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Uncertainty in integrative structural modeling
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Integrative structural modeling uses multiple types of input
information and proceeds in four stages: (i) gathering
information, (ii) designing model representation and converting
information into a scoring function, (i) sampling good-scoring
models, and (iv) analyzing models and information. In the first
stage, uncertainty originates from data that are sparse, noisy,
ambiguous, or derived from heterogeneous samples. In the
second stage, uncertainty can originate from a representation
that is too coarse for the available information or a scoring
function that does not accurately capture the information. In the
third stage, the major source of uncertainty is insufficient
sampling. In the fourth stage, clustering, cross-validation, and
other methods are used to estimate the precision and accuracy
of the models and information.
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Introduction

Tounderstand and modulate biological processes, we need
their spatiotemporal models. These models can be com-
puted based on input information about the structure and
dynamics of the system of interest, including physical
theories, statistical inference from databases of known
sequences and structures, as well as a large variety of
experimental methods. A structural model of a molecule
is defined by the relative positions and orientations of its
components (e.g. atoms, pseudo-atoms, residues, second-
ary structure elements, domains, and subunits). All struc-
tural characterization approaches correspond to finding
models that best fit input information, as can be judged
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by a scoring function; when the scoring function includes
experimental data, it quantifies the difference between the
observed data and the data computed from the model.
Therefore, structural characterization can be described as a
four-stage process: (i) gathering input information, (ii)
designing model representation and converting infor-
mation into a scoring function, (iii) sampling good-scoring
models, and (iv) analyzing models and information (Box 1
and Figure 1). For example, in X-ray crystallography a
model consists of atomic positions, and the scoring function
assesses the agreements (i) between the computed and
observed structure factors via the Ry parameter [1] as well
as (i1) between the model geometry and the ideal geometry
implied by a molecular mechanics force field via the
potential energy of the model.

T'o use a model well, we need to assess its accuracy (stage
iv above). Assessment standards and corresponding tools
have already been developed for X-ray crystallography [2]
and Nuclear Magnetic Resonance (NMR) spectroscopy

Box 1 Glossary

Input data — experimental data used to compute a model.

Input information — experimental data and any additional infor-
mation.

Data sparseness — a measure of the amount of data relative to the
number of degrees of freedom in the model.

Data error — the difference between the measured data and its true
value, which can be computed given a forward model and the true
structure; data error can be random and/or systematic, affecting the
precision and the accuracy of the measured data.

Data ambiguity — a data point is ambiguous when it cannot be
assigned to the specific components of the model.

Data incoherence — a dataset is incoherent when it is derived from
a compositionally or configurationally heterogeneous sample.

Single-state model — a model that specifies a single structural
state and value for any other parameter.

Multi-state model — a model that specifies two or more co-existing
structural states and values for any other parameter.

Ensemble of structural models — a set of structural models each
one of which is consistent with the data.

Ensemble precision — variability among structural models in the
ensemble.

Error or accuracy of a structural model — the difference between
the structural model and the true structure(s).

Representation resolution — a descriptor of the detail in the
representation of the structural model (e.g. atomic models consist of
atoms).
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Figure 1
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Uncertainty in integrative structure modeling. The four-stage scheme of integrative structure modeling is used to describe how to approach uncertainty
in the data and the models. The collected information is converted into a scoring function that accounts for data error, ambiguity, and incoherence. The
model representation should reflect data sparseness. After sampling, if good-scoring models satisfy the restraints, they are further evaluated by

structural clustering and data validation tests.

[3], while they are still evolving for electron microscopy
(EM) [4], Small Angle X-ray Scattering [5,6], and com-
parative modeling [7]. Standard validation of the crystal-
lographic and NMR entries in the Protein Data Bank
(PDB) [8] includes assessing geometrical features such as
stereochemistry and packing, fit of the model to the
experimental data, and the quality of the data itself. In
the EM field, Fourier Shell Correlation (FSC) is com-
monly used to estimate map resolution [4,9,10]. Recently,
new validation methods for EM maps were suggested,
including tilt pair analysis [11], gold-standard FSC curves
[4], high-resolution noise substitution [12,13], and
Reslog plots [14°]. In SAXS data validation, the x-free

criterion was recently proposed [15°°], inspired by Ry in
crystallography. Protein aggregation can be revealed in
the Guinier plot, inter-particle interference can be
detected by measuring SAXS profiles at multiple con-
centrations, and conformational heterogeneity is to some
degree reflected in the Kratky or Porod-Debye plots [16].
Estimating the accuracy of comparative models is still
challenging, but methods based on a variety of criteria do
exist [7,17,18].

