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INTRODUCTION

Protein complexes are vital molecular machines of the cell;1 structural char-

acterization of these complexes provides insight into their function.2 Given

the number of undetermined protein complexes3 and inherent difficulties in

experimentally determining the structures of these complexes at atomic resolu-

tion,4 there is an acute need to develop computational methods for structural

modeling of macromolecular assemblies.

Molecular docking techniques have traditionally been used to predict binary

complexes given their unbound component structures. These methods rely on

a global search of a large set of possible binary configurations, maximizing ge-

ometrical and physicochemical complementarities between a pair of constitu-

ent subunits.5–9 The CAPRI challenge provides a critical assessment of such

docking methods.10 Analysis of CAPRI results shows that in some cases dock-

ing methods suffer from relatively low accuracy, especially when the individual

protein subunits are modeled or when their bound and unbound conforma-

tions significantly differ.9,11–13 This limitation has led to the emergence of

restrained docking procedures that guide sampling and/or filter docking solu-

tions based on additional sources of information.9,14,15 Notably, the HAD-

DOCK webserver can incorporate multiple sources of information into its

docking procedure.16

While most docking methods are designed to deal with two molecules, the

majority of functional macromolecular assemblies in the cell consist of more

than two components. Inspired by targets in previous CAPRI rounds,12 sev-

eral groups have proposed docking-based modeling methods for symmetric

complexes.17–21 Fewer docking methods have been developed for the signif-

icantly more challenging case of asymmetric assembly modeling.14,22 A

major obstacle for macromolecular docking algorithms is the ability to select

near-native models from an ensemble of possible solutions. Knowledge of

the overall shape of a complex, even at low resolution, can significantly
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ABSTRACT

Structural models of macromolecular

assemblies are instrumental for gain-

ing a mechanistic understanding of

cellular processes. Determining these

structures is a major challenge for ex-

perimental techniques, such as X-ray

crystallography, NMR spectroscopy

and electron microscopy (EM). Thus,

computational modeling techniques,

including molecular docking, are

required. The development of most

molecular docking methods has so far

been focused on modeling of binary

complexes. We have recently intro-

duced the MultiFit method for model-

ing the structure of a multisubunit

complex by simultaneously optimizing

the fit of the model into an EM den-

sity map of the entire complex and the

shape complementarity between inter-

acting subunits. Here, we report algo-

rithmic advances of the MultiFit

method that result in an efficient and

accurate assembly of the input subu-

nits into their density map. The suc-

cessful predictions and the increasing

number of complexes being character-

ized by EM suggests that the CAPRI

challenge could be extended to include

docking-based modeling of macromo-

lecular assemblies guided by EM.
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reduce ambiguity inherent in such an ensemble when it

is used to filter the set of candidate models. Such over-

all shape information can be obtained by electron mi-

croscopy (EM)23–25 or small angle X-ray scatter-

ing26,27 techniques.

EM is becoming a method of choice for structural vis-

ualization of large protein complexes. EM reconstruction

techniques provide a density map of a complex at resolu-

tions typically ranging from 5 to 25 Å.28 After genera-

tion of a density map, atomic structures of complex

components are often fitted into the map to construct a

‘‘quasiatomic’’ model of the complex.29–31 Thus, EM

data can be used not only to filter docking solutions but

also to fit assembly subunits into their density. Rigid fit-

ting techniques rely on a global search for the placement

(position and orientation) of a single subunit inside the

density map that maximizes the overlap between the

model and the map.32 However, the majority of these

techniques are designed to work independently on single

subunits, without taking into account protein–protein

interaction interfaces.

To combine the strengths of molecular docking and

molecular fitting approaches, and to overcome their limi-

tations, we have developed the MultiFit method. MultiFit

simultaneously positions protein subunits into a density

map of a protein assembly by combining geometric prin-

ciples commonly used in molecular fitting and molecular

docking.33 Here, we describe new algorithms for two of

the stages of the MultiFit algorithm that significantly

improve the accuracy of the method. In addition, we

describe an extension of the MultiFit method for cyclic

symmetric assemblies, resulting in a highly efficient algo-

rithm that accurately treats such cases.

