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Advances in comparative protein-structure modelling
Roberto Sánchez and Andrej Šali∗

Comparative modelling of protein 3D structure can now be
applied with reasonable accuracy to ten times more protein
sequences than the number of experimentally determined
protein structures. A protein sequence that has at least 40%
identity to a known structure can be modelled automatically
with an accuracy approaching that of a low resolution X-ray
structure or a medium resolution NMR structure. Currently,
the errors in comparative models include mistakes in the
packing of sidechains, in the conformation and shifts of
the core segments and loops, and, most importantly, in an
incorrect alignment of the modelled sequence with related
known structures. Nevertheless, the number of applications
in which comparative modelling has been proven to be useful
has grown rapidly.
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Introduction
Comparative or homology protein modelling uses exper-
imentally determined protein structures (templates) to
predict the conformation of another protein that has a
similar amino acid sequence (the target) [1–3,4•]. This
approach to modelling is possible because a small change
in the protein sequence usually results in a small change
in its 3D structure [5,6]. Comparative modelling remains
the only modelling method that can provide models with
a root mean square (rms) error lower than 2 Å.

All current comparative-modelling methods consist of four
sequential steps [3]. The first step is to identify the
proteins with known 3D structures that are related to the
target sequence. The second step is to align them with
the target sequence and to pick the known structures
that will be used as templates. The third step is to build
the model for the target sequence given its alignment
with the template structures. In the fourth step, the
model is evaluated using a variety of criteria. If necessary,
the alignment and model building are repeated until a
satisfactory model is obtained.

The main difference between the different comparative-
modelling methods is in how the 3D model is calculated
from a given alignment (step 3 above). The original and
still the most widely used method is modelling using
rigid-body assembly [7–9]. This method constructs the
model from a few core regions and from loops and
sidechains, which are obtained from dissecting related
structures. The assembly involves fitting the rigid bodies
on the framework, which is defined as the average of the
Cα atoms in the conserved regions of the fold. Another
family of methods, modelling by segment matching, relies
on the approximate positions of conserved atoms from
the templates to calculate the coordinates of other atoms
[10–13]. This is achieved using a database of short
segments of protein structure, energy or geometry rules,
or some combination of these criteria. The third group
of methods, modelling by satisfaction of spatial restraints,
uses either distance geometry [14,15] or optimization
techniques [16] to satisfy spatial restraints obtained from
the alignment of the target sequence with homologous
templates of known structure. In addition to the methods
for modelling the whole fold, numerous other techniques
for predicting loops [17] and sidechains [18•] on a given
backbone have also been described. These methods can
often be used in combination with each other and with
comparative-modelling techniques.

In this review, we discuss papers on the modelling
of loops, sidechains and whole protein structures that
have been published in the past year. In addition, we
evaluate the accuracy of comparative models and discuss
the role of comparative modelling in making full use
of protein sequences in genome databases. We conclude
with comments on the future challenges for comparative
modellers.

Modelling of loops
Loops can be calculated by searching a protein-structure
database for segments that fit on fixed-backbone endpoints
[10], by using a conformational search with an optional
energy minimization [19–21], or by a combination of these
two methods [22,23]. Many different implementations of
the three approaches have been proposed (see review [3]
and [24•,25,26••]).

Zheng and Kyle [26••] describe a new version of
their loop-modelling method [27]. The random starting
conformation for optimization has all its bonds scaled
so that the loop fits onto the anchor regions. The loop
is then relaxed to its standard geometry in the protein
environment by energy minimization using the CHARMm
forcefield [28]. The method is combined with multiple
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copy sampling to increase its efficiency up to a factor of
five. The sampling is biased to more populated regions
of the (ψ,φ) map. Zheng and Kyle [26••] have calculated
conformations of eight seven-residue loops embedded in
the correct environment of the crystallographic protein
structures. The main improvement in their method is that
loop conformations are sampled more extensively. This
decreases the average rms error for the backbone atoms
from 1.1 Å to 0.7 Å. The accuracy of the loop models
obtained in this study can probably not be expected in real
modelling situations, even when the alignment is correct.
The reason for this is that the correct environment of the
loop, which can act as a mould, is not known in typical
comparative-modelling problems.

