Protein Structure by
Distance Analysis

edited by

H. Bohr and S. Brunak

Center for Biological Sequence Analysis
The Technical University of Denmark
Lyngby, Denmark

1994
10S Press

Amsterdam « Oxford « Washington DC

Tokyo « Osaka « Kyoto



Comparative Protein Modeling by
Satisfaction of Spatial Restraints

Andrej Sali and Tom Blundell!

Department of Chemistry, Harvard University, Cambridge, MA 02138, USA
t ICRF Unit of Structural Molecular Biology, Department of Crystallography, Birkbeck
College, London WCIE 7HX, England

Abstract

We describe a comparative protein modeling method designed to find the most
probable structure for a sequence given its alignment with related structures.
The three-dimensional (3D) model is obtained by optimally satisfying spatiai
restraints derived from the alignment and expressed as probability density func-
tions (pdf’s) for the features restrained. For example, the probabilities for main
chain conformations of a modeled residue may be restrained by its residue type,
main chain conformation of an equivalent residue in a related protein, and the
local similarity between the two sequences. Several such pdf°’s are obtained
from the correlations between structural features in 98 families of homologous
proteins which have been aligned on the basis of their 3D structures. The
pdf’s restrain C°—C” distances, main chain N-O distances, main chain and side
chain dihedral angles. A smoothing procedure is used in the derivation of these
relationships to minimize the problem of a sparse database. The 3D model of
a protein is obtained by optimization of the molecular pdf such that the model
violates the input restraints as little as possible. The molecular pdf is derived
as a combination of pdf's restraining individual spatial features of the whole
molecule. The optimization procedure is a variable target function method
that applies the conjugate gradients algorithm to positions of all non-hydrogen
atoms. The method is automated and is illustrated by the modeling of trypsin
from two other serine proteases.

1 Introduction

Comparative protein modeling uses experimentally determined protein structures to predict
conformation of other proteins with similar amino acid sequences [for reviews see refs. (1)
and (2)]. This is possible because a small change in the sequence usually results in a small
change in the 3D structore (3,4). The accuracy of protein models obtained by comparative
modeling compares favorably with that of models calculated by other theoretical methods.
The comparative method produces models with an RMS error aslow as | A for sequences that
have sufficiently similar homologues with known 3D structures (5). However, comparative
modeling is restricted to sequences with closely related proteins with known 3D structures.
Nevertheless, since 28% of the known sequences have at least a 25% residue identity with
one of the known structures (6), we can estimate that an order of magnitude more sequences
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Figure 1: Comparative protein modeling by satisfaction of spatial restraints. A 3D model of
sequence X has to be calculated from the known homologous structures A, B and C. First, the known
3D structures are compared. In order to indicate spatial features of the known structures, residue
codes in the resulting alignment are formatted using the convention of the Joy program (11): UPPER
CASE, solvent inaccessible amino acid residues; lower case, solvent accessible amino acid residues;
underling, hydrogen bond to main chain carbonyl: bold type, hydrogen bond to main chain nitrogen;
tilde (7 ), side chain - side chain H-bond: italic, positive main chain dihedral angle &, The sequence
of the unknown is then aligned with the related structures. Next, the spatial features of the known
structures are transferred to the sequence of the unknown; thus, a number of spatial restraints on its
structure are obtained. For example, since there is a conserved hydrogen bond to the main chain
carbonyl at position 6 in all three known structures, we assume that the equivalent hydrogen bond
also occurs in the sequence of the unknown. Finally, these restraints are satisfied as well as possible
to obtain the model for the 3D stsucture of the unknown.

can be modeled by comparative modeling than compared to the protein structures determined
by experiment. This ratio is likely to increase as the fraction of the known structural motifs
increases and the gap between numbers of the known sequences and 3D structures widens.

Future improvements of comparative modeling should aim to model proteins with lower
homology to known structures, to increase the accuracy of the models, to make modeling
fully automated, and to allow inclusion of many different types of information. In this
paper, we attempt to achieve these goals by pursuing the following fundamental question:
What is the most probable structure for a certain sequence given its alignment with related
structures? Our approach, outlined in Figure 1, follows from the method for comparison of
protein structures implemented in the program COMPARER (7.8,9). The modeling method
was developed to usc as many different types of data about the unknown as possible (2).
‘The method consists of three stages: alignment of the sequence to be modeled with related
protein structures and segments, cxtraction of spatial restraints on the sequence using the
alignment, and satisfaction of the restraints to obtain a 3D model. This paper describes
the procedures involved in the last two stages and illustrates the approach by application to
modeling trypsin from two other serine proteases.
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Table 1: Size of the alignments database.

Alignments 98
Protein structures 3
Homologous prolein pairs 2,188
Residues 70,996
Equivalent residue pairs 412910
Intra-molecular residue pairs 21,453,983
Equivalent intra-molecular residue paiss 112,959,350

2 Derivation of spatial Restraints

In this section, relatively simple restraints on the protein conformation are defined from
the information about a related protein structure. A restraint is most precisely defined in
terms of a pdf, p(z/a,b,...,c), for the feature x that is restrained. This is a conditional
pdf and gives a probability density for = when ab,...,c are specified. For example,
p{x1 [residue type, &, ¥) could be used to predict the side chain dihedral angle x) from the
type of a residue and its main chain dihedral angles ¢ and V.

In reality, it is not possible to obtain the true function p, but only its approximations:

plefab, o) W o= [(x,a,b,....c,q) )

where W, o 4. is atable spanned by z,a, b, . .., cthat contains as its elements the observed
refative frequencies for the occurrence of z given a, b,....c, and f is an analytic function
whose parameters q are fitted to the observed W. The multidimensional table of relative
frequencies W is calculated from the absolute frequencies W' using

L o
Wl he

The absolute frequencies, W', are obtained directly by counting the number of octurrences
of each combination of {x,a,b,...,c) values in the sample. In this study, the sample is
derived from a database of known protein structures and their alignments. Thus, before
the restraints can be derived, a database of known protein structures, their features, and
alignments must be constructed.

