

1 **Importin-9 wraps around the H2A-H2B core to act as nuclear importer**
2 **and histone chaperone**

3

4 Abhilash Padavannil¹, Prithwijit Sarkar², Seung Joong Kim³, Tolga Cagatay¹, Jenny Jiou¹, Chad
5 A. Brautigam⁴, Diana R. Tomchick⁴, Andrej Sali⁵, Sheena D'Arcy⁶ and Yuh Min Chook^{1*}

6 ¹Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX
7 75390, USA

8 ²Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA

9 ³Department of Physics, Korea Advanced Institute of Science and Technology (KAIST),
10 Daejeon 34141, Korea

11 ⁴Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390,
12 USA

13 ⁵Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical
14 Chemistry, California Institute for Quantitative Biosciences, University of California, San
15 Francisco, San Francisco, CA 94158, USA

16 ⁶Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX
17 75080, USA

18 *Correspondence: yuhmin.chook@utsouthwestern.edu

19

20

21

22 **Summary**

23 We report the crystal structure of nuclear import receptor Importin-9 bound to its cargo, the
24 histones H2A-H2B. Importin-9 wraps around the core, globular region of H2A-H2B to form an
25 extensive interface. The nature of this interface coupled with quantitative analysis of deletion
26 mutants of H2A-H2B suggest that the NLS-like sequences in the H2A-H2B tails play a minor
27 role in import. Importin-9•H2A-H2B is reminiscent of interactions between histones and histone
28 chaperones in that it precludes H2A-H2B interactions with DNA and H3-H4 as seen in the
29 nucleosome. Like many histone chaperones, which prevent inappropriate non-nucleosomal
30 interactions, Importin-9 also sequesters H2A-H2B from DNA. Importin-9 appears to act as a
31 storage chaperone for H2A-H2B while escorting it to the nucleus. Surprisingly, RanGTP does
32 not dissociate Importin-9•H2A-H2B but assembles into a RanGTP•Importin-9•H2A-H2B
33 complex. The presence of Ran in the complex, however, modulates Imp9-H2A-H2B interactions
34 to facilitate its dissociation by DNA and assembly into a nucleosome.

35

36

37

38

39 **Keywords**

40 Importin-9, karyopherin, histone, H2A, H2B, histone chaperone, Ran GTPase, nucleosome,
41 NLS, nuclear pore complex.

42

43 **Introduction**

44 Eukaryotic chromatin is organized into nucleosomes, which are structural and functional
45 units that are composed of 147 base pairs of DNA wrapped around two H3-H4 dimers and two
46 H2A-H2B dimers (Luger et al., 1997). Nucleosomes are assembled in the nucleus during S-
47 phase as new H2A, H2B, H3 and H4 proteins are synthesized in the cytoplasm (Adams and
48 Kamakaka, 1999; Annunziato, 2013; Verreault, 2000). Newly translated histones are folded and
49 assembled into H2A-H2B and H3-H4 dimers, which are then imported into the nucleus for
50 deposition onto replicating chromatin. Despite their small sizes, histones do not diffuse into the
51 nucleus but are transported by nuclear import receptors of the Karyopherin- β family termed
52 importins (Baake et al., 2001; Jakel et al., 1999; Johnson-Saliba et al., 2000; Mosammaparast
53 et al., 2002b; Mosammaparast et al., 2001; Muhlhausser et al., 2001).

54 Importins usually recognize their protein cargos by binding nuclear localization signals
55 (NLSs) in their polypeptide chains. Importins bind nucleoporins to traverse the permeability
56 barrier of the nuclear pore complex (NPC) (reviewed in (Chook and Suel, 2011; Cook et al.,
57 2007; Gorlich and Kutay, 1999; Izaurrealde et al., 1997; Kim et al., 2018; Kosinski et al., 2016;
58 Lin et al., 2016; Soniat and Chook, 2015). The small GTPase Ran controls direction of transport.
59 Binding of cargos and RanGTP to importins is mutually exclusive. In the nucleus, where Ran is
60 kept in the GTP state by guanine nucleotide exchange factor RCC1, importins bind RanGTP
61 with high affinity, resulting in cargo release (Chook and Suel, 2011; Izaurrealde et al., 1997;
62 Soniat and Chook, 2015).

63 Studies in importin-deletion yeast strains identified Kap114 (*S. cerevisiae* homolog of
64 Importin-9 or Imp9) as the primary H2A-H2B importer, and Kap121 (homolog of Importin-5) and
65 Kap123 (homolog, Importin-4) as secondary importers (Mosammaparast et al., 2002b;
66 Mosammaparast et al., 2001). Pull-down binding from cytosolic HeLa extract and proteomics
67 tracking nuclear-cytoplasmic localization in human cells also identified core histones as Imp9

68 cargos (Jakel et al., 2002a; Kimura et al., 2017). The use of multiple backup importin systems is
69 also seen in human cells, as many previous studies have shown that H2A and H2B can bind
70 and be imported into nuclei of digitonin-permeabilized cells by several human importins (such as
71 Importin- β , Karyopherin- β 2, Importin-4, Importin-5, Importin-7) in addition to Importin-9 (Baake
72 et al., 2001; Johnson-Saliba et al., 2000; Mosammaparast et al., 2002b; Mosammaparast et al.,
73 2001; Muhlhausser et al., 2001).

74 Core histones H2A, H2B, H3 and H4 all contain disordered N-terminal tails followed by
75 small histone-fold domains; H2A also has a disordered C-terminal tail (Luger et al., 1997). The
76 N-terminal tails of histones contain many basic residues, somewhat resembling classical NLS
77 motifs (Blackwell et al., 2007; Ejlassi-Lassallette et al., 2011; Johnson-Saliba et al., 2000; M. A.
78 Marchetti, 2000; M. Greiner, 2004; Mosammaparast et al., 2001; R. B. Moreland, 1987). H2A
79 and H2B tails are able to target heterologous proteins into the nucleus (Mosammaparast et al.,
80 2001), but removal of the tails does not abolish localization of H2A-H2B in the nucleus (Thiriet
81 and Hayes, 2001). Furthermore, analysis of seven different importins binding to H3 and H4
82 tails vs. full-length H3-H4 vs. H3-H4-Asf1 chaperone complex suggested that importin specificities for
83 importin-binding reside not in the tail ‘NLSs’ but in the histone folds and the bound chaperone
84 (Soniat et al., 2016).

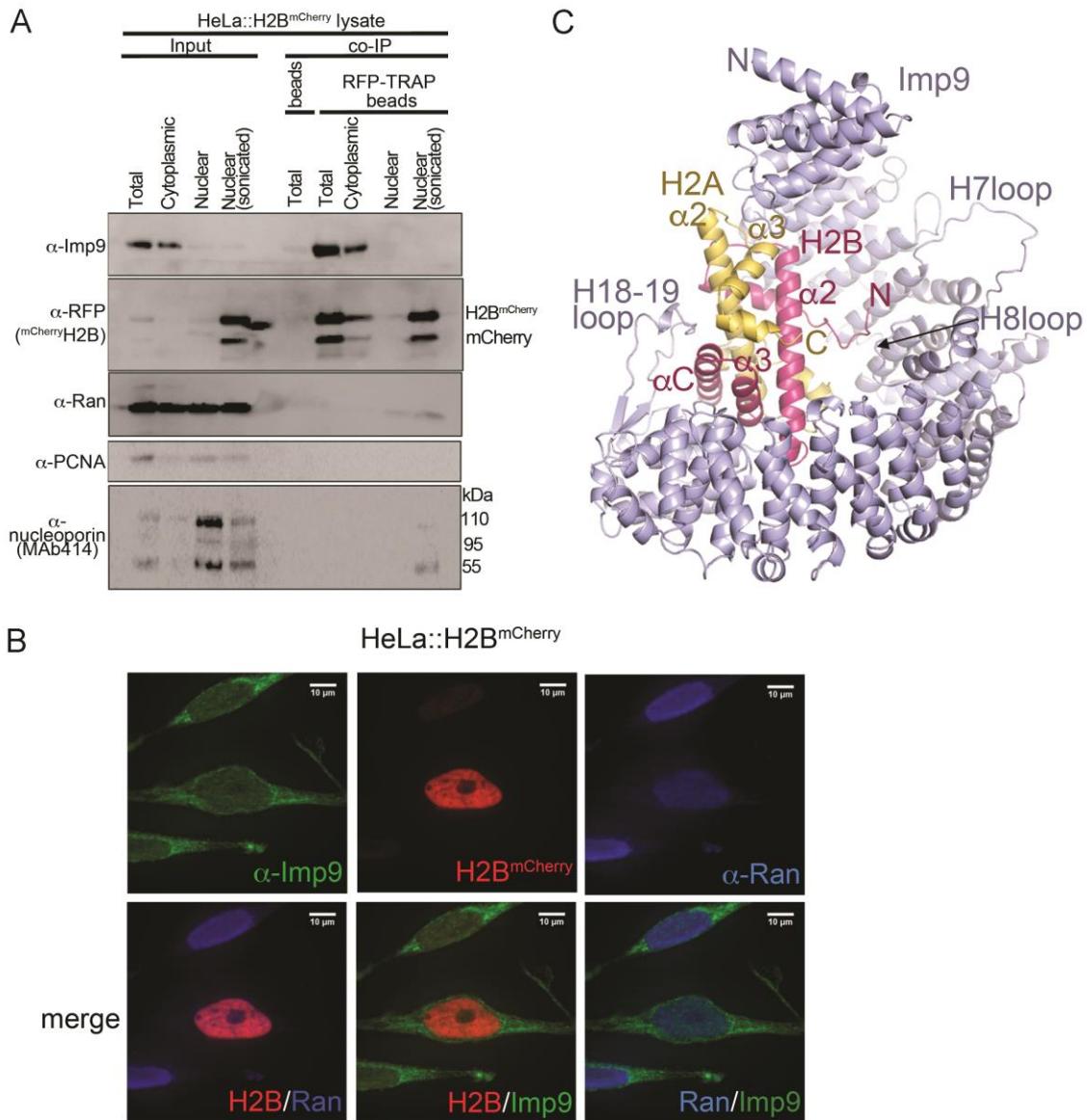
85 Here, we solved the crystal structure of Imp9 bound to the full-length H2A-H2B dimer to
86 understand how histones are recognized for nuclear import. The superhelical Imp9 wraps
87 around the histone dimer. Most of the N-terminal tails of both H2A and H2B are disordered, and
88 only five residues of the H2B tail contact Imp9. Binding of Imp9 blocks DNA and H3-H4 sites on
89 H2A-H2B, and Imp9 prevents H2A-H2B from aggregating on DNA, consistent with a histone
90 chaperone-like activity for Imp9. Unlike other importin-cargo complexes, RanGTP does not
91 dissociate Imp9-H2A-H2B but binds the complex and enhances its dissociation by DNA. The
92 Ran•Imp9-H2A-H2B complex is also able to promote H2A-H2B assembly into nucleosomes.
93 Formation of the Ran•Imp9-H2A-H2B complex appears to modulate importin-histone

94 interactions to facilitate histone deposition to nuclear targets such as the assembling
95 nucleosome.

96 **Results**

97 **Structure of the Imp9•H2A-H2B complex**

98 The major nuclear importer for H2A-H2B in *S. cerevisiae* is Kap114 (Mosammaparast et
99 al., 2002b; Mosammaparast et al., 2001). Imp9, the human homolog of Kap114, was previously
100 shown to bind and import H2A-H2B (Jakel et al., 2002a; Kimura et al., 2017; Muhlhausser et al.,
101 2001). We show Imp9-histone interactions in immunoprecipitation from the cytoplasmic fraction
102 of a stable HeLa cell line expressing mCherry-H2B (Figure 1A). We also show by fluorescence
103 microscopy that Imp9 in these cells localizes mostly to the cytoplasm (Figure 1B). Similar
104 cytoplasmic localization of Imp9 was reported in the Human Protein Atlas (Thul et al., 2017;
105 Uhlen et al., 2017). To understand how Imp9 recognizes histones for nuclear import, we solved
106 the crystal structure of human Imp9 bound to full-length *X. laevis* H2A-H2B (dissociation
107 constant, $K_D=30$ nM; Table 1 and Figure 1 – figure supplement 1) by single wavelength
108 anomalous dispersion to 2.7 Å resolution (Figure 1 - source data 1).


109 Imp9 is made up of twenty tandem HEAT repeats, each containing two antiparallel
110 helices A and B that line the convex and concave surfaces of superhelical-shaped protein,
111 respectively (Figure 1C and Figure 1 – figure supplement 2A, B). The concave surface of Imp9
112 is mostly acidic, with a few small basic patches (Figure 1 – figure supplement 2B). This charged
113 concave surface of Imp9 wraps around H2A-H2B, burying 1352 Å² (26% of the H2A-H2B
114 surface) at three distinct interfaces 1-3 (Figure 2A-D and Figure 2 – figure supplements 1-3).
115 The Imp9-bound H2A-H2B has a canonical histone-fold as in nucleosomes (151 C α atoms
116 aligned, r.m.s.d. 0.505 Å; PDB ID 1AOI) (Luger et al., 1997). In our structure, the N-terminal and

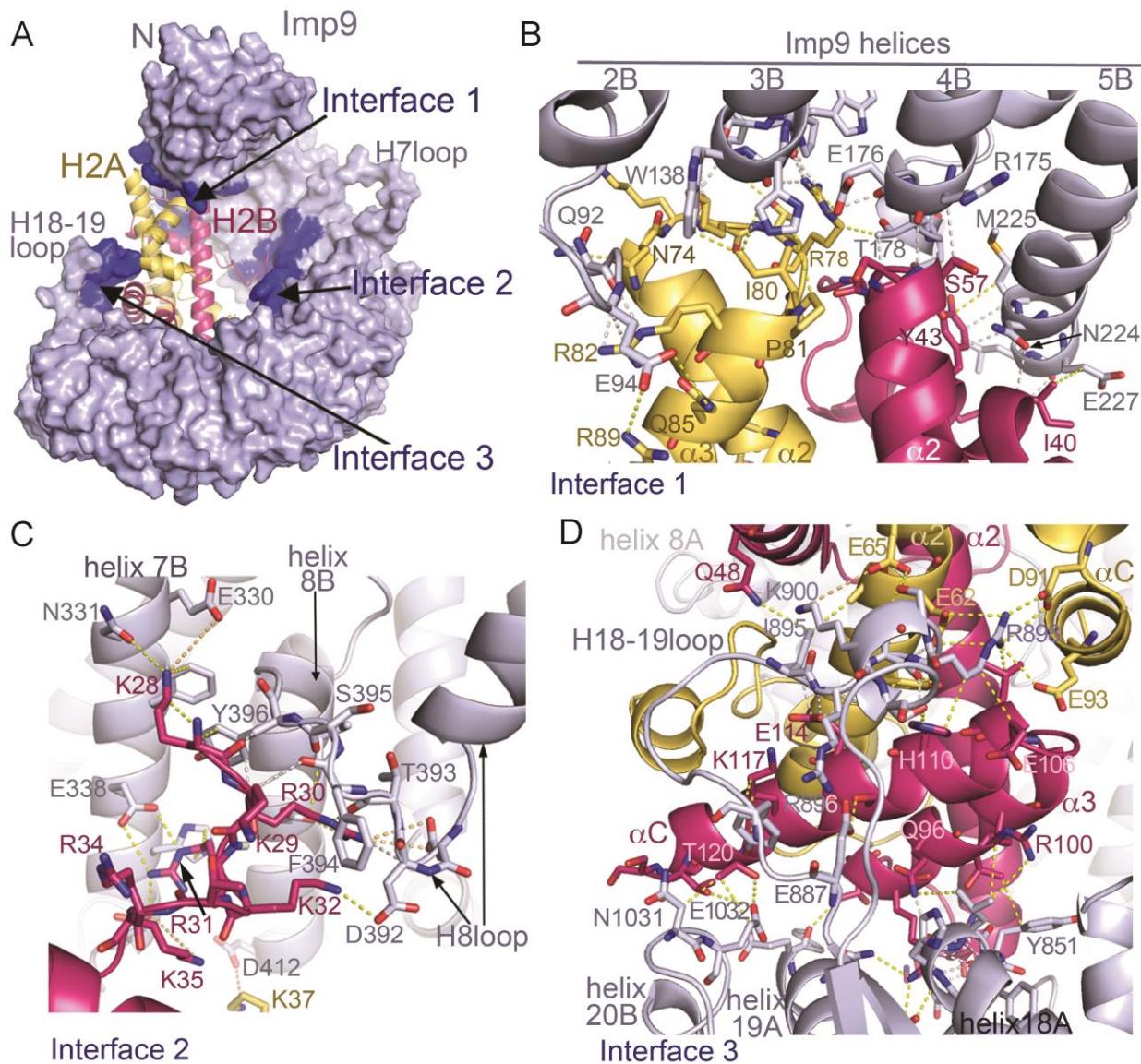
117 C-terminal tails of H2A (residues 1-16, 101-130) and H2B (1-27, 125-126), the first 14 residues
118 of Imp9 and its H19loop (residues 936-996) were not modeled due to missing electron density.

119 The N- and C-terminal HEAT repeats of Imp9 (Interfaces 1 and 3) clamp the histone-fold
120 domain while the inner surface of central HEAT repeats 7-8 (Interface 2) interacts with a five-
121 residue segment of the H2B N-terminal tail (Figure 2). Interface 1 on Imp9 comprises the loop
122 that follows helix 2B and the last turns of helices 3B, 4B and 5B (Figure 2B, Figure 2 – figure
123 supplements 1A, 2A and 3A). Hydrogen-bonding with H2A-H2B residues caps the C-terminal
124 ends of these Imp9 B helices (Figure 2 – figure supplement 1D). Of note is the end-to-end
125 capping of the last turn of Imp9 helix 4B by the first turn of histone H2B helix α 2. Interface 1 on
126 the histones involves α 2-L2- α 3 of H2A and α 1-L1- α 2 of H2B, which constitute a significant
127 portion of the basic DNA-binding surface found in nucleosomes. Although histones and Imp9
128 surfaces at this interface are electrostatically complementary (Figure 1 – figure supplement 2B),
129 interactions also involve many hydrogen bonds, hydrophobic interactions and main chain
130 interactions (Figure 2 – figure supplement 1A, D).

131 Interface 2 involves Imp9 helices 7B, 8B and the H8loop (connects helices 8A to 8B)
132 binding to the short 28 KKRRK 32 segment of the H2B N-terminal tail (Figure 2C and Figure 2 –
133 figure supplements 1B, 2B-C and 3B). Electron densities for H2B 28 KKRRK 32 are weak (see
134 Figure 2 – figure supplement 2B-C) and atomic displacement parameters (“B-factors”) for H2B
135 residues 28-32 are also high ($> 100 \text{ \AA}^2$), suggesting dynamic interactions. Charged H2B side
136 chains make electrostatic interactions with several acidic Imp9 residues, while the aliphatic part
137 of these basic side chains and their backbone participate in hydrophobic interactions.

138

139


140 **Figure 1. Interactions between Imp9 and H2A-H2B in the cell and crystal structure of the**
 141 **Imp9•H2A-H2B complex. A.** Coimmunoprecipitation (CoIP) studies of H2B^{mCherry} from whole
 142 cell, cytoplasmic and nuclear fractions of the lysates from HeLa cells stably expressing
 143 H2B^{mCherry}, followed by immunoblots with Imp9, Ran, RFP antibodies. PCNA and MAb414
 144 antibodies are used as loading control antibodies. 10 μ g of 1.5 mg lysates are analyzed as CoIP
 145 input. Blots are representative of three identical experiments. **B.** Subcellular localization of Imp9
 146 and Ran in HeLa::H2B^{mCherry} cells. HeLa cells were fixed, permeabilized, incubated with affinity-
 147 purified rabbit polyclonal Imp9 antibody and mouse monoclonal anti-Ran antibody, and
 148 visualized by confocal microscopy. The secondary antibodies were Alexa 488 conjugated anti-
 149 rabbit and Alexa 405 conjugated anti-mouse, respectively. The column on the right contains
 150 two-color merge images. **C.** The crystal structure of human Imp9 (blue) in complex with *X. laevis*
 151 H2A (yellow)-H2B (red).

152 The following figure supplement is available for Figure 1:

153 Figure 1 – source data 1

154 Figure 1- figure supplement 1

155 Figure 1 – figure supplement 2

156

157 **Figure 2. Imp9•H2A-H2B binding interfaces.** **A.** The Imp9•H2A-H2B structure is oriented as in
158 Figure 1C. The histones H2A (yellow)-H2B (red) are drawn as cartoons. Imp9 (blue) is
159 represented as surface showing three distinct H2A-H2B binding interfaces (dark blue). **B-D.**
160 Details of Interface 1 (**B**), Interface 2 (**C**) and Interface 3 (**D**). Intermolecular contacts are shown
161 as dashed lines.

162 The following figure supplement is available for Figure 2:

163 Figure 2 – figure supplement 1
164 Figure 2 – figure supplement 2
165 Figure 2 – figure supplement 3

166
167
168

169 Interface 3 involves the last three HEAT repeats of Imp9, specifically the last turn of helix
170 18A and the short loop that follows, the H18-19loop, the C-terminal half of helix 19A and the first
171 turn of helix 20B (Figure 2D, Figure 2 – figure supplements 1C, 2D and 3C). Instead of the
172 typical basic H2A-H2B residues interacting with the acidic Imp9 residues, charges at Interface 3
173 are reversed (Figure 1 – figure supplement 2B). A basic patch formed by the Imp9 H18-19loop
174 and nearby helices complement an acidic surface on the histones formed by residues from H2A
175 helices α 2 and α C, and the C-terminal half of H2B that comprises α 2- α 3- α C. Of note here are
176 salt bridges between Imp9 residue Arg898 and several acidic residues of H2A (Figure 2D).
177 Many hydrophobic contacts are also found at this interface, and several helices (Imp9 H18A,
178 H19A and histone H2B α 2) are capped through hydrogen-bonding with partner proteins (Figure
179 2 – figure supplement 1C and 3C).

180 **Distribution of binding energy in the Imp9•H2A-H2B complex**

181 We analyzed the distribution of binding energy of the extensive Imp9-H2A-H2B interface
182 through mutagenesis of the N-terminal histone tails and several long Imp9 loops and
183 determined K_D s of the mutants using isothermal titration calorimetry (ITC; Table 1 and Figure 1
184 – figure supplement 1). Imp9 binds full-length H2A-H2B with high affinity (K_D =30 nM). We did
185 not make mutations to Interface 1 because of the many main-chain interactions found there
186 (Figure 2 – figure supplement 1D). Interface 2 involves the H8 loop of Imp9 and the N-terminal
187 tail of H2B, both of which are convenient for deletion mutagenesis. Similarly, two long Imp9
188 loops (H18-19loop and H19loop) in Interface 3 are convenient for deletion mutagenesis.