Donate et al. [29••] describe an analysis of loops that
is likely to be helpful in future prediction efforts.
2 024 loops of one to eight residues in length have
been identified. These loops, grouped according to their
length and type of their bounding secondary-structure
segments, have been superimposed and clustered into 161
conformational classes, covering 63% of all loops. The
relative disposition of the bounding secondary-structure
elements varies among the classes. For each class, amino
acid type preferences of some positions have been
identified and expressed in terms of key residues. Most
of these residues have been involved in stabilizing loop
conformation, often via a positive φ conformation or a
secondary-structure capping. The database can be used in
loop modelling by comparing the sequence of the loop to
be modelled and the spatial disposition of its anchoring
secondary-structure segments with the potential template
loops in the database.

Kwasigroch et al. [30•] describe a similar study of loops
that is also likely to be useful in loop modelling. A
database containing loops of three to eight residues long
has been built. Loops have been divided into two parts:
the side residues that directly bond to the flanking
secondary-structure segments; and the inner section. The
conformations of the side residues have been found to
be correlated to those of the flanking secondary-structure
segments, whereas the inner residues adopt conformations
uncorrelated from one residue to the next. Loops of the
same length are clustered into families of loops having
similar conformations. For each cluster, residue positions
are determined that have a nonrandom residue type and/or
conformation. Despite the conserved conformation of the
inner part of the loops within each cluster, the loop termini
can show a high degree of structural variability.

Modelling of sidechains
As for loops, sidechain conformation has been predicted
from similar structures, from proteins in general, and
from steric or energy considerations. Many different
implementations of these approaches have been proposed
(see reviews [3,18•] and [31–37,38••–42••,43]).

Dunbrack et al. [38••] recalculate and extensively evaluate
their mainchain dependent sidechain rotamer library.
Their library gives the probabilities for sidechain rotamers
that depend on the mainchain (ψ, φ) values as well as
the residue type; it is available on Internet [44]. The
multivariate rotamer library is justified by the significant
correlations between the sidechain dihedral angles and the
backbone (ψ,φ) values. The initial sidechain conformations
for optimization on a fixed backbone have been obtained
according to the rotamer library and the conformation
of the equivalent template sidechains. The subsequent
combinatorial optimization is designed to remove most
steric clashes. The accuracy of the method reaches 82%
for χ1 dihedral angles and 72% for both χ1 and χ2 dihedral
angles when the backbones from the templates in the
range of 30–90% sequence identity are used; a prediction
is deemed correct when within 40˚ of the target crystal
structure value. This appears to be one of the most
accurate methods for sidechain prediction.

Lee [39••] evaluates the accuracy of structural and
thermodynamic predictions using his sidechain-modelling
method. The main purpose is to measure the errors
caused by the fixed-backbone approximation. Sidechain
conformations of several single mutants of T4 lysozyme
have been modelled on the wild-type backbone. The
method builds sidechains on a fixed backbone by relying
on the self-consistent mean field approximation [45,46].
The energetics are described by only Lennard–Jones and
simple dihedral-angle terms. Two schemes for sidechain
dihedral angles have been explored: discrete rotamers
(the ‘rotamer model’); and more flexible sidechains that
have approximately 10˚ bins for χi values (the ‘continuous
model’). The rotamer model is more affected by the
backbone shifts than the continuous model, which is
able to accommodate the sidechains on the wild-type
backbone by using distorted sidechain torsion angles. The
predicted stability of the mutants using the ‘continuous
model’ shows a good correlation with experimental values.
Mainchain shifts of up to 0.5 Å cause increased sidechain
coordinate errors of up to 0.8 Å, torsional errors of 10–30˚,
and exaggerated strain energy for overpacked mutants,
compared with the same calculations performed with the
correct mutant backbones.

