Self-Assembly of Filamentous Amelogenin Requires Calcium and Phosphate: From Dimers via Nanoribbons to Fibrils

Olga Martinez-Avila,† Shenping Wu,‡ Seung Joong Kim,§ Yifan Cheng,‡ Feroz Khan,† Ram Samudrala,∥ Andrej Sali,§ Jeremy A. Horst,⊥ and Stefan Habelitz*,†

†Department of Preventative and Restorative Dental Sciences, University of California, 707 Parnassus Avenue, San Francisco, California 94143, United States
‡Department of Biochemistry and Biophysics, University of California, 600 16th Street, Room S312B, San Francisco, California 94158, United States
§Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, University of California, Byers Hall, Room 503B, 1700 Fourth Street, San Francisco, California 94158, United States
∥Department of Microbiology, University of Washington, 208 Rosen Building, Box 357735, Seattle, Washington 98195, United States
⊥Department of Orofacial Sciences, University of California, 513 Parnassus Avenue, San Francisco, California 94143, United States

Supporting Information

ABSTRACT: Enamel matrix self-assembly has long been suggested as the driving force behind aligned nanofibrous hydroxyapatite formation. We tested if amelogenin, the main enamel matrix protein, can self-assemble into ribbon-like structures in physiologic solutions. Ribbons 17 nm wide were observed to grow several micrometers in length, requiring calcium, phosphate, and pH 4.0−6.0. The pH range suggests that the formation of ion bridges through protonated histidine residues is essential to self-assembly, supported by a statistical analysis of 212 phosphate-binding proteins predicting 12 phosphate-binding histidines. Thermophoretic analysis verified the importance of calcium and phosphate in self-assembly. X-ray scattering characterized amelogenin dimers with dimensions fitting the cross-section of the amelogenin ribbon, leading to the hypothesis that antiparallel dimers are the building blocks of the ribbons. Over 5−7 days, ribbons self-organized into bundles composed of aligned ribbons mimicking the structure of enamel crystallites in enamel rods. These observations confirm reports of filamentous organic components in developing enamel and provide a new model for matrix-templated enamel mineralization.

INTRODUCTION

Self-assembly of extracellular matrix proteins results in key biological structural materials, such as collagens, keratins, and cellulose, which cells use to build entire tissues and organs.1,2 The formation of dental enamel differs from this general concept, as the fully developed tissue is basically free of the original organic matrix and made of 95% mineral, crystalline carbonated hydroxyapatite, rendering a clear relationship between the structure of organic and inorganic components difficult. In mammalian and marsupial enamel, extremely thin (50 nm diameter) apatite fibers of several hundreds of micrometer length are packed into rods or prisms of about 5 μm width.3 Enamel rods have species specific organization and alignment and are often separated by interrod enamel, also composed of aligned apatite nanofibers decussating enamel rods at an angle of about 60°.4 The remarkable architectures of enamel structures suggest that a precise mechanism must have evolved that facilitated control over apatite crystallization at the nanometer length scale. The enamel matrix is generated by ameloblasts, which may have an important role in organizing matrix proteins and apatite crystallites, but at the nanometer length scale, it is conceivable that the matrix itself orchestrates the mineralization events and controls nucleation, growth rate, morphology, and direction of growth of calcium phosphate mineral.5−8 However, up to this date the role and the molecular mechanisms of the developing enamel matrix in synthesizing the unique architecture of mineralized enamel remain unclear.

Amelogenin proteins comprise about 90% of the organic matrix and are crucial for functional enamel development by orchestrating the mineralization of apatite crystals, as shown in amelogenin-deficient mice.7 Self-assembly of amelogenin has been proposed to be critical for shaping the morphology and

Received: April 21, 2012
Revised: September 10, 2012
alignment of the growing apatite crystals. The human full-length amelogenin (H175) consists of 175 amino acid residues and is predominantly hydrophobic with a hydrophilic C-terminus of about 12 residues. Many structural motifs have been attributed to this protein. The molecule is intrinsically disordered in its monomeric state, but polyproline, β-turn, and β-sheet-like, as well α-helical elements, have been reported in assembled, nanospherical structures. Due to its hydrophobic nature, the full-length amelogenin protein has a high propensity to aggregate in aqueous solutions around its isoelectric point of 6.8. The formation of 20–60 nm wide nanospheres and oblates has been described in numerous studies. A model that includes the formation of chain-like aggregates with the amelogenin nanosphere as building block has been developed to explain the protein’s ability to generate aligned apatite nanocrystals in enamel, which almost exclusively grow along their crystallographic c-axis.

Previous structural studies, however, paid little attention to the effect of both calcium and phosphate ions on protein self-assembly. Amelogenin’s structural development has been largely investigated in the absence of these ions or as a function of only calcium or only phosphate. In addition, previous studies were performed with the assumption that amelogenin assemblies within seconds or minutes. While this may be true for short peptides, proteins in general require several hours or days to form supramolecular structures.

