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ABSTRACT

The nuclear pore complex (NPC), embedded in the nuclear envelope, is a large, dynamic molecular assembly that facilitates
exchange of macromolecules between the nucleus and the cytoplasm. The yeast NPC is an eightfold symmetric annular
structure composed of ~456 polypeptide chains contributed by ~30 distinct proteins termed nucleoporins. Nup116, identi-
fied only in fungi, plays a central role in both protein import and mRNA export through the NPC. Nupl16 is a modular
protein with N-terminal “FG” repeats containing a Gle2p-binding sequence motif and a NPC targeting domain at its C-ter-
minus. We report the crystal structure of the NPC targeting domain of Candida glabrata Nupl16, consisting of residues
882-1034 [CgNupl116(882-1034)], at 1.94 A resolution. The X-ray structure of CgNup116(882-1034) is consistent with the
molecular envelope determined in solution by small-angle X-ray scattering. Structural similarities of CgNup116(882-1034)
with homologous domains from Saccharomyces cerevisiae Nup116, S. cerevisiae Nup145N, and human Nup98 are discussed.
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Structure of C. glabrata Nup1 168 NPC Targeting Domain

INTRODUCTION

Transport of macromolecules between nucleus and
cytoplasm is an essential eukaryotic process facilitated by
the nuclear pore complex (NPC). In addition to its role
in normal physiology, NPC loss of function has been
implicated in cancer and autoimmune disease.1>2 In yeast
(e.g., Saccharomyces), NPCs are large, eightfold symmet-
ric dynamic macromolecular assemblies composed of at
least 456 polypeptide chains derived from multiple copies
of ~30 distinct nucleoporins (Nups).>* Several of these
components share similar structural motifs and form sta-
ble subcomplexes that contribute to the overall organiza-
tion of the assembly, which includes two outer rings (the
nuclear and cytoplasmic rings), two inner rings, and a
membrane-associated ring.>>®

Nup116,7 a Nup identified only in fungi, is involved
in both protein import and mRNA export.8 Nupl16
shows an asymmetric radial distribution within the
NPC, with a bias toward the cytoplasmic face.? Nupl116
is homologous to yeast Nupl00; it is also homologous
to yeast Nupl45N and human Nup98, both of which
are derived from a larger precursor by autoproteoly-
sis. 10,11 Nupl16 is a modular protein with N-terminal
“FG” repeats and a C-terminal domain, supporting
NPC localization.12 The “FG” repeats are thought to
transiently interact with nuclear transport factors to
ensure the transport of specific proteins and ribonucleo-
protein complexes.!3 A distinguishing feature of
Nupl16, when compared to both Nupl00 and
Nup145N, is the presence of an N-terminal Gle2p-bind-
ing!4 sequence (GLEBS, ~60 amino acid residue motif),
responsible for targeting the RNA export factor Rael/
Gle2p to the NPC. A GLEBS motif is also present in
human Nup98.15 The crystal structure of a human
Rael:Nup98-GLEBS domain complex revealed that
GLEBS contains a hairpin motif required for the inter-
action with Rael.10

Although the N-terminal domain of Nupl16 mediates
interactions with nuclear transport factors, its C-terminal
domain (referred to as NPC targeting domain) localizes
Nupl16 to the NPC and plays an essential role in NPC
assembly. The NPC targeting domain of Nup116 interacts
directly with the Nup82-Nspl-Nupl59 complex.12
Herein, we report the 1.94 A resolution crystal structure
of the NPC targeting domain of C. glabrata Nupl16 (res-
idues, 882-1034; CgNup116[882-1034]) and the results
of complementary solution studies using small-angle
X-ray scattering (SAXS). We also present detailed struc-
tural comparisons with the previously reported structures
of Saccharomyces cerevisiae Nup116 (ScNupl16; residues,
967-1113; apo form determined by NMR spectroscopyl’
and the heterotrimer with Nup82:Nup159 complex deter-
mined by X-ray crystallography!8),  Nup145N
(ScNup145N; residues, 443-605 X-rayl?), and human
Nup98 (HsNup198; residues, 716-870; X—raylo’ll).