Below, we outline the MultiFit algorithm and describe

the recent algorithmic advances. We then illustrate the

method by modeling the structure of the methane mono-

oxygenase (MMO) enzyme (asymmetric complex) and

the GroEL chaperone (cyclic symmetric complex), fol-

lowed by results on a 10 complex benchmark. Finally, we

discuss the advantages of incorporating EM data in mac-

romolecular docking algorithms.

METHODS

MultiFit is a computational method for simultaneous

fitting of atomic protein structures into a protein assem-

bly density map at resolutions as low as 25 Å. The input

to the method is a set of atomic structures of subunits

and an EM density map of their assembly. The MultiFit

algorithm simultaneously fits the subunits into their as-

sembly density map and optimizes the interfaces between

neighboring subunits. The method’s output is a ranked

list of assembly models. An assembly model of n subunits

is defined as a set of n rigid three-dimensional (3D)

transformations, each applied on a corresponding assem-

bly subunit.

Scoring function

Assembly models are ranked by a geometric scoring

function composed of a linear combination of three

terms: (i) the quality-of-fit term scores how well a model

fits into the assembly density map, (ii) the protrusion

term scores how well each subunit is placed inside the

density envelope, and (iii) the interaction term scores the

pairwise shape complementarity between pairs of inter-

acting subunits and also accounts for their excluded vol-

ume. We use a combination of these three terms, as each

alone is insufficient for an unambiguous identification of

the native configuration. A detailed mathematical

description of these terms is provided elsewhere.33

Optimization procedure

The optimization algorithm is composed of four stages,

each sampling assembly models at increasingly higher reso-

lution and accuracy, further restricting the search space to

be sampled in the following stage (Fig. 1): (i) anchor graph

segmentation, (ii) fitting-based assembly configuration, (iii)

docking-based pose refinement, and (iv) rigid-body mini-

mization. In ‘‘anchor graph segmentation,’’ an unlabeled

segmentation of the density map into n regions is calcu-

lated using a Gaussian mixture model clustering procedure;

the segmented n regions correspond approximately to the

regions allocated by the n subunits in the complex. In

‘‘fitting-based assembly configuration,’’ a set of coarse as-

sembly models is found by an enumeration over possible

assignments of subunits to regions, followed by simultane-

ous local fitting of the subunits in the corresponding

regions. In ‘‘docking-based pose refinement,’’ each of the

models found in the ‘‘configuration’’ stage is refined by si-

multaneous local optimization of the interfaces between

pairs of interacting subunits. In ‘‘rigid body minimization,’’

each of the models found in the ‘‘refinement’’ stage is fur-

ther refined using a local Monte Carlo/conjugate gradients

minimization procedure.34 Detailed description of the orig-

inal optimization procedure is provided in a previous publi-

cation.33 The recently developed algorithms for the ‘‘anchor

graph segmentation’’ and ‘‘fitting-based assembly configura-

tion’’ stages are described in Supporting Information.

Optimization of cyclic symmetric complexes

Many of the protein complexes determined by EM

techniques are symmetric; reconstruction algorithms

exploit the symmetry constraint to enhance the resolu-

tion of the generated density map.28,35–37 Symmetry

can also be exploited for the purpose of fitting multiple

subunits into a density map of their symmetric assembly.

Inspired by the success of symmetric docking algo-

rithms,20,21 we have extended MultiFit to exploit

cyclic symmetry (Cn) in the optimization algorithm

(Cn_MultiFit). The optimization procedure of Cn_Multi-

Fit is composed of the following stages: (i) symmetry

K. Lasker et al.
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Figure 1
Outline of the MultiFit protocol for simultaneous fitting. The stages of the MultiFit (left) and the Cn_MultiFit (right) algorithms are illustrated

from top to bottom. (left) The input is a density map of the MMO hydroxylase complex simulated to 20 Å resolution (gray) and atomic models of

the a, b, and g subunits (colors). Segmentation of the density map into six regions (light gray) and the corresponding anchor graph (black) as

calculated in the ‘‘anchor graph segmentation stage.’’ An assignment of subunits into regions and an atomic model as sampled in the ‘‘fitting-based

assembly configuration’’ stage (colors). A refinement of the model (colors) as sampled in the ‘‘docking-based pose refinement’’ stage fitted to the

