Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach

Keren Lasker^{a,b,1}, Friedrich Förster^{c,1}, Stefan Bohn^c, Thomas Walzthoeni^{d,e}, Elizabeth Villa^c, Pia Unverdorben^c, Florian Beck^c, Ruedi Aebersold^{d,f}, Andrej Sali^{a,2}, and Wolfgang Baumeister^{c,2}

^aDepartment of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute of Quantitative Biosciences, 1700 4th Street, University of California, San Francisco, CA 94158; ^bBlavatnik School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel; 'Department of Molecular Structural Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; ^dDepartment of Biology, Institute of Molecular Systems Biology, Eidgenössische, Technische Hochschule, 8093 Zürich, Switzerland; ^ePhD Program in Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; and ^fFaculty of Science, University of Zürich, 8093 Zürich, Switzerland

This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2010.

Contributed by Wolfgang Baumeister, December 14, 2011 (sent for review December 9, 2011)

The 26S proteasome is at the executive end of the ubiquitinproteasome pathway for the controlled degradation of intracellular proteins. While the structure of its 20S core particle (CP) has been determined by X-ray crystallography, the structure of the 19S regulatory particle (RP), which recruits substrates, unfolds them, and translocates them to the CP for degradation, has remained elusive. Here, we describe the molecular architecture of the 26S holocomplex determined by an integrative approach based on data from cryoelectron microscopy, X-ray crystallography, residue-specific chemical cross-linking, and several proteomics techniques. The "lid" of the RP (consisting of Rpn3/5/6/7/8/9/11/12) is organized in a modular fashion. Rpn3/5/6/7/9/12 form a horseshoe-shaped heterohexamer, which connects to the CP and roofs the AAA-ATPase module, positioning the Rpn8/Rpn11 heterodimer close to its mouth. Rpn2 is rigid, supporting the lid, while Rpn1 is conformationally variable, positioned at the periphery of the ATPase ring. The ubiquitin receptors Rpn10 and Rpn13 are located in the distal part of the RP, indicating that they were recruited to the complex late in its evolution. The modular structure of the 26S proteasome provides insights into the sequence of events prior to the degradation of ubiquitylated substrates.

coiled coils | mass spectrometry | proteasome-COP9-eIF3 domain | proteasome-cyclosome repeats

n eukaryotes, the ubiquitin-proteasome pathway (UPP) is essential for proteostasis: Misfolded proteins or otherwise defective proteins as well as short-lived regulatory proteins are eliminated by degradation (1). The UPP regulates many fundamental cellular processes, such as protein quality control, DNA repair, and signal transduction (for review see ref. 2). The 26S proteasome is the most downstream element of the UPP, executing the degradation of polyubiquitylated substrates (3–5). It consists of the barrel-shaped core particle (CP; approximately 700 kDa), which sequesters the proteolytically active site in its central cavity, and the regulatory particle (RP; approximately 900 kDa), which is attached at either one or both ends of the CP and prepares substrates for degradation (6).

The RP consists of 19 different canonical subunits, including six regulatory particle AAA-ATPase subunits (Rpt1-6) and 13 regulatory particle non-ATPase subunits (Rpn1-3, Rpn5-13, and Rpn15). The integral ubiquitin (Ub) receptors Rpn10 and Rpn13 recognize polyubiquitylated substrates (7–9). Alternatively, polyubiquitylated substrates can be recruited by shuttling Ub-receptors (Dsk2, Rad23, Ddi2), which bind to substrates with their Ub-associated domain, and to Rpn1, Rpn10, or Rpn13 at their Ub-like domain (5). The metalloprotease Rpn11 deubiquitylates substrates prior to their degradation (10, 11). The functions of the other Rpn subunits remain to be established. The AAA-ATPases

form a hexameric ring that unfolds substrates, opens the gate to the CP, and eventually translocates the substrates to the CP.

Electron microscopy (EM) (12) and X-ray crystallography studies of the CP revealed an evolutionary highly conserved structure, namely a stack of four seven-membered rings (α 1-7; β 1-7; β 1-7; α 1-7) (13, 14). The chamber formed by the β -subunits houses the proteolytic sites and the outer α -rings constitute two antechambers (15) serving as holding compartments (16). Most of our structural knowledge on the AAA-ATPases so far stems from the archaeal homolog of the RP, the proteasome-activating nucleotidase (PAN) (17, 18). The six AAA-ATPase subunits assemble into two stacked rings: The ring formed by the AAAdomains (AAA-ring) is pseudo sixfold symmetrical and positioned proximal to the CP, whereas the distal N-terminal domains form a pseudo threefold symmetric ring (trimer of dimers) with coiled-coil pairs protruding from it (N ring). The N ring unfolds substrates whereas the AAA ring is believed to actively translocate substrates into the CP in an ATP-dependent manner (17, 19). The topological order of the AAA-ATPase subunits is Rpt1/Rpt2/ Rpt6/Rpt3/Rpt4/Rpt5, as determined based on protein-protein interactions (20) and engineered disulfide cross-links (21). Integration of a cryoelectron microscopy (cryo-EM) map at 9.1-Å resolution, protein-protein interactions, and site-specific intermolecular cross-links revealed the relative positions of the AAA-ATPase ring and the CP (20, 22), which was subsequently corroborated by engineered disulfide cross-links between the AAA-ATPase C termini and residues in the pockets between the α -subunits of the CP (23). In contrast, the spatial configuration of the non-ATPase subunits and their role in the preparation of substrates for degradation remains largely unknown.

The RP has been refractory to any single structure determination method, presumably due to sample heterogeneity caused by the RP's tendency to disassociate into heterogeneous subcomplexes during purification and concentration as well as the presence of proteasome interacting proteins (PIPs). Moreover, some RP subunits may also exhibit a significant degree of structural variability. As a consequence, X-ray crystallographic analysis of

Author contributions: R.A., A.S., and W.B. designed research; K.L., F.F., S.B., T.W., E.V., and P.U. performed research; K.L., F.F., S.B., T.W., E.V., P.U., F.B., and A.S. analyzed data; and K.L., F.F., R.A., A.S., and W.B. wrote the paper.

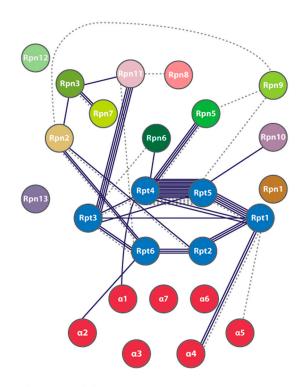
The authors declare no conflict of interest.

Freely available online through the PNAS open access option.

Data deposition: The single particle reconstruction has been deposited in the Electron Microscopy Data Bank, http://www.ebi.ac.uk/pdbe/emdb/ (accession code 10440).

¹K.L. and F.F. contributed equally to this work.

²To whom correspondence may be addressed. E-mail: sali@salilab.org or baumeist@ biochem.mpq.de.


This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1120559109/-/DCSupplemental.

the entire RP has not yet been accomplished, although the atomic structures of a few subunit fragments have been determined (9, 24–26). To overcome limitations in sample preparation and individual structure-determination techniques, we have applied an integrative structure determination approach in which a variety of different datasets were computationally integrated into a more accurate and higher-resolution structural model than is possible with any of the individual datasets (27–29). In particular, we have determined the structure of the complete 26S proteasome from *Schizosaccharomyces pombe*, based on a new 8.4-Å cryo-EM map, residue-specific intersubunit cross-links, crystallographic structures of RP subunit homologs, as well as previously published protein–protein interaction data from a variety of species. The modular architecture of the RP provides unique insights into the sequence of events prior to degradation.

Results and Discussion

8.4-Å Resolution Cryo-EM Map of the 26S Proteasome. We have used cryo-EM to structurally characterize the 26S proteasome holocomplex from *Schizosaccharomyces pombe* (Fig. 1*A*). Notably, we have approximately doubled the number of particles previously used for a single-particle reconstruction (22), to 375,000. This increase allowed us to improve the resolution from 9.1 to 8.4 Å (Fig. S1). The resolution of the cryo-EM map varies locally (Fig. 1*B*); the CP is better resolved than the RP, which exhibits "hot spots" of structural variability. From the cryo-EM map we segmented the CP and the AAA-ATPase modules based on the CP and PAN crystal structures (20, 22) (Fig. 1*A*). The remaining cryo-EM density corresponds to the Rpn subunits. Numerous helical elements, many of which resemble bihelical repeats, are clearly visible in the 8.4-Å resolution map.

Subunit Interactions Revealed by Chemical Cross-Linking/Mass Spectrometry (XL/MS). To obtain information on protein—protein proximities at the peptide level, we chemically cross-linked the purified *S. pombe* 26S proteasomes using the lysine reactive cross-linker disuccinimidyl suberate (DSS), subjected the trypsin-digested samples to liquid chromatography-tandem mass spectrometry (LC-MS/MS), and identified the cross-linked peptides from MS/MS spectra at a false-discovery rate (FDR) of less than 5% (*Materials and Methods*) (30). Thirty-two cross-links were obtained within the AAA-ATPase hexamer and four between the CP and the AAA-ATPases, involving nine and three different subunit pairs, respectively (Fig. 2 and Table S1); all of these cross-links are consistent with our previously determined subunit organization (20). An additional 15 intra-Rpn and eight Rpt/Rpn cross-links involved

S.p. cross-links S.c. cross-links

Fig. 2. Chemical cross-links for the *S. pombe* and *S. cerevisiae* 26S proteasomes. Fifty-five (21) pairs of cross-linked lysines from the *S. pombe* (*S. cerevisiae*) 26S proteasome subunits are shown as an interaction network (Table 51). Multiple edges between a pair of subunits indicate multiple cross-linked lysine

seven out of the 13 Rpn subunits and 15 different subunit pairs (Fig. 2 and Table S1). Notably, these cross-links indicate proximity of the lysine residues in the N-terminal segments of the non-ATPases Rpn5 and Rpn6 to the AAA domains of Rpt3 and Rpt4.

While we used the data from *S. pombe* 26S proteasome for integrative structure determination (below), we also performed cross-linking experiments with the 26S proteasome from *Saccharomyces cerevisiae* for validation. Not surprisingly, four of the 11 *S. cerevisiae* cross-links apply to the same Rpn/Rpn and Rpn/Rpt pairs as in the *S. pombe* dataset, indicating their accuracy. Never-

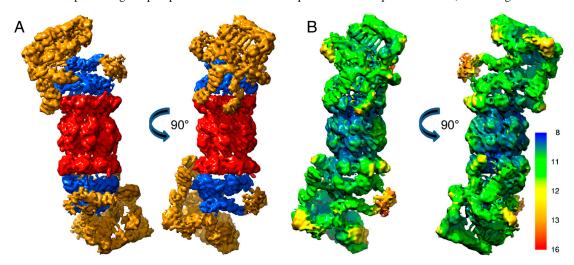


Fig. 1. Cryo-EM map of the *S. pombe* 26S proteasome. (*A*) The single-particle cryo-EM density map of the 26S proteasome from *S. pombe* at 8.4-Å resolution is shown in two views, related by a 90° rotation around the pseudo-sevenfold axis of the CP (CP: red; AAA-ATPase hexamer: blue; Rpn subunits: gold). (*B*) The isosurface of the cryo-EM map is colored according to the local resolution in Å, as specified in the color bar.

Lasker et al. PNAS Early Edition | 1381 of 1387

theless, some cross-links observed in the *S. pombe* dataset were not observed in *S. cerevisiae* and vice versa. Thus, complementary information can be obtained by cross-linking protein complexes of related organisms. The differences in cross-link coverage are attributed to the differences in the lysine residue locations between the two species (only two of the 11 Rpn/Rpt and Rpn/Rpn cross-links occurred at corresponding lysine pairs) and to technical limitations of XL/MS.

