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Abstract

The rise in the number of functionally uncharacterized protein structures is increasing the demand
for structure-based methods for functional annotation. Here, we describe a method for predicting the
location of a binding site of a given type on a target protein structure. The method begins by
constructing a scoring function, followed by a Monte Carlo optimization, to find a good scoring patch on
the protein surface. The scoring function is a weighted linear combination of the z-scores of various
properties of protein structure and sequence, including amino acid residue conservation, compactness,
protrusion, convexity, rigidity, hydrophobicity, and charge density; the weights are calculated from a set
of previously identified instances of the binding-site type on known protein structures. The scoring
function can easily incorporate different types of information useful in localization, thus increasing the
applicability and accuracy of the approach. To test the method, 1008 known protein structures were split
into 20 different groups according to the type of the bound ligand. For nonsugar ligands, such as various
nucleotides, binding sites were correctly identified in 55%—73% of the cases. The method is completely
automated (http://salilab.org/patcher) and can be applied on a large scale in a structural genomics

setting.

Keywords: protein function annotation; small ligand binding-site localization

Many protein targets of structural biologists are no longer
chosen because of their function, but rather by their
location in the protein sequence-structure space (Burley
et al. 1999; Brenner 2000, 2001; Sali 2001; Vitkup et al.
2001; Chance et al. 2002; Goldsmith-Fischman and
Honig 2003). Therefore, the number of functionally
uncharacterized protein structures is growing. Of the
36,606 entries in the Protein Data Bank (PDB) (Kouranov
et al. 2006) as of February 23, 2006, 1407 structures were
deposited by structural genomics consortia, 985 (70%)
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of which had an unknown function according to the
HEADER record of their PDB files. In contrast, only 174
(0.5%) of the 35,199 protein structures solved outside of
structural genomics had no functional annotations in their
PDB files.

To classify the functions of thousands of uncharacter-
ized protein structures that will become available over the
next few years and millions of comparative models based
on the known structures, automated structure-based func-
tional annotation is required (Wallace et al. 1996, 1997;
Kleywegt 1999; Thornton et al. 2000; Babbitt 2003;
Laskowski et al. 2003). In particular, we need to be able
to identify the locations and types of binding sites on
a given structure, because the binding sites define the
molecular function of a protein.

The most principled computational approach to pre-
dicting the molecular function is to dock a large library of
potential ligands against the surface of the protein. In
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practice, because of the inaccuracies of the available
scoring functions and difficulties in the conformational
and configurational sampling, few such attempts have
been made (Greenbaum et al. 2002; Macchiarulo et al.
2004). Furthermore, most docking programs require
a specification of the location of the binding site as part
of their input. Thus, the first step in ligand docking is
usually to localize the likely binding site on the surface of
the target protein. The binding sites are generally cavities
on protein surfaces, often the largest ones (Kuntz et al.
1982; Laskowski et al. 1996; Liang et al. 1998; Brady and
Stouten 2000). However, not all cavities on the surface of
a protein are binding sites, and it is not well understood
what distinguishes binding sites from other cavities
(Ringe 1995). Mapping the surface of the protein with
molecular probes, such as organic solvent molecules, and
calculating energetically favorable locations for ligands
helps to detect binding sites on the surface of a protein
structure (Goodford 1985; Miranker and Karplus 1991;
Silberstein et al. 2003). Other methods identify hot spots,
defined as destabilizing residues on the surface of a pro-
tein that may therefore be part of a binding site (Elcock
2001).

One of the simplest bioinformatics approaches to
localizing binding sites depends on the availability of
a set of related sequences. The binding site is predicted to
correspond to a set of contiguous surface residues that are
also evolutionarily conserved in the corresponding mul-
tiple sequence alignment (Zvelebil et al. 1987; Mirny and
Shakhnovich 1999; del Sol Mesa et al. 2003). This
strategy works to some degree because evolution tends
to conserve functionally important residues. Another
approach uses a principal components analysis to find
a set of spatially local positions in a multiple sequence
alignment whose clustering mimics the known functional
classification of the group (Casari et al. 1995). A related ap-
proach, the evolutionary trace method, also exploits the
conservation of function within a family and variation of
function between families of a superfamily (Lichtarge et al.
1996; Aloy et al. 2001; Armon et al. 2001; Landgraf et al.
2001; Madabushi et al. 2002; del Sol Mesa et al. 2003; Yao
et al. 2003), benefiting from a multiple sequence alignment,
the corresponding phylogenetic tree, and the three-dimen-
sional structure of at least one member of the superfamily.
The conservation-based and evolutionary trace methods
appear to have similar accuracies (del Sol Mesa et al.
2003), although a rigorous assessment is difficult because
of its dependence on the testing data set and the testing
criteria.

The conservation-based and evolutionary trace meth-
ods listed above can be applied even when binding-site
locations are unknown for all homologs in the set. In
contrast, homology-based approaches use information
about related protein sequences and structures with

known binding-site locations. Detection of sequence simi-
larity between an uncharacterized target and a character-
ized template has been the most frequently used method
to identify the locations of functional sites (Bork et al.
1998). However, these methods become less accurate
as the evolutionary distance between the two proteins
increases (Eisenstein et al. 2000; Moult and Melamud
2000; DeWeese-Scott and Moult 2004). In addition, while
the functional binding sites can be detected by looking at
the sequence conservation, many drugs interfere with the
protein function by binding at the secondary binding sites
(Hardy and Wells 2004).

