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Prediction of Homo and Heteroprotein Complexes by Protein Docking and Modeling

ABSTRACT

We present the results for CAPRI Round 30, the first joint CASP-CAPRI experiment, which brought together experts from
the protein structure prediction and protein—protein docking communities. The Round comprised 25 targets from amongst
those submitted for the CASP11 prediction experiment of 2014. The targets included mostly homodimers, a few homo-
tetramers, and two heterodimers, and comprised protein chains that could readily be modeled using templates from the Pro-
tein Data Bank. On average 24 CAPRI groups and 7 CASP groups submitted docking predictions for each target, and 12
CAPRI groups per target participated in the CAPRI scoring experiment. In total more than 9500 models were assessed
against the 3D structures of the corresponding target complexes. Results show that the prediction of homodimer assemblies
by homology modeling techniques and docking calculations is quite successful for targets featuring large enough subunit
interfaces to represent stable associations. Targets with ambiguous or inaccurate oligomeric state assignments, often featur-
ing crystal contact-sized interfaces, represented a confounding factor. For those, a much poorer prediction performance was
achieved, while nonetheless often providing helpful clues on the correct oligomeric state of the protein. The prediction per-
formance was very poor for genuine tetrameric targets, where the inaccuracy of the homology-built subunit models and the
smaller pair-wise interfaces severely limited the ability to derive the correct assembly mode. Our analysis also shows that
docking procedures tend to perform better than standard homology modeling techniques and that highly accurate models

of the protein components are not always required to identify their association modes with acceptable accuracy.

Proteins 2016; 00:000-000.
© 2016 Wiley Periodicals, Inc.

Key words: CAPRI; CASP; oligomer state; blind prediction; protein interaction; protein docking.

INTRODUCTION

Most cellular processes are carried out by physically
interacting proteins. Characterizing protein interactions
and higher order assemblies is therefore a crucial step in
gaining an understanding of how cells function.

Regrettably, protein assemblies are still poorly repre-
sented in the Protein Databank (PDB).2 Determining the
structures of such assemblies has so far been hampered by
the difficulty in obtaining suitable crystals and diffraction
data. But this limitation is being circumvented with the
advent of new powerful electron microscopy techniques,
which now enable the structure determinations of very
large macromolecular assemblies at atomic resolutions.

On the other hand, the repertoire of individual protein
3D structures has been increasingly filled, thanks to
large-scale structural genomics projects such as the PSI
(http://sbkb.org/) and others (http://www.thesgc.org/).
Given a newly sequenced protein, the odds are high that
its 3D structure can be readily extrapolated from struc-
tures of related proteins deposited in the PDB.4> More-
over, thanks to the recent explosion of the number of
available protein sequences, it is now becoming possible
to model the structures of individual proteins with
increasing accuracy from sequence information alone®7
as will be highlighted in the CASP11 results in this issue.
Structures from this increasingly rich repertoire may be
used as templates or scaffolds in protein design projects
that have useful medical applications.89 Larger protein
assemblies can be modeled by integrating information on
individual structures with various other types of data
with the help of hybrid modeling techniques.10

Computational approaches play a major role in all
these endeavors. Of particular importance are methods
for deriving accurate structural models of multiprotein
assemblies, starting from the atomic coordinates of the
individual components, the so-called “docking” algo-
rithms, and the associated energetic criteria for singling
out stable binding modes.!1~13

Taking its inspiration from CASP, the community-
wide initiative on the Critical Assessment of Predicted
Interactions (CAPRI), established in 2001, has been
designed to test the performance of docking algorithms
(http://www.ebi.ac.uk/msd-srv/capri/). Just as CASP has
fostered the development of methods for the prediction
of protein structures, CAPRI has played an important
role in advancing the field of modeling protein assem-
blies. Initially focusing on protein—protein docking and
scoring procedures, CAPRI has expanded its horizon by
including targets representing protein-peptide and pro-
tein nucleic acids complexes. It has moreover conducted
experiments aimed at evaluating the ability of computa-
tional methods to estimate binding affinity of protein—
protein complexesl‘l_16 and to predict the positions of
water molecules at the interfaces of protein complexes.!”

Considering the importance of macromolecular assem-
blies, and the new opportunities offered by the
recent progress in both experimental and computational
techniques to probe and model these assemblies, a better
integration of the different computational approaches for
modeling macromolecular assemblies and their building
blocks was called for. Establishing closer ties between the
CASP and CAPRI communities appeared as an impor-
tant step in this direction, inaugurated by running a
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joint CASP-CAPRI prediction experiment in the summer
of 2014. The results of this experiment were summarized
at the CASP11 meeting held in Dec 2014 in Cancun
Mexico, and are presented in detail in this report.

The CASP11-CAPRI experiment, representing CAPRI
Round 30, comprised 25 targets for which predictions of
protein complexes were assessed. These targets repre-
sented a subset of the 100 regular CASP11 targets. This
subset comprised only “easy” CASP targets, those whose
3D structure could be readily modeled using standard
homology modeling techniques. Targets that required
more sophisticated approaches (ab-initio modeling, or
homology modeling using very distantly related tem-
plates) were not considered, as the CAPRI community
had little experience with these approaches. The vast
majority of the targets were homo-oligomers. CAPRI
groups were given the choice of modeling the subunit
structures of these complexes themselves, or using mod-
els made available by CASP participant, in time of the
docking calculations.

On average, about 25 CAPRI groups, and about 7
CASP groups submitted docking predictions for each tar-
get. About 12 CAPRI scorer groups per target partici-
pated in the CAPRI scoring experiment, where
participants are invited to single out correct models from
an ensemble of anonymized predicted complexes gener-
ated during the docking experiment.

In total, these groups submitted >9500 models that
were assessed against the 3D structures of the corre-
sponding targets. The assessment was performed by the
CAPRI assessment team, using the standard CAPRI
model quality measures.!819 A major issue for the
assessment, and for the Round as a whole, was the
uncertainties in the oligomeric state assignments for a
significant number of the targets. For many of these the
assigned state at the time of the experiment was inferred
solely from the crystal contacts by computational meth-
ods, which can be unreliable.

In presenting the CAPRI Round 30 assessment results
here, we highlight this issue and the more general chal-
lenge of correctly predicting the association modes of
weaker complexes of identical subunits, and those of
higher order homo-oligomers. In addition, we examine
the influence of the accuracy of the modeled subunits on
the performance of the docking and scoring predictions,
and evaluate the extent to which docking procedures
confer an advantage over standard homology modeling
methods in predicting homo-oligomer complexes.

THE TARGETS

The 25 targets of the joint CASP-CAPRI experiment
are listed in Table I. Of these 23 are homo-oligomers,
with 18 declared to be dimers and five to be tetramers,
and two heterocomplexes. Hence for the majority of
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the targets (23) the goal was to model the interface (or
interfaces in the case of tetramers) between identical sub-
units, whose size varied between 44 and 669 residues but
was of ~250 residues on average. The majority of the
targets were obtained from structural genomics consortia.
They represented mainly microbial proteins, whose func-
tion was often annotated as putative.

Since it is not uncommon for docking approaches
to use information on the symmetry of the complex to
restrain or filter docking poses, predictors needed to
be given reliable information on the biologically/func-
tionally relevant oligomeric state of the target complex
to be predicted. While self association between pro-
teins is common, with between 50 and 75% of pro-
teins forming dimers in the cell,zo’21 this association
depends on the binding affinity between the subunits
and on their concentration. Information on the oligo-
meric state is in principle derived using experimental
methods such as gel filtration or small-angle X-ray
scattering (SAXS),22 and is usually communicated by
the authors upon submission of the atomic coordinates
to the PDB. With a majority of the targets being
offered by structural genomics consortia before their
coordinates were deposited in the PDB, author-
assigned oligomeric states were available to predictors
only for a subset (~15) of the targets, and those were
often tentative. For the remaining targets, the oligo-
meric state was inferred from the crystal contacts using
the PISA software,23 which although being a widely
used standard in the field, may still yield erroneous
assignments in a non-negligible fraction of the cases,
as will be shown in this analysis. Such incorrect
assignments represented a confounding factor in this
CAPRI round, but also allowed to show that docking
calculations may help to correct them.

GLOBAL OVERVIEW OF THE
PREDICTION EXPERIMENT

As in typical CAPRI Rounds, CAPRI predictor groups
were provided with the amino-acid sequence of the tar-
get protein (for homo-oligomers), or proteins (for heter-
ocomplexes), and with some relevant details about the
protein, communicated by the structural biologists. Using
the sequence information, the groups were then invited
to model the 3D structure of the protein or proteins,
and to derive the atomic structure of the complex. To
help with the homology-modeling task, with which
CASP participants are usually more experienced than
their CAPRI colleagues, 3D models of individual target
proteins predicted by CASP participants were made
available to CAPRI groups for use in their docking calcu-
lations. A good number of CAPRI groups, but not all,
took up this offer.
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Table |
The CAPRI-CASPI11 Targets of CAPRI Round 30

Target ID Quaternary state Buried

CAPRI CASP Contributor Author PISA Residues area (A?) Protein

T68 T0759 NSGC Tor2 1 109 860 Plectin 1 and 2 repeats (HR9083A) of the
Human Periplakin

T69 T0764 JCSG 2 2 34 2415 Putative esterase (BDI_1566) from Para-
bacteroides distasonis

T70 T0765 JCSG 2 4 128 2030 Modulator protein MzrA (KPN_03524) from
Klebsiella pneumoniae subsp.

m T0768 JCSG 4 4 170 2380 Leucine rich repeat protein (BAC-
CAP_00569) from Bacteroides capillosus
ATCC 29799

T72 T0770 JCSG 2 2 488 1120 SusD homolog (BT2259) from Bacteroides
thetaiotaomicron

173 T0772 JCSG 4 4 265 5900 Putative glycosyl hydrolase (BDI_3914)
from Parabacteroides distasonis

T74 T0774 JCSG 1 4 379 2040 Hypothetical protein (BVU_2522) from
Bacteroides vulgatus

T75 T0776 JCSG 2 2 256 1040 Putative GDSL-like lipase (PARMER_00689)
from Parabacteroides merdae (ATCC
43184)

T77 T0780 JCSG 2 2 259 1600 Conserved hypothetical protein (SP_1560)
from Streptococcus pneumoniae TIGR4

T78 T0786 Non-SGI 4 4 264 4160 Hypothetical protein (BCE0241) from Bacil-
lus cereus

79 T0792 Non-SGI 2 80 680 O0SKAR-N

T80 T0801 NPPB 2 2 376 1960 Sugar aminotransferase WecE from Esch-
erichia coli K-12

T81 T0797 Non-SGl 2 2 44 1070 cGMP-dependent protein kinase Il leucine
zipper

T0798 2 2 198 Rab11b protein

T82 T0805 Non-SGl 2 2 214 3250 Nitro-reductase rv3368

T84 T0811 NYSGRC 2 255 1740 Triose phosphate isomerase

T85 T0813 NYSGRC 2 2 307 4620 Cyclohexadienyl dehydrogenase from
Sinorhizobium meliloti in complex with
NADP

T86 T0815 NYSGRC 2 2 106 470 Putative polyketide cyclase (protein
SMa1630) from Sinorhizobium meliloti

T87 T0819 NYSGRC 2 2 373 3430 Histidinol-phosphate aminotransferase
from Sinorhizobium meliloti in complex
with pyridoxal-5'-phosphate

T88 T0825 Non-SGI 2 2 205 1350 WRAP-5

T89 T0840 Non-SGl 1 669 870 RON receptor tyrosine kinase subunit

T0841 1 253 Macrophage stimulating protein subunit

(MSP)

T90 T0843 MCSG 2 2 369 2360 Ats13

T91 T0847 SGC 1 2 176 1320 Human Bj-Tsa-9

T92 T0849 MCSG 2 2 240 1900 Glutathione S-transferase domain from
Haliangium ochraceum DSM 14365

T93 T0851 MCSG 2 2 456 2680 Cals8 from Micromonospora echinospora
(P294S mutant)

T94 T0852 MCSG 2 2 414 1190 APC103154

Bold numbers under Quaternary State indicate the oligomeric state assignments available at the time of the prediction experiment; 1 (monomer), 2 (dimer), 4 (tet-
ramer); numbers in regular fonts indicate subsequent assignments collected from the PDB entries for the target structures.

