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Summary 
Integrative structure modeling provides 3D models of macromolecular systems that are 
based on information from multiple types of experiments, physical principles, statistical 
inferences, and prior structural models. Here, we provide a hands-on realistic example of 
integrative structure modeling of the quaternary structure of the actin, tropomyosin, and 
gelsolin protein assembly, based on electron microscopy, solution X-ray scattering, and 
chemical crosslinking data for the complex as well as excluded volume, sequence 
connectivity, and rigid atomic X-ray structures of the individual subunits. We follow the 
general four-stage process for integrative modeling, including gathering the input 
information, converting the input information into a representation of the system and a 
scoring function, sampling alternative model configurations guided by the scoring 
function, and analyzing the results. The computational aspects of this approach are 
implemented in our open-source Integrative Modeling Platform (IMP), a comprehensive 
and extensible software package for integrative modeling 
(https://integrativemodeling.org). In particular, we rely on the Python Modeling Interface 
(PMI) module of IMP that provides facile mixing and matching of macromolecular 
representations, restraints based on different types of information, sampling algorithms, 
and analysis including validations of the input data and output models. Finally, we also 
outline how to deposit an integrative structure and corresponding experimental data into 
PDB-Dev, the nascent worldwide Protein Data Bank (wwPDB) resource for archiving 
and disseminating integrative structures (https://pdb-dev.wwpdb.org). The example 
application provides a starting point for a user interested in using IMP for integrative 
modeling of other biomolecular systems. 
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1. Introduction  
To understand the function of a macromolecular assembly, we must know the structure 
and dynamics of its components and the interactions between them. [1–4] However, 
direct experimental determination of such a structure is generally rather difficult, as no 
experimental method is universally applicable. For example, crystals suitable for X-ray 
crystallography cannot always be produced, especially for large assemblies of multiple 
components. [5] Cryo-electron microscopy, on the other hand, can be used to study 
large assemblies, but is often limited to worse than atomic resolution. [6–8] Finally, 
molecular biology, biochemistry, and proteomics techniques, such as yeast two-hybrid, 
[9] affinity purification, [10] and mass spectrometry, [11] yield information about the 
interactions between proteins, but not the positions of these proteins within the assembly 
or the structures of the proteins themselves. 
 
One approach to solve this problem is integrative modeling, [12] that is used to 
characterize the structures of single proteins or their complexes by relying on multiple 
types of input information, including varied experiments, physical theories, statistical 
inferences, and prior structural models. By simultaneously considering all information, 
the method maximizes the accuracy, precision, completeness, and efficiency of structure 
determination. Numerous structures have already been solved using this approach, 
including the 26S ribosome, [13] the bacterial type II pilus, [14] the structure of chromatin 
around the alpha-globin gene, [15] the molecular architecture of the yeast spindle pole 
body core, [16] and the architecture of the yeast nuclear pore complex. [17] The method 
can also compute multi-state models of conformationally heterogenous systems, as 
demonstrated by the two-state model of the PhoQ sensor histidine kinase. [18] 

The Integrative Modeling Platform (IMP) is a comprehensive and extensible software 
package for performing integrative modeling. The flexibility of the core software allows for 
constructing customized representations of structure and data as well as sampling and 
analysis protocols. The tools to complete the entire integrative modeling workflow [Fig. 1] 
are contained within IMP. Here, we describe the Python Modeling Interface (PMI) to IMP 
that significantly simplifies encoding the modeling process. [19] 

 

 
 
 
 
  



 
Figure 1: The four stages of integrative modeling. This schematic describes the integrative structure 
modeling procedures used in this tutorial. The first row details the information to be used in modeling. The 
background color of each information source indicates where the information is applied in modeling, as 
detailed in the key at the top.  The second row describes how each information source is converted into 
spatial restraints. The third row details the sampling protocol. The last row details the analysis and 
validation steps of the modeling. The modifiable Adobe Illustrator file for this figure can be found in the 
tutorial repository: figures/Figure1/actin_tutorial_4stage.ai. 
 
2. Methods 
 
The goal of PMI is to allow structural biologists with limited programming expertise to 
determine the structures of large protein complexes. PMI is a top-down modeling system 
that relies on a series of macros and classes to simplify encoding of the modeling 
protocol, including designing the system representation, specifying scoring function, 
sampling alternative structures, analyzing the results, facilitating the creation of 
publication-ready figures, and depositing into PDB-Dev (see below). PMI exchanges the 
high flexibility of IMP for ease-of-use, all within one short Python script (<100 lines). 
Despite its simplicity in creating standard modeling workflows, PMI is powerful and 
extensible - it is built on IMP and creates native IMP objects, which means that the 
advanced user can customize many aspects of the modeling protocol. Below, we outline 
each stage of the modeling process as performed in PMI. [Fig. 2]  
 



 

 
Figure 2: PMI 
Hierarchy. PMI 
is constructed as 
a top-down 
hierarchy 
beginning with a 
System. A 
system can 
contain one or 
more states with 
each state being 
a different 
conformation, 
composition or 
time-ordered 
step in the 
system. Each 
state is 
comprised of one 
or more 
molecules that 
may have one or 
more copies per 
molecule. At the 
final level, each 
molecule is 
represented at 
one or more 
resolutions. 
 

 
 

2.1. Gathering Information 
Information about a system that we wish to model includes everything that we 
directly observe, can infer through comparison to other systems, and fundamental 
physical principles. Experimental data that are commonly utilized in integrative 
modeling include X-ray crystal structures, EM density maps, NMR data, chemical 
crosslinks, yeast two-hybrid data, and Förster resonance energy transfer (FRET) 
measurements. Atomic resolution information may be applied directly as structural 
restraints from atomic statistical potentials [20, 21] and molecular mechanics force 
fields [22, 23] or derived from comparative modeling programs such as MODELLER 
[24] and PHYRE2. [25] 
 
Each piece of information can be utilized within the modeling procedure in one or 
more of five distinct ways: defining model representation, defining sampling 
space/degrees of freedom, scoring models during sampling, filtering models post-
sampling, and validating completed models.  

