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Box 1 Glossary

Input data — experimental data used to compute a model.

Input information — experimental data and any additional infor-

mation.

Data sparseness — a measure of the amount of data relative to the

number of degrees of freedom in the model.

Data error — the difference between the measured data and its true

value, which can be computed given a forward model and the true

structure; data error can be random and/or systematic, affecting the

precision and the accuracy of the measured data.

Data ambiguity — a data point is ambiguous when it cannot be

assigned to the specific components of the model.

Data incoherence — a dataset is incoherent when it is derived from

a compositionally or configurationally heterogeneous sample.

Single-state model — a model that specifies a single structural

state and value for any other parameter.

Multi-state model — a model that specifies two or more co-existing

structural states and values for any other parameter.

Ensemble of structural models — a set of structural models each

one of which is consistent with the data.

Ensemble precision — variability among structural models in the

ensemble.

Error or accuracy of a structural model — the difference between

the structural model and the true structure(s).

Representation resolution — a descriptor of the detail in the

representation of the structural model (e.g. atomic models consist of

atoms).
Integrative structural modeling uses multiple types of input

information and proceeds in four stages: (i) gathering

information, (ii) designing model representation and converting

information into a scoring function, (iii) sampling good-scoring

models, and (iv) analyzing models and information. In the first

stage, uncertainty originates from data that are sparse, noisy,

ambiguous, or derived from heterogeneous samples. In the

second stage, uncertainty can originate from a representation

that is too coarse for the available information or a scoring

function that does not accurately capture the information. In the

third stage, the major source of uncertainty is insufficient

sampling. In the fourth stage, clustering, cross-validation, and

other methods are used to estimate the precision and accuracy

of the models and information.
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Introduction
To understand and modulate biological processes, we need

their spatiotemporal models. These models can be com-

puted based on input information about the structure and

dynamics of the system of interest, including physical

theories, statistical inference from databases of known

sequences and structures, as well as a large variety of

experimental methods. A structural model of a molecule

is defined by the relative positions and orientations of its

components (e.g. atoms, pseudo-atoms, residues, second-

ary structure elements, domains, and subunits). All struc-

tural characterization approaches correspond to finding

models that best fit input information, as can be judged
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by a scoring function; when the scoring function includes

experimental data, it quantifies the difference between the

observed data and the data computed from the model.

Therefore, structural characterization can be described as a

four-stage process: (i) gathering input information, (ii)

designing model representation and converting infor-

mation into a scoring function, (iii) sampling good-scoring

models, and (iv) analyzing models and information (Box 1

and Figure 1). For example, in X-ray crystallography a

model consists of atomic positions, and the scoring function

assesses the agreements (i) between the computed and

observed structure factors via the Rfree parameter [1] as well

as (ii) between the model geometry and the ideal geometry

implied by a molecular mechanics force field via the

potential energy of the model.

To use a model well, we need to assess its accuracy (stage

iv above). Assessment standards and corresponding tools

have already been developed for X-ray crystallography [2]

and Nuclear Magnetic Resonance (NMR) spectroscopy
www.sciencedirect.com
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Uncertainty in integrative structure modeling. The four-stage scheme of integrative structure modeling is used to describe how to approach uncertainty

in the data and the models. The collected information is converted into a scoring function that accounts for data error, ambiguity, and incoherence. The

model representation should reflect data sparseness. After sampling, if good-scoring models satisfy the restraints, they are further evaluated by

structural clustering and data validation tests.
[3], while they are still evolving for electron microscopy

(EM) [4], Small Angle X-ray Scattering [5,6], and com-

parative modeling [7]. Standard validation of the crystal-

lographic and NMR entries in the Protein Data Bank

(PDB) [8] includes assessing geometrical features such as

stereochemistry and packing, fit of the model to the

experimental data, and the quality of the data itself. In

the EM field, Fourier Shell Correlation (FSC) is com-

monly used to estimate map resolution [4,9,10]. Recently,

new validation methods for EM maps were suggested,

including tilt pair analysis [11], gold-standard FSC curves

[4], high-resolution noise substitution [12,13], and

ResLog plots [14�]. In SAXS data validation, the x-free
www.sciencedirect.com 
criterion was recently proposed [15��], inspired by Rfree in

crystallography. Protein aggregation can be revealed in

the Guinier plot, inter-particle interference can be

detected by measuring SAXS profiles at multiple con-

centrations, and conformational heterogeneity is to some

degree reflected in the Kratky or Porod-Debye plots [16].

