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ABSTRACT

Structural models of macromolecular
assemblies are instrumental for gain-
ing a mechanistic understanding of
cellular processes. Determining these
structures is a major challenge for ex-
perimental techniques, such as X-ray
crystallography, NMR spectroscopy
and electron microscopy (EM). Thus,
computational modeling techniques,
including molecular docking, are
required. The development of most
molecular docking methods has so far
been focused on modeling of binary
complexes. We have recently intro-
duced the MultiFit method for model-
ing the structure of a multisubunit
complex by simultaneously optimizing
the fit of the model into an EM den-
sity map of the entire complex and the
shape complementarity between inter-
acting subunits. Here, we report algo-
rithmic advances of the MultiFit
method that result in an efficient and
accurate assembly of the input subu-
nits into their density map. The suc-
cessful predictions and the increasing
number of complexes being character-
ized by EM suggests that the CAPRI
challenge could be extended to include
docking-based modeling of macromo-
lecular assemblies guided by EM.
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INTRODUCTION

Protein complexes are vital molecular machines of the cell;! structural char-
acterization of these complexes provides insight into their function.? Given
the number of undetermined protein complexes> and inherent difficulties in
experimentally determining the structures of these complexes at atomic resolu-
tion,# there is an acute need to develop computational methods for structural
modeling of macromolecular assemblies.

Molecular docking techniques have traditionally been used to predict binary
complexes given their unbound component structures. These methods rely on
a global search of a large set of possible binary configurations, maximizing ge-
ometrical and physicochemical complementarities between a pair of constitu-
ent subunits.>~2 The CAPRI challenge provides a critical assessment of such
docking methods.10 Analysis of CAPRI results shows that in some cases dock-
ing methods suffer from relatively low accuracy, especially when the individual
protein subunits are modeled or when their bound and unbound conforma-
tions significantly differ.>11=13 This limitation has led to the emergence of
restrained docking procedures that guide sampling and/or filter docking solu-
tions based on additional sources of information.”>1%15 Notably, the HAD-
DOCK webserver can incorporate multiple sources of information into its
docking procedure.10

While most docking methods are designed to deal with two molecules, the
majority of functional macromolecular assemblies in the cell consist of more
than two components. Inspired by targets in previous CAPRI rounds,!2 sev-
eral groups have proposed docking-based modeling methods for symmetric
complexes.17=21 Fewer docking methods have been developed for the signif-
icantly more challenging case of asymmetric assembly modeling.!422 A
major obstacle for macromolecular docking algorithms is the ability to select
near-native models from an ensemble of possible solutions. Knowledge of
the overall shape of a complex, even at low resolution, can significantly
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reduce ambiguity inherent in such an ensemble when it
is used to filter the set of candidate models. Such over-
all shape information can be obtained by electron mi-
croscopy (EM)23-25 or small angle X-ray scatter-
ing26’27 techniques.

EM is becoming a method of choice for structural vis-
ualization of large protein complexes. EM reconstruction
techniques provide a density map of a complex at resolu-
tions typically ranging from 5 to 25 A28 After genera-
tion of a density map, atomic structures of complex
components are often fitted into the map to construct a
“quasiatomic” model of the complex.2%-31 Thus, EM
data can be used not only to filter docking solutions but
also to fit assembly subunits into their density. Rigid fit-
ting techniques rely on a global search for the placement
(position and orientation) of a single subunit inside the
density map that maximizes the overlap between the
model and the map.32 However, the majority of these
techniques are designed to work independently on single
subunits, without taking into account protein—protein
interaction interfaces.

To combine the strengths of molecular docking and
molecular fitting approaches, and to overcome their limi-
tations, we have developed the MultiFit method. MultiFit
simultaneously positions protein subunits into a density
map of a protein assembly by combining geometric prin-
ciples commonly used in molecular fitting and molecular
docking.33 Here, we describe new algorithms for two of
the stages of the MultiFit algorithm that significantly
improve the accuracy of the method. In addition, we
describe an extension of the MultiFit method for cyclic
symmetric assemblies, resulting in a highly efficient algo-
rithm that accurately treats such cases.

