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LET US BEGIN with the assumption
that neither quantum mechanical calcu-
lations nor molecular dynamics simula-
tions alone will, in the near future, allow
us to define which of the multitude of
conformers available to a polypeptide
will occur in a living organism. The rea-
sons for this assumption are many, but
the most important is the immense
computational time required to simu-
late a complex macromolecular system
during the folding process.

Many protein sequences, however,
adopt the same general fold. Recent
structure determinations suggest that
the majority of new structures com-
prise motifs or domains that have been
previously identified in other, often
functionally different proteins. If we can
use this information from related pro-
teins, then we have a feasible route to
modelling a protein from its sequence.

The classical approach to this prob-
lem was developed for modelling one
protein on the three-dimensional struc-
ture of an homologue. The first applica-
tion was the construction of a model
for o-lactalbumin on the basis of
lysozyme!. Other applications included
construction of models for relaxins and
insulin-like growth factors (see Ref. 2
for a review) and various serine pro-
teinases®. Some rules for modelling pro-
tein structure*® have been suggested
and the advent of computational tech-
niques have made modelling more
straightforward.

In this review we shall consider our
own approach to protein modelling
which can be completely automated,
and in which all decisions are rule
based (see Fig. 1). We begin by compar-
ing or aligning protein sequences and
three-dimensional  structures deter-
mined by experiment and organized in
databases (see, for example, Ref. 6). We
use these comparisons to derive rules
about families of protein structures that
adopt a common fold. Automation of
the approach allows these rules to be
tested systematically. The rules are
then used to define a template for
sequences for each family fold; this can
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A useful approach to modelling proteins exploits knowledge of three-
dimensional structures determined by X-ray crystallography together with
rules defined by their analysis and comparison.

be considered as a projection from
three-dimensional structure onto one-
dimensional sequence or as a general-
ized protein sequence summarizing
knowledge about the family fold. The
sequence of the protein to be modelled
is then aligned with the appropriate
template, and the alignment is used to
extrapolate the three-dimensional fea-
tures of the known structures to the
sequence of interest. A model of the
protein is then constructed by making it
consistent with the features implied by
proteins of known structure. Thus we

exploit not only the details of protein
structures but also the rules developed
from their analysis and comparison;
these together form the knowledge
base.

The most helpful learning set is that
of homologous proteins; there are fewer
ambiguities in their comparisons, they
provide a reliable source for the
definition of rules but they remain a
challenge for modelling. We also
describe new approaches that can be
used to model more distantly related
protein structures. An alternative rule-
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Figure 1
A scheme for knowledge-based modelling of proteins. The approach involves the derivation
of rules from the comparisons of sequences and three-dimensional structures, and their
use in the generation of a template and the construction of the three-dimensional model.
Operations involved in comparison, analysis, projection and extrapolation with modelling

are described in detail in the text.
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Figure 2

The multiple alignment of eight aspartic proteinase lobes constructed using COMPARER.
Protein codes: 4APE, endothiapepsin; 2APP, penicillopepsin; 2APR, rhizopuspepsin; PEP,
hexagonal porcine pepsin. The final N or C of the protein code indicates either the N- or C-
terminal lobe. The coordinates of the three-dimensional structures were obtained from the
Brookhaven data-bank??, with the exception of the coordinates of porcine pepsin which
were the kind gift of Dr Jon Cooper. The amino acid code is the standard one-letter code
formatted using the following convention: italic, positive value of the main chain torsion
angle Phi; upper case, solvent-inaccessible residues; lower case, solvent-accessible
residues; bold type, hydrogen bonds to mainchain amide; underline, hydrogen bonds to
mainchain carbonyl; ~, side chain-side chain hydrogen bonds.

Figure 3
The clustering of the N-terminal and C-terminal lobes of the pepsinlike aspartic
proteinases and the subunits of the retroviral aspartic proteinases on the basis of
structures using methods of Johnson et all”8 HIV, human immunodeficiency virus
proteinase; 2RSP, Rous sarcoma virus proteinase; PEP, pepsin; 4APE, endothiapepsin. HIV
structure was kindly provided by Lapatto et al.*
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based approach, which has been devel-
oped for predicting protein structures
where no obvious homology or analogy
is apparent, has been developed by
Cohen and his collaborators’.

