
Modeling biological complexes using Integrative Modeling
Platform
Daniel Saltzberg1, Charles H. Greenberg1, Shruthi Viswanath1, Ilan Chemmama1, Ben Webb1, Riccardo
Pellarin2, Ignacia Echeverria1, Andrej Sali1

1 California Institute for Quantitative Biosciences, University of California, San Francisco, CA 94158, USA.
2 Structural Bioinformatics Unit, Institut Pasteur, CNRS UMR 3528, 75015 Paris, France.

Summary
Integrative structure modeling provides 3D models of macromolecular systems that are
based on information from multiple types of experiments, physical principles, statistical
inferences, and prior structural models. Here, we provide a hands-on realistic example of
integrative structure modeling of the quaternary structure of the actin, tropomyosin, and
gelsolin protein assembly, based on electron microscopy, solution X-ray scattering, and
chemical crosslinking data for the complex as well as excluded volume, sequence
connectivity, and rigid atomic X-ray structures of the individual subunits. We follow the
general four-stage process for integrative modeling, including gathering the input
information, converting the input information into a representation of the system and a
scoring function, sampling alternative model configurations guided by the scoring
function, and analyzing the results. The computational aspects of this approach are
implemented in our open-source Integrative Modeling Platform (IMP), a comprehensive
and extensible software package for integrative modeling
(https://integrativemodeling.org). In particular, we rely on the Python Modeling Interface
(PMI) module of IMP that provides facile mixing and matching of macromolecular
representations, restraints based on different types of information, sampling algorithms,
and analysis including validations of the input data and output models. Finally, we also
outline how to deposit an integrative structure and corresponding experimental data into
PDB-Dev, the nascent worldwide Protein Data Bank (wwPDB) resource for archiving
and disseminating integrative structures (https://pdb-dev.wwpdb.org). The example
application provides a starting point for a user interested in using IMP for integrative
modeling of other biomolecular systems.

Key Words

Integrative Modeling. Biomolecular simulation. Biophysical data. Structural modeling

1. Introduction
To understand the function of a macromolecular assembly, we must know the structure
and dynamics of its components and the interactions between them. [1–4] However,
direct experimental determination of such a structure is generally rather difficult, as no
experimental method is universally applicable. For example, crystals suitable for X-ray
crystallography cannot always be produced, especially for large assemblies of multiple
components. [5] Cryo-electron microscopy, on the other hand, can be used to study
large assemblies, but is often limited to worse than atomic resolution. [6–8] Finally,
molecular biology, biochemistry, and proteomics techniques, such as yeast two-hybrid,
[9] affinity purification, [10] and mass spectrometry, [11] yield information about the
interactions between proteins, but not the positions of these proteins within the assembly
or the structures of the proteins themselves.

One approach to solve this problem is integrative modeling, [12] that is used to
characterize the structures of single proteins or their complexes by relying on multiple
types of input information, including varied experiments, physical theories, statistical
inferences, and prior structural models. By simultaneously considering all information,
the method maximizes the accuracy, precision, completeness, and efficiency of structure
determination. Numerous structures have already been solved using this approach,
including the 26S ribosome, [13] the bacterial type II pilus, [14] the structure of chromatin
around the alpha-globin gene, [15] the molecular architecture of the yeast spindle pole
body core, [16] and the architecture of the yeast nuclear pore complex. [17] The method
can also compute multi-state models of conformationally heterogenous systems, as
demonstrated by the two-state model of the PhoQ sensor histidine kinase. [18]

The Integrative Modeling Platform (IMP) is a comprehensive and extensible software
package for performing integrative modeling. The flexibility of the core software allows for
constructing customized representations of structure and data as well as sampling and
analysis protocols. The tools to complete the entire integrative modeling workflow [Fig. 1]
are contained within IMP. Here, we describe the Python Modeling Interface (PMI) to IMP
that significantly simplifies encoding the modeling process. [19]

Figure 1: The four stages of integrative modeling. This schematic describes the integrative structure
modeling procedures used in this tutorial. The first row details the information to be used in modeling. The
background color of each information source indicates where the information is applied in modeling, as
detailed in the key at the top. The second row describes how each information source is converted into
spatial restraints. The third row details the sampling protocol. The last row details the analysis and
validation steps of the modeling. The modifiable Adobe Illustrator file for this figure can be found in the
tutorial repository: figures/Figure1/actin_tutorial_4stage.ai.

2. Methods

The goal of PMI is to allow structural biologists with limited programming expertise to
determine the structures of large protein complexes. PMI is a top-down modeling system
that relies on a series of macros and classes to simplify encoding of the modeling
protocol, including designing the system representation, specifying scoring function,
sampling alternative structures, analyzing the results, facilitating the creation of
publication-ready figures, and depositing into PDB-Dev (see below). PMI exchanges the
high flexibility of IMP for ease-of-use, all within one short Python script (<100 lines).
Despite its simplicity in creating standard modeling workflows, PMI is powerful and
extensible - it is built on IMP and creates native IMP objects, which means that the
advanced user can customize many aspects of the modeling protocol. Below, we outline
each stage of the modeling process as performed in PMI. [Fig. 2]

Figure 2: PMI
Hierarchy. PMI
is constructed as
a top-down
hierarchy
beginning with a
System. A
system can
contain one or
more states with
each state being
a different
conformation,
composition or
time-ordered
step in the
system. Each
state is
comprised of one
or more
molecules that
may have one or
more copies per
molecule. At the
final level, each
molecule is
represented at
one or more
resolutions.

2.1. Gathering Information
Information about a system that we wish to model includes everything that we
directly observe, can infer through comparison to other systems, and fundamental
physical principles. Experimental data that are commonly utilized in integrative
modeling include X-ray crystal structures, EM density maps, NMR data, chemical
crosslinks, yeast two-hybrid data, and Förster resonance energy transfer (FRET)
measurements. Atomic resolution information may be applied directly as structural
restraints from atomic statistical potentials [20, 21] and molecular mechanics force
fields [22, 23] or derived from comparative modeling programs such as MODELLER
[24] and PHYRE2. [25]

Each piece of information can be utilized within the modeling procedure in one or
more of five distinct ways: defining model representation, defining sampling
space/degrees of freedom, scoring models during sampling, filtering models post-
sampling, and validating completed models.

2.2. System and data representation
The representation of the system defines the structural degrees of freedom that will
be sampled and is designed based on the information at hand. We can utilize a
multi-scale representation, where model components can be modeled at one or more
different resolutions commensurate with the information content at that site [Fig 3].
For example, a domain described by a crystal structure can be represented at atomic
resolution and a disordered segment can be represented as a string of spherical
beads of 10 residues each. In addition, non-particle based representations, such as
Gaussian mixture models (GMMs), can also be used; for example, in EM density
fitting. [26, 27] Choosing a representation reflects a compromise between the need

for details required by the biological application of the model and the need for
coarseness required by limited computing power.