density map (light gray). The final model (colors) superposed on the native complex (gray). (right) The input is an experimentally determined

density map of the GroEL complex at 23.5 Å resolution and an atomic structure of the monomeric subunit. The predicted symmetry axis (red) as

calculated in the ‘‘symmetry axis detection’’ stage. Segmentation of the density map into seven regions (light gray) and the corresponding anchor

graph (black). A models sampled in the ‘‘fitting-based Cn assembly configuration’’ stage (colors) fitting to the density map (light gray). The final

model (colors) superposed on the native complex (gray). [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]



axis detection, (ii) anchor graph segmentation, (iii) fit-

ting-based Cn assembly configuration, and (iv) rigid-

body minimization (Fig. 1). The main differences

between the optimization procedures of MultiFit and

Cn_MultiFit are in the ‘‘symmetry axis detection’’ and the

‘‘fitting-based Cn assembly configuration’’ stages, as

described below.

Symmetry axis detection

A principal component analysis38 based procedure is

applied to determine the symmetry axis of a Cn symmetric

complex. Specifically, the procedure first calculates three

principal axes for the set of 3D coordinates of density map

voxels that have density values within the top 20% of those

for voxels in the density map. It can be shown that the as-

sembly symmetry axis is one of its density map’s principal

axes.39 A statistical consistency score is then applied to iden-

tify the symmetry axis among the three principal axes.39

Fitting-based Cn assembly configuration

First, a single asymmetric subunit is fitted to a segmented

region of the density map. Then, for each of the top 10 fit-

ting hypotheses, possible ring models of n copies around

the complex symmetry axis are sampled. Specifically, the

ring models are constructed by applying n-1 symmetry

operations to the fitted asymmetric subunit. The symmetry

operation that minimizes the MultiFit scoring function is

selected among transformations with rotations of 360/n

�58 around the symmetry axis and translations of �3Å.

RESULTS AND DISCUSSION

Modeling of the MMO enzyme using MultiFit

To illustrate the MultiFit algorithm, we describe in detail

an application to the MMO enzyme. The MMO enzyme

plays a critical role in the metabolic pathway of Methano-

trophic bacteria. It is composed of six subunits arranged as

a dimer of hetro-trimers. We demonstrate that the struc-

ture of the MMO enzyme can be determined by simulta-

neously fitting its subunits into the assembly density.

A density map was simulated from the MMO hydroxylase

crystal structure (PDB entry 1MTY40) using the pdb2vol

command of Situs.41 The structures of the a, b, and g
subunits were modeled using templates with sequence

identities ranging from 21 to 99 using the MODELLER

software42 (PDB entries 1xmgD,43 2indA,44 and

1xveF45). The Ca-RMSDs between the models of the a, b,
and g subunits and their bound conformations were 2.26,

9.36, and 0.82 Å, correspondingly. MultiFit solutions were

validated against a reference structure constructed by

superposing the a, b, and g subunits models on the as-

sembly crystal structure.

In the ‘‘anchor graph segmentation’’ stage, the assembly

density map was segmented into six regions that corre-

spond approximately to locations of the six subunits in

their assembly. The segmentation procedure separated the

density into such regions well, even though the shapes of

the subunits were not part of the input of the procedure

(Fig. 1). The segmented density map was represented as an

anchor graph that provides an unlabeled representation of

the assembly topology. The nodes of the anchor graph cor-

respond to the centroids of the segmented regions while

edges are defined between pairs of neighboring regions. In

the ‘‘fitting-based assembly configuration’’ stage, coarse as-

sembly models were determined for possible assignments

of subunits to anchor graph nodes. In detail, for each pos-

sible labeling of subunits to the anchor graph nodes (i.e.,

positioning of the assembly subunits centroids at the cent-

roids of the segmented regions), a discrete sampling space

was generated by locally fitting each subunit into its

assigned region. The DOMINO optimizer33 was applied

to search for the best scoring combination of fitting solu-

tions. The Ca RMSD of the top 20 scored models to the

reference complex ranges from 5.7 to 15.2 Å to the refer-

ence complex. Each such solution provides relatively accu-

rate positioning of the subunits in the assembly; however,

the interfaces were inaccurate as the sampling was per-

formed independently on each subunit.