 
2.2. System and data representation 
The representation of the system defines the structural degrees of freedom that will 
be sampled and is designed based on the information at hand. We can utilize a 
multi-scale representation, where model components can be modeled at one or more 
different resolutions commensurate with the information content at that site [Fig 3]. 
For example, a domain described by a crystal structure can be represented at atomic 
resolution and a disordered segment can be represented as a string of spherical 
beads of 10 residues each. In addition, non-particle based representations, such as 
Gaussian mixture models (GMMs), can also be used; for example, in EM density 
fitting. [26, 27] Choosing a representation reflects a compromise between the need 



for details required by the biological application of the model and the need for 
coarseness required by limited computing power.  

 
Figure 3: Ways of representing a single biomolecule. A: The complexity of a molecular system can be 
represented in four ways. An ensemble of states describes the structural heterogeneity around a single solution. 
Multiple states are used to describe systems that exist in multiple thermodynamic wells. The system can be 
modeled at a multitude of scales commensurate with the different types of information known about it. Finally, 
individual states can be time-ordered, allowing for the modeling of the transition rates between them. B: Multiple 
representations can be simultaneously applied to the same biomolecule so that information of various types can 
be applied at the proper scale and form. The molecule is first defined by its sequence connectivity. Flexible 
beads comprising one or more residues are commonly applied to loops where no high-resolution structure is 
available. Areas that have high resolution structure can be modeled by spherical beads of 1 residue for the 
evaluation of residue-specific information such as chemical crosslinks or NMR distance restraints. 10-residue 
beads are generally used to model lower resolution information such as SAXS data and the excluded volume 
restraint. The molecule can be represented as a Gaussian mixture model for comparisons to EM densities. IMP 
and PMI can utilize all of these representations simultaneously in a multi-scale model. Panel A adapted from [34]. 
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Some of the input information is translated into restraints on the structure of the 
model. These spatial restraints are combined into a single scoring function that ranks 
alternative model configurations (models) based on their agreement with the 
information. The scoring function defines a multi-dimensional landscape spanned by 
the model degrees of freedom; the good-scoring models on this landscape satisfy 
the input restraints.  

  
2.3. Sampling 
In most cases, all possible models cannot be generated. Thus, we utilize sampling 
methods to search for models that agree with the input data according to the scoring 
function defined above (good-scoring models). One approach for sampling models in 
IMP is a Monte Carlo algorithm, [28] guided by our scoring function and accelerated 
via replica exchange. [29] Other sampling methods can be utilized for specific cases. 
[see Note 1]   
 
2.4. Analysis 
The results of stochastic sampling (i.e., an ensemble of output structures and their 
respective scores) must be analyzed to estimate the sampling precision and 
accuracy, detect inconsistencies with respect to the input information, and suggest 
future experiments. [Fig. 4] 
 
We wish to analyze only models that are sufficiently consistent with the input 
information (good-scoring models). A good-scoring model must sufficiently satisfy 
every single piece of information used to compute it; therefore one needs a threshold 
for every data point or set of data. Sampling may produce zero such models, which 
can result from inconsistent data or an unconsidered multiplicity of conformational 
states. [see Note 2] 

 
Given a set of good-scoring models, we must first estimate the precision at which 
sampling found these most good-scoring solutions (sampling precision). [Fig. 4, step 
1] [16, 17, 30] This estimate relies on splitting the set of good-scoring models into 
two independent samples, followed by comparing them to each other using four 
independent tests: 1) convergence of the model score, 2) whether model scores for 
the two samples were drawn from the same parent distribution, 3) whether each 
structural cluster includes models from each sample proportionally to its size 4) 
sufficient similarity between the localization densities [see Note 3] for the entire 
system, from each sample. After threshold clustering of models, the sampling 
precision is defined as the largest RMSD value between a pair of structures within 
any cluster, in the finest clustering for which the structures from the two independent 
runs contribute proportionally to their size. [Fig. 6D] In other words, the sampling 
precision is defined as the precision at which the two independent samples are 
statistically indistinguishable. The individual clusters for each sample are also 
compared visually (Section 4.5.3) to confirm similarity.  
 
At this step, the model precision (uncertainty), which is represented by the variability 
among the good-scoring models, is also reported. This uncertainty can be quantified 
by measures such as root-mean-square deviation (RMSD) of model components for 
models within each cluster or between clusters determined above. The lower bound 
on model precision is provided by the sampling precision; the model precision cannot 
be higher than the sampling precision.  



 
An accurate model must satisfy all information about the system, and this is 
evaluated in a number of steps. First, the consistency of the model with input 
information is assessed by independently assessing the clusters determined above 
against the input data [Fig. 4, Step 2]. In the next step, the models are assessed by 
random or systematic cross-validation [Fig. 4, Step 3]. The next and most robust 
validation is the consistency of the model with data not used to compute it [Fig. 4, 
Step 4], similar to a crystallographic Rfree. 

A final validation is the presence of features in the model that are unlikely to occur by 
chance and/or are consistent with the biological context of the system [Fig. 4, step 5]. 
For example, a 16 fold symmetry was found in the model of the Nuclear Pore 
Complex when only 8-fold symmetry had been enforced [31] and the displacement of 
the aspartate sensor domain in a two state model of the histidine kinase PhoQ 
transmembrane signaling agreed with previous analysis. [18] 
 
A key feature of the four-step procedure for integrative modeling [Fig. 1] is that it is 
iterative. Assessment may reveal a need to collect more input data, or suggest future 
experiments, both by the researchers that constructed the initial model and by 
others. 

