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Vif hijacks CBF-b to degrade APOBEC3G and
promote HIV-1 infection
Stefanie Jäger1,2*, Dong Young Kim3*, Judd F. Hultquist4*, Keisuke Shindo4, Rebecca S. LaRue4, Eunju Kwon3, Ming Li4,
Brett D. Anderson4, Linda Yen3, David Stanley3, Cathal Mahon1,2,3, Joshua Kane1,2, Kathy Franks-Skiba1,2, Peter Cimermancic2,5,
Alma Burlingame2,3, Andrej Sali2,3,5,6, Charles S. Craik2,3, Reuben S. Harris4, John D. Gross2,3,6 & Nevan J. Krogan1,2,6,7

Restriction factors, such as the retroviral complementary DNA
deaminase APOBEC3G, are cellular proteins that dominantly block
virus replication1–3. The AIDS virus, human immunodeficiency virus
type 1 (HIV-1), produces the accessory factor Vif, which counteracts
the host’s antiviral defence by hijacking a ubiquitin ligase complex,
containing CUL5, ELOC, ELOB and a RING-box protein, and
targeting APOBEC3G for degradation4–10. Here we reveal, using
an affinity tag/purification mass spectrometry approach, that Vif
additionally recruits the transcription cofactor CBF-b to this
ubiquitin ligase complex. CBF-b, which normally functions in
concert with RUNX DNA binding proteins, allows the reconstitu-
tion of a recombinant six-protein assembly that elicits specific
polyubiquitination activity with APOBEC3G, but not the related
deaminase APOBEC3A. Using RNA knockdown and genetic com-
plementation studies, we also demonstrate that CBF-b is required
for Vif-mediated degradation of APOBEC3G and therefore for
preserving HIV-1 infectivity. Finally, simian immunodeficiency
virus (SIV) Vif also binds to and requires CBF-b to degrade rhesus
macaque APOBEC3G, indicating functional conservation. Methods
of disrupting the CBF-b–Vif interaction might enable HIV-1 restric-
tion and provide a supplement to current antiviral therapies that
primarily target viral proteins.

Mammals have evolved cellular proteins termed restriction factors
that function to prevent the spread of mobile genetic elements includ-
ing retroviruses1–3. As a counter-defence, most retroviruses, including
the human pathogen HIV-1, have developed mechanisms to prevent
restriction, often through subversion of the host’s ubiquitin–proteasome
system. In eukaryotic cells, 8.6-kDa ubiquitin moieties are added to a
target protein by sequential action of one of two ubiquitin-activating
enzymes (E1), which transfer ubiquitin to a pool of dozens of ubiquitin-
conjugating enzymes (E2) that, in turn, collaborate with hundreds of
ubiquitin ligases (E3) to catalyse transfer to specific substrates11. If more
than four ubiquitins are joined together through K48 linkages, the target
protein is usually degraded by the 26S proteasome12. At least three HIV-
1 proteins, Vif, Vpu and Vpr, hijack cullin-RING E3 ligases consisting of
CUL5, CUL1 and CUL4A to promote ubiquitination and degradation of
APOBEC3 family members (for example, APOBEC3G, A3G), BST2/
tetherin and an unknown, putative restriction factor, respectively2.
Understanding the composition of cullin-RING E3 ligase complexes
and the underlying cellular signalling components may provide thera-
peutic routes for treating a variety of human diseases, including infec-
tion by HIV-1.

HIV-1 Vif is recruited to CUL5 by virtue of its SOCS box, which
contains an elongin C binding helix (the BC-box), a conserved HCCH
Zn binding motif and a short Cullin Box4–6. Although a structure of the
BC-box peptide in complex with the heterodimer of Elongin B and C

(ELOBC) has been reported13, the architecture of the full-length Vif in
complex with host factors has remained elusive, in part because Vif
complexes have poor solubility and activity. We therefore reasoned
that Vif may bind an additional host factor and that such a factor may
render it more tractable in vitro.