MATERIALS AND MIETHODS

Cloning, expression, and purification of
CgNup116(882-1034)

The gene encoding Nupll6 from C. glabrata was
cloned from genomic DNA of strain 2001D-5_CBS 138
(American Type Culture Collection, USA). The desired
truncation (encoding residues, 882-1034) was PCR
amplified using GATGGCATTGATGATCTAGAATTTG
and CTAATGCATGATCAACAGTGAAGCAG as forward
and reverse primers, respectively. The purified PCR prod-
uct was TOPO®™ (Invitrogen, USA) cloned into pSGX3, a
derivative of pET26b(+), yielding a protein with a non-
cleavable C-terminal hexahistidine tag. The resulting
plasmid was transformed into BL21(DE3)-Condon+RIL
(Invitrogen, USA) cells for expression. Production of Se-
Met protein20 was carried out in 1 L of HY media at
22°C containing 50 pg/mL of kanamycin and 35 pg/mL
of chloramphenicol. Protein expression was induced by
addition of 0.4 mM IPTG. Cells were harvested after
21 h by centrifugation at 4°C.

For purification, the Escherichia coli cell pellet was
resuspended in 30 mL of cold buffer containing 20 mM
Tris—HCI, pH 8.0, 500 mM NaCl, 25 mM imidazole, and
0.1% (v/v) Tween-20 and the cells were lysed by sonica-
tion. Cell debris was removed by centrifugation at 4°C.
The supernatant was applied to a 5-mL HisTrapHP col-
umn (GE Healthcare, USA) charged with nickel and pre-
equilibrated with 20 mM Tris—=HCI, pH 8.0, 500 mM
NaCl, 10% (v/v) glycerol, and 25 mM imidazole. The
sample was washed with five column volumes (CVs) of
20 mM Tris—HCl, pH 8.0, 500 mM NaCl, 10% (v/v)
glycerol, and 40 mM imidazole, and subsequently eluted
with 2 CV of same buffer with an imidazole concentra-
tion of 250 mM. Eluted protein was further purified
over a 120 mL Superdex 200 size exclusion column
equilibrated with 10 mM HEPES, pH 7.5, 150 mM
NaCl, 10% (v/v) glycerol, and 5 mM dithiothreitol (pro-
tein storage buffer). SDS-PAGE analysis demonstrated
>95% purity. Protein fractions corresponding to the
central portion of the size exclusion chromatography
profile were pooled, concentrated by AMICON spin fil-
tration, and aliquots were frozen in liquid nitrogen and
stored at —80°C.

Crystallization, data collection,
and structure determination

Initial crystals of CgNupl116(882-1034) were obtained
in several PEG-containing conditions via sitting drop
vapor diffusion at 21°C (~10.4 mg/mL; 0.3 puL protein +
0.3 pL reservoir solution). Subsequent optimization was
carried out with an additive screen (Hampton Research,
USA) and macroseeding. Diffraction quality crystals were
obtained with 100 mM MES, pH 6.2, 25% (w/v) PEG
MME 2K, and 200 mM sodium potassium tartrate. The
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Table |
Crystallographic Statistics

Data collection CgNup116(883-1034)

PDB code 3NF5

Space group R P2,

Unit-cell dimensions (A) a=487, b= 611,
. ¢ =551, B = 1014°

Matthew's coefficient (A3/Da) 2.38

Solvent content (%) 43

Resolution (A) 34.37-1.94 (2.04-1.94)7

Number of unique reflections 25,957 (3756)
Completeness (%) 99.1 (98.8)
Rsymm (%) 14.0 (47.1)
Multiplicity 7.0 (6.9)
<lolh> 8.3 (3.6)
Refinement

R-factor (%) 20.7
Rfree (%) 25.6
r.m.s.d.s from !'deal values

Bond length (A) 0.020
Bond angles (°) 1.782
Ramachandran Plot

MolProbity43 residues in

Favored region (%) 97.0
Allowed region (%) 100.0

*Values in parenthesis correspond to the highest resolution shell.

final sitting drops contained 1.0 pL of CgNupl16(882—
1034) at 10.85 mg/mL, 0.6 pL of reservoir solution, and
0.4 pL of 5% (v/v) ethyl acetate from the additive screen.
Crystals were cryoprotected by addition of glycerol (final
concentration, ~30% (v/v)) and flash cooled by immer-
sion in liquid nitrogen. Diffraction data were recorded at
the LRL-CAT 31-ID beamline (Advanced Photon Source
[APS]) and processed with MOSFLM21 and SCALA
(CCP4).22 Structure was determined by molecular
replacement using PHASER?3 with a polyalanine model
of ScNup145N (PDB Code 3KEP).19 Initial model build-
ing was carried out with ARP/wARP,24 followed by man-
ual rebuilding with COOT.2> The atomic model of
CgNup116(882-1034) was refined to convergence using
REFMAC526 and exhibited excellent stereochemistry
(Table I). Tlustrations were prepared with PyMol.27