Figure 3: Ways of representing a single biomolecule. A: The complexity of a molecular system can be
represented in four ways. An ensemble of states describes the structural heterogeneity around a single solution.
Multiple states are used to describe systems that exist in multiple thermodynamic wells. The system can be
modeled at a multitude of scales commensurate with the different types of information known about it. Finally,
individual states can be time-ordered, allowing for the modeling of the transition rates between them. B: Multiple
representations can be simultaneously applied to the same biomolecule so that information of various types can
be applied at the proper scale and form. The molecule is first defined by its sequence connectivity. Flexible
beads comprising one or more residues are commonly applied to loops where no high-resolution structure is
available. Areas that have high resolution structure can be modeled by spherical beads of 1 residue for the
evaluation of residue-specific information such as chemical crosslinks or NMR distance restraints. 10-residue
beads are generally used to model lower resolution information such as SAXS data and the excluded volume
restraint. The molecule can be represented as a Gaussian mixture model for comparisons to EM densities. IMP
and PMI can utilize all of these representations simultaneously in a multi-scale model. Panel A adapted from [34].

Ensemble

Multi-scale Ordered

Multi-state a.

Multiple
solutions

Multiple
states

Atomic &
coarse-grained

Ordered
states

A

B

Some of the input information is translated into restraints on the structure of the
model. These spatial restraints are combined into a single scoring function that ranks
alternative model configurations (models) based on their agreement with the
information. The scoring function defines a multi-dimensional landscape spanned by
the model degrees of freedom; the good-scoring models on this landscape satisfy
the input restraints.

2.3. Sampling
In most cases, all possible models cannot be generated. Thus, we utilize sampling
methods to search for models that agree with the input data according to the scoring
function defined above (good-scoring models). One approach for sampling models in
IMP is a Monte Carlo algorithm, [28] guided by our scoring function and accelerated
via replica exchange. [29] Other sampling methods can be utilized for specific cases.
[see Note 1]

2.4. Analysis
The results of stochastic sampling (i.e., an ensemble of output structures and their
respective scores) must be analyzed to estimate the sampling precision and
accuracy, detect inconsistencies with respect to the input information, and suggest
future experiments. [Fig. 4]

We wish to analyze only models that are sufficiently consistent with the input
information (good-scoring models). A good-scoring model must sufficiently satisfy
every single piece of information used to compute it; therefore one needs a threshold
for every data point or set of data. Sampling may produce zero such models, which
can result from inconsistent data or an unconsidered multiplicity of conformational
states. [see Note 2]

Given a set of good-scoring models, we must first estimate the precision at which
sampling found these most good-scoring solutions (sampling precision). [Fig. 4, step
1] [16, 17, 30] This estimate relies on splitting the set of good-scoring models into
two independent samples, followed by comparing them to each other using four
independent tests: 1) convergence of the model score, 2) whether model scores for
the two samples were drawn from the same parent distribution, 3) whether each
structural cluster includes models from each sample proportionally to its size 4)
sufficient similarity between the localization densities [see Note 3] for the entire
system, from each sample. After threshold clustering of models, the sampling
precision is defined as the largest RMSD value between a pair of structures within
any cluster, in the finest clustering for which the structures from the two independent
runs contribute proportionally to their size. [Fig. 6D] In other words, the sampling
precision is defined as the precision at which the two independent samples are
statistically indistinguishable. The individual clusters for each sample are also
compared visually (Section 4.5.3) to confirm similarity.

At this step, the model precision (uncertainty), which is represented by the variability
among the good-scoring models, is also reported. This uncertainty can be quantified
by measures such as root-mean-square deviation (RMSD) of model components for
models within each cluster or between clusters determined above. The lower bound
on model precision is provided by the sampling precision; the model precision cannot
be higher than the sampling precision.

An accurate model must satisfy all information about the system, and this is
evaluated in a number of steps. First, the consistency of the model with input
information is assessed by independently assessing the clusters determined above
against the input data [Fig. 4, Step 2]. In the next step, the models are assessed by
random or systematic cross-validation [Fig. 4, Step 3]. The next and most robust
validation is the consistency of the model with data not used to compute it [Fig. 4,
Step 4], similar to a crystallographic Rfree.

A final validation is the presence of features in the model that are unlikely to occur by
chance and/or are consistent with the biological context of the system [Fig. 4, step 5].
For example, a 16 fold symmetry was found in the model of the Nuclear Pore
Complex when only 8-fold symmetry had been enforced [31] and the displacement of
the aspartate sensor domain in a two state model of the histidine kinase PhoQ
transmembrane signaling agreed with previous analysis. [18]

A key feature of the four-step procedure for integrative modeling [Fig. 1] is that it is
iterative. Assessment may reveal a need to collect more input data, or suggest future
experiments, both by the researchers that constructed the initial model and by
others.

Figure 4: Analysis pipeline. Analysis of sampling runs begins by filtering models that satisfy all input information. In
step one, this set is split into two independent samples to assess the precision at which sampling is converged. If
sampling has converged at a high enough precision, the resulting models can be assessed against the input
information to identify potential multiple states. Resampling can be performed by either systematically or randomly
excluding data sets and rerunning the simulation and sampling convergence algorithms. The models can then be
assessed against data that was not used in modeling. Finally, the models are assessed for logical sense in
answering the original biological question.

2.5. Deposition

For the models, data, and modeling protocols to be generally useful, they must be
reproducible and available to everyone in a publicly accessible database. This
availability allows any scientist to use a deposited model to plan experiments by

Low
variance

Good scoring
models from all
sampling runs

4. Fit to data not
used in modeling

3. Resampling
 jackknifing
 bootstrapping
 cross-validation

Split into two
independent
samples

5. Biological sense

1. Sampling Convergence

Pass

2. Analyze fit to
input information

Consistent

Validated
Model

Consistent

Yes

0.00

0.25

0.50

0.75

1.00

 0 2 4 6 8 10

C
on

ve
rg

en
ce

 C
rit

er
ia

Threshold (Å)

χ2-test p-value
Cramer's V

Clustered population

Sample A

Sample B

simulating potential benefits gained from new data. Computational groups can more
easily experiment with new scoring, sampling, and analysis methods, without having
to reimplement the existing methods from scratch. Finally, the authors themselves
will maximize the impact of their work, increasing the odds that their results are
incorporated into future modeling. Following the recommendations of the wwPDB
Hybrid/Integrative Methods Task Force in 2015, [32] a prototype archive, PDB-
Development (PDB-Dev, https://pdb-dev.wwpdb.org/) [33, 34] was recently
established to store integrative models and corresponding data. The mmCIF file
format used to archive regular atomic PDB structures was extended to support the
description of integrative models, including information on the input data used, the
modeling protocol, and the final output models. As of July 2018, PDB-Dev contains
14 depositions, including 9 generated by IMP.

3. Materials

3.1. IMP
IMP binaries for most platforms can be downloaded and installed from:
https://integrativemodeling.org/download.html.
The tutorial has been built to work with the latest stable release of IMP at time of
writing, 2.9.0.