These solutions were then refined in the ‘‘docking-based

pose refinement’’ stage. Each model found in the previous

stage suggests a pairwise interaction map of the complex and

approximate interfaces. A new discrete sampling space was

generated by running the restrained pairwise docking pro-

gram PatchDock46 on predicted interacting subunits. The

PatchDock procedure was preformed with updated parame-

ters that allowed for non-negligible steric clashes. The DOM-

INO optimizer was again applied to search for the best scor-

ing combinations of the resulting docking solutions. The

result of this optimization stage was a set of 20 models, with

Ca RMSD ranging from 3.9 to 10.5 Å to the reference com-

plex. Finally, a rigid-body minimization procedure was

applied to each of these models resulting in a best scoring

model with 3.2 Å Ca RMSD to the reference complex.

For comparison, we modeled the MMO enzyme com-

plex given its bound subunits as input. The Ca RMSD of

the final model to the native complex was 1.8 Å. In the

bound case, the performance of the pairwise docking algo-

rithm could have been sufficient to model the assembly by

combinatorial docking.22 However, in the unbound case,

due to the differences between the modeled subunits and

their corresponding bound conformations, pairwise dock-

ing alone was not sufficient to supply useful intermediate

results. In this example, the EM density map-based fitting

procedure was crucial for detecting a near-native model.

Modeling of the GroEL chaperone
using Cn_MultiFit

To illustrate the Cn_MultiFit algorithm, we describe in

detail modeling of the GroEL chaperone complex. GroEL

K. Lasker et al.
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is a bacterial chaperonin that assists in the proper folding

of proteins. It is composed of two back-to-back 7-mer

rings. The structure of the GroEL complex has been

studied extensively by EM (the EM data base47 contains

30 density maps of the GroEL complex). The input to

Cn_MultiFit was a 7-mer ring of the GroEL protein

extracted from an experimental density map at 23.5 Å re-

solution (EMD entry 104648) and a monomeric GroEL

structure, which was obtained from the corresponding

atomic structure (PDB entry 1GRU48). In the ‘‘symmetry

axis detection’’ stage, the symmetry axis was correctly

identified (Fig. 1). In the ‘‘anchor graph segmentation’’

stage, the density map was segmented into seven regions.

The centroids of the segmented regions accurately corre-

late to the centroids of the subunits in complex, further

validating our symmetry axis prediction. In the ‘‘fitting-

based Cn assembly configuration’’ stage, we fitted a single

copy of the GroEL structure to the density and used the

symmetry to build possible models. The result of this

stage was a set of 20 models, with Ca RMSD ranging

from 4.2 to 9.5 Å to the native complex. Finally, a rigid

body minimization procedure was applied and a model

with Ca RMSD of 3.4 Å was the top-ranked result.

Benchmark

We tested the MultiFit and Cn_MultiFit algorithms on

a benchmark of additional 10 complexes, six of which

are asymmetric and four of which are Cn symmetric (Ta-

ble I, Fig. 2). The complexes were obtained from the Pro-

tein Data Bank (PDB49) and were composed of two to

seven subunits. The inputs to each test case were an as-

Table I
Benchmark Results

Assembly name

Assembly characteristics
Best model among top

10 ranked models

No. subunits, size (mean, variance) Cn symmetry Difficulty level Assembly score (8, �) Ca-RMSD

7CAT 2, (498, 0) N Easy (0.72, 0.01) 0.59
1Z5S 4, (113.7, 42.5) N Difficult (33.48, 0.30) 5.05
1GTE 4, (1005, 0) N Easy (2.22,0.02) 1.6
1E6V 6, (409.6,122.6) N Difficult (10.29, 0.08) 2.21
1URZ 6, (385.0, 2.3) N Easy (1.13, 0.013) 1.07
1TYQ 7, (241.7, 92.2) N Difficult (5.28, 0.09) 2.23
1NIC 3, (333,0) Y Easy (7.63, 0.09) 2.43
1QU9 3, (127,0) Y Easy (9.03, 0.16) 2.15
2REC 6, (303,0) Y Easy (0.87, 0.02) 0.61
1OEL 7, (524,0) Y Easy (1.77, 0.03) 0.97

Figure 2
Benchmark results. Final models (colors) for six of the benchmark cases. For each test case the PDB entry code (from which a density map was

simulated to 20 Å), the number of subunits and the final Ca-RMSD to the native structure are listed.