Integrative Structure Determination of the RP Architecture. To determine the positions, orientations, and conformations of the Rpn subunits and the AAA-ATPase hexamer, we applied an integrative approach implemented in our open source Integrative Modeling Platform (IMP) package (http://salilab.org/imp/) (27, 28, 31). The process consists of four stages: gathering information about the structure of the 26S proteasome, choosing how to represent the system and how to translate the information into spatial restraints, calculating an ensemble of structures that satisfy these restraints, and analyzing the ensemble (Fig. 3). The approach has been previously used for determining the positions of 456 subunits in the eightfold symmetric ring of the yeast nuclear pore complex (31, 32). However, the 26S proteasome has presented new challengesnamely, the asymmetry of the assembly and the interpretation of the structure at the amino acid level. These challenges required integration of new types of data, a multiscale model representation including the atomic level, as well as a more powerful structural sampling scheme.

Stage 1: Gathering Information. Five different types of information were used for structure determination: (i) an 8.4-Å cryo-EM map of the RP from *S. pombe*; (ii) 12 residue-specific cross-links between the AAA-ATPase and Rpn subunits as well as three cross-links between the Rpn subunits from *S. pombe* (Table S1); (iii) densities of Rpn10 and Rpn13 in the 26S holocomplex as re-

vealed by cryo-EM of the *S. cerevisiae* 26S proteasomes from Δ Rpn10 and Δ Rpn13 deletion strains (33); (*iv*) 47 direct interactions and proximities between the RP subunits determined by various proteomics studies, including two-hybrid assays, chemical cross-linking, and immunoprecipitations (Table S2); as well as (*v*) atomic structures of the individual Rpn subunits and their homologs (Fig. S2 and Table S3).

Stage 2: System Representation and Translation of Information into Spatial Restraints. Two representations of a sequence segment, subunit, or a subcomplex were used, depending on the data available, spatial restraints applied, and sampling performed (Table S4). The first, coarse-grained representation depicted each approximately 50-residue fragment of the segment by a bead. If the atomic structure of a subunit or subcomplex (i.e., the AAA-ATPase hexamer) was predicted by comparative modeling, the beads were fixed to mimic the shape of the atomic model; otherwise, the string of beads was allowed to flex. The second, atomic representation specified atomic coordinates for segments with available comparative models.

The spatial restraints encoded the different types of information gathered (Table S5). First, a measure of cross-correlation between the cryo-EM map and the atoms in an RP model restrained the shape of the model. Second, upper distance bounds enforced proximity between pairs of cross-linked atoms or subunits, depending on the representation used. Third, the "connectivity" restraints (31) enforced direct protein interactions and proximities among the subunit sets in the RP subcomplexes (Table S2). In addition, we applied a radius-of-gyration restraint to each flexible subunit in the coarse-grained representation (31), an excluded-volume restraint to each bead and/or atom pair, and a geometric-complementarity restraint for each pair of interacting subunits in the atomic representation.

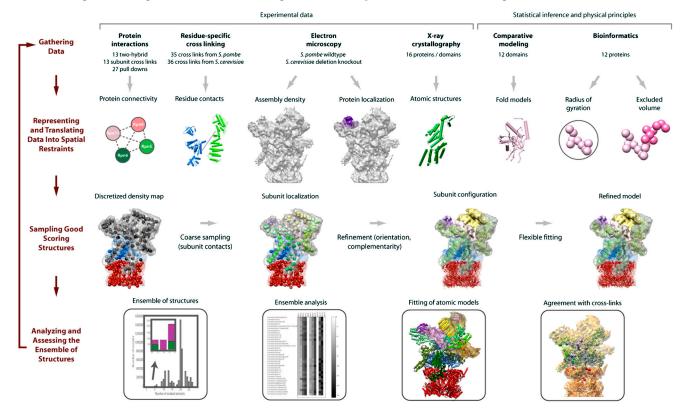


Fig. 3. Integrative structure determination of the RP. First, structural data and information are generated by various experiments and computational methods, respectively. Second, the AAA-ATPase hexamer and the Rpn subunits are each represented as a string of beads or by atoms, and the data are translated into spatial restraints on their arrangement. Third, an ensemble of structures that satisfy the data are obtained by inferential sampling. Fourth, the ensemble is clustered into distinct subsets of structures, and analyzed in terms of geometry and accuracy.

Stage 3: Ensemble Sampling. Models of the RP that satisfy the data as well as possible were obtained in three steps. In the first, subunit localization step, best-scoring models were enumerated in the coarse-grained representation by aligning the RP interaction network implied by the residue-specific cross-links (Table S1) and subunit interactions (Table S2) into the cryo-EM density map. The sampling started by discretizing the density map into a graph of 238 nodes, with graph nodes corresponding to the density map regions and graph edges connecting the neighboring regions. Possible localizations for each subunit were then found efficiently by applying a "message passing" algorithm to the graph (34). The sampling explored only localizations that were consistent with the subunit shapes and localization data. In particular, the positions of the Rpn10 and Rpn13 beads in the RP density were constrained by the corresponding difference cryo-EM maps. Similarly, the positions of the AAA-ATPases hexamer (20) and Rpn6 (26) were fixed based on previous fitting of their atomic models into a cryo-EM map. The number of candidate localizations for each nonlocalized subunit ranged from 10³ for the small Rpn subunits to 10⁵ for the large Rpn1 and Rpn2 subunits (Table S4). Approximately 5 · 10⁵ best-scoring coarse-grained RP models that significantly violated at most five restraints were finally found by enumerating combinations of subunit localizations, again using message passing.

In the second, subunit fitting step, multiple comparative models were computed for each of the *S. pombe* Rpn subunits (*Materials and Methods* and Fig. S2 and Table S3). Alternative combinations of comparative models of the PCI subunits were then simultaneously fitted into the region of the cryo-EM density map identified uniquely in the previous subunit localization step

using MultiFit (34) (*Materials and Methods* and Fig. S3). Finally, additional high-confidence models of Rpn8, Rpn10, and Rpn2 were fitted to the map (Fig. S4) using MOLMATCH (35).

In the third, subunit refinement step, the atomic coordinates of the PCI subunits were refined by flexible fitting using molecular dynamics flexible fitting (MDFF) (36).

Stage 4: Assessment of Data and Structure. We analyzed the ensemble of approximately $5 \cdot 10^5$ best-scoring RP coarse-grained models in terms of subunit positions, contacts, and configuration. The models were clustered according to the subunit centroid rmsd, revealing three large clusters of models with an average centroid rmsd within each cluster of only 5 Å (Fig. 4A and B). The largest variability in the ensemble corresponds to a swap between Rpn8 and Rpn11 as well as between Rpn7 and Rpn3 (Figs. 4C and D). Random subsets of 10% of the best-scoring models share a similar clustering pattern, confirming that our sampling procedure has indeed enumerated the best-scoring models, given the data and the sampling resolution.

The confidence in the accuracy of the ensemble is based on three considerations (27, 31). First, the ensemble models satisfy most of the independently determined data points. All good scoring models violate the same small subset of restraints, including the residue-specific cross-links Rpn10:30/Rpt5:54 and Rpn6:272/Rpt4:164, the Rpn10-Rpn1 interaction (37, 38), and the Rpt1/2, Rpn2/8/12/13 subcomplex (39). The first three violations could be explained by conformational variability (see below) and the fourth one by an error or incompleteness of high-throughput detection. Second, structural similarity among the models in the ensemble, as described above, is sufficient to determine the posi-

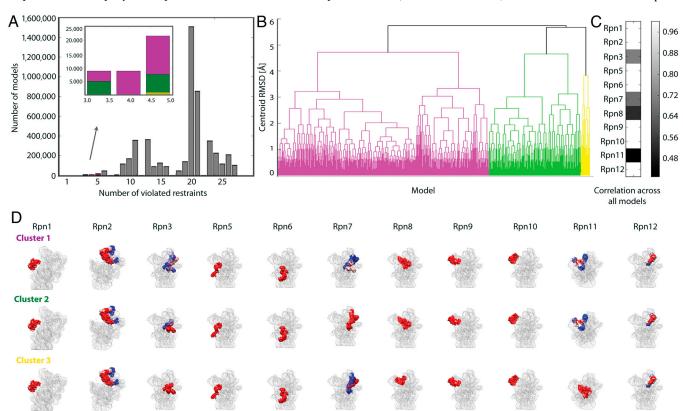


Fig. 4. Analysis of the ensemble of 26S proteasome structures. (A) Distribution of scores for the ensemble of models. $5 \cdot 10^5$ of the nearly 250 million sampled models violated at most five of the 98 cross-linking and proteomics restraints. (B) Clustering of the top scoring models that violate at most five cross-linking and proteomics restraints. The models were clustered by their centroid rmsd into three main clusters with the maximum rmsd from the cluster centroid of 5 Å. (C) Conservation of subunit positions in the ensemble. For each subunit, the average cross-correlation coefficient between pairs of subunit clusters is displayed. The plot shows localization variability for Rpn3, Rpn7, Rpn8, and Rpn11. (D) Localization probabilities for each subunit in the cluster displayed as a heat map. Each voxel of the density map is colored by its localization probability, defined as the percentage of cluster models that localized a subunit in the voxel. A gradient color from blue to red indicates that the subunit was localized to a voxel in 5% to 100% of the models; a gray color indicates 0%.

Lasker et al. PNAS Early Edition | 1383 of 1387

tions of most subunits and orientations for subunits with atomic models. Third, the ensemble is consistent with the structural data not used to compute it, including 21 residue-specific intersubunit cross-links from *S. cerevisiae*, the PCI domain contacts implied by the Rpn6 crystal contacts (26), the high-confidence fits of the atomic models of the leucine rich repeat (LRR) region of Rpn2 (40) (Fig. S4), the peripheral position of Rpn12 from the whole complex mass spectrometry (41), the Rpn9 interaction with the Ub receptor Rpn10 from a two-hybrid assay (42), and the subcomplexes formed during lid assembly (43). Moreover, the ensemble is consistent with >95% of the XL/MS data at the residue level, although cross-links were imposed only at the subunit-level (Fig. S5). Finally, even after omitting one restraint at a time, the resulting jack-knife ensembles remain similar to the original ensemble (Fig. S6).

AAA-ATPase Hexamer. To analyze the AAA-ATPase hexamer in more detail, its comparative model based on the PAN structures (22) was subjected to flexible fitting into the EM map (36). The refined model reveals substantial deviations from the approximate sixfold rotational symmetry of the PAN AAA ring (Fig. 5A). In particular, the Rpt3, Rpt6, and Rpt4 subunits vary from those in the symmetrical starting model. Moreover, the principal axes of the N ring and the AAA ring are not in register. Thus, the evolutionary diversification of the Rpt subunit functions (44) has also resulted in a major divergence of their structures. The cryo-EM map allowed us to resolve the C termini of the Rpt2 and Rpt3 subunits, which are absent in the PAN crystal structures (Fig. 5B). These two C termini are located in the pockets between the $\alpha 3/\alpha 4$ and $\alpha 1/\alpha 2$ CP subunits, respectively. Rpt2 and Rpt3 both contain the C-terminal HbYX motif that has been shown to induce gate opening of the CP (45). We also observed density in the pocket formed by the $\alpha 5/\alpha 6$ pocket, which likely corresponds to the C terminus of Rpt5, the third Rpt subunit containing HbYX motif. However, this density is weaker than that observed in the $\alpha 3/\alpha 4$ and $\alpha 1/\alpha 2$ pockets. A recent cross-linking study, in which cysteines were introduced into the AAA-ATPase C termini, was consistent with our observations (23). Specifically, Rpt2 and Rpt3 were found to localize in the pockets formed by the CP $\alpha 3/\alpha 4$ and $\alpha 1/\alpha 2$ interfaces, respectively, whereas Rpt5 was not

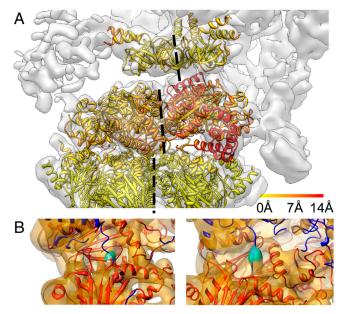


Fig. 5. Structure of the AAA-ATPase hexamer. (A) Atomic representation of the CP and AAA-ATPase hexamer after flexible fitting into the cryo-EM map, colored by their C^{α} atom rmsd compared to the initial comparative models based on the *S. cerevisiae* CP (13) and the AAA/N-rings from PAN (18). (B) Near the C termini of Rpt2 (left) and Rpt3 (right), we observe density in the pockets formed by the $\alpha 3/\alpha 4$ and $\alpha 1/\alpha 2$ interfaces, respectively (cyan).

confined to a specific pocket and was found to occupy both $\alpha 5/\alpha 6$ and $\alpha 6/\alpha 7$ pockets.