NSGC, Northeast Structural Genomics Consortium; JCSG, Joint Center for Structural Genomics; Non-SGI, Non-SGI research Centers and others; NNPB, NatPro
PSL:Biology; NYSGRC, New York Structural Genomics Research Center; MCSG, Midwest Center for Structural Genomics; SGC, Structural Genomics Consortium.

In addition to submitting 10 models for each target
complex, predictors were invited to upload a set of
100 models. Once all the submissions were completed,
the uploaded models were shuffled and made available
to all groups as part of the CAPRI scoring experiment.
The “scorer” groups were in turn invited to evaluate

the ensemble of uploaded models using the scoring
function of their choice, and submit their own 10
best ranking omnes. The typical timelines per target
were about 3 weeks for the homology modeling and
docking predictions, and 3 days for the scoring
experiment.
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Table Il
CAPRI Round 30 Experiment Statistics

Number of groups

Number of models

Target ID CAPRI CASP CAPRI CASP

CAPRI CASP PDB a Predictors Uploaders Scorers Predictors Predictors Uploaders Scorers Predictors
T68 T0759 4928 2 23 10 12 3 221 1000 120 7
T69 T0764 4934 2 28 10 14 7 266 1000 132 17
T70 T0765 4pwu 2 23 8 13 5 221 710 130 18
7 T0768 4oju 3 22 9 14 1 214 810 131 1
172 T0770 4969 3 25 " 13 4 244 914 130 "
T73 T0772 4ghz 2 23 1 1 7 221 1195 110 16
T74 T0774 4qb7 2 22 " 10 7 202 9N 96 "
T75 T0776 4q9a 1 26 12 12 8 253 840 120 21
T76 T0779 Cancelled — no structure
T77 T0780 4qdy 4 24 12 12 6 229 mn 120 12
T78 T0786 4qvu 2 24 10 " 5 229 818 110 15
79 T0792 5a49 3 25 " 12 9 242 900 120 23
T80 T0801 4piw 1 21 10 12 8 264 In 120 21
T81 T0797 4ojk 1 23 9 1 20 218 641 110 64

T0798
T82 T0805 b 1 25 10 12 9 242 Imn 120 21
T83 T0809 Cancelled — article from different group online
T84 T0811 b 1 25 10 12 10 241 910 120 28
T85 T0813 Awiji 1 25 " 12 8 241 920 120 21
T86 T0815 4u13 2 26 " 12 9 251 1010 119 25
T87 T0819 4wbt 1 24 10 12 9 231 894 120 25
T88 T0825 b 1 27 10 13 18 261 910 130 62
T89 T0840 b 1 22 9 " 55 21 790 110 243

T0841
T90 T0843 4xau 1 23 9 " 9 221 811 110 28
T91 T0847 Qurj 1 25 9 1 9 242 798 110 24
T92 T0849 4w66 1 23 9 " 9 225 789 110 33
T93 T0851 4wb1 1 22 9 " 8 213 697 110 27
T94 T0852 Aw9r 1 22 9 12 8 215 783 120 21

The number of groups corresponds to registered groups that effectively submitted models for the respective target. The number of models represents submitted models,
regardless of quality and includes disqualified models. CAPRI groups are allowed to submit no more than their 10 best models, whereas CASP groups are allowed to

submit no more than their 5 best models.
“Number of interfaces assessed.
Not yet released.

Table II lists for each target the number of groups sub-
mitting predictions and the number of models assessed.
On average ~25 CAPRI groups submitted a total of
~230 models per target, and an average of 12 scorer
groups submitted a total of ~120 models per target.
With the exception of three targets, an average of seven
groups registered with CASP submitted a total of any-
where between 1 and 33 models for individual targets.
CASP predictors participated in larger numbers in the
prediction of T88 (T0825) and of the heterocomplexes
(T89 — TO0840/T0841 and T81 - T0797/T0798),
where the CASP targets were defined as the oligomeric
structures.

Table II also lists the uploader groups and the models
that they make available for the scoring experiment (100
models per target per uploader group). As detailed
above, the uploaded models are complexes output by the
docking calculations carried out by individual partici-
pants for a given target. Models, uploaded by the differ-
ent groups, are anonymized, shuffled, and made available
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to groups solely interested in testing their scoring
functions.

SYNOPSIS OF THE PREDICTION
METHODS

Round 30 participants used a wide range of modeling
methods and software tools to generate the submitted
models. In addition, the approaches used by a given
group often differed across targets. Here, we provide
only a short synopsis of the main methodological
approaches. For a more detailed description of the meth-
ods and modeling strategies, readers are referred to the
extended Methods Abstracts provided by individual par-
ticipants (see Supporting Information Table S6).

Templates, representing known structures of homologs
to a given target, stored in the PDB, were used in a
number of ways. Most commonly, they were employed
to model the 3D structures of individual subunits. Some
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Assessment procedure

Sy

fnon-native

Model

Figure 1
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Schematic illustration of the CAPRI assessment criteria. The following quantities were computed for each target: (1) all the residue-residue contacts
between the Receptor (R) and the Ligand (L), and (2) the residues contributing to the interface of each of the components of the complex. Inter-

face residues were defined on the basis of their contribution to the interface area, as described in references. 1819

For each submitted model the fol-

lowing quantities were computed: the fractions f(nat) of native and f(non-nat) of non-native contacts in the predicted interface; the root mean
square displacement (rmsd) of the backbone atoms of the ligand (L-rms), the mis-orientation angle 0 and the residual displacement dy of the
ligand center of mass, after the receptor in the model and experimental structures were optimally superimposed. In addition we computed I-rms,
the rmsd of the backbone atoms of all interface residues after they have been optimally superimposed. Here the interface residues were defined less

stringently on the basis of residue-residue contacts (see Refs. 18,19).

CAPRI participants selected their own templates and
used a variety of custom built or well-established algo-
rithms such as Model]er,24 Swiss—Model,25 or
ROSETTA,26 to model the subunit structures. Others
used the models produced by various servers participat-
ing in the CASP11 experiment and made available to
CAPRI groups, or servers of other groups (HAD-
DOCK?27). The quality of the CASP server models was
usually first assessed using various criteria and the best
quality models were selected for the docking calculations.
Some groups selected a single best model for a given tar-
get, whereas others used several models (sometimes up
to five models). Several groups additionally used loop
modeling to adjust the conformation of loops regions,
and subjected the subunit models to energy refinement.

The majority of CAPRI participants used protein
docking and scoring methods to generate and rank can-
didate complexes. Many employed their own docking
methods, some of which were designed to handle sym-
metric assemblies, whereas others relied on well-
established docking algorithms such as HEX,28 ZDock,29
RosettaDock,30 as well as on docking programs such as
MZDock3! which apply symmetry constraints.

When templates were available for a given target
(mostly for homodimers), some participants used the
information from these templates (consensus interface res-
idues, contacts, or relative arrangement of subunits) to

guide the docking calculations or to select docking solu-
tions. Others used the dimeric templates directly to model
the target dimer (template-based “docking”3273%). Less
than a hand-full of groups employed template-based mod-
eling alone for all or most of the targets.

To model tetrameric targets, most groups proceeded in
two steps. They used either known dimeric homologs, or
docking methods to build the dimer portion of the tet-
ramer, and then run their docking procedures to generate
a dimer-of-dimers, representing the predicted tetramer.

ASSESSMENT PROCEDURES
AND CRITERIA

The standard CAPRI assessment protocol

The predicted homo and heterocomplexes were
assessed by the CAPRI assessment team, using the stand-
ard CAPRI assessment protocol, which evaluates the cor-
respondence between predicted complex and the target
structure.18:19

This protocol (summarized in Fig. 1) first defines the
set of residues common to all the submitted models and
the target, so as to enable the comparison of residue-
dependent quantities, such as the root mean square devi-
ation (rmsd) of the models versus the target structure.
Models where the sequence identity to the target is too
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Table Il
Summary of CAPRI Criteria for Ranking Predicted Complexes
Score finat) L-rms I-rms
wxE High > 05 <10 OR <10
o Medium > 03 < 1.0-5.0] OR < 1.0-2.0]
* Acceptable > 0.1 < 5.0-10.0] OR < 2.0-4.0]
Incorrect <01 > 10.0 AND > 4.0

low are not assessed. The threshold is determined on a
per-target basis, but is typically set to 70%.

The set of common residues is used to evaluate the
two main rmsd-based quantities used in the assessment:
the ligand rmsd (L-rms) and the interface rmsd (I-rms).
L-rms is the backbone rmsd over the common set of
ligand residues after a structural superposition of the
receptor. I-rms is the backbone rmsd calculated over the
common set of interface residues after a structural super-
position of these residues. An interface residue is defined
as such when any of its atoms (hydrogens excluded) are
found within 10 A of any of the atoms of the binding
partner.

An important third quantity whereby models are
assessed is f(nat), representing the fraction of native con-
tacts in the target, that is, reproduced in the model. This
quantity takes all the protein residues into account. A
ligand-receptor contact is defined as any pair of ligand-
receptor atoms within 5 A distance. Atomic contacts
below 3 A are considered as clashes; predictions with too
many clashes are disqualified. The clash threshold varies
with the target and is defined as the average number of
clashes in the set of predictions plus two standard devia-
tions. The quantities f(nat), L-rms and I-rms together
determine the quality of a predicted model, and based
on those three parameters models are ranked into four
categories: High quality, medium quality, acceptable
quality and incorrect, as summarized in Table III.

Applying the CAPRI assessment protocol to
homo-oligomers

Evaluating models of homo and heteroprotein com-
plexes against the corresponding target structure is a
well-defined problem when the target complex is unam-
biguously defined, for example, if the target association
mode and corresponding interface represents the biologi-
cally relevant unit. This is usually, although not always,
the case for binary heterocomplexes, but was not the sit-
uation encountered in this experiment for the homo-
oligomer targets. All except two of the 25 targets for
which predictions were evaluated here represent homo-
oligomers. For about half of these targets the oligomeric
state was deemed unreliable, as it was either only
inferred computationally from the crystal structure using
the PISA software23 or because the authors’ assignment
and inferred oligomeric states, although available, were
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inconsistent (Table I). Only about 15 targets had an oli-
gomeric state assigned by the authors at the time of the
experiment.