Molecular Architecture by Fitting and Docking

PROTEINS 3209



sembly density map at 20 Å resolution and structures of

the assembly subunits in their bound conformations at

atomic resolution. The assembly density maps were

simulated using the pdb2vol command in SITUS.41 The

accuracy of the final set of models was assessed by the as-

sembly placement score,33 and Ca-RMSD between each

model and its corresponding native structure. In all 10

cases, a model with Ca-RMSD lower than 5.05 Å was

found among the top 10 ranked models.

Our results demonstrate the relative robustness of

MultiFit to inaccuracies in fitting and/or docking techni-

ques. Benchmarking revealed that fitting into an assembly

of subunits with different shapes (mixed complexes) was

less reliable than fitting a subunit into an assembly of

subunits with similar shapes (uniform complexes), such

as Cn symmetric complexes. Reasons for the relatively

ambiguous intermediate results of the ‘‘fitting-based as-

sembly configuration’’ stage for the ‘‘mixed complexes’’

versus the ‘‘uniform complexes’’ include: (i) the nature of

the cross-correlation measure, which is biased towards

high-density regions of the map,31 (ii) the reduction in

the number of degrees of freedom derived from the

imposed Cn symmetry for some of the ‘‘uniform com-

plexes’’ and (iii) errors in the segmentation used in the

‘‘anchor graph segmentation’’ stage, resulting in seg-

mented regions that do not completely correspond to

subunits of mixed sizes and shapes. Despite ambiguous

intermediate solutions obtained in fitting some of the

subunits into their assembly densities in difficult cases, a

near-native model (2.21–5.05 Å Ca RMSD) was found

among the top 10 models. For example, for the 1TYQ as-

sembly of seven subunits (Table I, Fig. 2), the positions

of four out of the seven subunits of the complex (chains

D-F) were difficult to detect by fitting techniques. How-

ever, docking between pairs of interacting subunits, as

detected in the ‘‘docking based pose refinement’’ stage,

improved the placements of these subunits; most notable

is the improvement from 14.6 to 2.3 Å Ca-RMSD for

subunit G.

In addition, ranking of docking-based models by pair-

wise docking methods may be inaccurate.10 The strength

of using EM data as an additional source of information is

again demonstrated by the 1TYQ example. The correct

docking pose between subunits B and F was ranked only

number 943 by the PatchDock procedure, but was the top

ranked result by the MultiFit combined geometric score.

CONCLUSIONS

With the growing number of macromolecular assem-

blies characterized by EM,47 EM-guided modeling tech-

niques are becoming increasingly useful for a mechanistic

understanding of these assemblies. We have recently

addressed the problem of modeling architectures of mac-

romolecular complexes by simultaneously optimizing the

fit of the individual subunits into their assembly density

maps and optimizing the interfaces between interacting

subunits.33 Here, we report algorithmic advances in the

density map segmentation and subunit fitting algorithms

of the MultiFit method as well as a new algorithm for

the modeling of cyclic symmetric complexes. We show

that even low-resolution density maps are helpful for

modeling assembly architectures and can resolve ambigu-

ous intermediate docking or fitting results. As EM tech-

niques continue to improve, an increasing number of

macromolecular complexes will be visualized at subnan-

ometer resolution. Integration of intermediate-to-high re-

solution density map data into computational docking

techniques may be extremely useful in resolving ambigu-

ities in docking of unbound subunits and in the refine-

ment of docking solutions. Extending the CAPRI chal-

lenge to include docking-based modeling of macromolec-

ular assemblies guided by EM would help to advance

these methods and their applicability. The MultiFit soft-

ware, benchmark, and a tutorial are available as part of

the IMP package under the open source lesser-GPL

license at http://www.salilab.org/MultiFit/. Remaining

challenges include, among others, treating protein flexi-

bility and incorporation of data from additional sources,

such as those from proteomics.50
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