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UNIT 5.1Modeling Protein Structure from Its Sequence

Functional characterization of a protein sequence is one of the most frequent problems
in biology. This task is usually facilitated by accurate three-dimensional (3-D) structure
of the studied protein. In the absence of an experimentally determined structure, com-
parative or homology modeling can sometimes provide a useful 3-D model for a protein
that is related to at least one known protein structure. Comparative modeling predicts the
3-D structure of a given protein sequence (target) based primarily on its alignment to one
or more proteins of known structure (templates). The prediction process consists of fold
assignment, target-template alignment, model building, and model evaluation. The num-
ber of protein sequences that can be modeled, as well as the accuracy of the predictions,
is increasing steadily because of growth in the number of known protein sequences and
structures as well as improvements in the modeling software. It is currently possible to
model, with useful accuracy, significant parts of approximately one-half of all known
protein sequences (Pieper et al., 2002).

Despite progress in ab initio protein structure prediction (Baker, 2000; Bonneau and
Baker, 2001), comparative modeling remains the only method that can reliably predict
the 3-D structure of a protein with an accuracy comparable to a low-resolution experi-
mentally determined structure (Marti-Renom et al., 2000). Even models with errors may
be useful, because some aspects of function can be predicted from only coarse structural
features (Marti-Renom et al., 2000; Baker and Sali, 2001).

There are several computer programs and Web servers that automate the comparative
modeling process (see Table 5.1.1). Several of these servers are being evaluated in an
automated, continuous and large-scale fashion by EVA-cm (http://cubic.bioc.columbia.
edu/eva; Eyrich et al., 2001) and LiveBench (http://bioinfo.pl/LiveBench/; Bujnicki et al.,
2001).

While the Web servers are convenient and useful, the best results in the difficult or unusual
modeling cases, such as problematic alignments, modeling of loops, existence of multiple
conformational states, and modeling of ligand binding, are still obtained by nonauto-
mated, expert use of the various modeling tools. A number of resources useful in
comparative modeling are listed in Table 5.1.1.

In this unit, generic considerations in all four steps of comparative modeling (Fig. 5.1.1)
are first described. These considerations are then illustrated by a detailed discussion of
modeling of lactate dehydrogenase from Trichomonas vaginalis using the program
MODELLER, which was developed by the authors of this unit (Sali and Blundell, 1993;
Sali and Overington, 1994; Fiser et al., 2000; also see Internet Resources). Finally, the
authors outline typical applications of comparative modeling of genes and genomes (Fig.
5.1.2).

STEPS IN COMPARATIVE MODELING

Fold Assignment and Template Selection
The starting point in comparative modeling is to identify all protein structures related to
the target sequence, and then select those structures that will be used as templates. This
step is facilitated by numerous protein sequence and structure databases and by the use
of database-scanning software available on the Web (Altschul et al., 1994; Barton, 1998;
Holm and Sander, 1996; also see Table 5.1.1). Templates can be found using the target
sequence as a query for searching structure databases such as the Protein Data Bank
(Westbrook et al., 2002), SCOP (Lo Conte et al., 2002), DALI (Holm and Sander, 1999),
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and CATH (Orengo et al., 2002). The probability of finding a related protein of known
structure for a sequence picked randomly from a genome ranges from 20% to 70%
(Fischer and Eisenberg, 1997; Huynen et al., 1998; Rychlewski et al., 1998; Sanchez and
Sali, 1998; Jones, 1999; Pieper et al., 2002).

There are three main classes of protein comparison methods that are useful in fold
identification. The first class includes the methods that compare the target sequence with
each of the database sequences independently, using pairwise sequence-sequence com-
parison (Apostolico and Giancarlo, 1998). The performance of these methods in searching

Table 5.1.1 Programs and Web Servers Useful in Comparative Modeling

Name Typea WWW addressb Reference 

Databases
CATH S http://www.biochem.ucl.ac.uk/bsm/cath/ Orengo et al. (2002)
GenBank S http://www.ncbi.nlm.nih.gov/Genbank/ Blundell et al. (1987)
GeneCensus S http://bioinfo.mbb.yale.edu/genome/ Gerstein and Levitt (1997)
MODBASE S http://www.salilab.org/modbase/ Pieper et al. (2002)
PALI S http://pauling.mbu.iisc.ernet.in/~pali/ Gowri et al. (2003)
PDB S http://www.rcsb.org/pdb/ Westbrook et al. (2002)
PRESAGE S http://presage.berkeley.edu Brenner et al. (1999)
SCOP S http://scop.mrc-lmb.cam.ac.uk/scop/ Lo Conte et al. (2002)
TrEMBL S http://srs.ebi.ac.uk Bairoch and Apweiler (2000)

Template search
123D S http://123d.ncifcrf.gov/123D+.html Alexandrov et al. (1996)
BLAST S http://www.ncbi.nlm.nih.gov/BLAST/ Altschul et al. (1990)
DALI S http://www2.ebi.ac.uk/dali/ Holm and Sander (1999)
FastA S http://www.ebi.ac.uk/fasta33/ Pearson (1990)
MATCHMAKER P http://bioinformatics.burnham-inst.org Godzik et al. (1992)
PHD, TOPITS S http://cubic.bioc.columbia.edu/predictprotein/ Rost (1995); Rost and

Sander (1995)
PROFIT P http://www.came.sbg.ac.at Flockner et al. (1995)
THREADER P http://bioinf.cs.ucl.ac.uk/threader/threader.html Jones et al. (1992)
FRSVR S http://fold.doe-mbi.ucla.edu Fischer and Eisenberg (1996)

Sequence alignment
BCM SERVER S http://searchlauncher.bcm.tmc.edu Smith et al. (1996)
BLAST2 S http://www.ncbi.nlm.nih.gov/gorf/bl2.html Altschul et al. (1997)
BLOCK
MAKER

S http://blocks.fhcrc.org/blocks/blockmkr/make_blocks.html Henikoff et al. (1995)

CLUSTAL S http://www2.ebi.ac.uk/clustalw/ Thompson et al. (1994)
FASTA3 S http://www2.ebi.ac.uk/fasta3/ Pearson (1990)
MULTALIN S http://pbil.ibcp.fr Corpet (1988)

Modeling
COMPOSER P http://www.tripos.com/ Sutcliffe et al. (1987)
CONGEN P http://www.congenomics.com/congen/congen.html Bruccoleri and Karplus (1990)
ICM P http://www.molsoft.com —c

InsightII P http://www.accelrys.com —d

MODELLER P http://www.salilab.org/modeller/ Sali and Blundell (1993)e

QUANTA P http://www.accelrys.com —d

SYBYL P http://www.tripos.com —f

SCWRL P http://www.fccc.edu/research/labs/dunbrack/scwrl/ Bower et al. (1997)
SNPWEB S http://salilab.org/snpweb-cgi/snpweb.cgi Mirkovic et al. (2003)
SWISS-MOD S http://www.expasy.org/swissmod/SWISS-MODEL.html Peitsch and Jongeneel (1993)
WHAT IF P http://www.cmbi.kun.nl/whatif/ Vriend (1990)

continued
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for related protein sequences and structures has been evaluated exhaustively (Thompson
et al., 1999; Sauder et al., 2000). Frequently used programs in this class include FASTA
(Pearson, 1995; Pearson and Lipman, 1988) and BLAST (UNITS 3.3 & 3.4; Altschul et al.,
1990). Studies indicate that pairwise sequence comparison methods can detect only one
half of the evolutionary relationships in the range of 20% to 30% sequence identity
(Brenner et al., 1998).

In the second class of methods, sequence comparison benefits from multiple sequence
information using profile analysis (Gribskov, 1994), profile-profile comparisons (Yona
and Levitt, 2002; Rychlewski et al., 2000), Hidden Markov Models (Eddy, 1998; Karplus
et al., 1998; Martelli et al., 2002), and intermediate sequence search (Park et al., 1997;
Gerstein, 1998; Teichmann et al., 2000). Popularly used fold recognition programs
include PSI-BLAST (Altschul et al., 1997) and SAM (Karplus et al., 1998). These
approaches are especially useful for finding important structural relationships when the
sequence identity between the target and the template drops below 25% (Muller et al.,
1999). In general, multiple sequence comparisons detect three times more evolutionary
relationships than pairwise sequence comparisons when sequence identity drops below
30% (Park et al., 1998).