No single experimental method is guaranteed to produce
a satisfactory structure for a given system. Nevertheless,
structure determination can often benefit from an
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integrative (hybrid) approach, where information from
multiple experimental datasets is used to compute all
structural models that are consistent with the available
data [19-22]. Data from X-ray crystallography, EM, NMR
spectroscopy, SAXS, cross-linking combined with mass
spectrometry (MS), Forster resonance energy transfer
(FRET) spectroscopy, double electron—clectron reson-
ance (DEER), and hydrogen—deuterium exchange
(HDX) is frequently used in integrative structure deter-
mination (Table 1). Sometimes integrative models are
assessed based on clustering of models, modeling with
simulated data, observation of non-random patterns in the
models, and modeling with subsets of data [20]. However,
a set of standards for validating integrative models has not
yet been developed [22].

It is essential for appropriate use of a structural model to
estimate errors in the model as well as the data used to
compute it. Model error is defined as the difference be-
tween the model and true structure. It originates from
several different sources. First, input data can be sparse,
noisy, ambiguous, or incoherent (Glossary). Second, the
system representation can be too coarse, resulting in some
input information being ignored. Third, the scoring func-
tion may not accurately capture the input information or
the input information is insufficient to identify the true
structure. Fourth, sampling may not find the true structure

Table 1

due to many degrees of freedom used to represent the
system. Because the true structure is unknown in real
applications, model error is also unknown. However, the
lower bound on the model error can often be estimated as
the precision of the set of models consistent with the input
information. Here, we describe the origins of uncertainty in
each stage of integrative modeling, and suggest how to
quantify and minimize it.

Stage 1: gathering information

Spatial information about a given system can include data
from experiments such as those listed above, statistical
propensities such as atomic statistical potentials extracted
from known protein structures, and physical laws, such as
interatomic interactions approximated by a molecular
mechanics force field. This information is used to
represent the system as well as to sample and rank its
possible configurations. There are four sources of uncer-
tainty in the information, as follows.

Data sparseness. The data sparseness measures the
amount of information in the data relative to the number
of degrees of freedom in the model; the amount of
information in the data depends on the number of data
points and their precision as well as their interdepen-
dence. Data sparseness affects the precision of the model
[23]. For example, for a protein—protein complex mapped

Some of the recent structures solved by an integrative approach.

Structure

Experimental information

Method

Saccharomyces cerevisiae INO80 [56]
Polycomb Repressive Complex 2 [57]

39S large subunit of the porcine
mitochondrial ribosome [58]

Schizosaccharomyces pombe 26S
holocomplex [52°°]

Saccharomyces cerevisiae RNA polymerase |l
transcription pre-initiation complex [54°°]

Saccharomyces cerevisiae 40SeelF1eelF3
translation initiation complex [59°°]

Salmonella typhimurium Type Il secretion
system needle [53]

Methane monooxygenase hydroxylase
(MMOH), toluene/o-xylene monooxygenase
hydroxylase (ToMOH), and urease [60]

ESCRT-I complex [61°]

Hsp90 substrate recognition [46]
Splicing factor U2AF65 [62]

HIV-1 capsid protein [63]

500-kilobase (kb) domain of human
chromosome 16 [64,65]

Human genome architecture [66°°]

Cryo-EM map (17 A resolution), 212 intra-protein and

Manual modeling

116 inter-protein cross-links in Chimera
Negative stain EM map (21 A resolution) and ~60 Manual modeling
intra-protein and inter-protein cross-links in Chimera