In recent studies our group took these factors into consideration as well as the amphiphilic nature of amelogenin’s primary structure and developed a water-in-oil emulsion system that produced novel self-assembled structures of amelogenin. In the emulsion system, amelogenin molecules stretched along the surface of micelles and were thus able to interact between the hydrophobic N-termini facilitating the formation of nanoribbons and nanohelices. Nanoribbons, formed at pHs between 4 and 7.5, aligned themselves, forming bundles of several micrometer width, indicating that the protein itself has the capacity to form a structure similar to the mineral crystallites in mature enamel, suggesting it may be a suitable template for guiding apatite crystallization. Based on these findings in an artificial system, we now further investigated the role of calcium and phosphate on self-assembly in an oil-free, aqueous environment. By careful analysis of the effect of pH on amelogenin supramolecular structure, we developed a procedure that facilitated the synthesis of amelogenin nanoribbons and under aqueous and physiological conditions. Our new model of amelogenin self-assembly is supported by a functional residue signature analysis demonstrating the high probability of phosphate binding to histidine. Furthermore, ab initio shape calculations from small angle X-ray scattering (SAXS) data demonstrate the formation of amelogenin dimers, which may act as building blocks for the hierarchical assembly of amelogenin nanoribbons and fibrils.

EXPERIMENTAL SECTION

Expression and Purification of Amelogenin. Recombinant human amelogenin rH174 and cleavage product rH146 were expressed in BL21DE3 pLysS *E. coli* and purified on C4 hydrophobic beads as previously described. The purity of the protein batches was above 95% as assessed by HPLC. MMP-20 proteolytic product rH146 lacks 28 amino acids at the C-terminus. Recombinant amelogenin also lacks the first residue (Met) compared to the native human full-length protein H175.

Self-Assembly Experiments. Lyophilized proteins were dissolved in double deionized water to prepare protein stock solutions at concentration of 4–6 mg/mL. Calcium and phosphate stock solutions were prepared using reagent grade chemicals CaCl₂ (133.6 mM) and KH₂PO₄ (83.6 mM) and filtered (0.22 μm). Suspensions of 500 μL total volume containing 0.4, 0.8, 1.2, 1.6, or 2.0 mg/mL of amelogenin rH174 were prepared by adding KH₂PO₄ in one test tube containing rH174 and CaCl₂ in another one with the same amount of rH174. Both tubes were combined, resulting in final concentrations of 0, 3.3, or 33.4 mM of CaCl₂ and 0, 2.1, or 20.9 mM of KH₂PO₄ and vortexed for about 30 s. The pH of resulting CaP protein solutions was initially around 2 due to residual TFA. The solution was then adjusted to specific pH 3, 4.0, 4.5, 5.1, 5.5, 6.0, 6.5, 7.0, 7.4, or 8.0 (±0.1) by adding KOH. Emphasis on pH between 4 and 6 was placed because previous studies on emulsions showed a higher propensity to ribbon formation at these pHs. In addition, at pH below 6 histidine residues will protonate, which may have significant influence on protein–protein and protein–mineral interactions. Protein solutions were incubated at 37 °C for up to 7 days. All samples were prepared in triplicate. A volume of 2–15 μL of suspensions was extracted at different time points and prepared for a full characterization by the methods listed below.

Atomic Force Microscopy (AFM). Extracts (15 μL) were pipetted onto microscope glass slides and kept for 1 h in a wet cell to immobilize products onto a glass slide, avoiding evaporation. Subsequently, samples were washed off with 1–2 drops of double deionized water and immediately dried with dust-free canned air. AFM was performed in dry conditions using tapping mode with a Nanoscope III (Digital Instruments, Santa Barbara, CA, U.S.A.) and Si-cantilevers (NANO-W, Nanoworld, Neuchâtel, Switzerland). The length and height of ribbons were measured from the AFM height-mode images using Nanoscope V 5.2.3 software and an average value determined from 50 points per sample group.

Transmission Electron Microscopy (TEM). As described previously, a 2.0 μL drop of sample solution was adsorbed for 60 s to a glow-discharged carbon-coated copper grid (Ted Pella, Redding, CA, U.S.A.) washed off with two drops of double deionized water and air-dried. For negative staining, the TEM grid was stained with a 2% methylamine tungstate solution, pH 6.8, (NANO-W; Yaphank, NY, U.S.A.) after being washed off by two drops of water. Grids were imaged with an FEI Tenai T12 TEM (FEI company, Hillsboro, OR, U.S.A.) at 120 kV. Data were acquired with a 4 × 4 k Gatan UltraScan CCD camera (Gatan, Pleasanton, CA, U.S.A.).