At the sequence level, local sequence patterns have
been successfully applied to function prediction even in
the absence of high-sequence similarity (Bairoch and
Bucher 1994). At the structure level, 3D-motifs (i.e.,
conserved spatial arrangements of side chains, residues,
and/or secondary structure segments) have also been
successfully used to identify binding sites of the same
type in proteins with different folds (Artymiuk et al.
1994; Wallace et al. 1996, 1997; Kleywegt 1999; Oldfield
2002; Stark and Russell 2003; Stark et al. 2003). Another
related approach to comparing binding sites relies on five
different chemical descriptors that describe the cavity of
a protein, thus allowing a comparison of binding sites
independently from sequence and structure similarities
(Schmitt et al. 2002). Several other approaches that use
invariant physical properties of the binding site were also
described for characterization of protein—ligand, protein—
protein, and protein—DNA interactions (Rosen et al. 1998;
Pawlowski and Godzik 2001; Chakrabarti and Janin 2002;
Kinoshita and Nakamura 2003; Ahmad et al. 2004; Neuvirth
et al. 2004; Deremble and Lavery 2005).

While the existing methods provide useful ways to
identify and describe binding sites, the problem of
accurate identification of the location of a binding site
of a given type on a target protein structure is not solved.
We suggest that a method capable of integrating a variety
of different types of information about the given protein
structure, its binding site, and its homologs is likely to do
better than any one of the methods based on a subset
of information. We describe here such a method. The
integration is expressed as an optimization problem that
depends on a representation of protein-binding sites,
a composite scoring function for evaluating the likelihood
that any patch of residues is a binding site of the required
type, and a sampling protocol that searches for good
scoring patches (Fig. 1; see Materials and methods).

Below, we describe the localization method and the
benchmarking criteria (Materials and methods). Then, we
assess the accuracy of the method and illustrate it by
several sample applications (Results). We conclude by
discussing the implications of the approach for automated
functional annotation of proteins (Discussion).
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Figure 1. (A) Scheme of the integration of different properties into a single scoring function to localize the binding site of a given type
in a target protein structure (see Materials and methods). (B) Flowchart of the optimization protocol (see Materials and methods).

Materials and methods

We aim to maximize the accuracy of the localization of
a binding site of known type on a target protein structure
by combining varied information about the binding site
(Fig. 1A). This aim is achieved by expressing the problem
as an optimization problem, which requires a representa-
tion of the protein and its binding site, a scoring function,
and an optimization algorithm. We describe the three
aspects of the approach next.

Binding-site representation and patch definition

The binding site is predicted by identifying the patch with
the optimal score. A patch consists of a set of contiguous
surface residues. By definition, a surface residue must have
at least one atom with accessible solvent area (ASA) larger
than 2 A% A residue that is not on the surface is a core
residue. Two surface residues are contiguous if the closest
exposed atoms from the two residues are <6 A apart.

Composite scoring function

The scoring function is a weighted combination of seven
properties. These properties were chosen to represent

2368 Protein Science, vol. 15

a variety of features of binding sites that generally
distinguish them from the rest of the protein, such as
their evolution (sequence conservation), shape (compact-
ness, protrusion, and convexity), energetics (hydropho-
bicity and charge density), and dynamics (rigidity).

Sequence conservation

The first property is based on the observation that most
binding sites are likely to be relatively conserved in
sequence because of the evolutionary pressure to keep
the binding sites intact (Introduction). Sequence conser-
vation of a given patch is defined as the average Shannon
entropy (Shannon 1948) of the residues in the patch. The
Shannon entropy at a given multiple sequence alignment
position is

Ci= ). p;i)log p;(i)
j=1.20

where p;(i) is the frequency of residue j at position i based
on a multiple sequence alignment generated by the pro-
gram PSI-BLAST, with default parameters except for the
e-value threshold of 10>, The search database is Uniprot
with ~3.2 million sequences (Wu et al. 2006); the query
sequence is the target protein whose binding site is being
localized.
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Compactness

To encode the shape of the patch, compactness is
defined as the average distance between the residues that
form a patch:

1
fcomp(P) =% Z dl]

Ny i,jeP

where N, is a normalization factor corresponding to the

number of considered distances (i.e., Ny = Z 1) and d; is
i,jeP

the distance between the two closest surface atoms of

residues i and j in the patch P.

Protrusion

Patch protrusion is defined as the percentage of pro-
truding residues in the patch (Fig. 2A). A residue is
protruding if at least 50% of its atoms are protruding. An
atom is protruding if the number of neighboring atoms
(i.e., the number of atoms that lie between 8 and 12 A
from the query atom) is <120. These two parameters were
determined by visual inspection of protein structures.

Convexity

Another geometrical property, patch convexity, is de-
termined by averaging the residue convexity for each
residue in the patch (Fig. 2B). The convexity of residue i
is obtained by considering N; nearest-neighbor residue
pairs involving residue i (n.n.res.):

1 d;]()lv
i =— i
fconv( ) Ni jEng,:res, d?jXP

A) Protrusion
-~
/Atom in protrusbﬁ

N\

where d;’;’lv and d;;* are the distances between the
“solvent points” and “‘exposed centroids” of residues i
and j, respectively (Fig. 2B).

Rigidity

Flexibility of the native structure is likely to have a role
in many protein-ligand interactions. The rigidity of
a patch is calculated as the average B-factor of the
exposed atoms involved in the patch. All B-factors are
obtained from the crystallographic PDB files. A measure
of flexibility determined by NMR spectroscopy could
also be used.

Hydrophobicity

The hydrophobic effect frequently plays an important
role in protein—ligand recognition. The hydrophobicity of
a patch is calculated as the average hydrophobicity of the
residues in the patch. The residue hydrophobicity is
obtained from the experimentally derived scale of Fau-
chere (Fauchere and Pliska 1983).

Charge density

Atomic charges are many times responsible for the
specificity of protein-ligand recognition. Charge density
of a patch is the sum of charges for its exposed atoms
divided by the solvent accessibility area of the patch.
Atomic charges are obtained from the CHARMM?22 force
field (MacKerell et al. 1998).