Cryo-EM map (4.9 A resolution) and ~70 inter-protein
cross-links

Cryo-EM map (8.4 A resolution) and 35 cross-links
from S. pombe and 36 cross links from S. cerevisiae
Cryo-EM map (16 A resolution), 157 intra-protein and
109 inter-protein cross-links

COQT, O, PHENIX
IMP

Exhaustive enumeration

965 cross-links, including 126 unique elF3-elF3 and IMP
40SeelF1-elF3 cross links, negative stain EM map

(28 A resolution), crystallographic structures of 40S

complex, elF3 domains

Solid-state NMR, cryo-EM (19.5 A resolution) Rosetta
Composition and stoichiometry from native MS, IMP
collision cross section from ion mobility-MS and

cross-links

SAXS, double electron-electron transfer (DEER), and EROS
FRET

31 cross-links and NMR spectroscopy IMP
Paramagnetic relaxation enhancement (PRE), residue ASTEROIDS
dipolar couplings (RDCs), and SAXS

RDCs and SAXS Xplor-NIH
Chromosome Conformation Capture Carbon Copy IMP

(5C) experiments and excluded volume

Tethered chromosome conformation capture (TCC) IMP

and population-based modeling
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by a single cross-link, if each protein is represented by a
single sphere, the data sparseness is 1 data point per 1
degree of freedom; if the proteins are represented by
their rigid atomic structures, the data sparseness is 1 data
point per 6 degrees of freedom (3 rotations and 3
translations). In X-ray crystallography, the data sparse-
ness can be quantified by the number of reflections
divided by the number of atoms in the unit cell. In
NMR spectroscopy, the data sparseness is usually quan-
tified by the number of NOE restraints per residue. In
SAXS, the data sparseness of a SAXS profile is defined
using the Nyquist-Shannon sampling theorem: given
the maximum dimension (,x), the sampling theorem
determines that the number of unique, evenly distrib-
uted observations for a maximum scattering vector
(Zmax) 18 given by (Zmax ¢gmax)/7- The problem with
sparse data is that there are more free parameters than
observations, which may lead to an over-interpretation
of the data (over-fitting).

Data error. Error of the data is the sum of random and
systematic measurement errors. The magnitude of ran-
dom error can best be assessed by multiple repeated
measurements; systematic errors for a given type of data
can be estimated by benchmarks relying on known
structures. For example, in X-ray crystallography the
random error is caused by the noise in the X-ray flux,
detector and electronics, while the systematic error can
result from radiation damage, conformational heterogen-
eity of the sample, and crystal packing defects [24]. In
SAXS, the random error sources are similar to those in
crystallography, while the systematic error can result from
sample aggregation and radiation damage [5].

Data ambiguity. Data ambiguity is the uncertainty in
assigning data points to specific components of the sys-
tem. For example, it is generally not possible to assign
which of the three methyl protons gave rise to an
observed NOE signal [25]. Another example is the ambi-
guity of assigning a cross-link to a specific instance of a
protein when the complex contains multiple instances of
it. By contrast, diffraction and scattering data are a
function of all components of a system and thus not
ambiguous.

Data incoherence. Data incoherence is a result of com-
positional or conformational heterogeneity of one or more
samples used to generate one or more datasets for mod-
eling; for example, a system may exist as a mixture of two
states in an NMR solution experiment or it may exist in
different states in X-ray (crystal) and SAXS (solution)
experiments. As a result, the measured data will be a
mixture of contributions from each state. The ability to
disentangle different states depends on the precision and
accuracy of the data; for example, conformational differ-
ences smaller than the precision of the data may be
difficult to detect.

Stages 2 and 3: converting input information
into system representation, scoring function,
and sampling

Input information about the structure of the system can
be used (i) to select the set of variables that represent the
system (system representation), (ii) to rank the different
configurations (scoring function), (iii) to search for good
scoring solutions (sampling), and (iv) model validation. It
is often most computationally efficient, although not
always possible, to encode information into the repres-
entation; in contrast it is generally most straightforward,
but least efficient, to encode information into the scoring
function. For example, in protein—protein docking, max-
imization of shape complementarity can be encoded into
a scoring function that is then optimized by a generic
optimization method. Alternatively, maximization of
shape complementarity can also be encoded more effi-
ciently through a representation consisting of shape
descriptors, such as surface curvature, resulting in faster
sampling by generating only configurations of subunits
with complementary shape descriptors [26].