Initially, a small database of 17 family alignments was built (2,10) by the protein structure
comparison program COMPARER (7.8). This small database was then gradually extended
and used 1o obtain environment specific residue substitution tables (11,12), to improve
homology modeling of loops (13), and to increase the sensitivity and accuracy of aligning
sequences with structures (14). Recently, a large number of alignments was collected and
presented (15). Currently, 378 members of 98 families of related proteins were extracted
from the Brookhaven Protein Databank (16) and aligned both by COMPARER and MNYFIT
(17) to obtain multiple alignments for each of the families (A. Sali & J. Overington, in
preparation).! The size of the database is illustrated further in Table 2. A number of
features of protein structures were also calculated and stored in the database (Table 2).

The program MpT was written to explore the alignments database and to derive the best
pdf’s for comparative modeling. The inputs to the program are names of features selected

”’:,u.b.....c =

1Several results in this paper were derived from the firsy smaller daiabase of only 17 alignments.
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Table 2: Features used in this paper that may be selecied in MDT 10 span multi-dimensional frequency
tables W', The first column lists the variable names that are used for these features. It also indicates
whether an intra-molecular average or inter-molecular difference can be calculated. The ~ symbol
indicates an average of the feature at two residue positions in the same protein, such as an average
accessibility of a certain residue pair. Features that are not associated with iwo proteins can be used
independently for two related proteins in a pairwise alignment or for three related proteins in a triple
alignment. For example, a 2D 1able can be constructed that is spanned by a residue type r in one
protein and a residue type ' at the equivalent position in a related protein; the prime is generally
used to designate that the feature is from the second protein and two primes that it is from the third
protein. The A symbol refers to the difference between features fand f: Af = [ - f'.

Variable Feature

r amino acid residue type
&, A®  main chain dihedral angle ¢
o, main chain dihedral angle ® class
¥, A¥  main chain dihedral angle ¥
¥, main chain dihedral angle ¥ class
w, Aw  main chain dihedral angle u
we main chain dihedral angle w class

Xi side chain dihedral angle x;, 1 = 1,2,3,4.,5
€; side chain dihedral angle x; class, { = 1,2,3,4,5

t secondary structure class of a residue (positive $, a, f3, other)
M main chain conformation class of a residue (24)

o fractional content of residues in the main chain conformation class A
S side chain conformation class (\y, x2)

a,a (fractionat) contact solvent area of a residue
§ residue neighborhood difference between two proteins

{ fractional sequence identity between two proteins
d,Ad  distance between two specified alom types
b average residue isotropic temperature factor
n resolution of X-ray analysis
n number of atomic comacts with non-protein non-water atoms per residue
9.9 distance of a residue from a gap in the alignment
{ number of residues in the protein

G several residue type groups (e.g. hydrophobic/hydrophilic)

from Table 2, a list of discrete values for tabulating these features (numerical or symbolic),
and the list of alignments. These are then used to calculate various multi-dimensional
frequency tables W} , , . by counting the occurrences of all the required combinations of
features =, a,bd,...,c in the alignments database. The tables W'’ are subsequently used as
outlined above to calculate the relative frequency tables W and sometimes the corresponding
pdf’s f. For fitting pdf [ to the observed relative frequencies W, the Levenberg-Marquardt
algorithm for non-constrained least-squares fitting of a non-linear multidimensional model
(18) was implemented in the program LsQ. Since the database is sparse for some pdf’s,
smoothing of the pdf’s was also performed as described in (2); the smoothing method is an
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extension of the procedure proposed in ref. (19).

2.1 Stereochemical Restraints

All stereochemical restraints are easily obtained from the amino acid sequence of a protein.
Stereochemical restraints include bond distances, bond angles, torsional angles defined by
three consecutive bonds, and improper dihedral angles as used in CHARMM (20). The
corresponding pdf’s are obtained from the CHARMM 22 parameter set (21), based on
classical statistical mechanics (22).2 For example, the pdf for the bond length is a Gaussian
probability density function

i
bl =
]’(’) Ub\/2_;

b1 .
expl-3(“= V) = NGh.ov), o

where oy = \/kT'/c; cand b are the CHARMM force constant and mean length, respectively.
The following pdf is used for two atoms restrained by the van der Waals repulsion

N(dm ”w) A< d,
1

d, < d < dmar @

ﬂﬂ=w{

o2z’

where d is the distance between the two atoms, d, is the sum of their van der Waals radii and
@, is the standard deviation of the Gaussian part of the whole pdf (usually 0.05A). dpmes is
the maximal possible linear dimension of a protein and constant ¢ is chosen so that p(d)
integrates to 1. This pdf does not differentiate between contact distances larger than d,, but
it does select against distances smaller than d,. This is achieved by imposing a repulsive
harmonic potential on atoms that are less than d, apart.

2.2 Restraining a Distance between two C" Atoms

The unknown feature is defined as the difference between two equivalent C-C® distances,
d — d"; &’ is from the ‘known’ or template structure and d from the ‘unknown’ or target
structure. Using the database of alignments described above, the distribution of d — d' was
found as a function of four independent variables: the corresponding C*—C* distance in the
*known’ structure (d'), the fractional sequence identity of the two aligned sequences (i), the
average of the fractional solvent accessibilities of the two residues spanning the distance
in the ‘known® structure (@), and the average number of positions that separate the two
residues spanning the distance from the closest gap in the alignment (g).