Modular Architecture of Non-ATPases. We determined the configuration of all Rpn subunits relative to the AAA-ATPase and CP. Based on sequence similarity, the Rpns can be divided into four categories (46): (*i*) the proteasome cyclosome (PC) repeat containing subunits Rpn1 and Rpn2, (*ii*) the MPN (Mpr1 and Pad1 in the N terminus) domain containing subunits Rpn8 and Rpn11, (*iii*) the proteasome-COP9-eIf3 (PCI) domain containing subunits Rpn3/5/6/7/9/12, and (*iv*) the Ub receptors Rpn10 and Rpn13. These evolutionary relationships are reflected in the modular structure of the RP.

PC-Repeat-Containing Subunits. The hallmarks of the Rpn1 and Rpn2 sequences are nine-repeat sequences (PC repeats), which also occur in the cyclosome/anaphase-promoting complex subunits (47). The PC repeats are predicted to resemble bihelical LRRs, which assemble into a torus (40, 48). In our structure, we find Rpn1 at the periphery of the Rpt1/2 dimer (Fig. 6A). The density corresponding to Rpn1 is highly variable (Fig. 1B), as already observed (49), which makes it impossible to discern secondary structure elements. This variability may be due to Rpn1's function as a recruitment factor for shuttling Ub receptors and the DUB Ubp6, which dock to the LRRs of Rpn1 (50, 51).

In contrast to Rpn1, Rpn2 is structurally well defined. With its domain proximal to the CP, it contacts the Rpt3/6 dimer and projects to the distal part of the RP. Short helices are discernible at many positions in the Rpn2 density, suggesting that Rpn2 consists largely of helical repeats. Interestingly, a segment of Rpn2 has a toroidal shape, as predicted for the PC-repeat region (40, 48). Indeed, the proposed atomic model (40) matches the cryo-EM density map very well in this region (Fig. S4). Rpn2 contacts the Rpn8/11 dimer at its torus-shaped region and it interacts with Rpn12 and Rpn3 at its distal end. The Ub receptor Rpn13 also binds to the distal, probably C-terminal domain of Rpn2 (9).

MPN-Domain-Containing Subunits. Rpn8 and Rpn11 both contain an N-terminal MPN domain. The MPN domain of Rpn11, in contrast to that of its paralog Rpn8, contains a zinc-binding JAMM (JAB1/MPN/Mov34 metalloenzyme) motif, which is responsible for its deubiquitylation activity (24, 52, 53). Rpn8 and Rpn11 form a heterodimer, which is positioned above the opening of the AAA-ATPase ring and incorporated into the scaffold provided by the PCI-domain-containing subunits (Fig. 6). While the heterodimer was localized with high confidence, the individual Rpn8 and Rpn11 positions remain ambiguous (only the MPN domain of Rpn8 can be positioned accurately) (Fig. S4).

PCI-Domain-Containing Subunits. We recently solved a protein structure containing a proteasomal PCI-domain (26): Rpn6 consists of several bihelical repeats that assemble into a solenoid fold followed by a PCI domain (Fig. S4). Structure prediction suggests that all PCI-domain-containing subunits have the same fold (Fig. S2). Protein-protein interaction data show that the PCIcontaining subunits colocalize in the same region of the RP (46). Some of these interactions have been narrowed down to their PCI domains (26, 54). Our structure reveals that the six PCI subunits are arranged in a horseshoe-like fashion forming a "roof" covering a large part of the AAA-ATPase heterohexamer (involving Rpt3, Rpt6, and Rpt4) (Fig. 6). The subunit order in the horseshoe is Rpn9/Rpn5/Rpn6/Rpn7/Rpn3/Rpn12. The PCI-heterohexamer embraces the Rpn8/11 heterodimer and contacts Rpn10 (via Rpn9) and Rpn2 (via Rpn12) at its ends. The scaffold of the horseshoe is made of the interacting PCI domains, while the α -solenoid domains project away from the horseshoe (Fig. 6D). Interestingly, Rpn6 monomers contact each other through their PCI domains in the Rpn6 crystal and form a screw (26), which

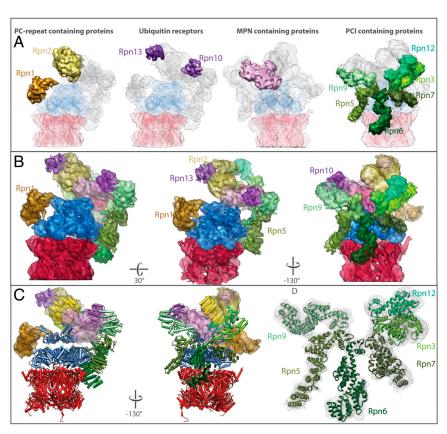


Fig. 6. Modular architecture of the 26S proteasome. (A) From left to right: segmented densities of the PC-repeat containing proteins, Ub receptors (Rpn13 is taken from the *S. cerevisiae* 26S proteasome because it binds substoichmetrically in *S. pombe*) (33), the MPN-domain-containing proteins, and the PCI-domain-containing subunits. (B) The segmented 26S proteasome density in three different views. (C) Hybrid representation of the 26S proteasome, indicating fitted available comparative models for the CP (red), the AAA-ATPase heterohexamer (blue), the PCI heterohexamer (green), Rpn8 MPN domain (pink), Rpn2 LRR domain (yellow), and Rpn10 VWA domain (purple). (D) Close-up view of the heterohexamer formed by the PCI domains.

resembles the horseshoe observed for the PCI-heterohexamer in the RP. The solenoid N termini of the PCI-domain-containing subunits all form right-handed superhelices, but their respective curvatures vary substantially.

Ub Receptors. Rpn10 and Rpn13 are structurally unrelated and recognize Ub through different binding motifs (8). From their peripheral localization at the distal end of the 26S proteasome, we conclude that both receptors were added late in the evolution of the RP. Rpn13 interacts solely with Rpn2, which is consistent with numerous interaction studies (9, 55–57). We anticipated that the cryo-EM map could only resolve the C-terminal von Willenbrand factor A (VWA) domain of Rpn10, due to the structural variability of the N-terminal ubiquitin interacting motif (UIM) (58), which is consistent with the fit for Rpn10 (Fig. S4D). Rpn10 interacts with Rpn9 and the Rpn8/11 heterodimer. We do not observe the Rpn10-Rpn1 interaction, which was implied by immunoprecipitation (38, 59); nevertheless, this interaction may occur transiently. The Rpn10 UIM is flexible, and in the cryo-EM map we observe Rpn1 to be variable. Hence, Rpn1 and the Rpn10 UIM may bridge the distance of approximately 70 Å between Rpn1 and the Rpn10 VWA domain temporarily, which is not resolved in our map.

Structure and Function of the Lid Subcomplex. The subcomplex formed by the MPN- and PCI-domain-containing subunits was termed the "lid" (60), indicating that it was positioned distally from the CP. However, it turns out that the lid instead flanks the side of the AAA-ATPase hexamer and even contacts the CP directly; the N termini of Rpn6 and to a lesser extent Rpn5 physically interact with the CP. The only currently known function of

the lid is a deubiquitylating activity. Rpn11 is only active within the assembled RP and its deubiquitylating activity is ATP-dependent (10, 11). We find the Rpn8/Rpn11 heterodimer close to the AAA-ATPase hexamer, which may explain the ATP-dependence of the Rpn11 function. The positioning of Rpn8/Rpn11 suggests that Rpt3 and Rpt6 may be critical for activation of Rpn11. Nevertheless, higher resolution studies are required to precisely identify the mechanism by which the AAA-ATPases activate Rpn11 and to elucidate the role of Rpn8.

The AAA-ATPase heterohexamer is thought to undergo large-scale motions during its functional cycle (61), probably similar to the ClpX hexamer (62). One function of the hexamer formed by the PCI-containing subunits seems to be that of a scaffold, which positions Rpn11 near the mouth of the AAA-ATPase. Pivotal for this scaffolding function is Rpn6, which maintains the contact to the CP through its solenoid N terminus. A further role of the PCI submodule at the top of the AAA-ATPase module could be that of a shield: The AAA-ATPases are expected to have a propensity to bind to secondary degradation signals (degrons) of substrates (see below) and their shielding could help to minimize uncontrolled degradation.

It is unlikely that a complex structure such as the PCI horseshoe has evolved to solely function as a scaffold or a shield. For example, the 71-residue subunit Rpn15 (Sem1), which is associated with Rpn3 and Rpn7, would not be required if the PCI subunits did not have further functions (63). The PCI domain contains a winged-helix motif, which typically binds nucleotides (64). Interestingly, when the winged-helix motif of Rpn6 is superposed on that of the transcription factor E2F-DP (PDB ID code 1CF7), the bound DNA molecule would not clash with the surrounding proteasome subunits (Fig. S7). DNA association with

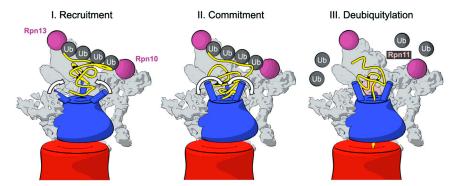


Fig. 7. Mechanistic model for the early steps of protein degradation by the 26S proteasome. Polyubiquitylated substrates first bind to the Ub receptors Rpn10 and Rpn13 in concert (33) (I). During the subsequent commitment step (II), the substrates are more tightly bound by the AAA-ATPase coiled coils, which may perform swinging motion. The coiled coils further transfer the substrates to Rpn11, where they are deubiquitylated to enable Ub recycling (III).

the 26S proteasome could be required for its role in transcription (65), but no experimental evidence for recruitment of the 26S proteasomes to DNA or RNA exists to date. Interestingly, for subunit eIF3c of the lid paralog eIF3, RNA interaction of its PCI domain has been shown recently (66).

Model for the Initial Protein Degradation Steps. Based on the molecular architecture of the RP and biochemical findings, we put forward a model for the early steps of protein degradation by the 26S proteasome (Fig. 7). Genetic studies revealed a functional linkage between Rpn10 and Rpn13 (8). In NMR spectroscopy experiments, purified Rpn13 and Rpn10 were found to simultaneously bind to K-48 linked di-ubiquitin (67). Together, these findings suggest that Ub receptors may bind polyubiquitin tags "in concert" when recruiting substrates to the 26S proteasome (33). This hypothesis is consistent with the positions of Rpn10 and Rpn13 found in our structure. The distance between both subunits is approximately 90 Å, which could be bridged by a tetraubiquitin moiety (33). In fact, this relative placement of Ub receptors offers an explanation why polyubiquitin chains need to comprise at least four Ub subunits to function efficiently as a degradation signal (68, 69). Thus, we hypothesize that Rpn13 and Rpn10 both bind to the polyubiquitin tag of their respective substrates with a preference of Rpn13 for the proximal Ub moiety (67) (Fig. 71).