The third class of methods are the so-called threading or 3-D template matching methods
(Bowie et al., 1991; Godzik et al., 1992; Jones et al., 1992; reviewed in Jones, 1997; Levitt,
1997; Smith et al., 1997; Torda, 1997; David et al., 2000). These methods rely on pairwise
comparison of a protein sequence and a protein of known structure. Whether or not a given
target sequence adopts any one of the many known 3-D folds is predicted by an
optimization of the alignment with respect to a structure-dependent scoring function,
independently for each sequence-structure pair—i.e., the target sequence is threaded
through a library of 3-D folds. Examples of widely used programs in this class include
THREADER (Jones et al., 1992) and 3D-PSSM (Kelley et al., 2000). These methods are

Model evaluation
ANOLEA S http://protein.bio.puc.cl/cardex/servers Melo and Feytmans (1998)
AQUA P http://urchin.bmrb.wisc.edu/~jurgen/aqua/ Laskowski et al. (1996)
BIOTECHg S http://biotech.embl-heidelberg.de:8400 Laskowski et al. (1998) 
ERRAT S http://www.doe-mbi.ucla.edu/Services/ERRAT/ Colovos and Yeates (1993)
PROCHECK P http://www.biochem.ucl.ac.uk/~roman/procheck/procheck.html Laskowski et al. (1998)
ProsaII P http://www.came.sbg.ac.at Sippl (1993)
PROVE S http://www.ucmb.ulb.ac.be/UCMB/PROVE Pontius et al. (1996)
SQUID P http://www.ysbl.york.ac.uk/~oldfield/squid/ Oldfield (1992)
VERIFY3D S http://www.doe-mbi.ucla.edu/Services/Verify_3D/ Luthy et al. (1992)
WHATCHECK P http://www.sander.embl-heidelberg.de/whatcheck/ Hooft et al. (1996a)
Methods evaluation
CASP S http://predictioncenter.llnl.gov Moult et al. (2001)
CAFASP S http://cafasp.bioinfo.pl Fischer et al. (2001)
EVA S http://cubic.bioc.columbia.edu/eva/ Eyrich et al. (2001)
LiveBench S http://bioinfo.pl/LiveBench/ Bujnicki et al. (2001)
aS, server; P, program.
bSome of the sites are mirrored on additional computers. 
cMolSoft Inc., San Diego, Calif. 
dAccelrys Inc., San Diego, Calif. 
eSee Internet Resources for additional information.
fTripos Inc., St Louis, Mo. 
gThe BIOTECH server uses PROCHECK and WHATCHECK for structure evaluation.

Table 5.1.1 Programs and Web Servers Useful in Comparative Modeling, continued

Name Typea WWW addressb Reference 
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Figure 5.1.1 Steps in comparative protein structure modeling. See text for details.
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Figure 5.1.2 Accuracy and application of protein structure models. The vertical axis indicates the
different ranges of applicability of comparative protein structure modeling, the corresponding
accuracy of protein structure models, and their sample applications. (A) The docosahexaenoic fatty
acid ligand (van der Waals sphere model) was docked into a high-accuracy comparative model of
brain lipid-binding protein (right), modeled based on its 62% sequence identity to the crystal-
lographic structure of adipocyte lipid-binding protein (PDB code, 1adl). A number of fatty acids were
ranked for their affinity to brain lipid-binding protein consistently with site-directed mutagenesis and
affinity chromatography experiments (Xu et al., 1996), even though the ligand-specificity profile of
this protein is different from that of the template structure. Typical overall accuracy of a comparative
model in this range of sequence similarity is indicated by a comparison of a model for adipocyte
fatty acid binding protein with its actual structure (left). (B) A putative proteoglycan binding patch
was identified on a medium-accuracy comparative model of mouse mast cell protease 7 (right),
modeled based on its 39% sequence identity to the crystallographic structure of bovine pancreatic
trypsin (PDB code, 2ptn) that does not bind proteoglycans. The prediction was confirmed by
site-directed mutagenesis and heparin-affinity chromatography experiments (Matsumoto et al.,
1995). Typical accuracy of a comparative model in this range of sequence similarity is indicated by
a comparison of a trypsin model with the actual structure. (C) A molecular model of the whole yeast
ribosome (right) was calculated by fitting atomic rRNA and protein models into the electron density
of the 80S ribosomal particle, obtained by electron microscopy at 15 Å resolution (Beckmann et al.,
2001). Most of the models for 40 out of the 75 ribosomal proteins were based on approximately
30% sequence identity to their template structures. Typical accuracy of a comparative model in this
range of sequence similarity is indicated by a comparison of a model for a domain in L2 protein
from B. Stearothermophilus with the actual structure (PDB code, 1rl2).
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especially useful when the target sequence is related to only a few other sequences, so the
search cannot benefit from the increased sensitivity of the sequence profile methods.
Threading-based methods have been shown to outperform other approaches based on
sequence alone (Lindahl and Elofsson, 2000).

A useful fold-assignment approach is to accept an uncertain assignment provided by any
of the methods, build a full-atom comparative model of the target sequence based on this
match, and make the final decision about whether or not the match is real by evaluating
the resulting comparative model (Guenther et al., 1997; Sanchez and Sali, 1997a; Miwa
et al., 1999).

Once a list of all related protein structures has been obtained, it is necessary to select those
templates that are appropriate for the given modeling problem. Usually, a higher overall
sequence similarity between the target and the template sequence yields a better model.
In any case, several other factors should be taken into account when selecting the
templates:

1. The family of proteins, which includes the target and the templates, can frequently
be organized in subfamilies. The construction of a multiple alignment and a phylo-
genetic tree (Felsenstein, 1985; UNITS 2.3, 3.6, & 6.3; Chapter 6) can help in selecting the
template from the subfamily that is closest to the target sequence.

2. The template environment should be compared to the required environment for the
model. The term “environment” is used in a broad sense and includes all factors that
determine protein structure, except its sequence (e.g., solvent, pH, ligands, and
quaternary interactions). For instance, some calcium-binding proteins undergo large
conformational changes when bound to calcium (Dainese et al., 2002). Thus, to model
the calcium-bound state of the target, a calcium-bound template is preferred over a
calcium-free template, irrespective of the target-template similarity or accuracy of
the template structure (Pawlowski et al., 1996).

3. The quality of the experimental template structure is another important factor in
template selection. The resolution and the R-factor of a crystallographic structure and
the number of restraints per residue for an NMR structure are indicative of its
accuracy.

Prior biological information of the target sequence can also be valuable in identifying an
appropriate template (Navaratnam et al., 1998; Reva et al., 2002).

The priority of the criteria for template selection depends on the purpose of the compara-
tive model. For instance, if a protein-ligand model is to be constructed, the choice of the
template that contains a similar ligand is probably more important than the resolution of
the template. On the other hand, if the model is to be used to analyze the geometry of the
active site of an enzyme, it may be preferable to use a high-resolution template. It is not
necessary to select only one template. In fact, the use of several templates approximately
equidistant from the target sequence generally increases the model accuracy (Srinivasan
and Blundell, 1993; Sanchez and Sali, 1997).

While a correct fold assignment can be used to build a useful model, an incorrect fold
assignment renders the resulting model useless. Thus, when using a fold-recognition
method, it is crucial to be aware of the accuracy of the method. In an assessment of
different fold-recognition methods, the best method detected 75% of the closest structures
correctly for a set of sequences related at the “family” level in the SCOP database (Lo
Conte et al., 2002). However, at the superfamily and fold levels, the accuracy dropped to
29% and 15%, respectively (Lindahl and Elofsson, 2000).
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Target-Template Alignment

Most fold-assignment methods produce an alignment between the target sequence and
template structures. However, this is often not the optimal target-template alignment for
comparative modeling. Searching methods are usually tuned for detection of remote
relationships, not for optimal alignments. Therefore, once templates have been selected,
a specialized method should be used to align the target sequence with the template
structures (Holm and Sander, 1996; Taylor, 1996; Baxevanis, 1998; Briffeuil et al., 1998;
Smith, 1999). For closely related protein sequences with identity higher than 40%, the
alignment is almost always correct. Regions of low local sequence similarity become
common when the overall sequence identity is below 40% (Saqi et al., 1998). The
alignment becomes difficult in the “twilight zone” of less than 30% sequence identity
(Rost, 1999). As the sequence similarity decreases, alignments contain an increasingly
large number of gaps and alignment errors, regardless of whether they are prepared
automatically or manually. For example, only 80% of the residues are likely to be correctly
aligned when two proteins share 30% sequence identity (Johnson and Overington, 1993).
Maximal effort to obtain the most accurate alignment possible is needed, because no
current comparative modeling method can recover from an incorrect alignment (Sanchez
and Sali, 1997).

Dynamic programming algorithms (Smith and Waterman 1981; Needleman and Wunsch,
1970; UNIT 3.1) that use standard substitution matrices, such as PAM (Dayhoff and Eck,
1968; UNIT 3.5) or BLOSUM (Henikoff and Henikoff, 1992; UNIT 3.5), were the initial
methods of choice. Although dynamic programming guarantees the optimal solution, the
insensitivity and generality of the substitution matrices limited the usefulness of such
methods to cases of high sequence identity (> 30%). For alignments in the so called
twilight zone (15% to 30% sequence identity), it is imperative that the alignment methods
incorporate information that is specific to the family to which the proteins belong. Ideally,
each sequence position in a sequence family should have its own residue-based substitu-
tion matrix. In the absence of sufficient observations to accomplish such a construct,
several methods make approximations to this end.

Programs such as PSI-BLAST (Altschul et al., 1997) align the target sequence to a
sequence profile constructed from a multiple alignment of members of a protein family.
A further improvement of this class of methods is to align two sequence profiles.
Examples of this approach include FFAS (Jaroszewski et al., 2000) and SALIGN.
Alignment accuracy increases as one progresses from one generation of the profile
methods to another. These methods improve alignments in the 20% to 30% sequence-
identity range. A variation of the sequence profile scheme is to incorporate structural
information into the alignment procedure. This information can be introduced during the
profile building stage or it can be used to bias the insertion and extension of gaps in the
alignment.

Another alignment strategy is to build models based on many alignments and then rank
the alignments by the corresponding model assessment scores. This step can be iterated
to improve the initial alignments. Although such a procedure can be time consuming, it
can significantly improve the resulting comparative models (Xu et al., 1996; John and
Sali, 2003).