Estimating the accuracy of comparative models is still

challenging, but methods based on a variety of criteria do

exist [7,17,18].

No single experimental method is guaranteed to produce

a satisfactory structure for a given system. Nevertheless,

structure determination can often benefit from an
Current Opinion in Structural Biology 2014, 28:96–104
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integrative (hybrid) approach, where information from

multiple experimental datasets is used to compute all

structural models that are consistent with the available

data [19–22]. Data from X-ray crystallography, EM, NMR

spectroscopy, SAXS, cross-linking combined with mass

spectrometry (MS), Förster resonance energy transfer

(FRET) spectroscopy, double electron–electron reson-

ance (DEER), and hydrogen–deuterium exchange

(HDX) is frequently used in integrative structure deter-

mination (Table 1). Sometimes integrative models are

assessed based on clustering of models, modeling with

simulated data, observation of non-random patterns in the

models, and modeling with subsets of data [20]. However,

a set of standards for validating integrative models has not

yet been developed [22].

It is essential for appropriate use of a structural model to

estimate errors in the model as well as the data used to

compute it. Model error is defined as the difference be-

tween the model and true structure. It originates from

several different sources. First, input data can be sparse,

noisy, ambiguous, or incoherent (Glossary). Second, the

system representation can be too coarse, resulting in some

input information being ignored. Third, the scoring func-

tion may not accurately capture the input information or

the input information is insufficient to identify the true

structure. Fourth, sampling may not find the true structure
Table 1
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due to many degrees of freedom used to represent the

system. Because the true structure is unknown in real

applications, model error is also unknown. However, the

lower bound on the model error can often be estimated as

the precision of the set of models consistent with the input

information. Here, we describe the origins of uncertainty in

each stage of integrative modeling, and suggest how to

quantify and minimize it.

Stage 1: gathering information
Spatial information about a given system can include data

from experiments such as those listed above, statistical

propensities such as atomic statistical potentials extracted

from known protein structures, and physical laws, such as

interatomic interactions approximated by a molecular

mechanics force field. This information is used to

represent the system as well as to sample and rank its

possible configurations. There are four sources of uncer-

tainty in the information, as follows.

Data sparseness. The data sparseness measures the

amount of information in the data relative to the number

of degrees of freedom in the model; the amount of

information in the data depends on the number of data

points and their precision as well as their interdepen-

dence. Data sparseness affects the precision of the model

[23]. For example, for a protein–protein complex mapped
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by a single cross-link, if each protein is represented by a

single sphere, the data sparseness is 1 data point per 1

degree of freedom; if the proteins are represented by

their rigid atomic structures, the data sparseness is 1 data

point per 6 degrees of freedom (3 rotations and 3

translations). In X-ray crystallography, the data sparse-

ness can be quantified by the number of reflections

divided by the number of atoms in the unit cell. In

NMR spectroscopy, the data sparseness is usually quan-

tified by the number of NOE restraints per residue. In

SAXS, the data sparseness of a SAXS profile is defined

using the Nyquist-Shannon sampling theorem: given

the maximum dimension (dmax), the sampling theorem

determines that the number of unique, evenly distrib-

uted observations for a maximum scattering vector

(qmax) is given by (dmax qmax)/p. The problem with

sparse data is that there are more free parameters than

observations, which may lead to an over-interpretation

of the data (over-fitting).

Data error. Error of the data is the sum of random and

systematic measurement errors. The magnitude of ran-

dom error can best be assessed by multiple repeated

measurements; systematic errors for a given type of data

can be estimated by benchmarks relying on known

structures. For example, in X-ray crystallography the

random error is caused by the noise in the X-ray flux,

detector and electronics, while the systematic error can

result from radiation damage, conformational heterogen-

eity of the sample, and crystal packing defects [24]. In

SAXS, the random error sources are similar to those in

crystallography, while the systematic error can result from

sample aggregation and radiation damage [5].

Data ambiguity. Data ambiguity is the uncertainty in

assigning data points to specific components of the sys-

tem. For example, it is generally not possible to assign

which of the three methyl protons gave rise to an

observed NOE signal [25]. Another example is the ambi-

guity of assigning a cross-link to a specific instance of a

protein when the complex contains multiple instances of

it. By contrast, diffraction and scattering data are a

function of all components of a system and thus not

ambiguous.