189 H2A-H2B mutant assembled with the core of H2A (residues 14-119) and full-length H2B,
190 hence named H2A Δ Tail-H2B, has similar binding affinity (K_D = 40 nM) as full-length H2A-H2B.
191 This result is consistent with structural observations that H2A residues in its N- and C-terminal
192 tails are disordered and likely do not contact Imp9. Removal of the H2B tail (deleting residues 1-
193 35), generating mutant H2A-H2B Δ (1-35), also did not affect binding affinity (K_D = 40 nM). This is

Table 1. Imp9-H2A-H2B binding affinities by Isothermal Titration Calorimetry

Binding species	K_D (nM) ^a	ΔH (kCal/mol)	ΔS (Cal/mol.K)	ΔG (kCal/mol)	Imp9 concentration correction factor
Imp9 + H2A-H2B	30 [10, 70] ^b	-10.2 [-10.6, -9.8] ^c	-0.6	-10.0	0.90 [0.88, 0.92] ^d 0.90 [0.87, 0.93] 0.90 [0.88, 0.92]
Imp9 + H2A Δ Tail ^e -H2B	40 [20, 60]	-11.9 [-12.4, -11.5]	-6.7	-10.0	0.83 [0.81, 0.84] 0.86 [0.84, 0.88] 0.85 [0.83, 0.86]
Imp9 + H2A- H2B Δ (1-35)	40 [10, 110]	-12.5 [-13.2, -11.9]	-8.5	-10.0	0.87 [0.82, 0.91] 0.89 [0.86, 0.91] 0.87 [0.83, 0.91]
Imp9 + H2A Δ Tail- H2B Δ Tail ^f	40 [10, 100]	-11.7 [-12.2, -11.2]	-5.9	-9.9	1.0 [0.98, 1.03] 0.97 [0.92, 1.01] 0.92 [0.88, 0.96]
Imp9 Δ H8loop + H2A-H2B	10 [1, 20]	-10.1 [-10.4, -9.9]	2.4	-10.8	0.97 [0.96, 0.99] 1.06 [1.05, 1.07] 0.99 [0.98, 1.00]
Imp9 Δ H18- H19loop + H2A- H2B	450 [350, 600]	7.9 [7.6, 8.3]	56	-8.5	1.12 [1.1, 1.2] 1.16 [1.12, 1.2] 1.15 [1.11, 1.19]
Imp9 Δ H19loop + H2A-H2B	40 [10, 100]	-11.0 [-11.4, -10.5]	-3.5	-9.9	0.99 [0.98, 1.02] 1.00 [0.98, 1.03] 1.00 [0.97, 1.04]

195 ^a The K_D value corresponds to a best-fit value obtained from global analysis of each experimental set
196 carried out in triplicate.

197 ^b The 68.3% confidence interval for K_D determined by global fit analysis of the triplicates in each
198 experimental set.

199 ^c The 68.3% confidence interval for ΔH determined by global fit analysis of the triplicates in each
200 experimental set.

201 ^d The 68.3% confidence interval for concentration correction factor of Imp9 is determined by local fit
202 analysis of each individual experiment in an experimental set of triplicates.

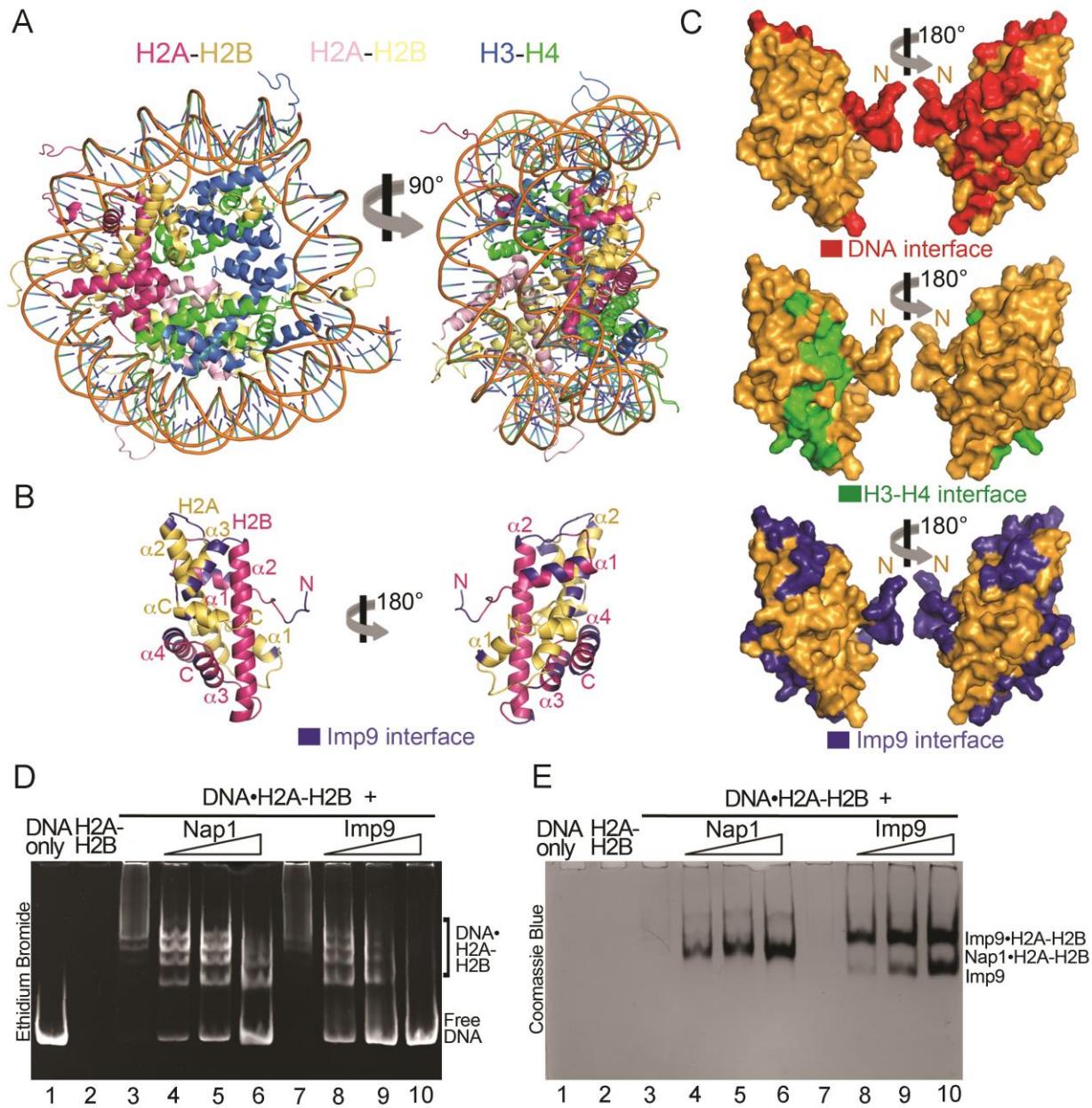
203 ^e H2A Δ Tail – globular domain of H2A (residues 14-119).

204 ^f H2A Δ Tail-H2B Δ Tail - heterodimer of residues 14-119 of H2A with residues 25-123 of H2B.

205 The following supplement is available for Table 1:

206 Figure 1 – figure supplement 1

207


208 not surprising given the weak electron density and high B-factors of H2B $^{28}\text{KKRRK}^{32}$ bound to
209 Imp9 in Interface 2 (Figure 2 – figure supplement 2). A H2A-H2B mutant dimer with only the
210 core domain (H2A residues 14-119 complexed with H2B residues 25-123; named H2A Δ Tail-
211 H2B Δ Tail) also bind as tightly to Imp9 as the full-length histones (K_D = 40 nM). Removal of the
212 Imp9 H8loop (Imp9 Δ H8loop), which forms part of the binding site for H2B $^{28}\text{KKRRK}^{32}$, also did

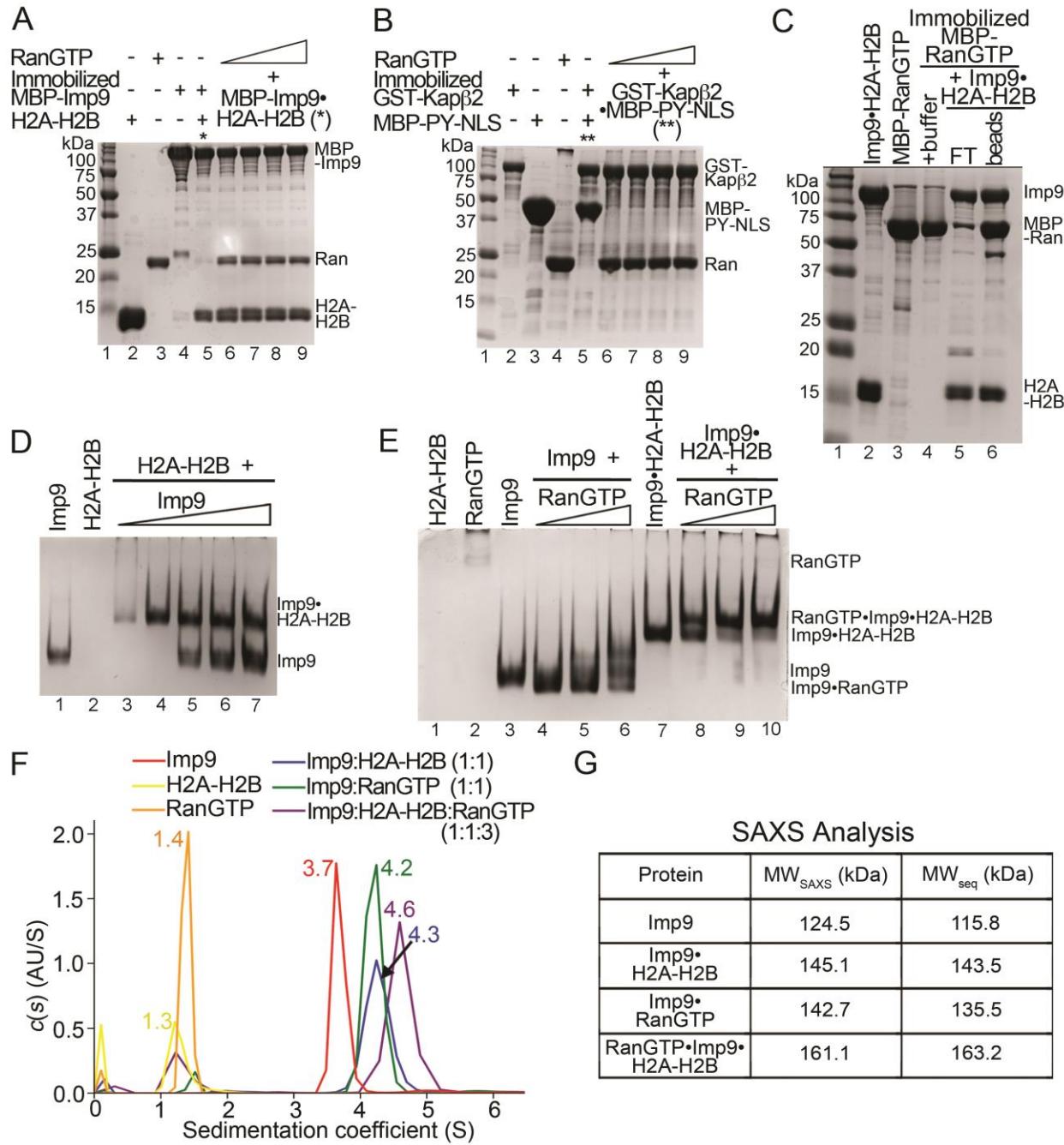
213 not decrease binding ($K_{D,Imp9\Delta H8loop} = 10$ nM; Table 1, Figure 1 – figure supplement 1E). The
214 histone tails thus do not contribute much binding energy for interactions with Imp9.

215 At Interface 3, the basic H18-19loop of Imp9 contacts the acidic patch of the histones
216 while the nearby H19loop is mostly disordered and its contribution to histone binding is
217 uncertain. Removal of the H18-19loop reduced the affinity 15-fold ($K_D = 450$ nM; Table 1, Figure
218 1 – figure supplement 1F). We note the endothermic binding reaction that occurred upon
219 truncation of this 40-residue loop. This result suggests substantial contribution of Interface 3 to
220 the total binding energy. Removal of the H19loop did not affect affinity ($K_D = 40$ nM; Table 1,
221 Figure 1 – figure supplement 1G), suggesting that this disordered loop does not participate in
222 H2A-H2B binding.

223 **Imp9 functions biochemically like a histone chaperone**

224 A large portion of the Imp9 interface on H2A-H2B overlaps with the DNA-binding and
225 H3-H4-binding interfaces used in nucleosomes (Figure 3A-C). This feature of Imp9 occluding
226 interfaces used in the nucleosome is common to many H2A-H2B histone chaperones of H2A-
227 H2B (Hammond et al., 2017). Imp9 in fact buries more surface area on H2A-H2B (1352 \AA^2) than
228 well-characterized H2A-H2B chaperones such as Nap1 (387 \AA^2), Swr1 (488 \AA^2), Anp32e (533 \AA^2),
229 Chz1 (906 \AA^2), Spt16 of FACT (185 \AA^2) and YL1 (883 \AA^2) (Hondele et al., 2013; Hong et al.,
230 2014; Kemble et al., 2015; Luger et al., 1997; Mosammaparast et al., 2002a; Obri et al., 2014;
231 Zhou et al., 2008).

232


233 **Figure 3. Imp9 has structural and biochemical characteristics of a histone chaperone.** **A.**
234 Structure of the nucleosome (1AOI): the orientation on the right shows one of the H2A-H2B
235 dimers (in red and yellow) in the same orientation as H2A-H2B shown in the right panel of B. **B.**
236 Imp9-bound H2A-H2B (Imp9 not shown) with its Imp9 interface in dark blue. Orientation of H2A-
237 H2B on the left is the same as in Figure 1C and 2A. **C.** Surface representations of the H2A-H2B
238 dimer surface (same orientation as in B) showing nucleosomal DNA (red), nucleosomal H3-H4
239 (green) and Imp9 (blue) binding interfaces. **D-E.** Gel-shift assays to probe chaperone activity of
240 Imp9. Increasing concentrations of Imp9 or Nap1 (0.5, 1.0 and 1.5 molar equivalents of H2A-
241 H2B) were added to pre-formed DNA•H2A-H2B complexes, and the mixtures separated on a
242 native gel stained with ethidium bromide to visualize DNA (D) and with Coomassie Blue to
243 visualize protein (E). The two images of the same gel are horizontally aligned. The histone
244 chaperone Nap1 binds H2A-H2B (E, lanes 4-6) leading to the release of free DNA (D, lanes 4-6).
245 Imp9 also releases free DNA (D, lanes 8-10) as it binds H2A-H2B (E, lanes 8-10).

246 Histone chaperones are a class of functionally, structurally and mechanistically diverse
247 histone-binding proteins that 'chaperone' histones to protect them from promiscuous DNA-
248 histone interactions (Elsasser and D'Arcy, 2013; Mattiroli et al., 2015) in many different contexts
249 surrounding the formation of nucleosomes (Laskey, 1978). The observation that Imp9 buries
250 more surface area on H2A-H2B than well-characterized histone chaperones raises the question
251 of whether Imp9 might also function as a histone chaperone. This function is manifested
252 biochemically by the protein outcompeting DNA from non-nucleosomal DNA•H2A-H2B
253 complexes (Andrews et al., 2010; Andrews et al., 2008; Hondele et al., 2013; Hong et al., 2014).
254 To test if Imp9 can compete H2A-H2B from DNA like histone chaperone Nap1, we performed
255 native gel-based competition assays. Titration of Nap1 or Imp9 against DNA•H2A-H2B
256 complexes leads to the release of free DNA as Nap1 or Imp9 binds H2A-H2B (Figure 3D, E).
257 These results suggest that Imp9 can act as a histone chaperone by shielding H2A-H2B from
258 promiscuous interactions while it accompanies the histones from the cytoplasm to the nucleus.

259 **RanGTP does not release H2A-H2B but assembles to form RanGTP•Imp9•H2A-H2B**

260 RanGTP generally binds importins with high affinity to dissociate Importin-cargo
261 complexes and release cargos into the nucleus. However, this appears not to be the case with
262 Imp9•H2A-H2B. When increasing concentrations of RanGTP (5-30 molar equivalents S.
263 cerevisiae Ran(1-177/Q71L)) are added to an immobilized MBP-Imp9•H2A-H2B complex, the
264 histones are not released (Figure 4A; controls shown in Figure 4 – figure supplement 1A, C).
265 The RanGTP protein used in these experiments is fully active as it easily dissociates a
266 cargo-NLS from Kap β 2 (Figure 4B and Figure 4 – figure supplement 1B). In a separate
267 experiment, the Imp9•H2A-H2B complex also remains intact when added to immobilized MBP-
268 RanGTP (Figure 4C). MBP-RanGTP binds to H2A-H2B-bound Imp9 to form what seems to be a
269 heterotetrameric MBP-RanGTP•Imp9•H2A-H2B complex (Figure 4C).

270

271

Figure 4. RanGTP does not release H2A-H2B but forms a RanGTP•Imp9•H2A-H2B complex. **A.** Pull-down binding assay to probe RanGTP (*S. cerevisiae* Ran(1-179/Q71L)) interactions with the Imp9•H2A-H2B complex. Increasing concentrations of RanGTP (12.5 μ M, 25 μ M, 50 μ M or 75 μ M) were added to 2.5 μ M MBP-Imp9•H2A-H2B that is immobilized on amylose resin. After extensive washing, the bound proteins were visualized by Coomassie-stained SDS-PAGE. Controls are shown in Figure 4 – figure supplement 1. **B.** Pull-down binding assays to show RanGTP mediated dissociation of the GST-Kap β 2•MBP-PY-NLS complex. Increasing concentrations of RanGTP (12.5 μ M, 25 μ M, 50 μ M or 75 μ M) were added to 2.5 μ M GST-Kap β 2•MBP-PY-NLS (immobilized). After extensive washing, bound proteins were visualized by Coomassie-stained SDS-PAGE. Controls are shown in Figure 4 – figure

282 supplement 1. **C.** Pull-down binding assay where preformed Imp9•H2A-H2B was added to
283 immobilized MBP-RanGTP. After washing, the bound proteins were visualized by Coomassie-
284 stained SDS-PAGE. **D.** EMSA of Imp9 titrated at 0.5-2.5 molar equivalents to constant H2A-
285 H2B. Upward shift of the Imp9 band shows that Imp9 interacts with H2A-H2B. **E.** EMSA of Ran
286 titrated at 1-3 molar equivalents to constant Imp9 (lanes 3-6) or Imp9•H2A-H2B (lanes 7-10).
287 Downward shift of the Imp9 band shows that Imp9 interacts with Ran to form Imp9•RanGTP
288 (compare lanes 4-6 to lane 3), while upward shift of the Imp9•H2A-H2B band shows that a
289 heterotetrameric Ran•Imp9•H2A-H2B complex forms (compare lanes 8-10 to lane 7). No Imp9
290 or Imp9•RanGTP band is present in lanes 8-10 indicating no dissociation of the Imp9•H2A-H2B
291 complex by RanGTP. Proteins inputs for lanes 1-10 are shown in Figure 4 – supplement 1D. **F.**
292 Analytical ultracentrifugation produced sedimentation profiles for Imp9, H2A-H2B, RanGTP, the
293 1:1 molar ratio mix of Imp9 and H2A-H2B dimer, the 1:1 molar ratio mix of Imp9 and RanGTP,
294 and the 1:1:3 molar ratio mix of Imp9, H2A-H2B dimer and RanGTP. **G.** Molecular weights
295 estimated from merged SAXS profiles (MW_{SAXS}) for Imp9, Imp9•H2A-H2B, Imp9•RanGTP, and
296 RanGTP•Imp9•H2A-H2B, compared with molecular weights from the protein sequences (MW_{seq}).
297

298 The following figure supplement is available for Figure 4:
299 Figure 4 – figure supplement 1
300 Figure 4 – figure supplement 2
301 Figure 4 – figure supplement 3
302 Figure 4 – figure supplement 4
303 Figure 4 – source data 1
304 Figure 4 – source data 2

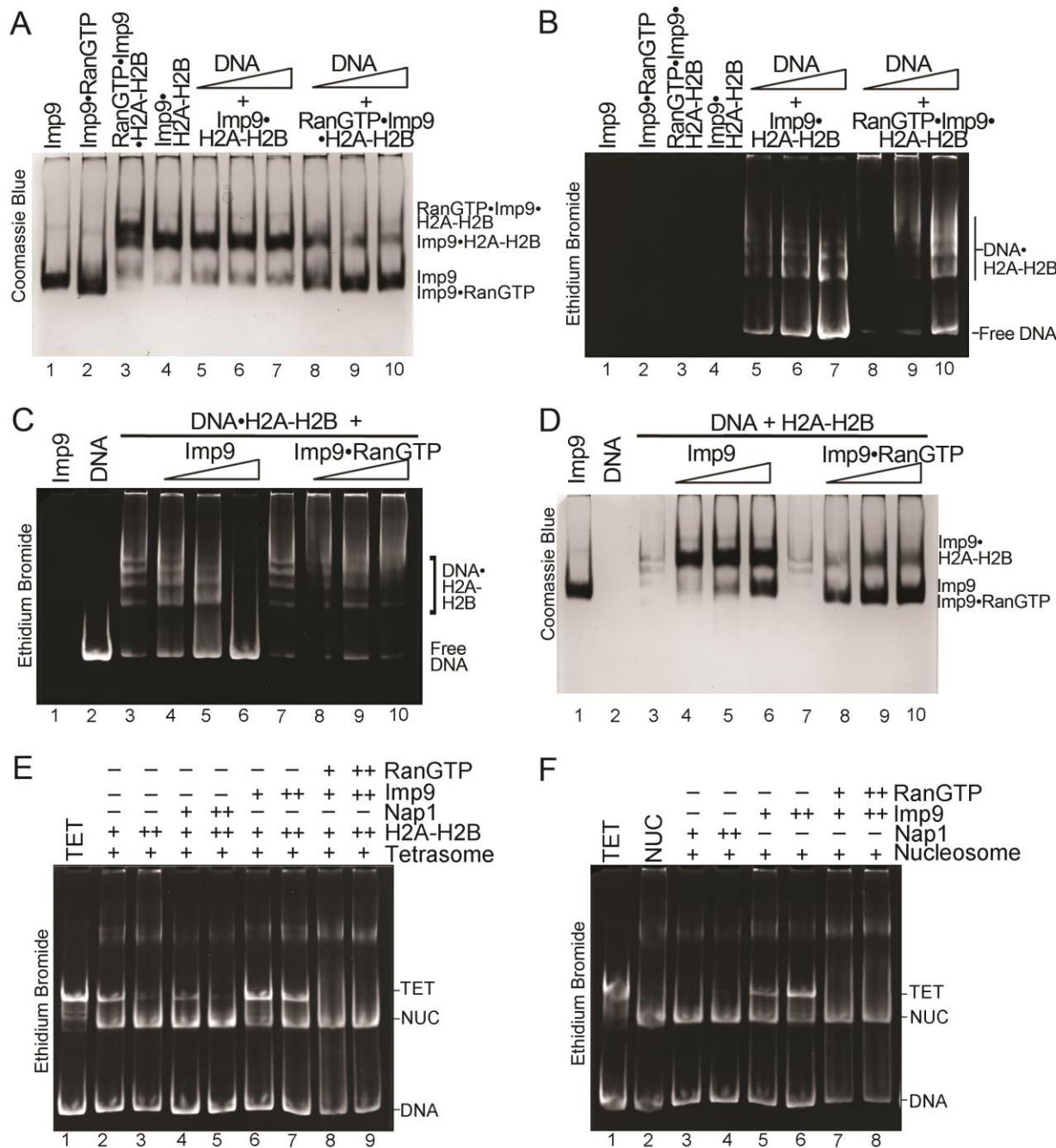
305 We examined the interactions of Imp9•H2A-H2B with RanGTP in solution using
306 electrophoretic mobility shift assays and size exclusion chromatography. Electrophoretic
307 mobility shift assays (EMSA) show the formation of a 1:1 complex between Imp9 and H2A-H2B
308 (Figure 4D) as well as between Imp9 and Ran (Figure 4E, lanes 3-6). A complex containing
309 equimolar amounts of Imp9, H2A-H2B and Ran can also form (Figure 4E, lanes 7-10). Size
310 exclusion chromatography of Imp9•H2A-H2B in the presence of excess RanGTP also shows a
311 large complex that contains Imp9, H2A-H2B and Ran (Figure 4 – figure supplement 2).