3.2. Chimera
Modeling results can be visualized using Chimera version 1.13 or later, which can be
downloaded from https://www.cgl.ucsf.edu/chimera/download.

3.3. Actin tutorial code and data
The data and code used in the tutorial below can be downloaded from
https://github.com/salilab/actin_tutorial. The home directory of the repository,
actin_tutorial, will be used to reference all other paths in the tutorial below.
Analysis scripts are located in ./analysis/scripts. These are slightly modified
from the stand-alone script library for performing sampling exhaustiveness found at
https://github.com/salilab/IMP-sampcon. These analyses rely on pyRMSD. [35]

3.4. Computer skills requirements
PMI stands for Python Modeling Interface. Interaction with PMI requires Python
scripts. The tutorial scripts for PMI are written to be interpretable by even those with
minimal or no Python experience. However, performing advanced tasks and/or
designing novel workflows benefits from a working knowledge of Python.

3.5. Computational resources and time
The full tutorial simulation can be run in a few hours on a modern desktop or laptop
computer. A multi-core system is preferred to utilize replica exchange.

4. Integrative modeling of ADP-actin, gelsolin and C-terminal actin-binding

domain of tropomodulin
Here, we demonstrate integrative modeling using the PMI interface by modeling the
complex of actin and tropomodulin-gelsolin chimera using SAXS, EM, crosslinking,
crystal structures of the individual domains, and physical principles. This complex
was solved via X-ray crystallography at 2.3 Å resolution (PDB: 4PKI). [36] We use
this structure to simulate biophysical data and assess the accuracy of the modeled

complexes. In this simple exercise, we assume that we have a crystal structure of
only the actin-gelsolin interface and would like to find the tropomyosin-actin binding
interface. The entire modeling protocol is summarized in the four-stage diagram [Fig.
1].

4.1. Gathering and preparing information

All data is contained in subfolders of the ./data directory of the tutorial.

4.1.1. Structural data from the PDB
The crystal structure 4PKI is used to set the atomic coordinates for each of the
domains in the FASTA sequence that determines the composition of each
biomolecule, as well as the coordinates for tropomyosin and the actin-gelsolin
complex. [Fig. 5]

4.1.2. Chemical Crosslinks
Thirty-three simulated crosslinks were generated from a random subset of lysine
residue pairs whose CA-CA distances are under 25 Å.

4.1.3. Electron Microscopy
A simulated EM density of the entire complex was created at 20 Å resolution
using IMP [see Note 4]. The simulated map is approximated as a Gaussian
Mixture Model (GMM). [27]

4.1.4. SAXS
A simulated SAXS profile of the entire 4pki.pdb complex was created using
FoXS. [37]

4.1.5. Other information
We also define restraints such as excluded volume and sequence connectivity to
add chemical and physical knowledge to the modeling protocol.

4.2. Defining System
Representation and
Degrees of Freedom in
the Topology File

The model representation
(e.g., bead size and rigid
bodies) can be set within the
topology file. The topology file
is a pipe-delimited format with
each line specifying a
separate domain and keyword
values determining how the
domain is represented. A
definition of each keyword is
given in Table 1.

The topology file for this
tutorial, shown below, is found
at
./modeling/topology.tx
t. Here, the system is
subdivided into four distinct
domains: one each for the
three structured domains (actin, gelsolin, and tropomyosin) and one consisting of
the 18-residue engineered linker between gelsolin and tropomyosin. The first
domain, the entire actin molecule, is colored green and contains the entirety of
chain A from 4pki.pdb. A bead_size of 1 residue per bead is assigned to any
unmodeled section (i.e., not present in the PDB file) [see Note 5]. A GMM is
approximated using 10 residues per Gaussian. This domain is assigned to
rigid_body 1. The second domain, the gelsolin portion of the chimera, is
constructed by selecting the residue_range 52-177 of chain G. These
residues, however, are numbered 1-126 in the FASTA file, therefore a
pdb_offset of -51 must be added. This domain is also assigned to
rigid_body 1 to preserve the actin/gelsolin interface. The third domain is the
linker, whose residues have no structure associated with them; thus, they are
given a pdb_fn of BEADS with a bead_size of 1 [see Note 6]. The final
domain, tropomyosin, is built similarly to gelsolin and assigned to rigid_body
2, since we would like to sample its position separate of the rest of the complex.

Figure 5: Actin-gelsolin-tropomyosin complex. Top:
Reference crystal structure 4PKI showing actin in green, gelsolin
in red and tropomyosin in blue. Bottom: Multi-scale
representation and position of the system after domain shuffling
and bead relaxation. Structured domains are represented by
spherical beads of 1 and 10 residues. Unstructured residues
from the linker between the gelsolin and tropomyosin domains
are represented as gray beads.

|molecule_name | color | fasta_fn | fasta_id | pdb_fn | chain | residue_range | pdb_offset |
bead_size | em_residues_per_gaussian | rigid_body | super_rigid_body |
chain_of_super_rigid_bodies |
actin	green	4pki.fasta.txt	actin	4pki.pdb	A	1,END	0	1	10	1	1	
geltrop	red	4pki.fasta.txt	gelsolin-tropomyosin	4pki.pdb	G	52,177	-51	1	10	1	1	
geltrop	gray	4pki.fasta.txt	gelsolin-tropomyosin	BEADS	G	178,195	-51	1	10	1	1	
geltrop	blue	4pki.fasta.txt	gelsolin-tropomyosin	4pki.pdb	G	1170,1349	-1025	1	10	2	1	

	

This topology file also places all domains in a single super_rigid_body. This
definition allows the entire complex to move as a single unit, which is useful for
fitting to the EM map.

molecule_name Name of the molecule that this domain is a part of
color The color used in the output RMF file for this component. Uses Chimera

defined names [see Note 23] or RGB values (e.g. 155,35,0)
fasta_fn Name of FASTA file containing this component.
fasta_id String found in FASTA sequence header line.
pdb_fn Name of PDB file with coordinates (if available). If left empty, will set up

as BEADS. Using IDEAL_HELIX will build a helix. [see Note 25]
chain Chain ID of this domain in the PDB file.
residue_range Comma delimited pair defining range of residues. Can leave empty or put

all to use entire sequence from FASTA file.
pdb_offset Offset to sync PDB residue numbering with FASTA numbering.
bead_size The size (in residues) of beads used to model areas not covered by PDB

coordinates.
em_residues_
per_gaussian

The number of residues per Gaussian used to model the electron density
of this domain. Set this to zero if no EM fitting will be done.

rigid_body The ID number of the rigid body that contains this component.
super_rigid_body The ID number(s) of the super rigid body(ies) containing this component.
chain_of_super_
rigid_bodies

Automatically group overlapping segments of beads into super rigid
bodies. The number here, as for rigid_body, specifies the member of
the chain to which this domain belongs.

Table 1: Topology file keywords and descriptions

4.3. Constructing the modeling script

The modeling script contains the entire workflow from defining the system
representation through execution of sampling. The system representation and
sampling degrees of freedom can be built manually [see Note 7] or, as here, read
from a topology file. Restraints are added, and the sampling protocol defined and
executed.