Scoring function 1: Linear model

The linear scoring function favors binding-site pre-
dictions that maximize the difference observed be-
tween random patches and known examples of a given

B) Convexity

diverging
vectors .
converging
vectors

Figure 2. Schematic representations of protrusion and convexity (see Materials and methods). (A) Protrusion is calculated by counting
the number of neighboring atoms. The atom count is very different for a protruding atom and an atom in a cavity. (B) Convexity is
determined by using three different types of reference points. For every exposed residue, the exposed and buried centroids (represented
by the red and the gray stars) are the geometrical centers of the exposed and buried atoms, respectively. The ““solvent point” (blue star)
is located on the exposed side of a line connecting the buried and exposed centroids 3 A away from the exposed centroid.
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binding-site type. First, each one of the seven properties
defined above is normalized by transforming its value f
into a z-score f = (f — {f)) /. Both the average (f) and
the standard deviation oy are obtained from a sample of
1000 random patches, generated as described below. The
normalization of the seven properties is useful because
it puts them all on the common scale for subsequent
comparisons.
Second, the seven z-scores are summed

~

F(P) =
k

we - f(P),
1

where k denotes the property type and P is a patch. The
weights w; determine the relative importance of each
property in the search for the binding-site location. Both
the absolute values |wi| and the signs of the weights sign
wy are crucial; the relative magnitude controls the
importance that each single property has in the scoring
function, while the sign controls whether the property is
maximized or minimized.

This scoring function can be used for different types of
binding sites by adjusting the property weights. Here, we
calculate the weights independently for each type of the
binding site from a sample of structurally defined binding
sites of the required type. The weight of each property is
calculated as the average of the z-scores obtained from
a training set of known binding sites {P;} of the given

type:

1

Wi = oo fe (Py)

s

i=1

where M is the number of binding sites in the training set.
Therefore, properties that have consistently positive
(negative) z-scores will be positively (negatively)
weighted and properties with z-scores fluctuating around
zero will have small weights. Each binding-site type is
described quantitatively by the seven property weights
wy, forming a fingerprint of the binding site. Unless
otherwise noted, we use scoring function 1 in this work.

Scoring function 2: Quadratic model

The quadratic scoring function favors binding-site
predictions that are similar to known examples of a given
binding-site type:

ri = F (M)

where A, and o are the average and standard deviation
of property k for the known binding sites (positives),
respectively. The weight of property k depends on the

2370 Protein Science, vol. 15

dissimilarity between the distributions of the property for
the known binding sites and random patches as quantified
by the Fisher’s discriminant ratio (Theodoridis and
Koutroumbas 1999):
_ Ay’

ol + o’
where A'; and o'y are the average and standard deviation
for the random patches (negatives), respectively.

Patch optimization

To find the optimal patch corresponding to the maximum
of the scoring function, we need to explore the space of
all possible patches. Unfortunately, given the limitations
of computer power, this problem generally cannot be
solved by an exhaustive enumeration of all patches.
Thus, we used stochastic Monte Carlo Simulated Anneal-
ing (MCSA) optimization (Fig. 1B; Kirkpatrick et al.
1983).

The first step in the MCSA optimization algorithm is
the generation of an initial random patch. First, a surface
residue is randomly selected to be the seed residue of
a patch. Next, other contiguous residues are sequentially
added to the patch until the patch consists of a predefined
number of residues. The number of residues in a given
patch is a random number from a uniform distribution
defined by a set of known binding sites of the required
type; in particular, the average and range of the uniform
distribution were set to the average and twice the standard
deviation of the binding-site size for the sample.

Next, the initial random patch is modified iteratively,
by repetitive application of a move that involves a random
addition and deletion of a residue from the patch. Only
moves that do not destroy the contiguity of the patch are
considered. The difference in the scores after and before
the move, AF(P), is recorded. The move is accepted
according to the standard Metropolis criterion with the
following probability (Metropolis et al. 1953):

if AF(P) <0
otherwise

1

(1) = {exp(—AF(P) /T)

The Monte Carlo temperature 7 plays a major role in
the MCSA. At high values of 7, most moves are accepted,
without strongly discriminating between uphill and
downhill moves. At low 7, primarily moves that decrease
the score are accepted. The initial temperature was set to
1 and decreased at each minimization step by a factor of
0.999. Each optimization consisted of 10,000 such iter-
ations. For each binding-site localization, 100 optimiza-

tions are performed, starting each time with a different,
randomly selected seed residue.
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Testing binding-site localization

Testing sets of binding sites

We relied on the LIGBASE database (November 2003)
(Stuart et al. 2002) to extract a list of binding sites from
protein structures deposited in the PDB. A binding site is
defined as all of the protein residues with at least one
atom within 5A of any of the ligand atoms. We restrict
the data set to 20 different ligands of 10 or more heavy
atoms that occur >100 times in LIGBASE. The set
contains biologically relevant molecules (such as ATP,
NAD, and sugars), but excludes ions and very small
molecules. To avoid redundancy, we filtered the sample
proteins so that all pairs of accepted structures satisfied
the following three conditions: (1) The fraction of the Ca
atoms that superpose within 4 A is <90%, (2) the
corresponding Ca RMSD is larger than 2 A, and (3)
sequence identity is <30%; alignments in DBAIi (Marti-
Renom et al. 2001) were used for this filtering. Finally,
when more than one ligand interacted with a single
chain, only one binding site was selected randomly
(Table 1).

Testing protocol

To test the method, we used the jackknife protocol in
which the structure whose binding site was localized was
not used in the calculation of the scoring function
parameters.