Scheraga and coworkers [40••] use a set of known
protein structures to derive continuous Gaussian trivariate
(ψ,φ,χ1) and bivariate (ψ,φ) distributions for each residue
type. Four classes of mainchain conformation have been
distinguished for each residue type. The utility of the
two distributions in preparing starting structures for
energy minimization using the Empirical Conformational
Energy Program for Peptides (ECEPP/3) force field has
been tested in two ways. First, the backbone with the
correct mainchain classes was used to pick the most
probable starting sidechain conformations, once each,
according to the trivariate and bivariate distributions. The
trivariate distribution performed better than the bivariate
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distribution. Second, the sidechains were modelled on
the backbone whose mainchain classes were predicted
with only about 80% accuracy. In this case, it was
better to use the most probable rotamer independent
of (ψ,φ) than to use the most probable rotamer in the
trivariate distribution. A probable reason for this is that
the errors in the backbone prediction are larger than
the sensitivity of the correlations between the mainchain
and sidechain conformations. The conclusion is that the
trivariate distribution is useful in sidechain modelling on a
fixed or an almost fixed backbone only when a sufficiently
accurate backbone is available.

Shenkin et al. [41••] describe their sidechain-modelling
method that builds sidechains onto a fixed backbone. It
relies on the probabilities from a rotamer library [47] ex-
tended to all χ1 angles and also avoids atom–atom overlaps.
The search is performed by a simulated annealing Monte
Carlo procedure. A low temperature sampling around the
optimal model is used to estimate statistical entropy for
each sidechain conformation. This entropy is observed to
correlate with the prediction accuracy, which allows an
assignment of a confidence level to the prediction of each
sidechain conformation. No correlation between rotamer
entropies and solvent accessibilities is observed, as noted
previously [48]. Shenkin et al. [41••] suggest that this
may reflect approximately equal flexibility of both the
buried and exposed sidechains. The method predicts the
correct rotamer for 57% of the sidechains in a sample
of 49 proteins; 74% of the χ1 angles are found in the
correct minimum. If half of the predictions with the lowest
entropy are selected, the correct rotamer is obtained in
79% and the correct χ1 in 84% of cases. All predictions
are performed with the native backbone.

Vásquez [18•] reviews and comments on various ap-
proaches to sidechain modelling. He emphasizes the
importance of two effects generally not taken into account:
first, the coupling between mainchain and sidechains;
and second, the continuous nature of the distributions
of sidechain dihedral angles; for example, 5–30% of
sidechains in crystal structures are significantly different
from their rotamer conformations [49]. Both effects appear
to be important when correlating packing energies and
stability [39••]. The correct energetics may be obtained
for the incorrect reasons; that is, the sidechains adopt
distorted conformations to compensate for the rigidity
of the backbone. Correspondingly, the backbone shifts
may hinder the use of these methods when the template
structures are related by less than 50% sequence identity
[42••]. This is consistent with the X-ray structure of
a variant of λ repressor that reveals that the protein
accommodates the potentially disruptive residues with
shifts in its α-helical arrangement and with only limited
changes in sidechain orientations [50]. Some attempts
to include backbone flexibility into sidechain modelling
have been described [33,51] but are not yet generally
applicable.

Chung and Subbiah [42••,43] give an elegant structural
explanation for the rapid decrease in the conservation
of sidechain packing as the sequence identity decreases
below 30% [42••,43]. Although the fold is maintained,
the pattern of sidechain interactions is generally lost
in this range of sequence similarity [52]. Two sets of
computations have been carried out for two sample protein
sequences: the sidechain conformation has been predicted
by maximizing packing both on the fixed native backbone
and on a fixed backbone with approximately 2 Å rmsd from
the native backbone; the 2 Å rmsd generally corresponds
to about 25–30% sequence identity between two proteins.
The sidechain predictions based on the two kinds of a
backbone turn out to be unrelated. Thus, in as much
as packing reflects the true laws determining sidechain
conformation, a backbone with less than 30% sequence
identity to the sequence being modelled is no longer
sufficiently restraining to result in the correct packing of
the buried sidechains.