4.3.1. Importing and building system representation
First, we create an IMP Model object, which stores all components of the model.
Second, we create a BuildSystem object and define the resolutions at
which residues in the structured sections will be modeled. Here, we set
resolutions of 1 and 10 residues per bead so that crosslinking restraints can be
evaluated at residue resolution and the expensive excluded volume restraint
(below) can be evaluated at the lower resolution. Third, the topology file is read
using a TopologyReader object, followed by generating a useful list of
component molecules. To this BuildSystem object, we add a state
corresponding to the representation defined in the topology file using
bs.add_state(). [see Note 8]

mdl = IMP.Model()
bs = IMP.pmi.macros.BuildSystem(mdl, resolutions=[1,10])
t = IMP.pmi.topology.TopologyReader(topology.txt)
molecules = t.get_components()
bs.add_state(t)
	

We then execute the macro, which returns the root_hier root hierarchy and
dof degrees of freedom objects, which will be used later. Within the macro, we
set the movement parameters of individual beads and rigid bodies. Translations
(trans) are defined in angstroms and rotations (rot) in radians.

4.3.2. Adding restraints to the model
PMI contains simple interfaces for a number of IMP restraints that model various
types of chemical and physical data and knowledge. All of these restraints
produce output, which we will collect in an output_objects list. Each restraint
also needs to be explicitly added to the scoring function for sampling, using the
add_to_model() command. We will add the restraints to the scoring function in
a specific order, discussed below.

First, we define the restraints that enforce physical and chemical principles. [see
Note 9] The ConnectivityRestraint adds a bond between each pair of
consecutive residues in each molecule. The ExcludedVolumeSphere restraint
is applied to the entire system and enforced at the lowest resolution possible
(indicated by resolution=1000), because this restraint is costly to evaluate.

Second, we build a SAXSRestraint based on the comparison of SAXS data to
the model. Since our model is calculated at residue resolution, we calculate the
SAXS profile using residue form factors. For residue-based calculations, we
compare curves out to a q of 0.15 [see Note 10].

To set up a crosslinking restraint, we first build a PMI CrossLinkDataBase that
uses a CrossLinkDataBaseKeywordsConverter to interpret a crosslink
data file. At a minimum, the crosslink data file needs four columns labeled with a
key: one for each protein name and one for each residue number of the
crosslink. The standard keys are Protein1, Residue1, Protein2, Residue2.
[see Note 11].

root_hier, dof = bs.execute_macro(max_rb_trans=1.0,
 max_rb_rot=0.5,
 max_bead_trans=2.0,
 max_srb_trans=1.0,
 max_srb_rot=0.5)
	 	

output_objects=[]

for m in molecules:
 cr = IMP.pmi.restraints.stereochemistry.ConnectivityRestraint(m)
 cr.add_to_model()
 output_objects.append(cr)

evr = IMP.pmi.restraints.stereochemistry.ExcludedVolumeSphere(
 included_objects=[root_hier],
 resolution=1000)
output_objects.append(evr)
	

xl_data = "./derived_data/xl/derived_xls.dat

xldbkc = IMP.pmi.io.crosslink.CrossLinkDataBaseKeywordsConverter()
xldbkc.set_standard_keys()
xldb = IMP.pmi.io.crosslink.CrossLinkDataBase()

xldb.create_set_from_file(file_name=xl_data,
 converter=xldbkc)	

sr = IMP.pmi.restraints.saxs.SAXSRestraint(input_objects=[root_hier],
 saxs_datafile=saxs_data,
 weight=0.01,
 ff_type=IMP.saxs.RESIDUES,
 maxq=0.15)
	

Using this database, we can construct the crosslinking restraint. We input the
root hierarchy of the system and the database, and specify the length of the
crosslinker. The restraint can be evaluated at any resolution, though is generally
most informative at resolution = 1. The length determines the inflection point of
the scoring function sigmoid [18] and is generally set to 10 Å + the crosslinker
length for Lys-Lys crosslinkers.

The EM restraint is determined by calculating the overlap (cross-correlation)
between the system GMM density particles and the map GMM particles. First, we
must collect the density particles using an IMP Selection. We then invoke the
restraint using these particles and the gmm file generated from the EM map.

4.3.3. Defining the sampling protocol
Sampling begins by randomizing the coordinates of the starting particles using
shuffle_configuration [see Note 13]. Because this randomization
generally places beads of neighboring residues far apart, we first optimize the
positions of these flexible beads using steepest descent minimization for 500
steps based on only the connectivity restraint. We then add the balance of the
scoring function terms to the model prior to the main sampling step.

xlr = IMP.pmi.restraints.crosslinking.CrossLinkingMassSpectrometryRestraint(
 root_hier=root_hier, # Must pass the system root hierarchy
 CrossLinkDataBase=xldb, # The crosslink database.
 length=25, # The crosslinker plus side chain length
 resolution=1, # The resolution to evaluate the crosslink
 slope=0.0001, # This adds a linear term to the score
 # to bias crosslinks towards each other
 weight=10) # Scaling factor for the restraint score.

output_objects.append(xlr)

densities = IMP.atom.Selection(root_hier,
representation_type=IMP.atom.DENSITIES).get_selected_particles()

em_map = "./derived_data/em/4pki_20a_50.gmm"

emr = IMP.pmi.restraints.em.GaussianEMRestraint(
 densities, # Evaluate the restraint using these model densities
 target_fn=em_map, # The EM map approximated as a Gaussian mixture model (GMM)
 slope=0.00000001, # a small force to pull objects towards the EM map
 scale_target_to_mass=True, # Normalizes the mass of the model wrs: EM map
 weight=100) # the scaling factor for the EM score

output_objects.append(emr)

IMP.pmi.tools.shuffle_configuration(root_hier,
 max_translation=50)
dof.optimize_flexible_beads(500)

evr.add_to_model()
emr.add_to_model()
xlr.add_to_model()
sr.add_to_model()

We implement a Monte Carlo sampling scheme with replica exchange using the
PMI ReplicaExchange0 macro. Within this macro, we set the directory where
all output files will be placed, global_output_directory, and the
number_of_frames to generate. The final line of the script executes the
sampling macro.

4.4. Running the modeling script
Modeling analysis requires at least two independent sampling runs be performed.
For each run, in modeling.py the global_output_directory keyword can be
set to run1, run2, …, runX.

The modeling script can be run on a single processor using the following command:
python ../modeling.py

or in parallel using N processors using:
mpirun -np N python ../modeling.py

A parallel invocation of IMP will run replica exchange with N replicas. A serial run will
run a basic Monte Carlo protocol with one replica.

Raw output will be written to the ./runX/output folder, as specified in the replica
exchange macro. Within this folder, stat files contain tabulated statistics for each
frame. In the rmf directory, model coordinates for the lowest temperature replica are
stored. These can be opened directly in Chimera and the “trajectories” observed.

4.5. Analysis
Analysis is performed using scripts located in./analysis/scripts/. The already-
generated sampling output will be analyzed here; it is contained in the folders
./modeling/run1 and ./modeling/run2.