Accuracy of predictions

The accuracy of the localization prediction is assessed
by an overlap between the actual and predicted binding
sites. Given two patches, P; and P,, with a number of
residues, N; and N,, respectively, the overlap between
them is

Ni NN,

V(P,Py) = ———
( b 2) min(Nl,Ng)

where N; N N, is the number of overlapping residues and
min(N;,N,) is their minimum value. The overlap of two
patches is 1 if they are identical or one patch is
completely contained within the other. The overlap is
0 if there are no residues in the intersection between the
two.

For each test set, the overall accuracy of predictions is
defined as the fraction of binding sites correctly local-
ized. A binding site is considered correctly localized if
the overlap ¥ of the best scoring patch with the actual
binding site is greater than a predefined cutoff ¥,. Unless
otherwise specified, we use ¥, = 0.5.

Accuracy of random patches as a control

The difficulty of localization correlates with a variety
of attributes, such as the average sizes of the protein,
binding site, and the optimized patch. Some ligands may

Table 1. List of the 20 ligand types used in the testing of binding site localization

Three-letter Nonredundant
code Extended name Type All instances” instances”
ADP Adenosine disphosphate Nucleotide 552 129
AMP Adenosine monophosphate Nucleotide 185 29
ANP Phosphoaminophosphonic acid-adenilate ester Nucleotide 167 41
ATP Adenosine trisphosphate Nucleotide 294 53
BOG B-octylglucoside Glucoside 217 24
CIT Citric acid Acid 211 33
FAD Flavin-adenine dinucleotide Nucleotide 540 64
FMN Flavin mononucleotide Nucleotide 279 40
FUC Fucose Sugar 304 20
GAL D-galactose Sugar 541 38
GDP Guanosine diphosphate Sugar 179 22
GLC Glucose Sugar 1097 58
HEC Heme C Protophorphyrin 199 19
HEM Heme Protophorphyrin 2093 129
MAN Alpha D-mannose Sugar 1438 33
MES Ethanesulphonic acid Solvent 187 36
NAD Nicotinamide adenine dinucleotide Nucleotide 742 104
NAG N-acetylglucosamine Glucosamine 1950 81
NAP Nicotinamide adenine dinucleotide phosphate (NADP)  Nucleotide 258 29
NDP Dihydro-nicotinamide adenine dinucleotide phosphate =~ Nucleotide 208 26

“Number of instances in PDB (Kouranov et al. 2006) according to LIGBASE (Stuart et al. 2002).

" Number of instances after removing chain redundancy.
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bind prevalently to large multidomain proteins, where the
localization of the binding site is statistically more
difficult because there are more nonbinding than binding
residues compared with smaller proteins. For this reason,
we compare the accuracy of localization relative to the
accuracy obtained by randomly selecting a surface patch.
The random patches correspond to the starting patches for
the MCSA optimization.

Results

We now validate our optimization algorithm with an ideal
scoring function and then we optimize the scoring func-
tion weights for all of the binding-site types considered in
this paper (Table 1). Finally, after describing a sample
binding-site localization, we assess the performance of
our method with the aid of the whole testing data set.

Testing the optimization algorithm

It is necessary, although not sufficient, that a good
optimizer finds a substantially correct solution when an
ideal scoring function is used. We tested our MCSA
sampling protocol with a scoring function that corre-
sponds to the native overlap between a scored patch and
the actual binding site. Otherwise, the default values of
various parameters, such as the initial temperature and the
temperature-scaling factor, were used (see Materials and
methods). For a small number of arbitrarily chosen test
cases, the known global minimum is almost always
reached in 3000-4000 MC steps (Fig. 3). Moreover, even
for realistic scoring functions, the algorithm tends to

Patch overlap

0 " L . | L
0 500 1000 1500 2000 2500 3000

Iteration

Figure 3. Patch overlap as a function of the iteration number during
a simulated annealing optimization. To test the efficiency of the MCSA
protocol, the scoring function was replaced with the patch overlap. Under
these ideal conditions, the program always retrieves the correct solution.
The test involves predicting the location of the NAD binding site on
dihydropteridine reductase (PDB ID 1dhr).
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produce the same best-scoring solution for different,
randomly selected starting patches. Therefore, we con-
clude that the optimizer is not likely to limit the accuracy
of our predictions.

Property distributions and fingerprints

As described in Materials and methods, the scoring
function is either a linear combination of individual
property scores (linear model) or a linear combination
of terms quadratic in the property scores (quadratic
model). The weights and the other parameters are calcu-
lated from the distribution of the properties of the known
binding sites and random patches. While random patches
do not depend on the type of ligand, the distribution for
known binding sites is specific to the binding-site type.

As an example, we describe the distribution of the
NAD binding-site properties (Fig. 4). The z-scores of
sequence conservation, hydrophobicity, protrusion, and
convexity are consistently negative or positive for most of
the protein—-NAD complexes in our training data set.
Accordingly, these properties will be important in dis-
criminating a binding site from a random patch and
should contribute to the scoring function more than the
properties that are similar between the actual binding
sites and random patches. The less discriminating proper-
ties include the compactness, charge density, and rigidity.
The average of their z-scores is close to 0, varying from
positive to negative values for the different known pro-
tein—-NAD complexes.

We determined the property weights for all 20 binding-
site types considered in this paper (Table 1; see Materials
and methods). For some properties, the seven z-scores are
consistently positive or negative, while others change sign for
different ligands. For example, rigidity of all binding-site
types is consistently higher than that of a random surface
patch, while the sequence is usually more conserved, although
it can also be slightly more variable for ligands such as fucose
and mannose. This difference in the distributions is reflected
in the weights and, in the case of the quadratic model, in the
other parameters of the scoring function. The set of param-
eters determined from a given training set of binding sites is
specific to the corresponding ligand type and constitutes the
fingerprint of the ligand (Table 2).