Small-angle X-ray scattering

SAXS measurements of CgNupll6(882-1034) were
carried out at Beamline 4-2 of the Stanford Synchrotron
Radiation Lightsource. The beam energy and current
were 11 keV and 200 mA, respectively. A silver behenate
sample was used to calibrate the g-range and detector
distance. Data collection was controlled with Blu-Ice.28
We used an automatic sample delivery system equipped
with a 1.5 mm-diameter thin-wall quartz capillary within
which a sample aliquot was oscillated in the X-ray beam
to minimize radiation damage. The sample was placed at
1.7 m from a Rayonix MX225-HE (MAR-USA, USA)
CCD detector with a binned pixel size of 293 pm X 293
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pm. Ten 3-s exposures were made for each of the four
protein samples maintained at 15°C. Each of the 10 dif-
fraction images was scaled by the transmitted beam in-
tensity, using SASTool (http://ssrl.slac.stanford.edu/~saxs/
analysis/sastool.htm, formerly MarParse), and averaged to
obtain fully processed data in the form of intensity versus
q (q = 4msin(0)/A, where 6 is one-half of the scattering
angle and A is the X-ray wavelength). The buffer SAXS
profile was obtained in the same manner and subtracted
from a protein profile. SAXS profiles of CgNup116(882—
1034) were recorded at protein concentrations of 0.5, 1.0,
2.0, and 5.0 mg/mL in the protein storage buffer. Mild
concentration dependence of the profiles was eliminated
by extrapolating to zero concentration. The average of
the lower scattering angle parts (g < 0.15 A™') of the
lower concentration profiles (0.5-1.0 mg/mL) and the av-
erage of the higher scattering angle parts (g > 0.12 A™")
of the higher concentration (1.5-5.0 mg/mL) profiles
were merged to obtain the final experimental SAXS pro-
file. The merged experimental SAXS profile was com-
pared with SAXS profiles calculated for the monomer
(Chain A) and for the crystallographic asymmetric unit
(Chains A and B) of CgNupl16(882-1034) with IMP
FoXS (http://salilab.org/foxs).29’30 A complete monomer
model of CgNupl116(882-1034), which included a C-ter-
minal hexahistidine tag (Gly-His-His-His-His-His-His),
eight side chains not modeled in the crystal structure,
and two Se-Met residues, was generated using the crystal
structure with the automodel function of MODELLER3!
and customized scripts in IMP.32 Inclusion of the miss-
ing atoms further improved the fit of the calculated and
experimental profiles (y-value improved from 1.33 to
1.11). The shape of CgNup116(882—1034) was calculated
from the merged experimental SAXS profile by running
DAMMIF33 and GASBOR3% 20 times individually, fol-
lowed by superposition and averaging with DAMAVER.3>
The shape of CgNupl16(882-1034) was also computed
from the merged experimental SAXS profile by SASTBX
(http://sastbx.als.Ibl.gov/wiki/) and compared with DAM-
MIF/GASBOR shapes.

RESULTS AND DISCUSSION
Structure of CgNup116(882-1034)

The crystal structure of CgNupll16(882-1034) was
determined at a resolution of 1.94 A (Fig. 1(A) and Table
I). The monoclinic crystals (space group P2;) contain
two molecules per asymmetric unit. Chain A could be
traced continuously from Asp882 to Leul034, whereas in
chain B residues 960-963 appear disordered. Otherwise,
the A and B chains are essentially identical, with a root-
mean-square deviation (r.m.s.d.) of ~0.49 A for 152 Ca
atomic pairs, calculated using the SSM36 routine as
implemented in COOT. The N-terminal segment (resi-
dues, 882-893) of CgNupl16(882-1034) is well defined
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Figure 1

(A) Stereoview of the CgNup116(882—1034) monomer. Cartoon of Chain A is shown as a rainbow from blue to red from N- to C-terminus. (B)
Comparison of the merged experimental SAXS profile (red) of CgNup116(882-1034) with the SAXS profile computed by IMP FoXS (blue) from
the complete monomer model of CgNup11°6(882—1034). Inset shows the SAXS profiles in the Guinier plot, with a R, fit of 18.38 4 0.24 A. Doy of
radial distribution function, P(r), is 60.65 A. (C and D) Comparison of the shapes of CgNup116(882-1034) (represented as a mesh) calculated

from the experimental SAXS profile by GASBOR (C) and SASTBX (D).

in the electron density maps and adopts noncanonical
secondary structure (i.e., random coil). The overall fold
of CgNup116(882-1034) contains two central antiparallel
B-sheets flanked by a-helices [Fig. 1(A)]. A six-stranded
B-sheet is formed by B1-B2-B3-B6-B8-B7 and a two-
stranded B-sheet is formed by P4-B5. Helices al, a2,
and o3 (a3 is a short 3;¢ helix within loop L1) form a
cap near the N-terminus and helix a4 caps the six-
stranded B-sheet near the C-terminus. CgNupl16(882—
1034) possesses three long loops including, L1 (residues
930-939 between B3 and P4), L2 (residues 958-974
between B5 and B6), and L3 (residues 980-999 between
B6 and «4).