312 We used analytical ultracentrifugation to rigorously and quantitatively assess the
313 formation of a heterotetrameric RanGTP•Imp9•H2A-H2B complex. We examined individual
314 Imp9, H2A-H2B and RanGTP proteins, equimolar mixes of Imp9 + H2A-H2B and Imp9 +
315 RanGTP, and a 1:1:3 molar ratio mix of Imp9, H2A-H2B and RanGTP by analytical
316 ultracentrifugation (protein concentrations 3-10 μ M; Figure 4F). Sedimentation coefficient values
317 of the individual proteins estimated from the sedimentation velocity experiments are consistent

318 with their molecular weights: Imp9 (3.7S), H2A-H2B (1.3S) and RanGTP (1.4S). The binary
319 complexes of Imp9•H2A-H2B and Imp9•Ran are both larger, at 4.3S and 4.2S, respectively. The
320 mixture of Imp9, H2A-H2B and RanGTP gave peaks at 1.4S (excess Ran) and 4.6S. The 4.6S
321 assembly is larger than either Imp9•H2A-H2B or Imp9•Ran and is likely the quaternary
322 RanGTP•Imp9•H2A-H2B complex.

323 We also studied Imp9, Imp9•RanGTP, Imp9•H2A-H2B, and RanGTP•Imp9•H2A-H2B
324 (protein concentrations 31-43 μ M) by small angle X-ray scattering (SAXS). SAXS profiles for the
325 four Imp9-containing samples were analyzed to calculate radius of gyration (R_g), maximum
326 particle size (D_{max}) and pair distribution function ($P(r)$ (Figure 4G, Figure 4 – figure supplement 3,
327 Figure 4 – source data 1 and 2). The linearity of the Guinier plots confirms a high degree of
328 homogeneity for each of the SAXS samples (Figure 4 – figure supplement 3A-D). Molecular
329 weight of the RanGTP•Imp9•H2A-H2B complex was estimated to be 161.1 kDa by using SAXS
330 MOW (Fischer, 2010) a value nearly identical to the expected molecular weight of 163.2 kDa
331 from the sequence thus confirming stability of the 4-polypeptide chain RanGTP•Imp9•H2A-H2B
332 complex in solution (Figure 4G).

333 We compared the Imp9•H2A-H2B structure with the structures of different importins
334 bound to RanGTP, to predict the Ran-binding site on Imp9. In these structures, Ran is always
335 sandwiched between N-terminal and either central or C-terminal HEAT repeats of the importins
336 (Figure 4 – figure supplement 4). Importin-RanGTP interactions at the first four HEAT repeats of
337 importins (binding Switch 1, Switch 2 and α 3 of RanGTP) appear to be structurally conserved
338 even though the interface on the opposite side of Ran involves different central or C-terminal
339 HEAT repeats in different importins (Chook and Blobel, 1999; Kobayashi and Matsuura, 2013;
340 Lee et al., 2005; Tsirkone et al., 2014; Vetter et al., 1999). Structural alignment of HEAT repeats
341 1-4 of Imp9 with HEAT repeats 1-4 of Importin- β (1-462)•RanGTP (PDB ID 1IBR (Vetter et al.,
342 1999); r.m.s.d. of 152 C α s in the alignment is 3.27 \AA), Kap95•RanGTP (2BKU (Lee et al., 2005)


343 r.m.s.d. of 152 C_αs in the alignment is 3.20 Å), Kapβ2•RanGTP (1QBK (Chook and Blobel,
344 1999) r.m.s.d. of 152 C_αs in the alignment is 4.02 Å), Kap121•RanGTP (3W3Z (Kobayashi and
345 Matsuura, 2013); r.m.s.d. of 144 C_αs in the alignment is 2.51 Å), Transportin-SR2•RanGTP
346 (4C0Q; (Maertens et al., 2014) r.m.s.d. of 144 C_αs in the alignment is 5.02 Å) and Importin-
347 13•RanGTP (2X19 (Bono et al., 2010); r.m.s.d. of 144 C_αs in the alignment is 3.29 Å), and
348 examination of the six structures at a single orientation of Imp9, show that Ran binds in very
349 similar orientations to very similar locations at the N-terminus of these importins (Figure 4 –
350 supplement 4A-F). Examination of the interactions between the N-terminal HEAT repeats of
351 Kap95, Kap121, Importin-β, Importin-13 and Transportin-SR2 with RanGTP, together with the
352 sequence alignment of this region of the importins show positional/structural conservation of
353 many interacting and potentially interacting (in Imp9) residues (Figure 4 – supplement 5A-G).
354 These analyses suggest that the N-terminal HEAT repeats of Imp9 are likely to be important in
355 binding RanGTP.

356 Structural alignment of HEAT repeats 1-4 of Imp9 and Kap121•RanGTP allows us to
357 predict the RanGTP binding site at the N-terminus of Imp9 (Figure 4 – figure supplement 6A, B).
358 The prediction is supported by an Imp9 mutant with HEAT repeats 1-3 removed that no longer
359 binds RanGTP (Figure 4 – figure supplement 6C-E). This likely Ran-binding site at the N-
360 terminus of Imp9 appears separate from but adjacent to the H2A-H2B binding site (Figure 4 –
361 figure supplement 6A, B). The GTPase can most likely access Imp9 without dislodging H2A-
362 H2B but proximity of RanGTP to the histones could modulate Imp9-histones interactions
363 especially the kinetics of binding.

364 **RanGTP•Imp9•H2A-H2B is tuned to release histones for nucleosome assembly**

365 We performed native gel-based competition assays to titrate DNA against Imp9•H2A-H2B or
366 Ran•Imp9•H2A-H2B. DNA is unable to compete H2A-H2B from Imp9•H2A-H2B (Figure 3D-E
367 and Figure 5A, lanes 5-7) but can compete H2A-H2B from Ran•Imp9•H2A-H2B to produce

368 Imp9•Ran and DNA•H2A-H2B (Figure 5A-B, lanes 8-10). Unlike Imp9, which efficiently
 369 displaces DNA from

370
 371 **Figure 5. Ran modulates Imp9-H2A-H2B interactions for H2A-H2B deposition.** A, B. DNA
 372 is titrated at 0.5, 1 and 2 molar equivalents of preformed Imp9•H2A-H2B (equimolar Imp9 and
 373 H2A-H2B mixed together) or RanGTP•Imp9•H2A-H2B (equimolar Imp9, H2A-H2B and RanGTP
 374 added together). Images of the same native gel, Coomassie stained in A and ethidium bromide
 375 stained in B, are aligned for comparison. DNA cannot compete for H2A-H2B from the
 376 Imp9•H2A-H2B, leaving free DNA (B, increasing amounts from lanes 5 to 7) and intact
 377 Imp9•H2A-H2B (A, lanes 5-7). In contrast, DNA can compete for H2A-H2B from

378 RanGTP•Imp9•H2A-H2B resulting in Imp9•RanGTP complexes (**A**, lanes 8-10), DNA•H2A-H2B
379 complexes and very little free DNA (**B**, lanes 8-10). **C, D.** Imp9 or Imp9•Ran (equimolar Imp9
380 and RanGTP added together) is titrated at 0.5-1.5 molar equivalents of H2A-H2B (in a
381 DNA•H2A-H2B 1:7 complex). Images of the same native gel, ethidium bromide stained in **C** and
382 Coomassie stained in **D**, are aligned for comparison. Imp9 releases free DNA from DNA•H2A-
383 H2B (**C**, lanes 3-6) and binds histones to form an Imp9•H2A-H2B complex (**D**, lanes 4-6). By
384 comparison, Imp9•Ran releases little free DNA from DNA•H2A-H2B (**C**, lanes 7-10). **E.** The
385 presence of Ran and Imp9 facilitates H2A-H2B deposition onto the nucleosome. Nucleosome
386 assembly assay where either H2A-H2B, Nap1•H2A-H2B, Imp9•H2A-H2B or
387 RanGTP•Imp9•H2A-H2B is titrated in molar equivalents of 0.5 and 0.75 to tetrasome (TET; 2.5
388 μ M). Nap1 and Imp9•Ran can form nucleosomes (NUC) while Imp9 cannot. Coomassie staining
389 in Figure 5 – figure supplement 1B. **F** Nucleosome disassembly assay where either Nap1, Imp9
390 or Imp9•Ran is titrated in molar equivalents of 0.5 and 0.75 to constant nucleosome (NUC; 2.5
391 μ M). Imp9 can disassemble nucleosomes to tetrasomes while Nap1 and Imp9-Ran cannot.
392 Coomassie staining in Figure 5 – figure supplement 1C.

393 The following figure supplement is available for Figure 5:
394 Figure 5 – figure supplement 1
395

396 the DNA•H2A-H2B complex (Figure 5C-D, lanes 4-6), Imp9•RanGTP does not displace DNA
397 from the DNA•H2A-H2B complex (Figure 5C-D, lanes 8-10). These results show that the
398 interaction between Imp9 and H2A-H2B is altered by RanGTP.

399 We next tested the ability of Imp9 and Imp9•RanGTP to assemble and disassemble
400 nucleosomes (Figure 5E, F). Like Nap1, Imp9 and Imp9•RanGTP do not influence the stability
401 of the tetrasome (Figure 5 – figure supplement 1A). To monitor nucleosome assembly, we
402 titrated H2A-H2B alone or with Nap1, Imp9 or Imp9+RanGTP against tetrasome and assayed
403 the formation of nucleosomes (Figure 5E). Nucleosomes form from H2A-H2B alone or with
404 H2A-H2B and Nap1 or Imp9+RanGTP (Figure 5E, lanes 4-5 and 8-9) but not with Imp9 alone
405 (Figure 5E, lanes 6-7). Imp9 will bind H2A-H2B preventing its deposition on tetrasomes to make
406 a nucleosome (Figure 5 – figure supplement 1B, lanes 6-7). Notably, in the presence of
407 RanGTP, Imp9 is better at promoting H2A-H2B deposition than either Nap1 or no chaperone.
408 To monitor nucleosome disassembly, we titrated Nap1, Imp9, or Imp9+RanGTP against
409 nucleosomes (Figure 5F). We see that Imp9 can extract H2A-H2B from the nucleosome to
410 produce tetrasome and Imp9•H2A-H2B (Figure 5F, lanes 5-6; Figure 5 – figure supplement 1C),
411 while Nap1 and Imp9+RanGTP have no effect (Figure 5F, lanes 3-4 and 7-8). These data

412 reinforce the chaperone-like activity of Imp9 and show that Ran influences the interaction
413 between Imp9 and H2A-H2B, possibly through an allosteric mechanism as comparative analysis
414 with other importin•RanGTP complexes suggests that the RanGTP binding site does not overlap
415 with the H2A-H2B binding site. The RanGTP binds the Imp9•H2A-H2B complex to modulate
416 importin-histones interactions to facilitate release of the histones for nucleosome assembly.

417

418 **Discussion**

419 The solenoid-shaped Imp9 wraps around the folded globular domain of the H2A-H2B
420 dimer, leaving most of the N-terminal tails of H2A, H2B and the C-terminal tail of H2A
421 disordered in the complex. Only the 5-residue ²⁸KKRRK³² segment of the H2B tail contacts Imp9
422 even though weak electron density and high atomic displacement parameters of the H2B tail
423 suggests that these interactions are dynamic. Our structural observations that Imp9 binds
424 mostly to the globular domain of the H2A-H2B are also consistent with the lack of effect in Imp9
425 binding when either or both histone tails are deleted (Table 1), and with the previously reported
426 nuclear localization of a mutant of H2A-H2B that lacks both its N-terminal tails (Thiriet and
427 Hayes, 2001). However, very weak dynamic/fuzzy long-range electrostatic interactions between
428 Imp9 and histones tails may still exist - we had previously reported very weak and dynamic
429 interactions between an importin-cargo pair by NMR that could not be observed by X-ray
430 crystallography or detected in mutagenesis/ITC experiments (Yoshizawa, 2018). Nevertheless,
431 H2A-H2B thus belongs to a small category of nuclear import cargos that mostly use surfaces of
432 folded domains rather than extended linear nuclear import/localization motifs to bind their
433 importins (Aksu et al., 2016; Bono et al., 2010; Cook et al., 2009; Grunwald and Bono, 2011;
434 Grunwald et al., 2013; Matsuura and Stewart, 2004; Okada et al., 2009).

435 Imp9-binding blocks both the nucleosomal DNA- and H3-H4-binding sites of H2A-H2B in
436 a manner that is reminiscent of histone chaperone-H2A-H2B interactions. Interestingly, the

437 Imp9•H2A-H2B binding interface is much larger than any known complexes of H2A-H2B or
438 H2A.Z/H2B bound to histone chaperones (Elsasser and D'Arcy, 2013; Mattioli et al., 2015).
439 Imp9 also acts biochemically like a histone chaperone to prevent H2A-H2B from aggregating
440 with DNA *in vitro*. The ability of Imp9 to structurally sequester H2A-H2B from promiscuous
441 interactions with DNA and its function in trafficking the histones fit with the broadly defined class
442 of histone-binding proteins known as histone chaperones (Elsasser and D'Arcy, 2013; Mattioli
443 et al., 2015). It is also generally thought that there is little to no free histones in the cell as they
444 are either bound in nucleosomes or by histone chaperones (Elsasser and D'Arcy, 2013; Mattioli
445 et al., 2015). Imp9 binds H2A-H2B in the cytoplasm, acts as a storage chaperone in the
446 cytoplasm and a nuclear import receptor to take histones through the NPC (Jakel et al., 2002a;
447 Kimura et al., 2017; Mosammaparast et al., 2002a; Mosammaparast et al., 2001; Muhlhausser
448 et al., 2001).

449 Görlich and colleagues proposed in 2002 that negatively charged importins act as
450 chaperones toward positively charged cargo proteins like histones (Jakel et al., 2002b). We
451 provide structural evidence to support this proposal as the mostly negatively charged Imp9
452 indeed shields the mostly positively charged histone-fold domain of H2A-H2B, and perhaps also
453 dynamically shields the extended basic histone tails. The ability of Imp9 to chaperone H2A-H2B,
454 however, goes beyond charge shielding. Despite overall charge complementarity, there are only
455 a few salt bridges at the Imp9•H2A-H2B interface, which also employs hydrophobic interactions
456 and hydrogen bonds, many involving main chains of both proteins. Imp9 also shields many
457 hydrophobic patches on H2A-H2B. The interaction further involves a charge reversal where a
458 basic surface at the C-terminal end of Imp9 interacts with the acidic patch of H2A-H2B. The
459 extensive and persistent interactions that allows Imp9 to surround and shield H2A-H2B also
460 differ significantly from the recently revealed chaperoning interactions of another importin, that
461 of Kap β 2 (or Transportin-1) with the Fused in Sarcoma protein (FUS). Kap β 2-FUS interactions
462 are anchored through high affinity binding at the 26-residue PY-NLS linear motif of FUS that

463 then enable weak, distributed and dynamic interactions with multiple mostly intrinsically
464 disordered regions of FUS, to block formation of higher-order FUS assemblies and liquid-liquid
465 phase separation (Yoshizawa, 2018).

466 The way the Imp9 solenoid wraps around H2A-H2B leaves the predicted N-terminal
467 Ran-binding site of Imp9 accessible and ready to bind RanGTP. We showed by pull-down,
468 electrophoretic mobility shift, size exclusion chromatography, analytical ultracentrifugation and
469 SAXS experiments that Imp9 binds both the histones and RanGTP simultaneously and stably,
470 suggesting that unlike most importin-cargo complexes, Imp9•H2A-H2B is unlikely to be
471 dissociated by RanGTP alone upon entering the nucleus. This finding is not without precedence
472 as Pemberton and colleagues previously showed an assembly that contains Kap114, H2A-H2B,
473 RanGTP and the histone chaperone Nap1 (Mosammaparast et al., 2002a). Unlike the
474 Pemberton study, which found the complex containing RanGTP, histones and importin to be
475 intact in the yeast nucleus, we do not detect interactions between Imp9 and H2A-H2B in the
476 nucleus even though that interaction is easily observed in the cytoplasm (Figure 1A, B). Imp9 is
477 likely dissociated from histones soon after the complex enters the nucleus.

478 We showed that RanGTP changes the interactions between Imp9 and H2A-H2B as it
479 forms the RanGTP•Imp9•H2A-H2B complex. DNA competes effectively with
480 RanGTP•Imp9•H2A-H2B to produce Imp9•RanGTP and DNA•H2A-H2B even though it is unable
481 to extract H2A-H2B from Imp9•H2A-H2B. Furthermore, RanGTP•Imp9•H2A-H2B is better at
482 promoting H2A-H2B deposition to assemble nucleosome than either Nap1•H2A-H2B or no
483 chaperone, while Imp9 alone cannot deposit H2A-H2B. The GTPase in the RanGTP•Imp9•H2A-
484 H2B complex appears to modulate Imp9-H2A-H2B interactions to facilitate histone release and
485 nucleosome assembly. Accessibility of the N-terminal HEAT repeats of Imp9 in the histones
486 complex may allow formation of the RanGTP•Imp9•H2A-H2B complex, but proximity of the Ran
487 and histones binding sites coupled with the flexibility of the HEAT repeats architecture of Imp9

488 and the propensity for conformational changes likely changed the kinetics of Imp9-histone
489 binding.

490 Although histones can be deposited by RanGTP•Imp9•H2A-H2B onto DNA or the
491 tetrasome, it remains unclear how H2A-H2B is released from Imp9 in cells. Assembling
492 nucleosomes may release H2A-H2B from RanGTP•Imp9•H2A-H2B or the histones may be
493 passed to another histone chaperone or nucleosome assembly factor as part of a chaperone
494 hand-off cascade in the nucleus. These questions and the one regarding potential additional
495 roles for Imp9 in the cytoplasm are topics for future studies.

496

497 **Acknowledgements**

498 We thank Bing Li for plasmids expressing H2A and H2B, Hongtao Yu for the H2B^{mCherry} stable
499 cell lines, Binita Shakya for Ran protein, James Chen for advice on X-ray structure
500 determination, and the Structural Biology Laboratory and Macromolecular Biophysics Resource
501 at UTSW for their assistance with crystallographic and biophysical data collection.
502 Crystallographic results are derived from work performed at Argonne National Laboratory,
503 Structural Biology Center at the Advanced Photon Source. Argonne is operated by UChicago
504 Argonne, LLC, for the U.S. Department of Energy (DOE), Office of Biological and Environmental
505 Research (BER) under contract DE-AC02-06CH11357. We thank T. Matsui and T.M. Weiss at
506 SSRL, SLAC National Accelerator Laboratory, for assistance with collecting SAXS data. SAXS
507 experiments were performed at the SSRL, SLAC National Accelerator Laboratory operated for
508 DOE by Stanford University. The SSRL SMBP is supported by the DOE BER, by the National
509 Institutes of Health (NIH), NCRR, Biomedical Technology Program (P41RR001209), and by
510 NIGMS, NIH (P41GM103393). This work was funded by NIGMS of NIH under Awards
511 R01GM069909 (Y.M.C.), U01GM98256-01 (Y.M.C and A.S.), R01GM083960 (A.S),
512 P41GM109824 (A.S), R01GM112108 (A.S), the Welch Foundation Grants I-1532 (Y.M.C.), the

513 Leukemia and Lymphoma Society Scholar Award (Y.M.C.), start-up funds from the University of
514 Texas at Dallas (S.D.) and the University of Texas Southwestern Endowed Scholars Program
515 (Y.M.C.).

516 **Declaration of Interests**

517 The authors declare no conflict of interest.

518

519

520 **References**

521 Adams, C.R., and Kamakaka, R.T. (1999). Chromatin assembly: biochemical identities and
522 genetic redundancy. *Curr Opin Genet Dev* 9, 185-190.

523 Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J.,
524 Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., *et al.* (2010). PHENIX: a comprehensive
525 Python-based system for macromolecular structure solution. *Acta Crystallogr D Biol Crystallogr*
526 66, 213-221.

527 Aksu, M., Trakhanov, S., and Gorlich, D. (2016). Structure of the exportin Xpo4 in complex with
528 RanGTP and the hypusine-containing translation factor eIF5A. *Nat Commun* 7, 11952.

529 Andrews, A.J., Chen, X., Zevin, A., Stargell, L.A., and Luger, K. (2010). The histone chaperone
530 Nap1 promotes nucleosome assembly by eliminating nonnucleosomal histone DNA interactions.
531 *Mol Cell* 37, 834-842.

532 Andrews, A.J., Downing, G., Brown, K., Park, Y.J., and Luger, K. (2008). A thermodynamic
533 model for Nap1-histone interactions. *J Biol Chem* 283, 32412-32418.

534 Annunziato, A.T. (2013). Assembling chromatin: the long and winding road. *Biochim Biophys
535 Acta* 1819, 196-210.

536 Baake, M., Bauerle, M., Doenecke, D., and Albig, W. (2001). Core histones and linker histones
537 are imported into the nucleus by different pathways. *Eur J Cell Biol* 80, 669-677.