To address this problem in the assessment, the PISA
software was used to generate all the crystal contacts for
each target and to compute the corresponding interface
areas. The interfaces were then ranked according to size
of the interface. In candidate dimer targets, submitted
models were usually evaluated against 1 or 2 of the larg-
est interfaces of the target, and acceptable or better mod-
els for any or all of these interfaces were tallied. For
candidate tetramer targets, the relevant largest interfaces
for each target were identified in the crystal structure,
and predicted models were evaluated by comparing in
turn each pair of interacting subunits in the model to
each of the relevant pairs of interacting subunits in the
target (Supporting Information Fig. S1), and again the
best predicted interfaces were retained for the tally. One
of the two bonafide heterocomplexes was also evaluated
against multiple interfaces.

Evaluating the accuracy of the 3D models of
individual subunits

Since this experiment was a close collaboration
between CAPRI and CASP, the quality of the 3D models
of individual subunits in the predicted complexes was
assessed by the CASP team using the LGA program,3°
which is the basic tool for model/target comparison in
CASP.36:37 The tool can be run in two evaluation
modes. In the sequence-dependent mode, the algorithm
assumes that each residue in the model corresponds to a
residue with the same number in the target, while in the
sequence-independent mode this restriction is not
applied. The program searches for optimal superimposi-
tions between two structures at different distance cutoffs
and returns two main accuracy scores; GDT_TS and
LGA_S. The GDT_TS score is calculated in the sequence-
dependent mode and represents the average percentage
of residues that are in close proximity in two structures
optimally superimposed using four selected distance cut-
offs (see Ref. 38 for details). The LGA_S score is calcu-
lated in both evaluation modes and represents a
weighted sum of the auxiliary LCS and GDT scores from
the superimpositions built for the full set of distance cut-
offs (see Ref. 35 for details). We have run the evaluation
in both modes, but since the CAPRI submission format
permits different residue numbering, we used the LGA_S
score from the sequence-independent analysis as the
main measure of the subunit accuracy assessment. This
score is expressed on a scale from 0 to 100, with 100 rep-
resenting a model that perfectly fits the target. The rmsd
values for subunit models cited throughout the text are
those computed by LGA software. We verified that for
about 80% of the assessed models the GDT-TS and
LGA-S scores differed by <15 units, indicating that these
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models correspond to near identical structural align-
ments with the corresponding targets, in line with the
fact that the majority of the targets of this Round repre-
sent proteins that could be readily modeled by homol-
ogy. Of the remaining 20% with larger differences
between the 2 scores, 18% correspond to disqualified
models or incorrect complexes and 2% correspond to
acceptable (or higher quality) predicted complexes. Their
impact on the analysis is therefore negligible.

Building target models based on the best
available templates

In order to better estimate the added value of protein
docking procedures and template-based modeling techni-
ques it seemed of interest to build a baseline against
which the different approaches could be benchmarked.
To this end, the best oligomeric structure template for
each target available at the time of the predictions was
identified. Based on this template, the target model was
built using a standard modeling procedure, and the qual-
ity of this model was assessed using the CAPRI evalua-
tion criteria described above.

To identify the templates, the protein structure data-
base “PDB70” containing proteins of mutual sequence
identity <70% was downloaded from HHsuite.3Y The
database was updated twice during the experiment (See
Supporting Information Table S5 for the release date of
the database used for each target). Only homo-complexes
were considered for this analysis.

The best available templates were detected in three dif-
ferent ways and target models were generated from the
templates as follows: (1) Detection based on sequence
information alone: For each target sequence, proteins
related to the target were searched for in the protein
structure database by HHsearch40 in the local alignment
mode with the Viterbi algorithm.#! Among the top 100
entries, up to 10 proteins that are in the desired
oligomer state were selected as templates. When more
than two assembly structures with different interfaces
were identified, the best ranking one was selected as tem-
plate. The target and template sequences were aligned
using HHalign?0 in the global alignment mode with the
maximum accuracy algorithm. Based on the sequence
alignments, oligomer models were built using MODEL-
LER.42 The model with the lowest MODELLER energy
out of 10 models was selected for further analysis. (2)
Detection based on the experimental monomer structure:
Proteins with highest structural similarity to the experi-
mental monomer structure were searched for using TM-
align.43 Among the top 100 entries, up to 10 proteins
that are in the desired oligomer state were selected as
templates as described above. Based on the target-
template alignments output by TM-align, models were
built using MODELLER, and the lowest energy model
was selected as described above. (3) Detection based on

the experimental oligomer structure: A similar procedure
to those described above was applied. Although this
time, the best templates were identified by searching for
proteins with the highest structural similarity to the tar-
get oligomer structure. The search was performed using
the multimeric structure alignment tool MM-align.44
For computational efficiency, MM-align was applied only
to the 100 proteins with the highest monomer structure
similarity to the target. Models were built using MOD-
ELLER based on the alignment output by MM-align.

RESULTS

This section is divided into three parts. The first part
presents the prediction results for the 25 individual tar-
gets for which the docking and scoring experiments were
conducted. In the second part, we present an overview of
the results across targets and across predictor and scorer
groups, respectively. In the third part, we review the
accuracy of the models of individual subunits in the pre-
dicted oligomers, and how this accuracy influences the
performance of docking procedures.

Prediction results for individual targets

Easy homodimer targets: T69, T75, T80, T82, T84, T85,
T87, T90, T91, T92, T93, T94

The 12 targets in this category comprised some of the
largest subunits of the entire evaluated target set, with
sizes ranging between 176 and 456 residues. Four of the
targets were multi-domain proteins (T85, T87, T90, and
T93), and one (T82) was an intertwined dimer.

In the following, we present examples of the perform-
ance achieved for this category of targets. Detailed results
for all the targets of Round 30 can be found in the Sup-
porting Information Table S2, and on the CAPRI website
(URL: http://www.ebi.ac.uk/msd-srv/capri/).

An illustrative example of the average performance
obtained for this category of targets is that obtained for
target T69 (T0764): a 34l-residue putative esterase
(BDI_1566) from Parabacteroides distasonis. The submit-
ted models for this target were evaluated against two
interfaces in the crystal structure of this protein, gener-
ated by applying the crystallographic symmetry opera-
tions listed in the Supporting Information Table S1, and
depicted in Figure 2(a): one large interface (2415 A%
and a smaller interface (622 A%). Good prediction results
were obtained only for interface 1. Twenty-eight CAPRI
predictor groups submitted a total of 266 models for this
homodimer. Of these, 30 were of acceptable quality and
57 were of medium quality. Twelve predictor groups and
three docking servers submitted at least one model of
acceptable quality or better. Among those, nine groups
and one server (CLUSPRO) submitted at least 1 medium
quality model. The best performance (10 medium quality
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Figure 2

Target structures and prediction results for easy dimer targets. T69 (T0764), a Putative esterase (BDI_1566) from Parabacteroides distasonis, PDB code
4Q34. (a) Target structure, with highlighted interfaces (1,2). (b) Global docking prediction results displaying one subunit in cartoon representation,
with the center of mass of the second subunit in the target (red sphere), and in docking solutions submitted by CAPRI predictors (light blue spheres),
CAPRI scorers (dark blue spheres), and CASP predictors (yellow spheres). T80 (T0801), a sugar aminotransferase WecE from Escherichia coli K-12,
PDB code 4PIW. (c) Target structure. (d) Global docking prediction results by different predictor groups (see legend (b) for detail). T82 (T0805)
Nitroreductase (structures unreleased). (e) Target structure. (f) Global docking prediction results by different predictor groups. T94 (T0852), unchar-
acterized protein Coch_1243 from Capnocytophaga ochracea DSM 7271, PDB code 4W9R. (g) Target structure. (h) Global docking prediction results

by different predictor groups.

models) was obtained by the groups of Seok, Lee and
Guerois, followed closely by the groups of Zou, Shen,
and Eisenstein (see Supporting Information Table S2 for
the complete ranking)

The best model for this target, obtained by Guerois,
had an f(nat) value of 49%, and L-rms and I-rms values
of 2.88 and 2.12 A, respectively (Supporting Information
Table S4).

Six groups, registered with CASP, submitted in total
12 models for this target, comprising one acceptable
model by the group of Umeyama and one medium qual-
ity model by the Baker group. The global landscape of
all the predicted models by the different groups is out-
lined in Figure 2(b).

An even better performance was achieved by the
CAPRI scoring experiment (Supporting Information
Table S2). Of the 14 groups participating in this experi-
ment, 12 submitted at least two models of medium qual-
ity. The best performance was achieved by Kihara (10
medium quality models), closely followed by Zou and
Grudinin, with eight and five medium quality models,
respectively. As already observed in previous CAPRI eval-
uations the best performers in the docking calculations
were not necessarily performing as well in the scoring
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experiment, and thus not singling out even their own
best models from the uploaded anonymized set of pre-
dicted complexes, highlighting yet again the distinct
nature of the docking and scoring procedures.

An important factor in the successful predictions was
the overall good accuracy of the 3D models used by pre-
dictors in the docking calculations (see Fig. 6 and CAPRI
website for detailed values). The best models had an
LGA_S score of ~85 (backbone rmsd of ~3.9 /0&), and
only a few models had LGA_S scores lower than 40
(backbone rmsd > 10 ;‘x) (values for all models are avail-
able on the CAPRI website). The accuracy of the 3D
models across targets and its influence on the predictions
will be discussed in a dedicated section below.

Very good predictions were obtained for T82 (T0805),
the nitro-reductase rv3368, a significantly intertwined
dimer with unstructured arms reaching out to the neigh-
boring subunit and a subunit interface area of 3250 A2
[Fig. 2(e,f)]. The majority of the models of the individ-
ual subunits were quite accurate with LGA_S values of
60-85 (backbone rmsd <5 A) (see CAPRI website). As
many as 54 medium quality models and 17 acceptable
models were submitted by CAPRI participants, 99 mod-
els of acceptable quality or better were submitted by
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CAPRI scorer groups, and 11 acceptable models or better
were submitted by three CASP groups (Supporting Infor-
mation Table S2). The high success rate for both com-
plex predictions and subunit modeling stems from the
fact that most predictors made good use of known struc-
tures of related homodimers in the PDB in which the
intertwining mode was well conserved. These known
dimer structures were mainly used in templates for mod-
eling the target dimer (template-based docking).

Very similar participation, number of submitted mod-
els and performance, was featured in docking predictions
for the other targets in this category (see Supporting
Information Tables S2 and S3). The models of individual
subunits were also of similar accuracy or higher.

Excellent performance was obtained for targets T80
(T0819) and T93 (T0851) with >100 correct models of
which ~70 were of medium quality, followed by targets
T90 (T0843) and T91 (T0847), for which >100 correct
models, comprising ~40 medium quality ones- were
submitted. These targets featured subunits sizes of 176—
456 residues.