We took an unbiased proteomic approach to identify host factors
that bind all 18 HIV processed and polyproteins using an affinity tag/
purification mass spectrometry (AP–MS) approach14,15. To this end,
23Strep and 33Flag was fused to the carboxy (C) terminus of these
factors, including Vif. The tagged Vif construct was both transiently
transfected into HEK293 cells and used to make a stable, tetracycline-
inducible Vif–Strep–Flag Jurkat T cell line (Fig. 1a). Epitope-tagged
Vif was purified from both cell types using antibodies specific to either
Strep or Flag and aliquots of the co-purifying proteins were subjected
to SDS–polyacrylamide gel electrophoresis (SDS–PAGE) (Fig. 1b).
Materials from each step were analysed by mass spectrometry14.

Using a new scoring system for data derived from AP–MS studies,
termed Mass Spectrometry Interaction Statistics (MiST)15, we iden-
tified 24 Vif–human protein–protein interactions with seven of them
found in both cell types (Fig. 1c). Seventeen of these were verified
independently by co-immunoprecipitation (Supplementary Fig. 1).
Among these were the components of the E3 ubiquitin ligase complex,
CUL5, ELOB and ELOC, known to interact with Vif and trigger A3G
degradation4–6,8–10. Although the RING-box protein RBX1 was originally
reported as part of this complex4, only RBX2 was above the MiST score
threshold used15 consistent with recent work showing that it binds
CUL5 (refs 16, 17). We did not find endogenous A3G, probably because
of its poor expression in HEK293 and Jurkat cell lines exacerbated by
further depletion through Vif-mediated degradation. We did find Vif
associating with two proteins that function in autophagy, AMRA1 and
SQSTM, as well as with the transcriptional co-repressor complex
NCOR1/HDAC3/GPS2/TBL1R (the last only in T cells) (Fig. 1c).
Also, in both cell types, Vif was found to interact with the transcription
cofactor CBF-b, which is known to heterodimerize with the RUNX
family of transcription factors18.

To determine if any of the newly defined Vif interactors belong to
the Vif–CUL5 complex, we performed double affinity purifications
using cells co-transfected with Vif–23Strep and either A3G– or
CUL5–33Flag (Fig. 1d, e). After purification first with Strep-Tactin
and second with anti-Flag beads, mass spectrometry analysis of the
final elution revealed the presence of CUL5, ELOB, ELOC, RBX2 and
invariably CBF-b, strongly suggesting that this last protein may be a
new component of the Vif E3 ubiquitin ligase complex (other factors
from single Vif purifications depicted in Fig. 1c were not present). To
confirm this interaction and the composition of the complex, we per-
formed an additional double affinity purification experiment using
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Vif–23Strep and CBF-b–33Flag. This strategy also yielded CUL5,
ELOB, ELOC and RBX2, in addition to the epitope-tagged bait
proteins (Fig. 1d, e).

To determine if the association of CBF-b with the CUL5 ligase
complex was dependent on Vif, we immunoprecipitated CUL5-
haemagglutinin (HA) or ELOB-HA in the presence or absence of Vif
in HEK293 cells and blotted for endogenous CBF-b. Only in the presence
of Vif did CBF-b co-immunoprecipitate with tagged CUL5 or ELOB,
indicating that recruitment of CBF-b to the CUL5 ligase is dependent on
Vif (Fig. 1f). SIV Vif also associated with CBF-b by immunoprecipita-
tion, suggesting the interaction is conserved (Fig. 1g).

We next asked if the Vif–CUL5 ligase could be reconstituted with
CBF-busing recombinant proteins purified from Escherichia coli. Initial
purification attempts without CBF-b yielded aggregated and inactive
complexes, assayed by size-exclusion chromatography and autoubiqui-
tination activity, suggesting that CBF-b may be required for complex
formation (data not shown). Therefore, full-length Vif, ELOB, ELOC
and CBF-b were co-expressed, purified to homogeneity and found to
form a stable, monodisperse complex with recombinant CUL5/RBX2,
as shown by size-exclusion chromatography and SDS–PAGE analysis
(Fig. 2a, b). Pull-down experiments performed with purified, His-tagged
APOBEC3 enzymes immobilized on cobalt-chelating resin showed that

the four protein complex containing Vif, CBF-b and ELOBC binds
A3G, but not the related Vif-resistant deaminase, A3A (Fig. 2c).
These observations suggested that Vif, CBF-b and ELOBC form a sub-
strate adaptor for CUL5/RBX2 that enables specific interaction with
susceptible A3 proteins.