538 Baker, N.A., Sept, D., Joseph, S., Holst, M.J., and McCammon, J.A. (2001). Electrostatics of
539 nanosystems: application to microtubules and the ribosome. *Proc Natl Acad Sci U S A* 98,
540 10037-10041.

541 Bevington, P.R.R., D.K. Data Reduction and Error Analysis for the Physical Sciences. Mc-Graw-
542 Hill, 1992.

543 Blackwell, J.S., Jr., Wilkinson, S.T., Mosammaparast, N., and Pemberton, L.F. (2007).
544 Mutational analysis of H3 and H4 N termini reveals distinct roles in nuclear import. *J Biol Chem*
545 282, 20142-20150.

546 Bono, F., Cook, A.G., Grunwald, M., Ebert, J., and Conti, E. (2010). Nuclear import mechanism
547 of the EJC component Mago-Y14 revealed by structural studies of importin 13. *Mol Cell* 37, 211-
548 222.

549 Borek, D., Cymborowski, M., Machius, M., Minor, W., and Otwinowski, Z. (2010). Diffraction
550 data analysis in the presence of radiation damage. *Acta Crystallogr D Biol Crystallogr* 66, 426-
551 436.

552 Borek, D., Dauter, Z., and Otwinowski, Z. (2013). Identification of patterns in diffraction
553 intensities affected by radiation exposure. *J Synchrotron Radiat* 20, 37-48.

554 Borek, D., Minor, W., and Otwinowski, Z. (2003). Measurement errors and their consequences
555 in protein crystallography. *Acta crystallographica. Section D, Biological crystallography* 59,
556 2031-2038.

557 Brautigam, C.A. (2015). Calculations and Publication-Quality Illustrations for Analytical
558 Ultracentrifugation Data. *Methods Enzymol* 562, 109-133.

559 Chen, V.B., Arendall, W.B., 3rd, Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J.,
560 Murray, L.W., Richardson, J.S., and Richardson, D.C. (2010). MolProbity: all-atom structure
561 validation for macromolecular crystallography. *Acta Crystallogr D Biol Crystallogr* 66, 12-21.

562 Chook, Y.M., and Blobel, G. (1999). Structure of the nuclear transport complex karyopherin-
563 beta2-Ran x GppNHP. *Nature* 399, 230-237.

564 Chook, Y.M., Jung, A., Rosen, M.K., and Blobel, G. (2002). Uncoupling Kapbeta2 substrate
565 dissociation and ran binding. *Biochemistry* 41, 6955-6966.

566 Chook, Y.M., and Suel, K.E. (2011). Nuclear import by karyopherin-betas: recognition and
567 inhibition. *Biochim Biophys Acta* 1813, 1593-1606.

568 Cook, A., Bono, F., Jinek, M., and Conti, E. (2007). Structural biology of nucleocytoplasmic
569 transport. *Annu Rev Biochem* 76, 647-671.

570 Cook, A.G., Fukuhara, N., Jinek, M., and Conti, E. (2009). Structures of the tRNA export factor
571 in the nuclear and cytosolic states. *Nature* 461, 60-65.

572 Doublie, S. (1997). Preparation of selenomethionyl proteins for phase determination. *Methods*
573 *Enzymol* 276, 523-530.

574 Dyer, P.N., Edayathumangalam, R.S., White, C.L., Bao, Y., Chakravarthy, S., Muthurajan, U.M.,
575 and Luger, K. (2004). Reconstitution of nucleosome core particles from recombinant histones
576 and DNA. *Methods Enzymol* 375, 23-44.

577 Ejlassi-Lassallette, A., Mocquard, E., Arnaud, M.C., and Thiriet, C. (2011). H4 replication-
578 dependent diacetylation and Hat1 promote S-phase chromatin assembly in vivo. *Mol Biol Cell*
579 22, 245-255.

580 Elsasser, S.J., and D'Arcy, S. (2013). Towards a mechanism for histone chaperones. *Biochim
581 Biophys Acta* 1819, 211-221.

582 Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development of
583 Coot. *Acta Crystallogr D Biol Crystallogr* 66, 486-501.

584 Fischer, H., Neto, M.D., Napolitano, H.B., Polikarpov, I., and Craievich, A.F. (2010).
585 Determination of the molecular weight of proteins in solution from a single small-angle X-ray
586 scattering measurement on a relative scale. *J Applied Crystallography*, 101-109.

587 Franke, D., and Svergun, D.I. (2009). DAMMIF, a program for rapid ab-initio shape
588 determination in small-angle scattering. *J Appl Crystallogr* 42, 342-346.

589 Fung, H.Y., Fu, S.C., Brautigam, C.A., and Chook, Y.M. (2015). Structural determinants of
590 nuclear export signal orientation in binding to exportin CRM1. *Elife* 4.

591 Gorlich, D., and Kutay, U. (1999). Transport between the cell nucleus and the cytoplasm. *Annu
592 Rev Cell Dev Bi* 15, 607-660.

593 Grunwald, M., and Bono, F. (2011). Structure of Importin13-Ubc9 complex: nuclear import and
594 release of a key regulator of sumoylation. *EMBO J* 30, 427-438.

595 Grunwald, M., Lazzaretti, D., and Bono, F. (2013). Structural basis for the nuclear export activity
596 of Importin13. *EMBO J* 32, 899-913.

597 Hammond, C.M., Stromme, C.B., Huang, H., Patel, D.J., and Groth, A. (2017). Histone
598 chaperone networks shaping chromatin function. *Nat Rev Mol Cell Biol* 18, 141-158.

599 Hondele, M., Stuwe, T., Hassler, M., Halbach, F., Bowman, A., Zhang, E.T., Nijmeijer, B.,
600 Kotthoff, C., Rybin, V., Amlacher, S., *et al.* (2013). Structural basis of histone H2A-H2B
601 recognition by the essential chaperone FACT. *Nature* 499, 111-114.

602 Hong, J.J., Feng, H.Q., Wang, F., Ranjan, A., Chen, J.H., Jiang, J.S., Ghirlando, R., Xiao, T.S.,
603 Wu, C., and Bai, Y.W. (2014). The Catalytic Subunit of the SWR1 Remodeler Is a Histone
604 Chaperone for the H2A.Z-H2B Dimer. *Mol Cell* 53, 498-505.

605 Houtman, J.C., Brown, P.H., Bowden, B., Yamaguchi, H., Appella, E., Samelson, L.E., and
606 Schuck, P. (2007). Studying multisite binary and ternary protein interactions by global analysis
607 of isothermal titration calorimetry data in SEDPHAT: application to adaptor protein complexes in
608 cell signaling. *Protein Sci* 16, 30-42.

609 Izaurrealde, E., Kutay, U., von Kobbe, C., Mattaj, I.W., and Gorlich, D. (1997). The asymmetric
610 distribution of the constituents of the Ran system is essential for transport into and out of the
611 nucleus. *EMBO J* 16, 6535-6547.

612 Jakel, S., Albig, W., Kutay, U., Bischoff, F.R., Schwamborn, K., Doenecke, D., and Gorlich, D.
613 (1999). The importin beta/importin 7 heterodimer is a functional nuclear import receptor for
614 histone H1. *Embo Journal* 18, 2411-2423.

615 Jakel, S., Mingot, J.M., Schwarzmaier, P., Hartmann, E., and Gorlich, D. (2002a). Importins fulfil
616 a dual function as nuclear import receptors and cytoplasmic chaperones for exposed basic
617 domains. *EMBO J* 21, 377-386.

618 Jakel, S., Mingot, J.M., Schwarzmaier, P., Hartmann, E., and Gorlich, D. (2002b). Importins fulfil
619 a dual function as nuclear import receptors and cytoplasmic chaperones for exposed basic
620 domains. *Embo Journal* 21, 377-386.

621 Johnson-Saliba, M., Siddon, N.A., Clarkson, M.J., Tremethick, D.J., and Jans, D.A. (2000).
622 Distinct importin recognition properties of histones and chromatin assembly factors. *FEBS Lett*
623 467, 169-174.

624 Ke, Y.W., Huh, J.W., Warrington, R., Li, B., Wu, N., Leng, M., Zhang, J.M., Ball, H.L., Li, B., and
625 Yu, H.T. (2011). PICH and BLM limit histone association with anaphase centromeric DNA
626 threads and promote their resolution. *Embo Journal* 30, 3309-3321.

627 Keller, S., Vargas, C., Zhao, H., Piszczek, G., Brautigam, C.A., and Schuck, P. (2012). High-
628 precision isothermal titration calorimetry with automated peak-shape analysis. *Anal Chem* 84,
629 5066-5073.

630 Kemble, D.J., McCullough, L.L., Whitby, F.G., Formosa, T., and Hill, C.P. (2015). FACT Disrupts
631 Nucleosome Structure by Binding H2A-H2B with Conserved Peptide Motifs. *Mol Cell* 60, 294-
632 306.

633 Kikhney, A.G., and Svergun, D.I. (2015). A practical guide to small angle X-ray scattering
634 (SAXS) of flexible and intrinsically disordered proteins. *FEBS Letters*, 2570-2577.

635 Kim, S.J., Fernandez-Martinez, J., Nudelman, I., Shi, Y., Zhang, W., Raveh, B., Herricks, T.,
636 Slaughter, B.D., Hogan, J.A., Upla, P., *et al.* (2018). Integrative structure and functional
637 anatomy of a nuclear pore complex. *Nature* 555, 475-482.

638 Kimura, M., Morinaka, Y., Imai, K., Kose, S., Horton, P., and Imamoto, N. (2017). Extensive
639 cargo identification reveals distinct biological roles of the 12 importin pathways. *Elife* 6.

640 Kobayashi, J., and Matsuura, Y. (2013). Structural basis for cell-cycle-dependent nuclear import
641 mediated by the karyopherin Kap121p. *J Mol Biol* 425, 1852-1868.

642 Konarev, P.V., Volkov, V.V., Sokolova, A.V., Koch, M.H.J., and Svergun, D.I. (2003). PRIMUS:
643 a Windows PC-based system for small-angle scattering data analysis. *J Appl Crystallogr* 36,
644 1277-1282.

645 Kosinski, J., Mosalaganti, S., von Appen, A., Teimer, R., DiGuilio, A.L., Wan, W., Bui, K.H.,
646 Hagen, W.J., Briggs, J.A., Glavy, J.S., *et al.* (2016). Molecular architecture of the inner ring
647 scaffold of the human nuclear pore complex. *Science* 352, 363-365.

648 Kuwamoto, S., Akiyama, S., and Fujisawa, T. (2004). Radiation damage to a protein solution,
649 detected by synchrotron X-ray small-angle scattering: dose-related considerations and
650 suppression by cryoprotectants. *J Synchrotron Radiat* 11, 462-468.

651 Laskey, R., Honda, B., Mills, A. & Finch, J. (1978). Nucleosomes are assembled by an acidic
652 protein which binds histones and transfers them to DNA. *Nature* 275, 416–420.

653 Lee, S.J., Matsuura, Y., Liu, S.M., and Stewart, M. (2005). Structural basis for nuclear import
654 complex dissociation by RanGTP. *Nature* 435, 693-696.

655 Lin, D.H., Stuwe, T., Schilbach, S., Rundlet, E.J., Perriches, T., Mobbs, G., Fan, Y., Thierbach,
656 K., Huber, F.M., Collins, L.N., *et al.* (2016). Architecture of the symmetric core of the nuclear
657 pore. *Science* 352, aaf1015.

658 Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F., and Richmond, T.J. (1997). Crystal
659 structure of the nucleosome core particle at 2.8 Å resolution. *Nature* 389, 251-260.

660 M. A. Marchetti, C.T., H. Kwon, S. L. Wolin and E. Ullu (2000). Import of proteins into the
661 trypanosome nucleus and their distribution at karyokinesis. *J Cell Sci* 113, 899-906.

662 M. Greiner, S.C.a.G.S. (2004). The histones H2A/H2B and H3/H4 are imported into the yeast
663 nucleus by different mechanisms. *Eur J Cell Biol* 83, 511-520.

664 Maertens, G.N., Cook, N.J., Wang, W., Hare, S., Gupta, S.S., Oztop, I., Lee, K., Pye, V.E.,
665 Cosnefroy, O., Snijders, A.P., *et al.* (2014). Structural basis for nuclear import of splicing factors
666 by human Transportin 3. *Proc Natl Acad Sci U S A* 111, 2728-2733.

667 Martel, A., Liu, P., Weiss, T.M., Niebuhr, M., and Tsuruta, H. (2012). An integrated high-
668 throughput data acquisition system for biological solution X-ray scattering studies. *J Synchrotron
669 Radiat* 19, 431-434.

670 Matsuura, Y., and Stewart, M. (2004). Structural basis for the assembly of a nuclear export
671 complex. *Nature* 432, 872-877.

672 Mattioli, F., D'Arcy, S., and Luger, K. (2015). The right place at the right time: chaperoning core
673 histone variants. *EMBO Rep* 16, 1454-1466.

674 McPhillips, T.M., McPhillips, S.E., Chiu, H.J., Cohen, A.E., Deacon, A.M., Ellis, P.J., Garman, E.,
675 Gonzalez, A., Sauter, N.K., Phizackerley, R.P. (2002). Blu-Ice and the Distributed Control
676 System: software for data acquisition and instrument control at macromolecular crystallography
677 beamlines. *J Synchrotron Radiation*, 401-406.

678 Minor, W., Cymborowski, M., Otwinowski, Z., and Chruszcz, M. (2006). HKL-3000: the
679 integration of data reduction and structure solution--from diffraction images to an initial model in
680 minutes. *Acta Crystallogr D Biol Crystallogr* 62, 859-866.

681 Mosammaparast, N., Ewart, C.S., and Pemberton, L.F. (2002a). A role for nucleosome
682 assembly protein 1 in the nuclear transport of histones H2A and H2B. *EMBO J* 21, 6527-6538.

683 Mosammaparast, N., Guo, Y., Shabanowitz, J., Hunt, D.F., and Pemberton, L.F. (2002b).
684 Pathways mediating the nuclear import of histones H3 and H4 in yeast. *J Biol Chem* 277, 862-
685 868.

686 Mosammaparast, N., Jackson, K.R., Guo, Y., Brame, C.J., Shabanowitz, J., Hunt, D.F., and
687 Pemberton, L.F. (2001). Nuclear import of histone H2A and H2B is mediated by a network of
688 karyopherins. *J Cell Biol* 153, 251-262.

689 Muhlhausser, P., Muller, E.C., Otto, A., and Kutay, U. (2001). Multiple pathways contribute to
690 nuclear import of core histones. *EMBO Rep* 2, 690-696.

691 Obri, A., Ouararhni, K., Papin, C., Diebold, M.L., Padmanabhan, K., Marek, M., Stoll, I., Roy, L.,
692 Reilly, P.T., Mak, T.W., *et al.* (2014). ANP32E is a histone chaperone that removes H2A.Z from
693 chromatin. *Nature* 505, 648-+.

694 Okada, C., Yamashita, E., Lee, S.J., Shibata, S., Katahira, J., Nakagawa, A., Yoneda, Y., and
695 Tsukihara, T. (2009). A high-resolution structure of the pre-microRNA nuclear export machinery.
696 *Science* 326, 1275-1279.

697 Otwinowski, Z., Borek, D., Majewski, W., and Minor, W. (2003). Multiparametric scaling of
698 diffraction intensities. *Acta Crystallogr A* 59, 228-234.

699 Petoukhov, M.V., Franke, D., Shkumatov, A.V., Tria, G., Kikhney, A.G., Gajda, M., Gorba, C.,
700 Mertens, H.D., Konarev, P.V., and Svergun, D.I. (2012). New developments in the ATSAS
701 program package for small-angle scattering data analysis. *J Appl Crystallogr* 45, 342-350.

702 R. B. Moreland, G.L.L., R. H. Singer, R. L. Garcea and L. M. Hereford (1987). Amino acid
703 sequences that determine the nuclear localization of yeast histone 2B. *Mol Cell Biol* 7, 4048-
704 4057.

705 SasTool (2013). (<http://ssrl.slac.stanford.edu/~saxs/analysis/sastool.htm>).

706 Schrodinger, L. (2015). The PyMol Molecular Graphics System.

707 Schuck, P. (2000). Size-distribution analysis of macromolecules by sedimentation velocity

708 ultracentrifugation and lamm equation modeling. *Biophys J* 78, 1606-1619.

709 Soniat, M., Cagatay, T., and Chook, Y.M. (2016). Recognition Elements in the Histone H3 and

710 H4 Tails for Seven Different Importins. *J Biol Chem* 291, 21171-21183.

711 Soniat, M., and Chook, Y.M. (2015). Nuclear localization signals for four distinct karyopherin-

712 beta nuclear import systems. *Biochem J* 468, 353-362.

713 Svergun, D.I. (1999). Restoring low resolution structure of biological macromolecules from

714 solution scattering using simulated annealing. *Biophysical journal*, 2879-2886.

715 Thiriet, C., and Hayes, J.J. (2001). A novel labeling technique reveals a function for histone

716 H2A/H2B dimer tail domains in chromatin assembly in vivo. *Genes Dev* 15, 2048-2053.

717 Thul, P.J., Akesson, L., Wiking, M., Mahdessian, D., Geladaki, A., Blal, H.A., Alm, T., Asplund,

718 A., Bjork, L., Breckels, L.M., *et al.* (2017). A subcellular map of the human proteome. *Science*

719 356.

720 Tsirkone, V.G., Beutels, K.G., Demeulemeester, J., Debysyer, Z., Christ, F., and Strelkov, S.V.

721 (2014). Structure of transportin SR2, a karyopherin involved in human disease, in complex with

722 Ran. *Acta Crystallogr F Struct Biol Commun* 70, 723-729.

723 Uhlen, M., Zhang, C., Lee, S., Sjostedt, E., Fagerberg, L., Bidkhor, G., Benfeitas, R., Arif, M.,

724 Liu, Z.T., Edfors, F., *et al.* (2017). A pathology atlas of the human cancer transcriptome. *Science*

725 357, 660-+.

726 Verreault, A. (2000). De novo nucleosome assembly: new pieces in an old puzzle. *Genes Dev*

727 14, 1430-1438.

728 Vetter, I.R., Arndt, A., Kutay, U., Gorlich, D., and Wittinghofer, A. (1999). Structural view of the
729 Ran-Importin beta interaction at 2.3 Å resolution. *Cell* 97, 635-646.

730 Volkov, V.V., and Svergun, D.I. (2003). Uniqueness of ab initio shape determination in small-
731 angle scattering. *J Appl Crystallography*, 860-864.

732 Yoshizawa, T., Ali, R., Jiou, J., Fung, H.Y., Burke, K.A., Kim, S.J., Lin, Y., Peeples, W.B.,
733 Saltzberg, D., Soniat, M., Baumhardt, J.M., Oldenbourg, R., Sali, A., Fawzi, N., Rosen, M.L.,
734 Chook, Y.M. (2018). Nuclear import receptor inhibits phase separation of FUS through binding
735 to multiple sites. *Cell* 173:1-13.

736 Zhao, H., Piszczek, G. & Schuck, P (2015). SEDPHAT—A platform for global ITC analysis and
737 global multi-method analysis of molecular interactions. *Methods* 76, 137-148.

738 Zhou, Z., Feng, H., Hansen, D.F., Kato, H., Luk, E., Freedberg, D.I., Kay, L.E., Wu, C., and Bai,
739 Y. (2008). NMR structure of chaperone Chz1 complexed with histones H2A.Z-H2B. *Nat Struct
740 Mol Biol* 15, 868-869.

741

742

743 **Supplement for Figure 1**

744

745 **Figure 1- source data 1.** Data collection and refinement statistics, Imp9•H2A-H2B structure.

Data collection		
Crystal	SeMet peak ^a	Native
Space group	P2 ₁ 2 ₁ 2	P2 ₁ 2 ₁ 2
Cell constants (Å)	a = 127.83, b = 223.61, c = 132.35	a = 127.42, b = 223.29, c = 131.83
Wavelength (Å)	0.97940	0.97938
Resolution range (Å)	45.40 – 2.65 (2.70 – 2.65)	45.40 – 2.70 (2.75 – 2.70)
Unique reflections	105,074 (4,974)	103,239 (5,166)
Multiplicity	7.3 (5.6)	10.1 (8.2)
Data completeness (%)	99.5 (95.1)	97.7 (98.9)
R _{merge} (%) ^b	9.1 (100.0)	9.4 (208.6)
R _{free} (%) ^c	4.7 (100.0)	2.9 (72.0)
CC _{1/2}	0.52	0.58
I/σ(I)	14.6 (0.6)	20.3 (1.0)
Wilson B-value (Å ²)	39.8	38.6
Phase determination		
Anomalous scatterers	selenium, 54 out of 60 possible sites	
Figure of merit (45.4 – 2.65 Å)	0.70 (after density modification)	
Refinement statistics		
Crystal	Native	
Resolution range (Å)	45.4 – 2.70 (2.77 – 2.70)	
No. of reflections R _{work} /R _{free}	93,884/1,978 (2,186/55)	
Data completeness (%)	90.5 (31.0)	
Atoms (non-H protein, chain A/chain B/ chain C/ chain D/chain E/chain F/water)	7,539/673/727/7,444/666/770/356	
R _{work} (%)	20.9 (30.0)	
R _{free} (%)	24.0 (37.9)	
R.m.s.d. bond length (Å)	0.002	

R.m.s.d. bond angle (°)	0.51
Mean B-value (Å ²) (non-H protein, chain A/chain B/chain C/chain D/chain E/chain F/water)	50.9/70.3/77.8/46.8/58.0/72.1/35.1
Ramachandran plot (%) (favored/additional/disallowed) ^d	97.1/2.8/0.1
Clashscore/Molprobity score ^d	2.43/1.19
Maximum likelihood coordinate error	0.29
Missing residues	A: 1-14, 935-996, 1041. B: 1-16, 103-130. C: 1-28, 32-33, 86-87, 125-126. D: 1-14, 234-235, 314-326, 936-996. E: 1-16, 102-130. F: 1-27, 125-126.
PDB Code	6N1Z

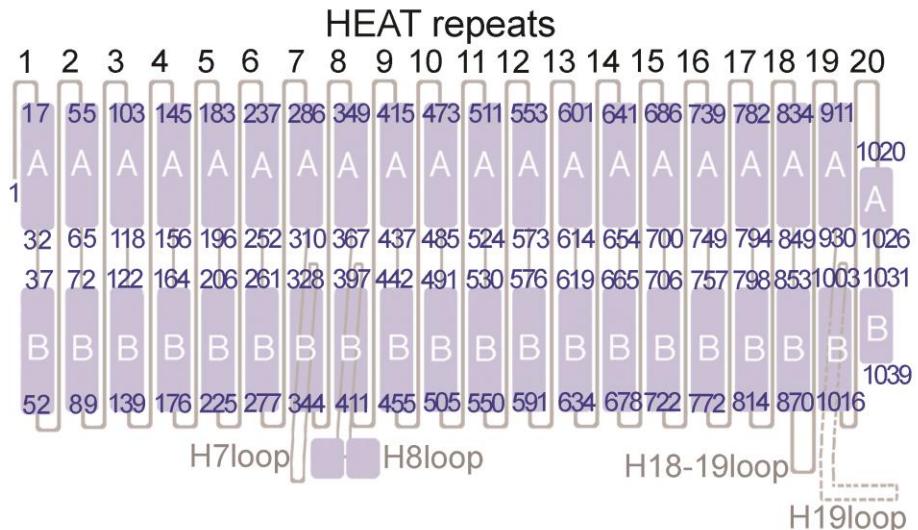
746

747 Data for the outermost shell are given in parentheses.

748 ^aBijvoet-pairs were kept separate for data processing.