Examples of the histograms of probability distributions obtained by the MDT program
are shown in Figures 2a-b. These histograms demonstrate that the conditional distribution
of the distance differences may be approximated by a Gaussian function with a mean of zero
and a standard deviation dependent on the values of the independent variables. Therefore,
the pdf restraining a C* - C* distance in the sequence of an unknown, given an alignmient

2Several results in this paper were derived with an easlier version of out program that relied on the
GROMOSB6 IFP37C4 parameter sct (23).
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Figure 2: Distribution of the differences between two equivalent distances. The histograms show the
frequency of the differences between two equivalent distances as observed by MDT in the alignments
database. (a) and (b), C*-C” distances; (c) and (d), main chain N-O distances. The curves are fitted
Gaussian models {Eqs. (5) and (8)]. The values of the dependent variables, the number of C*-C°
distances in the database (N), and the standard deviation of the Gaussian model (o) are shown for
each histogram.

with a single related known structure, can be modeled as

pi(d/g.i,a',d)

1 1 d=d' 2
’(Qoipﬁ'vd']v2l ex!"— 5( ﬂlﬁ.l'.ﬂ'.d")) l

0(§,f,ﬁ',d’) = mytoadtarttay @ +agd+
0g §° 4+ a1 §i + 0g §i' + ag Gd' + a0 i + oy 1@+
02 id' + a3 &fl + a4 a'd + ays dfl+
16 §° + a7 3P + g 373’ + anp 57 + ao §i¥ + an Gra'+
3 §id’ + a3 ja" + agg g-]ﬁ'd' + a2z gdﬂ + 28 4
(1773 28’ + ax 2d + O;giﬁn + azg ta'd + ag; id? 4
(37} a® 4+ an @ + aa &d? + ass d3
&)
In relation to Eq. (5), the four features can be seen as the measure for the degree of
transferability of the distance from the ‘known’ to the ‘unknown' structure; the distance in
the *unknown’ is more likely to be closer to the equivalent distance in the ‘known’ when
the distance is short, the two residues spanning the distance are buried, the two structures
are similar overall, and the residues are distant from the gaps in the alignment.
The remaining problem is to determine the best values of parameters o;.  This is
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Table 3: The best parameters for restraining C* — C® distances (d) and main chain N - O distances
(k). Full expressions for the standard deviations of the Gaussian p models for W {Eqgs. (5) and (8)}
are given, If § > 20, § is reset to 20. Before using §. @', and i with the parameters shown, they have
to be scaled by 0.1, 0.01, and 0.1, respectively. The RMS deviations between the p models and W’
are 0.0524 and 0.0441 for d and A, respectively.

1}

0.849 — 2.033 § - 1.227 i 4 0.971 @ 4 1.467 &'+

1.382 2 + 1.539 gi — 0.504 §a’ —~ 0.259 gd’ + 2.412 4% — 1,496 ia’~
3.094 id' - 0.425 @ + 0.670 @'d’ — 0.159 4"~

0.307 3° ~ 0.213 §%i + 0.088 §2&' + 0.020 3¢’ — 0.969 §i* + 0.453 Gia'+
0.177 gid' - 0.058 ja® - 0.042 ga'd’ + 0.020 gd? - 0.847 i+

0.055 i2a + 1.546 3d’ + 0.527ia" - 0.220 ia'd’ + 0.254 id"?+

0.066 373 + 0.153 a%d’ — 0.153 a'd"? - 0.0019 d°

a(g,i, @'\ d')

(6)

0.957 — 2044 § — 1078 i + 0.995d + 1477 h'+

1.572 2% + 1148 jji — 0.525 g’ — 0.483 gh' + 1.505 i% — 0.655 id@’'~
2.849 ih' - 0.625@'? + 0.199 @'h’ — 0.126 A" -

0.360 §® — 0.243 3% 4 0.121 2@’ 4 0.067 §7h' - 0.592 §i* + 0.346 gia'+
0.276 ik' ~ 0.032 §a? - 0.061 ga'h’ + 0.036 gh'? — 0.329 -

0.318 %@ + 1.472 70’ + 0.284ia"? - 0.293 ia’h’ + 0.198 ik?+

0.382 @@ 4 0.110 a%h' — 0.079 @h'? ~ 0.0095 1"

a(g,i,a’ k')

0

achieved by least-squares fitting the model " in Eq. (5) to the histograms W obtained from
the database scan (Table 3). The Gaussian conditional pdf’s p*(d/g, 1, a,d'), catculated from
the least-squares parameters, are superposed on the experimental histograms in Figures 2a-
b. These plots provide additional graphical evidence that the Gaussian model can describe
the association between the unknown C* — C* distance and the four independent variables
included in this analysis.

2.3 Restraining a distance between main chain N and O atoms

The N - O distance in the target protein was modeled in the same way as the C° - C°
distance above (Figures 2c-d):

1 ] h-n

TR S Epm———— TP Lt L ] @)
(/i) = e e ) )

2.4 Restraining residue main chain conformation

The residue main chain conformation is defined by dividing the Ramachandran plot spanned
by the & and ¥ main chain dibedral angles into six areas (Figure 3): A, B, P, LG, and E
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Figure 3: Definition of the main chain conformation classes. The plot shows 4/(®, V) determined
from the proteins in the alignments database. It is divided into 10° x 10° squares. The areas
corresponding to the six characteristic peaks are delimited by thick lines. These areas define the
residue main chain conformation classes A, B, P, L. G, and E (24). The scale on the right comresponds
to In[W'($,¥) 4 1].

(24). Within cach area, the distribution of the two dihedral angles is approximately Gaussian
(2). Suppose we can predict the probability «; that the restrained residue is in the main
chain conformation class 1. Then the two pdf's restraining ¢ and ¥ dihedral angles can be
modeled as a weighted sum of six Gaussian functions, each function corresponding to one
of the main chain conformation classes A-E and weighted by a probability that a residue is
in the corresponding class:

P (P) TizA.E Wi N[‘i’-‘»ai(‘r’))
P"(V) = Tiza,.g wi N[Vi,0:(W))

where N(a, o) stands for a Gaussian pdf with mean o and standard deviation o (2). The
remaining problem is to determine the probabilities w; of all six main chain conformation
classes for each restrained residue. The database of alignments and the program MpT were
used to obtain these weights.