Representation

The representation of a system is defined by all the
variables that need to be determined based on input
information, including the assignment of the system
components to geometric objects, such as points and
spheres. A simple example is Cartesian coordinates for
points corresponding to the individual atoms. More com-
plex representations can assign a component to other
geometric primitives (e.g. spheres, ellipsoids, and 3D
Gaussian density functions) and include additional
degrees of freedom, such as the number of states in
the system and their weights. For instance, in a high-
resolution representation, a sphere can represent a single
atom, while in a coarse-grained representation it may
correspond to a residue. Coarse-graining can be used to
encode the uncertainty arising from both static and
dynamic variability. Moreover, in a ‘rigid body’, the
relative positions of the primitives (e.g. atoms in a
domain) can be constrained, for example based on a
crystallographic structure. In most applications, the
representation is determined before any other compu-
tations and is not changed. The resolution of the repres-
entation should be commensurate with the input
information. In some cases, it is beneficial to represent
different parts of a structure with different representa-
tions or a part may be described with several different
inter-linked representations simultaneously (i.e. multi-
scale representation); in such a case, information can be
applied to restrain the model by using the most con-
venient representation [27].

When defining the representation, we usually have to
balance between the requirements of scoring and
sampling. We need a representation that is sufficiently
detailed for accurately assessing a match between a model
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and the input information. For example, when using
chemical cross-linking information, we need to choose
between representing the cross-linker explicitly with all
of its atoms [28] or implicitly as a function of the distance
between the cross-linked residues. To minimize data
sparseness, we also need a representation that is suffi-
ciently coarse, given the invariably limited information
content of the data. Finally, the representation should
also be sufficiently coarse to allow for exhaustive
sampling of good scoring models in a feasible timeframe.
Although it would be best to be able to compute an
optimal representation based on the input information,
this is not yet possible.

Scoring

Most generally, the scoring function ranks alternative
models based on the evidence provided by the input
information. The scoring function should take into
account the uncertainty in the input information, in-
cluding sparseness, error, ambiguity, and incoherence.
For example, a scoring function could evaluate whether
or not a given model fits the data within its error bars.
Ambiguity in the data assignment should also be
accounted for by the scoring function. For example, to
address the ambiguity in methyl proton assignment for an
observed NOE signal, the signal is often assigned to the
center of mass of the three methyl protons [25]. For a
complex with multiple copies of the same protein, a cross-
link can be assigned to the copy of the protein that
satisfies it best [20]. When a sample is heterogeneous
(i.e. data are incoherent), a scoring function should rank
instances of a model, each one of which consists of
multiple structures (multi-state model). For example,
protein heterogeneity in a crystal can be modeled using
snapshots of molecular dynamics simulations [29°°].
Protein dynamics in solution, as measured by SAXS
and NMR spectroscopy, can be modeled by fitting
multiple weighted conformations to the data [30-34].
In EM single particle reconstruction, heterogeneity can
be addressed by multi-model reconstruction using multi-
stage clustering [35].

The most objective ranking of models is in principle
achieved by a Bayesian scoring function [36]. The Baye-
sian approach estimates the probability of a model, given
information available about the system, including both
prior knowledge and newly acquired experimental data.
When modeling heterogeneous systems, model M
includes a set of NV modeled structures X = {X}}, their
population fractions in the sample {w;}, and potentially
additional parameters (e.g. the unknown data errors). The
posterior probability p (M|D, I) of model M given data D
and prior knowledge 7 is

p(MID, I) o p(DIM, 1) - p(M|T)

where the likelihood function p (M|D, I) is the probability of
observing data D given M and [; and the prior p (M|D) is

the probability of model M given I. The likelihood
function is based on the forward model f(X) that predicts
the data point that would have been observed for struc-
ture(s) X in the absence of experimental error, and a #oise
model that specifies the distribution of the deviation
between the experimentally observed and predicted data
points. 'The Bayesian scoring function is defined as
SM) = — loglp(D|M, I) - p(M|I)] which ranks the models
the same as the posterior probability. The most probable
models are found by selecting the best scoring models
sampled from the posterior distribution.