Modelling of whole structures
The three different approaches to comparative modelling
of the whole fold — modelling using assembly of rigid
bodies, using segment matching, and using satisfaction
of spatial restraints — are reviewed in [3] (see also the
Introduction). All these approaches rely on an alignment
between the target sequence and at least one template
structure. In this review, we will not discuss the iden-
tification of the templates and their alignment with the
target sequence [3,53,54], nor the early 1995 papers on
comparative modelling [55•,56•] that are not reviewed
in [3]. Some available software packages for comparative
modelling of whole proteins are listed in Table 1.

Because the modelling by satisfaction of spatial restraints
can use many different types of information about the
target sequence, it is perhaps the most promising of
all comparative-modelling techniques. For example, re-
straints could be provided by rules for secondary-structure
packing [57], analyses of hydrophobicity [58••] and corre-
lated mutations [59], empirical potentials of mean force
[60], NMR experiments [61], cross-linking experiments
[62], image reconstruction in electron microscopy [63],
site-directed mutagenesis [64], fluorescence spectroscopy,
intuition, etc. In this way, a comparative model, especially
in the difficult cases, could be improved by making it
consistent with available experimental data and/or with
more general knowledge about protein structure.

Aszódi and Taylor [58••] describe a comparative-modelling
method based on satisfaction of spatial constraints using
distance geometry. The input is an alignment of the
target sequence with the template structures, the output
is a simplified model of the protein consisting of Cα
atoms and pseudoatoms corresponding to a centroid
of each sidechain. The procedure is implemented in
program DRAGON, which is related to other methods
based on distance geometry [14,15]. The procedure
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Table 1

Available software packages for comparative modelling of whole proteins.

Program Availability World Wide Web address Method∗ Reference

COMPOSER Public http://felix.bioc.cam.ac.uk/soft-base/html 1 [100]
CONGEN Public email: bruc@dino.squibb.com 1 [101]
DRAGON Public http://www.nimr.mrc.ac.uk/∼mathbio/a-aszodi/dragon.html 3 [58••]
MODELLER Public http://guitar.rockefeller.edu/modeller/modeller.html 3 [16]
NAOMI Public http://www.ocms.ox.ac.uk./∼smb/Software/N–details/naomi.html 3 [102]
WHAT IF Public http://www.sander/.embl.heidelberg.de/vriend/ 1 [103]
InsightII Commercial http://www.msi.com/ 1, 3 (a)
LOOK Commercial http://www.mag.com/ 2 [13]
QUANTA Commercial http://www.msi.com/ 1, 3 (a)
SYBYL Commercial http://www.tripos.com/ 1, 3 (b)
SWISS-MOD Public server http://www-isrec.unil.ch/SWISS-MODEL.html 1 [104]

∗Method key (see also the Introduction): 1, comparative modelling by assembly of rigid bodies; 2, comparative modelling by segment matching;
3, comparative modelling by satisfaction of spatial restraints. SYBYL includes COMPOSER; QUANTA and InsightII include MODELLER, as well
as in-house algorithms for modelling by rigid body assembly; InsightII also includes CONSENSUS [105]. SWISS-MOD is an Internet server for
comparative modelling that takes either the target sequence or its alignment with known structures as input. Many additional programs specialize
in modelling of sidechains or loops only. (a) Molecular Simulations Inc, San Diego. (b) Tripos, St Louis.

consists of gradually projecting a model of a protein
from a high dimensional Euclidean space into the 3D
dimensional space, subject to a large number of distance
constraints. The distance constraints include homology-
derived upper and lower distance bounds that are obtained
from the alignment. These bounds are supplemented
by stereochemical and more general distance restraints
inferred from the conserved hydrophobicity patterns in the
alignment. The method is rapid and might therefore be
useful for generating preliminary models for the evaluation
of alignments and for detailed refinement.

Accuracy of comparative models
Recently, protein modellers have been challenged to
model sequences with unknown 3D structure again and
to submit their models to the second ‘Meeting on
Critical Assessment of Techniques for Protein Structure
Prediction’ (CASP) in Asilomar [65]. At the same time,
the 3D structures of the prediction targets were being
determined by X-ray crystallography or NMR methods.
The structures only became available after the models
were calculated. Thus, it was possible to test the modelling
methods objectively.