Fingerprints and ligand similarity

In general, similar ligands should bind to similar binding
sites and should therefore have similar fingerprints. We ex-
plored whether this is actually the case by clustering the
fingerprints. We calculated a dendrogram of fingerprints,
based on the Euclidean distances between pairs of finger-
prints (Fig. 5). Similar ligands indeed tend to cluster
together. For example, ligands containing the adenine
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Figure 4. Distributions of the NAD binding-site properties. All the properties have a unimodal distribution. Properties having their
peak around zero (i.e., compactness, protrusion, rigidity, and charge density) are less informative than those with their peak far from

zero (i.e., conservation, hydrophobicity, and convexity).

moiety, such as ADP, ANP, and ATP, cluster in the lower
arm of the tree, while sugars such as fucose, mannose,
and glucose cluster in the upper arm. This clustering of
the ligands by their fingerprints demonstrates that the
fingerprints capture characteristics of the ligands, even
though these characteristics were not used in the finger-
print construction.

An example: Dihydropteridine reductase

We illustrate our method for binding-site localization by
its application to the dihydropteridine reductase enzyme
(DHPR) that binds the NAD cofactor. NAD binding-site
position was determined by comparison with the corre-
sponding native structure of the protein-ligand complex
extracted from the PDB (code 1dhr) (Fig. 6A; Varughese
et al. 1992). The ability of our method to localize
the NAD binding site was assessed by comparing the
overlap between the binding site and 100 independently

optimized patches with the overlap between the binding
site and 100 random surface patches (see Materials and
methods).

The best-scoring binding-site prediction overlaps with
the actual binding site for 10 of 11 residues (Fig. 6B). Of
the 100 independently predicted binding sites, ~50%
have an overlap larger than 0.8 and only ~20% have an
overlap below 0.5 (Fig. 6C). In contrast, for random sur-
face patches, 97% have an overlap of =0.4 and 47% of
the patches have no overlap at all. These results clearly in-
dicate that the predicted binding sites are much closer to
the actual binding site than the randomly generated surface
patches. Moreover, the correlation between the binding-
site overlap and the score is higher for the binding-site
predictions (0.74) than for the random surface patches
(0.47) (Fig. 6D). In summary, for this particular exam-
ple, the scoring function is sufficiently accurate and the
optimizer sufficiently thorough for correct binding-site
localization.
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Table 2. Binding-site fingerprints for the 20 ligands

Ligand  Conservation Compactness Protrusion ~ Convexity  Rigidity =~ Hydrophobicity Charge density
ADP —1.87 —1.51 —1.46 —1.37 —0.36 —0.08 0.35
AMP —2.08 —1.99 —1.99 —1.99 —0.42 —0.48 0.35
ANP —1.96 —1.21 —1.67 —1.71 —0.26 —0.10 0.14
ATP —2.12 —-1.32 —1.73 —1.68 —0.28 0.09 0.21
BOG —0.14 —2.03 —0.41 —0.61 —0.45 —1.07 0.70
CIT —1.40 —3.02 —1.09 —1.09 —0.47 —0.09 0.50
FAD —2.12 0.38 —1.75 —1.75 —0.64 —0.82 0.30
FMN —1.97 —1.35 —1.83 —1.86 —0.30 —0.70 0.42
FuC 0.17 —3.85 0.00 —0.20 —0.43 —0.07 —0.22
GAL —0.75 -3.70 —1.30 —1.17 0.08 0.24 —0.16
GDP —1.30 —1.30 —1.48 —1.34 —0.73 0.20 0.95
GLC —1.31 —3.25 —1.35 —1.58 —0.40 —0.05 —0.03
HEC —0.93 —0.47 —1.21 —1.48 —0.37 —1.31 0.29
HEM —1.56 —0.73 —-1.77 —-1.92 —0.42 —1.43 0.64
MAN —0.29 —3.93 —0.74 —0.78 —0.22 0.61 —0.01
MES —0.01 —3.51 —0.86 —1.02 —0.49 0.52 —0.59
NAD —-1.71 —0.08 —1.75 —-1.77 —0.23 —0.81 0.16
NAG —0.24 —3.74 0.20 —0.05 0.03 0.31 —0.22
NAP —-1.79 —0.13 —1.51 —1.60 —0.33 —0.37 0.54
NDP —1.93 0.03 —1.49 —1.38 —0.42 —0.55 0.57

The fingerprints correspond to the transformed properties (z-score) for the actual binding sites and are averaged for all of the

proteins interacting with the same ligand.

Accuracy of localization estimated with the testing set

Best prediction

To objectively assess the accuracy of the method, we
localized the binding sites for all proteins in the 20 data
sets defined in Materials and methods (Table 1). Accu-
racy varies significantly, depending on the type of binding
site localized (Table 3). For ligands such as ATP, NAD,

FAD

NDP

FUC BOG

Figure 5. Clustering of ligands according to their binding site fingerprints
(Table 2). The distance between two ligands has been calculated as the
Euclidean distance between their fingerprints and the tree was obtained
with Phylip (J. Felsenstein, University of Washington, Seattle). Ligands that
cluster together have similar binding sites. While ligands with the adenine
moiety are close to each other, sugars are spread more broadly (Results).
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and FAD, there is a clear difference between the accura-
cies of the predicted and random patches, indicating that
the scoring function captures the salient features of these
binding sites. For example, for the nicotinamide-adenine-
dinucleotide (NAD), the accuracy of predicted patches (75%)
is much higher than that of random patches (5%) (Fig. 7).
In contrast, for ligands such as fucose, B-octylglucoside,
and mannose, the accuracy of predicted patches is compa-
rable to that of random patches.