Comparison and clustering

The first task in knowledge-based
modelling is to develop ways of com-
paring protein structures and of cluster-
ing them into related subgroups. The
most familiar comparison methods are
those for sequences, which use dynamic
programming procedures based on the
algorithm of Needleman and Wunsch®
for pairwise or multiple sequence
alignments®. These methods usually
consider the mutation rates of amino
acid residues to derive optimal com-
parison scores and corresponding align-
ments, but other properties such as
physicochemical parameters can also
be included' ",

Comparison of protein tertiary struc-
tures has often involved their super-
position in three-dimensional space
(see Ref. 12 for a review). If several
homologous structures are available'>!*
we usually find that many helices and
strands are conserved in the family.
This is called the ‘framework’. However,
in more distantly related proteins differ-
ences in the positions and orientations
of these strands and helices may pre-
clude their superposition'*'4,

The problem of defining topologically
equivalent residues in polypeptides
that have little sequence similarity but
adopt similar folds was addressed more
than a decade ago by Rossmann,
Matthews and co-workers. They either
included information about mainchain
direction in the alignment or based
their comparisons on superposition of
small parts of the whole structure (see
Ref. 19 for a review). Others used inter-
or intramolecular distances or relation-
ships between secondary structure el-
ements.

In our approach to comparing dis-
tantly related proteins®, we consider
features of both sequence and three-
dimensional structure simultaneously.
Many features depend only on local
properties such as hydrophobicity,
local conformation and solvent accessi-
bility. These can be aligned using the
same approach used for sequence align-
ment. Furthermore, a similar compari-
son can be made at each level in the
protein hierarchical organization -
residue, secondary structure, super-
secondary structure, motif or domain.
A related approach based principally
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on intramolecular distances has been
described by Taylor and Orengo®.
Specific relationships such as hydrogen
bonding or packing interactions tend to
be conserved in protein folds and the
patterns of interactions can also be
used to align structures®,

Figure 2 shows part of the alignment
of the two domains of pepsins using our
programme COMPARER. The alignment
identifies all those strands and helices
that have previously been considered
equivalent on a more subjective basis
and which have recently been shown to
be shared with the retroviral protein-
ases.

Once protein structures have been
aligned, clustering methods using a
matrix of similarity scores between all
pairs of proteins can be used to con-
struct a tree that describes relation-
ships between them. Whilst there has
been much discussion of methods for
construction of evolutionary trees from
sequences (see Ref. 9 for review), the
clustering of protein three-dimensional
structures has been less studied.
Eventoff and Rossmann® constructed
dendrograms based on structural fea-
tures alone to describe distant phylo-
genetic relationships among the mono-
and dinucleotide binding proteins. We
have shown that a useful measure of
structural difference can be obtained
from differences between superposed
structures'™®, Figure 3 shows an exam-
ple of a tree constructed for the
domains of the aspartic proteinases on
the basis of the three-dimensional
structures. We have extended this
approach by considering additional
structural and sequence features in the
comparisons'®? so that proteins with
little sequence similarity can be com-
pared and classified. Such structural
trees can be used in conjunction with
the sequence-based trees to provide
automatic selection of the best struc-
tures and fragments for modelling from
sequence.

Derivation of rules

The alignment of three-dimensional
structures allows derivation of rules
useful for protein modelling. For ex-
ample, rules can be obtained that corre-
late an unknown side chain dihedral
angle with the dihedral angles at equiv-
alent positions in related proteins'®!%,

Rules for the substitution of amino
acids are derived by counting how
many times two residue types occur at
structurally equivalent positions. We
have constructed specific substitution
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Comparison of the predicted pattern of amino acid substitution with the variability
observed among real sequences at strand d of motif 3 of ycrystallins which has the
sequence Ser-lle-Arg-Ser. Residues 2 and 4 are inaccessible to solvent. Residue 4 is
serine which is hydrogen-bonded to the amide function of a main chain peptide and so is

predicted to be highly conserved.