Analysis is performed in a new directory: ./analysis/tutorial_analysis/.

4.5.1. Filtering good scoring models
The select_good_scoring_models.py script filters models based on score
and parameter thresholds. In this script, required flags are: –rd, which specifies
the directory containing sampling output folders; –rp, which defines the prefix for
the sampling output folders; -sl, which defines the stat file keywords [see Note
13] that we wish to filter on; –pl, which specifies the keywords that will be
written to the output file; -alt and –aut, which specify, respectively, the lower
and upper threshold for each keyword in –sl that define acceptance. The –mlt

rex=IMP.pmi.macros.ReplicaExchange0(mdl,
 root_hier=root_hier, # the system root hierarchy
 crosslink_restraints= [xlr], # This allows viewing of crosslinks in Chimera
 monte_carlo_sample_objects=dof.get_movers(), # all objects to be moved
 global_output_directory='run1/' # Set the output directory for this run.
 output_objects=output_objects, # Write these items to the stat file
 monte_carlo_steps=10, # Number of MC steps between writing frames
 number_of_best_scoring_models=0, # set >0 to store best scoring PDB files
 number_of_frames=10000) # Total number of frames to generate

rex.execute_macro()

and –mut keywords, which are optional, define thresholds for restraints made of
multiple components (such as crosslinks).

Here, we first use crosslink satisfaction as an initial filtering criterion because we
usually have an a priori estimate of the false positive rate and/or cutoff distance
[see Note 14]. For this simulated system, we only accept models with 100%
satisfaction of crosslinks by setting both –alt and –aut to 1.0. A crosslink is
satisfied if the distance is between 0.0 and 30.0 Å, as delineated by the –mlt
and –mut keywords, respectively. We specify that connectivity, crosslink data
score, excluded volume, EM, SAXS and total scores be printed as well.

This script creates a directory ./filter/ and a file,
./filter/models_scores_ids.txt, that contains the model index, its run,
replica ID, frame ID, scores, and sample ID for each model. We can now use the
script plot_score.py to plot the distribution of SAXS, EM, connectivity and
excluded volume scores from this first set of filtered models to determine a
reasonable threshold for accepting or rejecting a model.

The resulting histograms (SAXSRestraint_score.jpg and
GaussianEMRestraint_None.jpg) are roughly Gaussian, Based on these
distributions we set our criteria for good scoring models as those whose EM and
SAXS scores are >1 standard deviation below the mean, except for connectivity,
which is well satisfied in almost all models and EM, which has a large tail. [see
Note 15] Our high score thresholds are 2.0 for EM, and 4.554 for SAXS, 1.0 for
connectivity and 4.916 for excluded volume.

We rerun select_good_scoring_models.py adding the extra keywords and
score thresholds. We add the extra flag, –e, to extract Rich Molecular Format
(RMF) files of all good scoring models. These thresholds return 1618 good
scoring models. [see Note 16]
	

The output directory, good_scoring_models, contains folders sample_A and
sample_B, which hold the RMF files of the good scoring models for each
independent run (or set of runs). The file model_ids_scores.txt contains the
model index, its run, replica ID, frame ID, scores, and sample ID for each model.

python ../scripts/select_good_scoring_models.py -rd ../../modeling -rp run -sl
"CrossLinkingMassSpectrometryRestraint_Distance_" -pl
ConnectivityRestraint_None CrossLinkingMassSpectrometryRestraint_Data_Score
ExcludedVolumeSphere_None GaussianEMRestraint_None SAXSRestraint_Score
Total_Score -alt 1.0 -aut 1.0 -mlt 0.0 -mut 30.0

python ../scripts/select_good_scoring_models.py -rd ../../modeling -rp run -sl
"CrossLinkingMassSpectrometryRestraint_Distance_" GaussianEMRestraint_None
SAXSRestraint_Score ConnectivityRestraint_None ExcludedVolumeSphere_None -pl
ConnectivityRestraint_None CrossLinkingMassSpectrometryRestraint_Data_Score
ExcludedVolumeSphere_None Total_Score -alt 1.0 -50 -50.0 0.0 0.0 -aut 1.0 2.0
4.554 1.0 4.916 -mlt 0.0 0.0 0.0 0.0 0.0 -mut 30.0 0.0 0.0 0.0 0.0 -e

python ../scripts/plot_score.py ./filter/model_ids_scores.txt
SAXSRestraint_Score

python ../scripts/plot_score.py ./filter/model_ids_scores.txt
GaussianEMRestraint_None

4.5.2. Determining sampling precision, clustering, and computing
localization densities

The Master_Sampling_Exhaustiveness_Analysis.py script is used to
calculate the sampling precision of the modeling. During this step, multiple tests
for convergence are performed on the two samples determined in step 4.5.1,
models are clustered, and localization densities are computed.

First, we create a file, density_ranges.txt, in the tutorial_analysis/
directory with a single line that defines components using PMI selection tuples on
which we calculate localization densities. [see Note 17] Here, we create three
localization densities, one for the entire actin molecule and one each for the
structured residues of each of the other two molecules.

We now run the script for testing sampling exhaustiveness.

T
h
e
 system name, actin, defines the labels for the output files. The –a flag aligns
all models [see Note 18] and –g determines the step size in Å for calculating
sampling precision. [see Note 19] This routine can be run in parallel using the –m
cpu_omp flag [see Note 20] and –c N, where N is the number of processors. The
–p flag defines the path to the good scoring model directory.

The results of the convergence tests are summarized in the output figure [Fig. 6]
actin_convergence.png, which identifies our sampling precision of 3.5 Å,
with one dominant cluster, one minor cluster and one cluster of insignificant size.
Text files containing this information are also produced. [see Note 21] Output
also includes localization densities for each cluster, which are contained in
separate directories (cluster.0, cluster.1, …). Within these directories are
a representative RMF file cluster_center_model.rmf3 and localization
densities for each subunit defined in the density_ranges.txt file. [see Note
22]

4.5.3. Visualizing models

The cluster RMF files and localization densities can be visualized using UCSF
Chimera version >= 1.13. Example scripts for visualizing all localization densities
are provided in ./analysis/scripts/chimera_scripts.

At this point, one must decide if the models are helpful in answering our
biological questions. In the case of this tutorial, the PPI is localized to within a
few Å and we can make predictions as to what residues may be important for this
interaction. If our models are not well enough resolved, more information may
have to be added through additional experiments, addition of constraints to the
sampling, change in system representation, and/or additional sampling. We can
iterate this process until we are satisfied with our output models.

density_custom_ranges={"Actin":['A'],"Gelsolin":[(1,126,'G')],"Tropomysin":[(145,324,'G')]}

python ../scripts/Master_Sampling_Exhaustiveness_Analysis.py -n actin –p
good_scoring_models/ -d density_ranges.txt -m cpu_omp -c 8 -a -g 0.1

4.5.4. Additional model validation

Additional validation of the final model ensemble can be performed by rerunning
the above protocol while omitting one or more of the input data points. Ideally,
models generated with only a subset of the data will not differ significantly from
the original models. Further, any information not used in the modeling process
can be used as a validation of the final model ensemble (section 2.4).