Initial binding of polyubiquitylated substrates is followed by a "commitment" step (70); the substrate is bound more tightly to the proteasome via a loosely folded domain in an ATP-dependent manner. Rpn10 and Rpn13 are positioned above the coiled coils of the Rpt4/5 and Rpt1/2 dimers, respectively. The structure of the archaeal homolog PAN suggests that the N-terminal coiled coils are flexibly linked to the N ring of the ATPase (17). We envisage that they act as "swinging arms" sampling the space above the ATPase. Such swinging arms have been implicated in the transfer of substrates in multienzyme complexes to couple multistep reactions (71). Indeed, analysis of the space accessible to the coiled-coils pairs shows that the Rpt1/2 and Rpt4/5 coils can undergo substantial swinging motions without clashes with surrounding subunits (Fig. S8); our structural data indicate that

- Hershko A, Ciechanover A, Varshavsky A (2000) Basic Medical Research Award. The ubiquitin system. Nat Med 6:1073–1081.
- Jentsch S, Haendler B (2009) The Ubiquitin System in Health and Disease (Springer, Heidelberg).
- Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: A molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068.
- 4. Tanaka K (2009) The proteasome: Overview of structure and functions. *Proc Jpn Acad Ser B Phys Biol Sci* 85:12–36.
- Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513.
- Peters JM, Cejka Z, Harris JR, Kleinschmidt JA, Baumeister W (1993) Structural features of the 26 S proteasome complex. J Mol Biol 234:932–937.
- van Nocker S, et al. (1996) The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol Cell Biol 16:6020–6028.

the Rpt1/2 and Rpt4/5 coiled coils can rotate by up to approximately 40° around the hinge residues corresponding to Pro62 in PAN. This flexibility enables them to grab substrates bound to Rpn10 and Rpn13 via tetraubiquitin chains (33) and dangling into the space accessible to the swinging arms (Fig. 7II). It has already been shown that the PAN coiled coils bind substrates (72, 73), which suggests that the coiled coils have the capability to bind substrates with appropriate degrons (74).

Subsequently, the coiled coils expose the substrates to Rpn11 (Fig. 7III), which is located above the central opening of the AAA-ATPase. The substrates are deubiquitylated by Rpn11 before being unfolded in the upper AAA-ATPase cavity (N ring) and translocated to the CP where degradation occurs. The coiled-coil motions might trigger gate opening to the CP because the coiled coils are positioned above the Rpt subunits (Rpt2, Rpt3, and Rpt5) whose C termini open the gate (45).

Materials and Methods

Sample Preparation, Cryo-EM, and XL/MS. Sample preparation, cryo-EM single-particle analysis, and XL/MS were performed as described in ref. 22 and explained in more detail in *SI Methods*.

Integrative Structure Determination. In brief, multiple comparative models were built for each subunit, fitted into the cryo-EM map, and the best-scoring configurations were subjected to flexible fitting (*SI Methods*).

ACKNOWLEDGMENTS. We thank Julio Ortiz for preparing Fig. 7; Johannes Söding for help with HHpred; Daniel Russel, Ben Webb, and Charles Greenberg for help with IMP; Ursula Pieper for help with databases; as well as Eri Sakata, Stephan Nickell, Andreas Bracher, Ganesh Pathare, Istvan Nagy, Andreas Schweitzer, Alexander Leitner, Martin Beck, and Peter Cimermancic for fruitful discussions. This work was supported by grants from the European Union Seventh Framework Program PROSPECTS (Proteomics Specification in Space and Time Grant HEALTH-F4-2008-201648), the SFB 594 of the Deutsche Forschungsgemeinschaft (both to W.B.), the Human Frontier Science Project (Career Development Award to F.F.), a Marie Curie Postdoctoral Fellowship from the European Union (to E.V.), as well as National Institutes of Health Grants R01 GM54762, U54 RR022220, and R01 GM083960 (to A.S.). The research of K.L. was supported by continuous mentorship from Professor Haim J. Wolfson and a fellowship from the Clore Foundation PhD Scholars program.

- Husnjak K, et al. (2008) Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453(7194):481–488.
- Schreiner P, et al. (2008) Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature 453:548–552.
- Verma R, et al. (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 265 proteasome. Science 298:611–615.
- Yao T, Cohen RE (2002) A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419:403–407.
- 12. Puhler G, et al. (1992) Subunit stoichiometry and three-dimensional arrangement in proteasomes from *Thermoplasma acidophilum*. *EMBO J* 11:1607–1616.
- Groll M, et al. (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386:463–471.
- Lowe J, et al. (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268:533–539.

- Baumeister W, Walz J, Zuhl F, Seemuller E (1998) The proteasome: Paradigm of a selfcompartmentalizing protease. Cell 92:367–380.
- Sharon M, et al. (2006) 20S proteasomes have the potential to keep substrates in store for continual degradation. J Biol Chem 281:9569–9575.
- Djuranovic S, et al. (2009) Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases. Mol Cell 34:580–590.
- tion domains in proteasomal ATPases. *Mol Cell* 34:580–590.

 18. Zhang F, et al. (2009) Structural insights into the regulatory particle of the protea-
- some from Methanocaldococcus jannaschii. Mol Cell 34:473–484.
 Zhang F, et al. (2009) Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol Cell 34:485–496.
- 20. Förster F, et al. (2009) An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome. *Biochem Biophys Res Commun* 388:228–233.
- Tomko RJ, Jr, Funakoshi M, Schneider K, Wang J, Hochstrasser M (2010) Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: Implications for proteasome structure and assembly. Mol Cell 38:393

 –403.
- Bohn S, et al. (2010) Structure of the 26S proteasome from Schizosaccharomyces pombe at subnanometer resolution. Proc Natl Acad Sci USA 107:20992–20997.
- Tian G, et al. (2011) An asymmetric interface between the regulatory and core particles of the proteasome. Nat Struct Mol Biol 18:1259–1267.
- Sanches M, Alves BS, Zanchin NI, Guimaraes BG (2007) The crystal structure of the human Mov34 MPN domain reveals a metal-free dimer. J Mol Biol 370:846–855.
- Riedinger C, et al. (2010) The structure of RPN10 and its interactions with polyubiquitin chains and the proteasome subunit RPN12. J Biol Chem 285:33992–34003.
- Pathare GR, et al. (2011) The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together. Proc Natl Acad Sci USA 109:149–154.
- the core and regulatory subcomplexes together. *Proc Natl Acad Sci USA* 109:149–154.

 27. Lasker K, et al. (2010) Integrative structure modeling of macromolecular assemblies
- from proteomics data. *Mol Cell Proteomics* 9:1689–1702.

 28. Russel D, et al. (2012) Putting the pieces together: integrative structure determina-
- tion of macromolecular assemblies. *PLoS Biol*, in press.
 29. Alber F, Forster F, Korkin D, Topf M, Sali A (2008) Integrating diverse data for struc-
- ture determination of macromolecular assemblies. *Annu Rev Biochem* 77:443-477.

 30. Leitner A, et al. (2010) Probing native protein structures by chemical cross-linking,
- Leitner A, et al. (2010) Probing native protein structures by chemical cross-linking mass spectrometry and bioinformatics. Mol Cell Proteomics 9:1634–1649.
- Alber F, et al. (2007) Determining the architectures of macromolecular assemblies. Nature 450:683–694.
- 32. Alber F, et al. (2007) The molecular architecture of the nuclear pore complex. *Nature* 450:695–701.
- Sakata E, et al. (2011) Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy. Proc Natl Acad Sci USA, in press.
- Lasker K, Topf M, Sali A, Wolfson HJ (2009) Inferential optimization for simultaneous fitting of multiple components into a CryoEM map of their assembly. J Mol Biol
- 388:180–194.
 35. Förster F, Han BG, Beck M (2010) Visual Proteomics. *Methods Enzymol* 483:215–243.
- Trabuco LG, Villa E, Mitra K, Frank J, Schulten K (2008) Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16:673–683.
- Xie Y, Varshavsky A (2001) RPN4 is a ligand, substrate, and transcriptional regulator
 of the 26S proteasome: A negative feedback circuit. Proc Natl Acad Sci USA
 98:3056–3061.
- Seeger M, et al. (2003) Interaction of the anaphase-promoting complex/cyclosome and proteasome protein complexes with multiubiquitin chain-binding proteins. J Biol Chem 278:16791–16796.
- Krogan NJ, et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643.
- Kajava AV (2002) What curves alpha-solenoids? Evidence for an alpha-helical toroid structure of Rpn1 and Rpn2 proteins of the 26 S proteasome. J Biol Chem 277:49791–49798.
- Sharon M, Taverner T, Ambroggio XI, Deshaies RJ, Robinson CV (2006) Structural organization of the 19S proteasome lid: insights from MS of intact complexes. PLoS Biol 4:e267.
- 42. Takeuchi J, Fujimuro M, Yokosawa H, Tanaka K, Toh-e A (1999) Rpn9 is required for efficient assembly of the yeast 26S proteasome. *Mol Cell Biol* 19:6575–6584.
- Fukunaga K, Kudo T, Toh-e A, Tanaka K, Saeki Y (2010) Dissection of the assembly pathway of the proteasome lid in Saccharomyces cerevisiae. Biochem Biophys Res Commun 396:1048–1053.
- Wollenberg K, Swaffield JC (2001) Evolution of proteasomal ATPases. Mol Biol Evol 18:962–974.
- Smith DM, et al. (2007) Docking of the proteasomal ATPases' carboxyl termini in the 205 proteasome's alpha ring opens the gate for substrate entry. Mol Cell 27:731–744.