The protein features that could correlate with the main chain conformation class of a
restrained residue were selected from the list in Table 2. These are the types of the restrained
(r) and equivalent (') residues and the features that can be classified into the following three
groups: main chain conformation of an equivalent residue (A, t', &', ¥', o’), side chain
conformation of an equivalent residue (¢}, ¢, c}), and variability measures (s, 1, ¥. ', g,
). Smoothed and non-smoothed pdf's of the form p(M/a,b,...,c) were derived from
the alignments database for the 7249 possible combinations of up to five selected features
{a,b,...,c)listed above. Each of the resulting pdf’s was evaluated by predicting the most
likely main chain conformation class for each residue in all the 5586 equivalent residue
pairs in the test set of seven serine proteases and by comparing these predictions with the

)
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Figure 4: Sample cross-sections through the pdf for prediction of main chain conformation. The
probabilities W( M /M’ 7, s) for conformation classes A-E of a given residue type (horizontal row,
M) are shown for each conformation class of an equivalent residue (vertical row, Af"). The type of
a restrained residuc (), and the residue neighborhood difference (<) are shown above each plot.

actual conformations found in the crystallographic structures.

A cross-section through the best pdf p( M/, Al', s) is shown in Figure 4. Here, s is
residue neighborhood difference that measures how different are the types of residues in
the two spheres centered on two equivalent central residues; s depends only on the amino
acid sequences and can be obtained from the alignment between the target and the template
(2). The prediction success of this pdf on the test set of seven serine proteases is listed
for the individual residue types in Table 4. The residues that are predicted most accurately
(approximately 85%) are Trp, Gin, Pro, Phe, and Cys, whereas the least accurately predicted
residues include Gly, Asn, Glu, and Leu (approximately 63%). This trend probably reflects
the distribution of the various residue types in the core and on the surface of the molecule
as well as the degree of restraint on the main chain provided by its side chain. The
conformation of the core residues is expected to be more conserved, and therefore betier
predicted, than the conformation of the exposed residues. Likewise, the conformationally
restrained residues, such as Pro, are predicted better than those that are more flexible, such
as Gly. Leu is not predicted reliably because its intrinsic preferences for the A, B, and P
classes are very similar. While the 73% prediction rate may scem low, many errors occur
because of the swapping between the structurafly similar (B, P) classes as well as between
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Table 4: Success for the prediction of the main chain conformation class. Total number is the
number of residue pairs in the test set that contain the residue being predicted; the numbers of the
predicted residues are shown in parentheses. The smoothed pdf p(M/M’,r, s) was used for the
prediction of the main chain conformation class Af. The residue types are listed in descending order
with respect to the success of the prediction. The bottom line gives the total number of equivalent
residue pairs, the total number of residues with a defined main chain conformation state and the
prediction success averaged over all residue types.

Residue Total % comrectly
type number predicted
w 21937 90
Q 391 (67) 89
p 430(79) 86
F 224 (38) 83
C 360 (62) 83
A 683 (123) 82
v 791 (136) 79
S 751(139) 78
1 518 (88) 76
H 209 (36) 73
R 262 (46) 73
K 446 (17) 72
T 614 (108) 71
D 382(69) 70
Y 33057 69
M 137(23) 68
G 918(163) 66
N 481 (85) 62
E 319(57 62
L 685 (118) 57

9150 (1608) 73

the (L, G) classes. When these two pairs are treated only as two classes, the prediction
success increases to 87.4%.

2.5 Restraining residue side chain conformation

Side chain restraints are formulated in a similar way to the main chain conformation
restraints. Most of the side chain dihedral angles are clustered in up to 3 characteristic
intervals that span the range from ~— [80° to 180°; this results in a small number of side chain
rotamers (25,26). Thus, each dihedral angle can be described by a corresponding dihedral
angle class within which the distribution of the dihedral angle is Gaussian (2). Similarly to
the prediction of the main chain conformation class, the side chain dihedral angles x; are
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modeled as a weighted sum of Gaussians
P(x) = E wi; N[xijyoi(xi)) 10
b

where w;; are the probabilities that the restrained side chain dihedral angle i is in class j,
and N(a,0) is a Gaussian pdf with mean a and standard deviation o (2). The remaining
problem is to determine the probabilities w;; of all side chain conformation classes for each
restrained residue; the same approach is followed as for the derivation of the weights for the
main chain conformation classes.

When p(c; /r) is used in the prediction of the y, class, the prediction success is 57.4%
because that many residues are in their most likely classes. When information about the
type and x, dihedral angle of an equivalent residue is added to obtain pdf p(cy/r,r".¢))
the prediction success increases for 6.4% to 63.8%. None of the remaining independent
variables improves the prediction success of p(e/r) or p(ei /v, ', ¢} ), irrespective of whether
the variables are used on their own, in pairs, or in threes. The prediction successes of p(c, ")
and p(cy/r, €)', s) are listed for the individual residue types in Table 5. The residues that
are predicted most reliably (80%) by p(ci/r, ¢}, 7', s) tend to be large and buried (Trp, Cys,
Leu, Val, and Tyr). The residues that are predicted least reliably (50%) tend to be small
and exposed (Asn, Met, Arg, Glu, and Ser). The largest improvement as a result of using
information about the equivalent side chain occurs for Trp (30%), His (23%), Asp (17%),
Thr (12%), Tyr (10%), and Leu (10%). The amount of information provided by the type
and x, of an equivalent residue tends 1o be large for large or buried residues and small
or non-existent for exposed residues. This improvement reflects the degree to which the
side chain conformation of a residue is restrained by its environment. The restraints for
\2, \3, and x, dihedral angles were derived in a similar way. The prediction successes are
summarized in Table 5.