Small-Angle X-ray Scattering (SAXS). SAXS experiments were performed with the intention to detect the small units/particles in the suspension and to determine their size as a function of increasing pH in order to obtain information on possible building blocks of the nanoribbons. Protein stocks and corresponding buffers were mixed as described above at final protein concentrations of 2.0, 1.5, 1.0, 0.5, 0.25, and 0.1 mg/mL. The latter two concentrations were too diluted and did not provide sufficient scattering. In contrast, scattering was too strong when unfiltered suspensions were used, indicating the presence of high numbers of micrometer-sized particles. The suspensions were therefore filtered through 0.1 μm membranes (Millipore, Bedford, MA). Protein content of the 2.0 mg/mL samples was analyzed before and after filtering using Bradford Protein Assay. Highly acidic solutions will promote monomer formation due to increased surface charges of the protein. A sequential increase in pH toward neutral pH will allow us to follow the aggregation behavior of the proteins. The pH was adjusted to 1.5 (addition of HCl), 3.7, 5.6, or 7.5 (addition of KOH) in 3.3 mM of CaCl₂ and 2.1 mM of KH₂PO₄. SAXS measurements of rH174 and rH146 were carried out at Beamline 4-2 of the Stanford Synchrotron Radiation Lightsource. All SAXS profiles were collected at 15 °C after 24–48 h of sample preparation and incubation at 37 °C. Suitable spectra were obtained at multiple concentrations from 0.5 to 2 mg/mL. A total of 5% glycerol was added to reduce radiation damage. Controls without protein but 5% glycerol were also analyzed.

Modeling. The ab initio shape of amelogenin (rH146 and rH174) monomers and dimers were initially calculated from a merged experimental SAXS profile by running DAMMIF 20 times and refined with additional 50 DAMMIN runs, followed by superposition and...
averaging with DAMAVER.29 Fitting of ab initio shapes into the TEM images was visualized by customized scripts in UCSF Chimera.30

Meta-Functional Signature. A meta-functional signature (MFS31) compilation was built to estimate the probability for each residue in a given protein to bind soluble phosphate ions (mfsPO4), as was done previously for calcium binding.12 Nonlocal contact predictions were combined with one-dimensional predictions of conservation and structural features, by training a logistic regression to maximize scores for 591 phosphate binding among 39641 residues in 190 proteins. Proteins were selected from all crystal diﬀraction structures in the Protein Databank33 (accessed May 10th, 2010) by the presence of a phosphate ion noncovalently bound to the side chains of at least two residues (within 0.5 Å of van der Waals distance). The set was ﬁltered for nonredundancy by starting with the highest resolution (<2.1 Å) structures and progressively adding proteins to maximize diversity and maintain <30% sequence identity.

A 10-fold cross-validation benchmark experiment was performed to assess the accuracy of the mfsPO4 methodology. PO4-binding residues were considered positive instances and all other residues were considered negative instances for training in a logistic regression to maximize scores for 591 phosphate binding among 39641 residues in 190 proteins. Proteins were selected from all crystal diﬀraction structures in the Protein Databank33 (accessed May 10th, 2010) by the presence of a phosphate ion noncovalently bound to the side chains of at least two residues (within 0.5 Å of van der Waals distance). The set was ﬁltered for nonredundancy by starting with the highest resolution (<2.1 Å) structures and progressively adding proteins to maximize diversity and maintain <30% sequence identity.

A 10-fold cross-validation benchmark experiment was performed to assess the accuracy of the mfsPO4 methodology. PO4-binding residues were considered positive instances and all other residues were considered negative instances for training in a logistic regression to maximize scores for 591 phosphate binding among 39641 residues in 190 proteins. Proteins were selected from all crystal diﬀraction structures in the Protein Databank33 (accessed May 10th, 2010) by the presence of a phosphate ion noncovalently bound to the side chains of at least two residues (within 0.5 Å of van der Waals distance). The set was ﬁltered for nonredundancy by starting with the highest resolution (<2.1 Å) structures and progressively adding proteins to maximize diversity and maintain <30% sequence identity.

A 10-fold cross-validation benchmark experiment was performed to assess the accuracy of the mfsPO4 methodology. PO4-binding residues were considered positive instances and all other residues were considered negative instances for training in a logistic regression to maximize scores for 591 phosphate binding among 39641 residues in 190 proteins. Proteins were selected from all crystal diﬀraction structures in the Protein Databank33 (accessed May 10th, 2010) by the presence of a phosphate ion noncovalently bound to the side chains of at least two residues (within 0.5 Å of van der Waals distance). The set was ﬁltered for nonredundancy by starting with the highest resolution (<2.1 Å) structures and progressively adding proteins to maximize diversity and maintain <30% sequence identity.