 
Figure 4: Analysis pipeline. Analysis of sampling runs begins by filtering models that satisfy all input information. In 
step one, this set is split into two independent samples to assess the precision at which sampling is converged. If 
sampling has converged at a high enough precision, the resulting models can be assessed against the input 
information to identify potential multiple states.  Resampling can be performed by either systematically or randomly 
excluding data sets and rerunning the simulation and sampling convergence algorithms. The models can then be 
assessed against data that was not used in modeling. Finally, the models are assessed for logical sense in 
answering the original biological question. 

 

2.5. Deposition 
 
For the models, data, and modeling protocols to be generally useful, they must be 
reproducible and available to everyone in a publicly accessible database. This 
availability allows any scientist to use a deposited model to plan experiments by 
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simulating potential benefits gained from new data. Computational groups can more 
easily experiment with new scoring, sampling, and analysis methods, without having 
to reimplement the existing methods from scratch. Finally, the authors themselves 
will maximize the impact of their work, increasing the odds that their results are 
incorporated into future modeling. Following the recommendations of the wwPDB 
Hybrid/Integrative Methods Task Force in 2015, [32] a prototype archive, PDB-
Development (PDB-Dev, https://pdb-dev.wwpdb.org/) [33, 34] was recently 
established to store integrative models and corresponding data. The mmCIF file 
format used to archive regular atomic PDB structures was extended to support the 
description of integrative models, including information on the input data used, the 
modeling protocol, and the final output models. As of July 2018, PDB-Dev contains 
14 depositions, including 9 generated by IMP.  

 
3. Materials 

 
3.1. IMP 
IMP binaries for most platforms can be downloaded and installed from: 
https://integrativemodeling.org/download.html. 
The tutorial has been built to work with the latest stable release of IMP at time of 
writing, 2.9.0.  

 
3.2. Chimera 
Modeling results can be visualized using Chimera version 1.13 or later, which can be 
downloaded from https://www.cgl.ucsf.edu/chimera/download. 

 
3.3. Actin tutorial code and data 
The data and code used in the tutorial below can be downloaded from 
https://github.com/salilab/actin_tutorial. The home directory of the repository, 
actin_tutorial, will be used to reference all other paths in the tutorial below.    
Analysis scripts are located in ./analysis/scripts. These are slightly modified 
from the stand-alone script library for performing sampling exhaustiveness found at 
https://github.com/salilab/IMP-sampcon. These analyses rely on pyRMSD. [35] 

 
3.4. Computer skills requirements 
PMI stands for Python Modeling Interface. Interaction with PMI requires Python 
scripts. The tutorial scripts for PMI are written to be interpretable by even those with 
minimal or no Python experience. However, performing advanced tasks and/or 
designing novel workflows benefits from a working knowledge of Python.  
 
3.5. Computational resources and time 
The full tutorial simulation can be run in a few hours on a modern desktop or laptop 
computer. A multi-core system is preferred to utilize replica exchange. 

 
4. Integrative modeling of ADP-actin, gelsolin and C-terminal actin-binding 

domain of tropomodulin 
Here, we demonstrate integrative modeling using the PMI interface by modeling the 
complex of actin and tropomodulin-gelsolin chimera using SAXS, EM, crosslinking, 
crystal structures of the individual domains, and physical principles. This complex 
was solved via X-ray crystallography at 2.3 Å resolution (PDB: 4PKI). [36] We use 
this structure to simulate biophysical data and assess the accuracy of the modeled 



complexes. In this simple exercise, we assume that we have a crystal structure of 
only the actin-gelsolin interface and would like to find the tropomyosin-actin binding 
interface. The entire modeling protocol is summarized in the four-stage diagram [Fig. 
1].  

 
4.1. Gathering and preparing information 

 
All data is contained in subfolders of the ./data directory of the tutorial. 
 

4.1.1. Structural data from the PDB 
The crystal structure 4PKI is used to set the atomic coordinates for each of the 
domains in the FASTA sequence that determines the composition of each 
biomolecule, as well as the coordinates for tropomyosin and the actin-gelsolin 
complex. [Fig. 5] 

 
4.1.2. Chemical Crosslinks 
Thirty-three simulated crosslinks were generated from a random subset of lysine 
residue pairs whose CA-CA distances are under 25 Å. 
 
4.1.3. Electron Microscopy 
A simulated EM density of the entire complex was created at 20 Å resolution 
using IMP [see Note 4]. The simulated map is approximated as a Gaussian 
Mixture Model (GMM). [27] 
 
4.1.4. SAXS 
A simulated SAXS profile of the entire 4pki.pdb complex was created using 
FoXS. [37] 

 
4.1.5. Other information 
We also define restraints such as excluded volume and sequence connectivity to 
add chemical and physical knowledge to the modeling protocol.  



 
 
 

4.2. Defining System 
Representation and 
Degrees of Freedom in 
the Topology File 
 

The model representation 
(e.g., bead size and rigid 
bodies) can be set within the 
topology file. The topology file 
is a pipe-delimited format with 
each line specifying a 
separate domain and keyword 
values determining how the 
domain is represented. A 
definition of each keyword is 
given in Table 1. 
 
