims of EVA are (i) to evaluate continuously and automatically
blind predictions by prediction servers, based on identical and sufficiently
large data sets; (ii) 1o provide weekly updates of the method assessments on
the web; and (iii) to enable developers, non-expert users, and reviewers 1o
determine the performance of the tested prediction servers.

6. Genome-scale protein structure modeling and databases

6.1. LARGE-SCALE PROTEIN STRUCTURE MODELING

There are several automated modeling methods, available through the inter-
net, as cvidenced by the increasing number of web-servers that participate
in the CASP competitions. However, bridging the widening sequence-
structure gap requires the development of completely automated, stable,
reliable and, most importantly, scalable modeling methods than can be
applicd to millions of sequences. Currently, there are at least three such large-
scale cfforts that have been applicd to entire genomes, including SWISS-
MODEL (Schwede et al., 2003), MODPIPE (Eswar ct al., 2003), and FAMS
(Takeda-Shitaka et al., 2005). Results of such large-scale calculations indi-
cate that it is currently possible to model at least one domain for over half of
all the sequences in most genomes.

6.2. DATABASES OF PROTEIN STRUCTURE MODELS

Depositions to the PDB are restricled to atomic coordinates that are sub-
stantially determined by experimental measurements on specimens containing
biological macromolecules (Berman et al., 2007). However, as mentioned
abave, several millions of comparative protein models have been generated
for the protein sequences contained in the UniProtKB database using the
experimentally determined structures in PDB. These models are disseminated
to the community through individual databases such as MODBASE (Pieper
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et al. 2006), SWISS-MODEL REPOSITORY (Kopp and Schwede 2006),
and FAMSBASE (Yamaguchi et al., 2003). Databases of annotated com-
parative models increase the efficiency for expert users, atllow cross-referencing
with other (non-structure-centric) resources, and make comparative models
accessible to non-experts.

The Protcin Model Portal (http://www.proteinmodelportal.org) has
recently been developed as part of the PSI Structural Genomics Knowledge
Base to provide an integrated access to the various databases containing
structural information and thereby implementing the first step of the com-
munity workshop recommendation (Kouranov et al. 2006) on archiving
structural models of biological macromolecules. Currently, models cal-
culated by the six structural genomics centers, MODBASE, and SWISS-
MODEL Repository are accessible through a single search interface.

7. Integrative or hybrid modcling techniques

Biological function cannot be provided by a single protein molecule in
isolation. It is the result of stable or transient interactions among individual
proteins and other molecules in the cell. Most of these interactions remain
uncharacterized by traditional structural biology techniques such as X-ray
crystallography and NMR spectroscopy. This gap is being bridged by several
cmerging experimental approaches that vary in terms of the information
they provide (Robinson et al., 2007). For example, the stoichiometry and
composition of protein components in an assembly can be determined by
methods such as quantitative immunoblotting and mass spectromeiry. The
shape of the assembly can be revealed by electron microscopy and small
angle X-ray scattering. The positions of the components can be elucidated
by cryo-electron microscopy and labeling techniques. Whether or not com-
ponents interact with cach other can be measured by mass spectrometry,
yeast two-hybrid and affinity purification. Relative orientations of components
and information about interacting residues can be inferred from cryo-clectron
microscopy, hydrogen/deuterium exchange, hydroxyl radical footprinting,
and chemical-crosslinking (Alber et al., 2008) (Fig. 2).