Model Building

Modeling by assembly of rigid bodies
The first and still widely used approach in comparative modeling is to assemble a model
from a small number of rigid bodies obtained from the aligned protein structures (Browne
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et al., 1969; Blundell et al., 1987; Greer, 1990). The approach is based on the natural
dissection of the protein structure into conserved core regions, variable loops that connect
them, and side chains that decorate the backbone. For example, the following semi-auto-
mated procedure is implemented in the computer program COMPOSER (Sutcliffe et al.,
1987). First, the template structures are selected and superposed. Second, the “frame-
work” is calculated by averaging the coordinates of the Cα atoms of structurally conserved
regions in the template structures. Third, the main-chain atoms of each core region in the
target model are obtained by superposing on the framework the core segment from the
template whose sequence is closest to the target. Fourth, the loops are generated by
scanning a database of all known protein structures to identify the structurally variable
regions that fit the anchor core regions and have a compatible sequence (Topham et al.,
1993). Fifth, the side chains are modeled based on their intrinsic conformational prefer-
ences and on the conformation of the equivalent sidechains in the template structures
(Sutcliffe et al., 1987). Finally, the stereochemistry of the model is improved either by a
restrained energy minimization or a molecular dynamics refinement. The accuracy of a
model can be somewhat increased when more than one template structure is used to
construct the framework and when the templates are averaged into the framework using
weights corresponding to their sequence similarities to the target sequence (Srinivasan
and Blundell, 1993). Possible future improvements of modeling by rigid-body assembly
include incorporation of rigid body shifts, such as the relative shifts in the packing of α
helices and β sheets (Nagarajaram et al., 1999).

Modeling by segment matching or coordinate reconstruction
The basis of modeling by coordinate reconstruction is the finding that most hexapeptide
segments of protein structure can be clustered into only 100 structurally different classes
(Unger et al., 1989; Bystroff and Baker, 1998). Thus, comparative models can be
constructed by using a subset of atomic positions from template structures as “guiding”
positions and identifying and assembling short, all-atom segments that fit these guiding
positions. The guiding positions usually correspond to the Cα atoms of the segments that
are conserved in the alignment between the template structure and the target sequence.
The all-atom segments that fit the guiding positions can be obtained either by scanning
all the known protein structures, including those that are not related to the sequence being
modeled (Claessens et al., 1989; Holm and Sander, 1991), or by a conformational search
restrained by an energy function (Bruccoleri and Karplus, 1990; van Gelder et al., 1994).
For example, a general method for modeling by segment matching is guided by the
positions of some atoms (usually Cα atoms) to find the matching segments in the
representative database of all known protein structures (Levitt, 1992). This method can
construct both main-chain and side-chain atoms, and can also model unaligned regions
(gaps). It is implemented in the program SegMod. Even some side-chain modeling
methods (Chinea et al., 1995) and the class of loop construction methods based on finding
suitable fragments in the database of known structures (Jones and Thirup, 1986) can be
seen as segment matching or coordinate reconstruction methods.

Modeling by satisfaction of spatial restraints
The methods in this class begin by generating many constraints or restraints on the
structure of the target sequence, using its alignment to related protein structures as a guide.
The procedure is conceptually similar to that used in determination of protein structures
from NMR-derived restraints. The restraints are generally obtained by assuming that the
corresponding distances between aligned residues in the template and the target structures
are similar. These homology-derived restraints are usually supplemented by stereochemi-
cal restraints on bond lengths, bond angles, dihedral angles, and nonbonded atom-atom
contacts that are obtained from a molecular mechanics force field. The model is then
derived by minimizing the violations of all the restraints. This optimization can be
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achieved either by distance geometry or real-space optimization. For example, an elegant
distance geometry approach constructs all-atom models from lower and upper bounds on
distances and dihedral angles (Havel and Snow, 1991).

At this point the authors of this unit will describe their own approach to comparative
modeling by satisfaction of spatial restrains in more detail (Sali et al., 1990; Sali and
Blundell, 1993; Sali and Overington, 1994; Fiser et al., 2000). The approach was designed
to use as many different types of data about the target sequence as possible. It is
implemented in the computer program MODELLER. The comparative modeling proce-
dure begins with an alignment of the target sequence with related known 3-D structures.
The output, obtained without any user intervention, is a 3-D model for the target sequence
containing all main-chain and side-chain non-hydrogen atoms.

In the first step of model building, distance and dihedral angle restraints on the target
sequence are derived from its alignment with template 3-D structures. The form of these
restraints was obtained from a statistical analysis of the relationships between similar
protein structures. The analysis relied on a database of 105 family alignments that
included 416 proteins of known 3-D structure (Sali and Overington, 1994). By scanning
the database of alignments, tables quantifying various correlations were obtained, such
as the correlations between two equivalent Cα-Cα distances, or between equivalent
main-chain dihedral angles from two related proteins (Sali and Blundell, 1993). These
relationships are expressed as conditional probability density functions (pdf’s), and can
be used directly as spatial restraints. For example, probabilities for different values of the
main-chain dihedral angles are calculated from the type of a residue considered, from
main-chain conformation of an equivalent residue, and from sequence similarity between
the two proteins. Another example is the pdf for a certain Cα-Cα distance given equivalent
distances in two related protein structures. An important feature of the method is that the
forms of spatial restraints were obtained empirically, from a database of protein structure
alignments.

In the second step, the spatial restraints and the CHARMM22 force-field terms enforcing
proper stereochemistry (Brooks et al., 1983; MacKerell, Jr. et al., 1998) are combined
into an objective function. The general form of the objective function is similar to that in
molecular dynamics programs, such as CHARMM22 (Brooks et al., 1983). The objective
function depends on the Cartesian coordinates of ∼10,000 atoms (3-D points) that form
the modeled molecules. For a 10,000-atom system, there can be on the order of 200,000
restraints. The functional form of each term is simple; it includes a quadratic function,
harmonic lower and upper bounds, cosine, a weighted sum of a few Gaussian functions,
Coulomb law, Lennard-Jones potential, and cubic splines. The geometric features pres-
ently include a distance, an angle, a dihedral angle, a pair of dihedral angles between two,
three, four, and eight atoms, respectively, the shortest distance in the set of distances,
solvent accessibility in Å2, and atom density that is expressed as the number of atoms
around the central atom. Some restraints can be used to restrain pseudo-atoms such as the
gravity center of several atoms.

Finally, the model is obtained by optimizing the objective function in Cartesian space.
The optimization is carried out by the use of the variable target function method (Braun
and Go, 1985), employing methods of conjugate gradients and molecular dynamics with
simulated annealing (Clore et al., 1986). Several slightly different models can be calcu-
lated by varying the initial structure, and the variability among these models can be used
to estimate the lower bound on the errors in the corresponding regions of the fold.

Because the modeling by satisfaction of spatial restraints can use many different types of
information about the target sequence, it is perhaps the most promising of all comparative
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modeling techniques. One of the strengths of modeling by satisfaction of spatial restraints
is that constraints or restraints derived from a number of different sources can easily be
added to the homology-derived restraints. For example, restraints could be provided by
rules for secondary-structure packing (Cohen and Kuntz, 1989), analyses of hydropho-
bicity (Aszodi and Taylor, 1994) and correlated mutations (Taylor et al., 1994), empirical
potentials of mean force (Sippl, 1990), nuclear magnetic resonance (NMR) experiments
(Sutcliffe et al., 1992), cross-linking experiments, fluorescence spectroscopy, image
reconstruction in electron microscopy, site-directed mutagenesis (Boissel et al., 1993),
and intuition, among other sources. In this way, a comparative model, especially in the
difficult cases, could be improved by making it consistent with available experimental
data and/or with more general knowledge about protein structure.

Accuracies of the various model building methods are relatively similar when used
optimally (Marti-Renom et al., 2002a). Other factors such as template selection and
alignment accuracy usually have a larger impact on the model accuracy, especially for
models based on less than 40% sequence identity to the templates. However, it is important
that a modeling method allow a degree of flexibility and automation to obtain better
models more easily and rapidly. For example, a method should allow for an easy
recalculation of a model when a change is made in the alignment; it should be straight-
forward enough to calculate models based on several templates, and should provide tools
for incorporation of prior knowledge about the target (e.g., cross-linking restraints,
predicted secondary structure) and allow ab initio modeling of insertions (e.g., loops),
which can be crucial for annotation of function. Loop modeling is an especially important
aspect of comparative modeling in the range of 30% to 50% sequence identity. In this
range of overall similarity, loops among the homologs vary, while the core regions are
still relatively conserved and aligned accurately.

Loop modeling
In comparative modeling, target sequences often have residues inserted relative to the
template structures or have regions that are structurally different from the corresponding
regions in the templates. Thus, no structural information about these inserted segments
can be extracted from the template structures. These regions frequently correspond to
surface loops. Loops often play an important role in defining the functional specificity of
a given protein framework, forming the active and binding sites. The accuracy of loop
modeling is a major factor determining the usefulness of comparative models in applica-
tions such as ligand docking. Loop modeling can be seen as a mini protein-folding
problem, because the correct conformation of a given segment of a polypeptide chain has
to be calculated mainly from the sequence of the segment itself. However, loops are
generally too short to provide sufficient information about their local fold. Even identical
decapeptides in different proteins do not always have the same conformation (Kabsch and
Sander, 1984; Mezei and Guarnieri, 1998). Some additional restraints are provided by the
core anchor regions that span the loop and by the structure of the rest of a protein that
cradles the loop. Although many loop-modeling methods have been described, it is still
not possible to model, correctly and confidently, loops longer than ∼8 residues (Fiser et
al., 2000).