- Förster F, Lasker K, Nickell S, Sali A, Baumeister W (2010) Towards an integrated structural model of the 26S proteasome. Mol Cell Proteomics 9:1666–1677.
- 47. Lupas A, Baumeister W, Hofmann K (1997) A repetitive sequence in subunits of the 26S proteasome and 20S cyclosome (anaphase-promoting complex). *Trends Biochem Sci* 22:195–196.
- Effantin G, Rosenzweig R, Glickman MH, Steven AC (2009) Electron microscopic evidence in support of alpha-solenoid models of proteasomal subunits Rpn1 and Rpn2. J Mol Biol 386:1204–1211.
- 49. Nickell S, et al. (2009) Insights into the molecular architecture of the 26S proteasome. *Proc Natl Acad Sci USA* 106:11943–11947.
- Elsasser S, et al. (2002) Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat Cell Biol 4:725–730.
- Gomez TA, Kolawa N, Gee M, Sweredoski MJ, Deshaies RJ (2011) Identification of a functional docking site in the Rpn1 LRR domain for the UBA-UBL domain protein Ddi1. BMC Biol 9:33.
- Tran HJ, Allen MD, Lowe J, Bycroft M (2003) Structure of the Jab1/MPN domain and its implications for proteasome function. *Biochemistry* 42:11460–11465.
- 53. Ambroggio XI, Rees DC, Deshaies RJ (2004) JAMM: A metalloprotease-like zinc site in the proteasome and signalosome. *PLoS Biol* 2:E2.
- Isono E, Saito N, Kamata N, Saeki Y, Toh EA (2005) Functional analysis of Rpn6p, a lid component of the 26 S proteasome, using temperature-sensitive rpn6 mutants of the yeast Saccharomyces cerevisiae. J Biol Chem 280:6537–6547.
- Yao T, et al. (2006) Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat Cell Biol 8:994–1002.
- Hamazaki J, et al. (2006) A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes. EMBO J 25:4524–4536.
- Chen X, Lee BH, Finley D, Walters KJ (2010) Structure of proteasome ubiquitin receptor hRpn13 and its activation by the scaffolding protein hRpn2. Mol Cell 38:404–415.
- Wang Q, Young P, Walters KJ (2005) Structure of S5a bound to monoubiquitin provides a model for polyubiquitin recognition. J Mol Biol 348:727–739.
- Xie Y, Varshavsky A (2000) Physical association of ubiquitin ligases and the 265 proteasome. Proc Natl Acad Sci USA 97:2497–2502.
- Glickman MH, et al. (1998) A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94:615–623.
- Smith DM, Fraga H, Reis C, Kafri G, Goldberg AL (2011) ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle. Cell 144:526–538.
- Glynn SE, Martin A, Nager AR, Baker TA, Sauer RT (2009) Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Cell 139:744–756.
- Pick E, Hofmann K, Glickman MH (2009) PCI complexes: Beyond the proteasome, CSN, and eIF3 Troika. Mol Cell 35:260–264.
- 64. Gajiwala KS, Burley SK (2000) Winged helix proteins. *Curr Opin Struct Biol* 10:110–116.
- Collins GA, Tansey WP (2006) The proteasome: A utility tool for transcription? Curr Opin Genet Dev 16:197–202.
- Kouba T, Rutkai E, Karaskova M, Valasek LS (2011) The eIF3c/NIP1 PCI domain interacts with RNA and RACK1/ASC1 and promotes assembly of translation preinitiation complexes. *Nucleic Acids Res*, 10.1093/nar/gkr1083.
- 67. Zhang N, et al. (2009) Structure of the s5a:k48-linked diubiquitin complex and its interactions with rpn13. *Mol Cell* 35:280–290.
- 68. Deveraux Q, Ustrell V, Pickart C, Rechsteiner M (1994) A 26 S protease subunit that binds ubiquitin conjugates. *J Biol Chem* 269:7059–7061.
- 69. Piotrowski J, et al. (1997) Inhibition of the 26 S proteasome by polyubiquitin chains synthesized to have defined lengths. *J Biol Chem* 272:23712–23721.
- Peth A, Uchiki T, Goldberg AL (2010) ATP-dependent steps in the binding of ubiquitin conjugates to the 26S proteasome that commit to degradation. Mol Cell 40:671–681.
- Perham RN (2000) Swinging arms and swinging domains in multifunctional enzymes: catalytic machines for multistep reactions. Annu Rev Biochem 69:961–1004.
- Reuter CJ, Kaczowka SJ, Maupin-Furlow JA (2004) Differential regulation of the PanA and PanB proteasome-activating nucleotidase and 20S proteasomal proteins of the haloarchaeon Haloferax volcanii. J Bacteriol 186:7763–7772.
- Zhang X, et al. (2004) The N-terminal coiled coil of the Rhodococcus erythropolis ARC AAA ATPase is neither necessary for oligomerization nor nucleotide hydrolysis. J Struct Biol 146(1–2):155–165.
- Inobe T, Fishbain S, Prakash S, Matouschek A (2011) Defining the geometry of the two-component proteasome degron. Nat Chem Biol 7:161–167.

Lasker et al. PNAS Early Edition | 1387 of 1387

Supporting Information

Lasker et al. 10.1073/pnas.1120559109

SI Material and Methods.

Sample Preparation, Cryo-EM, and XL/MS. Sample preparation, cryo-EM single particle analysis, and XL/MS were performed as described in ref. 1. In brief, 26S proteasomes were purified from ^{3×FLAG}Rpn11 *S. pombe* cells and the vitrified sample was imaged using a Tecnai F20 transmission electron microscope (FEI). From 375,000 single particles, we computed an 8.4-Å resolution map (Fourier-Shell correlation, FSC = 0.5) using XMIPP (2) (Fig. S1). The local resolution at each voxel was computed using the FSC of two reconstructions from each 50% of the particles within a softened sphere (radius = 22 Å) centered at the respective voxel (Fig. 1*B*).

XL/MS. Purified 26S proteasomes from *S. pombe* and *S. cerevisiae* were concentrated to 1 mg/mL. 50 μ L of sample were crosslinked with 1 mM DSS (H_{12}/D_{12} , from Creative Molecules). The cross-linking reaction was quenched with 50 mM ammonium bicarbonate, and proteins were reduced, alkylated and digested with 1 μ g trypsin (Promega). Cross-linked peptides were enriched using peptide size exclusion chromatography and analyzed by LC-MS/MS using a Thermo LTQ Orbitrap XL mass spectrometer.

MS data were analyzed using xQuest (3). The xQuest search was performed against target and decoy databases of previously identified proteasome proteins with a precursor mass tolerance of 10 ppm. For matching of fragment ions, tolerances of 0.2 Da for common ions and 0.3 Da for cross-link ions were used. FDRs were estimated based on the decoy counts using the software xProphet. All cross-link identifications corresponding to an FDR <5% were accepted.

Comparative Modeling of the Rpn Subunits. For each Rpn subunit, HHpred (4) was used to search for homologous structures (templates), followed by building multiple comparative models with MODELLER-9v8 (5), based on combinations of templates selected manually (Table S3); unaligned termini were truncated. The models were scored by TSVMod (6), a program for predicting the C^{α} root-mean-square error. Models with predicted C^{α} -rmsd errors lower than 8 Å were used for subsequent analyses.

Multiple Fitting of the PCI Subunits. MultiFit (7) was used to simultaneously fit the PCI subunit comparative models into their un-

- Bohn S, et al. (2010) Structure of the 26S proteasome from Schizosaccharomyces pombe at subnanometer resolution. Proc Natl Acad Sci USA 107:20992–20997.
- Scheres SH, Nunez-Ramirez R, Sorzano CO, Carazo JM, Marabini R (2008) Image processing for electron microscopy single-particle analysis using XMIPP. Nat Protoc 3:977–990.
- Rinner O, et al. (2008) Identification of cross-linked peptides from large sequence databases. Nat Methods 5:315–318.
- Soding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–248.
- Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815.
- Eramian D, Eswar N, Shen MY, Sali A (2008) How well can the accuracy of comparative protein structure models be predicted? *Protein Sci* 17:1881–1893.
- Lasker K, Topf M, Sali A, Wolfson HJ (2009) Inferential optimization for simultaneous fitting of multiple components into a CryoEM map of their assembly. J Mol Biol 388:180–194.
- Trabuco LG, Villa E, Mitra K, Frank J, Schulten K (2008) Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16:673–683.
- Goddard TD, Huang CC, Ferrin TE (2007) Visualizing density maps with UCSF Chimera. J Struct Biol 157:281–287.
- Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14:33–38. 27–38.
- Kajava AV (2002) What curves alpha-solenoids? Evidence for an alpha-helical toroid structure of Rpn1 and Rpn2 proteins of the 26 S proteasome. J Biol Chem 277:49791–49798.

iquely localized regions. We ran MultiFit 54 times, each time with a different combination of comparative models, because we could not determine a priori which comparative model to use for each of the PCI subunits. Because the relative orientation between the PCI domain and the α-solenoid domain of each PCI subunit varied widely among its comparative models, we allowed the two domains to move relative to each other as rigid bodies, restrained by a maximum allowed distance. We then clustered the two top-scoring models from all MultiFit runs (108 models in total) according to their PCI-domain centroids. The models clustered into 11 groups. The PCI-domain configuration shared by the three largest clusters (with 15,15, and 12 members, respectively) clearly indicated that the PCI subunits interact via their PCI domains (Fig. S3).

Flexible Fitting of the PCI Subunits, the AAA-ATPase Hexamer, and the CP. We used MDFF (8) to fit available atomic models into the cryo-EM map. All MDFF runs were done with default parameters, using implicit solvent and temperature annealing. The comparative models of the AAA-ATPase hexamer and the CP were first rigidly fitted into the density and then flexibly fitted. To fit the PCI-domain-containing subunits, the PCI domains of the comparative models from the three main clusters found by MultiFit were refined first, while the α -solenoid domains were internally restrained to move as rigid bodies. Additional restraints between PCI-domain β-sheets enforced contacts observed between the PCI domains of Rpn6 monomers in the crystal (PDB ID code 3TXM). In the second step, the α -solenoid restraints were released and the entire subunits were allowed to fit into the cryo-EM map. To prevent the Rpn12 α-solenoid helices from moving into neighboring areas for which no atomic models were available, distance restraints between α -helices were imposed. The accuracy of the flexibly refined models strongly depends on the local resolution of the cryo-EM map (Fig. S1) and the quality of the comparative models (Table S3).

Visualization. All figures were generated using Chimera (9) and VMD (10).

- 12. Förster F, Han BG, Beck M (2010) Visual proteomics. Methods Enzymol 483:215–243.
- Konagurthu AS, Whisstock JC, Stuckey PJ, Lesk AM (2006) MUSTANG: A multiple structural alignment algorithm. Proteins 64:559–574.
- Hartmann-Petersen R, Tanaka K, Hendil KB (2001) Quaternary structure of the AT-Pase complex of human 26S proteasomes determined by chemical cross-linking. Arch Biochem Biophys 386:89–94.
- Richmond C, Gorbea C, Rechsteiner M (1997) Specific interactions between ATPase subunits of the 26 S protease. J Biol Chem 272:13403–13411.
- Takeuchi J, Tamura T (2004) Recombinant ATPases of the yeast 26S proteasome activate protein degradation by the 20S proteasome. FEBS Lett 565:39–42.
- Gorbea C, Taillandier D, Rechsteiner M (2000) Mapping subunit contacts in the regulatory complex of the 26 S proteasome. S2 and S5b form a tetramer with ATPase subunits S4 and S7. J Biol Chem 275:875–882.
- Park S, et al. (2009) Hexameric assembly of the proteasomal ATPases is templated through their C termini. Nature 459:866–870.
- Xie Y, Varshavsky A (2001) RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: A negative feedback circuit. Proc Natl Acad Sci USA 98:3056–3061.
- Funakoshi M, Tomko RJ, Jr, Kobayashi H, Hochstrasser M (2009) Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base. Cell 137:887–899
- Wilkinson CR, Wallace M, Seeger M, Dubiel W, Gordon C (1997) Mts4, a non-ATPase subunit of the 26 S protease in fission yeast is essential for mitosis and interacts directly with the ATPase subunit Mts2. J Biol Chem 272:25768–25777.

- Chen C, et al. (2008) Subunit-subunit interactions in the human 26S proteasome. Proteomics 8:508–520.
- 23. Davy A, et al. (2001) A protein-protein interaction map of the *Caenorhabditis elegans* 26S proteasome. *EMBO Rep* 2:821–828.
- Zhang Z, et al. (2000) Structural and functional characterization of interaction between hepatitis B virus X protein and the proteasome complex. J Biol Chem 275:15157–15165.
- Krogan NJ, et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643.
- Cagney G, Uetz P, Fields S (2001) Two-hybrid analysis of the Saccharomyces cerevisiae 26S proteasome. Physiol Genomics 7:27–34.
- Uetz P, et al. (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627.
- Fu H, Reis N, Lee Y, Glickman MH, Vierstra RD (2001) Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome. EMBO J 20:7096–7107
- Ito T, et al. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98:4569

 –4574.
- Saeki Y, Toh EA, Kudo T, Kawamura H, Tanaka K (2009) Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. *Cell* 137:900–913.
- 31. Gavin AC, et al. (2006) Proteome survey reveals modularity of the yeast cell machinery. *Nature* 440:631–636.
- Russell SJ, Sathyanarayana UG, Johnston SA (1996) Isolation and characterization of SUG2. A novel ATPase family component of the yeast 26 S proteasome. J Biol Chem 271:32810–32817.
- Satoh K, Sasajima H, Nyoumura KI, Yokosawa H, Sawada H (2001) Assembly of the 26S proteasome is regulated by phosphorylation of the p45/Rpt6 ATPase subunit. Biochemistry 40:314–319.
- 34. Xie Y, Varshavsky A (2000) Physical association of ubiquitin ligases and the 26S proteasome. *Proc Natl Acad Sci USA* 97:2497–2502.