Suboptimal solutions

The binding site may not correspond to the best scoring
patch, but merely to a good scoring patch. In such cases,
the optimizer may still find the binding site, although the
correct prediction will not be top-ranked. To quantify this
possibility, we calculated the average accuracy of the
most accurate of the five and 10 best scoring patches,
both for the optimized and random patches. Compared
with considering only the best-scoring patch, accuracy
increases slightly for the optimized patches (from 70%
for the single top prediction to 80% and 84% for the most
accurate among the top five and 10 scoring patches,
respectively) and much more for random patches (from
3% to 21% and 42%).

Accuracy as a function of the actual binding-site

overlap cutoff

We investigated how the accuracy of localization is
affected by the choice of the cutoff 9y, which specifies
the minimal degree of the predicted binding-site overlap
with the actual binding site that is needed for a correct
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Figure 6. Detailed analysis of predictions for protein 1dhr. (A,B) In the fop panels, the cofactor NAD is indicated in yellow, and the
binding residues are in red. The actual location of the binding site (A) is very similar to the prediction (B). (C) Distribution of 100
optimized patches as a function of their overlap with the actual binding site. The distribution of the optimized patches (red curve) peaks
at ~1 (maximum overlap), while random patches (green curve) peak at ~0 (no overlap). The optimizer is able to find the binding site,
in most cases with an overlap larger than 0.5. (D) Scatter plot of the overlap vs. the score for the 100 optimized and random patches;
the optimized patches have a lower score than random patches by construction (because of the optimization); moreover, they also have

a higher overlap with the actual binding site.

prediction (see Materials and methods). When the cutoff
Uy is close to 1, only the best scoring patches that overlap
completely with the known binding site will be counted as
correct predictions. On the other hand, when 9 is close to 0,
even patches that overlap only partially with the known
binding site will be considered correct predictions. As ex-
pected, the accuracy of the method for every test set de-
creases as a function of the cutoff ¥, both for the predicted
binding sites and random patches (Fig. 7). For some ligands,
almost all instances of their binding sites are correctly
identified when the cutoff ¥ is 0, which suggests that the
best scoring patch is in the proximity of the known binding
site rather than far away. In contrast, the poor performance
for sugars is not affected by the choice of 1, indicating that
the actual sugar binding-site locations are generally far from
those of the best scoring predictions.

Discussion

We described, implemented, and benchmarked a method
for integrating structure and sequence properties to pre-

dict the location of a binding site of specified type in
a given protein structure. The method relies on a scoring
function and a Monte Carlo optimization protocol to find
a good scoring patch on the protein surface. The scoring
function depends on z-scores of various properties of
protein structure and sequence, including amino acid
residue conservation, compactness, protrusion, convexity,
rigidity, hydrophobicity, and charge density; the z-scores
are calculated separately for each binding-site type from
a set of previously characterized instances of the binding
site on known protein structures (i.e., the training data
set). We note that the binding site is not localized by the
types of its residues, only by the degree of their conser-
vation. Thus, we do not expect a strong dependence of
localization on the degree of sequence similarity between
the target sequence and the proteins in the training data set.

Combining information for localizing binding sites

Each of the previously described methods for localizing
binding sites tends to rely on a relatively narrow set of
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Table 3. Accuracy for the 20 ligand types calculated for a single
prediction (top_l) as well as for the most accurate prediction of
the 5 (top_5) and 10 (top_10) best-scoring patches

Ligand top_l Random top_5 Random top_10 Random
ADP 45.6 24 60.8 11.2 63.2 23.2
AMP 31.0 0.0 51.7 34 72.4 10.3
ANP 51.3 2.6 64.1 12.8 71.8 25.6
ATP 57.7 5.8 67.3 15.4 69.2 26.9
BOG 18.2 13.6 31.8 31.8 31.8 36.4
CIT 333 10.0 433 26.7 60.0 33.3
FAD 60.9 4.7 75.0 23.4 78.1 39.1
FMN 60.0 5.0 75.0 12.5 717.5 22.5
FuC 0.0 5.9 11.8 29.4 29.4 47.1
GAL 41.7 0.0 50.0 19.4 58.3 25.0
GDP 33.3 4.8 47.6 14.3 61.9 38.1
GLC 353 5.9 47.1 9.8 52.9 19.6
HEC 55.6 0.0 66.7 50.0 77.8 55.6
HEM 73.4 10.2 79.7 344 82.8 53.1
MAN 154 11.5 34.6 19.2 42.3 30.8
MES 294 2.9 47.1 14.7 55.9 20.6
NAD 55.6 5.1 73.7 21.2 75.8 39.4
NAG 4.5 4.5 15.2 19.7 22.7 31.8
NAP 65.4 3.8 69.2 23.1 76.9 26.9
NDP 58.3 0.0 66.7 16.7 70.8 41.7
Average 413 4.9 53.9 20.5 61.6 324
Maximum  73.4 13.6 79.7 50.0 82.8 55.6

For comparison, the accuracy is also calculated for random patches. The
average accuracy for the single prediction is 41%. However, for some
ligands (e.g., HEM, FAD, NAD, NAP, and NDP), the value ranges between
55% and 73%, while the random value is always <15%.

considerations. For example, docking methods consider
geometrical complementarity and physical interactions
(Kuntz et al. 1982); some methods search for cavities
(Laskowski et al. 1996), and others look specifically at
the residue types in the binding site or at their particular
features (geometric hashing) (Artymiuk et al. 1994;
Wallace et al. 1996, 1997; Kleywegt 1999; Oldfield
2002; Stark and Russell 2003; Stark et al. 2003). These
methods vary in terms of the ligand and protein properties
used, the search algorithm, and even the primary goal
(i.e., the identification of the ligand type or the localiza-
tion of the binding site). An advantage of our approach is
the ability to integrate information from different sources
into a single scoring function. At least in principle,
consideration of more information should lead to more
accurate predictions.