The topology file for this 
tutorial, shown below, is found 
at 
./modeling/topology.tx
t. Here, the system is 
subdivided into four distinct 
domains: one each for the 
three structured domains (actin, gelsolin, and tropomyosin) and one consisting of 
the 18-residue engineered linker between gelsolin and tropomyosin. The first 
domain, the entire actin molecule, is colored green and contains the entirety of 
chain A from 4pki.pdb. A bead_size of 1 residue per bead is assigned to any 
unmodeled section (i.e., not present in the PDB file) [see Note 5]. A GMM is 
approximated using 10 residues per Gaussian. This domain is assigned to 
rigid_body 1. The second domain, the gelsolin portion of the chimera, is 
constructed by selecting the residue_range 52-177 of chain G. These 
residues, however, are numbered 1-126 in the FASTA file, therefore a 
pdb_offset of -51 must be added. This domain is also assigned to 
rigid_body 1 to preserve the actin/gelsolin interface. The third domain is the 
linker, whose residues have no structure associated with them; thus, they are 
given a pdb_fn of BEADS with a bead_size of 1 [see Note 6]. The final 
domain, tropomyosin, is built similarly to gelsolin and assigned to rigid_body 
2, since we would like to sample its position separate of the rest of the complex. 
 

  

 
Figure 5: Actin-gelsolin-tropomyosin complex. Top: 
Reference crystal structure 4PKI showing actin in green, gelsolin 
in red and tropomyosin in blue. Bottom: Multi-scale 
representation and position of the system after domain shuffling 
and bead relaxation. Structured domains are represented by 
spherical beads of 1 and 10 residues. Unstructured residues 
from the linker between the gelsolin and tropomyosin domains 
are represented as gray beads.  
 

|molecule_name | color | fasta_fn | fasta_id | pdb_fn | chain | residue_range | pdb_offset | 
bead_size | em_residues_per_gaussian | rigid_body | super_rigid_body | 
chain_of_super_rigid_bodies |  
|actin   |green |4pki.fasta.txt|actin               |4pki.pdb|A|1,END    |0    |1|10|1|1|| 
|geltrop |red   |4pki.fasta.txt|gelsolin-tropomyosin|4pki.pdb|G|52,177   |-51  |1|10|1|1|| 
|geltrop |gray  |4pki.fasta.txt|gelsolin-tropomyosin|BEADS   |G|178,195  |-51  |1|10|1|1|| 
|geltrop |blue  |4pki.fasta.txt|gelsolin-tropomyosin|4pki.pdb|G|1170,1349|-1025|1|10|2|1|| 

	



This topology file also places all domains in a single super_rigid_body. This 
definition allows the entire complex to move as a single unit, which is useful for 
fitting to the EM map. 
 

molecule_name Name of the molecule that this domain is a part of 
color The color used in the output RMF file for this component. Uses Chimera 

defined names [see Note 23] or RGB values (e.g. 155,35,0) 
fasta_fn Name of FASTA file containing this component. 
fasta_id String found in FASTA sequence header line.  
pdb_fn Name of PDB file with coordinates (if available). If left empty, will set up 

as BEADS. Using IDEAL_HELIX will build a helix. [see Note 25] 
chain Chain ID of this domain in the PDB file. 
residue_range Comma delimited pair defining range of residues. Can leave empty or put 

all to use entire sequence from FASTA file. 
pdb_offset Offset to sync PDB residue numbering with FASTA numbering. 
bead_size The size (in residues) of beads used to model areas not covered by PDB 

coordinates.  
em_residues_ 
per_gaussian 

The number of residues per Gaussian used to model the electron density 
of this domain. Set this to zero if no EM fitting will be done. 

rigid_body The ID number of the rigid body that contains this component. 
super_rigid_body The ID number(s) of the super rigid body(ies) containing this component. 
chain_of_super_ 
rigid_bodies 

Automatically group overlapping segments of beads into super rigid 
bodies. The number here, as for rigid_body, specifies the member of 
the chain to which this domain belongs. 

Table 1: Topology file keywords and descriptions 
 

 
4.3. Constructing the modeling script 

 
The modeling script contains the entire workflow from defining the system 
representation through execution of sampling. The system representation and 
sampling degrees of freedom can be built manually [see Note 7] or, as here, read 
from a topology file. Restraints are added, and the sampling protocol defined and 
executed.  

 
4.3.1. Importing and building system representation 
First, we create an IMP Model object, which stores all components of the model. 
Second, we create a BuildSystem object and define the resolutions at 
which residues in the structured sections will be modeled. Here, we set 
resolutions of 1 and 10 residues per bead so that crosslinking restraints can be 
evaluated at residue resolution and the expensive excluded volume restraint 
(below) can be evaluated at the lower resolution. Third, the topology file is read 
using a TopologyReader object, followed by generating a useful list of 
component molecules. To this BuildSystem object, we add a state 
corresponding to the representation defined in the topology file using 
bs.add_state(). [see Note 8] 

 
 
 
 
 
 

mdl = IMP.Model() 
bs = IMP.pmi.macros.BuildSystem(mdl, resolutions=[1,10]) 
t = IMP.pmi.topology.TopologyReader(topology.txt) 
molecules = t.get_components() 
bs.add_state(t) 
	



 
We then execute the macro, which returns the root_hier root hierarchy and 
dof degrees of freedom objects, which will be used later. Within the macro, we 
set the movement parameters of individual beads and rigid bodies. Translations 
(trans) are defined in angstroms and rotations (rot) in radians.  

 
 
 
 

 

4.3.2. Adding restraints to the model 
PMI contains simple interfaces for a number of IMP restraints that model various 
types of chemical and physical data and knowledge. All of these restraints 
produce output, which we will collect in an output_objects list. Each restraint 
also needs to be explicitly added to the scoring function for sampling, using the 
add_to_model() command. We will add the restraints to the scoring function in 
a specific order, discussed below.  

 
First, we define the restraints that enforce physical and chemical principles. [see 
Note 9] The ConnectivityRestraint adds a bond between each pair of 
consecutive residues in each molecule. The ExcludedVolumeSphere restraint 
is applied to the entire system and enforced at the lowest resolution possible 
(indicated by resolution=1000), because this restraint is costly to evaluate.  