The interface area and the gap volume index3’
between the A and B chains of CgNupl16(882-1034),
calculated using the NOXclass classifier (http://noxclass.
bioinf.mpi-sb.mpg.de/index.php),38 are ~630 A” and 7.5,
respectively. The two copies of CgNupll6(882-1034)
observed in the crystal asymmetric unit are thus unlikely
to represent a physiological dimer, and indeed the merged
experimental SAXS profile [Fig. 1(B)] is well matched (y
= 1.11) to the SAXS profile calculated from the complete
monomer model of CgNup116(882-1034). The SAXS pro-
file calculated from the complete dimer model resulted in

an unacceptably high y-value of 7.67. The measured radius
of gyration (R;) of 18.38 4 0.24 A, determined with
AutoRg,-?’9 is almost identical to the value of 18.1 A calcu-
lated from the complete monomer model of
CgNup116(882-1034) (the calculated value of R, for the A
and B chain complex, representing the crystallographic
asymmetric unit, is 20.7 10&). Moreover, the “ab initio” shape
computed from the merged experimental SAXS profile with
DAMMIF33 (data not shown), GASBOR [Fig. 1(C)],34
and SASTBX [Fig. 1(D)] shows very considerable similarity
to our X-ray structure of the CgNup116(882-1034) mono-
mer. Finally, based on the merged experimental SAXS pro-
file, OLIGOMER#40 estimates 100% monomer composition.
Thus, our SAXS analyses of the solution behavior of
CgNupl16(882-1034) and the X-ray crystallographic struc-
ture of the monomer are fully consistent with each other.

Comparison of CgNup116(882-1034) with
the structures of ScNup116

A pairwise local alignment of CgNupll16(882-1034)
and ScNupll6, computed using LALIGN (http://
www.ch.embnet.org/software/LALIGN_form.html), shows
sequence identity of 60.1%, whereas sequence identities
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Figure 2

(A) Structure-based sequence alignment of the structures of CgNup116(882-1034, PDB Code 3NF5), ScNup116 bound to ScNup82:ScNup159

complex (PDB Code 3PBP), autoproteolytic domain of ScNup145 (PDB Code 3KEP), and autoproteolytic domain of HsNup98 (PDB Code 2Q5X).

Secondary structural elements of CgNup116(882-1034) and ScNup116 bound to ScNup82:ScNup159 complex are displayed in green and black,
respectively. Residues of ScNup116 contributing to its binary interaction with ScNup82 B-propeller domain'® are marked with blue star. Sites of
autoproteolysis of ScNup145N and HsNup98 are indicated with an orange circle. The Ser residue at the autoproteolytic site of ScNup145N and
HsNup98 is replaced by Glu and Ala in proteins used for structure determination, respectively. (B) Stereoview of CgNup116(882-1034, green)
superposed on the structure of ScNup116 bound to ScNup82:ScNup159 complex (gray). Helix a4 of CgNupl16 is structurally equivalent to the
helix aB of ScNup116.18 (C) Stereoview of the CgNup116(882-1034, green) superposed on the autoproteolytic domain of ScNup145 (gray). (D)
Stereoview of the CgNup116(882-1034, green) superposed on the autoproteolytic domain of HsNup98 (gray). Residues preceding the B1-strands
are highlighted in magenta and orange for CgNup116(882-1034) and HsNup98, respectively. The N- and C-terminal residues are shown on the

cartoons as blue and red spheres, respectively.