To test the activity of the reconstituted six protein complex, CUL5/
RBX2/ELOB/ELOC/Vif/CBF-b (CRL5–Vif–CBF-b), we assayed sub-
strate and Vif ubiquitination activities using two distinct and well char-
acterized ubiquitin conjugating enzymes, UBE2R1 (hCDC34a) and
UBCH5b, which are capable of forming specific K48 and heterogenous
ubiquitin chain linkages, respectively19,20. With UBE2R1, CRL5–Vif–
CBF-b catalysed formation of high-molecular mass K48 chains on
A3G, but not A3A (Fig. 2d, e), mirroring the chain linkage and substrate
specificity observed in cells4,6,21–23. As with most ubiquitin ligase assem-
blies, the CRL5–Vif–CBF-b complex also possessed autoubiquitination
activity that was only marginally affected by substrate A3s (Sup-
plementary Fig. 2). These experiments were done with NEDD8-
modified CUL5, because NEDD8ylation is required for CUL5 to degrade
A3G in vivo4 (Supplementary Fig. 3). Similarly, with UBCH5b, CRL5–
Vif–CBF-b was able to promote the specific polyubiquitination of A3G
and elicit Vif autoubiquitination activity (Supplementary Fig. 4). We
conclude that the reconstituted Vif E3 ligase is specific for A3G,
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Figure 1 | AP–MS experiments identify CBF-b as a Vif-dependent
component of the Vif–CUL5 ubiquitin ligase complex. a, Flow-chart of the
proteomic analysis performed during the study. b, Affinity-tagged versions of
Vif, Vpu and Vpr were purified using 33Flag from HEK293 and Jurkat cells,
subjected to SDS–PAGE and stained with silver. Visible bands corresponding
to interactions that are known for each accessory factor are labelled. Note Vif
and CBF-b run at a similar place on the gel. Tagged versions of Vpr and Vpu
were used as specificity controls. c, A network representation of Vif–host
protein–protein interactions from both HEK293 (blue) and Jurkat T cells (red)
after subjecting the data derived from the AP–MS analysis to the MiST scoring
system15. The intensity of the node colours corresponds to the quantitative
MiST score. Blue edges represent interactions derived during this work; black
edges are previously described interactions between host factors; dashed edges

correspond to previously described Vif–host interactions present in the
database VirusMint. d, The double purification approach, which allows for the
identification of stable, stoichiometric protein complexes. e, Double
purifications were performed in triplicate using 33Flag-tagged CUL5, A3G or
CBF-b with 23Strep-tagged Vif in HEK293 cells. Proteins that were identified
in all three double purifications, after trypsin digestion and analysis by mass
spectrometry, are represented. The coverage corresponds to the percentage of
protein identified by tryptic peptides. f, Immunoblots showing that Vif recruits
CBF-b to the CUL5/ELOBC/RBX2 ubiquitin ligase complex. HA-tagged ELOB
or CUL5 were immunoprecipitated in the absence or presence of increasing
amounts of Vif, and endogenous CBF-bwas monitored by immunoblot. g, HIV
and SIV Vif co-immunoprecipitate CBF-b and ELOC. GFP and HIV Nef were
analysed in parallel as specificity controls.
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supports K48 chain formation and can function with at least two
ubiquitin conjugating enzymes in vitro. It is conceivable that these
two ubiquitin-conjugating enzymes work together in cells to promote
multi-monoubiquitination of A3G followed by specific chain elonga-
tion, as described for other RING E3s24,25, but additional work will be
necessary to rule out other E2s in vivo.

To determine if CBF-b is required for Vif folding and/or stability in
living cells, we transfected a constant amount of Vif into HEK293T
cells expressing either a scrambled short hairpin (sh)RNA or a CBF-b-
specific shRNA. The levels of steady-state Vif were threefold lower in
CBF-b-depleted cells than in the scrambled control cells (Fig. 3a).
Proteasome inhibitor MG132 reversed this effect, suggesting that Vif
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Figure 3 | CBF-b and Vif collaborate to degrade APOBEC3G and enable
HIV-1 infectivity. a, CBF-b-depleted HEK293T cells have lower steady-state
Vif levels, which recover upon treatment with 2.5mM MG132. b, Infectivity of
replication-competent, Vif-proficient HIV-1 in the presence and absence of
CBF-b and A3G (n 5 3; mean, s.d.). Immunoblots are shown for the indicated
proteins in virus-producing cells and viral particles. c, Infectivity of HIV-GFP
produced using HEK293T-shCBF-b or HEK293T-shControl clones
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indicated (n 5 3; mean, s.d.). The corresponding immunoblots are shown
below. d, Infectivity of a Vif-deficient HIV-1 molecular clone produced in the
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degradation is accelerated without CBF-b. Analogous data were
obtained when Vif was expressed from a proviral plasmid in CBF-b-
depleted cells and complemented with a CBF-b expression plasmid
(Supplementary Fig. 5).