Below, we outline the MultiFit algorithm and describe
the recent algorithmic advances. We then illustrate the
method by modeling the structure of the methane mono-
oxygenase (MMO) enzyme (asymmetric complex) and
the GroEL chaperone (cyclic symmetric complex), fol-
lowed by results on a 10 complex benchmark. Finally, we
discuss the advantages of incorporating EM data in mac-
romolecular docking algorithms.

METHODS

MultiFit is a computational method for simultaneous
fitting of atomic protein structures into a protein assem-
bly density map at resolutions as low as 25 A. The input
to the method is a set of atomic structures of subunits
and an EM density map of their assembly. The MultiFit
algorithm simultaneously fits the subunits into their as-
sembly density map and optimizes the interfaces between
neighboring subunits. The method’s output is a ranked
list of assembly models. An assembly model of n subunits
is defined as a set of n rigid three-dimensional (3D)
transformations, each applied on a corresponding assem-
bly subunit.
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Scoring function

Assembly models are ranked by a geometric scoring
function composed of a linear combination of three
terms: (i) the quality-of-fit term scores how well a model
fits into the assembly density map, (ii) the protrusion
term scores how well each subunit is placed inside the
density envelope, and (iii) the interaction term scores the
pairwise shape complementarity between pairs of inter-
acting subunits and also accounts for their excluded vol-
ume. We use a combination of these three terms, as each
alone is insufficient for an unambiguous identification of
the native configuration. A detailed mathematical
description of these terms is provided elsewhere.33

Optimization procedure

The optimization algorithm is composed of four stages,
each sampling assembly models at increasingly higher reso-
lution and accuracy, further restricting the search space to
be sampled in the following stage (Fig. 1): (i) anchor graph
segmentation, (ii) fitting-based assembly configuration, (iii)
docking-based pose refinement, and (iv) rigid-body mini-
mization. In “anchor graph segmentation,” an unlabeled
segmentation of the density map into n regions is calcu-
lated using a Gaussian mixture model clustering procedure;
the segmented n regions correspond approximately to the
regions allocated by the # subunits in the complex. In
“fitting-based assembly configuration,” a set of coarse as-
sembly models is found by an enumeration over possible
assignments of subunits to regions, followed by simultane-
ous local fitting of the subunits in the corresponding
regions. In “docking-based pose refinement,” each of the
models found in the “configuration” stage is refined by si-
multaneous local optimization of the interfaces between
pairs of interacting subunits. In “rigid body minimization,”
each of the models found in the “refinement” stage is fur-
ther refined using a local Monte Carlo/conjugate gradients
minimization procedure.34 Detailed description of the orig-
inal optimization procedure is provided in a previous publi-
cation.33 The recently developed algorithms for the “anchor
graph segmentation” and “fitting-based assembly configura-
tion” stages are described in Supporting Information.

Optimization of cyclic symmetric complexes

Many of the protein complexes determined by EM
techniques are symmetric; reconstruction algorithms
exploit the symmetry constraint to enhance the resolu-
tion of the generated density map.28’35_37 Symmetry
can also be exploited for the purpose of fitting multiple
subunits into a density map of their symmetric assembly.
Inspired by the success of symmetric docking algo-
rithms, 2021 we have extended MultiFit to exploit
cyclic symmetry (C,) in the optimization algorithm
(C,_MultiFit). The optimization procedure of C,_ Multi-
Fit is composed of the following stages: (i) symmetry
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Figure 1