749 ^b $R_{\text{merge}} = 100 \sum_h \sum_i |I_{h,i} - \langle I_h \rangle| / \sum_h \sum_i \langle I_{h,i} \rangle$, where the outer sum (h) is over the unique reflections
750 and the inner sum (i) is over the set of independent observations of each unique reflection.

751 ^c $R_{\text{pim}} = 100 \sum_h \sum_i [1/(n_h - 1)]^{1/2} |I_{h,i} - \langle I_h \rangle| / \sum_h \sum_i \langle I_{h,i} \rangle$, where n_h is the number of observations of
752 reflections h .


753 ^dAs defined by the validation suite MolProbity (Chen, V.B., Arendall, W.B.A., Headd, J.J.,
754 Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, J.S., Richardson, D.C.
755 (2010) *MolProbity*: all-atom structure validation for macromolecular crystallography. *Acta Cryst.*
756 **D66**, 12-21.).
757

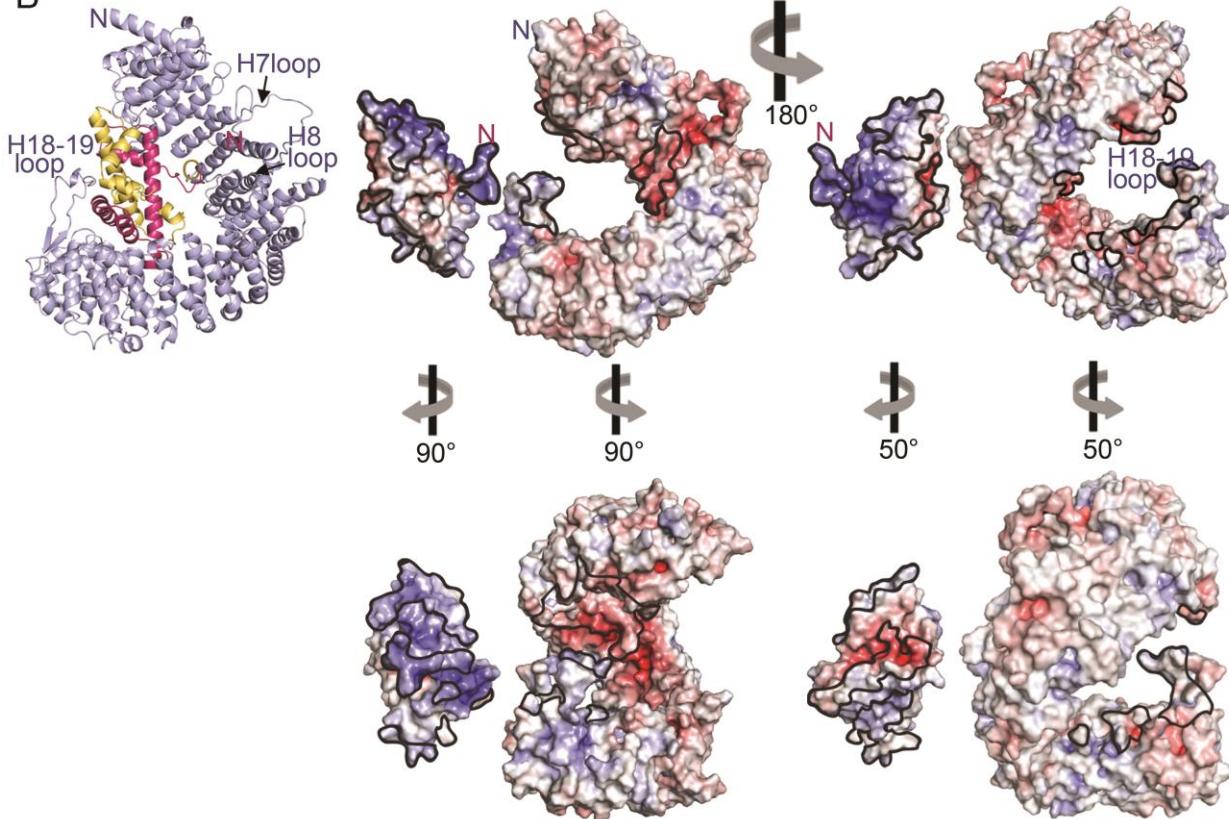
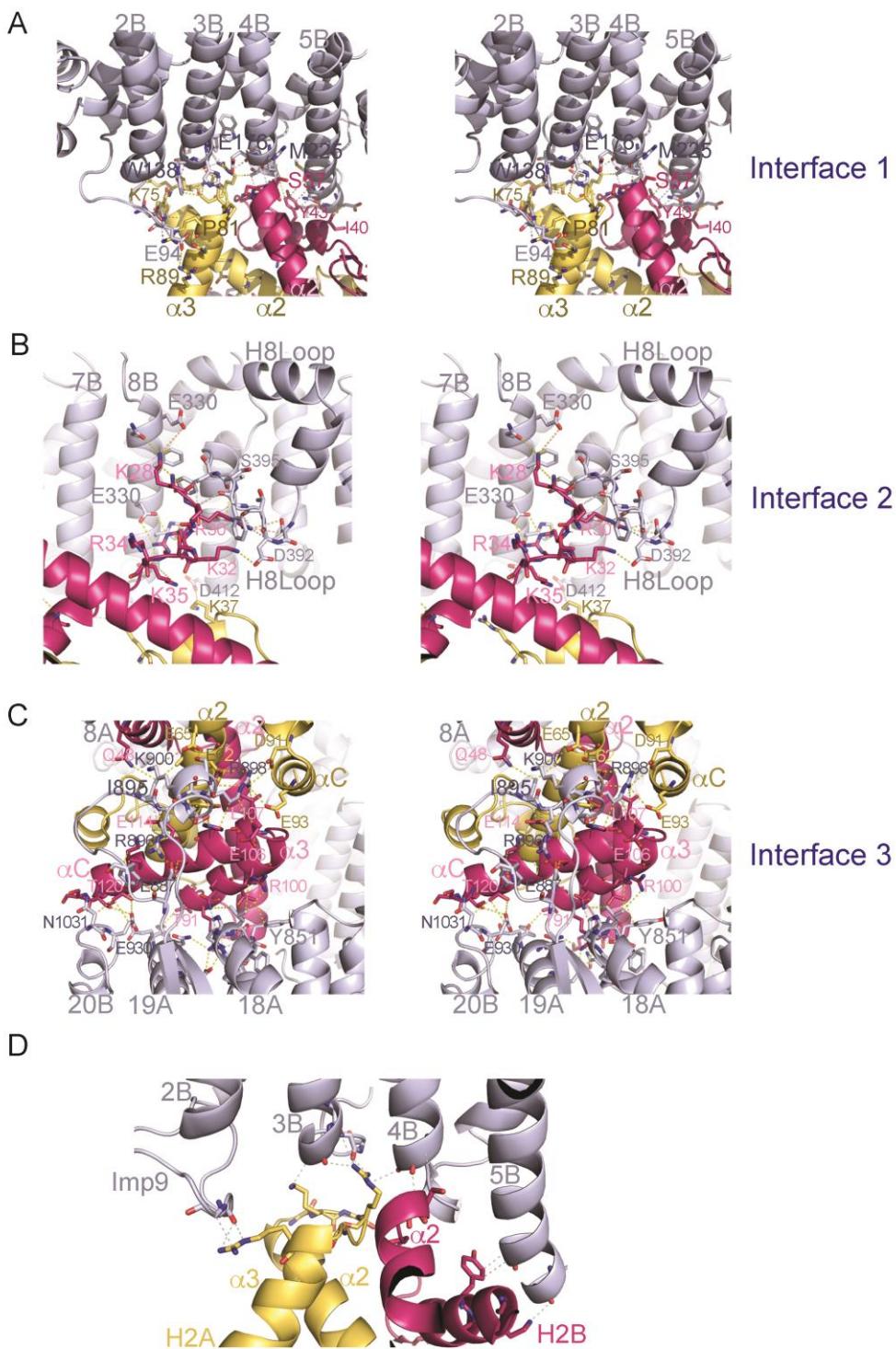
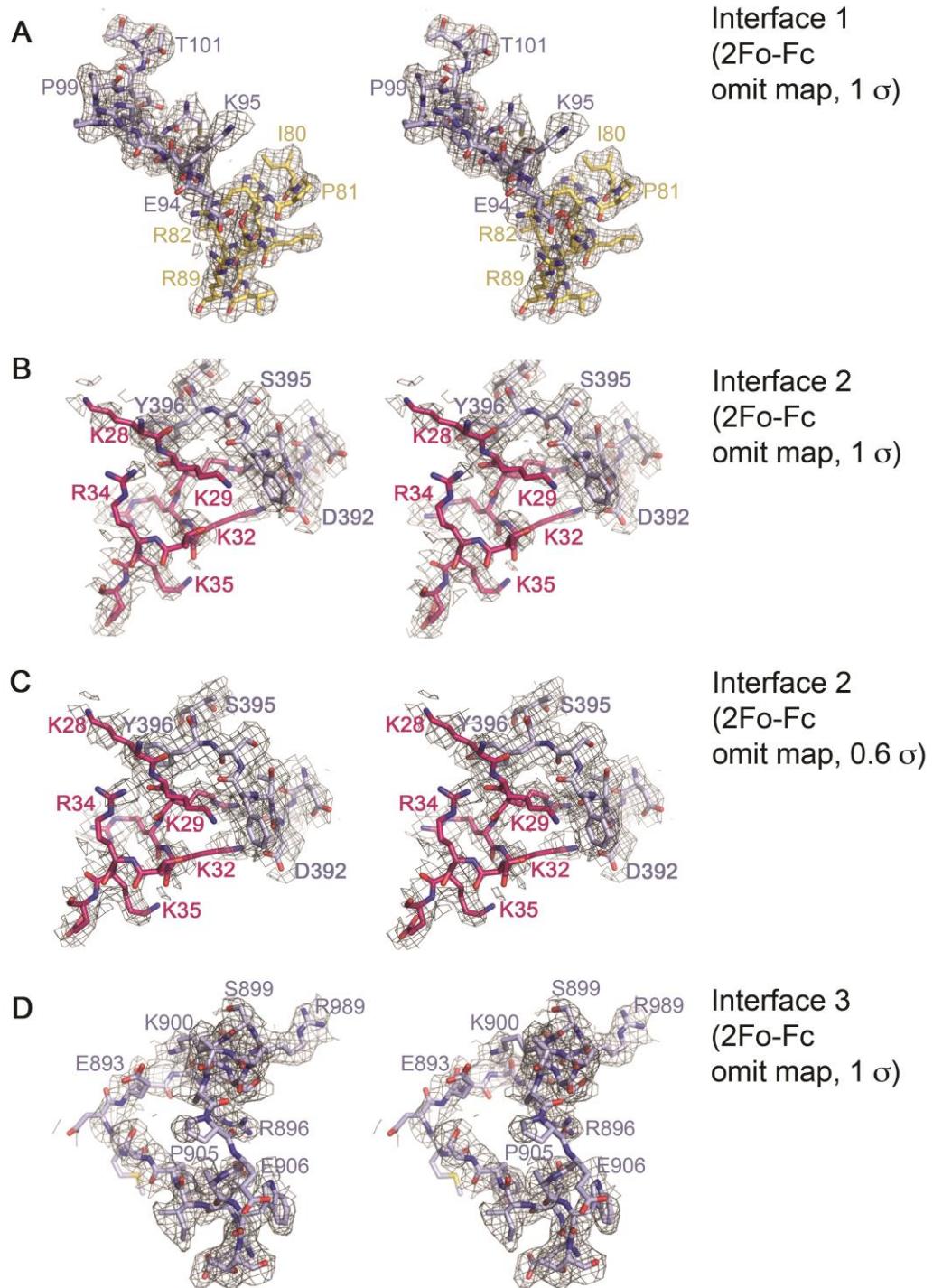

758
759
760
761
762
763
764

Figure 1 - figure supplement 1. ITC analysis of Imp9 binding to H2A-H2B. A-H. The GUSSI output for global analysis of each experiment (binding proteins mentioned above the panel) carried out in triplicates. The top panel shows the SVD-reconstructed thermogram provided by NITPIC, the middle panel shows the isotherms and the bottom panel shows the residuals. Individual experiments in the triplicate sets are differently color-coded. DP - differential power.

A

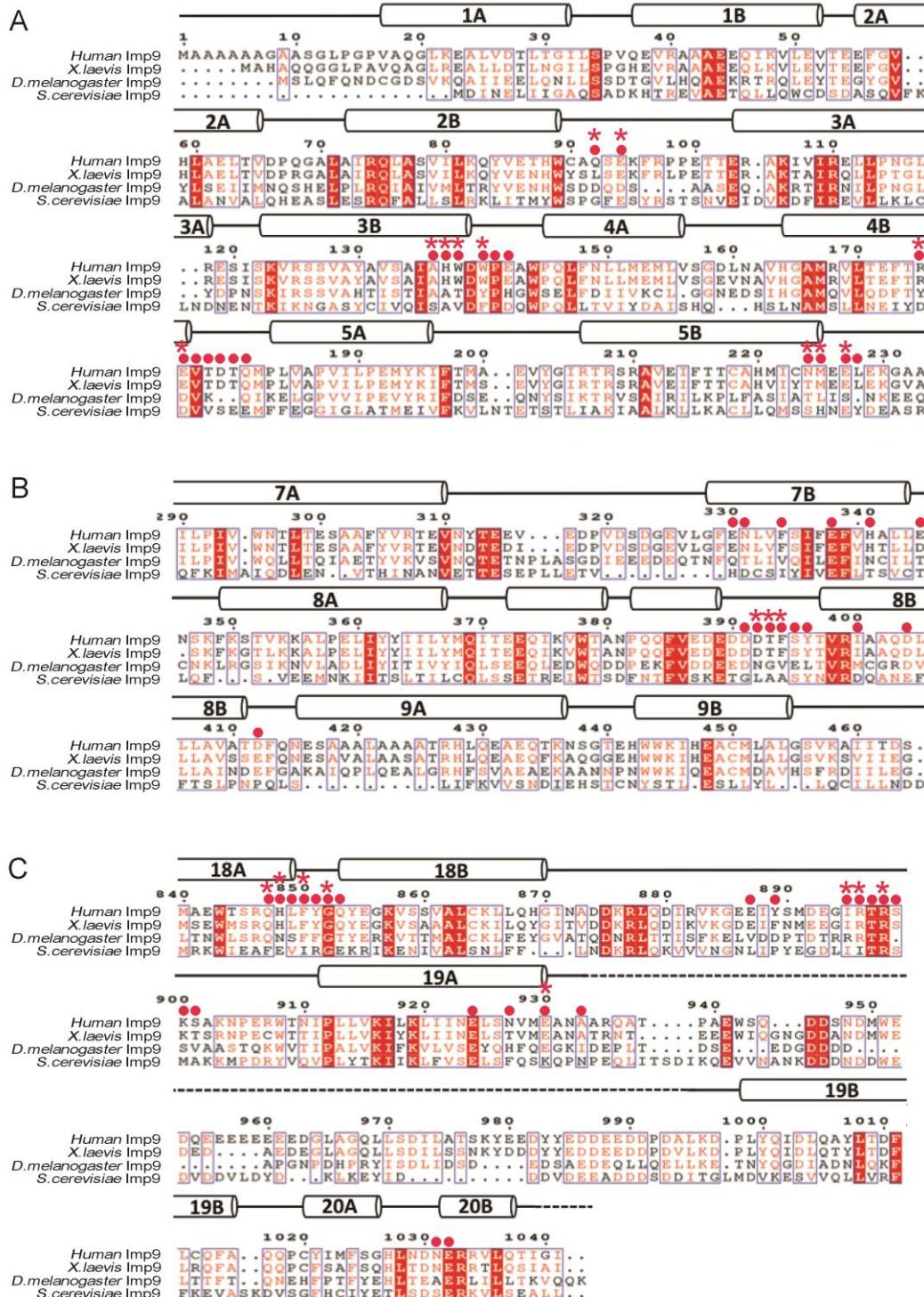

B

765

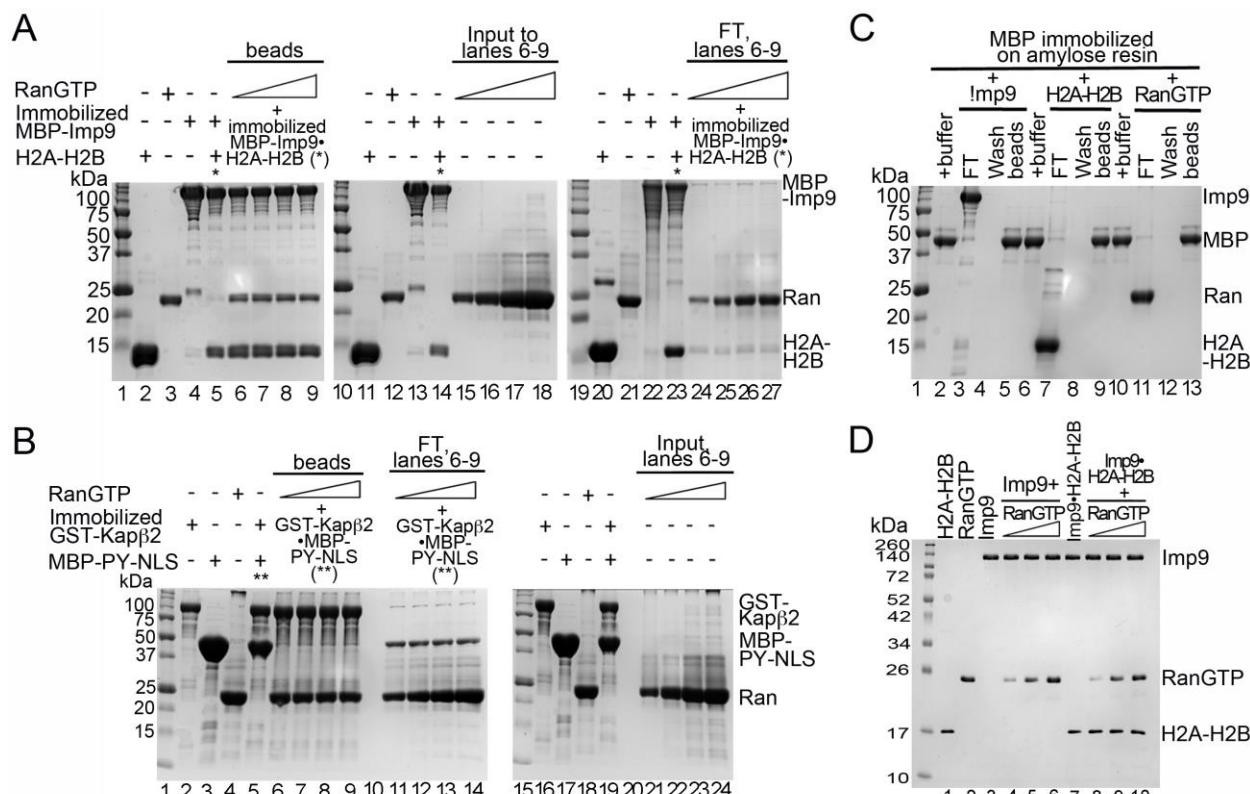

766 **Figure 1 – figure supplement 2. HEAT repeat organization of Imp9 and electrostatic**
 767 **surface potential of Imp9 and H2A-H2B. A.** Organization of the 20 HEAT repeats of Imp9.
 768 The H19loop, which is not modeled, is shown with a dashed line. **B.** Structure of the Imp9•H2A-H2B complex shown in cartoon representation, for comparison with the surface representations.
 769 Two views (180° rotation about the vertical axis) of the electrostatic surface potential (from -8 kV
 770 to +8 kV) of H2A-H2B and Imp9. The left view is the same as the cartoon representation, with
 771 the two proteins separated for viewing of the surfaces. The structures in the panel below show
 772 approximate open-book views. Interfaces on Imp9 and H2A-H2B are outlined in black. The
 773 electrostatic surface was generated in PyMol using APBS plugin (Baker et al., 2001).
 774

775 **Supplement for Figure 2**

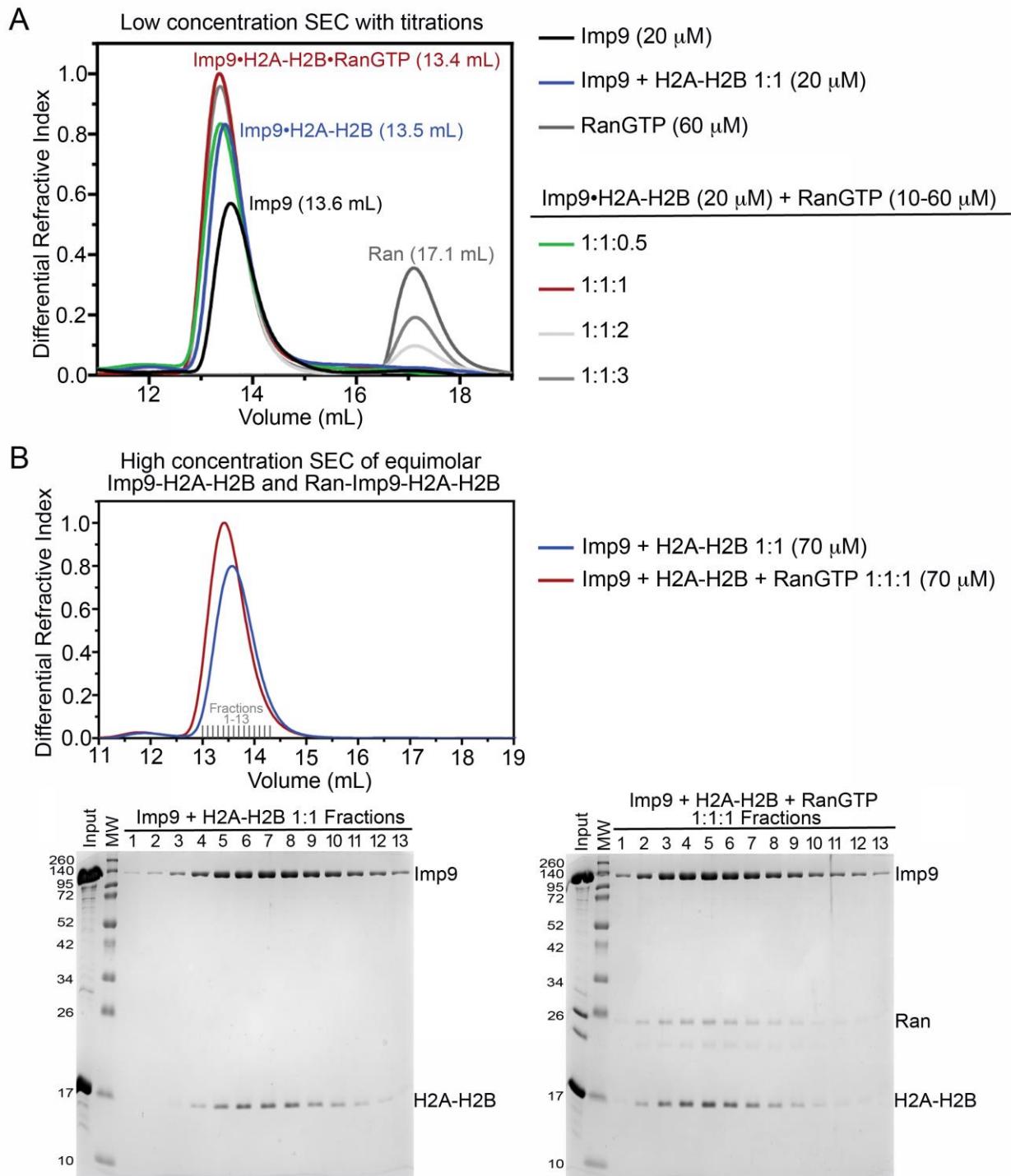
776


777 **Figure 2 – figure supplement 1. Stereo views of the Imp9•H2A-H2B interfaces. A-C.** Cross-
778 **interfaces.** A-C. Cross-
779 **eyed stereo view of Interface 1 (A), Interface 2 (B) and Interface 3 (C).** D. Interactions between
780 the main chain of Imp9 and H2A-H2B. Interactions between Imp9 (blue) and the histones (H2A
781 is yellow and H2B is red) are shown with dashed lines.