- Seeger M, et al. (2003) Interaction of the anaphase-promoting complex/cyclosome and proteasome protein complexes with multiubiquitin chain-binding proteins. J Biol Chem 278:16791–16796.
- 36. Stone M, et al. (2004) Uch2/Uch37 is the major deubiquitinating enzyme associated with the 26S proteasome in fission yeast. *J Mol Biol* 344:697–706.
- Giot L, et al. (2003) A protein interaction map of *Drosophila melanogaster. Science* 302:1727–1736.
- Yao T, et al. (2006) Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat Cell Biol 8:994–1002.
- Sharon M, Taverner T, Ambroggio XI, Deshaies RJ, Robinson CV (2006) Structural organization of the 19S proteasome lid: Insights from MS of intact complexes. PLoS Biol 4:e267.
- Joshi KK, Chen L, Torres N, Tournier V, Madura K (2011) A proteasome assembly defect in rpn3 mutants is associated with Rpn11 instability and increased sensitivity to stress. J Mol Biol 410:383–399.
- Tone Y, et al. (2000) Nob1p, a new essential protein, associates with the 26S proteasome of growing Saccharomyces cerevisiae cells. Gene 243:37–45.
- Isono E, Saeki Y, Yokosawa H, Toh-e A (2004) Rpn7 Is required for the structural integrity of the 26 S proteasome of Saccharomyces cerevisiae. J Biol Chem 279:27168–27176.
- 43. Gandhi TK, et al. (2006) Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. *Nat Genet* 38:285–293.
- 44. Pathare GR, et al. (2011) The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together. Proc Natl Acad Sci USA in press
- 45. Li T, et al. (2001) Identification of two proteins, S14 and UIP1, that interact with UCH37. FEBS Lett 488:201–205.
- Frank J (2006) Three-Dimensional Electron Microscopy of Macromolecular Assemblies: Visualization of Biological Molecules in Their Native State (Oxford Univ Press, New York) 2nd Ed.
- 47. Alber F, Kim MF, Sali A (2005) Structural characterization of assemblies from overall shape and subcomplex compositions. *Structure* 13:435–445.
- 48. Connolly ML (1983) Solvent-accessible surfaces of proteins and nucleic acids. Science 221-709–713

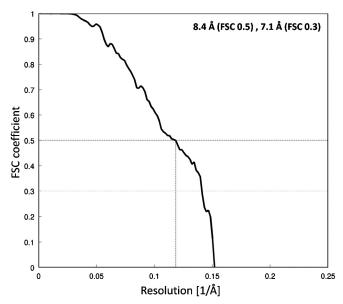


Fig. S1. Resolution assessment of the S. pombe 26S proteasome cryo-EM map. The Fourier-Shell Correlation (FSC) coefficient decreases below 0.5 at a resolution of approximately $8.4^{-1} \, \text{Å}^{-1}$.

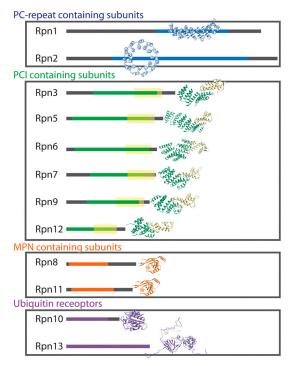


Fig. S2. Comparative modeling of the Rpn subunits. The sequence segments covered by atomic models are indicated. A representative model for each subunit is shown. The PCI domain is indicated in yellow.

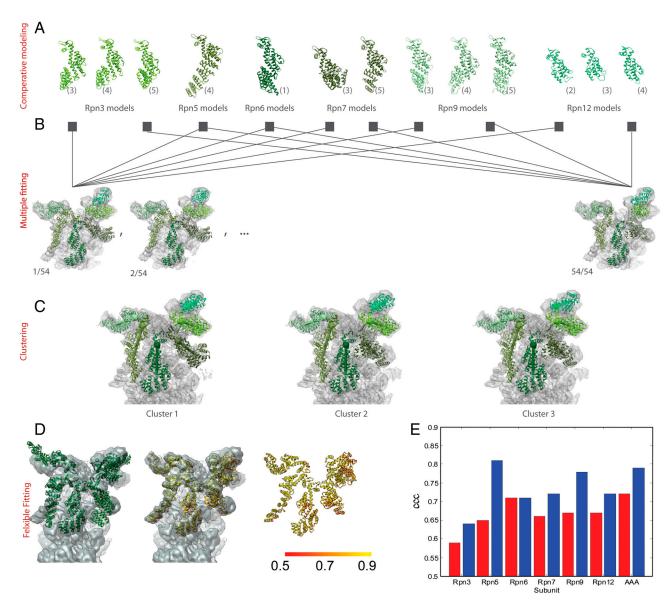


Fig. S3. Multiple fitting of the PCI-domain-containing subunits and flexible fitting. (A) Comparative models of the PCI-domain-containing subunits selected for fitting are indexed as in Table S3. (B) Fifty-four MultiFit runs, one for each comparative model combination. (C) Representatives of the three largest clusters among 108 MultiFit models (two top ranking models for each of the 54 runs). The models were clustered according to their PCI-domain centroids. The PCI-domain centroids, the main principal direction of the α -solenoid domains, as well as the atomic model are shown for each of the three cluster representatives. (D) Best-scoring combination of comparative models (green) fitted as rigid bodies into the cryo-EM map that is shown in gray (Left); models after flexible fitting by MDFF (B), colored according to the local cross-correlation coefficient of the density of the model and the cryo-EM map (computed analogously as for Fig. 1B) shown with (Middle) and without the cryo-EM map (Right). The local cross-correlation coefficient (colorcode explained in legend) is an indicator for the local confidence of the atomic models. The local correlation suggests that the accuracy of models is higher for the PCI domains than for the solenoid domains, in particular those of Rpn3 and Rpn7 (second and third from the right, respectively). (E) Cross-correlation coefficients (CCC, computed by UCSF Chimera) (E) of PCI-domain-containing subunits and the AAA-ATPase hexamer (Fig. 5) before (red) and after flexible fitting (blue). For all subunits, with the exception of Rpn6, whose initial model based on the E0. E1 melanogaster Rpn6 crystal structure (PDB ID code 3TXM), the correlation coefficients improve notably.

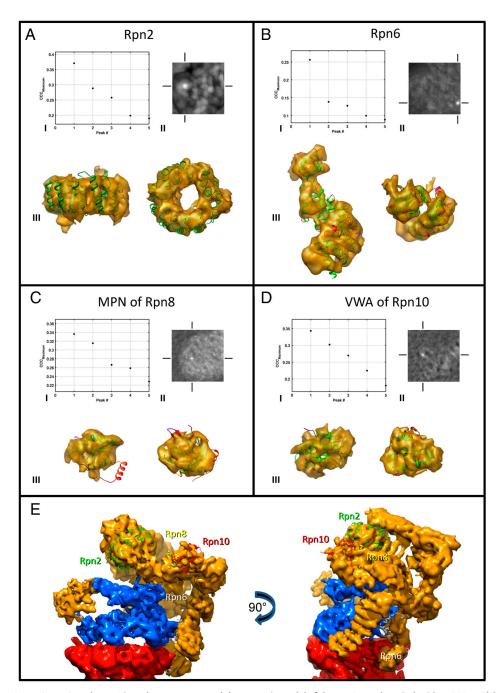


Fig. S4. Fitting of Rpn2, Rpn6, Rpn8, and Rpn10 into the cryo-EM map. (A) An atomic model of the Rpn2 LRR domain (residues 309–712) (11) was fitted into the B-factor corrected density ($B = -1,000 \text{ Å}^2$) using MOLMATCH (12). The first five local maxima of the local correlation function are plotted in descending order (I) and a slice of the correlation function is shown with its maximum indicated (II). Moreover, the atomic model (green) is superposed onto the density (gold) identified by the correlation maximum (III). (B) Same for the Rpn6 crystal structure (PDB ID code 3TXM), which is colored according to its B factor, ranging from green to red in III. (C and D) Same for crystal structure of the Rpn8 MPN domain (PDB ID code 2O95), and the von Willenbrand factor A (VWA), domain of Rpn10 (PDB ID code 2X5N). (E) The fitted subunits placed in the cryo-EM density, seen from two different views.

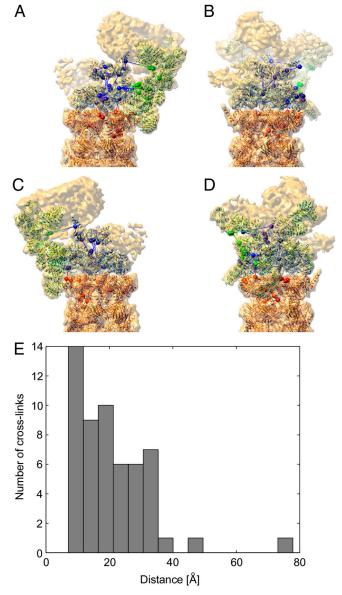


Fig. S5. Cross-links in the atomic model of the 26S proteasome. (A–D) The cross-links (Table S1) are plotted in the resulting models, seen from four different views. The C^{α} atoms of the cross-linked residues pairs are displayed as spheres that are connected by cylinders. The coloring is chosen according to subunit type (nonATPases: green, ATPases: blue, CP: red). Accordingly, cylinders connecting residues from different subunit types have two colors. Of 55 cross-linked C^{α} pairs, only two are more than 40 Å apart from each other, involving Rpt4 and Rpn5 (48 Å), as well as Rpn9 and Rpt3 (77 Å). This would suggest a false-positive rate <4% in the cross-linking data, which is predicted to be better than 5%. Moreover, the Rpt4-Rpn5 cross-link could also be due to motion of the Rpt4/Rpt5 coiled-coil. (E) Histogram of C^{α} - C^{α} distances for the cross-links.

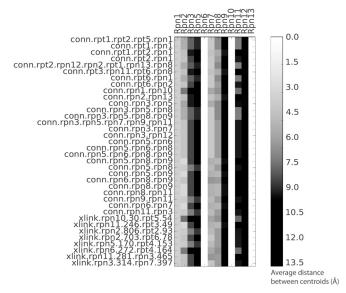


Fig. S6. Ensemble analysis. To assess the redundancy of the restraints, we omitted one proteomics or residue-specific cross-linking restraint at a time and recalculated $5 \cdot 10^5$ top-scoring solutions violating at most five restraints for each restraint subset. We then compared the resulting "jack-knife" ensembles with the union of the refined representative models from each one of the three clusters computed from all restraints (union model). The rows of the matrix correspond to the individual omitted restraints and the columns correspond to the individual Rpn subunits. Each bin indicates the sensitivity of the subunit localization to the presence of a specific restraint, quantified by the average centroid distance between the union and jack-knife subunit models. Even after omitting one restraint at a time, the jack-knife ensembles remain similar to the union model, with the maximum sensitivity of approximately 13.5 Å.

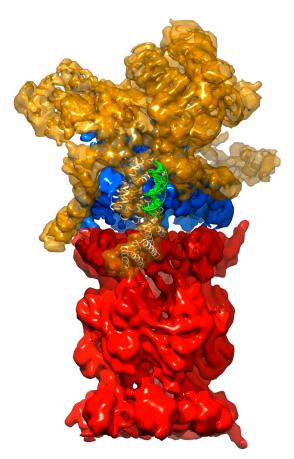


Fig. S7. Putative DNA binding by Rpn6. The transcription factor E2F-DP in complex with DNA (PDB ID code 1CF7) was structurally aligned to the winged helix motif from Rpn6 (white) using MUSTANG (13). The bound DNA molecule (green) does not yield major clashes with surrounding subunits.