There are two main classes of loop-modeling methods: (1) the database-search approaches
that scan a database of all known protein structures to find segments fitting the anchor
core regions (Jones and Thirup, 1986; Chothia and Lesk, 1987); and (2) the conforma-
tional search approaches that rely on an optimization of a scoring function (Moult and
James, 1986; Bruccoleri and Karplus, 1987; Shenkin et al., 1987). There are also methods
that combine these two approaches (van Vlijmen and Karplus, 1997; Deane and Blundell,
2001).
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The database-search approach to loop modeling is accurate and efficient when a database
of specific loops is created to address the modeling of the same class of loops, such as
α-hairpins (Sibanda et al., 1989), or loops on a specific fold, such as the hypervariable
regions in the immunoglobulin fold (Chothia and Lesk, 1987; Chothia et al., 1989). There
are attempts to classify loop conformations into more general categories, thus extending
the applicability of the database-search approach to more cases (Ring et al., 1992; Rufino
et al., 1997; Oliva et al., 1997). However, the database methods are limited by the fact
that the number of possible conformations increases exponentially with the length of a
loop. As a result, only loops up to 4 to 7 residues long have most of their conceivable
conformations present in the database of known protein structures (Fidelis et al., 1994;
Lessel and Schomburg, 1994). Even according to the more optimistic estimate, ∼30% and
60% of all the possible 8 and 9 residue loop conformations, respectively, are missing from
the database (Fidelis et al., 1994). This limitation is made even worse by the requirement
for an overlap of at least one residue between the database fragment and the anchor core
regions, which means that the modeling of a 5-residue insertion requires at least a
7-residue fragment from the database (Claessens et al., 1989). Despite the rapid growth
of the database of known structures, it does not seem possible to cover most of the
conformations of a 9-residue segment in the foreseeable future. On the other hand, most
of the insertions in a family of homologous proteins are shorter than 10 to 12 residues
(Fiser et al., 2000).

To overcome the limitations of the database-search methods, conformational search
methods were developed (Moult and James, 1986; Bruccoleri and Karplus, 1987). There
are many such methods, exploiting different protein representations, objective function
terms, and optimization or enumeration algorithms. The search algorithms include the
minimum perturbation method (Fine et al., 1986), molecular dynamics simulations
(Bruccoleri and Karplus, 1990; van Vlijmen and Karplus, 1997), genetic algorithms (Ring
et al., 1993), Monte Carlo and simulated annealing (Higo et al., 1992; Collura et al., 1993;
Abagyan and Totrov, 1994), multiple copy simultaneous search (Zheng et al., 1993),
self-consistent field optimization (Koehl and Delarue, 1995), and an enumeration based
on the graph theory (Samudrala and Moult, 1998). The accuracy of loop predictions can
be further improved by clustering the sampled loop conformations, and therefore partially
accounting for the entropic contribution to the free energy (Xiang et al., 2002). Another
way to improve the accuracy of loop predictions is to consider the solvent effects.
Improvements in implicit solvation models, such as the Generalized Born solvation
model, motivated their use in loop modeling. The solvent contribution to the free energy
can be added to the scoring function for optimization, or it can be used to rank the sampled
loop conformations after they are generated with a scoring function that does not include
the solvent terms (Fiser et al., 2001; Felts et al., 2002; de Bakker et al., 2003; DePristo et
al., 2003).

The loop-modeling module in MODELLER implements the optimization-based ap-
proach (Fiser et al., 2000; Fiser and Sali, 2003). The main reasons are the generality and
conceptual simplicity of scoring function minimization, as well as the limitations on the
database approach that are imposed by a relatively small number of known protein
structures (Fidelis et al., 1994). Loop prediction by optimization is applicable to simul-
taneous modeling of several loops and loops interacting with ligands, which is not
straightforward for the database-search approaches. Loop optimization in MODELLER
relies on conjugate gradients and molecular dynamics with simulated annealing. The
pseudo energy function is a sum of many terms, including some terms from the
CHARMM22 molecular mechanics force field (MacKerell, Jr. et al., 1998), and spatial
restraints based on distributions of distances (Sippl, 1990; Melo et al., 2002) and dihedral
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angles in known protein structures. The method was tested on a large number of loops of
known structure, both in the native and near-native environments (Fiser et al., 2000).

Errors in Comparative Models

The evaluation of three dimensional comparative models is a difficult task (Bujnicki et
al., 2001; Eyrich et al., 2001; Marti-Renom et al., 2002a). It is crucial for method
developers and users alike to assess the accuracy of their methods. An attempt to address
this problem has been made with the experiments by CASP (Critical Assessment of
Techniques for Proteins Structure Prediction; Zemla et al., 2001) and CAFASP (Critical
Assessment of Fully Automated Structure Prediction; Fischer et al., 2001). However, both
CASP and CAFASP assess methods only over a limited number of target protein
sequences (Bujnicki et al., 2001; Marti-Renom et al., 2002a). To overcome this limitation,
two additional evaluation experiments have been described, LiveBench (Bujnicki et al.,
2001; Table 5.1.1) and EVA (Eyrich et al., 2001; Koh et al., 2003; Table 5.1.1). EVA is a
large-scale and continuously running Web server that automatically assesses protein
structure prediction servers in the categories of secondary-structure prediction, residue-
residue contact prediction, fold assignment, and comparative modeling. The aims of EVA
are (1) to evaluate continuously and automatically blind predictions by prediction servers,
based on identical and sufficiently large data sets; (2) to provide weekly updates of the
method assessments on the Web; and (3) to enable developers, nonexpert users, and
reviewers to determine the performance of the tested prediction servers.

As the similarity between the target and the templates decreases, the errors in the model
increase. Errors in comparative models can be divided into five categories (Sanchez and
Sali, 1997; also see Fig. 5.1.3):

1. Errors in side-chain packing (Fig. 5.1.13A). As the sequences diverge, the packing
of side chains in the protein core changes. Sometimes even the conformation of
identical side chains is not conserved, a pitfall for many comparative modeling
methods. Side-chain errors are critical if they occur in regions that are involved in
protein function, such as active sites and ligand-binding sites.

2. Distortions and shifts in correctly aligned regions (Fig. 5.1.13B). As a consequence
of sequence divergence, the main-chain conformation changes, even if the overall
fold remains the same. Therefore, it is possible that in some correctly aligned
segments of a model the template is locally different (<3 Å) from the target, resulting
in errors in that region. The structural differences are sometimes not due to differences
in sequence, but are a consequence of artifacts in structure determination or structure
determination in different environments (e.g., packing of subunits in a crystal). The
simultaneous use of several templates can minimize this kind of an error (Srinivasan
and Blundell, 1993; Sanchez and Sali, 1997).

3. Errors in regions without a template (Fig. 5.1.13C). Segments of the target sequence
that have no equivalent region in the template structure (i.e., insertions or loops) are
the most difficult regions to model. If the insertion is relatively short, less than 9
residues long, some methods can correctly predict the conformation of the backbone
(van Vlijmen and Karplus, 1997; Fiser et al., 2000). Conditions for successful
prediction are the correct alignment and an accurately modeled environment sur-
rounding the insertion.

4. Errors due to misalignments (Fig. 5.1.13D). The largest single source of errors in
comparative modeling are misalignments, especially when the target-template se-
quence identity decreases below 30%. However, alignment errors can be minimized
in two ways. First, it is usually possible to use a large number of sequences to construct
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a multiple alignment, even if most of these sequences do not have known structures.
Multiple alignments are generally more reliable than pairwise alignments (Barton
and Sternberg, 1987; Taylor et al., 1994). The second way of improving the alignment
is to iteratively modify those regions in the alignment that correspond to predicted
errors in the model (Sanchez and Sali, 1997).

5. Incorrect templates (Fig. 5.1.13E). This is a potential problem when distantly related
proteins are used as templates (i.e., <25% sequence identity). Distinguishing between
a model based on an incorrect template and a model based on an incorrect alignment
with a correct template is difficult. In both cases, the evaluation methods will predict
an unreliable model. The conservation of the key functional or structural residues in
the target sequence increases the confidence in a given fold assignment.

A B

D E

C

Figure 5.1.3 Typical errors in comparative modeling. (A). Errors in side-chain packing. The Trp
109 residue in the crystal structure of mouse cellular retinoic acid binding protein I (thin line) is
compared with its model (thick line), and with the template mouse adipocyte lipid-binding protein
(broken line). (B) Distortions and shifts in correctly aligned regions. A region in the crystal structure
of mouse cellular retinoic acid binding protein I is compared with its model and with the template
fatty acid binding protein using the same representation as in panel A. (C) Errors in regions without
a template. The Cα trace of the 112–117 loop is shown for the X-ray structure of human eosinophil
neurotoxin (thin line), its model (thick line), and the template ribonuclease A structure (residues
111–117; broken line). (D) Errors due to misalignments. The N-terminal region in the crystal
structure of human eosinophil neurotoxin (thin line) is compared with its model (thick line). The
corresponding region of the alignment with the template ribonuclease A is shown. The black lines
show correct equivalences, that is, residues whose Cα atoms are within 5 Å of each other in the
optimal least-squares superposition of the two X-ray structures. The “a” characters in the bottom
line indicate helical residues. (E) Errors due to an incorrect template. The X-ray structure of
α-trichosanthin (thin line) is compared with its model (thick line) which was calculated using
indole-3-glycerophosphate synthase as the template.
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Predicting the Model Accuracy

The quality of the predicted model determines the information that can be extracted from
it. Thus, estimating the accuracy of 3-D protein models in the absence of the known
structures is essential for interpreting them. The model can be evaluated as a whole as
well as in the individual regions. There are many model evaluation programs and servers
(Laskowski et al., 1998; Wilson et al., 1993; Table 5.1.1).