Data incoherence. Data incoherence is a result of com-

positional or conformational heterogeneity of one or more

samples used to generate one or more datasets for mod-

eling; for example, a system may exist as a mixture of two

states in an NMR solution experiment or it may exist in

different states in X-ray (crystal) and SAXS (solution)

experiments. As a result, the measured data will be a

mixture of contributions from each state. The ability to

disentangle different states depends on the precision and

accuracy of the data; for example, conformational differ-

ences smaller than the precision of the data may be

difficult to detect.
www.sciencedirect.com 
Stages 2 and 3: converting input information
into system representation, scoring function,
and sampling
Input information about the structure of the system can

be used (i) to select the set of variables that represent the

system (system representation), (ii) to rank the different

configurations (scoring function), (iii) to search for good

scoring solutions (sampling), and (iv) model validation. It

is often most computationally efficient, although not

always possible, to encode information into the repres-

entation; in contrast it is generally most straightforward,

but least efficient, to encode information into the scoring

function. For example, in protein–protein docking, max-

imization of shape complementarity can be encoded into

a scoring function that is then optimized by a generic

optimization method. Alternatively, maximization of

shape complementarity can also be encoded more effi-

ciently through a representation consisting of shape

descriptors, such as surface curvature, resulting in faster

sampling by generating only configurations of subunits

with complementary shape descriptors [26].

Representation
The representation of a system is defined by all the

variables that need to be determined based on input

information, including the assignment of the system

components to geometric objects, such as points and

spheres. A simple example is Cartesian coordinates for

points corresponding to the individual atoms. More com-

plex representations can assign a component to other

geometric primitives (e.g. spheres, ellipsoids, and 3D

Gaussian density functions) and include additional

degrees of freedom, such as the number of states in

the system and their weights. For instance, in a high-

resolution representation, a sphere can represent a single

atom, while in a coarse-grained representation it may

correspond to a residue. Coarse-graining can be used to

encode the uncertainty arising from both static and

dynamic variability. Moreover, in a ‘rigid body’, the

relative positions of the primitives (e.g. atoms in a

domain) can be constrained, for example based on a

crystallographic structure. In most applications, the

representation is determined before any other compu-

tations and is not changed. The resolution of the repres-

entation should be commensurate with the input

information. In some cases, it is beneficial to represent

different parts of a structure with different representa-

tions or a part may be described with several different

inter-linked representations simultaneously (i.e. multi-

scale representation); in such a case, information can be

applied to restrain the model by using the most con-

venient representation [27].

When defining the representation, we usually have to

balance between the requirements of scoring and

sampling. We need a representation that is sufficiently

detailed for accurately assessing a match between a model
Current Opinion in Structural Biology 2014, 28:96–104
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and the input information. For example, when using

chemical cross-linking information, we need to choose

between representing the cross-linker explicitly with all

of its atoms [28] or implicitly as a function of the distance

between the cross-linked residues. To minimize data

sparseness, we also need a representation that is suffi-

ciently coarse, given the invariably limited information

content of the data. Finally, the representation should

also be sufficiently coarse to allow for exhaustive

sampling of good scoring models in a feasible timeframe.

Although it would be best to be able to compute an

optimal representation based on the input information,

this is not yet possible.

Scoring
Most generally, the scoring function ranks alternative

models based on the evidence provided by the input

information. The scoring function should take into

account the uncertainty in the input information, in-

cluding sparseness, error, ambiguity, and incoherence.

For example, a scoring function could evaluate whether

or not a given model fits the data within its error bars.

Ambiguity in the data assignment should also be

accounted for by the scoring function. For example, to

address the ambiguity in methyl proton assignment for an

observed NOE signal, the signal is often assigned to the

center of mass of the three methyl protons [25]. For a

complex with multiple copies of the same protein, a cross-

link can be assigned to the copy of the protein that

satisfies it best [20]. When a sample is heterogeneous

(i.e. data are incoherent), a scoring function should rank

instances of a model, each one of which consists of

multiple structures (multi-state model). For example,

protein heterogeneity in a crystal can be modeled using

snapshots of molecular dynamics simulations [29��].
Protein dynamics in solution, as measured by SAXS

and NMR spectroscopy, can be modeled by fitting

multiple weighted conformations to the data [30–34].

In EM single particle reconstruction, heterogeneity can

be addressed by multi-model reconstruction using multi-

stage clustering [35].