A 10-fold cross-validation benchmark experiment was performed to assess the accuracy of the mfsPO4 methodology. PO4-binding residues were considered positive instances and all other residues were considered negative instances for training in a logistic regression to maximize scores for 591 phosphate binding among 39641 residues in 190 proteins. Proteins were selected from all crystal diﬀraction structures in the Protein Databank33 (accessed May 10th, 2010) by the presence of a phosphate ion noncovalently bound to the side chains of at least two residues (within 0.5 Å of van der Waals distance). The set was ﬁltered for nonredundancy by starting with the highest resolution (<2.1 Å) structures and progressively adding proteins to maximize diversity and maintain <30% sequence identity.

A 10-fold cross-validation benchmark experiment was performed to assess the accuracy of the mfsPO4 methodology. PO4-binding residues were considered positive instances and all other residues were considered negative instances for training in a logistic regression to maximize scores for 591 phosphate binding among 39641 residues in 190 proteins. Proteins were selected from all crystal diﬀraction structures in the Protein Databank33 (accessed May 10th, 2010) by the presence of a phosphate ion noncovalently bound to the side chains of at least two residues (within 0.5 Å of van der Waals distance). The set was ﬁltered for nonredundancy by starting with the highest resolution (<2.1 Å) structures and progressively adding proteins to maximize diversity and maintain <30% sequence identity.

Microscale Thermophoresis (MST). Thermophoresis was used to measure the binding interactions between labeled and unlabeled rH174 molecules using a Monolith NT.115 (NanoTemper Technologies GmbH, Munich, Germany).14 Amelogenin rH174 was labeled with a red fluorescent dye (Monolith NT) that uses N-hydroxysuccinimide (NHS) e ster. Free dye was removed by purification on a Sephadex G-25 column and the labeled protein was suspended in double deionized water and freeze-dried, then resuspended in acetonitrile (30%)−0.1 trifluoroacetic acid, freeze-dried. Protein was then dissolved in reaction buﬀer at pH 2 containing 33.4 mM of CaCl2 and 20.9 mM of KH2PO4. pH was adjusted to pH values of 2, 4.5, or 5.6. Control experiments were carried out under the same buﬀer conditions in the absence of CaP. For each binding assay, the concentration of the labeled rH174 is kept constant at 30 nM (1 μg/mL), whereas unlabeled rH174 was titrated in a set of serial

Figure 1. TEM analysis of self-assembled structures of rH174 (0.4 mg/mL) observed at pH 4.5: (A) in the absence of calcium and phosphate ions at day 1 and (B) day 7 (C–H) compared to structures that develop over the same time period in the presence of calcium and phosphate; (C) day 1, both nanospheres and nanoribbons; (D) day 4, short ribbons of about 200–800 nm in length are the only structural feature observed; (E) day 5, domains of aligned ribbons appear; (F, G) day 7, bundle-like structures containing numerous aligned ribbons appear; (H) high-resolution of (G) showing that shorter ribbon segments are present at the end of the ribbons and in the process to be added to existing longer and aligned ribbons; (I) ribbons exposed to 0.5 M EDTA for 2 h at pH 6, showing disintegration of ribbons, resulting in the appearance of nanospheres.
dilutions from the nanomolar to the submillimolar (100 μM ≈ 2 mg/mL) range.

RESULTS

In this study, we followed the development of self-assembled structures of amelogenin rH174 in solutions with and without calcium and phosphate ions at pH between 2 and 8 over a period of 7 days, using TEM and AFM analyses. Initially the characteristic spherical assemblies of amelogenin varying in size between 10 and 25 nm were observed (Figure 1A, B). In the absence of calcium and phosphate ions, amelogenin nanospheres were stable, though they tended to become more heterogeneous in size over time, spanning diameters of 10−50 nm (Figure 1B). In agreement with previous studies, we observed on rare occasions that nanospheres lined up to form chains of spheres (data not shown). The structural development of amelogenin assemblies was severely altered when 3.3 or 33.4 mM calcium chloride and 2.1 or 20.9 mM potassium phosphate were added to the amelogenin suspensions in the pH range of 4.0 to 6.0. At pH 4.5, low numbers of amelogenin nanospheres were initially observed at 24 h of incubation, nonhomogeneously distributed over the TEM grid. During this time period, short ribbons developed occasionally and both ribbons and spheres were observed by TEM (Figure 1C). With continued incubation, nanospheres completely disappeared while the numbers of nanoribbons increased. At day 3, nanoribbons were the only protein structure observed (Figure 1D). Most of the ribbons were still short with an average length of about 250 nm, including ribbons up to 800 nm long. At day 5, ribbons became more organized and domains of groups of ribbons in the parallel orientation became evident (Figure 1E). After 7 days, ribbons had formed larger aggregates that resembled fibrils or bundles (Figure 1F,G). These bundles measured between 500 nm and 2 μm in width and reached several micrometers in length consisting of continuous ribbons in parallel alignment. The bundles were surrounded by shorter segments of ribbons that appeared to be in the process of being added, thus, elongating the ribbons (Figure 1H, inlet of G), as suggested in our previous study using an oil−water system.25 When either phosphate (20.9 or 2.1 mM) or calcium (33.4 or 3.3 mM) were added to the protein suspensions individually but not combined, no ribbons were observed within 7 days of incubation. Instead, spherical and not well-defined aggregates developed over time (Figure S1B,C).