T80 (T0801) was the sugar aminotransferase WecE
from E.coli K-12, with 376 residues per subunit. Submit-
ted models were evaluated against one interface (1960
A?) between the two subunits of the crystal asymmetric
unit [Fig. 2(c)]. A total of 27 CAPRI predictor groups
submitted 105 models of acceptable quality or better.
The majority of these (71 models) were of medium qual-
ity. 12 CAPRI groups participated in the scoring experi-
ment and submitted 120 models, of which about half
(51) were of medium quality and 14 were acceptable
models. Six CASP participants submitted 11 medium
quality models, and two models of acceptable quality.
The top ranking CAPRI predictor groups for this target
were those of Sali, Guerois, and Eisenstein who submit-
ted 10 medium quality models each. These three groups
were closely followed by the groups of Seok, Zou, Shen
and Lee, each of whom predicted at least five medium
quality models. Each of the three participating servers,
HADDOCK, GRAMM-X, and CLUSPRO, submitted at
least one acceptable model. The best performers from
among the scorer groups were those of Zou and Huang
with 10 medium quality models each, followed by Gray,
Kihara and Weng with at least 5 medium quality models,
and by Fernandez-Recio and Bates with four medium
quality models. The global landscape of the predictions
for this target is shown in Figure 2(d).

The subunit models for this target were of very high
quality, with the best models featuring a LGA_S score of
~95 and a backbone rmsd of 1.3 A. The quality of the
best models for targets T90 and T91 for which a simi-
larly high performance was achieved was only somewhat
lower, with LGA_S values of 70—88 and backbone rmsd
of 2.0-5.0 A.

Interestingly, T91 (T0847), the human Bj-Tsa-9, was
predicted to be a dimer by PISA, but assigned as a

monomer by the authors. The good docking perform-
ance for this target and the fact that the dimer interface
(1320 A?) is within the range expected for proteins of
this size (176 residues),4> suggests that this protein
forms a dimer.

A somewhat lower performance was achieved for T92
(T0849) the glutathione S-transferase domain from Hal-
iangium ochraceum), and for T94 (T0852), an uncharac-
terized 2-domain protein (putative esterase according to
Pfam) Coch_1243 from Capnocytophaga ochracea. A total
of 98 acceptable models were submitted for T92, of
which only 12 were of medium quality, but the models
were contributed by a large fraction of the participating
groups (17 out of 23). On the other hand, the scorer
performance was very good with 68 acceptable models of
which almost half (33) were of medium quality. These
models were contributed across most scorer groups (10
out of 11). CASP participants achieved a particularly
good performance. Of the 23 models submitted by CASP
groups, 17 were of acceptable quality or better, and those
were contributed by six of the seven participating groups.
The accuracy of the subunit models was in general lower,
with LGA_S ~70 and rmsd ~7 A for the best models,
and LGA_S values of 50 — 60 for most other models.

In T94, predicted complexes were assessed only against
the largest interface (1190 A?), formed between large
domains of the adjacent subunits, as the second largest
interface was much smaller (620 A?). In total, 97 accept-
able homodimer models only, were contributed for this
target: 58 models by CAPRI predictors, 37 by CAPRI
scorers, and 2 by CASP groups [see Supplementary Table
S2, and Fig. 2(g,h) for a pictorial summary]. The lower
accuracy of the subunit models for this target (LGA_S
score ~58 and rmsd >6 A, for the best model) may have
limited the accuracy of the modeled complexes, without
however compromising the task of achieving correct
solutions.

Difficult or problematic homodimer targets:
T68, T72, T77, T79, T86, T88

This category comprises 6 targets, representing partic-
ular challenges to docking calculations for reason inher-
ent to the proteins involved, or targets for which the
oligomeric state was probably assigned incorrectly at the
time of the experiment.

With the exception of T72, targets in this category are
much smaller proteins, than those of the easy dimer tar-
gets (Table I). In three of the targets (T68, T79, T86) the
largest interface area between subunits in the crystal is
small (470-860 ;\2) and their oligomeric state assign-
ments were often ambiguous. In the following, we com-
ment on the insights gained from the results obtained
for several of these targets.

No acceptable homodimer models were contributed by
CAPRI or CASP groups for targets T68, T77 and T88.
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Figure 3

Target structures and prediction results for difficult or problematic dimer targets. T68 (T0759), Plectin 1 and 2 Repeats of the Human Periplakin,
PDB code 4Q28. (a) Target structure in cartoon representation, displaying 4 subunits in the crystal. The His-Tag sequence, highlighted in black,
mediates contacts at the largest interface. (b) Global docking prediction results displaying one subunit in cartoon representation, with the center of
mass of the second subunit in the target (red sphere), and in docking solutions submitted by CAPRI predictors (light blue spheres), CAPRI scorers
(dark blue spheres), and CASP predictors (yellow spheres). T77 (T0780), conserved hypothetical protein (SP_1560), Streptococcus pneumoniae
TIGR4 PDB code 4QDY. (c) Target structure, highlighting the assessed interface (dashed line). (d) Global docking prediction results by different
predictor groups (see legend (b) for detail). T88 (T0825), synthetic wrap five protein (structure unreleased). (e) Target structure. (f) Global dock-
ing prediction results by different predictor groups. T72 (T0772), SusD homolog (BT2259) from Bacteroides thetaiotaomicron VPI-5482, PDB code
4Q069. (g) Target structure, highlighting the three assessed interfaces. (h) Global docking prediction results for the three interfaces, by different pre-
dictor groups. T79 (T0792), OSKAR-N, PDB code 5a49. (i) Target structure, highlighting the three assessed interfaces. (j) Global docking predic-
tion results for the three interfaces by different predictor groups. T86 (T0815) Putative polyketide cyclase (protein SMal630) from Sinorhizobium
meliloti, PDB code 4U13. (k) Target structure, showing three interfaces. (1) Global docking prediction results for the two interfaces by different pre-

dictor groups (the interface with the yellow monomer was not assessed).

The main problem with T68 (T0759), the plectin 1 and
2 repeats of the Human Periplakin, was that the crystal
structure contains an artificial N-terminal peptide repre-
senting the His-tag (MGHHHHHHS...) that was used
for protein purification. The N-terminal segments of
neighboring subunits, which contain the artificial pep-
tide, associate to form the largest interface between the
subunits in the crystal (1150 A?) [Fig. 3(a)]. Submitted
model were assessed against this interface and the second
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largest interface (860A%), but not against the 2 much
smaller interfaces (240 and 160 A?).

Most predictor groups (from both CASP and CAPRI)
carried out docking calculations without the His-tag,
which they assumed was irrelevant to dimer formation
in-vivo. They were therefore unable to obtain docking
solutions that were sufficiently close to the largest inter-
face of the target [Fig. 3(b)]. As well, no acceptable solu-
tions were obtained for second largest interfaces,
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indicating that it too was unlikely to represent a stable
homodimer.

The quality of the subunit models was also lower than
for many other targets (the best model had an LGA_S
score of ~57), as most groups ignored the His-Tag in
building the models as well (see Fig. 6 and CAPRI web-
site for details). Considering that the His-Tag containing
peptide contributes significantly to the largest subunit
interface, the protein is likely a monomer in absence of
the artificial peptide. This is in fact the authors’ assign-
ment in the corresponding PDB entry (4Q28), and in
retrospect this target should not have been considered
for the CAPRI docking experiments.

Different factors contributed to the failure of produc-
ing acceptable docking solution for T77 (T0780), the
conserved hypothetical protein (SP-1560), from Strepto-
coccus pneumonia TGR4 [Fig. 3(c,d)]. The protein con-
sists of two YbbR-like structural domains (according to
Pfam) arranged in a crescent-like shape. The domains
adopt rather twisted B-sheet conformations with exten-
sive stretches of coil, and are connected by a single poly-
peptide segment, suggesting that the protein displays an
appreciable degree of flexibility both within and between
the domains. Probably as a consequence of this flexibil-
ity, the structures of most templates identified by predic-
tor groups (which approximated only one domain), were
not close enough to that of the target (Supporting Infor-
mation Table S5). As a result, the subunit models were
generally quite poor, with the best model featuring an
LGS-A score of only ~40 (rmsd ~7 A). Although the
largest interface of the target is of a respectable size
(1600 A?) and involves intermolecular contacts between
one of the domains only, the docking calculations were
unable to identify it. The best docking model was incor-
rect as it displayed an L-rms ~19 A, and an I-rms ~10 A
(see Supporting Information Table S4).

A very different issue plagued the docking prediction
of T88 (T0825), the wrap5 protein. The information
given to predictors was that the protein is a synthetic
construct built from 5 sequence repeats, and is similar to
2YMU (a highly repetitive propeller structure). It was
furthermore stated that the polypeptide has been mildly
proteolyzed, yielding two slightly different subunits, in
which the N-terminus of the first repeat was truncated
to different extent, and that therefore the dimer forms in
a non-trivial way. Predictors were given the amino acid
sequence of the two alternatively truncated polypeptides.

It turned out that the longer of the two chains, with
the nearly intact first repeat forms the expected 5-blade
B-propeller fold, whereas the chain with the severely
truncated first repeat forms only four of the blades, with
the remainder of the first repeat forming an o-helical
segment that contacts the first repeat [Fig. 3(e)].

Both CAPRI and CASP predictor groups were quite
successful in building very accurate models for the less
truncated subunit (rmsd < 0.5 10&, LGA_S ~90). But

subunit models for the more truncated subunit were
much poorer (rmsd 6.5-10 A), and since the helical
region of the shorter subunit contributes significantly to
the dimer interface, whose total area is not very large
(~1300 A?), no acceptable docking solutions were
obtained [Fig. 3(e,f)].

For the other three targets in this category, T72, T79,
and T86, the homodimer prediction performance
remained rather poor, with only very few acceptable
models submitted. The main issue with T79 (T0792), the
OSKAR-N protein, and T86 (T0815), the polyketide
Cyclase from Sinorhizobium meliloti, was likely their very
small subunit interface (Table I). T79 was predicted by
PISA to be a dimer, but the area of its largest subunit
interface is only 680 A% T86, predicted to be dimeric by
both PISA and the authors (as stated in the PDB entry,
4U13), has even smaller size subunit interfaces with the
largest one burying no >470 A% In both cases these
interfaces are much smaller than the average size
required in order to stabilize weak homodimers.40 It is
therefore likely that these two proteins are in fact mono-
meric at physiological concentrations. Furthermore, T79
and T86 are quite small proteins (80 residues for T79,
and 100 residues for T86), and it is not uncommon that
proteins of this size cannot form large enough interfaces
unless they are intertwined.4”

This notwithstanding, a few acceptable homodimer mod-
els were contributed for all three assessed interfaces (interfa-
ces 1,2,3) of T79 (Supporting Information Table S2).

Among predictor groups, 17 acceptable docking solu-
tions (of which five were medium quality models) were
obtained for the largest interface (interface 1). Twelve
acceptable solutions, of which one medium quality one,
were obtained for the second smaller interface (440 A2),
and no acceptable quality solutions were obtained for the
third assessed interface (400 A%) [see Fig. 3(i,j) for an over-
view of the prediction results]. Seven CAPRI predictor
groups, 1 CASP group and one server (GRAMM-X) con-
tributed the correct models for interface 1, and seven
CAPRI groups submitted acceptable models for interface 2.

Interestingly scorers did less well than predictors for
interface 1, but better for interface 2, and two scorer
groups submitted two acceptable models for interface 3,
whereas none were submitted by predictor groups.

Overall, the models for the T79 subunit were quite
accurate, with the best model having and LGA_S score of
~89 and rmsd ~1.9 A.