3 Satisfaction of spatial restraints

It was shown in the previous Section how spatial restraints on the sequence {o be modeled
can be expressed as pdf's. These pdf’s were obtained from stereochemical considerations
and from a single homologous structure. In this Section, we describe how to combine the
restraints from several homologous structures and how to use these restraints to derive a 3D
model. The 3D model is obtained by an optimization of the molecular pdf which depends
on the model and on the restraints.

3.1 The molecular probability density function

The molecular pdf is assembled from feature pdf's which in turn are obtained from basis
pdf's.

3.1.1 Derivation of a feature pdf from basis pdf’s

In general, every structural feature f can be restrained by several basis pdf’s p{( J) for
k= 1,2,..., such as those described in the preceding Section. A feature pdf, PF(f)isa
pdf that combines all basis pdf's to use all the information about the possible values that
the feature J can assume. The lowercase and uppercase superscripts are used for the basis
and feature pdf’s, respectively. The following example clarifics these definitions. The aim
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Tal.JIe 5: Success for the prediction of the side chain Xi classes, ¢;. Total number is the number of
resud'ue pa.ifs in the test set that contain the residue being predicted; the numbers orpredictcdur':sidru:s
:nnal;s(t:d/:n)l;a:enlh:::s. The smoo.llu.:d paf's ples/r e, 7', 8), pleafr,v', &, ). pleafr, ', t')..
e e:’ - :: :c ” gef:'r‘:‘ l:llehpredlcuon of \'I: X2: X3, and x4 dihedral angle classes, respectively.
oo m.l.- o e smoofhed pdf’s [.v(c;/r) are shown in parentheses for i = 1,2, 3.
o . yp isted in descending order with respect to the success of the ¢; prediction. The

ttom line gives the total number of equivalent residue pairs tested by the pdf, the total number of

residues with a defined x; dihedral an icti
gle, and the ¢; prediction succe: i
(ypes tht have deined . dibodiat o iPp uccesses averaged over all residue

Residue Total % correctly predicted

type number | y class x2 class Xaclass x4 class
w 219(37) | 86.8(56.8) 81.3(62.2) - ' -
C 360(62) | 81.4(77.4) - - -
L 685(118) [ 74.0(64.4)  59.3(55.9) - -
v 791 (136) | 72.3 (72.1) - - -
Y 330(57) | 69.4(59.6) 100.0(100.0) - -

1 518(88) | 68.9(65.9) 73.9(73.9) - -
K 446(77) | 65.2(66.2) 61.5(64.9) 76.0(753) 71.4
F 224(38) | 64.7(57.9) 100.0(100.0) - -
D 382(69) | 64.7(47.8) 1000 (100.0) - -
H 209(36) | 61.7(38.9)  62.2(55.6) - -
Q 391 (85) | 61.4(64.2) 66.5(62.7) 37.3(35.8) -
T 614 (108) | 58.5(46.3) - - -
N 481 (85) | 55.1 (52.9)  55.1 (56.5) - -
M 137(23) | 54.7(52.2) 64.2(69.6) 54.7(21.7) -
R 262(46) | 53.4(52.2) 729(739) 492 (543) 804
E 319(57) | 51.7(49.))  649(63.2) 79.6(80.7) -
S 751 (139) | 45.7(40.3) - - -

7119(1243) | 64.4(57.4)  72.3(70.7) 60.6 (58.5) 748

is to construct a feature pdf for a particular C>-C® distance in a given sequence. Suppose
:wo known rela_ted sln.lclures with equivalent distances are available; therefore, we have
wo tforrespondmg basis pdf’s for the C*-C* distance in the target sequence [Ex; 9 In
ad.dm_on. we also know that each of the two restraints has to comply with the van d-er W;mls
criterion, i.e. the distance has to be larger than the sum of the two van der Waals radii
!Bq. (4?]. In order 10 combine all this information we have to combine the three basis pdf's
into a sm_gle feature pdf. To find how to do that, we can use all possible alignments of ltJhrc
proteins in l'hc alignments database. An example of the dependence of a C*~C” distance ;
the two equivalent distances from two related structures, p{d/d',d"), is shown in Figure SOan

The histogram suggests that p(d/d’, d") can be i indivi
R fohar i / ) modcled as a weighted sum of the individual

rd/d,d",&,5") = w(3') - pld]d') + w(5") - p(dfd"). an

(':"l;: weight w of each term in this sum is proportional to the average residue neighborhood
tiference s between the corresponding structure and the sequence of the unknown. ‘Fhe



76" Andrej $ali and Tom Blundell

% 17 19 21 23 25 15 17 19 21 23 25
d,C,-C distance (A} d.C,-C,distance  [A}

) I _ )
32 :s T
&
g2 £ /|
516 ge
£ a |
8 2
15 17 19 21 23 25 15 17 19 2v 23 25
d,C, -C,distance (A} 4,C,-C,distance A}

Figure 5: Derivation of a feature pdf from basis pdf's. In all plots, 18.0 < d < 18.5 and
225 < d" < 230. (a) W(d/d,d"). (b) W'(dfd',d",&,5"), where 0.2 < 3 < 0.4 and
02 < & < 04. (c) W(d/d',d",5,5"), where 0.2 < & < 0.4 and 04 < 5" < 0.6. (d)
Wid/d', d",5,5"), where 0.4 < & < 0.6 and 0.2 < & < 0.4. The histograms ase oblained
by scanning the alignments database. The dashed lines are the basis pdf°s pldjd’, d", 5, 5")
calculated from Eq. (5). The continuous lines are the feature pdf's pP(d/d',d", ', 5') calculated

with Eqgs. (11)-(12).
data can be fitted by the following model for w(s): .

w(s) = ) where  w(s) = a + exp(hs®) ; Swlsy=1, (12)

Z,wlis;) 3
where the best values for the parameters, as obtained by the 1.SQ program, are: a =
0.0331 4 0.0025, b = —4.98 £ 0.11, and s = 1.800 & 0.079. The result is that the
contribution of a structure to the 3D model of a related structure falls faster than linearly
with the average residue neighborhood difference between the two sequences. Examples of
histograms and analytical curves for the feature pdf corresponding to different weights are
shown in Figures 5b-d.