The first step in model evaluation is to determine if the model has the correct fold (Sanchez
and Sali, 1998). A model will have the correct fold if the correct template is picked and
if that template is aligned at least approximately correctly with the target sequence. The
confidence in the fold of a model is generally increased by a high sequence similarity
with the closest template, a significant energy-based Z-score (Sippl, 1993; Sanchez and
Sali, 1998), and conservation of the key functional or structural residues in the target
sequence.

Once the fold of a model is accepted, a more detailed evaluation of the overall model
accuracy can be obtained based on the similarity between the target and template
sequences (Sanchez and Sali, 1998). Sequence identity above 30% is a relatively good
predictor of the expected accuracy. The reasons are the well-known relationship between
structural and sequence similarities of two proteins (Chothia and Lesk, 1986), the
“geometrical” nature of modeling that forces the model to be as close to the template as
possible (Sali and Blundell, 1993), and the inability of any current modeling procedure
to recover from an incorrect alignment (Sanchez and Sali, 1997). The dispersion of the
model-target structural overlap increases with the decrease in sequence identity. If the
target-template sequence identity falls below 30%, the sequence identity becomes unre-
liable as a measure of accuracy of a single model. Models that deviate significantly from
the average accuracy are frequent. It is in such cases that model-evaluation methods are
particularly useful.

In addition to the target-template sequence similarity, the environment can strongly
influence the accuracy of a model. For instance, some calcium-binding proteins undergo
large conformational changes when bound to calcium. If a calcium-free template is used
to model the calcium-bound state of the target, it is likely that the model will be incorrect,
irrespective of the target-template similarity or accuracy of the template structure
(Pawlowski et al., 1996). This qualification also applies to the experimental determination
of protein structure; a structure must be determined in the functionally meaningful
environment.

A basic requirement for a model is to have good stereochemistry. Some useful programs
for evaluating stereochemistry (see Table 5.1.1 for URLs) are PROCHECK (Laskowski
et al., 1998), PROCHECK-NMR (Laskowski et al., 1996), AQUA (Laskowski et al.,
1996), SQUID (Oldfield, 1992), and WHATCHECK (Hooft et al., 1996b). The features
of a model that these programs check include bond lengths, bond angles, peptide bond
and side-chain ring planarities, chirality, main-chain and side-chain torsion angles, and
clashes between nonbonded pairs of atoms.

There are also methods for testing 3-D models that implicitly take into account many
spatial features compiled from high-resolution protein structures. These methods are
based on 3-D profiles and statistical potentials of mean force (Sippl, 1990; Luthy et al.,
1992). Programs implementing this approach (see Table 5.1.1 for URLs) include VER-
IFY3D (Luthy et al., 1992), PROSAII (Sippl, 1993), HARMONY (Topham et al., 1994),
and ANOLEA (Melo and Feytmans, 1998). The programs evaluate the environment of
each residue in a model with respect to the expected environment as found in the
high-resolution X-ray structures. There is a concern about the theoretical validity of the
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energy profiles for detecting regional errors in models (Fiser et al., 2000). It is likely that
the contributions of the individual residues to the overall free energy of folding vary
widely, even when normalized by the number of atoms or interactions made. If this
expectation is correct, the correlation between the model errors and energy peaks is greatly
weakened, resulting in the loss of predictive power of the energy profile. Despite these
concerns, error profiles have been useful in some applications (Miwa et al., 1999).

EXAMPLE OF COMPARATIVE MODELING: MODELING LACTATE
DEHYDROGENASE FROM TRICHOMONAS VAGINALIS BASED ON A
SINGLE TEMPLATE

This section contains an example of a typical comparative modeling application. It
demonstrates each of the five steps of comparative modeling, using the program MODEL-
LER6 (see Internet Resources). All files described in this section, including the MODEL-
LER program, are available at http://salilab.org/modeller/user_manual.shtml (also see
Internet Resources).

A novel gene for lactate dehydrogenase was identified from the genomic sequence of
Trichomonas vaginalis (TvLDH). The corresponding protein had a higher similarity to
the malate dehydrogenase of the same species (TvMDH) than to any other LDH. The
authors hypothesized that TvLDH arose from TvMDH by convergent evolution relatively
recently (Wu et al., 1999). Comparative models were constructed for TvLDH and TvMDH
to study the sequences in the structural context and to suggest site-directed mutagenesis
experiments for elucidating specificity changes in this apparent case of convergent
evolution of enzymatic specificity. The native and mutated enzymes were expressed and
their activities were compared (Wu et al., 1999).

Searching for Structures Related to TvLDH

It is necessary to put the target TvLDH sequence into the PIR format readable by
MODELLER (see Internet Resources for MODELLER Web site; file TvLDH.ali). The
first line of the file (see Fig. 5.1.4) contains the sequence code, in the format >P1;code.
The second line, with ten fields separated by colons, generally contains information about
the structure file, if applicable. Only two of these fields are used for sequences: se-
quence (indicating that the file contains a sequence without known structure) and
TvLDH (the model file name). The rest of the file contains the sequence of TvLDH, with
a “*” marking its end. A search for potentially related sequences of known structure can
be performed by the SEQUENCE_SEARCH command of MODELLER. The following
script uses the query sequence TvLDH assigned to the variable ALIGN_CODES from the
file TvLDH.ali assigned to the variable FILE (file seqsearch.top; Fig. 5.1.5).

The SEQUENCE_SEARCH command has many options (see Internet Resources for
MODELLER Web site), but in this example only SEARCH_RANDOMIZATIONS and
DATA_FILE are set to non-default values. SEARCH_RANDOMIZATIONS specifies the
number of times the query sequence is randomized during the calculation of the signifi-
cance score for each sequence-sequence comparison. The higher the number of randomi-
zations, the more accurate the significance score. DATA_FILE = ON triggers creation
of an additional summary output file (seqsearch.dat).

Selecting a Template

The output of the seqsearch.top script is written to the seqsearch.log file.
MODELLER always produces a log file. Errors and warnings in log files can be found
by searching for the E> and W> strings, respectively. At the end of the log file, MODEL-
LER lists the hits, sorted by alignment significance. Because the log file is sometimes
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very long, a separate data file (seqsearch.dat) is created that contains the summary
of the search (Fig. 5.1.6). The example in Figure 5.1.6 shows only the top 10 hits from
such a file.

The most important columns in the SEQUENCE_SEARCH output are the CODE_2, %ID,
and SIGNI columns. The CODE_2 column reports the code of the PDB sequence that
was compared with the target sequence. The PDB code in each line is the representative
of a group of PDB sequences that share 40% or more sequence identity to each other and
have less than 30 residues or 30% sequence length difference. All the members of the
group can be found in the MODELLER CHAINS_3.0_40_XN.grp file. The LEN1
and LEN2 are lengths of the protein sequences in the CODE_1 and CODE_2 columns,
respectively. NID represents the number of aligned residues. The %ID1 and %ID2
columns report the percentage sequence identities between TvLDH and a PDB sequence,
normalized by their lengths, respectively. In general, a %ID value above ∼25% indicates
a potential template unless the alignment is short (i.e., less than 100 residues). A better
measure of the significance of the alignment is given by the SIGNI column (see Internet
Resources for MODELLER Web site). A value above 6.0 is generally significant irrespec-
tive of the sequence identity and length. In this example, one protein family represented
by 1bdmA shows significant similarity with the target sequence, at more than 40%

Figure 5.1.5 File seqsearch.top. The TOP script file for template search using MODELLER.

Figure 5.1.4 File TvLDH.ali. Sequence file in the PIR MODELLER format.

# CODE_1      CODE_2  LEN1 LEN2 NID   %IDI   %ID2    SCORE  SIGNI

1 TvLDH       1bdmA     335     318  153   45.7   48.1   212557.   28.9
2 TvLDH       1lldA     335    313  103   30.7   32.9   183190.    10.1
3 TvLDH       1ceqA     335    304   95   28.4   31.3   179636.     9.2
4 TvLDH       2hlpA     335  303  86  25.7   28.4  177791.     8.9
5 TvLDH        1ldnA      335   316   91   27.2   28.8   180669.      7.4
6 TvLDH        1hyhA      335   297   88   26.3   29.6   175969.      6.9
7 TvLDH        2cmd       335   312  108   32.2    34.6   182079.      6.6
8 TvLDH         1db3A      335   335   91   27.2    27.2   181928.      4.9
9 TvLDH        91dtA     335    331   95   28.4     28.7   181720.      4.7
  TvLDH        1cdb      335   105   69   29.6      65.7   80141.      3.810

Figure 5.1.6 Top 10 hits from file seqsearch.dat. The summary output file for the
SEQUENCE_SEARCH command in MODELLER.
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1bdmA and other top scoring hits are so pronounced that we use only the first hit as the
template. As expected, 1bdmA is a malate dehydrogenase (from a thermophilic bacte-
rium). Other structures closely related to 1bdmA (and thus not scanned against by
SEQUENCE_SEARCH) can be extracted from the CHAINS_3.0_40_XN.grp file:
1b8vA, 1bmdA, 1b8uA, 1b8pA, 1bdmA, 1bdmB, 4mdhA, 5mdhA, 7mdhA, 7mdhB, and
7mdhC. All these proteins are malate dehydrogenases. During the project, all of them, as
well as other malate and lactate dehydrogenase structures, were compared and considered
as templates (there were 19 structures in total). However, for the sake of illustration, we
will investigate only four of the proteins that are sequentially most similar to the target:
1bmdA, 4mdhA, 5mdhA, and 7mdhA. The script in Figure 5.1.7 performs all pairwise
comparisons among the selected proteins (file compare.top).