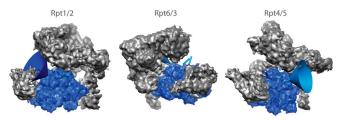


Fig. S8. Analysis of the space accessible for the AAA-ATPase coiled coils pairs. The maximum opening angles of cones originating from the coiled-coil hinge residues corresponding to Pro62 in PAN were computed so that the coiled coils do not penetrate neighboring densities (Rpns: gray, remaining AAA-domains: blue). The opening angles were approximately 40° for the Rpt1/2 coiled-coil, 15° for Rpt6/3, and 40° for Rpt4/5 (blue cylinders).

Table S1. Cross-linked lysine residues in the 26S proteasomes from *S. pombe* and *S. cerevisiae*

Residue 1 Residue 2	Species
IntraCP (6 from S. pombe and 1 from S. cere	evisiae)
$\alpha 1:102$ $\alpha 2:91$	S. pombe
$\alpha 1:102$ $\alpha 2:98$	S. pombe
$\alpha 1:57$ $\alpha 7:177$	S. pombe
$\alpha 2:176$ $\alpha 3:54$	S. pombe
$\alpha 2:176$ $\alpha 3:50$	S. pombe
$\alpha 6:115$ $\alpha 7:89$	S. pombe
α1:102 α2:91	S. cerevisiae
CP-ATPase (4 from <i>S. pombe</i> and 2 from <i>S. c</i>	
α1:169 Rpt4:297	S. pombe
α2:176 Rpt6:390	S. pombe
α4:168 Rpt1:422	S. pombe
α4:168 Rpt1:426	S. pombe
α4:176 Rpt1:415	S. cerevisiae
α5:66 Rpt1:426	S. cerevisiae
Intra ATPase (32 from <i>S. pombe</i> and 8 from	
Rpt1:422 Rpt2:357	S. pombe
Rpt1:426 Rpt2:357	S. pombe
Rpt1:68 Rpt2:93	S. pombe
Rpt1:124 Rpt3:207	S. pombe
Rpt1:112 Rpt4:38	S. pombe
Rpt1:120 Rpt4:205	S. pombe
Rpt1:102 Rpt5:172	S. pombe
Rpt1:124 Rpt5:124	S. pombe
Rpt1:124 Rpt5:172	S. pombe
Rpt1:207 Rpt5:413	S. pombe
Rpt1:344 Rpt5:432	S. pombe S. pombe
Rpt2:264 Rpt6:84	S. pombe
Rpt2:264 Rpt6:90 Rpt2:45 Rpt6:90	S. pombe
Rpt2:45 Rpt6:90 Rpt3:378 Rpt4:297	S. pombe
Rpt3:207 Rpt5:124	S. pombe
Rpt3:299 Rpt6:357	S. pombe
Rpt3:299 Rpt6:390	S. pombe
Rpt4:10 Rpt5:51	S. pombe
Rpt4:10 Rpt5:54	S. pombe
Rpt4:71 Rpt5:124	S. pombe
Rpt4:47 Rpt5:77	S. pombe
Rpt4:196 Rpt5:217	S. pombe
Rpt4:196 Rpt5:350	S. pombe
Rpt4:205 Rpt5:124	S. pombe
Rpt4:24 Rpt5:64	S. pombe
Rpt4:297 Rpt5:217	S. pombe
Rpt4:318 Rpt5:217	S. pombe
Rpt4:38 Rpt5:64	S. pombe
Rpt4:38 Rpt5:72	S. pombe
Rpt4:38 Rpt5:77	S. pombe
Rpt4:41 Rpt5:64	S. pombe
Rpt1:124 Rpt5:124	S. cerevisiae
Rpt3:186 Rpt4:164	S. cerevisiae
Rpt3:299 Rpt6:390	S. cerevisiae
Rpt4:14 Rpt5:44	S. cerevisiae
Rpt4:318 Rpt5:212	S. cerevisiae
Rpt4:37 Rpt5:75	S. cerevisiae
Rpt4:41 Rpt5:75	S. cerevisiae
Rpt4:71 Rpt5:124	S. cerevisiae

Residue 1	Residue 2	Species
nonATPase-ATPase	(12 S. pombe, 6 S. cerevisiae)	
Rpn10:30	Rpt5:54	S. pombe
Rpn11:246	Rpt3:49	S. pombe
Rpn11:276	Rpt3:49	S. pombe
Rpn11:276	Rpt3:94	S. pombe
Rpn11:281	Rpt3:49	S. pombe
Rpn2:806	Rpt2:93	S. pombe
Rpn2:703	Rpt6:78	S. pombe
Rpn2:703	Rpt6:80	S. pombe
Rpn5:170	Rpt4:153	S. pombe
Rpn5:200	Rpt4:153	S. pombe
Rpn5:204	Rpt4:153	S. pombe
Rpn6:272	Rpt4:164	S. pombe
Rpn11:153	Rpt6:56	S. cerevisiae
Rpn2:703	Rpt2:104	S. cerevisiae
Rpn2:703	Rpt6:79	S. cerevisiae
Rpn5:203	Rpt4:153	S. cerevisiae
Rpn6:185	Rpt3:193	S. cerevisiae
Rpn9:74	Rpt5:44	S. cerevisiae
intra nonATPase (3	S. pombe, 5 S. cerevisiae)	
Rpn11:281	Rpn3:465	S. pombe
Rpn3:314	Rpn7:397	S. pombe
Rpn3:318	Rpn7:69	S. pombe
Rpn2:625	Rpn3:463	S. cerevisiae
Rpn2:925	Rpn5:7	S. cerevisiae
Rpn2:178	Rpn9:111	S. cerevisiae
Rpn3:277	Rpn7:397	S. cerevisiae
Rpn5:286	Rpn9:135	S. cerevisiae

For each pair of cross-linked lysines, the subunit name and the residue indices in the respective subunit from *S. pombe* are listed. ATPase refers to the AAA-ATPase hexamer.

Table S2. Protein interactions in the RP involving six or less subunits

Subcomplex	Technique	References	Species
Rpt1, Rpt2	IVB, x-link	(14–17)	sc,h
Rpt1, Rpt3	x-link	(14)	h
Rpt1, Rpt2, Rpt3, Rpt6	IVB	(15)	h
Rpt1, Rpt2, Rpt5, Rpn1	IVPD	(18)	sc
Rpt1, Rpn1	IVB	(17, 19)	h
Rpt1, Rpt2, Rpn1	IVB	(17, 20)	h
Rpt2, Rpt6	x-link	(14)	h
Rpt2, Rpn1	IVPD, 2h, IVB	(17, 21–23)	h
Rpt2, alpha4	IVPD, 2h	(22, 24)	h
Rpt2, Rpn12, Rpn2, Rpt1, Rpn13, Rpn8	IVPD	(25)	sc
Rpt3, Rpt4	2h	(22, 26, 27)	sc
Rpt3, Rpt5	2h, x-link	(14, 26–29)	sc,h
Rpt3, Rpt6	2h, IVB, IVPD	(15, 22, 26, 28, 30)	sc,h
Rpt3, Rpn11, Rpt6, Rpn8	IVPD	(31)	sc
Rpt4, Rpt5	2h, IVB, x-link, IVPD	(14, 15, 20, 23, 28, 29)	w,sc,h
Rpt4, Rpt6	Y2h, x-link	(14, 22, 32)	sc,h
Rpt4, alpha4	Y2h	(22, 23)	sc,w
Rpt4, alpha6	x-link	(14)	h
Rpt6, alpha2	x-link	(33)	р
Rpt6, Rpn1	IVB	(34)	sc
Rpt6, Rpn2	x-link	(14)	h
Rpn1, Rpn10	IVB	(19, 35)	sc
Rpn1, Ubp6	IVB	(36)	sp
Rpn2, Rpn13	2h, IVPD	(29, 37, 38)	dm,sc,sp
Rpn3, Rpn5	x-link	(39)	sc
Rpn3, Rpn5, Rpn8	x-link	(39)	sc
Rpn3, Rpn5, Rpn8, Rpn9	x-link	(39)	sc
Rpn3, Rpn5, Rpn7, Rpn9, Rpn11	x-link	(39)	sc
Rpn3, Rpn7	2h	(23, 28, 29)	sc,w,h
Rpn3, Rpn11	IVB	(40)	sc
Rpn3, Rpn12	2h	(22, 28, 41)	sc
Rpn3, Rpn15	x-link	(39)	sc
Rpn5, Rpn6	2h	(22, 29, 42)	sc
Rpn5, Rpn6, Rpn8	WCMS	(39)	sc
Rpn5, Rpn6, Rpn8, Rpn9	WCMS	(39)	sc
Rpn5, Rpn8, Rpn9	WCMS	(39)	sc
Rpn5, Rpn8	IVPD	(43)	h _.
Rpn5, Rpn9	2h	(28, 37)	sc,dm
Rpn6, Rpn7	IVB	(44)	dm
Rpn6, Rpn8, Rpn9	WCMS	(39)	sc
Rpn7, Rpn15	x-link	(39)	sc
Rpn8, Rpn9	2h	(22, 23)	sc
Rpn8, Rpn11	2h	(23, 26, 28, 37)	sc,dm
Rpn9, Rpn11	2h	(23, 28)	SC
Rpn10, UCH37	IVPD	(36)	sp
Rpn12, UCH37	IVB, 2h	(45)	h
Rpn13, UCH37	IVPD, IVB	(38, 43)	sp

Protein–protein interactions were compiled from two-hybrid screens (2h), chemical cross-linking (x-link), in vitro binding assays (IVB), different in vivo pull-down experiments (IVPD), and whole complex mass spectrometry (WCMS). The data were obtained from 26S proteasomes of *Homo sapiens* (h), *Saccharomyces cerevisiae* (sc), *Schizomycetes pombe* (sp), *Sus barbatus* (p), *Drosophila melanogaster* (dm), and *Caenorhabditis elegans* (w).