Localizing a binding site by patch optimization

To make integration straightforward, we chose a single
representation of the system for all of the properties (see
Materials and methods). We represented the binding site
as a patch of contiguous surface residues. Such patches
have been used, for example, for the classification as well
as prediction of protein—protein interactions by generat-
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ing a limited number of patches and assessing them
according to a user-defined scoring function (Jones and
Thornton 1997a,b).

The number of possible patches on the surface is
generally too large for an exhaustive enumeration. For
noncontiguous patches, the number of different patches of
r residues on a protein with n surface residues is
(’:) = it (e.g, ~10 for r = 15 and n = 200). The
number of contiguous patches does not appear to be
possible to estimate analytically, but it is still large
enough to prevent an exhaustive enumeration. For this
reason, we optimized a randomly created initial patch
according to a scoring function rather than filter a man-
ageable set of predefined patches by the scoring function.
The advantages are that no manageable set of predefined
patches needs to be constructed and that we are exploring
the whole space of possible patches.

Performance of the optimizer

As in any optimization, our approach has two possible
limitations: the optimizer and the scoring function. It is
crucial to determine the power of the optimizer and the
accuracy of the scoring function so that the future
development effort is most productive. The role of the
optimizer is to efficiently explore the space of all possible
patches and find the best scoring one. For a given
binding-site localization, when the optimization is carried
out independently 100 times, starting with different
random patches, the best-scoring solution is generally
found in 30%-50% of the cases (e.g., Fig. 6). Because the
initial random patches are generated independently, it is
very likely that the most populated solution, which
usually corresponds to the best-scoring solution, is the
global minimum. Thus, the optimizer is not likely to limit
the accuracy of the method, and future efforts on
improving the method should focus on improving the
scoring function.

Modularity of the method

Our scoring functions rely on a set of properties that are
linearly combined using weights specific to each binding-
site type. This modularity of the scoring function allows
for flexibly modifying, adding, and removing properties
without affecting the encoding of the other properties and
the optimization protocol. Consequently, different scoring
functions, including different weights, can be easily
compared. Another difference from some of the previous
methods (Jones and Thornton 1997a,b) is that the weights
are not chosen by the user based on their experience, but
are calculated for each binding-site type by relying on
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Figure 7. The accuracy of localization for the 20 ligand-binding sites as a function of the overlap cutoff 9, for both optimized patches
(red curve) and random patches (black curve). As expected, for all ligands, the accuracy increases when v is decreased. The good
localization of ligand binding sites for nucleotides, such as NAD, HEM, and NAP, contrasts with the poorer performance for sugars,

such as GAL, MES, and FUC.

a set of known structures containing the corresponding
binding site. Given the chemical and physical diversity of
possible ligands, the ability to encode their binding sites
by the importance of different properties is expected to
be an advantage over methods that do not differentiate
between different ligands (e.g., looking for the largest
surface cavity). This expectation is clearly borne out by
the different calculated property weights for the different
ligand binding-site types.

Linear scoring function

We implemented and compared two different scoring
functions, linear and quadratic, in the binding-site prop-
erties. While the linear model is widely used in general
discrimination problems because of its simplicity, more
sophisticated scoring functions may be able to better
identify the actual binding site as the best scoring patch.
One potential problem of the linear model is that the
binding-site properties are not restrained to specific target
values. The predicted patches may have property values
that are larger or smaller than those of the real binding
sites. For example, if known sample binding sites corre-
spond to a cavity, the predictions will tend to be the
largest cavities on the surface because those are most
different from the mostly flat random patches; this
rationale may not always work correctly, especially for
smaller ligands. A similar concern applies to the charge
density of a patch.

Quadratic scoring function

We also tested a second scoring function where the
properties are restrained relative to their distributions in
the sample binding sites. We use restraints quadratic in
the properties and centered on the averages of the cor-
responding sample distributions. While the linear model
has seven parameters, there are 13 in the quadratic
scoring function (seven parameters for the centers of
the distributions and six for the weights). By construction,
the best-scoring patches tend to have property values
close to those in the sample binding sites. However, the
accuracy of localization relying on the quadratic function
is generally not as high as in the case of the linear model;
for example, for ADP it drops from 46% for the linear
model to 26% for the quadratic model. Perhaps this is
explained by the fact that the quadratic function depends
only on the known positive examples of the localized
binding-site type, while the linear model depends on the
difference between the training examples and random
patches.

The accuracy depends on the predicted ligand
binding-site type

The benchmark shows that the accuracy of our method
varies for different binding-site types (Fig. 7). In partic-
ular, the accuracy of localizing sugar-binding sites is
poor. It is known that sugars display a variety of binding
modes and that the protein—sugar interactions are difficult
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to predict (Alberts et al. 2002). From a physical chemistry
point of view, sugars interact with the protein through
charged interactions that can be mediated by metal ions.
From a biological point of view, sugars are used in a
variety of biological processes. Such a variety of biologi-
cal roles, which corresponds to a variety of binding modes,
makes sugars a very difficult test set (del Sol Mesa et al.
2003). Incorporation of additional structural and sequence
properties into the scoring function may result in improved
localization.

Similar fingerprints produce similar localizations

We already showed that similar ligands have similar
fingerprints (Fig. 5). We are now interested in whether
similar fingerprints result in similar localization accura-
cies. If so, our localization method would be more useful
for ligands with imprecisely determined fingerprints (i.e.,
ligands with few instances in the PDB). We localized five
different ligands (i.e., ADP, FAD, FMN, HEM, and NAD)
using their native fingerprints and the fingerprints for each
one of the other four ligands. They all have similar finger-
prints with high weights for conservation, protrusion, and
convexity; HEM also depends strongly on hydrophobicity
(Table 2). In general, using the native fingerprint results in
the most accurate localization (data not shown). The non-
native fingerprints reduce the accuracy of localization for
5%—15%. Considering that the localization accuracy ranges
from 45% to 73%, fingerprints of similar ligands may
therefore be used to localize binding sites for which only
small training sets are available.