tables in which only a subset of
residues that have a certain structural
environment are considered. For exam-
ple, 20 by 20 tables were built separate-
ly for solvent-accessible and -inaccess-
ible residues; in this way we can quan-
tify the wellknown rule that buried
residues tend to be among the more
conserved residues in a family. Other
structural features included in our analy-
sis were local mainchain conformation
and side chain hydrogen-bonding to
peptide groups or other side chains.
These tables quantify the influence of
structural features on the acceptance of
amino acid substitutions in evolution.
Large differences exist in the substitu-
tion patterns of the same residue type
in different structural environments.
Hydrogen-bonded and inaccessible

_polar residues, such as aspartic acid,

serine or threonine, are amongst the

most highly conserved residues in fam-
ilies of proteins. Their structural roles
are relatively specific; as a result it is
not easy to vary the amino acid type
and also retain the important structural
role. For example, as shown in Fig. 2,
Thr33 and Thr216 are conserved or
conservatively varied to serine in all
pepsin-like and retroviral proteinases.
These residues play an important role
in holding together, through buried
hydrogen bonds, the two subunits in
retroviral proteinases and the two lobes
in pepsins.

Projection from structure to sequence

The substitution tables described
above can also be seen as sets of rules
that relate the structural environment
of an amino acid to the probability for
the acceptance of any other of the 20
residue types. This allows us to use
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three-dimensional structure to project
constraints onto the one-dimensional
sequence or, in other words, to con-
struct the template representing the
sequence of the family of proteins with
a particular tertiary fold.

For each topologically equivalent
position in each known structure, we
use the tables to predict the substitu-
tion of amino acid residues. Figure 4
shows both the predicted substitution
of four residue positions in a protein on
the basis of its three-dimensional struc-
ture, and the observed pattern of amino
acid substitutions in the equivalent
positions of 155 aligned sequences. The
example demonstrates how the environ-
ment-dependent substitution tables can
provide a remarkably good estimate of
sequence variation if the three-dimen-
sional structure of at least one protein
is known. Likely places for insertions
and deletions can also be predicted.

This provides a general approach to the
generation of templates. An alternative
approach has been suggested by
Ponder and Richards?** who have sug-
gested an algorithm for systematically
constructing all sequences of amino
acid types and their side chain confor-
mations that are consistent with a par-
ticular fold.

These templates constructed on the
basis of one or more three-dimensional
structures are complementary to those
constructed from the alignment of
many sequences®!'. Both kinds of tem-
plate can define sequence fingerprints
that are essential to structure or func-
tion. They can be used in the form of
consensus sequences or substitution
tables to search out distantly related
proteins in the sequence database.

The templates of all known three-
dimensional structures or families of
structures including loops, motifs,

Figure 5

Modelling human plasma kallikrein from homologous serine proteinases by the program
composer. (a) shows the superposition of the structures defined by X-ray analysis. (b)
indicates the fragments in the structurally conserved regions that contribute towards
generation of the framework shown in (c). Fragments, selected using rules from a broader
data base of structures, are used to model the structurally variable regions. The C* atom
positions of the complete model are shown in (d). Side chain positions (not shown) are
also generated by a set of rules derived from comparisons of known structures.
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domains and complete globular pro-
teins should be precalculated so that a
new sequence can be compared with
them rather than with individual pro-
teins. This will result in a better align-
ment of whole proteins or their parts
and thereby in a better extrapolation of
spatial features from known structures
onto the sequence of the unknown in
knowledge-based modelling.

Extrapolation from sequence to structure

We have shown that analyses of
aligned structures of homologous pro-
teins can give rise to simple rules, and
shall now consider methods for using
these rules to produce a three-dimen-
sional model from a sequence.

Let us first consider the use of such
rules to model homologous structures.
Most approaches depend on the assem-
bly of fragments of three-dimensional
structures®*, In the computer program
COMPOSER we select three sets of frag-
ments. The first set is derived from the
framework defined by multiple super-
position of the chosen structures' (Fig.
5). A second set of protein fragments
for regions outside the framework is
selected from the database of loop sub-
structures using a distance filter in a
similar way to that of Jones and
Thirup®. The third set of fragments, the
side chains, is selected using rules
derived from the analysis of homolo-
gous structures™. These 1200 rules
include one for each of the 20 by 20
amino acid replacements in each of the
three secondary structure types (o-
helix, f-strand or irregular). The tem-
plates of selected fragments are clus-
tered and ranked using the. methods
described above, and the top-ranking
fragments are annealed together. The
model is checked for serious overlaps
between fragments; where this occurs
the next ranking fragment is used. The
final model is energv minimized to
remove minor inconsistencies.