Figure 6. Results for sampling
exhaustiveness protocol for modeling
in complex of actin and tropomodulin-
gelsolin chimera. A. Results of test 1,
convergence of the model score, for the
1618 good-scoring models; the scores do
not continue to improve as more models
are computed essentially independently.
The error bar represents the standard
deviations of the best scores, estimated
by repeating sampling of models 10
times. The red dotted line indicates a
lower bound reference on the total score.
B. Results of test 2, testing similarity of
model score distributions between
samples 1 (red) and 2 (blue); the
difference in distribution of scores is
significant (Kolmogorov-Smirnov two-
sample test p-value less than 0.05) but
the magnitude of the difference is small
(the Kolmogorov-Smirnov two-sample
test statistic D is 0.02); thus, the two
score distributions are effectively equal.
C. Results of test 3, three criteria for
determining the sampling precision (Y-
axis), evaluated as a function of the
RMSD clustering threshold (X-axis). First,
the p-value is computed using the χ2-test
for homogeneity of proportions (red dots).
Second, an effect size for the χ2-test is
quantified by the Cramer’s V value (blue
squares). Third, the population of models
in sufficiently large clusters (containing at
least 10 models from each sample) is
shown as green triangles. The vertical
dotted grey line indicates the RMSD
clustering threshold at which three
conditions are satisfied (p-value > 0.05
[dotted red line], Cramer’s V < 0.10
[dotted blue line], and the population of
clustered models > 0.80 [dotted green
line]), thus defining the sampling
precision of 3.5 Å. D. Populations of
sample 1 and 2 models in the clusters
obtained by threshold-based clustering
using the RMSD threshold of 3.5 Å.
Cluster precision is shown for each
cluster. E. and F. Results of test 4:
comparison of localization probability
densities of models from sample A and
sample B for the major cluster (84%
population). The cross-correlation of the
density maps of the two samples is 0.99
for the gelsolin (red) and tropomysin
(blue) maps and 0.97 for the actin map
(green).

 0

 250

 500

 750

 1000

Cluster 0
Cluster 1

Cluster 2
Cluster 3

Po
pu

la
tio

n

Number of models:691, 873691 873873χ2-test p-value: 0.05
Cramer's V: 0.07

0.00

0.25

0.50

0.75

1.00

 0 2 4 6 8 10

C
on

ve
rg

en
ce

 C
rit

er
ia

Threshold (Å)

χ2-test p-value
Cramer's V

Clustered population

70.0

72.0

74.0

76.0

78.0

80.0

 0 500 1000 1500 2000

B
es

t s
co

re

Number of Models

A B

 0

 25

 50

 75

 100

75.00 82.00 89.00 96.00 103.00

N
um

be
r o

f M
od

el
s

Score

Sample 1
Sample 2

K-S test D: 0.04
 K-S test p-value 0.60

C D

E F Sample A Sample B

4.6. Storing and reporting results in the wwPDB

For our modeling to be reproducible - a key requirement for the 4-stage modeling
procedure [Fig. 1] and for science in general - the modeling protocol, all of the input
data we used, and the final output models, should be deposited in a public location,
ideally the nascent PDB-Dev repository (https://pdb-dev.wwpdb.org/).

4.6.1. Modeling protocol
The modeling protocol includes the entire procedure of converting raw input data
to output models, and so comprises both the set of IMP Python scripts described
above and any procedures used to prepare IMP inputs, such as comparative
modeling of subunits, segmentation of an EM density, and processing of XL-MS
data to get a set of proximate residues. An excellent way to store and
disseminate such a protocol is by using a source control system with a publicly
accessible web frontend, such as GitHub (as is used for this tutorial). Integrative
modeling is an inherently collaborative process. Source control makes it
straightforward to track changes to all of the protocol scripts and data by local
and remote collaborators. All protocol files should be deposited in a permanent
location with a fixed Digital Object Identifier (DOI). A number of free services are
available for deposition of such files, such as Zenodo (https://zenodo.org) and
FigShare (https://figshare.com), where a snapshot of a GitHub repository for the
published work can be deposited. For an example, see ref. [38]

4.6.2. Input data
Each piece of input data used should also be publicly available. Where possible,
this data should be deposited in a repository specific to the given experimental
technique and referenced from the model mmCIF file. For example, all of the
crystal structures used in this example are simply referenced by their PDB IDs.
Where such a repository does not exist, the data files should be made available
at a DOI. The simplest way to archive these files is to store them in the same
GitHub repository used for the modeling protocol. If derived data are used, the
modeling protocol should indicate where the original raw data came from.

4.6.3. Output models
A decision needs to be made about which models to deposit. Generally, a
representative sample of each cluster should be deposited, together with the
localization densities of the entire cluster.

The mmCIF file format allows for multiple models, potentially at multiple scales,
in multiple states, and/or different time points, to be stored in a single file together
with pointers to the input data and modeling protocol. Implementation of this
format in IMP is still under development. The functionality will extract information
from the RMF files output by the IMP modeling and combine it with metadata
extracted from each experimental input. This file can be visualized in UCSF
ChimeraX, [39] and similar files from real modeling runs can be deposited in
PDB-Dev and cited in publications.

6. Notes
1. Other sampling methods include Rapidly Exploring Random Trees (RRT) for

searching dihedral space, [40] divide-and-conquer message passing methods
[41] for large discrete spaces, conjugate gradients and molecular dynamics.

2. In this case, the user may reformulate the representation by adding a state to the
system. (Note 8)

3. In general, an ensemble of models can be visualized as a localization probability
density map (localization density). The map specifies the probability of any
volume element being occupied by a given bead in superposed good scoring
models.

4. Simulated EM maps can be created map can be created in IMP using the
following command: simulate_density_from_pdb <file.pdb>
<output.mrc> <resolution> <a/pixel>

5. Spherical beads are applied to every 10 residues with smaller beads applied to
loops of smaller length.

6. These residues are also assigned to rigid_body 1 to improve sampling. All beads

within rigid bodies are, by default, allowed to be flexible.

7. The file ./modeling/modeling_manual.py contains this exact system built
manually using PMI commands instead of a topology file. PMI commands allow
significantly more flexibility in model design.

8. To add a second state with the same topology, this line can be repeated, or to
use a different topology, bs.add_state(t2)can be invoked with a different
topology file.

9. For coarse-grained models, a molecular mechanics force field is not applicable.

The CHARMM force field can be applied to enforce stereochemistry on atomic
models, however. See the examples in the IMP.atom module to learn how to
implement this restraint.

10. Model SAXS profiles can be computed using residues, CA atoms, heavy atoms

or all atoms, depending on the resolution of the model. The recommended maxq
values are dependent on this choice. At residue resolution, the fit is only valid up
until q ~ 0.15; for heavy atoms q = 0.4; and for all atoms, the fit is valid out to q =
1.0 (the maximum value).