of CgNup116(882-1034) drop to 34.5 and 30.6% for the
autoproteolytic domains of ScNupl45N and HsNup98,
respectively. A multiple structural alignment was
obtained with the Multiprot4! (http://bioinfo3d.cs.tau.
ac.il/MultiProt/) and STACCATO programs to enable the
identification of structurally conserved residues across
CgNup116(882-1034), ScNupl16 bound to the Nup82-
Nup159 complex,18 ScNup145N,19 and HsNup98.1! The
alignment demonstrates conservation of the overall fold,
despite varying pairwise sequence identities, with an av-
erage rm.s.d. of 1.28 A over 102 alignment positions
with C, atoms from all four structures. The alignment
also reveals positions with a conserved residue type as
well as gaps in loop regions [Fig. 2(A)]. The alignment
of CgNupl16(882-1034) with ScNupll6 bound to the
Nup82-Nup159 complex suggests that ScNupl116 under-
goes only a minimal conformational change upon bind-
ing to the N-terminal seven-bladed B-propeller domain
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of Nup82, with only a4-helix (structurally equivalent to
helix aB in ScNup116)!8 and loop L3 showing signifi-
cant structural differences [Fig. 2(B)]. ScNup116 contrib-
utes (i) a hydrophobic groove on its surface between the
B5-strand and the aB-helix, which forms a binding
pocket for the “FGL” motif from the 3D4A loop of
ScNup82, and (ii) loop L3, referred to as the “K-loop,”
situated between the B6-strand and the aB-helix (in par-
ticular, the conserved Lys1063 of ScNupll6 interacts
with Asp204 of ScNup82).16 In total, 7 out of 10
ScNupl116 residues involved in their interaction with
ScNup82 are identical in CgNupl16 (Fig. 2(A) and Sup-
porting Information Fig. S1). ScNupllé residues
Lys1029, Cys1031, and Ile1033 (all from B5-strand) are
replaced by Met953, Val955, and Leu957, respectively, at
structurally equivalent positions in CgNup116, suggesting
possible species specific differences in Nupll16:Nup82
interactions.



Structure of C. glabrata Nup1 168 NPC Targeting Domain

A structural comparison (data not shown) of
CgNup116(882-1034) with the solution NMR structure of
ScNup116 (PDB Code 2AIV)17 also revealed a similar
overall structure. The N-terminal oa-helices and the
B-strands of both central (3-sheets are arranged similarly,
with the largest difference between the two structures
occurring in the L2 loop connecting the B5 and B6
strands. Residues comprising the B5-strand and the N-ter-
minus of the L2 loop have been implicated in the binding
of ScNup145C-peptide to ScNup116.17 In addition, loop
L3 and the polypeptide chain segment following a4-helix
exhibit significant conformational differences, which is
consistent with the conformational flexibility revealed by
the solution NMR structures in this region.1”

Comparison of CgNup116(882-1034) with
veast Nup145 and human Nup98

Both the ScNup145N and the human Nup98 are gener-
ated from larger precursors via post-translational autopro-
teolysis at a conserved Phe-Ser peptide bond10:11
[Fig. 2(A)]. Nup116, Nup100, and Nup145N are paralogs,
and they share an orthologous relationship with human
Nup98. CgNup116(882-1034) and ScNup145N’s autopro-
teolytic domain share moderate sequence identity
(34.5%). However, overall structures of CgNupl16(882—
1034) and ScNupl145N (PDB Code 3KEP)19 are virtually
identical [Fig. 2(C)]. The only notable conformational dif-
ference between these two structures is in loop L1, which
includes the 3, helix a3. This difference could result from
an insertion within loop L1 in ScNup145N [Fig. 2(A)].

CgNupl116(882-1034) is also similar to human Nup98
(PDB Code 2Q5X)11 [Fig. 2(A,D)]. The main structural
differences are the consequence of deletions in loops L1
and L2 as well as an insertion in loop L3. In addition,
the structures of CgNupl16(882-1034) and human
Nup98 differ in the random-coil segment that precedes
strand B1 [Fig. 2(D)]. In the human Nup98 autoproteo-
lytic domain, these residues (712-723) fold toward the
core. In contrast, the equivalent residues (882-893) of
CgNup116(882-1034) project away from the core [Fig.
2(D)]. Moreover, the conformational plasticity of resi-
dues 882-893 in CgNupl16(882-1034) is revealed by the
absence of any features corresponding to these residues
in the solution shapes computed from the SAXS profiles
[Fig. 1(C,D)] of CgNup116(882-1034). These results sug-
gest that the residues preceding the B1 strand may adopt
different conformations in the NPC targeting domain of
CgNupl16 and the autoproteolytic domain of human
Nup98.

Protein Data Bank Codes

Atomic co-ordinates and structure factors of
CgNup116(882-1034) were deposited to the PDB on 09
June 2010 with accession codes 3NF5. The NYSGXRC

target identifier for CgNupll6 in TargetDB (http://
targetdb.pdb.org) is “NYSGXRC-15100c.” Expression
clone sequences and selected interim experimental results
are available in PepcDB (http://pepcdb.pdb.org/).
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