Based on these observations, we predicted that CBF-b knockdown
should result in less functional Vif and less infectious HIV-1 particles
when produced in the presence of A3G. To test this prediction, shRNA
was used to deplete CBF-b stably in HEK293T cells, and a knockdown
clone was used to produce replication competent Vif-proficient HIV-1
in the presence or absence of A3G and CBF-b expressed from plasmids
(Fig. 3b). In CBF-b depleted cells, steady-state Vif levels were very low
despite equivalent levels of virus production as indicated by capsid.
Moreover, Vif levels increased when CBF-b was replenished by com-
plementation, and this correlated with decreases in cellular and viral
A3G levels and corresponding increases in viral infectivity. In the
absence of A3G, no difference in infectivity was observed regardless
of cellular CBF-b or Vif levels. Titration experiments showed that
CBF-b complementation is dose-responsive (Supplementary Fig. 6).
Analogous results were obtained with a multi-vector HIV/green
fluorescent protein (GFP) system (Fig. 3c and Supplementary
Fig. 7). The Vif/CBF-b interaction was confirmed in virus-producing
cells by co-immunoprecipitation experiments (Supplementary Fig. 8).
Furthermore, SIVmac239 Vif requires CBF-b to degrade rhesus
macaque A3G and promote viral infectivity (Fig. 3d). Interestingly, in
contrast to HIV Vif, lower steady-state levels of SIV Vif were observed
in the presence of CBF-b, which may be functionally significant or may
be a consequence of the heterologous assay system (that is, expressing
SIV/rhesus proteins in human cells). Nevertheless, these results demon-
strate the essential and conserved nature of CBF-b for Vif function in
promoting A3G degradation and efficient virus replication.

Our proteomic, biochemical and genetic studies combine to suggest a
model in which HIV-1 Vif hijacks the cellular transcription factor CBF-
b to facilitate Vif folding and/or stability as well as nucleation of the rest
of the E3 ubiquitin ligase complex (Fig. 4). CBF-b is required for A3G
substrate binding and, ultimately, for polyubiquitination and degrada-
tion, thereby enabling the production of infectious viral particles.
Because genetic studies have shown that Vif is also capable of degrading
APOBEC3F and several other human APOBEC3 proteins2,3,23 most of
which are expressed in primary CD41 T lymphocytes26,27, it is quite
likely that CBF-b is required for counteracting multiple endogenous
APOBEC3s and thus for rendering T lymphocytes permissive for
HIV-1 replication. We anticipate that the development of antiviral
therapies that antagonize the CBF-b–Vif interaction will be more
powerful than those that specifically target the A3G–Vif interaction,
because they have the potential to unleash the simultaneous restriction
potential of multiple APOBEC3s analogous to current combinatorial
therapies.

METHODS SUMMARY
Affinity tagging, purification14 and ubiquitination assays28 were performed as
described. Recombinant A3A and A3G were purified as Myc-His tagged proteins
from HEK293 cells. HIV-1 infectivity studies used an HIV-1IIIB proviral DNA
construct (with or without Vif) or an HIV-GFP reporter plasmid set. Control
(RHS4346) and CBF-b (RHS4430-99161432) shRNA constructs were obtained
from Open Biosystems. A CBF-b complementary DNA matching NM_001755.2
was cloned from the CEM T cell line by RT–PCR. Immunoblots used antibodies to
A3G (National Institutes of Health (NIH) ARRRP 10201 courtesy of J. Lingappa),
CBF-b (Santa Cruz Biotechnology), HA (HA.11; Covance), TUB (tubulin;
Covance), c-Myc (Sigma), Vif (NIH ARRRP 2221 courtesy of D. Gabuzda) and
p24/capsid (NIH ARRRP 3537 courtesy of B. Chesebro and K. Wehrly). Details are
provided in the Supplementary Methods.
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