11. See derived_xls.dat and the modeling.py script for a more in-depth

explanation of crosslink keys.

12. The shuffle algorithm fails if it cannot find a configuration without any overlap
between components. If this happens, try increasing the max_translation
parameter. Don’t set this too high as you’ll spend way too much time getting your
system to move back together.

13. A list of acceptable keywords can be determined by running
../scripts/plot_stat.py ./path/to/stat/file –pk.

14. For scores whose thresholds are not known a priori, one can perform a multi-

stage filtering process as outlined in the above protocol.

15. Currently, the choice of filtering criteria is very subjective. Ideally, a fully Bayesian
framework will allow for objective weighting of different restraints and allow for
filtering at single likelihood. Until then, the choice of a score or parameter that
represents a “good scoring model” should be carefully thought out by the
modeler and reported in the text.

16. In general, we require at least 1000 or more models for assessing sampling

exhaustiveness. Our score thresholds were chosen in order to have a reasonable
number (1000 - 20000) models for analysis. If we have too few models, the
satisfaction criteria should be relaxed, or more sampling should be performed to
find more satisfactory models. Too many models (>20,000) will make subsequent
processing more computationally intensive; in this case satisfaction criteria can
be made stricter, or one can pass a random subset of these models to the
sampling convergence protocol.

17. An explanation of the PMI selection format can be found at

https://github.com/salilab/pmi/wiki/PMI-Tuple-Selection-Format

18. One can choose whether to align models (-a option) or not. Alignment of
models is sometimes not necessary, e.g. when one has a medium resolution or
better EM map.

19. For calculating sampling precision, the grid size is the step size at which

clustering is performed between the minimum and maximum RMSDs in the
dataset. This tutorial uses 0.1 Å to get a very precise estimate of the sampling
precision; however this results in a very long calculation. In practice, especially
for larger systems whose sampling precision will be much lower, one would
choose a larger value to make calculation more efficient.

20. If alignment is necessary, the GPU mode of pyRMSD generally increases
performance significantly. It is invoked by using –m cuda.

21. The output of the protocol can be readily plotted using any plotting software.

Example scripts in ./analysis/scripts/gnuplot_scripts can be used to
obtain the plots in Figure 6.

22. Sometimes, there are too many clusters to visualize at the determined sampling

precision. In this case, we can rerun clustering using a threshold worse than the
sampling precision to get fewer clusters to visualize. In that case, the skip option
(-s) along with the value of clustering threshold (-ct) allows one to bypass
RMSD and sampling precision calculation and get the clusters and their
densities, as follows: python
../scripts/Master_Sampling_Exhaustiveness_Analysis.py -n

actin -d density_custom.txt -ct 4.39 -a -s. Note that this
clustering threshold should always be worse than the sampling precision.

23. Built-in Chimera color names can be found at:

https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/colortables.html

24. These keywords are specifically for completely disordered domains or short
helical components. For IDEAL_HELIX, a single helix will be created for that
component.

References

1.		 Mitra	K,	Frank	J	(2006)	RIBOSOME	DYNAMICS:	Insights	from	Atomic	Structure	

Modeling	into	Cryo-Electron	Microscopy	Maps.	Annu	Rev	Biophys	Biomol	
Struct	35:299–317	.	doi:	10.1146/annurev.biophys.35.040405.101950	

2.		 Robinson	CV,	Sali	A,	Baumeister	W	(2007)	The	molecular	sociology	of	the	cell.	
Nature	450:973–982	

3.		 Sali	A,	Glaeser	R,	Earnest	T,	Baumeister	W	(2003)	From	words	to	literature	in	
structural	proteomics.	Nature	422:216–225	

4.		 Schmeing	TM,	Ramakrishnan	V	(2009)	What	recent	ribosome	structures	have	
revealed	about	the	mechanism	of	translation.	Nature	461:1234–1242	.	doi:	
10.1038/nature08403	

5.		 Blundell	TL,	Johnson	LN	(1976)	Protein	Crystallography.	Academic	Press,	New	
York	

6.		 Chiu	W,	Baker	ML,	Jiang	W,	et	al	(2005)	Electron	Cryomicroscopy	of	Biological	
Machines	at	Subnanometer	Resolution.	Structure	13:363–372	.	doi:	
10.1016/j.str.2004.12.016	

7.		 Lučić	V,	Leis	A,	Baumeister	W	(2008)	Cryo-electron	tomography	of	cells:	
connecting	structure	and	function.	Histochem	Cell	Biol	130:185–196	.	doi:	
10.1007/s00418-008-0459-y	

8.		 Stahlberg	H,	Walz	T	(2008)	Molecular	Electron	Microscopy:	State	of	the	Art	and	
Current	Challenges.	ACS	Chem	Biol	3:268–281	.	doi:	10.1021/cb800037d	

9.		 Parrish	JR,	Gulyas	KD,	Finley	RL	(2006)	Yeast	two-hybrid	contributions	to	
interactome	mapping.	Curr	Opin	Biotechnol	17:387–393	.	doi:	
10.1016/j.copbio.2006.06.006	

10.		 Fernandez-Martinez	J,	Phillips	J,	Sekedat	MD,	et	al	(2012)	Structure–function	
mapping	of	a	heptameric	module	in	the	nuclear	pore	complex.	J	Cell	Biol	
196:419–434	.	doi:	10.1083/jcb.201109008	

11.		 Gingras	A-C,	Gstaiger	M,	Raught	B,	Aebersold	R	(2007)	Analysis	of	protein	
complexes	using	mass	spectrometry.	Nat	Rev	Mol	Cell	Biol	8:645–654	.	doi:	
10.1038/nrm2208	

12.		 Ward	AB,	Sali	A,	Wilson	IA	(2013)	Integrative	Structural	Biology.	Science	
339:913–915	.	doi:	10.1126/science.1228565	

13.		 Lasker	K,	Förster	F,	Bohn	S,	et	al	(2012)	Molecular	architecture	of	the	26S	
proteasome	holocomplex	determined	by	an	integrative	approach.	Proc	Natl	
Acad	Sci	USA	109:1380–1387	

14.		 Simon	B,	Madl	T,	Mackereth	CD,	et	al	(2010)	An	efficient	protocol	for	NMR-
spectroscopy-based	structure	determination	of	protein	complexes	in	solution.	
Angew	Chem	Int	Ed	Engl	49:1967–1970	.	doi:	10.1002/anie.200906147	

15.		 Baù	D,	Sanyal	A,	Lajoie	BR,	et	al	(2011)	The	three-dimensional	folding	of	the	α-
globin	gene	domain	reveals	formation	of	chromatin	globules.	Nat	Struct	Mol	
Biol	18:107–114	.	doi:	10.1038/nsmb.1936	

16.		 Viswanath	S,	Bonomi	M,	Kim	SJ,	et	al	(2017)	The	molecular	architecture	of	the	
yeast	spindle	pole	body	core	determined	by	Bayesian	integrative	modeling.	Mol	
Biol	Cell	28:3298–3314	.	doi:	10.1091/mbc.E17-06-0397	