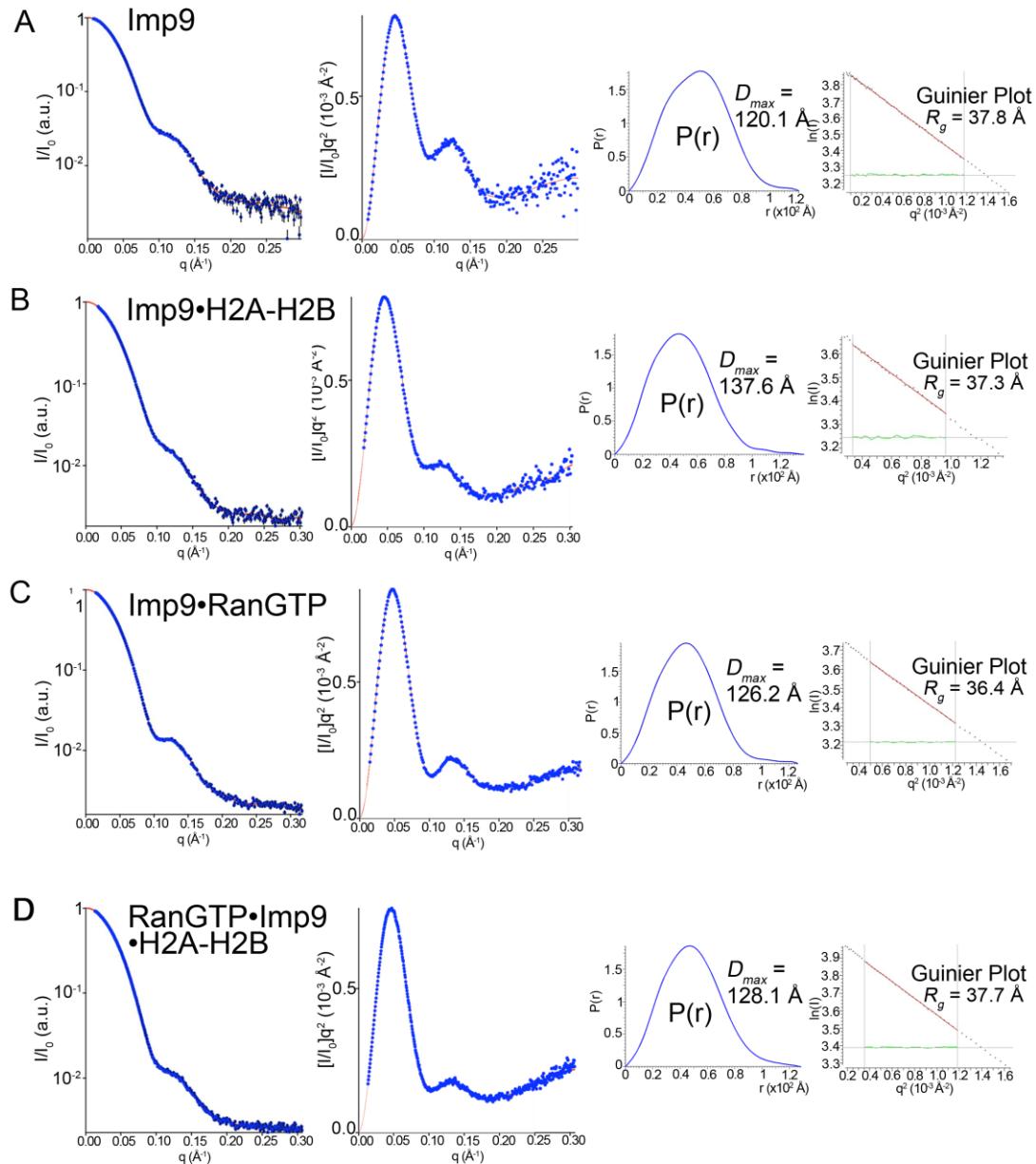
782
783
784
785
786


Figure 2 – figure supplement 2. Stereo views of representative electron-density within the Imp9•H2A-H2B interfaces. A-D. Cross-eyed stereo views of representative 2Fo-Fc omit map electron density within Interface 1 (contoured at 1 σ **A**; residues 90-102 of Imp9 and residues 80-89 of H2B omitted), Interface 2 (contoured at 1 σ in **B**, and contoured at 0.6 σ in **C**; residues

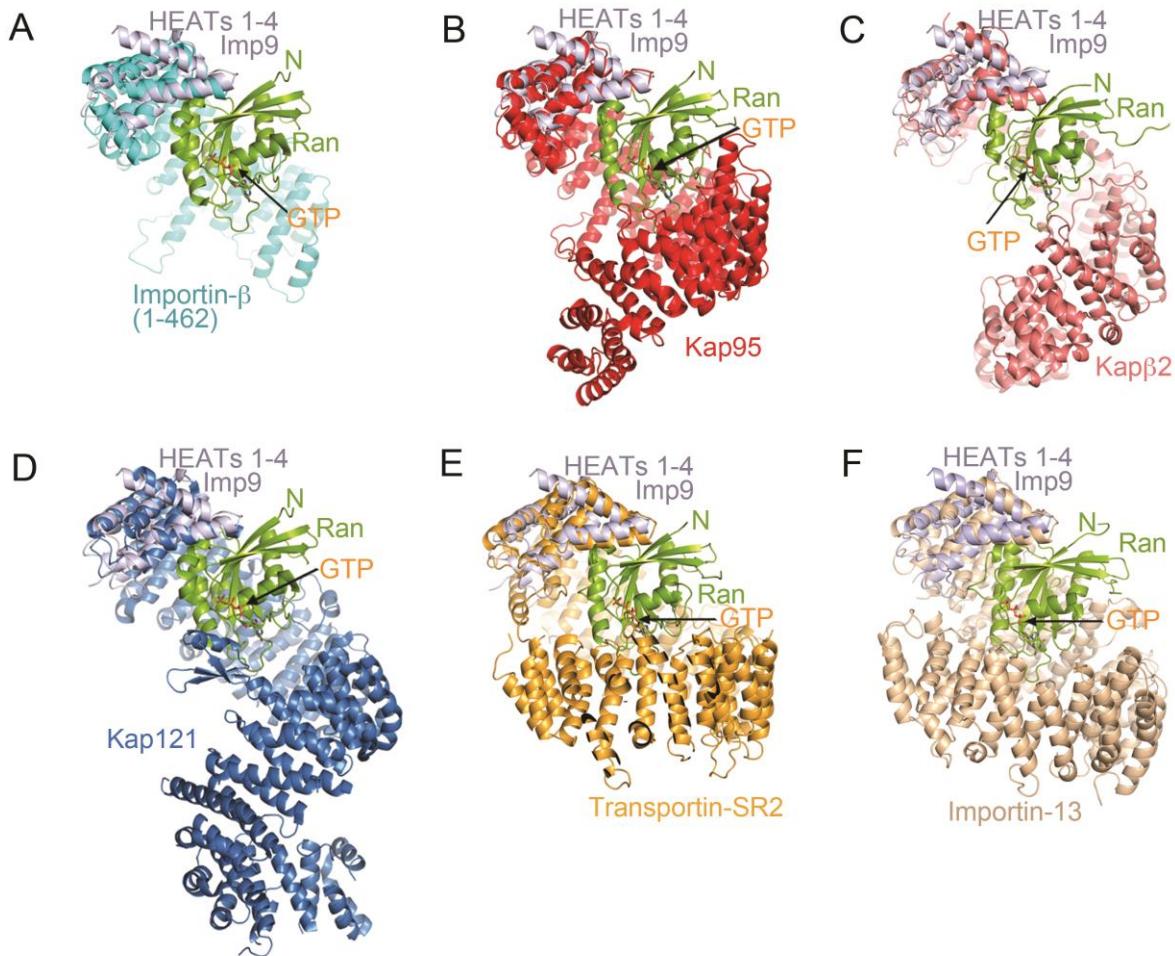
787 390-397 of Imp9 and residues 28-36 of H2B omitted) and Interface 3 (contoured at 1σ **D**;
788 residues 886-909 on Imp9 omitted).



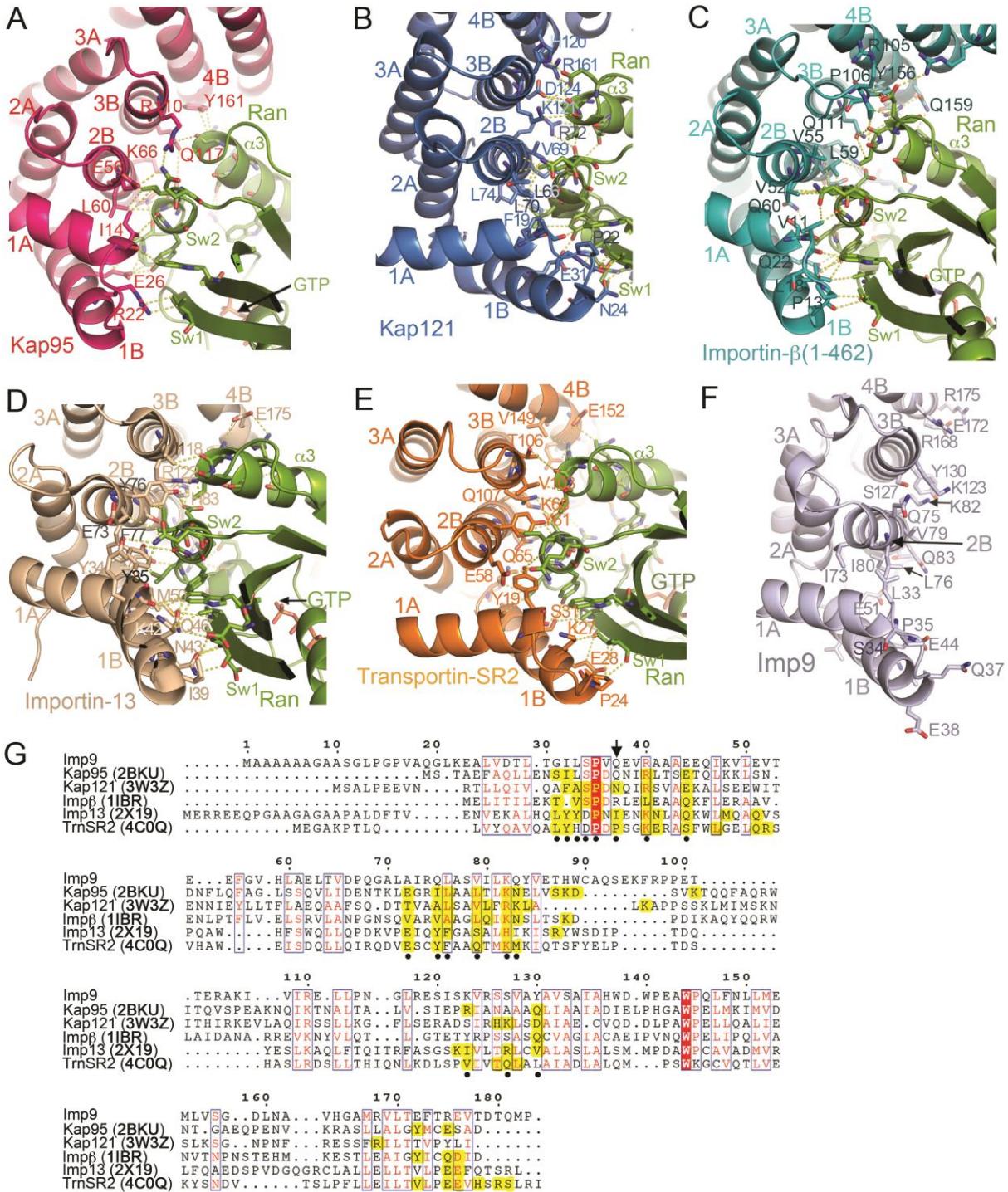
789


790 **Figure 2 – figure supplement 3. Sequence alignment of regions of Imp9 that interact with**
 791 **H2A-H2B. A-C. Sequence alignment of Imp9 sequences (human, X. laevis, D. melanogaster**
 792 **and S. cerevisiae) from the region that forms Interface 1 (A), Interface 2 (B) and Interface 3 (C)**
 793 **in Imp9•H2A-H2B structure. Residues in the three interfaces are mostly conserved, with**
 794 **Interface 3 being the most conserved. The level of conservation is consistent with many Imp9**
 795 **residues, especially in Interface 1, using their main chain for interactions with histone residues.**

799 **Figure 4 – figure supplement 1. Interactions between RanGTP and the Imp9•H2A-H2B**
800 **complex. A.** Pull-down binding assays to probe RanGTP (*S. cerevisiae* Gsp1 (1-179/Q71L)
801 interactions with the Imp9•H2A-H2B complex. Increasing concentrations of RanGTP (12.5 μ M,
802 25 μ M, 50 μ M or 75 μ M) was added to 2.5 μ M MBP-Imp9•H2A-H2B. After washing, bound
803 proteins were visualized by Coomassie-stained SDS-PAGE. 2% of input RanGTP for the
804 corresponding to binding reactions in lanes 6-9 are shown lanes 15-18. 2% of the flow-through
805 from the corresponding to binding reactions in lanes 6-9 are shown lanes 24-27. **B.** Pull-down
806 binding assays to probe RanGTP mediated dissociation of MBP-PYNLS from the GST-
807 Kap β 2•MBP-PY-NLS complex. Increasing concentrations of RanGTP (12.5 μ M, 25 μ M, 50 μ M
808 or 75 μ M) was added to 2.5 μ M GST-Kap β 2•MBP-PY-NLS. After washing, the bound proteins
809 were visualized by Coomassie-stained SDS-PAGE. 2% of input RanGTP for the corresponding
810 binding reactions in lane 6-9 are shown in lanes 21-24. 2% of flow-through from the
811 corresponding binding reactions in lanes 6-9 are shown in lanes 11-14. **C.** Controls for pull-
812 down binding assays. Imp9 (lanes 3-5), H2A-H2B (lane 7-9) or RanGTP (lane 11-13) was
813 added to immobilized MBP. The flow-through (FT), the last wash and the proteins that remain
814 bound on beads after washing were visualized by Coomassie-stained SDS-PAGE. **D.**
815 Coomassie-stained SDS-PAGE of the protein inputs for the native gel in Figure 4E.

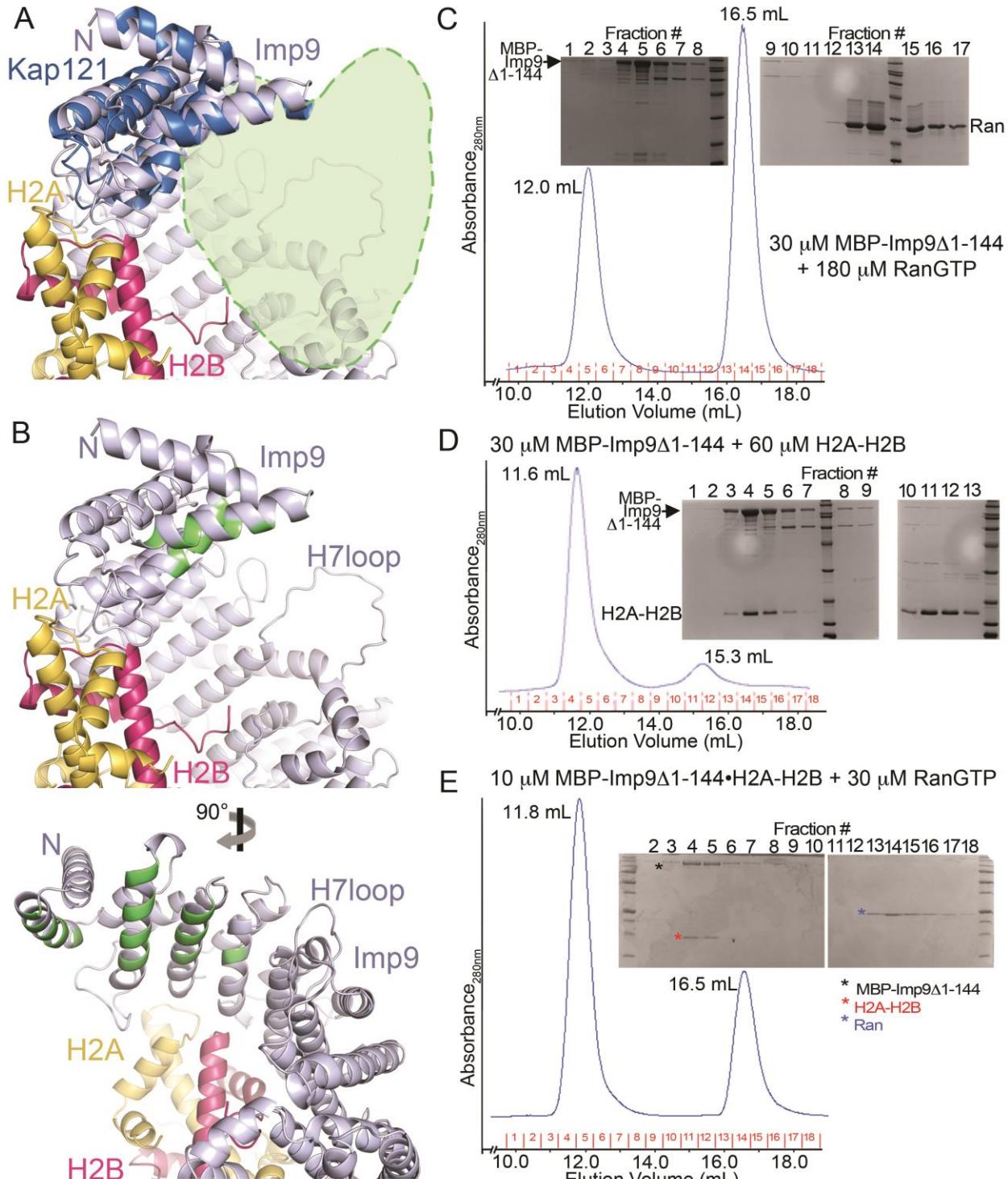


825 elutes at 13.6 mL, while the 1:1 Imp9•H2A-H2B complex elutes at 13.5 mL. We see the
826 formation of a 1:1:1 RanGTP•Imp9•H2A-H2B complex. Addition of an equimolar amount of
827 RanGTP causes the Imp9•H2A-H2B peak to shift from 13.5 mL to 13.4 mL. Continued addition
828 of RanGTP beyond a 1:1:1 mixture, results in the appearance of free RanGTP that elutes at
829 17.1 mL. Comparison to a Ran only control (60 μ M; dark grey) shows that the Imp9•H2A-
830 H2B•Ran complex has a 1:1:1 stoichiometry. Quantitatively, the free RanGTP peak is absent in
831 the 1:1:1 sample, is one-third of the control in a 1:1:2 sample, and two-thirds of the control in a
832 1:1:3 sample. **B.** SEC of 1:1 Imp9 + H2A-H2B (70 μ M; blue) and 1:1:1 Imp9, H2A-H2B, and Ran
833 (70 μ M; red). The buffer was 20 mM HEPES pH 7.4, 200 mM NaCl, 2 mM magnesium acetate,
834 2 mM TCEP and 8% (v/v) glycerol. Column was Superdex S200 Increase 10/300. Peak
835 fractions (Fractions 1-13) were analyzed on 15% SDS-PAGE stained with Coomassie blue. As
836 in **A**, Imp9•H2A-H2B elutes at 13.5 mL and the peak eluting at 13.4 mL contains 1:1:1
837 RanGTP•Imp9•H2A-H2B. Analysis of peak fractions by SDS-PAGE shows the presence of
838 Imp9, H2A-H2B, and Ran in the peak. Each protein stains in proportion to that seen in the input
839 lane, consistent with the formation of a 1:1:1 complex. Also, in the SEC there is no free H2A-
840 H2B or free Ran.
841 .


842

843 **Figure 4 – figure supplement 3. SAXS analysis of Imp9, Imp9•RanGTP, Imp9•H2A-H2B,**
 844 **and RanGTP•Imp9•H2A-H2B. A-D.** Experimental SAXS profiles of Imp9 (A), Imp9•H2A-H2B
 845 (B), Imp9•RanGTP (C), and RanGTP•Imp9•H2A-H2B (D) were used to compute radius of
 846 gyration (R_g), maximum particle size (D_{max}), pair distribution function ($P(r)$) and estimated
 847 molecular weights (Figure 4G and Figure 4 – source data 1 and 2). Left panels: experimental
 848 SAXS profile (blue dots with black error bars) is shown along with the extrapolation curve (red).
 849 The corresponding Kratky plot, used to depict the level of flexibility, is also shown in blue dots
 850 along with the extrapolation curve (red). Right panels: The left plot shows the pair distribution
 851 function, $P(r)$. The maximum particle size (D_{max}) was determined as the maximum pair distance
 852 in the plot. The right plot shows the corresponding Guinier plot with the calculated R_g fit value in
 853 Å. The linearity of the Guinier plots confirms a high degree of homogeneity for each of the SAXS
 854 samples.