The READ_ALIGNMENT command shown in Figure 5.1.7 reads the protein sequences
and information about their PDB files. MALIGN calculates their multiple sequence
alignment, used as the starting point for the multiple structure alignment. The MALIGN3D
command performs an iterative least-squares superposition of the four 3-D structures.
The COMPARE command compares the structures according to the alignment constructed
by MALIGN3D. It does not make an alignment, but it calculates the RMS and DRMS
deviations between atomic positions and distances, differences between the main-chain
and side-chain dihedral angles, percentage sequence identities, and several other meas-
ures. Finally, the ID_TABLE command writes a file with pairwise sequence distances
that can be used directly as the input to the DENDROGRAM command—or the clustering
programs in the PHYLIP package (Felsenstein, 1985; UNIT 6.3). DENDROGRAM calculates
a clustering tree from the input matrix of pairwise distances, which helps visualizing
differences among the template candidates. Excerpts from the log file are shown in Figure
5.1.8 (file compare.log).

The comparison in Figure 5.1.8 shows that 5mdhA and 4mdhA are almost identical, both
sequentially and structurally. They were solved at similar resolutions, 2.4 and 2.5 Å,
respectively. However, 4mdhA has a better crystallographic R-factor (16.7 versus 20%),
eliminating 5mdhA. Inspection of the PDB file for 7mdhA reveals that its crystallographic
refinement was based on 1bmdA. In addition, 7mdhA was refined at a lower resolution
than 1bmdA (2.4 versus 1.9 Å), eliminating 7mdhA. These observations leave only
1bmdA and 4mdhA as potential templates. Finally, 4mdhA is selected because of the
higher overall sequence similarity to the target sequence.

Aligning TvLDF with the Template

A good way of aligning the sequence of TvLDH with the structure of 4mdhA is the
ALIGN2D command in MODELLER. Although ALIGN2D is based on a dynamic-pro-
gramming algorithm (Needleman and Wunsch, 1970; UNIT 3.1), it is different from standard
sequence-sequence alignment methods because it takes into account structural informa-

READ_ALIGNMENT FILE = ’$(LIB)/CHAINS_all.seq’

ALIGN_CODES = SET ’1bmdA’ ’4mdhA’ ’5mdhA’ ’7mdhA’

MALIGN

MALIGN3D

COMPARE

ID_TABLE

DENDROGRAM

Figure 5.1.7 TOP script file compare.top.
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tion from the template when constructing an alignment. This task is achieved through a
variable gap penalty function that tends to place gaps in solvent-exposed and curved
regions, outside secondary structure segments, and between two Cα positions that are
close in space. As a result, the alignment errors are reduced by approximately one third
relative to those that occur with standard sequence alignment techniques. This improve-
ment becomes more important as the similarity between the sequences decreases and the
number of gaps increases. In the current example, the template-target similarity is so high
that almost any alignment method with reasonable parameters will result in the same
alignment. The MODELLER script shown in Figure 5.1.9 aligns the TvLDH sequence
in file TvLDH.seq with the 4mdhA structure in the PDB file 4mdh.pdb (file
align2d.top).

In the first line of the script shown in Figure 5.1.9, MODELLER reads the 4mdhA
structure file. The SEQUENCE_TO_ALI command transfers the sequence to the align-
ment array and assigns it the name 4mdhA (ALIGN_CODES). The third line reads the
TvLDH sequence from file TvLDH.ali, assigns it the name TvLDH (ALIGN_CODES),
and adds it to the alignment array (ADD_SEQUENCE = ON). The fourth line executes
the ALIGN2D command to perform the alignment. Finally, the alignment is written out
in two formats, PIR (TvLDH-4mdhA.ali) and PAP (TvLDH-4mdhA.pap). The PIR

>> Least-squares superposition (FIT)           :       T

   Atom types for superposition/RMS (FIT_ATOMS) : CA
   Atom type for position average/variability ( DISTANCE_ATOMS[1]): CA

   Position comparison (FIT_ATOMS):

Cutoff for RMS calculation:  3.5000

     Upper = RMS, Lower = numb equiv positions

           1bmdA   4mdhA   5mdhA   7mdhA
1bmdA       0.000   1.038   0.979   0.992
4mdhA        310    0.000   0.504   1.210
5mdhA        308     329   0.000   1.173
7mdhA        320     306     307   0.000

>> Sequence comparison:

       Diag=numb res, Upper=numb equiv res, Lower = % seq ID

                
           1bmdA   4mdhA   5mdhA   7mdhA
1bmdA         327     168     168     158
4mdhA          51         333     328     137
5mdhA         51     98     333     138
7mdhA         48      41      41     351

57.6400   48.0100   38.3800   28.7500   19.1200    9.4900   -0.1400

   52.8250 43.1950 33.5650 23.9350 14.3050 4.6750

1bmdA @1.9 49.0000

4mdhA @2.5  2.0000

5mdhA @2.4 55.5000

7mdhA @2.4

+ + + + + + + + + + + + +

Figure 5.1.8 Excerpts from the log file compare.log.
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format is used by MODELLER in the subsequent model-building stage. The PAP
alignment format is easier to inspect visually. Due to the high target-template similarity,
there are only a few gaps in the alignment. In the PAP format, all identical positions are
marked with a “*” (file TvLDH-4mdhA.pap; Fig. 5.1.10).

Model Building

Once a target-template alignment is constructed, MODELLER calculates a 3-D model of
the target completely automatically. The script in Figure 5.1.11 will generate five models
of TvLDH based on the 4mdhA template structure and the alignment in file TvLDH-
4mdh.ali (file model-single.top). The first line (see Fig. 5.1.11) includes
MODELLER variable and routine definitions. The following five lines set parameter
values for the “model” routine. ALNFILE names the file that contains the target-template
alignment in the PIR format. KNOWNS defines the known template structure(s) in
ALNFILE (TvLDH-4mdh.ali). SEQUENCE defines the name of the target sequence
in ALNFILE. STARTING_MODEL and ENDING_MODEL define the number of models
that are calculated (their indices will run from 1 to 5). The last line in the file calls the
“model” routine that actually calculates the models. The most important output files are
(1) model-single.log, which reports warnings, errors, and other useful information
including the input restraints used for modeling that remain violated in the final model,
and (2) TvLDH.B99990001, TvLDH.B9990002, etc., which contain the model
coordinates in the PDB format. The models can be viewed by any program that reads the
PDB format, such as ModView (http://guitar.rockefeller.edu/modview/; Ilyin et al., 2003)
or RasMol (http://www.rasmol.org; Sayle and Milner-White, 1995; Bernstein, 2000).

READ_MODEL FILE = '4mdh.pdb'
SEQUENCE_TO_ALI ALIGN_CODES = '4mdhA', ATOM_FILES = '4mdhA'
READ_ALIGNMENT FILE = 'TvLDH.ali', ALIGN_CODES = ALIGN_CODES 'TvLDH', ADD_SEQUENCE = ON
ALIGN2D
WRITE_ALIGNMENT FILE='TvLDH-4mdhA.ali', ALIGNMENT_FORMAT = 'PIR'
WRITE_ALIGNMENT FILE='TvLDH-4mdhA.pap', ALIGNMENT_FORMAT = 'PAP'

Figure 5.1.9 The align2d.top file that contains the MODELLER script executing the ALIGN2D command.

GSEPIRVLVTGAAGQIAYSLLYSIGNGSVFGKDQPIILVLLDITPMMGVLDGVLMELQDCALPLLKDV
MSEAAHVLITGAAGQIGYILSHWIASGELYG-DRQVYLHLLDIPPAMNRLTALTMELEDCAFPHLAGF
 **   ** ******* * *   *  *   * *    * **** * *  *    *** *** * *

_aln.pos
4mdhA
TvLDH
 _consrvd

  _aln.p
 4mdhA
 TvLDH
  _consrvd

IATDKEEIAFKDLDVAILVGSMPRRDGMERKDLLKANVKIFKCQGAALDKYAKKSVKVIVVGNPANTN
VATTDPKAAFKDIDCAFLVASMPLKPGQVRADLISSNSVIFKNTGEYLSKWAKPSVKVLVIGNPDNTN
 **     **** * * ** ***   *  * **  *  ***  *  * * ** **** * *** ***

  _aln.pos
 4mdhA
 TvLDH
  _consrvd

CLTASKSAPSIPKENFSCLTRLDHNRAKAQIALKLGVTSDDVKNVIIWGNHSSTQYPDVNHAKVKLQA
CEIAMLHAKNLKPENFSSLSMLDQNRAYYEVASKLGVDVKDVHDIIVWGNHGESMVADLTQATFTKEG
*  *  *     **** *  ** ***   * ****   **   * ****      *   *        

140 150 160 170 180 190 200

70 80 90 100 110 120 130

10 20 30 40 50 60

Figure 5.1.10 The alignment file between sequences TvLDH and 4mdhA in the PAP MODELLER format.
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Evaluating a Model

If several models are calculated for the same target, the “best” model can be selected by
picking the model with the lowest value of the MODELLER objective function, which is
reported in the second line of the model PDB file. The value of the objective function in
MODELLER is not an absolute measure; it can only be used to rank models calculated
from the same alignment.