17.		 Kim	SJ,	Fernandez-Martinez	J,	Nudelman	I,	et	al	(2018)	Integrative	structure	
and	functional	anatomy	of	a	nuclear	pore	complex.	Nature	555:475–482	.	doi:	
10.1038/nature26003	

18.		 Molnar	K,	Bonomi	M,	Pellarin	R,	et	al	(2014)	Cys-Scanning	Disulfide	
Crosslinking	and	Bayesian	Modeling	Probe	the	Transmembrane	Signaling	
Mechanism	of	the	Histidine	Kinase,	PhoQ.	Structure	22:1239–1251	

19.		 Webb	B,	Viswanath	S,	Bonomi	M,	et	al	(2018)	Integrative	structure	modeling	
with	the	Integrative	Modeling	Platform:	Integrative	Structure	Modeling	with	
IMP.	Protein	Sci	27:245–258	.	doi:	10.1002/pro.3311	

20.		 Shen	M,	Sali	A	(2006)	Statistical	potential	for	assessment	and	prediction	of	
protein	structures.	Protein	Sci	15:2507–2524	.	doi:	10.1110/ps.062416606	

21.		 Sippl	MJ	(1990)	Calculation	of	conformational	ensembles	from	potentials	of	
mena	force.	J	Mol	Biol	213:859–883	.	doi:	10.1016/S0022-2836(05)80269-4	

22.		 Brooks	BR,	Brooks	CL,	Mackerell	AD,	et	al	(2009)	CHARMM:	The	biomolecular	
simulation	program.	J	Comput	Chem	30:1545–1614	.	doi:	10.1002/jcc.21287	

23.		 Weiner	SJ,	Kollman	PA,	Case	DA,	et	al	(1984)	A	new	force	field	for	molecular	
mechanical	simulation	of	nucleic	acids	and	proteins.	J	Am	Chem	Soc	106:765–
784	.	doi:	10.1021/ja00315a051	

24.		 Šali	A,	Blundell	TL	(1993)	Comparative	Protein	Modelling	by	Satisfaction	of	
Spatial	Restraints.	J	Mol	Biol	234:779–815	.	doi:	10.1006/jmbi.1993.1626	

25.		 Kelley	LA,	Mezulis	S,	Yates	CM,	et	al	(2015)	The	Phyre2	web	portal	for	protein	
modeling,	prediction	and	analysis.	Nat	Protoc	10:845–858	.	doi:	
10.1038/nprot.2015.053	

26.		 Hanot	S,	Bonomi	M,	Greenberg	CH,	et	al	(2018)	Bayesian	multi-scale	modeling	
of	macromolecular	structures	based	on	cryo-electron	microscopy	density	
maps.	.	doi:	10.1101/113951	

27.		 Kawabata	T	(2008)	Multiple	Subunit	Fitting	into	a	Low-Resolution	Density	Map	
of	a	Macromolecular	Complex	Using	a	Gaussian	Mixture	Model.	Biophys	J	
95:4643–4658	.	doi:	10.1529/biophysj.108.137125	

28.		 Metropolis	N,	Rosenbluth	AW,	Rosenbluth	MN,	et	al	(1953)	Equation	of	State	
Calculations	by	Fast	Computing	Machines.	J	Chem	Phys	21:1087–1092	.	doi:	
10.1063/1.1699114	

29.		 Swendsen	RH,	Wang	J-S	(1986)	Replica	Monte	Carlo	Simulation	of	Spin-Glasses.	
Phys	Rev	Lett	57:2607–2609	.	doi:	10.1103/PhysRevLett.57.2607	

30.		 Viswanath	S,	Chemmama	IE,	Cimermancic	P,	Sali	A	(2017)	Assessing	
Exhaustiveness	of	Stochastic	Sampling	for	Integrative	Modeling	of	
Macromolecular	Structures.	Biophys	J	113:2344–2353	.	doi:	
10.1016/j.bpj.2017.10.005	

31.		 Alber	F,	Dokudovskaya	S,	Veenhoff	LM,	et	al	(2007)	The	molecular	architecture	
of	the	nuclear	pore	complex.	Nature	450:695–701	

32.		 Sali	A,	Berman	HM,	Schwede	T,	et	al	(2015)	Outcome	of	the	First	wwPDB	
Hybrid/Integrative	Methods	Task	Force	Workshop.	Struct	Lond	Engl	1993	
23:1156–1167	.	doi:	10.1016/j.str.2015.05.013	

33.		 Burley	SK,	Kurisu	G,	Markley	JL,	et	al	(2017)	PDB-Dev:	a	Prototype	System	for	
Depositing	Integrative/Hybrid	Structural	Models.	Struct	Lond	Engl	1993	
25:1317–1318	.	doi:	10.1016/j.str.2017.08.001	

34.		 Vallat	B,	Webb	B,	Westbrook	JD,	et	al	(2018)	Development	of	a	Prototype	
System	for	Archiving	Integrative/Hybrid	Structure	Models	of	Biological	
Macromolecules.	Struct	Lond	Engl	1993.	doi:	10.1016/j.str.2018.03.011	

35.		 Gil	VA,	Guallar	V	(2013)	pyRMSD:	a	Python	package	for	efficient	pairwise	RMSD	
matrix	calculation	and	handling.	Bioinformatics	29:2363–2364	.	doi:	
10.1093/bioinformatics/btt402	

36.		 Rao	JN,	Dominguez	R	(2014)	Complex	of	ATP-actin	With	the	C-terminal	Actin-
Binding	Domain	of	Tropomodulin.	.	doi:	10.2210/pdb4pki/pdb	

37.		 Schneidman-Duhovny	D,	Hammel	M,	Sali	A	(2010)	FoXS:	A	Web	Server	for	
Rapid	Computation	and	Fitting	of	SAXS	Profiles.	Nucleic	Acids	Res	38:541–544	

38.		 Robinson	P,	Trnka	M,	Pellarin	R,	et	al	(2015)	Molecular	architecture	of	the	
yeast	Mediator	complex.	eLife	10.7554/eLife.08719	

39.		 Goddard	TD,	Huang	CC,	Meng	EC,	et	al	(2018)	UCSF	ChimeraX:	Meeting	modern	
challenges	in	visualization	and	analysis:	UCSF	ChimeraX	Visualization	System.	
Protein	Sci	27:14–25	.	doi:	10.1002/pro.3235	

40.		 Carter	L,	Kim	SJ,	Schneidman-Duhovny	D,	et	al	(2015)	Prion	protein-antibody	
complexes	characterized	by	chromatography-coupled	small-angle	X-ray	
scattering.	Biophys	J	109:793–805	

41.		 Lasker	K,	Topf	M,	Sali	A,	Wolfson	HJ	(2009)	Inferential	optimization	for	
simultaneous	fitting	of	multiple	components	into	a	cryoEM	map	of	their	
assembly.	J	Mol	Biol	388:180–194	

	