The importance of calcium ions for self-assembly was illustrated when EDTA was added to suspensions that contained amelogenin ribbons (Figure 1I). Ribbons disintegrated after EDTA exposure for 2 h, while nanospheres of about 20 nm diameters developed, indicating that the removal of calcium destabilizes the ribbon structure and promotes nanosphere formation.

Ribon formation was examined as a function of pH for samples incubated for 7 days at concentrations of 0.4 mg/mL rH174. The lowest pH at which ribbons self-assembled was pH 4.0, producing short ribbons of 200−500 nm length with weak alignment (Figure 2A). At day 7, ribbons and bundles of aligned ribbons were observed at pH 4.5, 5.1 (not shown), 5.6, and 6.0 (Figure 2B,C). Ribbons were absent at acidic pH of 2.0 and 3.0 and mainly showed a disordered structure. At pH 7.0, 7.4, and 8.0, a significant amount of calcium phosphate mineral formed, rendering the observation of amelogenin supramolecular structures more difficult (Figure S1D). There is currently no evidence that amelogenin nanoribbons also form at these pHs under the experimental conditions used. Figure 2D,E are AFM images of amelogenin ribbons immobilized on a glass slide before and after immersion into an aqueous solution at pH 2. Ribbons disintegrated into short segments of about 30 nm length within 1 min of acid exposure. In contrast, when immobilized ribbons were immersed into aqueous calcium phosphate solutions at pH 7.0−8.0, nanoribbons did not disintegrate and remained stable for the 3-day time period studied (Figure 2F). For a protein concentration of 0.4 mg/mL, kinetics of ribbon formation was enhanced in the pH range of 4.5−6.0, with ribbons forming within 24 h and bundles of ribbons appearing as early as 7 days. AFM measurements determined the thickness of ribbons to be 3.4 (±0.6) nm.

In general, organization into bundles of aligned nanoribbons was accelerated with increasing amelogenin rH174 concentration. Figure 3 shows a series of TEM micrographs of amelogenin supramolecular structures obtained after 6 days of incubation in calcium phosphate solutions at 37 °C. For a concentration of 0.4 mg/mL, short nanoribbons were observed at low density (Figure 3A). Ribbon length, number density, and their parallel alignment were elevated when 0.8 mg/mL were used (Figure 3B). At a concentration of 1.2 mg/mL, formation of bundles of ribbons was observed (Figure 3C), while large numbers of amelogenin bundles consisting of aligned ribbons had developed when concentrations of 1.6 mg/mL were used (Figure 3D). Amelogenin concentration plays a significant role in the kinetics of ribbon formation, suggesting that at concentrations comparable to the developing enamel matrix (~300 mg/mL) self-assembly might occur at much faster time scales.5

Microscale thermophoresis (MST) experiments were conducted with emphasis on the significance of calcium and phosphate ions for protein−protein interactions at pH 4.5 by titrating unlabeled rH174 into suspensions containing fluorescence-labeled rH174. We observed a strong change in fluorescence intensity following a sigmoidal profile when unlabeled rH174 was added in the presence of calcium and phosphate, characteristic of strong protein−protein interactions.
The half maximal effective concentration (EC50) was 176 nM and a dissociation constant of 145 ± 12.2 nM was determined for amelogenin interactions, corresponding to a 5- to 10-fold increased affinity compared to calcium-dependent, self-assembling systems, such as binding of cartilage oligomeric matrix protein to collagen,36 EcoRV endonuclease binding to DNA,37 or calmodulin protein binding to HIV.38 In contrast, little fluorescence activity was observed in the absence of calcium and phosphate (Figure 4A), indicating that primarily nonspecific interactions occurred as characteristic for protein aggregation events.34,35