The most objective ranking of models is in principle

achieved by a Bayesian scoring function [36]. The Baye-

sian approach estimates the probability of a model, given

information available about the system, including both

prior knowledge and newly acquired experimental data.

When modeling heterogeneous systems, model M
includes a set of N modeled structures X = {Xi}, their

population fractions in the sample {wi}, and potentially

additional parameters (e.g. the unknown data errors). The

posterior probability p (MjD, I) of model M given data D
and prior knowledge I is

pðMjD; IÞ / pðDjM; IÞ � pðMjIÞ

where the likelihood function p (MjD, I) is the probability of

observing data D given M and I; and the prior p (MjD) is
Current Opinion in Structural Biology 2014, 28:96–104 
the probability of model M given I. The likelihood

function is based on the forward model f(X) that predicts

the data point that would have been observed for struc-

ture(s) X in the absence of experimental error, and a noise
model that specifies the distribution of the deviation

between the experimentally observed and predicted data

points. The Bayesian scoring function is defined as

S(M) = � log[p(D|M, I) � p(M|I)] which ranks the models

the same as the posterior probability. The most probable

models are found by selecting the best scoring models

sampled from the posterior distribution.

The Bayesian scoring function can account for most

sources of uncertainty in data without over-fitting. It

was successfully adopted for NMR spectroscopy data

[36,37], and recently cryo-EM density maps [38,39��].
Bayesian structure determination based on sparse NOE

measurements produces more accurate structures and

better estimates of precision than standard NMR struc-

ture determination methods [36,37,40]. In single particle

EM reconstruction, the Bayesian approach results in

density maps with higher resolution than those from

standard reconstruction methods using the same input

datasets [38,39��]; moreover, high-resolution maps can be

obtained from only a few thousand of particles [41–43].

Recently, the BioEM method for Bayesian analysis of

individual EM images that can deal with conformational

heterogeneity was developed [44]. Bayesian scoring func-

tions have also been developed for cysteine cross-linking

[45], chemical cross-linking [46], FRET spectroscopy

[47], and atomic statistical potentials [48].

The Bayesian approach is more objective than traditional

scoring functions in a number of respects: (i) inference of

unknown quantities, such as data error and state weights,

(ii) combination of different types of information, (iii)

inference of multiple structures, (iv) estimate of model

precision, and (v) ‘marginalization’ of parameters that are

difficult to determine. The main disadvantage is that the

model is more elaborate (cf. noise model and priors) and a

more exhaustive sampling of structural and parameter

space is required.

Sampling
A variety of optimization methods (e.g. conjugate gradi-

ents), sampling algorithms (e.g. Monte Carlo), and even

exhaustive enumeration (e.g. Fast Fourier Transform)

can be used to find models consistent with input infor-

mation. The major source of uncertainty in this stage is

insufficient sampling due to the ruggedness and high

dimensionality of the scoring function landscape that

needs to be sampled. As a result, it is almost never certain

that the best scoring models were sampled. For stochastic

sampling, such as the Monte Carlo algorithm, the thor-

oughness of sampling can be indicated by showing that

new independent runs (e.g. using random starting con-

figurations and different random number generator seeds)
www.sciencedirect.com
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do not result in significantly different good-scoring

solutions (‘convergence test’) [49]. Passing such a test

is a necessary but not sufficient condition for thorough

sampling; a positive outcome of the test may be mislead-

ing if, for example, the landscape contains only a narrow,

and thus difficult to find, pathway to the pronounced

minimum corresponding to the native state.

For multi-state models, the sampling is often performed

in two steps, due to the relatively high number of degrees

of freedom involved. First, a large set of possible single

configurations is sampled. Second, the sets of configur-

ations in a multi-state model are enumerated, for example

by using a genetic algorithm [31,32], a maximum entropy

approach [33], or a deterministic method [34].

Stage 4: analyzing models and information
Input information and output models are analyzed in

order to estimate model precision and accuracy, to detect

inconsistent information and missing information, as well

as to suggest most informative future experiments. There

are three possible outcomes of modeling, based on the

number of clusters of models and consistency between

the models and information. The following discussion

applies to single-state models, but similar considerations

can also be extended to multi-state models. First, if only a

single model (or a cluster of similar models) satisfies all

restraints and thus all input information, there is probably

sufficient information for determining the structure (with

the precision corresponding to the variability within the

cluster). Second, if two or more different models are

consistent with the restraints, the information is insuffi-

cient to define the single state or there are multiple

significantly populated states. If the number of distinct

models is small, the structural differences between the

models may suggest additional experiments to narrow

down the possible solutions. Third, if no model satisfies

all input information, the information or its interpretation

in terms of the restraints are incorrect, the representation

needs to include additional degrees of freedom, and/or

sampling needs to be improved (regardless of the out-

come of the convergence test above).