The best comparative techniques have been found to
generally produce models with good stereochemistry and
an overall structural accuracy that is slightly higher than
the similarity between the template and the actual target
structures when the modelling alignment is correct. Two
modest improvements relative to the results from the first
CASP meeting in 1994 [66] are apparent: better alignments
resulting from more careful manual editing; and better
techniques for modelling insertions shorter than about
eight residues.

The errors in comparative models can be divided into four
categories [67]: sidechain-packing errors; distortions and
rigid-body changes in regions that are aligned correctly
(e.g. loops, helices); distortions and rigid-body changes in

insertions (e.g. loops); and distortions in incorrectly aligned
regions (e.g. loops and longer segments that have low
sequence identity to the templates).

The consequence of these errors is that the comparative
method can result in models with a mainchain rms error
as low as 1 Å for 90% of the mainchain residues, if a
sequence is at least 40% identical to one or more of the
templates [67]. In this range of sequence similarity, the
alignment is mostly straightforward to construct, there are
not many gaps, and structural differences between the
proteins are usually limited to loops and sidechains. When
sequence identity is between 30% and 40%, the structural
differences become larger, and the gaps in the alignment
are more frequent and longer. As a result, the mainchain
rms error rises to ∼ 1.5 Å for about 80% of residues.
The rest of the residues are modelled with large errors
because the methods generally cannot model structural
distortions and rigid-body shifts and cannot recover from
misalignments (see Conclusions). Currently, insertions
longer than about eight residues cannot usually be
modelled accurately, whereas shorter loops can frequently
be modelled successfully [17]. Model evaluation methods
are frequently successful in identifying the inaccurately
modelled regions of a protein [68].

When there are alignment errors in the template–target
alignment used for modelling, and when the correct,
structure-based template–target alignment is used for
comparing the template with the actual target structure,
the target structure is frequently more similar to the closest
template structure than to the model. In contrast, if the
modelling target–template alignment is used in evaluating
the similarity between the actual target structure and
the template, the target structure is generally closer to
the model than to the template (R Sánchez, A Šali,
unpublished data). As a result, using a model is generally
better than using the template structure even when the
alignment is incorrect because the actual target structure,
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and therefore the correct template–target alignment, are
not available in practical modelling applications.

To put the errors into perspective, we will list the
differences among experimentally determined structures
of the same protein. The 1 Å accuracy of mainchain atom
positions corresponds to X-ray structures defined at a low
resolution of about 2.5 Å and with an R-factor of about
25% [69], as well as to medium resolution NMR structures
determined from ten interproton distance restraints per
residue [70,71]. Similarly, differences between the highly
refined X-ray and NMR structures of the same protein also
tend to be about 1 Å [70]. Changes in the environment
(e.g. crystal packing, solvent, ligands) can also have a
significant effect on the structure [72]. Overall, compar-
ative modelling based on templates with more than 40%
identity is almost as good, simply because the homologues
at this level of similarity are likely to be as similar to
each other as are the structures for the same protein
determined by different experimental techniques under
different conditions. The caveat in modelling, however, is
that some regions, mainly loops and sidechains, have larger
errors.

Comparative modelling and genome
databases
In a few years, the genome projects will have provided
us with the amino acid sequences of more than 500 000
proteins — the catalysts, inhibitors, messengers, receptors,
transporters, and building blocks of the living organisms.
The full potential of the genome projects will only be
realized once we assign and understand the function of
these new proteins. The understanding, modification and
manipulation of protein function generally require knowl-
edge of the 3D structure of a protein at the atomic level.
Unfortunately, experimental methods for protein structure
determination are time consuming and not successful
with all proteins; consequently, 3D structures have been
determined for only a tiny fraction of proteins for which
the amino acid sequence is known. For many protein
sequences, however, comparative modelling can provide a
useful 3D model. In fact, about one third of the 198,449
known protein sequences [73] are related to at least one of
the 4,861 known protein structures (Brookhaven Protein
Data Bank [74,75]) [4•,76,77,78•]. Thus, the number of
sequences that can be modelled relatively accurately at
this moment is an order of magnitude larger than the
number of experimentally determined protein structures.
Furthermore, the usefulness of comparative modelling is
steadily increasing because genome projects are producing
more sequences and because novel protein folds are
being determined experimentally. It has been estimated
that there are approximately 1 000 different protein fold
families, one third of which have already been structurally
defined [76,77,78•]. Assuming the current growth rate in
the number of known protein structures, the structure of
at least one member of most protein fold families will be
determined in only about six years (see Fig. 4c in [78•]),