The pH dependence of ribbon formation suggests that self-assembly is linked to protonation of a functional moiety. The most likely amino acid residue that changes protonation state in the physiological pH range is histidine (pK_a 6.0−6.5).39 The dependence of self-assembly upon ions indicates a functional interaction between histidine and phosphate or calcium. An earlier analysis of a 30% nonredundant set of 336 calcium-
bound protein structures showed that histidine only represents 7 of 696 calcium-binding residues. Here, we repeated this analysis for a similar set of 212 phosphate-bound protein structures, and found 132 of 950 phosphate-binding residues to be histidine, second only to arginine (Figure S3). Further, by training a meta-functional signature protocol to these proteins, we were able to predict the following phosphate-binding residues in amelogenin with high confidence: 6H, 9H, 30R, 46H, 47H, 54S, 57H, 66H, 67H, 68H, 91H, 98H, 99H, 159T, 170K, 171R, 172E, 173E, and 175D. Similarly, the meta-functional signature protocol trained on calcium binding sites reduces the aggregation propensity of amelogenin.43

To assess the size and morphology of amelogenin particles during early stages of assembly, small angle X-ray scattering (SAXS) profiles (Figure S2) were obtained from filtered suspensions at a pH between 1.5 and 7.5, with or without calcium and phosphate. The protein concentration decreased by about 10% for pH 1.5 and 2.5, by 31% for pH 5.6, and by 38% for pH 7.4. Oligomeric status was estimated from the radius of gyration (Rg), maximum dimension (Dmax) Table S1), radial distribution functions (Figure S2), and mass calculations.40 For the full-length human amelogenin (rH174), monomers were observed consistently at pH 1.5 (Rg 46.4 Å, Dmax 158 Å). When both calcium and phosphate were present, particle size, as measured by Rg, increased continuously until pH 5.6, whereupon it matched the expected dimensions and mass of a dimer (Rg 64.1 Å, Dmax 209 Å). We observed similar behavior for the C-terminal truncated human amelogenin fragment (rH146), which lacks the 28 C-terminal amino acid residues of rH174, transitioning from a monomer at pH 1.5 (Rg 37.2 Å, Dmax 130 Å) to a dimer at pH 5.6 (Rg 51.6 Å, Dmax 146 Å), in agreement with dimensions determined by SAXS on the 20 kD native porcine amelogenin.41 In agreement with light scattering data by others, rH174 and rH146 monomers were much more abundant than dimers in the absence of calcium and phosphate, regardless of the pH (Figures S2E,F). Dimerization in the absence of calcium phosphate may also be reduced due to the low ionic strength of the solution, which reduces the aggregation propensity of amelogenin.43

To construct a low-resolution model of protein structures from SAXS data, ab initio shape reconstructions were performed on data obtained at pH 1.5 (monomers) and at pH 5.6 (dimers) of rH174 in the presence of calcium and phosphate (Figure 5A). The superposition of two rH174 monomers within a rH174 dimer at pH 1.5 (ccc: 0.76) revealed the carboxyl terminus lying on the distant ends of the H174 dimer. (D, E) Building out these dimers as units of a multimer into a flat columnar template derived from TEM and AFM measurements of the ribbons presents a mechanistic model of amelogenin self-assembly.

Figure 5. Multiscale modeling of amelogenin ribbon assembly. Ab initio shapes of (A) the rH174 monomer (cyan and yellow; Rg 46.4 Å, Dmax 158 Å) and (B) rH174 dimer (gray wire; Rg 64.1 Å, Dmax 209 Å) were derived from SAXS profiles measured in the presence of calcium and phosphate at pH 1.5 and 5.6, respectively. (B) Superimposition of SAXS-derived rH174 monomers within a rH174 dimer supports antiparallel symmetry (cross correlation coefficient = 0.82). (C) Antiparallel monomer orientation is also supported by comparison of an rH146 dimer (solid gray) superposed to an H174 dimer (CCC = 0.76), which also reveals the carboxyl termini lying on the distant ends of the H174 dimer. (D, E) Building out these dimers as units of a multimer into a flat columnar template derived from TEM and AFM measurements of the ribbons presents a mechanistic model of amelogenin self-assembly.

The proposed models of the rH174 dimer (Figure S5) were superimposed onto a nanoribbon visualized by TEM and restricted to the 30 Å height determined by AFM.25 The apparent repeating units shown by TEM relatively good fit with the size and shape of the SAXS dimer model (Figure 6). The axial symmetry of the repeating units limits the possible rotational positions of the dimer, thereby defining the interferential surfaces on the SAXS-based dimer and monomer
the oil–water interface was critical to prevent a hydrophobic collapse, in this study the pH shift and the presence of calcium and phosphate were sufficient to stabilize the protein backbone. In the oil–water system, nanoribbons formed at pH between 4 and 7.4. In contrast, under aqueous conditions, nanoribbons only formed at pH between 4.0 and 6.0, indicating that protonation of histidine may be required for intermolecular interactions. While this pH range is lower than what has been described for the liquid phase of secretory enamel, \(^{44,45}\) it is in the range of the pH widely reported for exocytic vesicles (pH 5.0–6.0). \(^{46}\) Hence, dimerization of amelogenin may already occur before exocytosis. Because TEM analysis of vesicles in ameloblasts does not indicate the presence of larger filamentous entities, \(^{47}\) nanoribbon assembly is more likely to occur in the extracellular space, which others have shown to be composed of filamentous organic structures. \(^{48–51}\) During the secretory stage of amelogenesis, the continuous exocytosis of amelogenin dimers may then contribute to elongate ribbons already present in the calcium phosphate-rich milieu of the extracellular space. A more detailed analysis of developing enamel is warranted to verify this model, avoiding EDTA or demineralization by strong acids, which would disintegrate amelogenin nanoribbons.