 
Second, we build a SAXSRestraint based on the comparison of SAXS data to 
the model. Since our model is calculated at residue resolution, we calculate the 
SAXS profile using residue form factors. For residue-based calculations, we 
compare curves out to a q of 0.15 [see Note 10].  

 
To set up a crosslinking restraint, we first build a PMI CrossLinkDataBase that 
uses a CrossLinkDataBaseKeywordsConverter to interpret a crosslink 
data file. At a minimum, the crosslink data file needs four columns labeled with a 
key: one for each protein name and one for each residue number of the 
crosslink. The standard keys are Protein1, Residue1, Protein2, Residue2. 
[see Note 11]. 

root_hier, dof = bs.execute_macro(max_rb_trans=1.0,  
                                max_rb_rot=0.5,  
                                max_bead_trans=2.0,  
                                max_srb_trans=1.0, 
                                max_srb_rot=0.5) 
	 	

output_objects=[] 
 
for m in molecules: 
    cr = IMP.pmi.restraints.stereochemistry.ConnectivityRestraint(m) 
    cr.add_to_model() 
    output_objects.append(cr) 
 
evr = IMP.pmi.restraints.stereochemistry.ExcludedVolumeSphere( 
     included_objects=[root_hier], 
                                  resolution=1000) 
output_objects.append(evr) 
	

xl_data = "./derived_data/xl/derived_xls.dat 
 
xldbkc = IMP.pmi.io.crosslink.CrossLinkDataBaseKeywordsConverter() 
xldbkc.set_standard_keys()  
xldb = IMP.pmi.io.crosslink.CrossLinkDataBase() 
 
xldb.create_set_from_file(file_name=xl_data, 
                            converter=xldbkc)	

sr = IMP.pmi.restraints.saxs.SAXSRestraint(input_objects=[root_hier], 
                saxs_datafile=saxs_data, 
                weight=0.01,         
                ff_type=IMP.saxs.RESIDUES, 
                maxq=0.15)                   
	



 
Using this database, we can construct the crosslinking restraint. We input the 
root hierarchy of the system and the database, and specify the length of the 
crosslinker. The restraint can be evaluated at any resolution, though is generally 
most informative at resolution = 1. The length determines the inflection point of 
the scoring function sigmoid [18] and is generally set to 10 Å + the crosslinker 
length for Lys-Lys crosslinkers.  

 
The EM restraint is determined by calculating the overlap (cross-correlation) 
between the system GMM density particles and the map GMM particles. First, we 
must collect the density particles using an IMP Selection. We then invoke the 
restraint using these particles and the gmm file generated from the EM map.  

 

 
4.3.3. Defining the sampling protocol 
Sampling begins by randomizing the coordinates of the starting particles using 
shuffle_configuration [see Note 13]. Because this randomization 
generally places beads of neighboring residues far apart, we first optimize the 
positions of these flexible beads using steepest descent minimization for 500 
steps based on only the connectivity restraint. We then add the balance of the 
scoring function terms to the model prior to the main sampling step.  

 
 
  
 
 
 
 
 

xlr = IMP.pmi.restraints.crosslinking.CrossLinkingMassSpectrometryRestraint( 
                root_hier=root_hier,    # Must pass the system root hierarchy  
                CrossLinkDataBase=xldb, # The crosslink database. 
                length=25,              # The crosslinker plus side chain length 
                resolution=1,           # The resolution to evaluate the crosslink 
                slope=0.0001,           # This adds a linear term to the score  
                                        #   to bias crosslinks towards each other 
                weight=10)        # Scaling factor for the restraint score. 
 
output_objects.append(xlr) 

densities = IMP.atom.Selection(root_hier, 
representation_type=IMP.atom.DENSITIES).get_selected_particles() 

 
em_map = "./derived_data/em/4pki_20a_50.gmm" 
 
emr = IMP.pmi.restraints.em.GaussianEMRestraint( 
        densities,         # Evaluate the restraint using these model densities 
        target_fn=em_map,  # The EM map approximated as a Gaussian mixture model (GMM) 
        slope=0.00000001,  # a small force to pull objects towards the EM map 
        scale_target_to_mass=True, # Normalizes the mass of the model wrs: EM map 
        weight=100)          # the scaling factor for the EM score 
 
output_objects.append(emr) 
 

IMP.pmi.tools.shuffle_configuration(root_hier,  
     max_translation=50) 
dof.optimize_flexible_beads(500) 
 
evr.add_to_model() 
emr.add_to_model() 
xlr.add_to_model() 
sr.add_to_model() 
 
 



We implement a Monte Carlo sampling scheme with replica exchange using the 
PMI ReplicaExchange0 macro. Within this macro, we set the directory where 
all output files will be placed, global_output_directory, and the 
number_of_frames to generate.  The final line of the script executes the 
sampling macro. 

 
4.4. Running the modeling script 
Modeling analysis requires at least two independent sampling runs be performed. 
For each run, in modeling.py the global_output_directory keyword can be 
set to run1, run2, …, runX.  
 
The modeling script can be run on a single processor using the following command: 
python ../modeling.py 
 
or in parallel using N processors using: 
mpirun -np N python ../modeling.py 
 
A parallel invocation of IMP will run replica exchange with N replicas. A serial run will 
run a basic Monte Carlo protocol with one replica. 
 
Raw output will be written to the ./runX/output folder, as specified in the replica 
exchange macro. Within this folder, stat files contain tabulated statistics for each 
frame. In the rmf directory, model coordinates for the lowest temperature replica are 
stored. These can be opened directly in Chimera and the “trajectories” observed.  

 
4.5. Analysis 
Analysis is performed using scripts located in./analysis/scripts/. The already-
generated sampling output will be analyzed here; it is contained in the folders 
./modeling/run1 and ./modeling/run2. 
 