When approaches dominated by a single source of information fail,
simultaneous consideration of all available information about the composition
and structure of a given protein or assembly, irrespective of its source, can
sometimes be sufficient 10 calculate a useful structural model (Robinson
ct al., 2007). Even when the model resulting from such integrative or hybrid
methods is of relatively low resolution and accuracy, it can still be helpful
for studying the function and evolution of the modelled protein or assembly;
it also provides the necessary starting point for a higher resolution study.
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Figure 2. Iniegrative structure determination. The four steps of detenmining a structure of a
protein or a macromolecular assembly by intcgration of varied data are illustrated with the
example of the auclear pore complex (Alber ¢t al. 2007n, b; Rabinson ct al., 2007). First,
structural data are generated by experi s, such as el microscopy (el pancl), immuno-
clectron microscopy (middle pancl), and affinity purification of subcomplexes (right panet);
many other types of information can also be added. Second, the data and theoretical con-
siderations are expressed as spatial resiraints ensuring the ohserved symmetry and shape of
the asscmbly (¢lectiron microscopy, tefl panel), positions of constituent gold-tabeled proteins
(immuno-clectron microscopy, middlc pancl), and proximily among the constitucnt proteins
(affinity co-purification, right panel). Third, an ensemble of stnuctural solutiens that satisfy
the data is obtained by minimizing the violations of the spatial restraints (from lefi to right).
Fourth, the ensembic is clusiered ino scis of distinct solutions (IcR panel) as well s
analyzed in different representations, such as protcin positions (middle panel) and protein-
protein conlacts (right pancl). The integrative approach to structure determination has several
advantages: (i) It benefits from the syncrgy among the input data, minimizing the drawhack
of incomplete, inaccurate, anor imprecise data sets (although each individual restraint may
contain little structural information, the current satisfaction of all ints derived from
independent experiments may drastically reduce the deg y of sir I solutions); (ii)
it can potentially produce all striciures that are consistent with the data, aot just one; (iii) the
variation among the structures consistent with the data allows us to assess sulliciency of the
data and the precision of the repi ive struclure; {iv) it can make the process of structure
determination more efficient by indicating what would be the most
informative. (This figure was reproduced from figure 5 inRehinrson ¢t al, (2007)).

An cxample of a simple hybrid approach is building a pscudo-atomic
model of a large assembly by fitting atomic structures of subunits into its
cryo-clectron microscopy map (Gao et al., 2003; Chandramouli et al., 2008;
Topf et al., 2008). X-ray diffraction data has been combined with protein
structure modelling to provide solutions for molecular replacement (Qian
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et al., 2007). Unassigned or partially assigned NMR spectroscopy data and
fragment-based modeling approaches have been combined 10 improve
structurc refinement in terms of its accuracy, cfficiency, and success rate
(Shen et al., 2008). A variety of different types of information, such as sym-
metry and protein proximity, have been used to characterize large symmetrical
assemblies, including the nuclear pore complex (Alber et al., 2007b), Esc}
from the type 11l secretion system (Andre ct al., 2007), and the AAA+ ring
complexes (Diemand and Lupas, 2006).

8. Future directions

8.1. PROTEIN STRUCTURE MODELING

Improvement in the accuracy of atomic comparative models will require
methods that finely sample protein conformational space using a free energy
or scoring function that has sufficient accuracy to distinguish the native
structure from the non-native conformaticns. Despite many years of develop-
ment of molecular simulation methods, attempts to refine models that are
already relatively close to the native structure have met with relatively little
success. This failure is likely to be due in part to inaccuracies in the scoring
functions used in the simulations, particularly in the treatment of electro-
statics and solvation effects. A combination of physics-based energy functions
with the statistical information extracted from known protein structures may
provide more accurate scoring functions. In addition to the scoring function,
improvements in sampling strategics are also likely to be necessary.

8.2. INTEGRATIVE MODELING

Cryo-electron microscopy is emerging as a key technique for studying 3D
structures of multi-component macromolecular complexes with masses larger
than 250 kDa, such as membranc proteins, cytoskeletal complexes, ribosomes,
quasi-sphericat viruses, molecular chaperones, flagell, ion channels, and
oligomeric enzymes. Electron cryo-tomography even enables the observation
of macromolecules inside a living cell in its native state (Baumeister, 2004).
Various modeling approaches are being developed that utilize cryo-electron
microscopy density maps as a restraint in deriving a pseudo atomic model
of the molecular components within a larger complex. Because of the signi-
ficant likelihood of conformational differences between isolated domains
and biological assemblies, additional research resulting in reliable hybrid
modeling methods, which are able to comrectly include structural information
frem various experimental sources of different resolution and reliability, is
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essential. Structural information from hybrid models, generating a synoptic
image of the heterogeneous information available for a given macro-
molecular system, is expected to increase sharply in the coming years.
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