thus allowing comparative modelling to be applicable
to most of the protein sequences at that time. This
means that when the human genome project is finished
it will be possible to use comparative modelling to obtain
approximate 3D models for most of the proteins in the
human genome.

Comparative modelling, even if less accurate than exper-
imental methods, can be helpful in proposing and testing
hypotheses in molecular biology, such as hypotheses
about the location of ligand-binding sites [79], substrate
specificity [80•], and drug design [81]. It can also provide
starting models in X-ray crystallography [82] and NMR
spectroscopy [61]. Possible uses of comparative mod-
elling are illustrated by a number of recent applications
[62,80•,83•,84•,85,86,87•,88]). An exhaustive survey of
many comparative-modelling studies is given in [1].

Conclusions
Future improvements of comparative modelling should
aim to model proteins with lower similarities to known
structures (e.g. < 30% sequence identity), to increase the
accuracy of the models, and to make modelling fully
automated. The improvements will probably include the
simultaneous optimization of sidechain and backbone
conformations in sidechain modelling, the simultaneous
optimization of a loop and its environment in loop
modelling, and the simultaneous optimization of the
alignment and the model. At the same time, better
potential functions and possibly better optimizers are
needed. The potential function should guide the model
away from the templates in the direction towards the
correct structure. An addition of atomic or residue-based
potentials of mean force to the homology-derived scoring
function, such as that of MODELLER [16], could be one
way of achieving this goal [89••,90••]. This is a difficult
problem, as illustrated by the fact that no present force
field or potential of mean force can produce a model with
a mainchain rmsd from the X-ray structure smaller than
about 1 Å, even when the starting conformation is the
X-ray structure itself. For example, MD simulations in
solvent generally have a mainchain rmsd of more than 1 Å
and the most detailed lattice folding simulations result in
models with an rms error larger than 2 Å [91]. As most of
the mainchain atoms in two homologues with at least 40%
sequence identity usually superimpose with an rmsd of
about 1 Å, it is currently better to aim to reproduce the
template structures as closely as possible, rather than to
venture away from the templates in the search for a better
model.

The major factor that limits the use of comparative
modelling in the cases of less than 30% sequence identity
is the alignment problem. In principle, the alignment can
be derived by any of the sequence or sequence–structure
alignment methods, but, in practice, even careful manual
editing frequently results in significant alignment errors.
At 30% sequence identity, the fraction of incorrectly
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aligned residues is about 20%, and this number rises
sharply with further decreases in sequence similarity [92];
an additional complication is that even structure–structure
comparisons may not result in a unique alignment for
proteins with less than about 25% identity [93•,94•]. This
limits the usefulness of comparative modelling because no
current modelling technique can recover from an incorrect
input alignment. Profile matching [95] and threading
methods [96–98] appear to be a natural solution to the
alignment problem in comparative modelling. Whereas
these techniques are successful in identifying related
folds, however, they currently appear to be somewhat less
successful in generating correct alignments. To reduce the
errors in the model that stemm from the alignment errors,
iterative changes in the alignment during the calculation
of the model are needed. A case in point is provided
by the generation and analysis of multiple models, based
on different templates, for the EF-hand calcium-binding
proteins [99•].

Although comparative modelling needs significant im-
provement, it is already a mature technique that can be
used to address many practical problems. With the increase
in the number of protein sequences discovered and in the
fraction of all folds that are known, comparative modelling
will be an increasingly important tool for biologists who
seek to understand and control normal and disease-related
processes in living organisms.
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