Analysis is performed in a new directory: ./analysis/tutorial_analysis/. 

 
4.5.1. Filtering good scoring models 
The select_good_scoring_models.py script filters models based on score 
and parameter thresholds. In this script, required flags are: –rd, which specifies 
the directory containing sampling output folders; –rp, which defines the prefix for 
the sampling output folders; -sl, which defines the stat file keywords [see Note 
13] that we wish to filter on; –pl, which specifies the keywords that will be 
written to the output file; -alt and –aut, which specify, respectively, the lower 
and upper threshold for each keyword in –sl that define acceptance. The –mlt 

rex=IMP.pmi.macros.ReplicaExchange0(mdl, 
        root_hier=root_hier,           # the system root hierarchy 
        crosslink_restraints= [xlr],   # This allows viewing of crosslinks in Chimera 
        monte_carlo_sample_objects=dof.get_movers(), # all objects to be moved 
        global_output_directory='run1/' # Set the output directory for this run. 
        output_objects=output_objects,    # Write these items to the stat file 
        monte_carlo_steps=10,             # Number of MC steps between writing frames 
        number_of_best_scoring_models=0,  # set >0 to store best scoring PDB files 
        number_of_frames=10000)           # Total number of frames to generate 
 
rex.execute_macro() 
 



and –mut keywords, which are optional, define thresholds for restraints made of 
multiple components (such as crosslinks).  

 
Here, we first use crosslink satisfaction as an initial filtering criterion because we 
usually have an a priori estimate of the false positive rate and/or cutoff distance 
[see Note 14]. For this simulated system, we only accept models with 100% 
satisfaction of crosslinks by setting both –alt and –aut to 1.0. A crosslink is 
satisfied if the distance is between 0.0 and 30.0 Å, as delineated by the –mlt 
and –mut keywords, respectively. We specify that connectivity, crosslink data 
score, excluded volume, EM, SAXS and total scores be printed as well. 

 

This script creates a directory ./filter/ and a file, 
./filter/models_scores_ids.txt, that contains the model index, its run, 
replica ID, frame ID, scores, and sample ID for each model. We can now use the 
script plot_score.py to plot the distribution of SAXS, EM, connectivity and 
excluded volume scores from this first set of filtered models to determine a 
reasonable threshold for accepting or rejecting a model.  

 
 
 

The resulting histograms (SAXSRestraint_score.jpg and 
GaussianEMRestraint_None.jpg) are roughly Gaussian, Based on these 
distributions we set our criteria for good scoring models as those whose EM and 
SAXS scores are >1 standard deviation below the mean, except for connectivity, 
which is well satisfied in almost all models and EM, which has a large tail. [see 
Note 15] Our high score thresholds are 2.0 for EM, and 4.554 for SAXS, 1.0 for 
connectivity and 4.916 for excluded volume.  
 
We rerun select_good_scoring_models.py adding the extra keywords and 
score thresholds. We add the extra flag, –e, to extract Rich Molecular Format 
(RMF) files of all good scoring models. These thresholds return 1618 good 
scoring models. [see Note 16] 
	

The output directory, good_scoring_models, contains folders sample_A and 
sample_B, which hold the RMF files of the good scoring models for each 
independent run (or set of runs). The file model_ids_scores.txt contains the 
model index, its run, replica ID, frame ID, scores, and sample ID for each model.  
 

python ../scripts/select_good_scoring_models.py -rd ../../modeling -rp run -sl 
"CrossLinkingMassSpectrometryRestraint_Distance_" -pl 
ConnectivityRestraint_None CrossLinkingMassSpectrometryRestraint_Data_Score 
ExcludedVolumeSphere_None GaussianEMRestraint_None SAXSRestraint_Score 
Total_Score -alt 1.0 -aut 1.0 -mlt 0.0  -mut 30.0  
 

python ../scripts/select_good_scoring_models.py -rd ../../modeling -rp run -sl 
"CrossLinkingMassSpectrometryRestraint_Distance_" GaussianEMRestraint_None 
SAXSRestraint_Score ConnectivityRestraint_None ExcludedVolumeSphere_None -pl 
ConnectivityRestraint_None CrossLinkingMassSpectrometryRestraint_Data_Score 
ExcludedVolumeSphere_None Total_Score -alt 1.0 -50 -50.0 0.0 0.0 -aut 1.0 2.0 
4.554 1.0 4.916 -mlt 0.0 0.0 0.0 0.0 0.0 -mut 30.0 0.0 0.0 0.0 0.0 -e 

python ../scripts/plot_score.py ./filter/model_ids_scores.txt 
SAXSRestraint_Score 
 
python ../scripts/plot_score.py ./filter/model_ids_scores.txt 
GaussianEMRestraint_None 
 



4.5.2. Determining sampling precision, clustering, and computing 
localization densities 

The Master_Sampling_Exhaustiveness_Analysis.py script is used to 
calculate the sampling precision of the modeling. During this step, multiple tests 
for convergence are performed on the two samples determined in step 4.5.1, 
models are clustered, and localization densities are computed.  

 
First, we create a file, density_ranges.txt, in the tutorial_analysis/ 
directory with a single line that defines components using PMI selection tuples on 
which we calculate localization densities. [see Note 17] Here, we create three 
localization densities, one for the entire actin molecule and one each for the 
structured residues of each of the other two molecules. 

 
 

We now run the script for testing sampling exhaustiveness. 
 

T
h
e
 system name, actin, defines the labels for the output files. The –a flag aligns 
all models [see Note 18] and –g determines the step size in Å for calculating 
sampling precision. [see Note 19] This routine can be run in parallel using the –m 
cpu_omp flag [see Note 20] and –c N, where N is the number of processors. The  
–p flag  defines the path to the good scoring model directory. 