This modelling procedure is very suc-
cessful where the known structures
cluster around that to be predicted and
where the percentage sequence identity
to the unknown is high (>40%). For
example, in building a model of porcine
trypsin from four other structurally
known serine proteinases, the root
mean square distance difference
between the model and the known
structure is 0.64 A for the 150 residues
defined in the framework. Similarly, 80%
of side chain conformations are correct-
ly predicted for closely homologous
structures. In all cases, the accuracy of
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the prediction decreases very quickly
as the sequence identity between the
known and unknown decreases. For
these cases, a new modelling technique
is required that is not restricted by the
idea of assembling rigid fragments of
protein structure. In this procedure we
construct a model from distances
between atoms, similarly to methods
for structure analysis using two-dimen-
sional NMR data®?,

The sequence to be modelled is first
aligned with sequences of known relat-
ed structures to derive a list of distance
constraints. For example, if two equiva-
lent positions in the alignment of known
structures are always hydrogen bond-
ed, we can assume that the same hydro-
gen bond exists in the unknown struc-
ture as well. This represents a distance
constraint on the atoms involved in the
hydrogen bond. In general, we use the
associations between protein features
to predict main chain and side chain
dihedral angles, C*-C* distances and
hydrogen-bonding distances from the
known structures aligned with that
being modelled.

The predicted distances are
expressed as Gaussian probability func-
tions. For non-bonded atoms this often
involves taking a mean distance from an
homologous protein and a standard
deviation proportional to the similarity
between the proteins and the magni-
tude of the distance. For side chain
dihedral angles the probability func-
tions are usually trimodal with the rela-
tive magnitudes depending on the par-
ticular residue type and the values of
equivalent dihedral angles in related
known structures. In general, every
structural feature can be constrained
by several knowledge sources. For ex-
ample, a distance between a particular
pair of C* atoms may be constrained by
information from several homologous
proteins and also by van der Waals’
criteria. In such cases we combine
the individual probability functions.

The goal is now to construct the
three-dimensional model that will satis-
fy these constraints. Obviously, the
most probable structure of the
molecule as a whole is the one that
maximizes the product of all feature
probability functions. The optimization
is performed in Cartesian coordinate
space using a variable target function?
approach and a combination of conju-
gate gradients and simulated annealing
minimization to make the best use of
the speed of the former and the large
radius of convergence of the latter.

(b)
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Figure 6
Stepwise generation of a model of a domain of endothiapepsin using information from
homologous aspartic proteinases and from protein three-dimensional structures in general
expressed as distance constraints. (a) is the extended chain, (b) shows the influence of
mainly local constraints, (c) and (d) are intermediate structures, and (e) is the final
structure compared with that experimentally defined.

Figure 6 illustrates the generation of
a preliminary model for the N-terminal
lobe of endothiapepsin; it has a dis-
tance root mean square deviation from
the crystallographically determined
structure of 0.76 A although only
Ce—C® constraints were used.

Concluding remarks

Knowledge-based modelling, most
often in its simplest form of modelling
by homology, is now widely used by
biochemists. This reflects the steady
advancement in the field including
the automation of the algorithms and
development of integrated systems synth-
esizing such diverse tools as databases
of sequences and structures, interactive
molecular graphics, molecular dynamics
and energy minimization, together with
methods for pattern recognition, com-
parison and clustering. It also reflects
the steady advance in the numbers of
sequences and structures defined
experimentally.

Knowledge-based modelling tech-
niques are firmly based on the progress
and success of experiment. As a conse-
quence we can expect that the next
decade will bring a closer integration of
modelling techniques with experimen-
tal analyses using crystallography, two-
dimensional NMR, image reconstruction
in electron microscopy, epitope map-

ping and crosslinking, all of which have
contributed so much to our under-
standing of complex protein structures
and assemblies. The great challenge will
be to unify all techniques for determin-
ation or prediction of protein structure
into a single protocol making the best
use of all available information about
the structure of a given protein, regard-
less of whether it is directly based on

.experiment, on the broader knowledge

base, on empirical force potentials or
on intuition.
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