Toward the characterization of binding sites:
Fingerprint specificity

Our current method has a precise and limited aim to localize
the binding site for a given ligand type on a known protein
structure. There are additional related problems, including
predicting the type of the preferred ligand for a given
binding site on a known structure. Properties that discrim-
inate between binding sites and other regions of the protein,
such as the seven properties used here, may also be effective
in discriminating between different potential ligands for
a given binding site. To find out how useful our fingerprints
are for predicting the specificity of ligand binding, we
performed the following experiment: For each of the 1008
structures in the 20 data sets, we assessed the scores of the
20 fingerprints applied to their native binding sites. Our
fingerprints scored the native ligand best for 15.4% of the
structures, which is three times better than the random rate
(i.e., 1/20). Moreover, the success rate can only increase if
we declare success when the native ligand is one of a few
top-scoring ligands or when it is similar to the best-scoring
ligand. Therefore, the fingerprints contain significant
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information about the specificity of the binding sites, al-
though they are not sufficient on their own in their current
form for a reliable identification of the ligand type.

We did not, however, address the most general question
of predicting simultaneously both the location and type of
the ligand binding sites on a given structure. A potential
approach is to predict the best location for each available
fingerprint, retain only the best scoring fingerprint for
overlapping predicted locations, and finally apply a cutoff
to the scores for the final prediction of both the location
and type of the ligand-binding site. We do not expect that
our current scoring function, developed for localization
only, will be optimal for this integrated problem. For the
current goal, the scoring function needs to maximize the
difference between the tested binding site and a random
patch. In contrast, for the prediction of the ligand type,
the scoring function needs to maximize the difference
between the alternative ligand types; thus, a different
scoring function may be needed.

Some properties are more important than others

Because the localization problem was formulated as an
optimization of a modular scoring function, it is rela-
tively straightforward to further generalize the approach.
For example, fingerprint weights for the conservation,
protrusion, and concavity correlate with accuracy (Tables
2, 3). In contrast, fingerprint weights for compactness
anti-correlate with accuracy (Tables 2, 3). Compactness
is the only property that depends on the number of
residues used to generate the patches and the only
property designed specifically to restrain the shape of
the patch rather than its location on the protein surface.
Incorporating this feature via a linear term in the scoring
function (i.e., the linear model) appears not to be the best
solution.

We also analyzed how localization is affected by
removing a property from the fingerprint. For ADP, for
example, the properties with largest weights are conser-
vation, protrusion, convexity, and compactness. The least-
accurate localization is obtained when conservation is not
used (30% vs. 46% for the full fingerprint), suggesting
that conservation is the most important property in the
ADP fingerprint. Localization accuracy also decreases
without compactness (39%). Unexpectedly, localization
accuracy slightly increases when protrusion and convex-
ity are removed from the fingerprint (to 52% and 49%,
respectively). This unexpected improvement might be a
consequence of random error in the construction and
assessment of fingerprints as well as of unaccounted cor-
relations between the properties in the scoring function.
Localization accuracy is essentially unaffected by remov-
ing rigidity (46%) and hydrophobicity (45%), while it slightly
increases as a result of removing charge density (51%).
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Improvement of the scoring function

We showed above that the method is not limited by the
power of the optimizer; therefore, its accuracy must be
limited by its scoring function. This accuracy might be
increased as follows:

First, by optimizing the definitions of the current seven
properties. For example, the Shannon entropy used here
could be improved by considering the similarity between
residue types instead of their identities.

Second, by adding new informative properties to the
scoring function. For example, the proximity of the pre-
dicted patch to a PROSITE pattern may enhance the pre-
diction for ligands such as ATP, because the P-loop motif is
involved in the recognition of this ligand (Saraste et al. 1990).

Third, by improving the functional form of the scoring
function. For example, cross-terms corresponding to the
correlations between properties may be added.

Fourth, by optimizing the parameters of the scoring
function based on the property distributions for random
patches and known binding sites. For example, the weights
could be determined by a Support Vector Machine (SVM)
instead of the simple calculation used here (Vapnik 1995).

Fifth, as the PDB grows and is better annotated, the
ligand binding-site fingerprints will be more accurate and
can be more specific.

Applications

We tested our method for its ability to localize a given
binding-site type on a target structure. It is conceivable
that it can also be adapted to predicting the type of
a ligand that binds to the structure in the first place. This
might be achievable by constructing a comprehensive
library of binding-site fingerprints, localizing each one of
them on the structure, and predicting the putative ligands
by considering the localized binding-site scores. Provided
the library of fingerprints is sufficiently comprehensive,
our approach could thus be applied to both the identifi-
cation and localization of binding sites on hundreds of
proteins determined by the structural genomics initiatives.
Many of these structures correspond to sequences of un-
known biological function (see introduction). When stan-
dard tools for protein sequence and structure comparison
fail to find clear homologs, our approach may still be able to
provide clues to the biological function of the protein.

In conclusion, we introduced an optimization-based
approach for protein binding-site localization. In some of
our tests, the method can correctly localize ~70% of the
binding sites. A major advantage of the method is the
integration of information from different sources, which
is achieved through a ligand type—specific scoring func-
tion. The program is freely available at http://salilab.org/
patcher. It is completely automated and can be applied to
a large set of protein structures, such as those determined

by the structural genomics projects and models predicted by
large-scale comparative modeling (Burley et al. 1999;
Brenner 2000, 2001; Sali 2001; Vitkup et al. 2001; Chance
et al. 2002; Goldsmith-Fischman and Honig 2003).
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