Calcium ions are well-known to promote self-assembly of biomolecules through ion bridges as seen in centrin, cadherin, calmodulin, and laminin. \(^{52–54}\) Calcium binding to rH174 by electrostatic interactions was proposed by several studies and an average of 6.5 binding sites per molecules has been calculated. \(^{35,36}\) Calcium may act as counterion for phosphate bridges or electrostatically associate itself to acidic residues. A detailed analysis including the use of amelogenins with mutated histidines or other possible candidates for ion bridge formation will be required to more clearly define the mechanisms that drive ion binding and ribbon assembly. However, the concurrent dependence upon pH and specific ions indicates that self-assembly is linked to protonation of residue side chains that mediate phosphate and/or calcium binding. Sequence and structural conservation analyses (mfsCa and mfsPO4) identified only glutamic and aspartic acid residues with a high probability of interaction with calcium, and predominantly histidines for phosphate (Figure 4B). The \(pK_s\) of these residues coincide with the shifts in self-assembly observed here. The acidic residues deprotonate around the pH 1.5–3.7, possibly causing the disintegration of self-assembled ribbons as observed at pH below 4 (Figure 2e). Histidines will be protonated at the lower pH range. While not widely studied in biomineralization, numerous critical roles are described for histidine–phosphate interactions in kinase biology. \(^{57}\) A recent study demonstrated biomineral interactions for peptides including the residues proposed here, having been identified by analogous informatic analyses of a predicted amelogenin structure and hydroxyapatite-binding sequences from phage display data evolutionary selection experiments. \(^{58}\) Specifically, the histidine-rich regions were the only ones to interact with hydroxyapatite, while the acid-rich regions bound strongly to calcium. A better understanding of the roles of histidine and acidic residues in calcium and phosphate interactions may be crucial to produce a complete model of amelogenin self-assembly and control over crystal growth. Using SAXS measurements on filtered suspensions, we observed that dimers become more abundant in the presence of calcium and phosphate when the pH is raised from acidic (pH 1.5) to pH 4.5 and become the dominant subunit structure at pH 5.6 and higher. The formation of dimers in suspensions of full-length

Figure 6. Comparison of the dimer-based model to a consensus TEM overlay for amelogenin nanoribbons. The apparent repeating units observed by TEM overlay are supported by the size and shape of the SAXS dimer model. The electron dense negative stain shown in the TEM, obtained in a previous study, \(^{25}\) suggests buildup of calcium and phosphate along the center of the ribbon. Thus, phosphates (orange) and histidines thought to carry out the pH-dependent phosphate interactions are shown at the intersection of this region, with calcium ions (green) interspersed to represent potential counterions for phosphate bridging. The coarse localization for histidines provides probabilistic tethers for future modeling efforts. The stacked orientation of amelogenin, calcium, and phosphate facilitates an explanation for the linear scaling of multimerization observed in this study. The SAXS-based models of dimeric building blocks exceed the width of the ribbon, as observed in the TEM, by about 2 nm on both sides, suggesting that the nonoverlapping portion at the C-terminus may be folded inward.

DISCUSSION

Self-assembly is a process in which a disordered system forms an organized, well-defined structure or pattern as a consequence of specific, local interactions among the components themselves, without external direction and direction and deposition. It requires the formation of building blocks or units with specific structural motifs which are able to form residue specific noncovalent bonds generating a systematic arrangement of these units resulting in unique structures at the nanometer to micrometer length scale. This study shows that the recombinant full-length human amelogenin protein, rH174, can self-assemble into self-aligning nanoribbons and form bundles consisting of aligned amelogenin ribbons in calcium phosphate solutions. The amelogenin structures generated in this study under aqueous conditions were identical to the ones developed in metastable water in oil emulsion. \(^{25}\) While in the emulsion system the alignment of amelogenin molecules along models. The maximum length of the rH174 dimer is ∼40 Å longer than the width of the rH174 ribbon measured by TEM, while the maximum diameter of the rH146 dimer matches very well the width of the rH146 ribbon in TEM (Table S1). This finding indicates a conformational shift and inward folding of C-terminal residues upon self-assembly (Figure 6).
amelogenin has been described by others and may not require calcium and phosphate ions.\(^2\) Here we hypothesize that under our experimental conditions amelogenin is surrounded by a cloud of tightly associate calcium and phosphate ions preventing the monomer from folding by hydrophobic forces as the pH is raised from 2 to between 4 and 6, when protonated histidines can still bind phosphate. As a consequence, stable dimers are observed with a consistent SAXS profile enabling determination of a molecular surface outline for amelogenin (Figure 5B).