Not too surprisingly, the dimer prediction perform-
ance for T86 was significantly poorer, with only three
acceptable models submitted by CAPRI predictors
(Ritchie and Negi) for the largest interface (470 A?).
Scorers identified five acceptable models for interface 1
(Fernandez-Recio and Gray), and two acceptable (or bet-
ter) models for interface 2 (Seok and Kihara). None of
the 19 models submitted by the seven CASP groups were
correct [Fig. 3(k,l) for a pictorial summary].
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Different problems likely led to the weak prediction
performance for Target T72 (T0770), the SusD homolog
(BT2259) from Bacteroides Thetaiotaomicron. While the
largest subunit interface is of near average size (1120 A?),
the interface itself is poorly packed and patchy, an indi-
cation that it may not represent a specific association.
Not too surprisingly, therefore, this led to a poor predic-
tion performance. Overall only three models of accepta-
ble quality were submitted by CAPRI dockers, namely by
the HADDOCK and SWARMDOCK servers, and the
Guerois group, each contributing 1 such model. The best
of these models (contributed by Guerois) had f(nat)
~29% and L-rms and I-rms values of 8.85 and 3.57 10\,
respectively. Seven acceptable models were submitted by
scorers. Bonvin contributed two models, and the groups
of Huang, Grudinin, Gray, Weng and Fernandez-Recio,
respectively, submitted one model. The best quality mod-
els had f(nat) ~18%, and L-rms and I-rms values of
~7.29 and 4.28 A, respectively. No acceptable models
were submitted by CASP participants. The target struc-
ture and the distribution of the all the docking solutions
are depicted in Figure 3(g,h).

The accuracy of the subunit models for T72 was rea-
sonable, with the best models having a LGA_S score of
~70 (backbone rmsd ~3.8 A). The three successful
CAPRI predictor groups (HADDOCK, SWARMDOCK
and Guerois) all had somewhat lower quality subunit
models with LGA_S scores in the range of 55 — 67.

Targets assigned as tetramers: T70, T71, T73, T74, T78

Five targets were assigned as tetramers at the time of
the prediction experiment. As described in Assessment
Procedure and Criteria, models for tetramer targets were
assessed by systematically comparing all the interfaces in
each model to all the relevant interfaces in the target,
and selecting the best-predicted interfaces. Most predic-
tor groups used a two-step approach to build their mod-
els. First they derived the model of the most likely dimer,
and then docked the dimers to one another. Some
groups imposed symmetry restraints as part of the dock-
ing procedures, or combined this approach with the two-
step procedure.

In three of the targets (T70, T71, T74) predictors faced
the problem that all the pair-wise subunit interfaces were
quite small (440-720 A?), making it difficult to identify
stable dimers to initiate the assembly procedure.

T70 (T0765), the modulator protein MzrA from Kleb-
siella Pneumoniae Sub Species, was assigned as a tetramer
at the time of the predictions, but is listed as a dimer
(predicted by PISA and assigned by the authors) in the
PDB entry (4PWU). Only two of its interfaces in the
crystal bury an area exceeding 400 A* [Fig. 4(a)]. The
assembly built by propagating these two interfaces
appears to form an extensive layered arrangement across
unit cells in the crystal, rather than a closed tetramer.
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Interestingly, acceptable or better models were submit-
ted only for the smaller interface (475 A?) (Supporting
Information Table S2). CAPRI predictors submitted 37
acceptable models, of which 27 were of medium quality,
and scorers submitted 27 acceptable models (including
21 medium quality ones) [Fig. 4(b)]. Indeed no accepta-
ble models were submitted for the largest interface (560
Az), which is assigned as the dimer interface in the PDB
entry for this protein.

The failure to model a higher order oligomer for this
target was not due to the quality of the subunit models
as the latter was quite high (see Fig. 6 and CAPRI web-
site), and is probably rooted in the pattern of contacts
made by the protein in the crystal, which suggest that
this target is likely a weak dimer. Considering that all the
acceptable docking models involve a different interface
than that assigned in the corresponding PDB entry, it is
furthermore possible that the interface identified in these
solutions is in fact the correct one. But given the very
small size of either interface, the protein could also be
monomeric.

A similar situation was encountered with T74
(T0774), a hypothetical protein from Bacteroides vulga-
tus. Here too the target was assigned as a tetramer by
PISA at the time of the predictions, but is listed as a
monomer by the authors in the PDB entry (4QB7).
Associating the subunits according to the two largest
interfaces (520 and 490 A?), also produced an open-
ended assembly rather than a closed tetramer, and this
time no acceptable solutions were produced for either
interface, strongly suggesting that the protein is mono-
meric as specified by the authors. It is noteworthy that
the subunit models for this target were particularly poor
(LGA_S values ~40, and rmsd ~7 A), which could also
have hampered identifying some of the binding
interfaces.

T71 (T0768), the leucine-rich repeat protein from bac-
teroides capillosus, was a difficult case for other reasons.
Subunit contacts in the crystal are mediated through
three different interfaces, ranging in size from 470 A to
720 A% A closed tetrameric assembly can be built by
combining interfaces 1 and 3, associating the dimer
formed by subunits A and B with the equivalent dimer
of subunits C and D, as shown in Figure 4(c). Interfaces
1 and 3 were also those for which some acceptable pre-
dictions were submitted. One acceptable model was con-
tributed for the largest interface, by the GRAMM-X, an
automatic server. Eleven acceptable models were submit-
ted for the third interface (470 A?) by 4 CAPRI predictor
groups, and six acceptable models were submitted by
four CAPRI scorer groups. All the models submitted by
a single CASP group were wrong. No group succeeded in
building the tetramer that comprises the correct models
for interfaces 1 and 3 at the same time. Some models
looked promising, but when superimposing equivalent
subunits (in the model vs. the target) the neighboring
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Figure 4

Target structures and prediction results for tetrameric targets. T70 (T0765), Modulator protein MzrA (KPN_03524) from Klebsiella pneumoniae
subspecies. (a) Target structure in cartoon representation, highlighting the two assessed interfaces (dashed lines). (b) Global docking prediction
results displaying one subunit in cartoon representation, with the center of mass of the second subunit in the target (red spheres), and in docking
solutions submitted by CAPRI predictors (light blue spheres), CAPRI scorers (dark blue spheres), and CASP predictors (yellow spheres). T71
(T0768) Leucine-rich repeat protein (BACCAP_00569) from Bacteroides capillosu, PDB code 4QJU. (c) Target structure in cartoon representation,
highlighting the two relevant interfaces (interfaces 1 and 3) (dashed lines). (d) Global docking prediction results for the assessed interfaces by dif-
ferent predictor groups (monomer color corresponding to (c), that is, the red spheres represent the same, blue, monomer). T73 (T0772), Putative
glycosyl hydrolase, PDB code 4QHZ. (e) Target structure in cartoon representation, highlighting the two assessed interfaces (interface 1 and 2)
(dashed lines). (f) Global docking prediction results for the assessed interfaces by different predictor groups.

subunit of the model (the one across the incorrectly pre-
dicted interface) had its position significantly shifted rel-
ative to that in the target, resulting in an incorrect
structure of the tetrameric assembly.

The remaining two targets, T73 (T0772), a putative
glycosyl hydrolase from Parabacteroides distaspnos, and
T78 (T0786), a hypothetical protein from Bacillus cereus,
were genuine tetramers assigned as such by both PISA
and the authors. Both targets are proteins of similar size
(~260 residues) adopting an assembly with classical D,
symmetry, which comprises two interfaces, a sizable one
(>1000 A?) and a smaller one. But the main bottleneck
for both targets was that their larger interface was inter-
twined. Available templates did not seem to capture the
intertwined associations, as witnessed from the overall
poorer models derived for the individual subunits. For
both targets, the best models had an LGA_S score ~50
and a backbone rmsd of ~5-10 A. For T73, a total of
only nine acceptable models were submitted by the
CAPRI predictor groups of LZERD, Zou and Kihara for
the largest interface, and two acceptable models were
submitted by the Lee group for the second interface.

None of the predicted tetramer models simultaneously
captured both interfaces, as illustrated in Figure 4(e,f).
For T78, no acceptable solutions were submitted by any
of the participating groups, but the subunit models were
only marginally more accurate than those of T73.

The conclusions to be reached from the analysis of
these five targets are twofold. One is that the oligomeric
state assignment for higher order assemblies such as tet-
ramers is more error prone than that of dimer versus
monomers. Tetramers often involve smaller interfaces
between subunits, especially those formed between indi-
vidual proteins when two dimers associate, and therefore
predictions on the basis of pair-wise crystal contacts such
as those by PISA become unreliable. Independent experi-
mental evidence is therefore required to validate the exis-
tence of a higher order assembly. The second conclusion
to be drawn is that the prediction of higher order assem-
bly by docking procedures remains a challenge. Accepta-
ble models derived for the largest dimer interface are
probably not accurate enough to enable the identification
of stable association modes between two modeled
dimers. This indicates in turn that the propagation of
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errors is the problem that currently hampers the model-
ing of higher order assemblies from the structures of its
components in absence of additional experimental
information.

Heterocomplex targets: T81, T89

T81 (T0797/T0798) and T89 (T0840/T0841) were the
only two bona-fide heterocomplex targets in Round 30.
T81 is the complex between the cGMP-dependent pro-
tein Kinase II leucine zipper (44 residues) and the
Rab11b protein (198 residues) (PDB code 40JK). T89 is
the complex between the much larger RON receptor
tyrosine kinase subunit (669 residues) and the macro-
phage stimulating protein subunit (MSP) (253 residues).

The crystal structure of T81 features two Rabl1b pro-
teins binding on opposite sides of the centrally located
leucine zipper, in a quasi-symmetric arrangement, which
likely represents the stoichiometry of the biological unit
[Fig. 5(a)]. A total of 3 interfaces were evaluated for this
targets: Interface 1 (chains C:A, leucine zipper helix 1/
one copy of the Rabllb protein), Interface 2 (C:D, leu-
cine zipper helix 1/helix 2), interface 3 (equivalent to
interface 1). The two Rabl1b/zipper helix interfaces were
not exactly identical (780 A for interface 1 and 630 A”
for interface 2). The interface between the helices of the
leucine zipper was somewhat larger (780 A?). Overall,
the interface area of a single copy of the Rabl1b protein
binding to the leucine zipper dimer measures 1070 A%,

Consolidating correct predictions for the equivalent
interfaces (Interfaces 1 and 3), the prediction perform-
ance for this complex as a whole was disappointing.
Only 12 correct models were submitted by the 7 CAPRI
predictor groups of Guerois, Seok, Huang, Vajda/Koza-
kov, SWARMDOCK, CLUSPRO (a server) and Bates.
Five of those (submitted by Guerois, Seok and Huang)
were of medium quality. The performance of CAPRI
scorers was better, with 54 correct models of which 16 of
medium quality. All 11 scorer groups contributed these
models, and the best scorer performance was achieved by
the groups of Bates, followed by those of LZERD, Oliva,
Huang, Fernandez-Recio and Seok. The prediction land-
scape for this target is shown in Figure 5(b).