Outline of the MultiFit protocol for simultaneous fitting. The stages of the MultiFit (left) and the C,_MultiFit (right) algorithms are illustrated
from top to bottom. (left) The input is a density map of the MMO hydroxylase complex simulated to 20 A resolution (gray) and atomic models of
the a, B, and y subunits (colors). Segmentation of the density map into six regions (light gray) and the corresponding anchor graph (black) as
calculated in the “anchor graph segmentation stage.” An assignment of subunits into regions and an atomic model as sampled in the “fitting-based
assembly configuration” stage (colors). A refinement of the model (colors) as sampled in the “docking-based pose refinement” stage fitted to the
density map (light gray). The final model (colors) superposed on the native complex (gray). (right) The input is an experimentally determined
density map of the GroEL complex at 23.5 A resolution and an atomic structure of the monomeric subunit. The predicted symmetry axis (red) as
calculated in the “symmetry axis detection” stage. Segmentation of the density map into seven regions (light gray) and the corresponding anchor
graph (black). A models sampled in the “fitting-based C,, assembly configuration” stage (colors) fitting to the density map (light gray). The final
model (colors) superposed on the native complex (gray). [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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axis detection, (ii) anchor graph segmentation, (iii) fit-
ting-based C, assembly configuration, and (iv) rigid-
body minimization (Fig. 1). The main differences
between the optimization procedures of MultiFit and
C,_MultiFit are in the “symmetry axis detection” and the
“fitting-based C,, assembly configuration” stages, as
described below.

Symmetry axis detection

A principal component analysis38 based procedure is
applied to determine the symmetry axis of a C,, symmetric
complex. Specifically, the procedure first calculates three
principal axes for the set of 3D coordinates of density map
voxels that have density values within the top 20% of those
for voxels in the density map. It can be shown that the as-
sembly symmetry axis is one of its density map’s principal
axes.3? A statistical consistency score is then applied to iden-
tify the symmetry axis among the three principal axes.3?

Fitting-based C, assembly configuration

First, a single asymmetric subunit is fitted to a segmented
region of the density map. Then, for each of the top 10 fit-
ting hypotheses, possible ring models of n copies around
the complex symmetry axis are sampled. Specifically, the
ring models are constructed by applying n-1 symmetry
operations to the fitted asymmetric subunit. The symmetry
operation that minimizes the MultiFit scoring function is
selected among transformations with rotations of 360/n
£5° around the symmetry axis and translations of +3A.

RESULTS AND DISCUSSION
Modeling of the MMO enzyme using MultiFit

To illustrate the MultiFit algorithm, we describe in detail
an application to the MMO enzyme. The MMO enzyme
plays a critical role in the metabolic pathway of Methano-
trophic bacteria. It is composed of six subunits arranged as
a dimer of hetro-trimers. We demonstrate that the struc-
ture of the MMO enzyme can be determined by simulta-
neously fitting its subunits into the assembly density.
A density map was simulated from the MMO hydroxylase
crystal structure (PDB entry IMTY40) using the pdb2vol
command of Situs.4] The structures of the «, B, and vy
subunits were modeled using templates with sequence
identities ranging from 21 to 99 using the MODELLER
software#2 (PDB entries lxng,43 2indA,44 and
1xveF43). The Ca-RMSDs between the models of the a, B,
and <y subunits and their bound conformations were 2.26,
9.36, and 0.82 A, correspondingly. MultiFit solutions were
validated against a reference structure constructed by
superposing the «, 3, and y subunits models on the as-
sembly crystal structure.

In the “anchor graph segmentation” stage, the assembly
density map was segmented into six regions that corre-
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spond approximately to locations of the six subunits in
their assembly. The segmentation procedure separated the
density into such regions well, even though the shapes of
the subunits were not part of the input of the procedure
(Fig. 1). The segmented density map was represented as an
anchor graph that provides an unlabeled representation of
the assembly topology. The nodes of the anchor graph cor-
respond to the centroids of the segmented regions while
edges are defined between pairs of neighboring regions. In
the “fitting-based assembly configuration” stage, coarse as-
sembly models were determined for possible assignments
of subunits to anchor graph nodes. In detail, for each pos-
sible labeling of subunits to the anchor graph nodes (i.e.,
positioning of the assembly subunits centroids at the cent-
roids of the segmented regions), a discrete sampling space
was generated by locally fitting each subunit into its
assigned region. The DOMINO 0ptimizer3'3 was applied
to search for the best scoring combination of fitting solu-
tions. The Ca RMSD of the top 20 scored models to the
reference complex ranges from 5.7 to 15.2 A to the refer-
ence complex. Each such solution provides relatively accu-
rate positioning of the subunits in the assembly; however,
the interfaces were inaccurate as the sampling was per-
formed independently on each subunit.