The last step in the derivation of the feature pdf is to include the van der Waals restraint,
Since all stereochemical restraints have to be satisfied in all structures, these restraints are
multiplied into the feature pdf and we obtain the final feature pdf p”(d) = fwip{(d) +
wapl(d))p*(d). .

This simple approach to combining of two basis pdf's was used for any number of basis
pdf’s of the same type that were derived from related structures. When properties such
as main chain and side chain conformation are predicted, average residue neighborhood
difference is replaced by the residue neighborhood difference.
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Figure 6: Comparison of trypsin, elastase, and tonin, The stereo plot shows the superposition of
the C backbones of elastase (medium line) and tonin (thin line) on that of trypsin (thick line). The
pairs of the C* atoms that are aligned in the COMPARER alignment were used for the superpositions.
Chymotrypsinogen numbering is used.

Definitions of all types of feature pdf’s follow, with the basis pdf's on the right side
of the equations as defined in Sections 2.1 — 2.5. The subscript i in the sum refers 10 the
sequences with known structure that are aligned with the sequence of the unknown. The
independent variables a, b, . . . refer to the features correlated with the restrained feature as
described in Sections 2,2 — 2.5. The weights w; are determined from Eq. (12).

1. C" - C® distance restraints:
pP(d) = p*(d) Zw-' pi(dfa,b,...) (13)

for all pairs of C" atoms in the sequence of the unknown that satisfy the following
three criteria: (1) there is at least one equivalent C*-atom pair in the known structures,
(2) there are at least N, (usuvally 1) residues between the two residues spanning the
distance in the sequence of the unknown and (3) at least one equivalent distance in
the known structures is less than dy (usually 20 /\). The sum runs over all known
structures with an equivalent C" pair present.

2. Main chain N - O distance restraints;
(k) =p'(h) Zw; pi(h/a,b,...) (14)

for all pairs of main chain N and O atoms in the sequence of the unknown that satisfy
the following criteria: (1) there is at least one equivalent (N, O) pair in the known
structures, (2) there are at least N, (usvally 2) residues between the two residues
spanning the distance in the sequence of the unknown and (3) at least one equivalent
distance in the known structures is less than dy, (usually 10 A). The sum runs over all
known structures with an cquivalent N — O pair present.
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3. Stereochemical restraints:
pPe) = ple). (15)

Feature e can be bond length, bond angle, torsion angle, improper dihedral angle, or
van der Waals contact (Section 2.1). The feature pdf for van der Waals contacts, p* (v),
restrains only those pairs of atoms that are not already restrained by the feature pdf's
for the bond lengths, bond angles, C*—C* distances and main chain N-O distances.

4. Main chain conformation restraints:

" 3 ™ (g ,b,... >0
pn\l(o) - Zt-lw Pi ( /" ) n (l())
o/ ) n=0
where 8 stands for either ¢ or ¥ main chain dihedral angle. 1f there is no equivalent
residue in any of the related structures (n = 0), the restraint depending only on the
residue type in the sequence of the unknown is applied.

5. X1. X2. X3, and 4 side chain dihedral angle restraints:

() = { waw pllefah ) n>0 a7

»(c/ ) n=1>0

where ¢ stands for either x, \2, V3. Of x4 side chain dihedral angle. A rotamer library
based only on the residue type is used when there is no equivalent residue in any of
the available structures (n = 0).

3.1.2 Derivation of a molecular pdf from feature pdf’s

The last stage in the derivation of a molecular pdf is to combine all feature pdf’s into a
molecular pdf. The 3D-structure of a protein is uniquely determined if a sufficiently large
number of its spatial features, f;, are specified. The goal is to find the 3D structure that is
consistent with the most probable values of individual features f;. The molecular [_de should
give a probability for occurrence of any combination of these features simultaneously. Then,
the madel for the 3D structure of the unknown would correspond to the maximum of the
molecular pdf. Assuming that feature pdf’s are independent of each other, the molecular
pdf is simply a product of feature pdf's defined in Eqgs. (13)-(17):

P=T1"U0 a8)

Thus, by maximizing function I we find the most probable model for the 3D structure of
the unknown given its alignment with the known structures.

3.2 Optimization of the molecular pdf

Derivation of restraints from an alignment and satisfaction of those restraints are imple-
mented in the computer program MODELLER. The protein model may consist of all atoms
or any subset such as all heavy atoms, mainchain atoms, or only C” atoms. The function
that is actually optimized is a transformation of the molecular pdf /*;