855


856 **Figure 4 – figure supplement 4. Comparative structural analysis of importin-RanGTP**
 857 **complexes. A-F.** Structural alignment of HEAT repeats 1-4 of six different importin-RanGTP
 858 complexes to HEAT repeats 1-4 of Imp9. The complexes compared are Importin-β(1-
 859 462)•RanGTP (A; 1IBR), Kap95•RanGTP (B; 2BKU), Kapβ2•RanGTP (C; 1QBK),
 860 Kap121•RanGTP (D; 3W3Z), Transportin-SR2• RanGTP (E; 4C0Q) and Importin-13•RanGTP
 861 (F; 2X19). The importins are shown with different colors, Ran in green and the aligned N-
 862 terminal HEAT repeats of Imp9 are in light blue. All structures are shown with the same
 863 orientation of the aligned Imp9 (HEAT repeats 1-4). Ran is oriented very similarly and binds at
 864 very similar locations, at the B helices of HEAT repeats 1-4 of the importins, in all six structures.
 865 The pitches of the importin superhelices are different, resulting in the second importin-Ran
 866 interface (located at the bottom of Ran in A-F) interacting with different central or C-terminal
 867 HEAT repeats of the importins.
 868

869

870 **Figure 4 – figure supplement 5. RanGTP binding interfaces at HEAT repeats 1-4 of Kap95,**
871 **Kap121, Importin-β, Importin-13 and Transportin-SR2. A-E.** RanGTP binding interfaces- at
872 the N-termini of the importins: Kap95-RanGTP (A; 2BKU), Kap121-RanGTP (B; 3W3Z),
873 Importin-β(1-462)-RanGTP (C; 1IBR), Importin-13-RanGTP (D; 2X19) and Transportin-SR2-
874 RanGTP (E; 4C0Q). Interactions are shown with dashed lines and all structure are shown in
875 similar orientations. **F.** HEAT repeats 1-4 of Imp9, oriented similarly as importins in **A-E**,

876 showing side chains on the B helices may contact RanGTP. **G.** Sequence alignment of residues
877 in HEAT repeats 1-4 of Imp9, Kap95, Kap121, Importin- β , Importin-13 and Transportin-SR2.
878 Importin positions with identical amino acids are shaded red, and those with conserved amino
879 acids are shown in boxes. There are 18-23 residues/positions in each importin that contact Ran,
880 and they are shaded yellow. Of these, 20 positions contact Ran in ≥ 3 importins (marked with
881 black circles). The majority of Ran contacts in each of the five importins are among these 20
882 most commonly used positions but only 8 of the 20 most common Ran contact positions show
883 sequence conservation (marked with black circles and boxed). Flexibility of the HEAT repeat
884 architecture and diversity of importin-Ran interactions at any site within the interface results in
885 structural conservation at the interface between the N-termini of importins and the switch 1, 2
886 regions of RanGTP even when sequence conservation is not high. For example, the position of
887 Q37 (marked with arrow) in Imp9 is not conserved in sequence but the side chains in Kap121,
888 Importin-13 and Transportin-SR2 (all at the N-terminal end of the B helix of HEAT repeat 1)
889 interact with the N-terminal end of the β 2 strand of Ran (part of switch 1). Pro24 of Transportin-
890 SR2 and Ile39 of Importin-13 make hydrophobic interactions with a Val47 side chain of Ran, but
891 Asn24 of Kap121 make polar contacts with the main chain of Ran Val47. The majority of Imp9
892 side chains in the most common/structurally conserved Ran contact sites (marked with black
893 circles) are the same as or have similar chemical characteristics as at least one of the five other
894 importin side chains in that same position, supporting the prediction that RanGTP will likely
895 contact Imp9 at the same location as shown in **A-E**, on the B-helices of HEAT repeats 1-4.

Figure 4 – figure supplement 6. The predicted RanGTP binding site at HEAT repeats 1-4 of Imp9. **A.** A zoomed in view (the N-terminal half of Imp9) of the Imp9•H2A-H2B structure shown in the same orientation as the importins in Figure 4 – figure supplement 5D. Imp9 is in blue, H2A in yellow and H2B in red. Imp9 is structurally aligned with the 1st four HEAT repeats of Kap121 (shown in dark blue) in the Kap121•RanGTP structure (3W3Z). RanGTP from the Kap121•RanGTP structure is not shown but is schematically depicted by the light-green heart-shape drawing to mark the predicted location of the Ran site on Imp9. **B.** Top panel, same view

904 of the Imp9•H2A-H2B structure as in **A**, with Imp9 residues at the predicted RanGTP binding
905 site colored green. Bottom panel shows the view upon 90° rotation about the vertical axis. **C-E**.
906 Size exclusion chromatography of MBP-Imp9 Δ 1-144 + excess RanGTP (**C**), MBP-Imp9 Δ 1-144
907 + H2A-H2B (**D**) and previously purified MBP-Imp9 Δ 1-144•H2A-H2B + excess RanGTP (**E**). 500
908 μ L protein samples were loaded on to a Superdex S200 Increase 10/300 column and the size
909 exclusion chromatography experiments were performed in buffer containing 20 mM HEPES pH
910 7.4, 200 mM sodium chloride, 2 mM magnesium acetate, 2 mM DTT and 10% glycerol. The
911 elution volume for each protein peak is shown and proteins in the fractions are visualized by
912 Coomassie-stained SDS-PAGE gels shown above the chromatograms. SEC analysis shows
913 that RanGTP does not interact with the Imp9 mutant. No interaction is seen at micromolar
914 concentrations even when RanGTP is added at a 6-fold molar excess. This is obvious from the
915 SDS-PAGE analysis of SEC fractions, showing that the Imp9 mutant and RanGTP do not co-
916 migrate (**C**). The Imp9 mutant protein is functional as the interaction is maintained with H2A-
917 H2B (**D**). This is consistent with the crystal structure showing that the region spanning HEAT
918 repeats 1-3 of Imp9 (residues 1-144) is only a very small portion of the very large Imp9•H2A-
919 H2B interface. Not surprisingly, like Imp9 mutant alone in **C**, the histone-bound Imp9 mutant
920 also does not bind RanGTP when the GTPase is added at a molar excess (**E**).
921

922 **Figure 4 – source data 1. Summary of the SAXS experiments and analysis.**

Data collection	
Beamline	SSRL BL4-2, SLAC National Accelerator Laboratory
Defining Slits size (mm)	0.3 (H) \times 0.3 (V)
Beam energy (keV)	11
Sample-Detector Distance (m)	1.7
Detector	Rayonix MX225-HE
Pixel binning	8 \times 8
Pixel size (μm)	292
Exposure time (sec)	1
Images	20 images/concentration for duration of run
Type of sample cell	Quartz capillary (Diameter = 1.5mm)
Temperature (K)	288
Calibrant	AgBe
Final q range (\AA^{-1})	0.007 - 0.5
Data analysis	
Programs	SASTOOL*, PRIMUS*
Buffer	20 mM HEPES, 110 mM KAc ₂ , 2 mM MgAc ₂ , 2 mM DTT, 10% (v/v) glycerol at pH 7.3
Concentration range (mg/ml)	0.5 - 5.0**
Guiner R_g (\AA)	37.8 \pm 0.48 (Imp9) 37.3 \pm 0.78 (Imp9•H2A-H2B) 36.4 \pm 0.59 (Imp9•RanGTP) 37.7 \pm 0.44 (RanGTP•Imp9•H2A-H2B)
Guiner qR_g limits	1.30, 1.16, 1.25, 1.30 (same order as above)
D_{max} (\AA)	120.1, 137.6, 126.2, 128.1 (same order as above)
Molecular Weight (kDa), SAXS MOW	124.5, 145.1, 142.7, 161.1 (same order as above)
Molecular Weight (kDa), sequence	115.8, 143.5, 135.5, 163.2 (same order as above)
Modeling	
Programs	DAMMIF, DAMMIN, DAMAVER
Data plotting	ATSAS, SAXS MOW, and UCSF Chimera

923 *SasTool (SasTool, 2013), PRIMUS (Konarev et al., 2003)

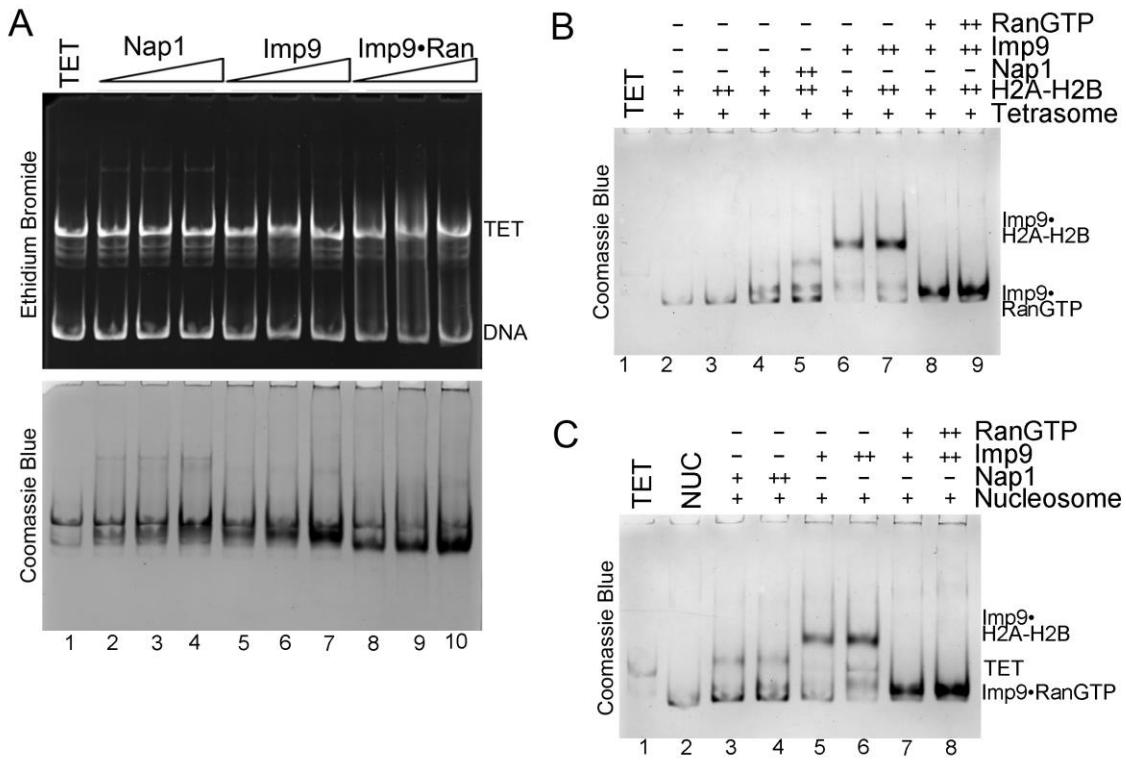
924 **Merged SAXS profiles were shown in Figure 4 – figure supplement 3

925

926

927 **Figure 4 – source data 2. Summary of the SAXS parameters.**

Sample	Concentration		SAXS parameters			M.W. from sequence
	mg/ml	μM	M.W. (kDa)*	D _{max} (Å)	R _g (Å)**	
Imp9	0.5	4.3	120.3	116.9	37.3	115.8 kDa
	1.0	8.6	124.7	125.5	37.7	
	1.5	13.0	123.8	130.1	37.7	
	2.0	25.9	134.0	146.1	38.1	
	5.0	43.2	125.5	127.3	37.0	
	Merged		124.5	120.1	37.8	
Imp9• H2A-H2B	0.5	3.5	151.8	125.3	37.7	143.5 kDa
	1.0	7.0	144.3	135.4	38.4	
	1.5	10.5	162.3	142.7	39.3	
	2.0	13.9	156.1	141.1	39.6	
	5.0	34.8	179.0	222.6	44.3	
	Merged		145.1	137.6	37.3	
Imp9• RanGTP	0.5	3.7	145.6	134.7	37.1	135.5 kDa
	1.0	7.4	130.0	118.7	36.4	
	1.5	11.1	140.2	130.0	37.7	
	2.0	14.8	151.7	120.9	36.6	
	5.0	36.9	143.5	122.5	36.9	
	Merged		142.7	126.2	36.4	
RanGTP• Imp9• H2A-H2B	0.5	3.1	169.5	135.0	38.4	163.2 kDa
	1.0	6.1	158.2	130.5	37.9	
	1.5	9.2	158.4	140.5	38.0	
	2.0	12.3	162.1	130.2	37.8	
	5.0	30.6	168.6	183.0	40.8	
	Merged		161.1	128.1	37.7	


928 * Molecular Weights (M.W.) were estimated using SAXS MOW with a threshold of $q_{max} = 0.25 \sim$
929 0.3 (1/Å), depending on the data.

930 ** Radius of gyration (R_g) were calculated in real space using DATGNOM in the ATSAS
931 package.

933 **Supplement for Figure 5**

934

935

936

937

Figure 5 – figure supplement 1. RanGTP modulates Imp9-histones interaction for H2A-H2B deposition. **A.** Controls for nucleosome assembly assay where either Nap1, Imp9 or Imp9•RanGTP is titrated in molar equivalents of 0.25, 0.5 and 0.75 to tetrasome (TET; 2.5 μ M). These proteins do not alter the tetrasome. **B.** Nucleosome assembly assay where either H2A-H2B, Nap1•H2A-H2B, Imp9•H2A-H2B or RanGTP•Imp9•H2A-H2B is titrated in molar equivalents of 0.5 and 0.75 to tetrasome (TET; 2.5 μ M). Nap1 and Imp9•RanGTP can form nucleosomes (NUC) while Imp9 cannot. Gels are Coomassie stained (ethidium bromide stained gels are shown in Figure 5E). **C.** Nucleosome disassembly assay where either Nap1, Imp9 or Imp9•RanGTP is titrated in molar equivalents of 0.5 and 0.75 to constant nucleosome (NUC; 2.5 μ M). Imp9 can disassemble nucleosomes to tetrasomes while Nap1 and Imp9-RanGTP cannot. Gels are Coomassie stained (ethidium bromide stained gels are shown in Figure 5F).

949

950

951

952

953 **Materials and Methods**

954 **Constructs, protein expression and purification**

955 Wild-type human Imp9 and Imp9 mutants (Imp9ΔH8loop, residues 371-396 replaced with
956 SGSTGGSGS linker; Imp9ΔH18-19loop, residues 890-906 replaced with GSGTGSGSS;
957 Imp9ΔH19loop, residues 941-996 (GGS)₁₂) were cloned into the pGEX-4T3 vector (GE
958 Healthcare, USA) or the *pmaIE* vector (New England BioLabs, Ipswich, MA) modified to contain
959 a TEV cleavage site (Chook and Blobel, 1999; Chook et al., 2002) and express His₆-MBP
960 instead of MBP (pHis₆-Mal-TEV). Plasmids expressing the *X. laevis* histones H2A and H2B
961 were a gift from Bing Li, UT Southwestern Medical Center. The construct for mutant H2BΔ(1-35)
962 was PCR-amplified from the wildtype H2B construct and cloned into pET-3A vector (Novagen,
963 USA).

964 Imp9 and Imp9 mutants were expressed in BL21 (DE3) *E.coli* cells (induced with 0.5 mM
965 isopropyl-β-d-1-thiogalactoside (IPTG) for 12 hours at 20°C). Cells were harvested by
966 centrifugation, resuspended in lysis buffer (50 mM Tris-HCl (pH 7.5), 0.1 mM NaCl, 1 mM EDTA,
967 2 mM DTT, 20% glycerol and complete protease inhibitors (Roche Applied Science, Mannheim,
968 Germany)) and then lysed with the EmulsiFlex-C5 cell homogenizer (Avestin, Ottawa, Canada).
969 GST-Imp9 was purified using Glutathione Sepharose 4B (GSH; GE Healthcare) and the GST
970 tag was cleaved using Tev protease on the GSH column. Imp9 was further purified by anion
971 exchange chromatography followed by size-exclusion chromatography (Superdex200, GE
972 Healthcare; final buffer – 20 mM HEPES (pH 7.3), 110 mM potassium acetate, 2 mM
973 magnesium acetate, 2 mM DTT, 15% glycerol). MBP-Imp9 was purified using amylose resin
974 (NEB) affinity chromatography. The MBP tag was left intact on MBP fusion proteins, which were
975 used for *in vitro* pull-down binding assays and analysis by size exclusion chromatography.

976 Wild type and mutant *Xenopus* histones H2A, H2B proteins were expressed individually
977 in *E.coli* BL21 DE3 *plysS* cells, which were lysed by sonication. The lysate centrifuged at 16000

978 rpm and the washed pellet was resuspended in unfolding buffer (7 M guanidinium HCl, 20 mM
979 Tris HCl, pH 7.5, 10 mM DTT) and dialyzed overnight in SAU-200 buffer (7 M urea, 20 mM
980 sodium acetate, pH 5.2, 200 mM NaCl, 1 mM EDTA, 5 mM β -mercaptoethanol). The unfolded
981 histone protein samples were further purified with cation exchange chromatography in SAU
982 buffer (200-600 mM NaCl) followed by dialysis overnight in cold water. Mutant H2B Δ (1-35) was
983 purified as described above. Mutant proteins H2A Δ Tail (contains residues 14-119 of H2A) and
984 H2B Δ Tail (contains residues 25-123 of H2B) used for Isothermal titration calorimetry were
985 obtained from The Histone Source (Colorado, United States).

986 H2A-H2B was reconstituted by mixing equimolar concentrations of H2A and H2B in
987 unfolding buffer followed by overnight dialysis into refolding buffer (2 M NaCl, 10 mM Tris HCl, 1
988 mM EDTA, 5 mM β -mercaptoethanol). The dialyzed sample was concentrated and purified
989 using size-exclusion chromatography in refolding buffer (Luger et al., 1997). Mutant histone
990 dimers (H2A- H2A Δ Tail-H2B, H2A-H2B Δ (1-35) and H2A Δ Tail-H2B Δ Tail) were reconstituted and
991 purified as described above for full-length wild type H2A-H2B (Luger et al., 1997).

992 His-tagged full-length *S. cerevisiae* Nap1(C200A/C249A/C272A) in pHAT4 vector was
993 expressed in BL21 (DE3) *E. coli* cells. Nap1 was purified by affinity chromatography using a GE
994 HisTrap SP FF column followed by ion-exchange chromatography using GE Mono Q 10/100 GL
995 column and gel filtration chromatography using GE Superdex-200 16/600 column (20 mM Tris
996 pH 7.5, 300 mM NaCl, 0.5 mM TCEP).

997 Ran (Gsp1 (1-179, Q71L)) and MBP-Ran were expressed in *E.coli* BL21 (DE3) cells as
998 His₆-tag proteins (induced with 0.5 mM IPTG for 12 hours at 20°C). Harvested cells were lysed
999 with the EmulsiFlex-C5 cell homogenizer (Avestin, Ottawa, Canada) and the proteins purified by
1000 affinity chromatography on Ni-NTA column. Eluted proteins were loaded with GTP, and
1001 RanGTP and MBP-RanGTP were further purified by cation exchange chromatography followed

1002 by exchanging into buffer containing 20mM HEPES (pH 7.5), 100mM NaCl, 4mM magnesium
1003 acetate, 1 mM DTT, 10% glycerol (Chook and Blobel, 1999; Fung et al., 2015).

1004 **Imp9•H2A-H2B complex assembly, crystallization, crystal structure determination**

1005 Purified Imp9 was mixed with 10-fold molar excess of H2A-H2B in gel filtration buffer (20 mM
1006 HEPES (pH 7.3), 110 mM potassium acetate, 2 mM magnesium acetate, 2 mM DTT, 15%
1007 glycerol). Imp9•H2A-H2B was separated from excess histones by size-exclusion
1008 chromatography and concentrated to 18 mg/ml for crystallization. Selenomethionyl-labeled Imp9
1009 was expressed as described previously (Doublie, 1997) and purified as for Imp9.
1010 Selenomethionyl-Imp9•H2A-H2B complex was assembled as for the native complex. Initial
1011 crystals were obtained by the sitting drop vapor diffusion method from commercial screens
1012 (reservoir solution - 40 mM MES pH 6.5, 3 M potassium formate, and 10% glycerol) and were
1013 further optimized by the hanging drop vapor diffusion method. Crystals were cryoprotected in
1014 reservoir solution that was supplemented with 15% glycerol, and flash frozen in liquid nitrogen.
1015 Selenomethionyl-Imp9•H2A-H2B crystals were obtained in the same conditions as native
1016 crystals and were prepared similarly for crystallographic data collection.

1017 Imp9•H2A-H2B native crystals diffracted to a minimum Bragg spacing (d_{\min}) of 2.70 Å
1018 and exhibited the symmetry of space group $P2_12_12$ with cell dimensions of $a = 127.4$ Å, $b =$
1019 223.3 Å, $c = 131.8$ Å and contained two heterotrimers per asymmetric unit. All diffraction data
1020 were collected at beamline 19-ID (SBC-CAT) at the Advanced Photon Source (Argonne
1021 National Laboratory, Argonne, Illinois, USA) and processed in the program *HKL-3000* (Minor et
1022 al., 2006) with applied corrections for effects resulting from absorption in a crystal and for
1023 radiation damage (Borek et al., 2003; Otwinowski et al., 2003), the calculation of an optimal
1024 error model, and corrections to compensate the phasing signal for a radiation-induced increase
1025 of non-isomorphism within the crystal (Borek et al., 2010; Borek et al., 2013). These corrections
1026 were crucial for successful phasing and stable model refinement. Crystals of Imp9•H2A-H2B

1027 displayed mildly anisotropic diffraction. To minimize radiation damage and maximize
1028 redundancy, native data was collected in two separate scans of 125 degrees for a total of 250
1029 degrees by translating a single crystal in the X-ray beam. Analysis of the self-Patterson function
1030 calculated with the native data revealed a significant off-origin peak at approximately (1/2, 1/2,
1031 1/2) and 27% the height of the origin peak, indicating translational pseudosymmetry.