We constructed a multiscale molecular model of amelogenin self-assembly by integrating the data from this study (Figure 6). SAXS and TEM data indicate overlapping of the molecules by about 75% in rH174 dimers (Supporting Information, Table). Hence, all 14 histidine residues of rH174 will be within the overlap zone. In our model, the phosphate ions are in association with histidines. Interestingly, their location also coincides with the ribbon center and the dark central line that is observed along the backbone of the amelogenin nanoribbons.\(^2\) The line may thus originate from the high electron density of calcium and phosphorus atoms (Figure 6). Dimers are composed of molecules in antiparallel configuration with the hydrophilic C-terminus oriented toward the ribbon’s edges. Hence, electrostatic charges build at the edges and give rise to electrostatic repulsion of amelogenin nanoribbons ultimately causing their parallel alignment, as predicted in our previous analysis.\(^2\) The tendency to self-align was not observed on ribbons made from rH146, which lack the hydrophilic ends.\(^2\) This also suggests that the observed alignment of rH174 ribbons is not an artifact of specimen dehydration for TEM and AFM analysis. The alignment of ribbons ultimately leads to the formation of bundles composed of aligned ribbons (Figure 1D–G). Such bundles could, with the involvement of the ameloblasts, evolve into an organic precursor of the enamel rod ready for templating the formation of oriented apatite crystallization.

We observed that amelogenin nanospheres become unstable in the presence of both calcium and phosphate ions. Others have also shown that monomers and oligomers coexist with nanospheres and nanospheres readily release oligomers when in contact with solid surfaces.\(^59\)–\(^61\) A recent publication reported on the hierarchical assembly of amelogenin nanospheres in the absence of calcium and phosphate ions, illustrating that such nanospheres completely disappeared when calcium and phosphate were added and mineralization was initiated.\(^1\) Other studies were also not able to show evidence of nanosphere formation once apatite mineralization occurred, further supporting our finding that amelogenin nanospheres are unstable in solutions containing mineralizing ions.\(^16\),\(^23\)

While it has been shown previously that divalent anions like HPO\(_4\)\(^{2−}\) can act as bridges between peptide and protein molecules,\(^62\) the mechanism of assembly by ion interaction with protonated histidine as shown in this study is novel. We have observed apatite crystallization in the presence of amelogenin nanoribbons. However, the formation of such crystals was not in association with the protein template, suggesting that the ribbons themselves may not act as apatite nucleator but perhaps as a reservoir of these ions. Moreover, we observed the presence of amorphous calcium phosphate in or around bundles of ribbons (Figure 54). This finding is in agreement with the process of biomineralization, because as a common principle, the secreted matrix does not induce mineralization directly without postsecretory modification (e.g., phosphor-

CONCLUSIONS

The formation of highly organized apatite crystals in dental enamel suggests that the organic matrix acts as a guide and template for mineral formation during tissue development. Here we developed a system that facilitated the formation of amelogenin nanoribbons in aqueous suspensions and describe the required physical-chemical parameters. In the presence of calcium and phosphate amelogenin nanospheres become unstable and disintegrate while gradually ribbons of specific width develop over a period of days, self-align and self-organize into micrometer sized bundles of ribbons. Ribbons of similar size and shape with a high degree of parallel alignment have been characterized by TEM analysis of the developing matrix of dental enamel.\(^48\) Ribbon-like structures are part of many descriptions of the matrix of developing enamel.\(^49\)–\(^51\) The ability of amelogenin to form ribbons which develop into micrometer-sized bundles of aligned ribbons substantially impacts the current paradigm of amelogenin-guided mineralization of apatite in enamel and will provide critical insights into our understanding of amelogenesis as well as enhance our ability to generate enamel in vitro through biomimetic approaches.

ASSOCIATED CONTENT

Supporting Information
(a) SAXS data; (b) TEM images of control samples, including SAED of bundles of nanoribbons; (c) Precision recall plot of MFS analysis. This material is available free of charge via the Internet at http://pubs.acs.org.

ACKNOWLEDGMENTS

Dr. Stefan Duhr (NanoTemper Technologies) for facilitating the use of the MST system; Tsutomu Matsui, Lester Carter, and Hiro Tsuruta at Stanford Synchrotron Radiation Light-source for their support. NIH/NIDCR for financial support through RO1-DE017529, DE017529S2, and F30-DE017522 (J.A.H.).

REFERENCES