T89, the RON receptor kinase subunit complex with
MSP, was a simpler target, given the clear, binary charac-
ter of this heterocomplex. But the large size of the recep-
tor subunit, and the relatively small interface it formed
with MSP, represented a challenge for the docking calcu-
lations. The prediction performance for this complex was
quite good overall, with a total of 87 correct models sub-
mitted by predictors, representing 41% of all submitted
predictor models. Unlike for many other targets of this
round, scorers did only marginally better, with 42% of
correct models. CASP groups were specifically invited to
submit models for this target, and 55 groups did, nearly
ten times more than for other targets in this round. But
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Figure 5

Target structures and prediction results for heterocomplex targets. T81
(T0797/T0798), cGMP-dependent Protein Kinase II Leucin Zipper and
Rabl11b Protein Complex, PDB code 40JK. (a) Target structure in car-
toon representation, highlighting the interface of the leucine zipper
dimer (2), and the two equivalent interfaces (1,3), between the zipper
dimer and the two Rab11b proteins (dashed lines). (b) Global docking
prediction results displaying one of the Rab11b subunits in cartoon rep-
resentation, with the center of mass of the leucine zipper dimer in the
target (red sphere), and in docking solutions submitted by CAPRI pre-
dictors (light blue spheres), CAPRI scorers (dark blue spheres), and
CASP predictors (yellow spheres). T89 (T0840/T0841), complex of the
RON receptor tyrosine kinase subunit and the macrophage stimulating
protein subunit (MSP) (structure not released). (c) Target structure in
cartoon representation. (d) Global docking prediction results displaying
the RON receptor kinas subunit, in cartoon representations, and the
center of mass of the MCP proteins in the target and in docking solu-
tions submitted by different predictor groups.

their performance was much poorer than that of CAPRI
groups. Only 23 models out of the 223 submitted by
CASP groups (10%) were correct, and 6 of these were
medium accuracy models.

The best performance among CAPRI predictor groups
was by the HADDOCK server, followed by the groups of
Vakser, Seok, Guerois, Grudinin, Lee, Huang and Tomii
(see Supporting Information Table S2). A pictorial sum-
mary of the prediction performance for this target is
provided in Figure 5(c,d).

Results across targets and groups

Across target performance of CAPRI docking predictions

Results of the docking and scoring predictions for the
25 assessed targets of Round 30, obtained by all groups



Prediction of Homo and Heteroprotein Complexes by Protein Docking and Modeling

that submitted models for at least one target, are sum-
marized in Figure 6 and in the Supporting Information
Table S3. For a full account of the results for this Round
the reader is referred to the CAPRI web site (http://www.
ebi.ac.uk/msd-srv/capri/).

The results summarized in Figure 6 show clearly that
the prediction performance varies significantly for targets
in the four different categories. As expected, the per-
formance is significantly better for the 12 dimer targets
in the “easy” category, than for those in the other cate-
gories. For 10 of the 12 “easy” targets, at least 30% of
the submitted models per target are of acceptable quality
or better, and for most of these (eight out of 10), at least
20% of the models are of medium quality. The accuracy
of the subunit models (top panel, Fig. 6) is rather good
for most of these targets. With the exception of T93, for
which the quality of the subunits models spans a wide
range (LGA_S ~40-80), the models of the remaining 11
targets achieve high LGA_S scores with averages of 80 or
above.

The two less well-predicted targets in this category are
T92 and T94, probably due to the lower quality of the
subunit models (average LGA_S < 60) (top panel, Fig. 6).

The docking prediction performance is quite poor for
the six “difficult or problematic” dimer targets, where a
few acceptable models were submitted for only three of
the targets (T72, T79, T86), and no acceptable models
were submitted for the remaining three targets. This very
poor performance was not rooted in the docking or
modeling procedures but rather in the targets themselves.
In 4 of the targets in this category (T68, T72, T79, T86)
the oligomeric state (dimer in this case), often predicted
only by PISA, but sometimes also provided by the
authors, was likely incorrectly assigned. In T68, the His-
tag used for protein purification and included in the
crystallization forms the observed dimer interface, which
is therefore most certainly non-native. In T72 the main
problem was its very poorly packed and patchy interface,
suggesting that the dimer might be a crystal artifact,
whereas in T79 and T86, all the pair-wise interfaces in
the crystal structure were too small for any of them to
represent a stable dimer.

The only genuinely difficult dimer targets were T77
and T88. For T77, the subunits of this flexible 2-domain
protein were rather poorly modeled (average LGA_S 30—
40), making it difficult to model the “handshake”
arrangement of the subunits in the dimer [Fig. 3(c,d)].
In T88, the synthetic wrap5 protein, most predictor
groups failed to meet the challenge of correctly modeling
the shorter of the two subunits, in turn leading to incor-
rect solutions for the heterodimer.

As already mentioned, a very poor performance was
achieved for the five targets assigned as tetramers at the
time of the predictions. This is illustrated at the level of
the individual interfaces in these targets (Fig. 6). How-
ever, here too the problem was not necessarily rooted in

limitations of the docking or modeling procedures. Two
of the targets, T70 and T74, seem to have been errone-
ously assigned as tetramers at the time of the prediction
by PISA, as described above. T70 was assigned as a
dimer, and T74 as a monomer, by the respective authors
in the PDB entry. In agreement with the authors’ assign-
ment, no acceptable solutions were identified for any of
the interfaces in T74. Somewhat surprisingly, the quality
of the subunits models for this target was particularly
poor as well (average LGA_S ~30).

In T70, the docking calculations were able to identify
only the smaller of the two interfaces as forming the
dimer interface (Fig. 6), but this interface differs from
the one assigned by the authors. This result leaves open
the possibility that this protein may indeed be a weak
dimer, in agreement with the author’s assignment, albeit
a different dimer than the one that they propose. Thus
for both of these seemingly erroneously assigned tetra-
meters, the docking calculations actually gave the correct
answer, which supports the author’s subsequent assign-
ments, which were not made available at the time of the
prediction experiment.

For the other three tetrameric targets, T71, T73 and
T78, the poor interface prediction performance reflects
the genuine challenges of modeling higher order oligom-
ers. In T71 the small size of the individual interfaces was
likely the reason for the paucity of acceptable dimer
models, and those were moreover not accurate enough
to enable the correct modeling of the higher order
assembly (dimer of dimers). In T73 and T78, the very
few acceptable models for interfaces in the former, and
the complete failure to model any of the interfaces in the
latter (Fig. 6), likely stem from the lower accuracy of the
corresponding subunit models (average LGA_S ~50-60).

The docking prediction performance was better, but
not particularly impressive for the two heterocomplex
targets T81 and T89, which represent the type of targets
that the CAPRI community commonly deals with. For
T81 only ~5% of the submitted models were of accepta-
ble quality or better, whereas for T89 the corresponding
model fraction was 40%, similar to that achieved for the
easy dimer targets. The poorer performance for T81 can
be readily explained by the fact that this target was in
fact a hetero tetramer, two copies of the Rabl1lb protein
binding to opposite sides of a leucine zipper, which had
to be modeled first.

These results taken together indicate that homology
modeling techniques and docking calculations are able to
predict rather well the structures of biologically relevant
homodimers. In addition we see that the prediction per-
formance for such targets is on average superior than that
obtained for heterocomplexes in previous CAPRI rounds,
where on average only about 10-15% of the submitted
models are correct for any given target (http://onlinelibrary.
wiley.com/doi/10.1002/9781118889886.ch4/summary), com-
pared to 25% obtained for the majority of the genuine
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Figure 6

Pictorial summary of the prediction results per assessed interface of the targets in CAPRI Round 30. The lower panel depicts the fraction of models
of acceptable and medium quality respectively, submitted by CAPRI and CASP predictor groups, for the 42 assessed interfaces in all 25 targets
(listed along the horizontal axis). The digit following the CAPRI target number represents the assessed interface. The symmetry transformation cor-

responding to the assessed interfaces in each target are

listed in the Supporting Information Table SI1. The fraction of correct models is shown sepa-

rately for the four main target categories: Easy dimer targets, difficult (or problematic) dimer targets, tetrameric targets, and heterocomplex targets.
The middle panel displays the same data for models submitted for the same interfaces by CAPRI scorer groups. The top panel shows box plots of
the LGA_S score values of the subunits in submitted models for the targets listed along the horizontal axis. The LGA_S score is one of the CASP
measures of the accuracy of the predicted 3D structure of a protein.35 The red dots represent the LGA_S score of the subunit structure of the best
quality homo or heterocomplex model submitted for each target. The best quality model is defined as the one with the lowest I-rms (see Fig. 1 for

details).

dimer targets in this Round, including both

easy and diffi-

Across target performance of CAPRI scoring predictions

cult homodimers. This result is not surprising, as interfaces

of homodimers are in general larger and more hydrophobic

than those of heterocomplexes,45 properties
make them easier to predict.

Another noteworthy observation is that docking calcu-
lations can often help to more reliably assign the protein
oligomeric state, especially in cases where available

assignments were ambiguous. Such cases

tered for several of the difficult or problematic targets,
and for targets assigned as tetramers. On the other hand,
the main challenge in correctly modeling tetramers is to

minimize the propagation of errors caused

inaccuracies in modeling individual interfaces, which can
in turn be exacerbated by inaccurate 3D models of the

protein components.
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As shown in the middle panel of Figure 6, CAPRI
scorer groups achieved overall a better prediction per-
formance than predictor groups. The scoring experiment
involves no docking calculations, and only requires sin-
gling out correct solutions from among the ensemble of
models uploaded by groups participating in the docking
predictions. Clearly, such solutions cannot be identified
if the ensemble of uploaded models contains only incor-
rect solutions. Therefore no correct scoring solutions
were submitted by scorers for targets where no acceptable
docking solutions were present within the 100 models
uploaded by predictor groups for given target.

However, for targets where at least a few correct dock-
ing models were obtained by predictors, scorers were

which should

were encoun-

by even small
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often able to identify a good fraction of these models, as
well as other models that were not identified amongst the
10 best models by the groups that submitted them (Fig.
6). This was particularly apparent for the easy dimer tar-
gets, where scorers often submitted a significantly higher
fraction of acceptable-or-better models (>50%) than in
the docking experiment, where this fraction rarely
exceeded 40%. A similar result was achieved for the heter-
ocomplexes, and was particularly impressive for T81,
where nearly half of the submitted models by scorers were
correct, compared to only 5% for the docking predictions.

The seemingly superior performance of scorers over
dockers has been observed in previous CAPRI assess-
ments!619 where it was attributed in part to the gener-
ally poor ranking of models by predictors. Their highest-
ranking models are often not the highest-quality models,
and acceptable or better models can often be found
lower down the list and amongst the 100 uploaded mod-
els. Another reason is the fact that the search space that
scorers have to deal with is orders of magnitude smaller
(a few thousands of models), than the search space dock-
ers commonly sample (tens of millions of models). This
significantly increases the odds of singling correct solu-
tions in the scoring experiment.

Clearly however, there is more to the scorers’ perform-
ance than chance alone, particularly in this CAPRI Round,
where the main challenge was to model homo-oligomers.
Some groups that have also implemented docking servers
had their server perform the docking predictions com-
pletely automatically, but carried out the scoring predic-
tions in a manual mode, which still tends to be more
robust. In addition, a meta-analysis of the uploaded mod-
els, such as clustering similar docking solutions and select-
ing and refining solutions from the most populate clusters
can also lead to improved performance.

This notwithstanding, the actual scoring functions
used by scorer groups must play a crucial role. But this
role is currently difficult to quantify in the context of
this assessment.