Once the final model is selected, there are many ways to assess it. Before any external
evaluation of the model, one should check the log file from the modeling run for runtime
errors (model-single.log) and restraint violations; see the MODELLER manual
for details (at the MODELLER Web site listed in Internet Resources). Next, PROSAII
(Sippl, 1993) is used to evaluate the model fold and PROCHECK (Laskowski et al., 1998)
is used to check the model’s stereochemistry. Both PROSAII and PROCHECK confirm
that a reasonable model was obtained, with a PROSAII Z-score comparable to that of the
template (-10.53 and -12.69 for the model and the template, respectively).

Additional detailed examples of MODELLER applications can be found in Fiser and Sali
(2003).

APPLICATIONS

Comparative modeling is often an efficient way to obtain useful information about the
protein of interest. For example, comparative models can be helpful in designing mutants
to test hypotheses about the protein’s function (Vernal et al., 2002; Wu et al., 1999);
identifying active and binding sites (Sheng et al., 1996); searching for, designing, and
improving ligand binding strength for a given binding site (Ring et al., 1993); modeling
substrate specificity (Xu et al., 1996); predicting antigenic epitopes (Sali and Blundell,
1993); simulating protein-protein docking (Vakser, 1995); inferring function from calcu-
lated electrostatic potential around the protein (Matsumoto et al., 1995); facilitating
molecular replacement in X-ray structure determination (Howell et al., 1992); refining
models based on NMR constraints (Modi et al., 1996; Barrientos et al., 2001); testing and
improving a sequence-structure alignment (Wolf et al., 1998); confirming a remote
structural relationship (Guenther et al., 1997; Wu et al., 2000); and rationalizing known
experimental observations. For a review of comparative modeling applications see Baker
and Sali (2001) and Johnson et al. (1994).

Fortunately, a 3-D model does not have to be absolutely perfect to be helpful in biology,
as demonstrated by the applications listed above. The type of a question that can be
addressed with a particular model does depend on its accuracy (Fig. 5.1.3). 

INCLUDE

SET ALNFILE = ’TvLDH-4mdhA.ali’

SET KNOWNS = ’4mdhA’

SET SEQUENCE = ’TvLDH’

SET STARTING_MODEL = 1

SET ENDING_MODEL = 5

CALL ROUTINE = ’model’  

Figure 5.1.11 TOP script file model-single top.
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At the low end of the accuracy spectrum, there are models that are based on less than 25%
sequence identity and have sometimes less than 50% of their Cα atoms within 3.5 Å of
their correct positions. However, such models still have the correct fold, and even knowing
only the fold of a protein may sometimes be sufficient to predict its approximate
biochemical function. Models in this low range of accuracy ,combined with model
evaluation, can be used for confirming or rejecting a match between remotely related
proteins (Sanchez and Sali, 1997b, 1998).

In the middle of the accuracy spectrum are the models based on approximately 35%
sequence identity, corresponding to 85% of the Cα atoms modeled within 3.5 Å of their
correct positions. Fortunately, the active and binding sites are frequently more conserved
than the rest of the fold, and are thus modeled more accurately (Sanchez and Sali, 1998).
In general, medium-resolution models frequently allow a refinement of the functional
prediction based on sequence alone, because ligand binding is most directly determined
by the structure of the binding site rather than its sequence. It is frequently possible to
correctly predict important features of the target protein that do not occur in the template
structure. For example, the location of a binding site can be predicted from clusters of
charged residues (Matsumoto et al., 1995), and the size of a ligand may be predicted from
the volume of the binding site cleft (Xu et al., 1996). Medium-resolution models can also
be used to construct site-directed mutants with altered or destroyed binding capacity,
which in turn could test hypotheses about the sequence-structure-function relationships.
Other problems that can be addressed with medium-resolution comparative models
include designing proteins that have compact structures, without long tails, loops, and
exposed hydrophobic residues, for better crystallization, or designing proteins with added
disulfide bonds for extra stability.

The high end of the accuracy spectrum corresponds to models based on 50% sequence
identity or more. The average accuracy of these models approaches that of low resolution
X-ray structures (3-Å resolution) or medium-resolution NMR structures (10 distance
restraints per residue; (Sanchez and Sali, 1997b). The alignments on which these models
are based generally contain almost no errors. In addition to the already listed applications,
high-quality models can be used for docking of small ligands (Ring et al., 1993) or whole
proteins onto the given protein (Totrov and Abagyan, 1994; Vakser, 1995).

A sample application of comparative modeling is the SNPWEB Web server for prediction
of the functional effect of a single amino acid residue substitution (Table 5.1.1; Mirkovic
et al., 2003). The server takes as input the specifications of the wild-type protein structure
and a single amino acid residue substitution. The output is a prediction of whether or not
the function of the mutant is impaired, as well as the rationalization of the predicted impact
in terms of several features of the wild-type and mutant structures. The classification of
the mutation as neutral or deleterious is achieved by a decision tree. The protocol is based
on the assumption that a mutation is deleterious in either of the following two ways: (1)
when it is exposed to the solvent, it may substantially change the structure or chemical
nature of functional sites that bind other molecules; or (2) when it is buried in the core,
it may prevent folding of the domains into their native fold, or, less likely, affect only the
structure of functional sites. When applied to the case of the human BRCA1 domains, the
server was able to rationalize 31 of 37 point mutations with a known functional impact
(Mirkovic et al., 2003).

AUTOMATED COMPARATIVE PROTEIN STRUCTURE MODELING

As described earlier, each of the steps involved in the calculation of a protein structure
model, namely fold assignment, sequence-structure alignment, model building, and
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model evaluation, can be completely automated (Sanchez and Sali, 1998; Marti-Renom
et al., 2000). Despite limits on the accuracy of each one of these steps, they can be
assembled into a software pipeline and applied to automatically model many protein
sequences (Sanchez et al., 2000; Pieper et al., 2002). Such completely automated solutions
are needed to complement genome sequencing and structural genomics (Sanchez et al.,
2000; Vitkup et al., 2001). Comparative protein structure models have been calculated for
individual genomes (Dubchak et al., 1998; Sanchez and Sali, 1998; Marti-Renom et al.,
2000; Gough et al., 2001) and for all the sequences in the Swiss-Prot database (Peitsch,
1997; Pieper et al., 2002). One of the aims of structural genomics, to put every protein
sequence within the modeling neighborhood of a given experimental structure, relies on
automated techniques to pick targets for structure determination as well as to verify the
modeling coverage after the structures are determined (Marti-Renom et al., 2000). Here,
the authors of this unit describe their large-scale protein structure–modeling pipeline,
called MODPIPE.

MODPIPE is a completely automated software pipeline for comparative protein structure
modeling, which can calculate comparative models for a large number of protein se-
quences, using many different template structures and sequence-structure alignments
(Sanchez and Sali, 1998; Marti-Renom et al., 2000; Narayanan et al., 2003) following the
steps introduced above (see Example of Comparative Modeling). Sequence-structure
matches are established by aligning the PSI-BLAST (Altschul et al., 1997) sequence
profile of the target sequence against each of the template sequences extracted from the
PDB, as well as by scanning the target sequence against a database of template profiles
using IMPALA (Schaffer et al., 1999). Alignments with significant scores, covering
distinct regions of the target sequence, are chosen for modeling. Models are calculated
for each of the sequence-structure matches using MODELLER (Sali and Blundell, 1993).
The resulting models are then evaluated by a composite model quality criterion (Sanchez
and Sali, 1998; Melo et al., 2002).

The thoroughness of a search for the best model is modulated by a number of parameters,
including two E-value thresholds for identifying useful sequence-structure relationships
and the degree of conformational sampling given a sequence-structure alignment. The
validity of sequence-structure relationships is not prejudged at the fold-detection stage,
but is assessed after the construction of the model and its evaluation. This approach
enables a thorough exploration of fold assignments, sequence-structure alignments, and
conformations, with the aim of finding the model with the best evaluation score.

Comparative models in MODPIPE are evaluated by a composite scoring function given
by (Melo et al., 2002):

GA341 = 1 − [cos(sequence_identity)](compactness + sequence_identity)/exp(z-score)

where sequence_identity is the fraction of positions with identical residues in the target-
template alignment; compactness of the model is defined as the ratio between the sum of
the standard volumes of the amino acid residues in the protein and the volume of the
sphere with the radius equal to half of the largest dimension of the model; and, the z-score
is calculated for the combined statistical potential energy of a model, using the mean and
standard deviation of the 200 random sequences with the same composition and structure
as the model (Melo et al., 2002). The combined statistical potential energy of a model is
a sum of the solvent accessibility terms for all Cβ atoms and distance-dependent terms
for all pairs of Cα and Cβ atoms. The solvent accessibility term for a given Cβ atom depends
on its residue type and the number of other Cβ

 atoms within 10 Å; the nonbonded
distance-dependent terms depend on the atom types spanning the distance, the distance
itself, and the number of residues separating the distance-spanning atoms in sequence.
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These potential terms reflect the statistical preferences observed in 760 non-redundant
proteins of known structure. The GA341 scoring function was evolved by a genetic
algorithm that explored many combinations of a variety of mathematical functions and
model features, in order to optimize the discrimination between good and bad models in
a training set of models.