F=~In(P) (19
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where all the features are expressed in terms of atomic Cartesian coordinates. Function F is
referred to as the objective function. The same Cartesian coordinates that maximize I” also
minimize F. To increase the radius of convergence, the variable target function approach
is implemented in MODELLER. This method has been introduced by Braun and G6 in the
DISMAN program for calculating protein 3D structures consistent with 2D-NMR constraints
(27). The main difference between the original method and the present implementation is
that the current optimization proceeds in the Cartesian space whereas the original procedure
optimized the dihedral angles. Following the variable target function method, the optimum
of the molecular pdf is found by successive optimizations of increasingly more complex
‘target’ functions, culminating in the true molecular pdf at the end. This series is obtained
by starting with sequentially local restraints and then introducing more and more long
range restraints, finally arriving at the true molecular pdf incorporating all the restraints.
More precisely, the target function P(Ar) is defined as a function of an integer variable
Ar = 1,...,N where N is the number of residues in the sequence being modeled. The
target function P{Ar) is obtained in the same way as the molecular pdf, except that only
those restraints whose atoms originate from residues not more than Ar residues apart in the
sequence are included. The whole calculation consists of a number of conjugate gradient
optimizations (I18) of target functions P{Ar) with increasing Ar values. The starting
conformation for /’(1) optimization is either an extended structure or a conformation derived
from an extended chain by rotation around the main chain and side chain dihedral angles.
In the subsequent steps of the variable target function method, the starting conformation is
the fina) model from the previous step. An ensemble of different final models is obtained
by using different initial conformations.

4 Modeling of trypsin

To illustrate the method of comparative modeling by satisfaction of spatial restraints, this
section describes the modeling of trypsin from two other serine proteases, elastase and tonin.
The availability of the crystallographic 3D structure of trypsin allowed an evaluation of the
model. Two other examples of application of MODELLER include modeling of ferredoxin
(10) and of mouse mast cell chymases (28).

The 3D structures of trypsin [223 residues; (29)], elastase {240 residues; (30)], and
tonin [227 residues; (31)) were compared using the program COMPARER (7) (Fig. 6). This
program relies on many structural properties and relationships, such as positions of C°
atoms, local main chain conformation, solvent accessibility, and main chain hydrogen
bonding patterns. When only those aligned C* atoms that are less than 3.5A apart from
each other are considered, 217 pairs superpose with the RMS of 1.07A in the more similar
pair of trypsin and elastase, whereas only 209 pairs superpose with the higher RMS of
1.18A in the superposition of trypsin and tonin. This trend is reversed for the sequence
comparisons, where the sequence identity between elastase and trypsin is only 38%, and
that between tonin and trypsin is 42%. There are only a few short gaps of up to 6 residues
in the alignment. The structural alignment was used for extraction of spatial restraints on
the sequence of trypsin as described in Section 2. The types of restraints and their numbers
are listed in Table 6,

39 models of trypsin were calculated by optimizing the molecular pdf from 39 different
initial conformations. These conformations were obtained by setting the main chain and
side chain dihedral angles ®, ¥, and x; to random values between —180° and 180°. The
progress of modeling was followed by monitoring the average atomic shifts and the value
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Table 6: Spatial restraints used to model trypsin. °Lists a number of basis restraints of a given
type that were used to mode! trypsin. BLists a number of feature restraints of a given type that were
assembled from the basis restraints. ¢For the best model, a number of the features that differ from
the closest optimum in the feature pdf's by more than the cutoff in the parentheses is given. These
culoffs generally lie between onc and two standard deviations of the comesponding basis pdf’s. The
best model is defined as the one with the lowest value of the molecular pdf. 4YRMS deviation between
the actual values in the best model and the closest optimum. “RMS deviation between the actual
values in the best model and the most likely optimum. I These dibiedral angles restrain the planarity
of peptide bonds and rings as well as chirality of the chiral carbon atoms. 7 Al pairs of atoms that
are not restrained by any of the bond or bond angle terms are restrained by the minimal contact
distance. Only the number of pairs that violate this restraint in the final model is listed. *There are
no cis-peptide bonds in trypsin. The only cis-peptide bond in tonin is at Pro 198 which is alipned
with Gly in trypsin. Therefore, no cis-peptide bonds were imposed on trypsin.

Type Basis pdf's®  Featuse pdf's®  Violations® RMS?  RMS©
bond lengths 1659 1650 O(0.1A) 0.005A 0.005A
bond angles 2250 2250 5(10°) 200° 2.00°
dihedral angles’ 919 919 100 340°  3.40°
van der Waals contacts? 531 531 0 (().ZA) 0.02A 0.02A
C° - C" distances 23538 11914 26(15A) 022A  047A
main chain N - O distances 7480 agaz  19015A) OMA 051 A
main chain & dihedral angles 1110 222 2(20°) 108 21.2°
main chain ¥ dibedral angles 1332 222 9 (20 10.6° 20.3°
side chain Yy dihedsa) angles 528 176 5(25%) 8.4° 16.8°
side chain Y2 dihedral angles 264 103 3(25°) 10.2° 13.0°
side chain x3 dihedral angles 92 2 2(25%) 11.9° 48.1°
side chain x4 dihedral angles 48 16 0(25°) 4.5° 21.9°
disulfide bridge bonds 6 6 00.1°) 00607A 0007A
disulfide bridge angles 12 12 0(10%) 3.7 37
disulfide bridge dihedral angles 6 12 0(20°) 10.0° 12.9°
cis-peptides” 0 0 — — — |

of the objective function. The optimization schedule and a typica) progress of optimization
are shown in Figure 7. A total of 11 models with low values of the objective function were
obtained (10293 + 655). These models were close to the cormrect trypsin structure. The
remaining 28 models were the mirror images of either the whole molecule or of a part of
it. They all had a significantly higher value of the objective function (> 15000) and were
thus casily identified as misfolded models. The model with the Jowest value of the objective
function (9388) among the 11 successful trials was taken to be the representative trypsin
model (the best model). The violations of the restraints by this and other 10 models are
small (Table 6), The stereochemistry of the models is comparable or better than that of the
crystallographic trypsin structure refined at a high resolution.