These solutions were then refined in the “docking-based
pose refinement” stage. Each model found in the previous
stage suggests a pairwise interaction map of the complex and
approximate interfaces. A new discrete sampling space was
generated by running the restrained pairwise docking pro-
gram PatchDock4© on predicted interacting subunits. The
PatchDock procedure was preformed with updated parame-
ters that allowed for non-negligible steric clashes. The DOM-
INO optimizer was again applied to search for the best scor-
ing combinations of the resulting docking solutions. The
result of this optimization stage was a set of 20 models, with
Ca RMSD ranging from 3.9 to 10.5 A to the reference com-
plex. Finally, a rigid-body minimization procedure was
applied to each of these models resulting in a best scoring
model with 3.2 A Cat RMSD to the reference complex.

For comparison, we modeled the MMO enzyme com-
plex given its bound subunits as input. The Cae RMSD of
the final model to the native complex was 1.8 A. In the
bound case, the performance of the pairwise docking algo-
rithm could have been sufficient to model the assembly by
combinatorial docking.22 However, in the unbound case,
due to the differences between the modeled subunits and
their corresponding bound conformations, pairwise dock-
ing alone was not sufficient to supply useful intermediate
results. In this example, the EM density map-based fitting
procedure was crucial for detecting a near-native model.

Modeling of the GroEL chaperone
using C,, MultiFit

To illustrate the C, MultiFit algorithm, we describe in
detail modeling of the GroEL chaperone complex. GroEL
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Table |

Benchmark Results

Assembly characteristics

Best model among top
10 ranked models

Assembly name No. subunits, size (mean, variance) C, symmetry Difficulty level Assembly score (°, A) Ca-RMSD
7CAT 2, (498, 0) N Easy (0.72, 0.01) 0.59
1258 4, (113.7, 42.5) N Difficult (33.48, 0.30) 5.05
1GTE 4, (1005, 0) N Easy (2.22,0.02) 16
1E6V 6, (409.6,122.6) N Difficult (10.29, 0.08) 2.21
1URZ 6, (385.0, 2.3) N Easy (1.13, 0.013) 1.07
1TYQ 7,(2417,92.2) N Difficult (5.28, 0.09) 2.23
1NIC 3, (333,0) Y Easy (7.63, 0.09) 243
1QU9 3,(127,0) Y Easy (9.03, 0.16) 2.15
2REC 6, (303,0) Y Easy (0.87, 0.02) 0.61
10EL 7, (524,0) Y Easy (1.77, 0.03) 0.97

is a bacterial chaperonin that assists in the proper folding
of proteins. It is composed of two back-to-back 7-mer
rings. The structure of the GroEL complex has been
studied extensively by EM (the EM data base4” contains
30 density maps of the GroEL complex). The input to
C,_MultiFit was a 7-mer ring of the GroEL protein
extracted from an experimental density map at 23.5 A re-
solution (EMD entry 104648) and a monomeric GroEL
structure, which was obtained from the corresponding
atomic structure (PDB entry 1GRU48). In the “symmetry
axis detection” stage, the symmetry axis was correctly
identified (Fig. 1). In the “anchor graph segmentation”
stage, the density map was segmented into seven regions.
The centroids of the segmented regions accurately corre-
late to the centroids of the subunits in complex, further
validating our symmetry axis prediction. In the “fitting-

based C, assembly configuration” stage, we fitted a single
copy of the GroEL structure to the density and used the
symmetry to build possible models. The result of this
stage was a set of 20 models, with Ca RMSD ranging
from 4.2 to 9.5 A to the native complex. Finally, a rigid
body minimization procedure was applied and a model
with Ca RMSD of 3.4 A was the top-ranked result.