The GA341 score ranges from 0 for models that tend to have an incorrect fold to 1 for
models that tend to be comparable to low-resolution X-ray structures. Comparison of
models with their corresponding experimental structures indicates that models with
GA341 scores >0.7 generally have the correct fold with more than 35% of the backbone
atoms superposable within 3.5 Å. Reliable models (GA341 score ≥ 0.7) based on
alignments with more than 40% sequence identity, have a median overlap of more than
90% with the corresponding experimental structure. In the 30% to 40% sequence identity
range, the overlap is usually between 75% to 90% and below 30% it drops to 50% to 75%,
or even less in the worst cases.

Data storage and retrieval of the models calculated by MODPIPE is enabled by MOD-
BASE, a comprehensive relational database of annotated comparative protein structure
models (Pieper et al., 2002). MODBASE contains several model data sets, including that
for all available protein sequences matched to at least one known protein structure. This
data set was calculated by applying MODPIPE to all sequences in the Swiss-Prot database
(March, 2002). Currently, MODBASE contains models for domains in 415,937 out of
733,239 (∼57%) unique protein sequences found in Swiss-Prot.

MODBASE is queryable through its Web user interface by PDB codes, Swiss-Prot
(Boeckmann et al., 2003) and GENPEPT (Benson et al., 2002) accession numbers, open
reading frame names, various keywords, model reliability, model size, target-template
sequence identity, alignment significance, and sequence similarity against the modeled
sequences as detected by BLAST (UNITS 3.3 & 3.4). It is also possible to query the database
directly using SQL as implemented in MySQL.

The output of a search is displayed on pages with varying amounts of information about
the modeled sequences, template structures, alignments, and functional annotations.
These tables also contain links to other sequence, structure and function annotation
databases, such as PDB (Berman et al., 2002), GenBank (Benson et al., 2002), Swiss-Prot
(Boeckmann et al., 2003), CATH (Pearl et al., 2003), Pfam (Bateman et al., 2002), and
ProDom (Servant et al., 2002).

STRUCTURAL GENOMICS AND COMPARATIVE MODELING

The complete genomes of a number of organisms have been sequenced and many more
genome-sequencing projects are underway. Structural biology now faces the arduous task
of characterizing the shapes and dynamics of the encoded proteins to facilitate the
understanding of their functions and mechanisms of action. Recent developments in the
techniques of structure determination at atomic resolution, X-ray diffraction and nuclear
magnetic resonance spectroscopy, have enhanced the quality and speed of structural
studies (Zhang and Kim, 2003). Nevertheless, current statistics still show that the known
protein sequences (∼1,000,000; Boeckmann et al., 2003) vastly outnumber the available
protein structures (∼20,000; Berman et al., 2002). Fortunately, domains in protein
sequences are gradually evolving entities that can be clustered into a relatively small
number of families of domains with similar sequences and structures (i.e., folds; Vitkup
et al., 2001). These evolutionary relationships make it possible to use computational
methods, such as threading (Domingues et al., 2000) and comparative protein structure
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modeling (Blundell et al., 1987; Marti-Renom et al., 2000) to predict the structures of
protein sequences based on their similarity to known protein structures.

Many structural genomics efforts, in fact, combine the experimental structure determina-
tion methods and the computational modeling techniques to determine a sufficient number
of appropriately selected structures, so that most other sequences can be placed within
modeling distance of at least one known structure. To maximize the number of proteins
that can be modeled reliably, a concerted effort toward structure determination of new
folds by X-ray crystallography and nuclear magnetic resonance spectroscopy is in order,
as envisioned by structural genomics (Sali, 1998; Terwilliger et al., 1998; Zarembinski et
al., 1998; Burley et al., 1999; Montelione and Anderson, 1999; Sanchez et al., 2000;
Vitkup et al., 2001). It has been estimated that 90% of all globular and membrane proteins
can be organized into approximately 16,000 families containing protein domains with
more than 30% sequence identity to each other (Vitkup et al., 2001). Of these families,
4000 are already structurally defined; the others present suitable targets for structural
genomics. The full potential of the genome-sequencing projects will only be realized once
all protein functions are assigned and understood. This aim will be facilitated by
integrating genomic sequence information with databases arising from functional and
structural genomics. Comparative modeling will play an important bridging role in these
efforts.

CONCLUSION

Over the past few years, there has been a gradual increase in both the accuracy of
comparative models and the fraction of protein sequences that can be modeled with useful
accuracy (Marti-Renom et al., 2000; Baker and Sali, 2001; Pieper et al., 2002). The
magnitude of errors in fold assignment, alignment, and the modeling of side-chains and
loops has decreased measurably. These improvements are a consequence both of better
techniques and a larger number of known protein sequences and structures. Nevertheless,
all the errors remain significant and demand future methodological improvements. In
addition, there is a great need for more accurate modeling of distortions and rigid body
shifts, as well as detection of errors in a given protein structure model. Error detection is
useful both for refinement and interpretation of the models.
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The Rockefeller University
New York, New York

Supplement 3 Current Protocols in Bioinformatics

5.1.40

Modeling Protein
Structure From

Its Sequence



FO
R 

RE
VI

EW
 O

NL
Y

Figure 5.1.1 Steps in comparative protein structure modeling. See text for details.

Figure 5.1.2 Accuracy and application of protein structure models. The vertical axis indicates the
different ranges of applicability of comparative protein structure modeling, the corresponding
accuracy of protein structure models, and their sample applications. (A) The docosahexaenoic fatty
acid ligand (van der Waals sphere model) was docked into a high-accuracy comparative model of
brain lipid-binding protein (right), modeled based on its 62% sequence identity to the crystal-
lographic structure of adipocyte lipid-binding protein (PDB code, 1adl). A number of fatty acids were
ranked for their affinity to brain lipid-binding protein consistently with site-directed mutagenesis and
affinity chromatography experiments (Xu et al., 1996), even though the ligand-specificity profile of
this protein is different from that of the template structure. Typical overall accuracy of a comparative
model in this range of sequence similarity is indicated by a comparison of a model for adipocyte
fatty acid binding protein with its actual structure (left). (B) A putative proteoglycan binding patch
was identified on a medium-accuracy comparative model of mouse mast cell protease 7 (right),
modeled based on its 39% sequence identity to the crystallographic structure of bovine pancreatic
trypsin (PDB code, 2ptn) that does not bind proteoglycans. The prediction was confirmed by
site-directed mutagenesis and heparin-affinity chromatography experiments (Matsumoto et al.,
1995). Typical accuracy of a comparative model in this range of sequence similarity is indicated by
a comparison of a trypsin model with the actual structure. (C) A molecular model of the whole yeast
ribosome (right) was calculated by fitting atomic rRNA and protein models into the electron density
of the 80S ribosomal particle, obtained by electron microscopy at 15 Å resolution (Beckmann et al.,
2001). Most of the models for 40 out of the 75 ribosomal proteins were based on approximately
30% sequence identity to their template structures. Typical accuracy of a comparative model in this
range of sequence similarity is indicated by a comparison of a model for a domain in L2 protein
from B. Stearothermophilus with the actual structure (PDB code, 1rl2).

Figure 5.1.3 Typical errors in comparative modeling. (A). Errors in side-chain packing. The Trp
109 residue in the crystal structure of mouse cellular retinoic acid binding protein I (thin line) is
compared with its model (thick line), and with the template mouse adipocyte lipid-binding protein
(broken line). (B) Distortions and shifts in correctly aligned regions. A region in the crystal structure
of mouse cellular retinoic acid binding protein I is compared with its model and with the template
fatty acid binding protein using the same representation as in panel A. (C) Errors in regions without
a template. The Cα trace of the 112–117 loop is shown for the X-ray structure of human eosinophil
neurotoxin (thin line), its model (thick line), and the template ribonuclease A structure (residues
111–117; broken line). (D) Errors due to misalignments. The N-terminal region in the crystal
structure of human eosinophil neurotoxin (thin line) is compared with its model (thick line). The
corresponding region of the alignment with the template ribonuclease A is shown. The black lines
show correct equivalences, that is, residues whose Cα atoms are within 5 Å of each other in the
optimal least-squares superposition of the two X-ray structures. The “a” characters in the bottom
line indicate helical residues. (E) Errors due to an incorrect template. The X-ray structure of
α-trichosanthin (thin line) is compared with its model (thick line) which was calculated using
indole-3-glycerophosphate synthase as the template.

Figure 5.1.4 File TvLDH.ali. Sequence file in the PIR MODELLER format.

Figure 5.1.5 File seqsearch.top. Sequence file in the PIR MODELLER format. The TOP script
file for template search using MODELLER.

Figure 5.1.6 op 10 hits from file seqsearch.dat. The summary output file for the SE-
QUENCE_SEARCH command in MODELLER.

Figure 5.1.7 TOP script file compare.top.

Figure 5.1.8 Excerpts from the log file compare.log.
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Figure 5.1.9 The ALIGN2D.top file that contains the MODELLER script executing the ALIGN2D
command.

Figure 5.1.10 The alignment file between sequences TvLDH and 4mdhA in the PAP MODELLER
format.

Figure 5.1.11 TOP script file model-single.top.
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