1032 Phases were obtained from a single wavelength anomalous dispersion (SAD)
1033 experiment using the selenomethionyl-Imp9•H2A-H2B protein with data to 2.65 Å. Fifty-four
1034 selenium sites were located, phases improved and an initial model containing over 50% of all
1035 Imp9•H2A-H2B residues was automatically generated in the *AutoBuild* routine of the *Phenix*
1036 (Adams et al., 2010) program suite. Completion of this model was performed by manual
1037 rebuilding in the program *Coot* (Emsley et al., 2010). Positional and isotropic atomic
1038 displacement parameter (ADP) as well as TLS ADP refinement of native Imp9•H2A-H2B with
1039 NCS restraints was performed to a resolution of 2.70 Å using the *Phenix* program suite with a
1040 random 2.1% of all data set aside for an R_{free} calculation. The final model for Imp9•H2A-H2B
1041 ($R_{\text{work}} = 20.9\%$, $R_{\text{free}} = 24.0\%$) contained 2,275 residues and 356 waters. The relatively high
1042 R_{work} and R_{free} values are likely due to the presence of translational pseudosymmetry. A
1043 Ramachandran plot generated with the program *MolProbity* (Chen et al., 2010) indicated that
1044 97.1% of all protein residues are in the most favored regions and 0.1% in disallowed regions.
1045 Illustrations were prepared with PyMOL (Schrödinger, 2015). Data collection and structure
1046 refinement statistics are summarized in Figure 1- source data 1.

1047 **Quantification of binding affinities by isothermal titration calorimetry (ITC)**

1048 Imp9 and mutant Imp9 proteins were expressed and purified as described above. The wild type
1049 full-length H2A, H2B and mutant H2BΔ(1-35) proteins were purified as described above.
1050 Mutant H2AΔTail and H2BΔTail proteins were obtained from Histone Source (Colorado, USA).
1051 H2A-H2B, H2AΔTail -H2B, H2A-H2BΔ(1-35) and H2AΔTail-H2BΔTail heterodimers were

1052 reconstituted and purified as described above. Imp9 or mutant Imp9 proteins and H2A-H2B or
1053 H2A-H2B mutant dimers were dialyzed in ITC buffer containing 20mM Tris-HCl (pH 7.5),
1054 150mM NaCl, 5mM TCEP and 5% glycerol. ITC experiments were carried out using ITC-200
1055 calorimeter (Microcal, LLC, Northampton, MA, USA) at 20°C with 0.035 mM of Imp9 or mutant
1056 Imp9 protein in the sample cell and 0.35 mM H2A-H2B or mutant H2A-H2B protein in the
1057 syringe. All samples were thoroughly degassed and then centrifuged at 16000g for 10 min to
1058 remove precipitates. 21 injections each of 1.9 μ l except for the first (0.5 μ l) were sequentially
1059 made in each experiment. The injections were mixed at 300 rpm and consecutive injections
1060 were separated by 300s to allow the peak to return to baseline. All experiments were carried out
1061 in triplicates. Data were integrated and baseline corrected using NITPIC (Keller et al., 2012).
1062 The baseline corrected and integrated data were globally analyzed in SEDPHAT (Houtman et
1063 al., 2007; Zhao, 2015) using a model considering a single class of binding sites. SVD-
1064 reconstructed thermogram provided by NITPIC, the fit-isotherms and the residuals from
1065 SEDPHAT were all plotted using GUSSI (Brautigam, 2015). Individual experiments in the
1066 triplicate sets are differently color-coded in Figure 1 – figure supplement 1A and Table 1 – table
1067 supplement 1A-G. For error reporting, we used F-statistics and error-surface projection method
1068 to calculate the 68.3% confidence intervals of the fitted data (Bevington). The K_D (nM), ΔH
1069 (kCal/mol), ΔS (Cal/mol.K), ΔG (kCal/mol) and the Imp9 local concentration correction factors
1070 for each set of triplicate experiments are reported in the Table 1.

1071 **Pull-down binding assays**

1072 Pull-down binding assays were performed by immobilizing purified MBP-Imp9 or MBP-RanGTP
1073 (*S. cerevisiae* Gsp1(1-179/Q71L) on amylose resin (New England BioLabs, Ipswich, MA). 40 μ l
1074 of 100 μ M MBP-Imp9 or MBP-RanGTP was immobilized on 200 μ l of amylose resin (50%
1075 slurry) in binding assay (BA) buffer containing 20 mM HEPES pH 7.3, 110 mM potassium
1076 acetate, 2 mM magnesium acetate, 2 mM DTT and 15% glycerol. 100 μ l of ~20 μ M of

1077 immobilized MBP-Imp9 resin was incubated with 100 μ l of 400 μ M of purified H2A-H2B in a total
1078 reaction volume of 400 μ l for 30 min at 4 °C, followed by five washes each with 400 μ l BA buffer.
1079 100 μ l of ~20 μ M of MBP–RanGTP resin were incubated with 100 μ l of 50 μ M of purified
1080 Imp9•H2A-H2B in a total volume of 400 μ l for 30 min at 4 °C, followed by five washes each with
1081 400 μ l BA buffer.

1082 For RanGTP dissociations assays, a gradient of 10 μ l, 20 μ l, 40 μ l or 60 μ l of
1083 approximately 500 μ M purified RanGTP was added to 50 μ l of ~20 μ M of immobilized MBP-
1084 Imp9 that were pre-bound with H2A-H2B, in a total reaction volume of 400 μ l. These binding
1085 reactions contain 12.5 μ M, 25 μ M, 50 μ M or 75 μ M of RanGTP added to 2.5 μ M MBP-
1086 Imp9•H2A-H2B. Binding was followed by five washes each with 400 μ l of the BA buffer. From
1087 each of the reactions, 30 μ l of beads after final wash was suspended in 30 μ l of BA buffer. 10 μ l
1088 of the bead slurry sample was analyzed on 12% SDS-PAGE gels and stained with Coomassie
1089 Blue for visualization. A control experiment involving immobilized GST-Kap β 2, MBP-PY-NLS
1090 (PY-NLS of hnRNP A1), and a gradient of 12.5 μ M, 25 μ M, 50 μ M and 75 μ M of RanGTP
1091 (prepared as described above for the MBP-Imp9•H2A-H2B experiments) was carried out
1092 similarly to show that RanGTP dissociates PY-NLS bound to Kap β 2. 2% of the input Ran-GTP
1093 added in each of the binding reactions and approximately 2% of flow-through is also shown in
1094 the Coomassie-stained SDS-PAGE gels.

1095 Pull-down binding assay to probe Ran binding to Imp9 versus Imp9 Δ 1-144 were
1096 performed by immobilizing GST-Imp9 or GST-Imp9 Δ 1-144 on Glutathione Sepharose 4B resin
1097 (GE Healthcare Life Sciences). 12.5 ml of lysate from 500 ml cell culture (OD₆₀₀ =1) pellet of E.
1098 coli expressing GST-Imp9 or GST-Imp9 Δ 1-144 (containing ~ 8 mg/ml of GST-Imp9 protein)
1099 were incubated on 1 ml of 50% Glutathione Sepharose 4B slurry in BA buffer. The GST-Imp9 or
1100 GST-Imp9 Δ 1-144 bound resin was washed five times, each with 6 ml BA buffer, before the
1101 binding assay. 200 μ l of 50% slurry GST-Imp9 or GST-Imp9 Δ 1-144 resin (~12 μ M proteins) was
1102 incubated with 10 μ l of ~500 μ M RanGTP in a total reaction volume of 400 μ l for 30 min at 4 °C,

1103 followed by five washes (each with 400 μ l BA buffer). After washing, 30 μ l of 50% beads slurry
1104 was suspended in 30 μ l BA buffer. 10 μ l of the resulting bead slurry sample was analyzed by
1105 Coomassie-stained SDS-PAGE. A control experiment using empty GSH sepharose beads
1106 and RanGTP was performed as described above.

1107 **Size Exclusion Chromatography**

1108 The interaction between RanGTP and Imp9•H2A-H2B complex was probed by size exclusion
1109 chromatography (SEC). Imp9, RanGTP, H2A-H2B were purified as described above. First, a
1110 series of SEC experiments titrating RanGTP was performed. SEC of Imp9 alone (20 μ M),
1111 RanGTP alone (60 μ M), H2A-H2B alone (20 μ M), Imp9 + H2A-H2B 1:1 molar ratio (20 μ M) with
1112 no RanGTP, 0.5, 1, 2 and 3 molar equivalents of RanGTP were performed in buffer containing
1113 20 mM HEPES pH 7.4, 200 mM sodium chloride, 2 mM magnesium acetate, 2 mM TCEP and
1114 8% (v/v) glycerol. The experiments were performed using a Superdex 200 Increase 10/300 GL
1115 column. A second series of SEC experiments using 1:1 Imp9 + H2A-H2B (70 μ M) and 1:1:1
1116 Imp9, H2A-H2B, and Ran (70 μ M) in the same column and the same buffer were performed with
1117 higher concentrations of proteins for visualization of proteins in the SEC fractions by
1118 Coomassie-stained SDS-PAGE. A third SEC series involves the mutant MBP-Imp9 Δ 1-144 that
1119 does not bind RanGTP and using a different Superdex 200 Increase10/300 GL column with
1120 buffer containing 20 mM HEPES pH 7.4, 200 mM sodium chloride, 2 mM magnesium acetate, 2
1121 mM DTT and 10% glycerol.

1122 **Analytical Ultracentrifugation**

1123 The sedimentation coefficients of individual proteins and protein complexes in the mixture were
1124 estimated by monitoring their sedimentation properties in a sedimentation velocity experiment
1125 carried out in Beckman-Coulter Optima XL-1 Analytical Ultracentrifuge (AUC). The individual

1126 proteins and mixtures of proteins were analyzed in AUC buffer containing 20 mM HEPES pH
1127 7.3, 200 mM sodium chloride, 2 mM magnesium chloride, 2mM TCEP and 8% glycerol (details
1128 below). Protein samples (450 μ l) and AUC buffer (450 μ l) were loaded into a double sector
1129 centerpiece and centrifuged in an eight-hole An-50Ti rotor to 50000 rpm at 20°C. The double
1130 sectors were monitored for absorbance at 280 nm (A_{280}). A total of 140 scans were collected
1131 and the first 80 scans were analyzed. Buffer density, viscosity of the buffer and partial specific
1132 volume of the protein was estimated using SEDNTERP
1133 (<http://www.rasmb.bbri.org/software/windows/sednterp-philo/>). Sedimentation coefficient
1134 distributions $c(s)$ (normalized for absorption differences) were calculated by least squares
1135 boundary modeling of sedimentation velocity data using SEDFIT program (Schuck, 2000).
1136 Sedimentation coefficients s_w (weighted-average obtained from the integration of $c(s)$
1137 distribution) and frictional ratios f/f_0 were obtained by refining the fit data in SEDFIT (Schuck,
1138 2000). For error reporting, F-statistics and Monte-Carlo for integrated weight-average s values
1139 were used (Bevington). Data were plotted using GUSSI (Brautigam, 2015).

1140 Individual proteins, Imp9, RanGTP and H2A-H2B, were purified as described above and
1141 dialyzed into the AUC buffer before mixing the samples to the final volume of 450 μ L for the
1142 AUC experiments. Samples for the AUC experiments contain: 1) 450 μ L Imp9 alone (3 μ M), 2)
1143 450 μ L RanGTP alone (10 μ M), 3) 450 μ L H2A-H2B (10 μ M), 4) 3 μ M Imp9 + 3 μ M RanGTP in
1144 a total volume of 450 μ L, 5) 3 μ M Imp9 + 3 μ M H2A-H2B in a total volume of 450 μ L, 6) 3 μ M
1145 Imp9 + 3 μ M H2A-H2B+10 μ M RanGTP in a total volume of 450 μ L. The proteins were mixed
1146 overnight before loading into the AUC cell.

1147 **Native Gel Shift Assays**

1148 **Electrophoretic Mobility Shift Assays.** One protein component was held constant at 10 μ M
1149 and the other was titrated. Samples were separated by 5% polyacrylamide gel electrophoresis.

1150 Gels were run for 100 min at 150 V at 4°C in 0.5x TBE (40 mM Tris-HCl pH 8.4, 45 mM boric
1151 acid, 1 mM EDTA). Gels were stained with Coomassie Blue. **Competition Assays.** Nap1, Imp9
1152 or Imp9-Ran (equimolar Imp9 and RanGTP added together without further purification) were
1153 titrated (at 0.5, 1.0 and 1.5 molar equivalents of H2A-H2B) against 147 bp Widom 601 DNA
1154 mixed with H2A-H2B at 1:7 (1.5 μ M:10.5 μ M), or 147 bp Widom 601 DNA was titrated against
1155 10.5 μ M Nap1, Imp9 or Imp9-Ran (1:1) pre-mixed with an equimolar amount of H2A-H2B.
1156 Samples were separated by 5% polyacrylamide gel electrophoresis. Gels were run for 75 min at
1157 150 V at 4°C in 0.5x TBE. Gels were stained with ethidium bromide and then Coomassie Blue.
1158 **Nucleosome Assays.** Tetrasomes containing H3-H4 and 147 bp Widom 601 DNA were
1159 reconstituted as described in Dyer et al (Dyer et al., 2004). To monitor nucleosome assembly,
1160 tetrasomes were held constant at 2.5 μ M and H2A-H2B or pre-formed complexes of Nap1-H2A-
1161 H2B (1:1), Imp9-H2A-H2B (1:1), or Imp9-H2A-H2B-Ran (1:1:1) were titrated. To monitor
1162 nucleosome disassembly, Nap1, Imp9, or Imp9-Ran (1:1) complex was titrated against
1163 nucleosomes (2.5 μ M). Samples were separated by 5% polyacrylamide gel electrophoresis.
1164 Gels were run for 75 min at 150 V at 4°C in 0.5x TBE. Gels were stained with ethidium bromide
1165 and then Coomassie Blue.

1166 **Small angle x-ray scattering**

1167 SAXS experiments examining Imp9, Imp9•H2A-H2B, Imp9•RanGTP, and
1168 RanGTP•Imp9•H2A-H2B samples were carried out at Beamline 4-2 of the Stanford Synchrotron
1169 Radiation Lightsource (SSRL) in the SLAC National Accelerator Laboratory. At SSRL, the beam
1170 energy and current were 11 keV and 500 mA, respectively. A silver behenate sample was used
1171 to calibrate the q-range and detector distance. Data collection was controlled with Blu-Ice
1172 (McPhillips, 2002). We used an automatic sample delivery system equipped with a 1.5 mm-
1173 diameter thin-wall quartz capillary within which a sample aliquot was oscillated in the X-ray
1174 beam to minimize radiation damage (Martel et al., 2012). The sample was placed at 1.7 m from

1175 a MX225-HE (Rayonix, USA) CCD detector with a binned pixel size of 292 by 292 μm (Figure 4
1176 – source data 1).

1177 All protein samples for SAXS were expressed and purified as described above. Purified
1178 Imp9 was exchanged into SAXS buffer (20 mM HEPES pH 7.3, 110 mM potassium acetate, 2
1179 mM magnesium acetate, 2 mM DTT, and 10% glycerol) by SEC and concentrated to 5 mg/ml
1180 (43 μM of Imp9) for SAXS analysis. The Imp9•H2A-H2B was purified as described above and
1181 then exchanged into SAXS buffer by SEC and concentrated to 5 mg/ml (35 μM of Imp9•H2A-
1182 H2B) for SAXS analysis. To prepare the Imp9•RanGTP complex, previously purified Imp9 was
1183 first mixed with 5-fold molar excess of RanGTP for SEC to separate the Imp9•RanGTP complex
1184 from excess Ran. This Imp9•RanGTP complex was then buffer exchanged into SAXS buffer in
1185 another round of SEC and concentrated to 5 mg/ml (37 μM of Imp9•RanGTP) for SAXS. To
1186 prepare the RanGTP•Imp9•H2A-H2B complex, previously purified Imp9•H2A-H2B was mixed
1187 with 5-fold molar excess of RanGTP in SAXS buffer for SEC to separate RanGTP•Imp9•H2A-
1188 H2B from excess RanGTP. Fractions containing RanGTP•Imp9•H2A-H2B were pooled,
1189 concentrated and subjected to a second round of SEC in SAXS buffer, after which the complex
1190 was concentrated to 5 mg/ml (31 μM of RanGTP•Imp9•H2A-H2B) for SAXS. The 10% glycerol
1191 in the SAXS buffer protects the protein samples from radiation damage during X-ray exposure
1192 (Kuwamoto et al., 2004) and our early studies show that low glycerol concentrations (5-20%) do
1193 not affect protein compaction (Yoshizawa, 2018). All solutions were filtered through 0.1 μm
1194 membranes (Millipore) to remove any aggregates. The SAXS profiles were collected at protein
1195 concentrations ranging from 0.5 to 5.0 mg/ml. 20 one-second exposures were used for each
1196 sample and buffer maintained at 15°C. Each of the resulting diffraction images was scaled using
1197 the transmitted beam intensity, azimuthally integrated by SASTool
1198 (<http://ssrl.slac.stanford.edu/~saxs/analysis/sastool.htm>) and averaged to obtain fully processed
1199 data in the form of intensity versus q [$q=4\pi\sin(\theta)/\lambda$, θ =one-half of the scattering angle; λ =X-ray
1200 wavelength]. The buffer SAXS profile was subtracted from a protein SAXS profile. Subsequently,

1201 the mean of the lower concentration (0.5 - 1.5 mg/ml) profiles in the smaller scattering angle
1202 region ($q < 0.15 \text{ \AA}^{-1}$) and the mean of the higher concentration (2.0 - 5.0 mg/ml) profiles in the
1203 wider scattering angle region ($q > 0.12 \text{ \AA}^{-1}$) were merged to obtain the final experimental SAXS
1204 profiles that are free of the concentration-dependent aggregation or polydispersity effect
1205 (Kikhney, 2015).

1206 The merged SAXS profiles were initially analyzed using the ATSAS package (Petoukhov
1207 et al., 2012) to calculate radius of gyration (R_g), maximum particle size (D_{max}), and pair
1208 distribution function ($P(r)$) (Figure 4 – figure supplement 3 and Figure 4 - source data 1 and 2).
1209 The molecular weight (MW_{SAXS}) of each SAXS sample was estimated using SAXS MOW
1210 (Fischer, 2010) with a threshold of $q_{max} = 0.25 - 0.3 \text{ \AA}^{-1}$ (Figure 4G and Figure 4 - source data 1
1211 and 2).

1212 **Co-immunoprecipitation and Immunoblotting**

1213 HeLa cells expressing H2B^{mCherry} (Ke et al., 2011) (gift from Prof. Hongtao Yu, UT
1214 Southwestern). The HeLa Tet-ON cells (Cellosaurus Accession: HeLa Tet-On
1215 (CVCL_IY74)) stably expressing H2B-mCherry were originally created (with cell identity
1216 confirmation carried out by STR profiling) in Dr. Hongtao Yu's lab at University of Texas
1217 Southwestern Medical Center, Dallas, Texas USA. Mycoplasma negative status of the
1218 cell line was confirmed using the LookOut Mycoplasma PCR Detection kit, Sigma
1219 MP0035-1KT. The cells were grown to 80% confluence, and total-cell lysate was prepared by
1220 suspending the cells in TB buffer containing 20 mM HEPES-KOH pH 7.3, 110 mM potassium
1221 acetate, 2 mM magnesium acetate, 5 mM sodium acetate, 0.1 mM EGTA, 1 mM DTT and
1222 protease inhibitor cocktail (Kimura et al., 2017) on ice for 15 min, sonicating three times (5 sec
1223 pulse, 10 sec rest), then centrifuging the lysed cells at 15,000 g for 20 min at 4 °C. Nuclear and
1224 cytoplasmic fractions were prepared using the NE-PER Nuclear and Cytoplasmic Extraction

1225 reagents (Thermo Scientific) as per manufacturer's instruction. Protein concentration was
1226 quantitated using the Bradford protein assay kit (BioRad). The RFP-Trap (high quality Red
1227 Fluorescent Protein (RFP) binding protein coupled to a monovalent magnetic matrix,
1228 ChromoTek GmbH) was incubated with the cell lysates for 2 hours at 4 °C. The matrix was first
1229 washed with TB buffer supplemented with 200 mM NaCl, and then once with TB buffer
1230 supplemented with 150 mM NaCl. The proteins bound to the beads were dissolved in SDS
1231 sample buffer for immunoblot analysis.

1232 Cell lysate and protein samples dissolved in SDS sample buffer were separated by
1233 SDS-PAGE, and blotted with the indicated antibodies: Rabbit polyclonal antibody against
1234 tagRFP (1:1000 dilution, Cat no. AB233, Evrogen), rabbit polyclonal antibody against Imp9
1235 (1:1000 dilution, Cat no. A305-474A-T, Bethyl Laboratories, Inc), mouse monoclonal against
1236 Ran (1:2000 dilution, Cat no. 610340, BD Biosciences), mouse monoclonal against Nuclear
1237 Pore Complex Proteins Antibody [MAb414] (1:5000 dilution, Cat no. 902903, BioLegend) and
1238 mouse monoclonal against PCNA (1:2000 dilution, Cat no. 307901, BioLegend). Goat anti-
1239 Rabbit IgG (H+L), HRP-conjugated (1:6000 dilution, Cat no. 31460, Thermo Fisher Scientific)
1240 and Goat anti-Mouse IgG (H+L), HRP-conjugated (1:6000 dilution, Cat no. 31430, Thermo
1241 Fisher Scientific) were used as the secondary antibodies, and immunoblots were developed
1242 using the SuperSignal West Pico PLUS Chemiluminescent Substrate (Cat no. 34580, Thermo
1243 Fisher Scientific) according to the manufacturer's protocols and followed by detection using a
1244 Gel Doc EZ System (Bio-Rad Laboratories, Hercules, CA, USA).

1245 **Confocal Microscopy Imaging**

1246 Cells (5x10⁴ cells per chamber) were seeded into collagen coated culture coverslip (BD Falcon)
1247 The next day, cells were rinsed with ice-cold PBS and fixed with 4% paraformaldehyde for 10
1248 min at room temperature followed by permeabilization with 0.1% sodium citrate plus 0.1% Triton
1249 X-100. The cells were subjected to immunofluorescence staining using rabbit polyclonal

1250 antibody against Imp9 (1:250 dilution, Cat no. A305-474A-T, Bethyl Laboratories, Inc) and
1251 mouse monoclonal antibody against Ran (1:250 dilution, Cat no. 610340, BD Biosciences), for 2
1252 h at room temperature. The cells were then washed with cold PBS three times for 1 min each
1253 and incubated with Alexa 480-labeled anti-rabbit secondary antibody (1:800) (Invitrogen) and
1254 Alexa 405-labeled anti-mouse secondary antibody (1:800) (Invitrogen) at room temperature for
1255 1 h. Subsequently cells were washed with cold PBS three times for 1 min each and mounted
1256 with ProLong Gold Antifade Mountant (Invitrogen).

1257 Image acquisition was performed with a spinning disk confocal microscope system
1258 (Nikon-Andor) with a 100 \times oil lens and the MetaMorph softwar. Images were acquired from
1259 randomly selected fields as a z-stack with step size of 0.1 μ m to give a total of 196 slices. For
1260 each selected field of view, three images were taken, an Alexa488 (Imp9) image, and Alexa405
1261 (Ran).

1262