 
The results of the convergence tests are summarized in the output figure [Fig. 6] 
actin_convergence.png, which identifies our sampling precision of 3.5 Å, 
with one dominant cluster, one minor cluster and one cluster of insignificant size. 
Text files containing this information are also produced. [see Note 21] Output 
also includes localization densities for each cluster, which are contained in 
separate directories (cluster.0, cluster.1, …). Within these directories are 
a representative RMF file cluster_center_model.rmf3 and localization 
densities for each subunit defined in the density_ranges.txt file. [see Note 
22] 
 
4.5.3. Visualizing models  

 
The cluster RMF files and localization densities can be visualized using UCSF 
Chimera version >= 1.13. Example scripts for visualizing all localization densities 
are provided in ./analysis/scripts/chimera_scripts. 

 
At this point, one must decide if the models are helpful in answering our 
biological questions. In the case of this tutorial, the PPI is localized to within a 
few Å and we can make predictions as to what residues may be important for this 
interaction. If our models are not well enough resolved, more information may 
have to be added through additional experiments, addition of constraints to the 
sampling, change in system representation, and/or additional sampling. We can 
iterate this process until we are satisfied with our output models.  

 
 

density_custom_ranges={"Actin":['A'],"Gelsolin":[(1,126,'G')],"Tropomysin":[(145,324,'G')]} 
  
 

python ../scripts/Master_Sampling_Exhaustiveness_Analysis.py -n actin –p 
good_scoring_models/ -d density_ranges.txt -m cpu_omp -c 8 -a -g 0.1  
 



4.5.4. Additional model validation 
 

Additional validation of the final model ensemble can be performed by rerunning 
the above protocol while omitting one or more of the input data points. Ideally, 
models generated with only a subset of the data will not differ significantly from 
the original models. Further, any information not used in the modeling process 
can be used as a validation of the final model ensemble (section 2.4). 
 

 

Figure 6. Results for sampling 
exhaustiveness protocol for modeling 
in complex of actin and tropomodulin-
gelsolin chimera. A. Results of test 1, 
convergence of the model score, for the 
1618 good-scoring models; the scores do 
not continue to improve as more models 
are computed essentially independently. 
The error bar represents the standard 
deviations of the best scores, estimated 
by repeating sampling of models 10 
times. The red dotted line indicates a 
lower bound reference on the total score. 
B. Results of test 2, testing similarity of 
model score distributions between 
samples 1 (red) and 2 (blue); the 
difference in distribution of scores is 
significant (Kolmogorov-Smirnov two-
sample test p-value less than 0.05) but 
the magnitude of the difference is small 
(the Kolmogorov-Smirnov two-sample 
test statistic D is 0.02); thus, the two 
score distributions are effectively equal. 
C. Results of test 3, three criteria for 
determining the sampling precision (Y-
axis), evaluated as a function of the 
RMSD clustering threshold (X-axis). First, 
the p-value is computed using the χ2-test 
for homogeneity of proportions (red dots). 
Second, an effect size for the χ2-test is 
quantified by the Cramer’s V value (blue 
squares). Third, the population of models 
in sufficiently large clusters (containing at 
least 10 models from each sample) is 
shown as green triangles. The vertical 
dotted grey line indicates the RMSD 
clustering threshold at which three 
conditions are satisfied (p-value > 0.05 
[dotted red line], Cramer’s V < 0.10 
[dotted blue line], and the population of 
clustered models > 0.80 [dotted green 
line]), thus defining the sampling 
precision of 3.5 Å. D. Populations of 
sample 1 and 2 models in the clusters 
obtained by threshold-based clustering 
using the RMSD threshold of 3.5 Å. 
Cluster precision is shown for each 
cluster. E. and F. Results of test 4: 
comparison of localization probability 
densities of models from sample A and 
sample B for the major cluster (84% 
population). The cross-correlation of the 
density maps of the two samples is 0.99 
for the gelsolin (red) and tropomysin 
(blue) maps and 0.97 for the actin map 
(green).  
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4.6. Storing and reporting results in the wwPDB 

 
For our modeling to be reproducible - a key requirement for the 4-stage modeling 
procedure [Fig. 1] and for science in general - the modeling protocol, all of the input 
data we used, and the final output models, should be deposited in a public location, 
ideally the nascent PDB-Dev repository (https://pdb-dev.wwpdb.org/). 
 

4.6.1. Modeling protocol 
The modeling protocol includes the entire procedure of converting raw input data 
to output models, and so comprises both the set of IMP Python scripts described 
above and any procedures used to prepare IMP inputs, such as comparative 
modeling of subunits, segmentation of an EM density, and processing of XL-MS 
data to get a set of proximate residues. An excellent way to store and  
disseminate such a protocol is by using a source control system with a publicly 
accessible web frontend, such as GitHub (as is used for this tutorial). Integrative 
modeling is an inherently collaborative process. Source control makes it 
straightforward to track changes to all of the protocol scripts and data by local 
and remote collaborators. All protocol files should be deposited in a permanent 
location with a fixed Digital Object Identifier (DOI). A number of free services are 
available for deposition of such files, such as Zenodo (https://zenodo.org) and 
FigShare (https://figshare.com), where a snapshot of a GitHub repository for the 
published work can be deposited. For an example, see ref. [38]  
 
4.6.2. Input data  
Each piece of input data used should also be publicly available. Where possible, 
this data should be deposited in a repository specific to the given experimental 
technique and referenced from the model mmCIF file. For example, all of the 
crystal structures used in this example are simply referenced by their PDB IDs. 
Where such a repository does not exist, the data files should be made available 
at a DOI. The simplest way to archive these files is to store them in the same 
GitHub repository used for the modeling protocol. If derived data are used, the 
modeling protocol should indicate where the original raw data came from. 
 