Performance across CAPRI and CASP predictors,
scorers and servers

The ranking of CAPRI-CASP11 participants by their
prediction performance on the 25 targets of Round 30 is
summarized in Table IV. The per-target ranking and per-
formance of participants can be found in the Supporting
Information Tables S2 and S3.

The ranking in Table IV considers only the best quality
model submitted by each group for every target. The
ranking in the Supporting Information Table S2 takes
into account both the total number of acceptable models,
and the number of higher quality models (medium qual-
ity ones for this Round, as detailed in the section on
assessment criteria). When two groups submitted the
same number of acceptable models, the one with more

high quality models is ranked higher, and when two
groups submitted the same number of high quality mod-
els, the group with more acceptable models is ranked
higher.

Overall, a total of 11 CAPRI predictor groups submit-
ted correct models for at least 10 targets, and medium
quality models for at least seven targets. These groups
submitted models for at least 20 of the targets. Among
those, the highest-ranking groups in this Round are
Seok, Huang, and Guerois, with correct models for 15 or
16 targets, and medium quality models for 12-14 of
these targets. These are followed by Zou, Shen and Gru-
dinin (correct models for 11-14 targets, and medium
quality models for 10 or 11 of those). The remaining five
highest ranking groups, Weng, Vakser, Vajda/Kozakov,
Fernandez-Recio and Lee, achieve correct predictions for
10-15 targets and medium quality predictions for 7-9 of
those. It is noteworthy that two of the three top ranking
predictor groups (Seok and Guerois), and at least one
other group (Vakser) made heavy use of template-based
modeling, an indication that this approach can be quite
effective.

The remaining groups listed in Table IV were ranked
lower, as they corrected predicted between 1 and 8 tar-
gets only, and produced only a few medium quality
models for these targets. However some of these groups
submitted predictions for a smaller number of targets.
Their performance can therefore not be fairly compared
to that of other groups.

Of the 6 CAPRI automatic docking servers ranked in
Table IV, HADDOCK and CLUSPRO rank highest, fol-
lowed by SWARMDOCK, and GRAMM-X.

It is interesting to note that two top ranking CAPRI
servers submitted correct predictions for 16 targets, just
as many as the top ranking predictor groups. But the lat-
ter groups still produce more medium accuracy models
(>10) than the servers (no more than 9). Thus as
already noted in previous CAPRI assessment, some
CAPRI servers perform nearly on par with more manual
predictions.

Among the CASP predictor and server groups listed in
Table IV, the groups of Umeyama and Dunbrack rank
highest, and both would rank among the best CAPRI
predictor groups as their success rate (fraction of correct
over submitted models) was also high. Of the servers,
ROSETTASERVER and SEOK_SERVER rank highest,
with a performance level similar to SWARMDOCK.
Thirty-nine CASP groups submitting models for 1-5 tar-
gets, none of which were correct, are not explicitly listed
in the Table.

Lastly, judging also by the best model submitted for
each target, CAPRI scorers outperform CAPRI predic-
tors, as already mentioned when analyzing the perform-
ance across targets. Highly ranking scorer groups
submitted on average correct models for 1-2 more tar-
gets than CAPRI predictors, and the number of medium
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Table IV
Participant ranking by Target performanceParticipant
Participated
targets Performance
CAPRI Predictor Ranking
Seok 25 15/14**
Huang 25 16/13**
Guerois 25 16/12**
Zou 25 14/11%*
Shen 25 13/11**
Grudinin 24 11/10%*
Weng 25 13/9**
Vakser 25 11/9**
Vajda/Kozakov 24 15/8**
Fernandez-Recio 25 11/8**
Lee 20 10/7**
Tomii 20 8/6**
Sali 12 6/4**
Negi 25 7/3**
Eisenstein 6 3
Bates 25 7/2**
Kihara 23 1/2**
Zhou 25 4/2**
Tovchigrechko 12 3/1%*
Ritchie 8 2/1**
Fernandez-Fuentes 14 1
Xiao " 1
Gong 8 0
Del Carpio 3 0
Wade 2 0
Haliloglu 1 0
CAPRI SERVER Ranking
HADDOCK 25 16/9**
CLUSPRO 25 16/8**
SWARMDOCK 25 11/4**
GRAMM-X 22 6/1**
LZERD 25 3
DOCK/PIERR 2 1
CAPRI Scorer Ranking
Bonvin 25 18/14**
Bates 24 17/13**
Huang, Seok 25 16/13**
Zou, Kihara 25 15/12**
Fernandez-Recio 25 14/12**
Weng 25 16/11**
Oliva 22 14/11**
Grudinin 25 13/10%*
Gray 17 10/7**
LZERD 25 6**
Lee 5 3/2%*
Sali 1 0
CASP Predictor and Server Ranking
Umeyama 19 13/8**
ROSETTASERVER 13 9/8**
Dunbrack 12 11/6%*
SEOK_SERVER 22 1/5**
Luethy 8 b/4**
Nakamura 12 7/3**
Baker 8 3
Wallner 2 1**
Skwark, Lee, RAPTOR-X_Wang, 1-4 1
NNS_Lee
39 participants not listed 1-5 0

For each target only the best quality solution is counted; in total 25 targets were
assessed. Column 2 indicates the number of targets for which predictions were
submitted. In Column 3, the numbers without stars indicate models of acceptable
quality or better, and the numbers with “**” indicate the number of those models
that were of medium quality.
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quality models that groups submit for these targets is
also somewhat higher.

Of the 13 scorer groups that submitted an accurate
model for at least one target, 11 have correctly predicted
at least 10 targets and submitted medium quality models
for seven of those.

The best performing groups are those of Bonvin,
Bates, Huang, Seok, Zou and Kihara, followed closely by
four other groups that correctly predicted at least 13 tar-
gets, and produced medium quality models for at least
10 of these (Table IV).

Factors influencing the prediction
performance

Unlike in previous CAPRI rounds, Round 30 com-
prised solely targets where both the 3D structure of the
protein subunits and their association modes had to be
modeled. Deriving the atomic coordinates of the pre-
dicted homo-oligomers therefore involved a number of
steps each requiring the use of specialized software and
making strategic choices as to how it should be applied.

As mentioned in Synopsis of the Prediction Methods,
the approaches for modeling the subunit structures and
generating the oligomer models vary widely amongst
predictor groups, and across targets. It is therefore diffi-
cult to reliably pinpoint specific factors that contributed
or hampered successful predictions. Nonetheless some
general trends can be outlined. Even though Round 30
comprised only targets whose subunits could be readily
modeled using templates from the PDB, the subunit
modeling strategy had an important influence on the
final oligomer models. Groups that used several different
subunit models for the same target increased their
chance of deriving at least an acceptable oligomer model.
Such different models were obtained either by using dif-
ferent templates (some groups used as many as five tem-
plates for the same target), or by starting from the same
template and modifying it by optimizing loop conforma-
tions and subjecting it to energy refinements. These opti-
mizations seemed particularly effective when carried out
in the context of the oligomers representing the highest-
ranking template-based or docking models.

As already mentioned, information on oligomeric tem-
plates in the PDB was another important element con-
tributing to improve the prediction performance. This
information was the main ingredient for two of the best
performing groups that heavily relied on template-based
docking. Other groups that performed well used mainly
ab-initio docking methods of various origins, but either
guided the calculations or filtered the results based on
structural information from homologous oligomers.

Other important elements, such as selecting represen-
tative members of clusters of docking solutions, and the
final scoring functions used to rank models and select
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Subunit model accuracy and the quality of predicted complexes in
CAPRI Round 30. The CASP LGA_S scores of subunit models in the
predicted complexes for the 25 targets in this Round (vertical axis) are
plotted as a function of the I-rms values (horizontal axis). Each point
in this Figure represents one submitted model, and points are colored
according to the quality of the predicted complex, respectively, incorrect
(yellow), acceptable (blue) and medium (green) quality (see Table I and
the text for details).

those to be submitted, also played a role as already men-
tioned here and in previous CAPRI reports.1?

In the following we examine in more detail the impact
of two important elements of this joint CASP-CAPRI
experiment. We evaluate the influence of the accuracy of
individual subunits models on the oligomer prediction
performance, and estimate the extent to which proce-
dures that rely on docking methodology and those that
employ specialized template-based modeling confer an
advantage over straightforward homology modeling.

Influence of subunit model accuracy

The subunit models used to derive the models of the
oligomers were generated either by CAPRI groups, those
with more homology modeling expertise, or borrowed
from amongst the models submitted by CASP servers,
which were made available to CAPRI groups in time for
each docking experiment. The subunit structures in
models submitted by CAPRI and CASP groups for all 25
targets of Round 30 were assessed using the standard
CASP GDT_TS and LGA_S scores, as well as the back-
bone rmsd of the submitted model versus the target
structures. The values of these measures obtained for
models submitted by all participants in Round 30 for
each target can be found at the CAPRI website together
with the assessment results for this Round.

To gauge the relation between the accuracy of subunit
models and the docking prediction performance, the
LGA-S scores of subunit models in the predicted

complexes for the 25 targets in this Round are plotted in
Figure 7 as a function of the I-rms value. The LGA_S
measure was used because it does not depend on the res-
idue numbering along the chain, which may vary at least
in a fraction of the models submitted by CAPRI partici-
pants. The I[-rms measure was used as it represents best
the accuracy level of the predicted interface.

Each point in Figure 7 represents one submitted
model, and points are colored according to the quality of
the predicted complex (incorrect, acceptable and medium
quality). The plot clearly shows that medium quality pre-
dicted complexes (I-rms values between 1 and 3 A) tend
to be associated with high accuracy subunit models
(LGA_S values >80). We also see that predicted com-
plexes of acceptable quality (I-rms values of 2—4 A) are
associated with subunit models that span a wide range in
accuracy levels (LGA_S between 30 and 90). This range
is comparable to the subunit accuracy range associated
with incorrect models of complexes (I-rms >4 A; see
Table III for details on how I-rms contributes to rank
CAPRI models). Identical trends are observed when plot-
ting the GDT-TS scores as a function of the I-rms values
for the fraction of the models with correct residues num-
bering (Supporting Information Fig. S2).

That both accurate and inaccurate subunit models are
associated with incorrectly modeled complexes is
expected. Inaccurate subunit models may indeed prevent
the identification of the correct binding mode, and dock-
ing calculations may fail to identify the correct binding
mode even when the subunit models are sufficiently
accurate. It is however noteworthy that complexes classi-
fied as incorrect by the CAPRI criteria do not necessarily
represent prediction noise, as a recent analysis has shown
that residues that contribute to the interaction interfaces
are correctly predicted in a significant fraction of these
complexes.48

Somewhat less expected is the observation (Fig. 7) that
in a significant number of cases, acceptable and to a
smaller extent also medium quality docking solutions
can be identified even with lower accuracy models of the
individual subunits. This is an encouraging observation,
as it suggests that docking calculations can lead to useful
solutions with protein models built by homology, and
that these models need not always be of the highest accu-
racy. What probably matters more for the success of
docking predictions is the accuracy with which the bind-
ing regions of the individual components of the complex
are modeled, rather than the accuracy of the 3D model
considered in its entirety.