The Bayesian scoring function can account for most
sources of uncertainty in data without over-fitting. It
was successfully adopted for NMR spectroscopy data
[36,37], and recently cryo-EM density maps [38,39°°].
Bayesian structure determination based on sparse NOE
measurements produces more accurate structures and
better estimates of precision than standard NMR struc-
ture determination methods [36,37,40]. In single particle
EM reconstruction, the Bayesian approach results in
density maps with higher resolution than those from
standard reconstruction methods using the same input
datasets [38,39°°]; moreover, high-resolution maps can be
obtained from only a few thousand of particles [41-43].
Recently, the BioEM method for Bayesian analysis of
individual EM images that can deal with conformational
heterogeneity was developed [44]. Bayesian scoring func-
tions have also been developed for cysteine cross-linking
[45], chemical cross-linking [46], FRET spectroscopy
[47], and atomic statistical potentials [48].

The Bayesian approach is more objective than traditional
scoring functions in a number of respects: (i) inference of
unknown quantities, such as data error and state weights,
(11) combination of different types of information, (iii)
inference of multiple structures, (iv) estimate of model
precision, and (v) ‘marginalization’ of parameters that are
difficult to determine. The main disadvantage is that the
model is more elaborate (cf. noise model and priors) and a
more exhaustive sampling of structural and parameter
space is required.

Sampling

A variety of optimization methods (e.g. conjugate gradi-
ents), sampling algorithms (e.g. Monte Carlo), and even
exhaustive enumeration (e.g. Fast Fourier Transform)
can be used to find models consistent with input infor-
mation. The major source of uncertainty in this stage is
insufficient sampling due to the ruggedness and high
dimensionality of the scoring function landscape that
needs to be sampled. As a result, it is almost never certain
that the best scoring models were sampled. For stochastic
sampling, such as the Monte Carlo algorithm, the thor-
oughness of sampling can be indicated by showing that
new independent runs (e.g. using random starting con-
figurations and different random number generator seeds)

Current Opinion in Structural Biology 2014, 28:96-104
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do not result in significantly different good-scoring
solutions (‘convergence test’) [49]. Passing such a test
is a necessary but not sufficient condition for thorough
sampling; a positive outcome of the test may be mislead-
ing if, for example, the landscape contains only a narrow,
and thus difficult to find, pathway to the pronounced
minimum corresponding to the native state.

For multi-state models, the sampling is often performed
in two steps, due to the relatively high number of degrees
of freedom involved. First, a large set of possible single
configurations is sampled. Second, the sets of configur-
ations in a multi-state model are enumerated, for example
by using a genetic algorithm [31,32], a maximum entropy
approach [33], or a deterministic method [34].

Stage 4: analyzing models and information
Input information and output models are analyzed in
order to estimate model precision and accuracy, to detect
inconsistent information and missing information, as well
as to suggest most informative future experiments. There
are three possible outcomes of modeling, based on the
number of clusters of models and consistency between
the models and information. The following discussion
applies to single-state models, but similar considerations
can also be extended to multi-state models. First, if only a
single model (or a cluster of similar models) satisfies all
restraints and thus all input information, there is probably
sufficient information for determining the structure (with
the precision corresponding to the variability within the
cluster). Second, if two or more different models are
consistent with the restraints, the information is insuffi-
cient to define the single state or there are multiple
significantly populated states. If the number of distinct
models is small, the structural differences between the
models may suggest additional experiments to narrow
down the possible solutions. Third, if no model satisfies
all input information, the information or its interpretation
in terms of the restraints are incorrect, the representation
needs to include additional degrees of freedom, and/or
sampling needs to be improved (regardless of the out-
come of the convergence test above).