4.6.3. Output models 
A decision needs to be made about which models to deposit. Generally, a 
representative sample of each cluster should be deposited, together with the 
localization densities of the entire cluster. 

 
The mmCIF file format allows for multiple models, potentially at multiple scales, 
in multiple states, and/or different time points, to be stored in a single file together 
with pointers to the input data and modeling protocol. Implementation of this 
format in IMP is still under development. The functionality will extract information 
from the RMF files output by the IMP modeling and combine it with metadata 
extracted from each experimental input. This file can be visualized in UCSF 
ChimeraX, [39] and similar files from real modeling runs can be deposited in 
PDB-Dev and cited in publications. 
 
 
 
 



6. Notes 
1. Other sampling methods include Rapidly Exploring Random Trees (RRT) for 

searching dihedral space, [40] divide-and-conquer message passing methods 
[41] for large discrete spaces, conjugate gradients and molecular dynamics. 
 

2. In this case, the user may reformulate the representation by adding a state to the 
system. (Note 8) 
 

3. In general, an ensemble of models can be visualized as a localization probability 
density map (localization density). The map specifies the probability of any 
volume element being occupied by a given bead in superposed good scoring 
models.   
 

4. Simulated EM maps can be created map can be created in IMP using the 
following command: simulate_density_from_pdb <file.pdb> 
<output.mrc> <resolution> <a/pixel> 
 

5. Spherical beads are applied to every 10 residues with smaller beads applied to 
loops of smaller length.  

 
6. These residues are also assigned to rigid_body 1 to improve sampling. All beads 

within rigid bodies are, by default, allowed to be flexible.   
 

7. The file ./modeling/modeling_manual.py contains this exact system built 
manually using PMI commands instead of a topology file. PMI commands allow 
significantly more flexibility in model design.    
 

8. To add a second state with the same topology, this line can be repeated, or to 
use a different topology, bs.add_state(t2)can be invoked with a different 
topology file. 

 
9. For coarse-grained models, a molecular mechanics force field is not applicable. 

The CHARMM force field can be applied to enforce stereochemistry on atomic 
models, however. See the examples in the IMP.atom module to learn how to 
implement this restraint. 

 
10. Model SAXS profiles can be computed using residues, CA atoms, heavy atoms 

or all atoms, depending on the resolution of the model. The recommended maxq 
values are dependent on this choice. At residue resolution, the fit is only valid up 
until q ~ 0.15; for heavy atoms q = 0.4; and for all atoms, the fit is valid out to q = 
1.0 (the maximum value).   

 
11. See derived_xls.dat and the modeling.py script for a more in-depth 

explanation of crosslink keys. 
 

12. The shuffle algorithm fails if it cannot find a configuration without any overlap 
between components. If this happens, try increasing the max_translation 
parameter. Don’t set this too high as you’ll spend way too much time getting your 
system to move back together. 

 



13. A list of acceptable keywords can be determined by running 
../scripts/plot_stat.py ./path/to/stat/file –pk. 

 
14. For scores whose thresholds are not known a priori, one can perform a multi-

stage filtering process as outlined in the above protocol. 
 

15. Currently, the choice of filtering criteria is very subjective. Ideally, a fully Bayesian 
framework will allow for objective weighting of different restraints and allow for 
filtering at single likelihood. Until then, the choice of a score or parameter that 
represents a “good scoring model” should be carefully thought out by the 
modeler and reported in the text.  

 
16. In general, we require at least 1000 or more models for assessing sampling 

exhaustiveness. Our score thresholds were chosen in order to have a reasonable 
number (1000 - 20000) models for analysis. If we have too few models, the 
satisfaction criteria should be relaxed, or more sampling should be performed to 
find more satisfactory models. Too many models (>20,000) will make subsequent 
processing more computationally intensive; in this case satisfaction criteria can 
be made stricter, or one can pass a random subset of these models to the 
sampling convergence protocol.  

 
17. An explanation of the PMI selection format can be found at 

https://github.com/salilab/pmi/wiki/PMI-Tuple-Selection-Format 
 

18. One can choose whether to align models (-a option) or not. Alignment of 
models is sometimes not necessary, e.g. when one has a medium resolution or 
better EM map.   

 
19. For calculating sampling precision, the grid size is the step size at which 

clustering is performed between the minimum and maximum RMSDs in the 
dataset. This tutorial uses 0.1 Å to get a very precise estimate of the sampling 
precision; however this results in a very long calculation. In practice, especially 
for larger systems whose sampling precision will be much lower, one would 
choose a larger value to make calculation more efficient. 
 

20. If alignment is necessary, the GPU mode of pyRMSD generally increases 
performance significantly. It is invoked by using –m cuda. 

 
21. The output of the protocol can be readily plotted using any plotting software. 

Example scripts in ./analysis/scripts/gnuplot_scripts can be used to 
obtain the plots in Figure 6.  

 
22. Sometimes, there are too many clusters to visualize at the determined sampling 

precision. In this case, we can rerun clustering using a threshold worse than the 
sampling precision to get fewer clusters to visualize. In that case, the skip option 
(-s) along with the value of clustering threshold (-ct) allows one to bypass 
RMSD and sampling precision calculation and get the clusters and their 
densities, as follows: python 
../scripts/Master_Sampling_Exhaustiveness_Analysis.py -n 



actin -d density_custom.txt -ct 4.39 -a -s. Note that this 
clustering threshold should always be worse than the sampling precision. 

 
23. Built-in Chimera color names can be found at: 

https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/colortables.html 
 

24. These keywords are specifically for completely disordered domains or short 
helical components.  For IDEAL_HELIX, a single helix will be created for that 
component.  
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