If multiple structural states are indicated, care must be

taken that the scoring function explicitly allows for this

possibility [31–34,45,46]. When a mixture of states is

modeled, the number of states needs to be determined.

Frequently, Occam’s razor suggests that the smallest

number of states sufficient to explain the input infor-

mation within some threshold is the optimal choice. An

example of this approach is the ‘minimal ensemble’

method in molecular modeling based on SAXS data

[32]. However, sometimes Occam’s razor is not

applicable. For example, even though a SAXS profile

of an intrinsically disordered protein may be matched

by a sum of profiles for the minimal ensemble structures,

the system is likely to exist in a large ensemble of many
www.sciencedirect.com 
widely different states; such cases are indicated by sim-

ilarity between distributions of structural properties, such

as the radius of gyration, of the minimal and large

ensembles [31].

Once we obtain a model (single or multi-state) that satisfies

the input data, we can analyze it to estimate precision and

accuracy. It is impossible to know with certainty the

accuracy of the proposed structure without knowing the

real native structure. However, accuracy can be estimated

based on rules derived from benchmark studies that

involve modeling of known structures. For example, there

is a strong correlation of the accuracy of an X-ray structure

with the resolution of the X-ray dataset and Rfree [1]. In

addition to such broad rules, five types of analysis that are

indicative of model precision and accuracy in specific cases

have been proposed [20], as follows (the first three tests are

examples of statistical resampling [50]).

Estimating model precision based on variability in the
ensemble of good-scoring models. The model ensemble

is analyzed in terms of the precision of its features, such as

the protein positions and contacts [49,51–53]; the pre-

cision is defined by the variability in the ensemble and

likely provides the lower bound on its accuracy. Of

particular interest are the features that are present in

most configurations in the ensemble and have a single

maximum in their probability distribution. The spread

around the maximum describes how precisely the feature

was determined by the input information. A more

thorough test is performed by estimation of structural

variability in multiple random subsets of the ensemble

[52��,54��].

Self-consistency of the experimental data. Inconsistencies

in the experimental data or its interpretation are indicated

by an ensemble of models containing only frustrated

structures that do not satisfy the input data, although

such an outcome can also arise from the failure of

sampling. If there is a model that satisfies all data, the

probability of such a model occurring by chance can be

indicated by statistical significance tests; if this prob-

ability is low, the model is likely to be correct. In these

tests, the labels on the data points are randomized or

permuted, followed by re-computing the model; for

example, one can assign cross-links to random residue

pairs [55].

Validating models by using random subsets of experimen-
tal data. The structure can be directly validated against

experimental data that was not included in the structure

calculation [52��]. This criterion is similar to the crystal-

lographic Rfree parameter and can be used to assess both

the model accuracy and the input data [1]. Alternatively,

modeling can be repeated with random subsets of the

data. Common statistical techniques for this validation

include cross validation and bootstrapping [50].
Current Opinion in Structural Biology 2014, 28:96–104
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Reproducibility of the model with simulated data. In this

approach, a native structure is assumed, the restraints to

be tested are simulated from this structure, the structure

is then reconstructed based only on these restraints, and

finally the reconstruction is compared to the original

assumed structure [49]. Using such simulations, the

dependence of model accuracy on the amount, quality,

and type of information can be mapped for future pre-

diction of accuracy.

Patterns unlikely to occur by chance. Unlikely patterns

emerging from mapping independent and unused data on

the structure also increase our confidence in a model,

similarly to validation by information not used in model-

ing. For example, the model of the nuclear pore complex

(NPC) revealed an unexpected 16-fold pseudo-symmetry

in the arrangement of fold types of the constituent

proteins, in addition to the known 8-fold symmetry

[49]. The 16-fold pseudo-symmetry validates the model

because the fold types were not used in modeling and the

16-fold pseudo symmetry is unlikely to arise by chance

(while it can be reasonably explained by gene dupli-

cations in the evolution of the NPC).

Conclusions
Integrative structure determination needs de facto stan-

dards and tools for assessing the input data and resulting

models, following in the footsteps of X-ray crystallogra-

phy and NMR spectroscopy with established structure

validation criteria.
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