If multiple structural states are indicated, care must be
taken that the scoring function explicitly allows for this
possibility [31-34,45,46]. When a mixture of states is
modeled, the number of states needs to be determined.
Frequently, Occam’s razor suggests that the smallest
number of states sufficient to explain the input infor-
mation within some threshold is the optimal choice. An
example of this approach is the ‘minimal ensemble’
method in molecular modeling based on SAXS data
[32]. However, sometimes Occam’s razor is not
applicable. For example, even though a SAXS profile
of an intrinsically disordered protein may be matched
by a sum of profiles for the minimal ensemble structures,
the system is likely to exist in a large ensemble of many

widely different states; such cases are indicated by sim-
ilarity between distributions of structural properties, such
as the radius of gyration, of the minimal and large
ensembles [31].

Once we obtain a model (single or multi-state) that satisfies
the input data, we can analyze it to estimate precision and
accuracy. It is impossible to know with certainty the
accuracy of the proposed structure without knowing the
real native structure. However, accuracy can be estimated
based on rules derived from benchmark studies that
involve modeling of known structures. For example, there
is a strong correlation of the accuracy of an X-ray structure
with the resolution of the X-ray dataset and Ry [1]. In
addition to such broad rules, five types of analysis that are
indicative of model precision and accuracy in specific cases
have been proposed [20], as follows (the first three tests are
examples of statistical resampling [50]).

Estimating model precision based on variability in the
ensemble of good-scoring models. The model ensemble
is analyzed in terms of the precision of its features, such as
the protein positions and contacts [49,51-53]; the pre-
cision is defined by the variability in the ensemble and
likely provides the lower bound on its accuracy. Of
particular interest are the features that are present in
most configurations in the ensemble and have a single
maximum in their probability distribution. The spread
around the maximum describes how precisely the feature
was determined by the input information. A more
thorough test is performed by estimation of structural
variability in multiple random subsets of the ensemble
[52°°,54°°].

Self-consistency of the experimental data. Inconsistencies
in the experimental data or its interpretation are indicated
by an ensemble of models containing only frustrated
structures that do not satisfy the input data, although
such an outcome can also arise from the failure of
sampling. If there is a model that satisfies all data, the
probability of such a model occurring by chance can be
indicated by statistical significance tests; if this prob-
ability is low, the model is likely to be correct. In these
tests, the labels on the data points are randomized or
permuted, followed by re-computing the model; for
example, one can assign cross-links to random residue
pairs [55].

Validating models by using random subsets of experimen-
tal data. The structure can be directly validated against
experimental data that was not included in the structure
calculation [52°°]. T'his criterion is similar to the crystal-
lographic Ry.. parameter and can be used to assess both
the model accuracy and the input data [1]. Alternatively,
modeling can be repeated with random subsets of the
data. Common statistical techniques for this validation
include cross validation and bootstrapping [50].

www.sciencedirect.com
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Reproducibility of the model with simulated data. In this
approach, a native structure is assumed, the restraints to
be tested are simulated from this structure, the structure
is then reconstructed based only on these restraints, and
finally the reconstruction is compared to the original
assumed structure [49]. Using such simulations, the
dependence of model accuracy on the amount, quality,
and type of information can be mapped for future pre-
diction of accuracy.

Patterns unlikely to occur by chance. Unlikely patterns
emerging from mapping independent and unused data on
the structure also increase our confidence in a model,
similarly to validation by information not used in model-
ing. For example, the model of the nuclear pore complex
(NPCQ) revealed an unexpected 16-fold pseudo-symmetry
in the arrangement of fold types of the constituent
proteins, in addition to the known 8-fold symmetry
[49]. The 16-fold pseudo-symmetry validates the model
because the fold types were not used in modeling and the
16-fold pseudo symmetry is unlikely to arise by chance
(while it can be reasonably explained by gene dupli-
cations in the evolution of the NPQC).

Conclusions

Integrative structure determination needs de facfo stan-
dards and tools for assessing the input data and resulting
models, following in the footsteps of X-ray crystallogra-
phy and NMR spectroscopy with established structure
validation criteria.
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model is validated using EM density map.
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