Benchmark

We tested the MultiFit and C,_MultiFit algorithms on
a benchmark of additional 10 complexes, six of which
are asymmetric and four of which are C, symmetric (Ta-
ble I, Fig. 2). The complexes were obtained from the Pro-
tein Data Bank (PDB%%) and were composed of two to
seven subunits. The inputs to each test case were an as-

#3,2.15A

1URZ

L #6,1.07 A

10EL

#7,2.23 A #7,0.97 A)

Figure 2

Benchmark results. Final models (colors) for six of the benchmark cases. For each test case the PDB entry code (from which a density map was
simulated to 20 A), the number of subunits and the final Ca-RMSD to the native structure are listed.
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sembly density map at 20 A resolution and structures of
the assembly subunits in their bound conformations at
atomic resolution. The assembly density maps were
simulated using the pdb2vol command in SITUS.4! The
accuracy of the final set of models was assessed by the as-
sembly placement score,33 and Ca-RMSD between each
model and its corresponding native structure. In all 10
cases, a model with Ca-RMSD lower than 5.05 A was
found among the top 10 ranked models.

Our results demonstrate the relative robustness of
MultiFit to inaccuracies in fitting and/or docking techni-
ques. Benchmarking revealed that fitting into an assembly
of subunits with different shapes (mixed complexes) was
less reliable than fitting a subunit into an assembly of
subunits with similar shapes (uniform complexes), such
as C, symmetric complexes. Reasons for the relatively
ambiguous intermediate results of the “fitting-based as-
sembly configuration” stage for the “mixed complexes”
versus the “uniform complexes” include: (i) the nature of
the cross-correlation measure, which is biased towards
high-density regions of the map,3 1 (i) the reduction in
the number of degrees of freedom derived from the
imposed C, symmetry for some of the “uniform com-
plexes” and (iii) errors in the segmentation used in the
“anchor graph segmentation” stage, resulting in seg-
mented regions that do not completely correspond to
subunits of mixed sizes and shapes. Despite ambiguous
intermediate solutions obtained in fitting some of the
subunits into their assembly densities in difficult cases, a
near-native model (2.21-5.05 A Ca RMSD) was found
among the top 10 models. For example, for the 1TYQ as-
sembly of seven subunits (Table I, Fig. 2), the positions
of four out of the seven subunits of the complex (chains
D-F) were difficult to detect by fitting techniques. How-
ever, docking between pairs of interacting subunits, as
detected in the “docking based pose refinement” stage,
improved the placements of these subunits; most notable
is the improvement from 14.6 to 2.3 A Ca-RMSD for
subunit G.

In addition, ranking of docking-based models by pair-
wise docking methods may be inaccurate.10 The strength
of using EM data as an additional source of information is
again demonstrated by the 1TYQ example. The correct
docking pose between subunits B and F was ranked only
number 943 by the PatchDock procedure, but was the top
ranked result by the MultiFit combined geometric score.

CONCLUSIONS

With the growing number of macromolecular assem-
blies characterized by EM,4/ EM-guided modeling tech-
niques are becoming increasingly useful for a mechanistic
understanding of these assemblies. We have recently
addressed the problem of modeling architectures of mac-
romolecular complexes by simultaneously optimizing the
fit of the individual subunits into their assembly density
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maps and optimizing the interfaces between interacting
subunits.33 Here, we report algorithmic advances in the
density map segmentation and subunit fitting algorithms
of the MultiFit method as well as a new algorithm for
the modeling of cyclic symmetric complexes. We show
that even low-resolution density maps are helpful for
modeling assembly architectures and can resolve ambigu-
ous intermediate docking or fitting results. As EM tech-
niques continue to improve, an increasing number of
macromolecular complexes will be visualized at subnan-
ometer resolution. Integration of intermediate-to-high re-
solution density map data into computational docking
techniques may be extremely useful in resolving ambigu-
ities in docking of unbound subunits and in the refine-
ment of docking solutions. Extending the CAPRI chal-
lenge to include docking-based modeling of macromolec-
ular assemblies guided by EM would help to advance
these methods and their applicability. The MultiFit soft-
ware, benchmark, and a tutorial are available as part of
the IMP package under the open source lesser-GPL
license at http://www.salilab.org/MultiFit/. Remaining
challenges include, among others, treating protein flexi-
bility and incorporation of data from additional sources,
such as those from proteomics.>?
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