The accuracy of the model is different for buried and exposed parts; thus, we will evaluate
the model separatety for the residues that have fractional side chain solvent accessibility
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Figure 7: Schedute and progress of optimization. The optimization schedule is specified in the
bottom three lines. The ‘iteration’ line counts the conjugate gradient steps. The bottom two lines
show the changes in Ar: Aris increased every 150 conjugate gradient steps or when the largest
atomic shift is smaller than 0.005 A. Each change in Ar comresponds to a step in a variable target
function method. There are 31 such steps to get one model. The method stasts with a few restraints
that involve only the atoms from residues al most Ar residues apart and gradually incorporates all
resteaints (the final Ar equals the lengih of a sequence). The C° traces of the evolving model at
several stages dusing the refinement are shown on the top of the figure. The starting confonmation in
this case is an extended chain; generally, it is a chain with random @, ¥, and y; dihedsal angles. The
van der Waals criterion was gradually introduced in the last five steps of the variable target function
method by scaling the corresponding standard deviations by 8, 4. 2, |, and 1. The data for the trial
resulting in the model with the lowest value of the molecular pdf are shown. The CPU time needed
1o calculate one model is 30 minutes on a DEC Alphastation workstation.

less than 20% (buried residues) and for the remaining residues (exposed residues). Only 4
of the 107 buried C° atoms are more than 3.5A away from their correct positions whereas 6
out of 116 exposed C” atoms are further than 3.5A from their positions in the actual trypsin
structure. There is no significant difference between the accuracies of the C* atoms and all
main chain atoms; the RMS error for buried main chain atoms is approximately 0.75A, and

for exposed main chain atoms, approximately 1.3A.

Similarly to the main chain, buried side chains were modeled more accurately than
exposed side chains. 82% of the buried y; classes and 69% of the exposed classes were
predicted correctly. For the x2 class, 79% of the buried residues and 80% of the exposed
residues were modeled successfully. The average xa prediction score for all x» classes is
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68%. There are no buried Arg and Lys residues; they are all exposed and predicted with
75% accuracy.

The modeling example described in this section is not a particularly difficult problem
because of a relatively high similarity between the target sequence and the two template
structures. There is no region in the target sequence that does not have aligned residues
in at least one of the templates. If no equivalent residues in the template structures were
available, MODELLER would use only the main chain dihedral angle restraints based on the
residue type alone. We would not expect such weak restraints to result in an accurate model.
Thus, structurally similar segments from the database of all known protein structures would
have to be found and added to the alignment. In principle, filtering methods based on
the distances between the gap flanking regions (32) could be used for this task, but general
applicability of this approach is questionable (33). Another possibility may be an exhaustive
conformational search employing encrgy criteria (34,35).

S Discussion

The challenge for the future is to unify all the techniques for determination and prediction of
protein structure into a single protocol, making the best use of all available information about
the structure of a given protein, regardless of whether it is directly based on experiment, on
the broader knowledge base, on empirical force potentials, or intuition (9). The methods
that combine molecular dynamics and energy potentials with NMR derived constraints (36.
37) and X-ray data (37,38) to refine the initial models can be seen as the first step in this
direction. Recently, the advantages of a joint crystallographic and NMR refinement were
demonstrated (39).

Before we start prediction of the 3D structure of a protein, we know nothing about
positions of the atoms. in the terminology of classical mechanics, the actual structure could
be a point anywhere in the phase space spanned by the axes for the positions of all atoms.
We can then imagine modeling as a process of reducing the volume of the phase space in
which we know the actual structure is located. This is achieved by using various kinds of
information. First, stereochemical restraints derived from the chemical connectivities can
be used to remove some of the a priori available phase space. This can be pursued further
by inclusion of experimental data, such as that from X-tay crystallography and NMR
techniques. We can also add additional theoretical restraints originating from empirical
energy potentials and known protein structures. Each of these kinds of information allows
the model to be in a different area of the phase space with a different probability. The goal is
to find the most probable conformation or a set of most probable conformations according
to all types of information. All the information pooled together results in a smaller allowed
volume of phase space than any of the methods can locate on their own.

The most useful representation of information is a pdf for the feature that is restrained.
The present modeling method uses pdf's in a relatively general way. Thus, the method, even
though it has so far been applied only to comparative modeling, could possibly be extended
to include other types of information, such as NMR-derived constraints and coarse-grained
potentials of mean-force describing residue-residue interactions.

6 Conclusions

I. A database of family alignments for proteins with known structures was constructed.
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Figure 8: Comparison of the best trypsin model with trypsin. Comparison is obtained by superposing
all C® atoms. Chymotrypsinogen numbering is used. Trypsin (open bonds with circles), trypsin

moTlcl (line). (a) Comparison of the C” traces. (b) Comparison of side chains in a mostly buried
region,

2. It was sho.wn how pdf’s and other tools can be used to explore quantitatively various
telationships between features in individual proteins and in families of proteins.

3. Tl}e usefulness of the pdf's was improved by a new smoothing procedure that mini-
mized the problems of a sparse data set.

4, Using. these (?ols and the alignments database, the best pdf's for comparative modeling
of a side chain conformation of a given residue were constructed. They relied mainly

on ils type, on the side chain conformation of the equivalent residue and on the
similarity between the two local environments.

5. The best possible pdf for modeling the main chain conformation from the main chain
of a homologue was found. It was based on the main chain conformation of the
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equivalent residue and on the similarity between the two local environments.

6. The pdf’s for restraining the C°~C° distances and the main chain N - O distances on

the basis of homologous structures were calculated. It was shown that the most likely
distance corresponded to that in one of the related structures, not to the average of the
equivalent distances in the related structures.

7. A method was developed for calculating the most probable structure for a certain

sequence, given its alignment with one or more related structures and the general
rules of protein structure.

8. Once the alignment is determined, the method is completely automated. It can provide

a 3D model equivalent to a medium resolution X-ray structure when homologues with
at least 40% sequence identity are known. This means that an order of n'!agt]ilude
more sequences can be modeled at a medium resolution than there are entries in the
Brookhaven Protein Databank.
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