Table S3. Comparative modeling of the PCI-domain-containing subunits Rpn3/5/6/7/9/12

Model, used for multiple fitting (Y/N)	Templates(PDB code, chain id, region, aligned region on target)	Modeled region (Residue range), Coverage (%)	TSVMod Predicted Cα rmsd (Å) (33)	TSVMod Predicted native overlap at 3.5 Å (%)
Rpn3				
Rpn3_1, N	1hz4, A, 1–373, 50–453	67–448, 77%	9.2	41
Rpn3_2, N	1hz4, A, 1–373, 50–453	59–448, 78%	11.0	33
	3q15, A, 4–376, 51–411			
	1qqe, A, 2–288, 73–369			
	2ifu, A, 2–307, 67–402			
	3u4t, A, 1–268, 73–368			
Rpn3_3, Y	3txm, A, 87–353, 167–426	124–425, 60%	5.3	57
	1qqe, A, 37–265, 125–347			
Rpn3_4, Y	3txm, A, 87–353, 167–426	124–427, 60%	6.0	60
	1qqe, A , 37–265, 125–347			
D2 F V	3chm,A, 26–158, 292–427	120 424 60%		60
Rpn3_5, Y	3txm, A, 87–353, 167–426	128–424, 60%	5.5	60
	3chm, A, 26–158, 292–427			
B E	1hz4, A, 55–287, 129–353			
Rpn5	2:4: A 44 446 2 422	4 422 050/	112	4.4
Rpn5_1, N	2y4t, A, 41–446, 2–432	1–423, 95%	14.2	11
Rpn5_2, N	2y4t, A, 41–446, 2–432	1–423, 95%	14.8	8
	1hz4, A, 2–373, 1–354			
	1qqe, A, 1–292, 10–323			
5 5 3 N	3q15, A, 69–375, 1–255	22 200 050/	44.0	43
Rpn5_3, N	3txm, A, 3–352, 45–399	23–399, 85%	11.0	13
D	2ifu, A, 2–231, 23–248	24 200 050/	7.3	57
Rpn5_4, Y	3txm, A, 3–352, 45–399	24–398, 85%	7.2	57
	1ufm, A, 5–78, 329–402			
	3chm, A, 4–158, 225–401			
	2ifu, A, 2–231, 23–248			
D	1qqe, A, 43–228, 58–241	24 200 050/	0.0	24
Rpn5_5, N	3txm, A, 3–352, 45–399	24–398, 85%	8.9	34
	1ufm, A, 5–78, 329–402			
5 7	2ifu, A, 2–231, 23–248			
Rpn7	4 4 2 200 20 240	20 256 770/	42.7	20
Rpn7_1, N	1qqe, A, 2–288, 39–318	39–356, 77%	13.7	30
Rpn7_2, N	1qqe, A, 2–288, 39–318	22–356, 82%	14.8	8
	3gw4, A, 2–202, 17–273			
	1elr, A, 1–129,1 07–256			
	3gyz, A, 2–150, 75–239			
	2xcb, A, 1–142, 86–246			
D7 2 V	1ufm, A, 6–84, 304–382	27 256 700/	C 2	63
Rpn7_3, Y	3txm, 90–352, 112–373	37–356, 78%	6.2	62
	3chm, A, 25–161, 230–378			
D7 4 N	2ifu, A, 53–259,3 9–256	20 272 020/	0.7	20
Rpn7_4, N	3txm, A, 90–352, 112–373	39–373, 82%	9.7	28
	1ufm, A, 12–79, 310–377			
	1qqe, A, 57–275, 92–305			
D7 F V	2ifu, A, 53–259, 39–256	97 246 640/	4.1	74
Rpn7_5, Y	3txm, A, 90–352, 112–373	87–346, 64%	4.1	74
	1ufm, A, 12–79, 310–377			
	3chm, A, 25–161, 230–378			
	1qqe, A, 57–275, 92–305			
D	2ifu, A, 53–259, 39–256			
Rpn9	21/ 4 20 207 4 270	4 224 050/		35
Rpn9_1, N	2ifu, A, 30–307, 1–278	1–324, 85%	9.0	35
D 0. 2. N	1wi9, A, 4–72, 274–346	4 242 070/	10.6	24
Rpn9_2, N	2ifu, A, 30–307, 1–278	1–342, 87%	10.6	34
	3chm, A, 2–169, 170–353			
	3edt, B, 19–282, 1–263			
	3as5, A, 2–185, 1–200			
	2fo7, A, 1–136, 25–192			
	1wi9, A, 4–72, 274–346			
D0 2 V	1ufm_A, 4–84, 260–349	4 220 2007	<i>.</i> -	50
Rpn9_3, Y	3chm, A, 24–169, 201–353	1–339, 89%	6.5	58
	3txm, A, 25–352, 20–340			
	3edt, B, 22–199, 4–189			
Rpn9_4, Y	3txm, A, 25–352, 20–340	1–339, 89%	4.5	70
	1ufm, A, 14–78, 270–343			
	2ifu, A, 83–261, 85–267			
Rpn9_5, Y	3chm, A, 24–169, 201–353	1–399, 89%	6.8	57

Model, used for multiple fitting (Y/N)	Templates(PDB code, chain id, region, aligned region on target)	Modeled region (Residue range), Coverage (%)	TSVMod Predicted Cα rmsd (Å) (33)	TSVMod Predicted native overlap at 3.5 Å (%)
	3txm, A, 25-352, 20-340			,
	1ufm, A, 14–78, 270–343			
	2ifu, A, 83-261, 85-267			
	3edt, B, 22-199, 4-189			
Rpn12				
Rpn12_1, N	1rz4, A, 1–222, 1–269	18–262, 90%	9.6	37
Rpn12_2, Y	1rz4, A, 1–222, 1–269	51–221, 63%	5.4	65
	3txm, A, 172-351, 52-222			
	1umf, A, 11–79, 166–227			
Rpn12_3, Y	1rz4, A, 1–222, 1–269	51–211, 59%	3.7	78
	3txm, 172-351, 52-222			
Rpn12_4, Y	3txm, 172-351, 52-222	53–221, 63%	3.6	79
	1umf, A, 11–79, 166–227			

In addition, we used a comparative model of the AAA-ATPase hexamer based on the PAN structures (PDB ID codes 3H43 and 3H4M). Comparative models for Rpn1/2/8/11 were also built but not used here. The comparative model for Rpn6 was calculated in a previous study (44). Coverage indicates the percentage of target residues in the modeled region. The TSVmod program was used to predict model accuracies in terms of the C^a rmsd and native overlap at 3.5-Å cutoff (33).

Table S4. Representation of the S. pombe 26S proteasome RP subunits

Subunit	No. of residues	Coarse-grained representation	Atomic representation
Name, UniProt code,		No. of beads (50 residues per bead),	First-last residue
UniProt name		Rigid (R)/Flexible (F), No. of sampled localizations	in a segment
Rpt1, O42931, PRS7_SCHPO	438	9, R, 1	77–427
Rpt2, P36612, PRS4_SCHPO	448	9, R, 1	96–441
Rpt3, O74894, PRS6B_SCHPO	389	8, R, 1	36–380
Rpt4, O74445, PRS10_SCHPO	388	8, R, 1	68–433
Rpt5, O14126, PRS6A_SCHPO	438	9, R, 1	38–383
Rpt6, P41836, PRS8_SCHPO	403	8, R, 1	49–394
Rpn1, P87048, RPN1_SCHPO	891	18, F, 39,269	None
Rpn2, O74762, RPN2_SCHPO	965	19, F, 68,261	309–712
Rpn3, O42897, RPN3_SCHPO	497	10, F, 31,456	124–425
Rpn5, Q9UTM3, RPN5_SCHPO	443	9, F, 12,994	24–398
Rpn6, Q9P7S2, RPN6_SCHPO	421	8, R, 1	1–374
Rpn7, Q10335, RPN7_SCHPO	409	8, F, 157	87–346
Rpn8, O74440, RPN8_SCHPO	324	6, F, 5,023	15–186
Rpn9, Q9US13, RPN9_SCHPO	381	8, F, 39,230	1–399
Rpn10, O94444, RPN10_SCHPO	243	5, F, 1	2–190
Rpn11, P41878, RPN11_SCHPO	308	6, F, 2,044	None
Rpn12, P50524, RPN12_SCHPO	270	5, F, 5,955	53–221
Rpn13, Q9USM1, ADRM1_SCHPO	388	8, R, 1	None

In the coarse-grained representation, each RP subunit was represented as a string of beads, each bead corresponding to an approximately 50-residue fragment. If the atomic structure of a subunit was reliably predicted by comparative modeling, the beads were positioned rigidly (R) to mimic the shape of the atomic model, otherwise, the string of beads was allowed to flex (F). In the atomic representation, atomic coordinates were used for segments with available comparative models.

Table S5. Restraint description

	Sampling stage	Subunit fitting	Subunit localization and subunit fitting	Subunit localization and subunit fitting	Subunit localization
	Violation cutoff	N/A	A restraint is violated when its value is exceeds 1.18, corresponding to two standard deviations of the upper bound. The maximal number of allowed violations is five.	A restraint is violated when its value exceeds $(n-1)*m, \text{ where } n \text{ is the number of subunits restrained and } m \text{ is } 1.18;$ $n-1 is the number of edges in the MST. The maximal number of allowed violations is four.$	A restraint is violated if its value exceeds 1.18. The maximal number of allowed violations is 0.
escription	Restraint parameters	Gaussian kernel σ of 4.2 Å	A distance restraint is defined as a lower bound harmonic restraint between pairs of beads with the following parameters: f is the sphere distance (surface-to-surface distance) between the two beads, f ₀ is set to 20 Å to allow for long linkers, and K is set to 0.0236, corresponding to the standard deviation of 5 Å.	A distance restraint is defined as a lower bound harmonic restraint between pairs of beads (or atoms) with the following parameters: <i>f</i> is the sphere distance between the two beads, <i>f</i> ₀ is set to 10 Å for direct interaction and to 10 Å plus maximal linker length for cross-links, and <i>K</i> is set to 0.0236, corresponding to the standard deviation of 5 Å.	f ₀ is the predicted ROG multiplied by 1.6, f is the actual ROG, and K is set to 1.
Table S5. Restraint description	Description	The fit of a model into an assembly density map was quantified by a cross-correlation measure between the assembly density and the model smoothed to the resolution of the map (46).	In the coarse-grained representation, each residue–residue proximity is translated into subunit–subunit proximity using the subomplex connectivity restraint. In the atomic representation, each residue–residue proximity is encoded as a pairwise distance restraint between the cross-linked atoms.	Each direct interaction or proximity between subunits is encoded as a graph of nodes connected by edges. Each node represents a bead of a subunit, and each edge represents a possible interaction between beads. Edges are generated for all possible interactions that might be implied by the corresponding experiment and for pairs of beads representing sequential fragments of the same subunit. An edge imposes a putative distance restraint, soring well when the two potentially interacting beads are actually interacting in the assessed assembly configuration, and scoring poorly when the beads are too far apart to interact. For each physical interaction graph, the best-scoring set of edges needed to connect all nodes is chosen by calculating a minimal spanning tree (MST) on the composite graph. The value of the restraint is the sum of all edge distance restraints in the MST.	A harmonic upper bound function is imposed between the predicted ROG of the subunit (47) and the actual ROG. Because a subunit may adapt a nonglobular geometry, the predicted ROG is scaled by 1.6.
	Restraint	Quality-of-fit into a density map	Intersubunit residue– residue distance restraint	Subcomplex connectivity	Radius-of-gyration (ROG) restraint
	Information	8.4-Å cryo-EM density map of the S. pombe 26S proteasome, Fig. 1	Chemical cross-links from XL/MS, Table S1	Proteomics data, Table S2	Bioinformatics

S	
⋖	

Information	Restraint	Description	Restraint parameters	Violation cutoff	Sampling stage
Bioinformatics	Excluded volume restraint	To ensure a subunit does not penetrate another, an excluded volume restraint is applied to pairs of subunits. The restraint is defined as a sum of upper bound distance restraints between intersubunit pairs of beads.	A distance restraint is defined as an upper bound harmonic restraint between pairs of beads with the following parameters: f is the sphere distance between the two beads, f_0 is set to 0 Å, and K is set to 1.	A restraint is violated when its value exceeds $n_1 * n_2 * r * m$, where $n_1(n_2)$ is the number of beads of the first (second) subunit, r is the fraction of bead pairs allowed to overlap, here set to 0.1, and m 1.18. The maximal number of allowed	Subunit localization
Bioinformatics	Geometric complementarity restraint	A Connolly surface is calculated for each component (48). Interacting surfaces were scored by summing a reward for the number of surface atom pairs within a distance cutoff and a penalty for all clashing pairs of atoms (7).	Default parameters were used (48), except for the shell widths that were twice as wide to allow for uncertainty in comparative models.	A restraint is violated when its value is larger than 1. The maximal number of allowed violations is 5.	Subunit fitting

Many of the restraints, such as the subcomplex connectivity, radius of gyration, and intersubunit distance restraint, are defined as a sum of harmonic functions, whereas other restraints, such as the quality-offit and geometric complementarity restraints, are defined as correlation functions. A harmonic function is $\frac{1}{2}K(f-f_0)^2$, where f is the restrained feature and K is the parameter that determines the strength of the restraint. For an upper bound, the score is 0 for $f > f_0$; for a lower bound, the score is 0 for $f > f_0$.