Round 30 predictions versus standard homology modeling

To estimate the extent to which docking methods or
template-based modeling procedures confer an advantage
over straightforward homology modeling, the accuracy of
the submitted oligomer models for each target was
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Table V

Best available templates detected based on sequence (“Sequence”), experimental monomer structure (“Monomer”), and experimental oligomer

structure (“Oligomer”)Target

Best template TM-score (detected template)

Target released Database released Sequence Monomer Oligomer
T68 May 01, 2014 April 24, 2014 0.348 (3njd) 0.370 (3fse) 0.370 (3fse)
T69 May 05, 2014 April 24, 2014 0.852 (1glw) 0.852 (1glw) 0.852 (1glw)
T70 May 06, 2014 April 24, 2014 0.639 (2f06) 0.644 (3c1m) 0.652 (3tvi)
™m May 07, 2014 April 24, 2014 0.509 (2id5) 0.618 (3jur) 0.618 (3jur)
T72 May 08, 2014 April 24, 2014 0.510 (3otn) 0.510 (3otn) 0.510 (3otn)
73 May 09, 2014 April 24, 2014 a 0.554 (1hq]) 0.554 (1hgl)
T74 May 12, 2014 April 24, 2014 0.340 (4jrf) 0.340 (4rf) 0.340 (4jrf)
T75 May 13, 2014 April 24, 2014 0.880 (3rijt) 0.880 (3rjt) 0.880 (3rijt)
T77 May 15, 2014 April 24, 2014 0.393 (2xwx) 0.375 (4iib) 0.375 (4iib)
T78 May 20, 2014 May 17, 2014 0.315 (3c6c) 0.370 (100s) 0.403 (2f30)
T79 May 23, 2014 May 17, 2014 0.440 (2bnl) 0.469 (2xig) 0.471 (2wh7)
T80 June 02, 2014 May 17, 2014 0.938 (1mdo) 0.943 (2fnu) 0.943 (2fnu)
T82 June 04, 2014 May 17, 2014 0.846 (4dn2) 0.846 (4dn2) 0.846 (4dn2)
T84 June 09, 2014 May 17, 2014 0.939 (2btm) 0.941 (1b9b) 0.941 (1b9b)
T85 June 10, 2014 May 17, 2014 0.889 (3ggo) 0.889 (3ggo) 0.889 (3ggo)
T86 June 11, 2014 May 17, 2014 0.459 (4h3u) 0.467 (3gzr) 0.470 (3hk4)
T87 June 13, 2014 May 17, 2014 0.922 (3get) 0.922 (3get) 0.922 (3get)
T90 July 03, 2014 June 06, 2014 0.921 (4qgr) 0.927 (20ga) 0.927 (20ga)
T91 July 08, 2014 June 06, 2014 0.750 (4gel) 0.750 (4gel) 0.808 (3hsi)
T92 July 09, 2014 June 06, 2014 0.785 (1tu7) 0.837 (3h1n) 0.837 (3h1n)
T93 July 10, 2014 June 06, 2014 0.896 (4a7p) 0.896 (4a7p) 0.896 (4a7p)
T94 July 11, 2014 June 06, 2014 0.655 (3gff) 0.655 (3gff) 0.655 (3gff)

TM-score of the templates that have the highest TM-score among top 10 selected templates for each target and the PDB IDs of the templates are listed.
“No protein with the desired oligomer state was found among the top 100 HHsearch entries.

compared to the accuracy of the models build using the
best oligomer templates for that target available in the PDB
at the time of the prediction. Only dimer targets (and tem-
plates) were considered, given the uncertainty of the oligo-
meric state assignments for some of the tetrameric targets.

Three categories of the best dimeric templates were
considered (see Assessment Procedures and Criteria):
templates identified on the basis of sequence alignments
alone, templates identified by structurally aligning the
target and template monomers, and templates identified
by structurally aligning the target and template oligom-
ers. Only the sequence-based template selection reconsti-
tutes the task performed by predictors, to whom only
the target sequence was disclosed at the time of the pre-
diction. The resulting templates thus represent the best
templates available to predictors during the prediction
Round. Obviously, the structurally most similar tem-
plates could not be identified by predictors, but are con-
sidered here in order to evaluate the advantage, if any,
conferred by such templates over those identified on the
basis of sequence alignments.

Table V lists the best templates from each category
identified for all dimeric targets of Round 30 and the
corresponding template-target TM-scores. These tem-
plates represent those with the highest TM-score among
the best 10 templates from each category detected for a
given targets. Not too surprisingly targets with more
similar templates, those featuring high TM-scores
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(>0.7), are the easy targets, whereas difficult targets are
those with poorer templates (lower TM-scores). Many of
the best templates from all three categories were also
detected and used by predictor groups (see Supporting
Information Table S5), even though these groups only
had sequence information to identify them during the
prediction round.

The accuracy levels of the models built using the three
categories of best templates for each target and the best
models from each of the participating CAPRI predictor
groups submitted for the same target are plotted in Fig-
ure 8. The model accuracy is measured by the I-rms
value, representing the accuracy level of the predicted
interface in the complex. Each entry in the Figure repre-
sents one model, and for each template category (based
on sequence alignments, on structural alignment of the
monomers and dimers, respectively), up to 10 best mod-
els are shown per target and colored according to the
template category.

Inspection of Figure 8 indicates that models submitted
by CAPRI predictor groups, a vast majority of which
employed docking methods as part of their protocol,
tend to be of higher accuracy. For most of the easy tar-
gets, the 10 models submitted by CAPRI groups more
consistently display lower I-rms values then the models
built from the best templates. This is the case not only
for models derived from the sequence-based templates
but also for the most structurally similar templates of
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each target (listed on the horizontal axis using the CAPRI target identification). Each point represents one model. The best models submitted by
individual CAPRI predictor groups are represented by green triangles. The remaining models are those built in this study by standard homology

modeling techniques42

on the basis of homodimer templates from the PDB. Up to 10 best models are shown per target and template category (see

text). Models based on templates identified using sequence information (black triangles), models based structural alignments of individual mono-
mers (red lozenges), and those based on structural alignments of the entire dimers (blue triangles). The targets (only dimers) are subdivided into
easy and difficult targets (see text). Dashed horizontal lines represent I-rms values delimiting models of high, medium, acceptable and lower (incor-

rect) quality by CAPRI criteria.

the monomer or dimer categories. Considering only the
best models for each targets the performance results are
mode balanced. For seven out of the 12 easy targets the
best models overall were submitted by CAPRI partici-
pants, whereas for the remaining five targets the most
accurate models were those derived from the structurally
most similar template. Overall however, acceptable or
medium quality models were obtained with all the
approaches and for nearly all the easy targets.

On the other hand it is remarkable that for three of
the difficult targets (T72, T79, and T86), the docking
procedures were able to produce acceptable models, with
one medium quality model for T79, whereas all the
template-based models were incorrect.

Overall these results do confirm that protein docking
procedures represent an added value over straightforward
template-based modeling. One must recall however, that
docking was often combined with template-based
restraints and hence, can in general not be qualified as
ab-initio docking in the context of this experiment. It is
also important to note that for two targets, T82 and

T85, the highest accuracy models were predicted by the
group of Seok, who employed specialized template-based
modeling techniques augmented by loop modeling and
refinement. But the accuracy of these models was not
vastly superior to that of the best docking models.

Lastly, not too surprisingly, oligomer models build using
the sequence-based best templates were generally of inferior
accuracy than models built from templates of the two other
categories. Interestingly, models derived from the most
structurally similar dimer templates were not generally
more accurate than those derived from the structurally
most similar monomers. This may stem from differences in
the structural alignments that were used to detect the tem-
plates, which in turn could have affected the performance
of the homology modeling procedure (MODELLER).

CONCLUDING REMARKS

CAPRI Round 30, for which results were assessed here,
was the first CASP-CAPRI experiment, which brought
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together the community of groups developing methods
for protein structure prediction and model refinement,
with groups developing methods for predicting the 3D
structure of protein assemblies. The 25 targets of this
round represented a subset of the targets submitted for
the CASP11 prediction season of the summer of 2014. In
line with the main focus of CASP, the majority of these
targets were single protein chains, forming mostly homo-
dimers, and a few homotetramers. Only two of the tar-
gets were heterodimers, similar to the staple targets in
previous CAPRI rounds. Unlike in most previous CAPRI
rounds both subunit structures and their association
modes had to be modeled for all the targets. Since the
docking or assembly modeling performance may cru-
cially depend on the accuracy of the models of individual
subunits, the targets chosen for this experiment were
proteins deemed to be readily modeled using templates
from the PDB. Interestingly, templates were used mainly
to model the structures of individual subunits, to limit
the sampling space of docking solution or to filter such
these solutions. Only a few groups carried out template-
based docking for the majority of the targets, and two of
those ranked amongst the top performers, indicating that
this relatively recent modeling strategy has potential.

As part of our assessment we established that the accu-
racy of the models of the individual subunits was an
important factor contributing to high accuracy predic-
tions of the corresponding complexes. At the same time
we observed that highly accurate models of the protein
components are not necessarily required for identifying
their association modes with acceptable accuracy.

Furthermore, we provide evidence that protein dock-
ing procedures and in some cases also specialized
template-based methods generally outperform off-the-
shelf template-based prediction of complexes. These find-
ings apply to templates identified on the basis of
sequence information alone, as well as to templates
structurally more similar to the target. The added value
of docking methods was particularly significant for the
more difficult targets, where the structures of the identi-
fied best templates differed more significantly from the
target structure

Thus, the assessment results presented here confirm
that the prediction of homodimer assemblies by homol-
ogy modeling techniques and docking calculations is fea-
sible, especially for stable dimers that feature interface
areas of 1000-1500 Az, whose size is comparable or
larger than the one associated with transient heterocom-
plexes. They also confirm that docking procedures can
represent a competitive advantage over standard homol-
ogy modeling techniques, when those are applied with-
out further improvements to model the complex.

On the other hand, difficulties arise when the subunit
interface in the target is similar in size to those associ-
ated with crystal contacts.4> Such cases were associated
with a number of targets where the oligomeric state
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assignment was ambiguous or inaccurate. Such ambigu-
ous or inaccurate oligomeric state assignments repre-
sented a confounding factor for the docking prediction
in this round. The problem arose mainly from the fact
that the authors’ assignments, usually based on inde-
pendent experiment evidence, were not available to pre-
dictors at the time of the prediction experiment. Instead,
predictors were provided with tentative assignments,
inferred on the basis of computational analysis of the
crystal contacts. Quite encouragingly, for most targets
with ambiguous assignment, or for which the tentative
assignments were later overruled by the authors upon
submission to the PDB, the docking predictions were
shown to provide useful information, which often con-
firmed the final assignment or helped resolve ambiguous
ones. This occurred for both homodimer and homote-
tramer targets.

Lastly, we find that the docking prediction perform-
ance for the genuine homodimer targets was superior to
that obtained for heterocomplexes in previous CAPRI
rounds, in line with the expectation that, owing to their
higher binding affinity (and larger and more hydropho-
bic interfaces), homodimers are easier to predict than
heterodimers. Much poorer prediction performance was
however achieved for genuine tetrameric targets, where
the inaccuracy of the homology-built subunit models
and the smaller pair-wise interfaces limited the predic-
tion performance. Accurately modeling of higher order
assemblies from sequence information is thus an area
where progress is needed.
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